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Abstract

This work summarises the implementation of MIEZE at the triple axis spectrometer
MIRA and the spin wave analysis of BaCdVO(PO4)2 and CuMnSb. MIEZE is a variant
of the neutron spin echo spectroscopy, which offers high energy resolution on dynamics
of atomic scale. This allows the measurement of quasi-elastic processes, linewidths of
inelastic excitations and fine energy splitting, which is not possible with a standard
triple axis spectrometer. By combining MIEZE with a triple axis spectrometer, one
obtains a energy resolution of MIEZE, while maintaining the flexibility of triple axis
spectroscopy in momentum transfer. Compared to other spin echo techniques, MIEZE
allows measurements of depolarising samples and in depolarising environments.

BaCdVO(PO4)2 and CuMnSb are both systems that order antiferromagnetically at
low temperatures. BaCdVO(PO4)2 is a quasi two dimensional system and a candidate
for exhibiting a spin nematic phase. BaCdVO(PO4)2 was measured in a time-of-flight
neutron spectrometer and the resulting spectrum is described by a spin wave model.
CuMnSb is a type II antiferromagnet, which shows characteristics of local-moment and
itinerant magnetism. CuMnSb was measured with a triple axis spectrometer and the spin
wave dispersion at low temperatures has been investigated. It was found that a model
including next neighbours up to the fourth order describes the spin wave dispersion best.
The obtained exchanged couplings showed that CuMnSb is magnetically frustrated and
exhibits, due to the extent range, itinerant interactions.

iii



Zusammenfassung

Diese Arbeit fasst die Implementierung von MIEZE am Dreiachsenspektrometer MIRA
und die Spinwellenanalyse von BaCdVO(PO4)2 und CuMnSb zusammen. MIEZE ist
eine Variante der Neutronen-Spin-Echo-Spektroskopie, die eine hohe Energieauflösung bei
Dynamiken auf atomarer Skala bietet. Dies ermöglicht die Messung von quasi-elastischen
Prozessen, Linienbreiten von inelastischen Anregungen und feiner Energieaufspaltung,
was mit einem Standard-Dreiachsenspektrometer nicht möglich ist. Durch die Kombi-
nation von MIEZE mit einem Dreiachsenspektrometer erhält man die Energieauflösung
von MIEZE, während die Flexibilität des Impulsübertrags der Dreiachsenspektroskopie
erhalten bleibt. Im Vergleich zu anderen Spinechotechniken ermöglicht MIEZE Messungen
an depolarisierenden Proben und in depolarisierenden Umgebungen.

BaCdVO(PO4)2 und CuMnSb sind beides Systeme, die bei niedrigen Temperaturen
antiferromagnetisch geordnet sind. BaCdVO(PO4)2 ist ein quasi zweidimensionales System
und ein Kandidat für die Ausbildung einer spinnematischen Phase. BaCdVO(PO4)2 wurde
mit einem Flugzeit-Neutronenspektrometer gemessen, und das resultierende Spektrum
wird durch ein Spinwellenmodell beschrieben. CuMnSb ist ein Typ-II-Antiferromagnet, der
Merkmale von lokalisierten Momenten und itineranten Magnetismus aufweist. CuMnSb
wurde mit einem Dreiachsenspektrometer gemessen und die Spinwellen-Dispersion bei
niedrigen Temperaturen untersucht. Es wurde festgestellt, dass ein Modell, das die
nächsten Nachbarn bis zur vierten Ordnung einschließt, die Spinwellenausbreitung am
besten beschreibt. Die erhaltenen Austauschkopplungen zeigen, dass CuMnSb magnetisch
frustriert ist und aufgrund der Reichweite der magnetischen Wechselwirkung itinerant
wechselwirkt.
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1 Introduction

The neutron was discovered by Chadwick in 1932 and by that, one of the first open
questions of nuclear and particle physics were resolved [1]. The description of neutrons
by wave mechanics and the consequent scattering by crystalline specimen was suggested
by Elsasser [2]. The wave-like behavior of the neutron was experimentally proven by
Halban et al. [3] and Mitchel et al. [4]. While these experiments were of pure nuclear
scattering, Bloch suggested in the same year that magnetic structures should be observable
by neutron scattering due to magnetic moment of the neutron. Consequently, Shull and
Smart were able to prove the existence of antiferromagnetic order as predicted by Néel
[5] in MnO by the usage of magnetic neutron diffraction [6].

As the complexity of scientific questions increased with the progress in magnetic
materials, new and more refined measurement techniques had to be developed. Nowadays,
already a variety of principles in neutron scattering techniques have been developed
and are dealt in several textbooks [7, 8, 9, 10]. However, there are still limiting factors
in neutron scattering, eg. the resolution of small energy scales due to the low flux and
brightness of the neutron beam. One approach to lift the limit in resolution are NSE
(Neutron Spin Echo) and NRSE (Neutron Resonsant Spin Echo) techniques, respectively.

The MIEZE (Modulation of IntEnsity with Zero Effort) technique, a variety of NRSE,
is a spin echo method with a energy resolution several magnitudes higher than standart
methods, like triple axis spectroscopy or time-of-flight spectroscopy. Compared to NRSE,
with MIEZE, measurements of magnetic specimen or in depolarising environments can be
performed [11]. This allows precise measurements of inelastic or quasielastic scattering in
magnetic materials as e.g. line-widths of magnetic excitations, which directly correlates
to the lifetime of the excitation. In MnSi, the determination of the skyrmion and
helimagnon lifetime is one missing part, that would support the completion of the existing
phenomenological theory [12, 13, 14, 15]. Here, NSE techniques are essential because the
energy scale is too small at the relevant momentum transfers to resolve it with standard
techniques. In this thesis, the implementation of the MIEZE technique at the triple axis
instrument MIRA at FRM2, Garching bei München, Germany is presented.

BaCdVO(PO4)2 and CuMnSb are both antiferromagnets, whose interactions mecha-
nisms are not fully understood. BaCdVO(PO4)2 is a quasi-two dimensional antiferromag-
net, which is one candidate to exhibit a spin nematic phase. In this phase, neighbouring
spin pairs dimerise into antiferroquadropolars, which possibly show ordering without
breaking the time reversal invariance. The time reversal invariance of the nematic phase
makes it invisible for the most magnetic probing techniques such as magnetic neutron
diffraction or NMR [16, 17]. Inelastic neutron scattering, however, could be able to resolve
the nematic phase as it is expected to express a linear dispersion Goldstone mode. In
this thesis, BaCdVO(PO4)2 was measured with the time-of-flight spectrometers IN5, ILL,
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1 Introduction

Grenoble France and LET, ISIS, Oxfordshire, United Kingdom. The resulting spin wave
dispersion was analysed in order to reveal the spin nematic phase.

CuMnSb is a type-II antiferromagnet, in which ferromagnetic planes stack antifer-
romagnetically along the third direction. Theoretical calculations predicted that for a
defect-free crystal at low temperatures the magnetic structure becomes unstable and
more complex magnetic structures are energetically more favourable compared to the
type-II antiferromagnetism [18]. However, already low defect concentrations stabilise the
type-II antiferromagnetic ordering, which explains the observed magnetic structure from
[19, 20, 21]. More recent magnetisation and neutron measurements on a high quality
CuMnSb crystal revealed an additional phase transition towards lower temperatures
within the magnetic phase that include a change in the magnetic phase group [22]. In this
thesis, the results of triple axis spectroscopy on a high quality CuMnSb crystal, performed
at EIGER, PSI, Villigen, Switzerland, are presented and analysed. By modelling the spin
wave dispersion, the exchange interactions are quantified and the interaction mechanisms
of low temperature phase is further disclosed.
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2 Introduction to Neutron Scattering

In this chapter the advantages of neutron scattering to other probing techniques are
discussed. The fundamental equations of neutron scattering will be presented, which are
derived in detail in the two textbooks [8, 10].

2.1 Basic Neutron Properties

A neutron is a particle with a mass of m ≈ 1.675×10−24 kg and has zero charge. Compared
to proton, electron or x-ray scattering experiments, where the particle interacts mainly
with the electron orbitals, the neutron interacts directly with the atomic nucleus. As
the interaction via nuclear forces are of short range, the lower interaction probability
of a neutron with a solid leads to a ≈ 103 larger penetration depth compared to other
scattering experiments. This allows the investigation of bulk materials and the application
of extreme environmental conditions. By this means, temperatures from a few mK to
over thousand degrees, high pressures, electric fields, magnetic fields of several tesla or
any combinations of these can be applied.

Furthermore, neutrons are spin-12 particles and, thus, possess a magnetic moment
µn = eℏ/2m. The magnetic moment makes neutron scattering a unique technique for
probing static and dynamic magnetic properties as the magnetic moment of the neutron
interacts with unpaired electrons. Hence, it is possible to investigate magnetic ordering
phenomena or magnetic excitations in condensed matter. Especially polarised neutron
scattering has opened further possibilities for the investigation of magnetic materials,
as the interaction strength between a neutron and a nuclear spin depends on their spin
alignment.

However, neutrons, coming from the fuel element of a reactor, do not necessarily have
the kinetic energy as it is needed for a specific experimental setup. The average energy of
the neutrons can be changed by a moderator, in which the neutrons gain or lose energy
by inelastic collisions with the atoms of the moderator material. The resulting kinetic
energy of the neutrons is Maxwell distributed and depends on the moderator temperature.
In condensed matter physics, the energy of a neutron is usually divided into groups of
different moderator temperatures, e.g. ’cold’, ’thermal’ and ’hot’, see table 2.1. The
relation of the kinetic energy and the moderator temperature is given by

Ekin ≈ kBT. (2.1)

The small mass of neutrons m ≈ 1u makes cold and slow thermal neutrons ideal for
inelastic scattering experiments, as the neutron’s kinetic energy is of the same order of
magnitude as the excitations. The exact choice of energy depends on the investigated
excitations.

3



2 Introduction to Neutron Scattering

Faster thermal and hot neutrons, in contrast, have a de-Broglie wavelength λ of the same
order of magnitude as the average interatomic distances in solids or dense liquids. These
energies are ideally suited for the analysis of atomic structures in diffraction experiments,
which utilise the inference of neutron waves. Nevertheless, hot neutrons are also used for
inelastic experiments with high energy transfers or for liquid and amorphous structure
factor measurements with high momentum transfers.

Source Energy (meV) Temperature (K) Wavelength (Å)

cold 0.1-10 1-120 30-3
thermal 5-100 60-1000 4-1

hot 100-500 1000-6000 1-0.4

Table 2.1: Temperature ranges of neutrons and their corresponding energy and wavelength (from
[10])

2.2 Fermi’s Golden Rule and the Scattering Cross Section

Scattering experiments focus on the study of structures and excitations in condensed
matter. The interaction of neutrons with a sample is investigated by measuring the
probability that a neutron with wave vector k and energy E = ℏ2

2mn
k2 is scattered into a

state with wave vector k′ and energy E′ = ℏ2
2mn

k′2. The transferred momentum is

Q = k− k′. (2.2)

The variable Q is known as the scattering vector. The state of the scattering system
changes from |λ⟩ →

∣∣λ′〉 with an energy transfer [10]

ℏω = E − E′ =
ℏ2

2mn

(
k2 − k′2

)
. (2.3)

In a simple scattering experiment, a particle beam with a wave vector k impinges on a
sample as shown in figure 2.1. The number of neutrons per incident flux that interact with
the sample and are scattered in all directions defines the total scattering cross-section,

σ =
particles scattered per second

incident flux
. (2.4)

Considering a measurement, where all neutrons are counted, which were scattered into
a specific solid angle dΩ in the direction of θ and ϕ. The corresponding cross-section is
known as the differential cross-section

dσ

dΩ
=

particles scattered per second into dΩ
incident flux

. (2.5)

In inelastic experiments, additionally to the direction of the neutrons, the transferred
energy is analysed. By counting all scattered neutrons in a specific direction, whose
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2.2 Fermi’s Golden Rule and the Scattering Cross Section

energy lies between E′ and E′ + dE, one defines the partial differential cross-section

d2 σ

dΩdE
=

particles scattered per second into dΩ with a final
energy between E′ and E′ + dE

incident flux
. (2.6)

Figure 2.1 illustrates the partial differential cross-section. Since neutrons are a very weak
perturbation to the measured system, one can apply first order-perturbation theory and
the partial differential cross section can be described via Fermi’s golden rule [10]

d2 σ

dΩdE

∣∣∣∣∣
λ→λ′

=
k′

k

(
mn

2πℏ2

) ∣∣∣〈k′λ′∣∣V |kλ⟩
∣∣∣2 δ (ℏω + Eλ − Eλ′) . (2.7)

The initial and final state of the probed system are denoted by λ and λ′, respectively. Eλ

and Eλ′ are the initial and final energy of the scattered system, such that

E + Eλ = E′ + Eλ′ . (2.8)

The quantity ℏω is the energy transfer from the neutron to the system, V is the interaction
operator for the neutron with the probed system and δ is the Dirac delta distribution.
The exact interaction potential for the neutron depends on the type of scattering process,
which is either nuclear or magnetic [23].

Figure 2.1: Visualisation of the partial differential cross-section. The incident beam with
momentum k and energy E is scattered by a sample and the sample changes from
state |λ⟩ →

∣∣λ′〉. The partial differential cross-section is the amount of scattered
particles into dΩ and within the energy interval E′ and E′ + dE.
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2 Introduction to Neutron Scattering

2.2.1 Nuclear Scattering

As neutron scattering is considered as a weak perturbation, the first Born approximation
can be applied to describe scattering events [8]. Hereby, the interaction matrix elements
are calculated by treating the incident and the outgoing neutrons as plane waves. The
total potential is given by the sum over the interaction potentials of all scattering centres

V (r) =
∑
i

Vi(r−Ri), (2.9)

with Ri being the position of the i-th scattering centre. The matrix elements of equa-
tion (2.7) can then expressed as〈

k′λ′∣∣V |kλ⟩ =
∑
i

Vi(Q)
〈
λ′∣∣ exp iQRi |λ⟩ , (2.10)

where
Vi(Q) =

∫
drV (r) exp (iQr) (2.11)

is the spatial Fourier transformation of V (r) and describes the potential in the reciprocal
space. The change in momentum is defined in equation (2.2). Since the interaction range
of nuclear scattering is several orders of magnitude smaller than the neutrons wavelength,
the nuclear potential can be described by a delta function

Vi(r) =
2πℏ2

m
biδ(r−Ri), (2.12)

where the i-th nucleus has a scattering length of bi. The scattering length bi depends on
the element and isotope of the scattering nucleus. Equation (2.12) is known as the Fermi
pseudopotential. Inserting Fermi pseudopotential equation (2.12) into equation (2.11) one
gets

Vi(Q) =
2πℏ2

m
bi. (2.13)

Inserting the matrix elements given by equation (2.10) using equation (2.13) into equa-
tion (2.7) the partial differential cross-section becomes

d2 σ

dΩdE

∣∣∣∣∣
λ→λ′

=
k′

k

∣∣∣∣∣∣
∑
j

bi
〈
λ′∣∣ exp (iQRi) |λ⟩

∣∣∣∣∣∣
2

δ(ℏω + Eλ − Eλ′). (2.14)

Equation (2.14) describes a single scattering process, in which one neutron changes its
wave vector k → k′ with a momentum transfer of Q and the scattering system goes from
state λ to λ′ .

However, a real scattering experiment does not consist of a single transition. Instead
one measures an ensemble of neutrons, each with a momentum and energy transfer,
described by the partial differential cross-section as defined in equation (2.6). Hence, one
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2.2 Fermi’s Golden Rule and the Scattering Cross Section

has to sum over all possible final states λ′ and to average over all initial states, which
yields

d2 σ

dΩdE
=

k′

k

∑
λ,λ′

p(λ)

∣∣∣∣∣∣〈λ′∣∣∑
j

bi exp (iQRi) |λ⟩

∣∣∣∣∣∣
2

δ(ℏω + Eλ − Eλ′), (2.15)

where p(λ) is statistical weighting factor for the initial state |λ⟩. Assuming all nuclei have
the same scattering length b, Van Hove [24] showed that equation (2.15) can equivalently
be expressed as

d2 σ

dΩdE
= N

k′

k
b2S(Q, ω), (2.16)

where

S(Q, ω) =
1

2πℏN
∑
j,j′

∫ ∞

∞
dt
〈
exp (−iQrj′(0)) exp (iQrj(t))

〉
exp (−iωt) (2.17)

is the dynamic structure factor. Hereby, N is the number of scattering nuclei, t is time and
the angle brackets ⟨·⟩ denote the thermal average over the initial states. The dynamical
structure factor S(Q, ω) is the time Fourier transformation of the intermediate scattering
function I(Q, t), defined as

I(Q, t) =
1

N

∑
j,j′

〈
exp (−iQrj′(0)) exp (iQrj(t))

〉
, (2.18)

which is, in turn, direct proportional to the spatial Fourier transformation of the van
Hove density-density correlation function [24]

G(R, τ) =

∫
dt

∫
d3r

〈
ρ(r, t)ρ(r+R, t+ τ)

〉
. (2.19)

The dynamical structure factor is independent of k and k′, and it solely depends on
the transferred momentum and energy from the neutron to the sample. In other words,
it is the probability of the neutron’s change in energy and momentum in a scattering
process. Thus, the goal of inelastic neutron experiments can be rephrased as to measure
the dynamical structure factor and to obtain, by that, information on the structure and
dynamics of the investigated system [23].

2.2.2 Magnetic Scattering

One of the major benefits in neutron scattering is the interaction of the neutron with
magnetic moments [9]. The magnetic moment of a neutron can be expressed in terms of
pauli matrices σ̂ by

µ̂n = γµN σ̂, (2.20)

where γ = −1.91 [25] is the gyromagnetic ratio in units of µN , where µN is the nuclear
Bohr magneton

µN =
eℏ
2mp

, (2.21)

7



2 Introduction to Neutron Scattering

with the mass of a proton mp and the electron charge e. The interaction of a neutron
with a magnetic field H is expressed by

µ̂n ·H = −γµN σ̂. (2.22)

In magnetic neutron scattering experiments, the corresponding field is usually generated
by the unpaired electrons of the sample. The operator for the magnetic dipole moment of
a free electron is

µ̂e = −2µB ŝ, (2.23)

with the Bohr magneton

µB =
eℏ
2me

, (2.24)

the electron mass me and the spin angular momentum operator ŝ. An electron gives
two contributions to the local field, namely magnetic dipole moment of the electron and
magnetic moment generated by the momentum of the electron. The magnetic dipole
moment of the electron at position R is given by

HS = ∇×
(
µ0

4π

µe ×R

|R|3

)
, (2.25)

whereas the field that is generated by the momentum is given by

HL = −µ0µB

2πℏ
p×R

|R|3
. (2.26)

Hence, using equations (2.22) to (2.26) the interaction potential becomes

−µn · (HS +HL) = −µ0

4π
γµN2µBσ

(
∇×

(
s×R

|R3|

)
− p×R

|R|3

)
. (2.27)

By inserting the magnetic interaction potential equation (2.27) into Fermi’s Golden Rule
equation (2.7), one gets, after some calculation [8, 9, 10], the magnetic scattering cross
section

d2 σ

dΩdE
= (γr0)

2k
′

k
F 2(Q) exp (−2W (Q))

∑
α,β

(
δαβ −

QαQβ

Q2

)
Sαβ(Q, ω), (2.28)

with α, β = x, y, z and r0 = γe2/mec
2 ≈ 0.54× 10−15m is the classical electron radius.

Further, the magnetic form factor F (Q), the Debye-Waller factor exp (−2W (Q)) and
the magnetic scattering function were introduced. The magnetic form factor F (Q) is
the Fourier transformation of the density of unpaired electrons and decreases drastically
with Q. The magnetic scattering cross-section per electron 4π(γr0)

′ is under suitable
conditions of the same order of magnitude as nuclear scattering, which is a crucial property
of neutron scattering. The magnetic cross section depends on the angle between the
sample’s moments and the scattering vector, so that the magnetic moment of the neutron
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2.2 Fermi’s Golden Rule and the Scattering Cross Section

only couples to moments perpendicular to Q. The magnetic scattering function Sαβ(Q, ω)
contains all information regarding the magnetic structure and dynamic of the sample. It
can be expressed as [10]

Sαβ(Q, ω) =
1

2πℏ
∑
i,i′

∫ ∞

∞
dt exp (iQ(Ri −R′

i))
〈
Sα
i (0)S

β
i′(t)

〉
exp (−iωt). (2.29)

The magnetic scattering function Sαβ(Q, ω) is complementary to the nuclear dynamic
scattering function and it corresponds to the probability of finding a magnetic moment j′

at position R′
i at time t. The fluctuation dissipation theorem allows to connect the αβ-

component of the scattering function Sαβ(Q, ω) with the imaginary part of the dynamic
susceptibility tensor χαβ(Q, ω) [26]

Sαβ(Q, ω) =
Nℏ
π

(
1− exp

(
− ℏω
kBT

))
Im(χαβ(Q, ω)), (2.30)

with N being the total number of ions and the thermal population factor(
1− exp

(
− ℏω
kBT

))−1

= ⟨n+ 1⟩ . (2.31)

The dynamic susceptibility χαβ(Q, ω) describes the linear response of a scattering system
to a small, inhomogeneous magnetic field with a wave vector Q and energy ω. Its imaginary
part Im(χαβ(Q, ω)) determines the mean energy dissipation rate in the system [27, 28].
Equation (2.30) can be used directly to model inelastic magnetic neutron scattering data.

For inelastic magnetic signals, e.g. spin waves, it is appropriate to use the Lorentzian
spectral weight function to describe the dynamic susceptibility tensor by [29]

Im(χαβ(Q, ω)) =

χ(Q)

2π

 ℏωΓ
ℏ
[
ω − ω(Q)

]2
+ Γ2

+
ℏωΓ

ℏ
[
ω + ω(Q)

]2
+ Γ2

 .
(2.32)

Hereby ℏω(Q) is the energy of the excitation, which is usually described by the dispersion
relation of the corresponding exitation. Γ is the line width of the excitation, which
correlates to the lifetime of an excitation. For spinwaves, the line width is generally
expected to correlate with the energy and scales with a power law regarding temperature
and Q. The exact nature of the static susceptibility χ(Q) depends on the type of
excitation, generally one expects χ(Q) ∼ Q−2 for magnetic excitations [29]. The two
terms, that only differ in sign, refer to energy gain and energy loss processes, similar to
Stokes and anti-Stokes in optical spectroscopy.
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triple axis spectrometer MIRA

The energy spectrum of neutron scattering experiments usually consists of two contri-
butions: The inelastic lines due the interaction of neutrons with matter exciting or
de-exciting quantum states and a sharp elastic line with no energy transfer. But also
the interaction of neutrons with diffusing or reorienting particles, as in liquids or in
hot solids, is possible. Such interaction processes lead to a broadening of the elastic
line and are usually referred to ’quasielastic’ scattering[30, 31]. Quasielastic neutron
scattering includes complex scientific questions of very slow dynamics such as molecular
rotation, molecular tunneling, diffusion, polymer reptation, relaxation or glassy dynamics.
Since the energy resolution of inelastic techniques like triple-axis spectroscopy (TAS) or
time-of-flight (TOF) are typically in the order of δE ≈ 50−150µeV [32], only motions on
the time scale of 10−13−10−12 s can be investigated. However, there are slow dynamical
processes, which happen in time scales up to 1µs, with corresponding energy transfers in
the sub µeV regime, which cannot be resolved with TAS or TOF. Neutron backscattering
instruments can reach an energy resolution down to sub µeV, however, the backscattering
technique lacks of a sufficient Q-resolution [33]. Additionally, the Liouville theorem asserts
that volume in phase space enclosed by adjacent trajectories is constant as a function
of time. As a consequence in neutron scattering, the neutron flux is limited by the
instrumental resolution and vice versa. Thus, neutron backscattering becomes inadequate
for many studies of time scales longer than ≈ 10−10 s, due to low count rates.

Mezei successfully demonstrated in 1972, that the Liouville theorem can be circumvented
by introducing a new technique, the neutron spin echo (NSE) [34]. In this polarised
neutron technique, the neutron spin acts as a ’clock’, that rotates in a long, constant
magnetic field due to Larmor precession. Small changes in the kinetic energy of the neutron
due to inelastic processes lead to a deviation of the neutron spin rotation angle. This
new approach allowed to access energy scales, that have not been resolvable with other
scattering methods. In contrast to standard scattering techniques, NSE measures directly
the time-dependence τ of the intermediate scattering function, which will explained more
detailed in section 3.3.

Golub and Gähler introduced the neutron resonance spin echo (NRSE) technique in
1987, which is a variant of NSE [35]. In this technique the long constant field regions of
NSE are replaced by short resonant field spin flippers. Even though NRSE can not yet
access a Fourier range comparable to NSE, the great advantage is the possibility to be
combined with a triple axis instrument. This enables the measurement of line widths of
dispersing excitations or the measurement of fine energy levels over the entire Brillouin
zone.
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However, the tremendous drawback of NSE and NRSE is the inherent sensitivity to
depolarising samples like superconductors, materials with magnetic order or the application
of an external magnetic field [36]. The Modulation of IntEnsity with Zero Effort (MIEZE)
technique is a further development of NRSE, which mitigates the sensitivity towards
depolarising effects. The only user-open MIEZE setup is currently provided by the
beamline RESEDA at FRM2, Garching, Germany [37]. Given the geometry of RESEDA,
the MIEZE technique has only been applied in forward scattering geometry, which strongly
limits the accessible Q-range.

In the following, the integration of the MIEZE technique into the existing triple axis
instrument MIRA is presented. The combination of MIEZE and TAS not only increases
the instruments energy resolution, it further enables the measurement of the line width
of inelastic signals of depolarising sample in a depolarising environment. Thus, one can
precisely determine the life time of excitations, e.g. magnons.

3.1 Triple Axis Spectroscopy (TAS)

In TAS, one measures S(Q, ω) at discrete points in the (Q, ω) space. Usually, either the
energy transfer ℏω or the momentum transfer Q is kept fixed, while the other variable is
scanned. The following description of the TAS method follows mainly [7, 23], the details
of the specific TAS ’MIRA’ are taken from Ref. [32, 38].

Figure 3.1: Triple Axis Spectrometer. A schematic of a triple axis spectrometer (left). The
arrow shows the neutron flight path. A specific wavelength from the neutron beam
is selected by the monochromator (Mono). The analyser (Ana) selects a certain
energy transfer of the scattered neutrons. The incident and outgoing angle on the
sample determines the momentum transfer. The number of neutrons with a specific
momentum and energy are counted by the detector. The TAS MIRA at FRM2
(right). The red arrow shows the neutron flight path. The blue label denote the
monochromator (M), sample stage (S) and analyser (A). The transferred momentum
is Q = ki − kf [32, 39].

A TAS consists of three stages, namely the monochromator, the sample stage and the
analyser. The first axis, the monochromator, selects a specific wavelength band from the
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polychromatic neutron beam coming from the moderator. The monochromator selects a
wavelength by utilising Bragg’s law

nλ = 2dhkl sin θ. (3.1)

Hereby the polychromatic neutron beam impinges on a crystal with a known lattice
spacing dhkl, e.g., pyrolytic graphite (PG). Only neutrons, which fulfil Bragg’s law are
reflected by the crystal and by adjusting the angle of incoming neutrons towards the crystal
planes, a specific wavelength λ can be chosen. The selected wavelength λ determines the
energy E and momentum |k|.

The principle of the analyser is identic to the monochromator: Again, by utilising
Bragg’s law a specific energy E′ can be selected from the scattered neutron beam. The
combination of specific monochromator and analyser configurations allows only neutrons
with energy transitions E−E′ = ℏω to be measured. The momentum transfer Q = k−k′

is determined by the choice of scattering angles at the sample stage. The configuration of
the three axis measures only the neutrons with the chosen momentum and energy transfer
(Q, ω). Thereby, one receives the intensity of the partial differential cross-section as
defined in equation (2.6), and, consequently, the dynamical scattering function S(Q, ω).

Beside the main elements of a triple axis instrument, there are other components to
improve or alternate the properties of the neutron beam: Collimators (C) are used to
reduce the beam divergence which is determined by the monochromator crystal and
neutron guide. Collimators C2, C3 are placed in front and after the sample stage, as
shown in figure 3.1 . A cooled Be-filter reduces the background signal by filtering higher
order reflections n of the Bragg condition equation (3.1). The masks (M1, M2) are slits
geometrically shaping the beam. The monitor measures the incident number of neutrons
in order to normalize it with the signal measured in the detector.

3.2 Spin Echo Techniques

All spin echo techniques have the common principle of using the Larmor precession of
a neutron as a ’clock’ to measure small differences in the flight time of the particle.
One measures the relative change of flight time of scattered neutrons with respect to
unscattered neutrons over a certain distance. From the difference in neutron velocity one
can deduce the gain or loss in the kinetic energy of the neutron. Thereby, small changes
in energy can be measured, which are not resolvable by other scattering techniques. The
resulting energy resolution is several orders of magnitude better than TAS or TOF, while
not being limited by the Liouville theorem.

3.2.1 Larmor Precession

Larmor precession is the rotation of the spin within a magnetic field, where the rotational
frequency depends on the magnetic field strength. It is a characteristic property of
particles with a magnetic dipole moment and the fundament for all spin echo techniques.
The time evolution of a neutron spin, expressed in Pauli matrices σ = (σx(t), σy(t), σz(t)),
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in a known field B(t) is given by

d

dt
σ(t) = −γNµN

ℏ
[
B(t)× σ(t)

]
. (3.2)

Applying a constant field along the z-axis

B(t) =

 0
0
Bz

 , (3.3)

the three components of equation (3.2) become

dσx
dt

= −ωLσy,
dσy
dt

= ωLσx,
dσz
dt

= 0, (3.4)

which can be solved by

σx(t) = cos(ωLt)σx(0)− sin(ωLt)σy(0) (3.5)
σy(t) = sin(ωLt)σx(0) + cos(ωLt)σy(0) (3.6)
σz(t) = σz(0) (3.7)

where ωL is the Larmor frequency and defined by

ωL =
−γNµNB

ℏ
= γLB. (3.8)

The quantity γL is the gyromagnetic ratio and γL = −1.832× 108 s−1T−1 in SI-units.
Equations (3.5) to (3.7) show that only the perpendicular components of the spin precess
around the magnetic field vector, while the parallel component stays unchanged [7].
Figure 3.2 shows spin rotation around a constant field. In spin echo techniques, the

Figure 3.2: Illustration of the Larmor precession. The spin of a particle σ(t) rotates around the
applied magnetic field Bz with the frequency ωL

integrated rotation of the polarisation of the neutron beam is considered as the phase.
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The total phase a neutron gains within a magnetic field is determined by the field line
integral and the neutron velocity

∆ϕ =

∫ L
0 dlB(l)

v
, (3.9)

with a magnetic field region of the length L and a magnetic field B(l) [34]. As the
polarisation of the neutron beam acts as a clock in spin echo methods, the phase ϕ refers
to the pointer of the clock and is the quantity, which is utilised to measure changes in the
neutrons energy.

3.2.2 Adiabatic Transition

The Larmor precession can be utilised to adiabatically rotate the neutron spin, which
is easier to be realised than drastic changes in the magnetic fields. If the direction of
a magnetic field changes sufficiently slow the parallel component of the neutron spin is
conserved [7]. A neutron spin that is initially parallel to the magnetic field follows the
slow change of the effective field direction. Hereby, the adiabaticity of the process is
described by the adiabaticity parameter

E =
ωL

ωB
, (3.10)

which is defined by the ratio of the Larmor frequency ωL and the angular rotation of the
magnetic field ωB . If one assumes a neutron travelling along the x-direction with velocity
v and a magnetic field rotating with a constant angular rate dθB

dx , the angular rotation of
the field from the perspective of the neutron spin can be expressed as

ωB =
dθB
dt

=
dθB
dx

v. (3.11)

The adiabaticity parameter becomes then

E =
γLB
dθB
dx v

, (3.12)

where equations (3.8) and (3.11) have been used. In order to minimise the loss of
polarisation in the transition precess, empirically, a adiabaticity parameter of E > 10 has
been proven to be reasonable [7]. Thus, one has to ensure that the angular change in the
magnetic field direction is either sufficiently slow or the field strength is strong enough
along the transition. The resulting empirical condition over the whole transition process
is

dθB
dx

∣∣∣
x
< 2.65B(x) [T]λ

[
Å
]
, (3.13)

with the angular rotation of the magnetic field dθB
dx |x, the neutron wavelength λ in

ånsgtröm and the magnetic field strength B = |B| at position x in tesla. The constant
2.65 is the result of all physical constants and conversions factors.
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3.3 Classical Neutron Spin Echo (NSE)

The general setup of a NSE is illustrated in figure 3.3. It is composed of two constant
magnetic field regions with opposite direction B1 = −B2. A polariser is placed before the
first constant field B1 region and another polariser is placed after the second constant
field B2 region. As a neutron enters fully polarised the first region, the spin precesses
around the magnetic field B1 by the total angle ϕ1. If the neutron passes the sample stage
without being scattered inelastically it receives in the second region the same inverted
total rotation angle in opposite direction and the initial neutron polarisation is restored.
This setup is independent of the neutron velocity distribution since the field line integral
of the first field region B1 is the same as the second field region B2.

If a neutron is scattered inelastically, the neutron velocity changes and thus the phase
obtained in B2 differs compared to B1. The polarisation of the neutron at the second
polariser position is then either under- or over-compensated and not fully restored.
Thereby the amount of the neutrons passing the second polariser is reduced, i.e. the
measured signal is damped compared to the elastically scattered neutron. This reduction
in polarisation is directly correlated with the inelastic scattering process.

Figure 3.3: Schematic of a NSE spectrometer. A polarised neutron beam passes through regions
with opposing magnetic field B1 and B2. In region of B1 the spin of the neutrons
precesses around the magnetic field. If the neutron passes the sample stage without
being inelastically scattered the precession of the first region is exactly reversed in
the second region with the opposite field B2. If the neutron is part of an inelastic
scattering process, the kinetic energy of the neutron differs as well as the time
spent in the region of B2. The polarisation of the neutron beam is either under- or
overcompensated depending on the gain or loss in energy. As the initial polarisation
is not fully restored, the measured intensity after the second polariser is reduced
compared to the unscattered case. (Taken from ref. [40])

3.3.1 Mathematical Description of NSE

An incident neutron wave packet Ψ travelling along the y-axis, with an initial full
polarization in x-direction |+⟩x is considered. The constant magnetic field B1 is parallel
to the z-axis, while B2 is antiparallel to the z-axis in region 2.
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It is noted that an eigenstate |+⟩x of the spin operator σx with an eigenvalue 1 can be
written as a superposition of the two eigenstates |±⟩z,

|+⟩x =
1√
2

(
|+⟩z + |−⟩z

)
=

1√
2

[
1
1

]
z

, (3.14)

where the top and bottom row of the bracket vector refer to the |+⟩z-state and the
|−⟩z-state, respectively [41]. The neutron beam can be described by the plane wave
approach and the wave function is then given by [42]

Ψ = ei(kiy−ωit)

[
1
1

]
. (3.15)

As soon as a neutron with velocity vi enters the first magnetic field region, the applied
magnetic field can be described as a potential

ℏωz = ±µB1, (3.16)

for the two incident spins. The ± sign corresponds to the antiparallel and parallel spin
components relative to the applied field. The resulting velocity of the two spins is

v± = vi ±
ℏωz

mvi
. (3.17)

Due to the difference in velocity, the two opposite spin directions spend different times in
the field region B1. The two periods of time are approximated to the first order by

t± =
L

v±
=

L

vi
∓ ℏωzL

mv3i
= t0 ∓ τNSE/2, (3.18)

where t0 is the median time of the two states spent in the region. The relative delay
between the spin states after the passage of the length L at sample position is

τNSE =
2ℏωzL

mv3i
= t− − t+. (3.19)

The echotime τNSE is an important quantity for all spin echo variants, since the time
difference between the two spin components is the varying parameter for such experiments,
as it is shown later. Using equation (3.9), the phases picked up by the two spins while
passing the magnetic field of the length L are

ϕ
(1)
± = ±ωz

L

vi
. (3.20)

Thus, after the passage through the first field region, the incident wave function equa-
tion (3.15) becomes

Ψ = ei(kiy−ωit)

[
e−iωzL/vi

eiωzL/vi

]
. (3.21)
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If the velocity of the neutron does not change, each spin receives the exact opposite
change in phase on the passage through second region with B2 = −B1. However, if the
neutron is scattered inelastically, the resulting change in velocity leads to a different phase
picked up by the neutrons in the second region B2,

ϕ
(2)
± = ∓ ωzL

vi +∆v
, (3.22)

where ∆v denotes the change in velocity and the sign switch originates by the opposite
magnetic field. The amplitude of the wave function of each spin is only proportional to
the density of the scattering system at the corresponding time and place [43]

Ψ± ∝ ρ(ri, t±). (3.23)

The spin state of a neutron, after region B1 (see equation (3.21)), that is scattered at
position ri and time ti with density ρ(ri, ti), becomes [41, 42, 43]

Ψsc = ei(kfr−ωf t)ρ(ri, ti)e
iQrieiωti

eiϕ(1)
+

eiϕ
(1)
−

 , (3.24)

where Q = kf − ki, ω = ωf − ωi and ϕ
(1)
± as defined in equation (3.20). Including the

passage through the second field region B2, as described in equation (3.22), the total
phase approximated to the first order becomes

ϕtot,± = ±ωz
L

vi
∓ ωzL

vi +∆v
= ±ω

ℏωzL

mv3i
= ±ωτNSE/2 (3.25)

If one integrates over all possible scattering events, the wave function after region B2

becomes

Ψf = ei(kfy−ωf t)

[ ∫
dti
∫
d3rie

iωtie−iQriρ(ri, ti)e
iωτNSE/2∫

dtj
∫
d3rje

iωtjρ(rj , tj)e
−iQrje−iωτNSE/2

]
. (3.26)

Thus, the expectation value of the x-polarisation at the position of the second polariser is

⟨σx⟩ ∝
〈
Ψf

∣∣σx ∣∣Ψf

〉
=∫

dω

∫
d3ri

∫
d3rj

∫
dti

∫
dtj
〈
ρ(ri, ti)ρ(rj , tj)

〉
eiω(ti−tj)e−iQ(rj−ri)e−iωτNSE ,

(3.27)

where the integral over ω originates from the ensemble average of the density product.
Since the second polariser filters for the x-polarisation, equation (3.27) describes the
expected signal in the detector. In order to simplify equation (3.27), one introduces the
relative coordinates R = rj − ri and the relative time τ = ti − tj . The integral over dω
can expressed as ∫

dωeiω(τ−τNSE) = 2πδ(τ − τNSE). (3.28)
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The polarisation can then expressed as

⟨σx⟩ ∝
∫

dR3e−iQR

∫
dτδ(τ − τNSE)[∫
dti

∫
d3ri

〈
ρ(ri, ti)ρ(ri +R, ti + τ)

〉]
.

(3.29)

The term in the square brackets is the van-Hove density-density correlation function G in
dependence of the echotime τNSE, as described in equation (2.19). The final polarisation
can be expressed as

⟨σx⟩ ∝
∫

dR3e−iQRG (R, τNSE) . (3.30)

The right side of equation (3.30) is the intermediate scattering function, as defined in
equation (2.18), which is the spatial Fourier transformed of the van-Hove correlation
function G (R, τNSE). Although the measured quantity ⟨σx⟩ is a sum of scattering events
with different energy transfers ω, only pairs of scattering events occurring at (ti−tj) = τNSE
contribute to this quantity. A more detailed explanation can be found in Ref. [41].

Experimentally, one usually chooses a set of echotimes τNSE by varying the magnetic
field strengths B1,B2. By measuring the final polarisations as a function of the set of
echotimes τNSE, one obtains the intermediate scattering function.

3.4 Neutron Resonance Spin Echo

The Neutron Resonance Spin Echo (NRSE) is a variant of NSE. NRSE follows a similar
working principle as NSE, but each constant field region is replaced by a pair of radio
frequency (RF) spin flipper. Each RF-flipper is superimposed by a constant magnetic field,
which is limited to the vicinity with width d. Depending on the magnetic field direction
relative to the neutron beam one distinguishes between transversal and longitudinal NRSE.
In the transversal NRSE the constant field is perpendicular to the neutron flight path,
while in the longitudinal case the field is parallel. In case of transversal NRSE, the space
between the RF-flipper and the area in the vicinity has to be field free, which is realised
by µ-metal shielding. The basic, transversal NRSE setup is illustrated in figure 3.4.

Likewise in NSE, the first pair of RF flippers separates the phase of opposite spins in
z-projection of the x-polarised neutron beam. The second pair aligns the phase of the
two spins back together. Any inelastic interaction of the neutron with the sample results
in an additional phase between the two spin components. As a consequence, the second
arm does not fully restore the two spin states and the difference in phase results in a
reduced intensity after passing the second polariser. The echotime in this setup is doubled
compared to classical NSE with same constant magnetic field strength, τNRSE = 2τNSE.

A full derivation of NRSE can be found in [41, 42, 43] and only the key equations, which
are required for the subsequent formulation of MIEZE, are stated here. In particular, the
change of polarisation is described, that is induced by a single RF-coil in a constant field.
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Figure 3.4: Illustration of a NRSE instrument. A neutron beam is polarised and passes through
the two arms of a NRSE and the second polariser towards the detector. The two
NRSE arms are opposite in their constant magnetic fields Bz and rotating magnetic
field Brf . Each arm consists of two RF-flipper which are embedded in zero-field
regions. The area in the vicinity sample stage is field free as well. Adapted from ref.
[44].

3.4.1 Passage through a RF-flipper

A RF-flipper combines two magnetic fields within a region of width d: A constant field Bz

in z-direction orthogonal to the incident neutron polarisation and an oscillating field Brf ,
that rotates around the constant field vector in the x, y-plane. The resulting magnetic
field vector is

B =

Brf cosωst
Brf sinωst

Bz

 . (3.31)

The frequency ωs is the frequency of the oscillating field. The wave function of a neutron
travelling through a magnetic field can be described by the Schrödinger equation

i
∂Ψ

∂t
= − ∂2Ψ

∂y2
+ σB ·Ψ

= − ∂2Ψ

∂y2
+

[
ωz ωrfe

−iωs

ωrfe
iωs ωz

]
·Ψ, (3.32)

where ℏωrf,z = µBrf,z are the potentials induced by Brf and Bz, respectively. Similar to
section 3.3 the components parallel (+) and antiparallel (−) to Bz are treated separately

Ψ =

[
Ψ+

Ψ−

]
, (3.33)

and equation (3.32) becomes a coupled differential equation for the two spins

i
∂Ψ±

∂t
= −∂2Ψ±

∂y2
± ωzΨ

± + ωrfe
∓iωsΨ∓. (3.34)
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This equation is well known as Krüger’s problem, which is solved by transforming the
problem into a rotating coordinate system of the precessing neutron [45]. The frequency
of the rotating field ωs is chosen such that it is resonant to the Larmor frequency
ωL = ωs = γBz = 2ωz induced by the constant field Bz. Thus, the field Brf is fixed in
the rotating frame of the neutron spin. The field strength of Brf is chosen such that the
passing neutron experiences exactly a π-flip

2ωrf · d/v = π (3.35)

in the rotating frame. Since the π-flip is performed on top of the Larmor precession, the
accumulated phase is doubled compared to classical NSE. Taking the resonance and π-flip
condition into account, the incident wave function with the initial polarisation α±

Ψin =
1√
2

[
α+

α−

]
ei(k0y−ω0t), (3.36)

becomes after passing the RF-flipper of width d,

ΨRF =
−i√
2

[
α−eiΘ(y)

α+e−iΘ(y)

]
ei(k0y−ω0t), (3.37)

with the phase

Θ(y) = ωL

[
(y − d

2)

v
− t

]
. (3.38)

A detailed derivation can be found in ref. [42]. It is noted that the initial polarisation α±

is switched after the passage through one RF-flipper. The inversion of the population
of the spin components originates from the resonant and π flip condition. Thus, the
initially parallel component of the spin becomes the antiparallel component and vice
versa. However, the switch of initial polarisation cancels after the passage of a second
coil. The expected polarisation in x-direction becomes

⟨σx⟩ = cos

2ωL

[
y − d

2

v
− t

] . (3.39)

The spin precesses with a frequency of 2ωL time and with 2ωL/v in space. Quantum
mechanically, the two initial spin states σz = ±1 receive a change in kinetic energy by
±ωL, due to the magnetic potential. The passage of the second RF-flipper under the
same conditions doubles the effect. The resulting echotime is

τNRSE =
4ℏωz(L+ d)

mv3i
, (3.40)

with the distance between the two RF-flippers L, and the mass m and initial velocity
vi of the neutron. Thus, the range of τNRSE is doubled compared to NSE with same
constant fields [7, 43]. However, although NRSE is more efficient than NSE, until today
the accessible range in τNSE of NSE is still higher than in τNRSE of NRSE. The limiting
factor is hereby the high frequencies ωs of the rotating field Brf , that are needed for the
same performance, which are not realised yet.
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3.5 Modulation of Intensity with Zero Effort (MIEZE)

Modulation of Intensity with Zero Effort (MIEZE) is a variation of NRSE, where the
second pair of RF-flippers after the sample becomes obsolete. One great benefit of the
MIEZE technique is that the complete neutron spin manipulation happens in front of the
sample. In contrast to NSE and NRSE, MIEZE is independent of depolarising properties
of the sample and the sample environment.

The MIEZE principle also uses two RF-flipper in front of the sample stage, but, different
to NRSE, the second flipper is driven with a higher frequency compared to the first.
Likewise NRSE, the two spin components antiparallel and parallel to the constant field
are separated kinetically by the first RF-flipper. The second RF-flipper utilises the fact
that the RF-flipper also switches the initial spin components. Thereby the initially slower
component becomes the faster one and vice versa. Since the second coil is driven at a higher
frequency the kinetic energy of the slower spin is overcompensated and starts "catching
up". Thus two spin components, which were separated by the first RF-flipper, come back
together and interfere after a certain distance, similar to a Michelson interferometer. The
point of interference depends on the relative frequency and distance of the two RF flippers
and defines the MIEZE condition (equation (4.2)). If one places a second polariser after
the primary arm, one measures an oscillating intensity in time at the point of interference.
The oscillating signal defines the contrast C, which is the ratio of the amplitude to the
average signal, and is ideally C = 1. If the neutron beam is scattered inelastically the
two spin components do not come completely back together and contrast is reduced. The
change in contrast is direct proportional to the intermediate scattering function and by
that one obtains information of the transferred energy [11]. The schematic of the MIEZE
setup is illustrated in figure 3.5.

The influence of the first coil on the spin components was deduced in section 3.4. For
the description of the influence of the second coil, one transforms the output of the first
coil into the coordinate system, where the entrance of the second coil is defined as zero
[42]:

y = y′ + L1 = y′ + L+ d, (3.41)

where d is the width of the RF-flipper and L is the distance between the two flippers.
The distance between the two centres of the RF-flipper is L1 = L+ d. The input into the
second coil is then

Ψin,2 = − i√
2
ei(k0(y

′+L1)−ω0t)

[
α−eiωAL/veiΘ

′(y′)

α+e−iωAL/ve−iΘ′(y′)

]
. (3.42)

with the phase as in equation (3.38) transformed into the new coordinate system

Θ(y) = ωA
L

v
+Θ′(y′) = ωA

L

v
+ ωA

[
(y′ + d

2)

v
− t

]
, (3.43)

where ωA is the RF frequency in the first coil, equivalent to ωs in NRSE. For the passage
through the second coil, one uses equation (3.36) and equation (3.37), but with ωA → ωB ,
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3.5 Modulation of Intensity with Zero Effort (MIEZE)

Figure 3.5: The MIEZE principle. a) shows a general MIEZE setup b) gives the potential
induced by the RF coils experienced by the different spin states c) is the resulting
difference in kinetic energy and illustrates the separation of the spin components.
An incident polarised neutron beam passes two RF flipper, driven at different
frequencies ωA, ωB and different constant fields BA

0 , B
B
0 . While passing the first RF

flipper, the parallel and antiparallel spin components experience different potentials
resulting into a difference in kinetic energy. The two spin components separate until
it is overcompensated by the the second RF flipper. The spin components get back
together and interfere at detector position. By placing a polariser after the second
RF flipper one measures an oscillating intensity. Taken from ref. [40]
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3 Implementation of MIEZE on the triple axis spectrometer MIRA

where ωB is the frequency of the second coil. The output after the second coil is then
given by,

Ψout,2 =
1√
2
ei(k0y

′−ω0t)

[
α+eiΦ(y′)

α−e−iΦ(y′)

]
, (3.44)

where

Φ =
∆ωy′

v
−∆ωt− ωAL

v
− Ωd

v
, (3.45)

with
∆ω = ωB − ωA; Ω = (ωB − ωA)/2. (3.46)

The ideal location for the detector is chosen such that ⟨σ⟩ is independent of the neutron
velocity to equalize the contribution of all neutrons. Equation (3.45) shows that all terms
depending on the velocity cancel out if

∆ωy′

v
− ωAL

v
− Ωd

v
= 0. (3.47)

With the distance between the entrance of the first and the exit of the second coil
L1 = L+ d, the distance from the second coil to the detector is L2 = y′ − d

2 and from
equation (3.47) one gets

ωB

ωA
=

L1 + L2

L2
. (3.48)

Equation (3.48) is known as the MIEZE condition. If the MIEZE condition is fulfilled,
both wave packets interfere independently of the neutron velocity and the wave function
at the detector position becomes simply

Ψ = Ψin

[
e−i∆ωt

ei∆ωt

]
, (3.49)

with Ψin defined in equation (3.36). The beam intensity measured by the detector is then

|Ψ|2 ∝ 1 + cos 2∆ωt

2
. (3.50)

From equation (3.50) one can extract the contrast

C =
maxt |Ψ|2 −mint |Ψ|2

2
〈
|Ψ|2

〉
t

. (3.51)

As |Ψ|2 oscillates over time, maxt |Ψ|2 − mint |Ψ|2 is the amplitude of the oscillation
and

〈
|Ψ|2

〉
t

is the average intensity. The contrast C is the equivalent quantity to the
polarisation in NSE. As well as in NSE, the contrast decreases if neutrons are inelalistically
scattered. Assuming again a small energy transfer at a point ri at time ti, it follows
that the contrast C is proportional to the intermediate scattering function I(Q, ω). The
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echotime τMIEZE is equivalent to τNSE and describes the time separation of the spin states
at the sample position. It is given by [11]

τMIEZE = (ωB − ωA)
4ℏLs

mv3
(3.52)

with the distance from sample to detector being Ls. This echotime τMIEZE is determined
by the combination of frequencies ωA, ωB in the two coils, while the MIEZE condition
has to be kept satisfied.

When performing measurements, a defined set of MIEZE echotimes τMIEZE is applied
to measure the contrast C(τMIEZE) for each τMIEZE. The relative loss of contrast of a
neutron beam as a function of τMIEZE is direct proportional to the intermediate scattering
function I(Q, ω).

3.6 Reduction Factor

The disadvantage of a time-of-flight technique like MIEZE is that the efficiency of this
method is limited in resolution due to deviations from the optimal flight path. A deviation
of the optimal flight path disturbs the MIEZE condition and leads to a reduction in the
contrast that does not originate from a sample. The spatial mean width of the MIEZE
condition is given by [11, 43]

∆MIEZE =
πv

δv
v 4(ωB − ωA)

, (3.53)

where v is the neutron velocity, δv is the mean width of the velocity distribution and
(ωB−ωA) is the difference in frequency between the two coil sets. With increasing echotime
τMIEZE, the width in space where the MIEZE condition is valid becomes narrower and
the contrast reduction of a non-optimal flightpath significant. If the contrast falls below
⪅ 20% the measurement loses its validity, since statistical factors become too dominant.

There are three different factors within the setup which reduce the contrast. These
factors are denoted as

C = Rflipper ·Rgeometry(g, θs,Λ) ·Rdetector(θD,Λ) · C0. (3.54)

Rflipper is mainly determined by the flipping efficiency of the π/2-flipper coils.
For Rgeometry there are two contributions: The instrument geometry and the geometric

shape of the sample. The quantity g corresponds to the geometric shape of the sample,
Λ = 2πv/∆ω is the distance a neutron with velocity v travelled over one period 2π/∆ω
and θD is the detector angle with respect to the plane of kf [46]. In scope of this work
only sample shapes of disk and square plates are considered, since those are the sample
shapes that were used for the experiments described later. The influence of the other
shapes in MIEZE are described by [46] in detail. One should notice, that in the references
[46, 47] the detector angle θD = 0 is defined as perpendicular to ki. However, in the
following, the detector angle θD = 0 is defined as perpendicular to kf for practical reason.
Hence θD → θD + 2θD compared to the references [46, 47] .
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t
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kf

ki

θD
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Figure 3.6: Scattering geometry. The neutrons impinge on a square-plate shaped sample with
dimensions (w × t × h) with an angle θ with respect to the incident neutron beam.
The neutron beam scatters with an angle of 2θ towards the detector. The detector
is tilted by an angle θD with respect to the plane of kf .

Considering a parallel beam as in figure 3.6, if the beam gets scattered at an arbitrary
point r off the centre under an angle θ, the change in path length as an function of the
scattering angle θ and the detector angle θD becomes

∆L2 = x− x cos(2θ + θD) + y sin(2θ + θD)

cos(θD)
, (3.55)

with x and y being the components of the vector r. The resulting difference in phase at
the detector position is given by

∆ϕ = 2π
∆L2

Λ
. (3.56)

The total geometric reduction of contrast is obtained by averaging over all possible
scattering points inside the sample [47]

Rgeometry =

∫ t/2
−t/2

∫ w/2
−w/2 cos(∆ϕ)dydx

w · t
, (3.57)

where t is the sample thickness, w is the sample width. For a plate-like sample the
reduction factor becomes [47]

Rsquare = sinc

(
πw

Λ

[
− sin θ − sin(θD + θ)

cos(θD)

])

× sinc

(
πt

Λ

[
− cos θ +

cos(θD + θ)

cos(θD)

])
.

(3.58)
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The reduction factor of the sample Rsquare can be maximised for both terms [47]. The
first maximum of the first term lies at

θD,opt1 = arctan

(
1− cos 2θ

sin 2θ − tan θ

)
− 2θ, (3.59)

and maximum of the second terms at

θD,opt2 = arctan

(
tan θ (1− cos 2θ)

tan θ sin 2θ + 1

)
− 2θ. (3.60)

Although both terms cannot be satisfied simultaneously, changing the detector angle in a
way that the dominating term gets maximised the loss in contrast due to instrumental
and sample geometry can be minimised. Thus, for performing measurements which are
not in forward scattering geometry, it is necessary to rotate the detector, especially for
increasing MIEZE times.

The reduction factor of the detector originates from the path length differences inside
the detector foils. The corresponding reduction factor is [47]

Rdetector = sinc
(

ϵπ

Λcos(2θ − θD)

)
, (3.61)

where ϵ is the thickness of the detector.
If applying MIEZE on a triple axis instrument, the analyser leads to an additional

reduction factor. Ranalyser is treated exactly like a sample, with corresponding properties.

3.7 MIEZETOP setup

The MIEZE setup uses RF-flippers, where a static field and a resonant oscillating field
are superimposed. Since the change in phase in the vicinity of the RF-flipper should be
equal for all neutrons over the beam crosssection, highly homogeneous fields, well-defined
field borders and a zero-field region between the RF-flippers are required. The realisation
of these condition is difficult and the application of high susceptibility materials, like
µ-metal, is necessary.

RESEDA was the first beamline using an alternative approach by switching from
static fields perpendicular to the beam (transversal MIEZE/NRSE) to static fields along
the neutron beam (longitudinal MIEZE) [37]. As a consequence the initial neutron
polarisation has to be along the beam direction as well. One of the major advantages lies
in the symmetry of the static field coils and the π-flip of the neutron when passing one
resonant flipper, as described in section 3.4.1. Any spin rotation which is induced by the
static magnetic field before the RF-flipper is exactly reversed after the RF-flipper from
the perspective of neutrons. By that it is no longer necessary to have well-defined field
borders or a homogeneous static field as long as it is symmetric. The same arguments are
valid for neutrons with a deviation from the beam centre: Any stray fields induced by
B0 perpendicular to the neutron beam before the RF-coil are inverted thereafter. This
self correction simplifies the setup of the longitudinal MIEZE drastically compared to
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3 Implementation of MIEZE on the triple axis spectrometer MIRA

the transversal one. The mathematical description remains unchanged, since any change
in phase that was assumed to be zero before and after the RF-flipper in the transversal
setup exactly cancels in the longitudinal setup. The MIEZETOP setup applied at MIRA
is shown in figure 3.7.

Figure 3.7: The complete MIEZETOP setup. The MIEZE-table (red circle) is integrated into
MIRA.

In the following subsections all components used in the MIEZE setup are described,
such as electronic equipment, detector system and polarisation analysers. Thereafter
the setup as a whole is described. The circuit plan and the description of the electronic
devices can be found in appendix A.

3.7.1 The instrument MIRA

MIRA is a TAS instrument. The main configuration is a cold three axes spectrometer,
whose wavelengths range 3.5Å < λ < 6Å, which corresponds to 1.2Å−1

< k < 1.6Å−1

and energy transfers from −6meV < ∆E < 3meV can be reached. As a monochromator
crystal pyrolytic graphite is chosen. PG has a layered hexagonal structure ordered in the
(00l) plane, while the other orientation of the planes in the other directions is random.
Positive values refer to the energy gain of the measured system and negative accordingly
to the energy loss.

All measurements can be performed with polarised or unpolarised neutrons. MIRA has
two available detectors: A finger detector with a very low background of less than 0.1 cps
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3.7 MIEZETOP setup

and a 6-foils 2D position and time sensitive CASCADE detector. Currently two add-ons
are under development: A small 3D spherical polarisation analysis device (MiniPAD) and
the MIEZETOP presented in this thesis.

Figure 3.8: Front (left) and side (right) view of the B0 coils in Helmholtz configuration. The
inner pair defines the magnetic field in the vicinity of the RF-flipper (centre). The
outer pair are connected inverse to reduce the range of the magnetic field.

3.7.2 B0 Coil System

The coil set shares a similar design as the one used at RESEDA [37], and are shown in
figure 3.8. The B0 coil system consists of two pairs of coils, an inner pair and an outer
pair. Both pairs are used in the Helmholtz configuration, where the distance between the
coils is dHelmholtz = Rcoil in order to create a constant field between a pair of coils. The
wire has a square cross-section with a side length of 5 mm. Inside the wire is a 3 mm
diameter hollow space, which allows the application of water cooling. The wire is cast
into epoxy.

The inner coil pair has 168 windings ordered in 12 × 14. The width is w = 86mm
and the inner radius is r = 87mm. The outer coil pair has 48 windings ordered in 8× 6.
The width is w = 50mm and the inner radius is r = 130mm. The coils are placed on a
two-angle rotator to adjust the magnetic axis of the coil to the beam axis.

The inner coil pair produces a magnetic field downstream the neutron beam and acts
as constant field in the longitudinal MIEZE setup. The outer pair of coils produces a
static magnetic field opposite to the inner pair, but with a order of magnitude weaker.
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3 Implementation of MIEZE on the triple axis spectrometer MIRA

The outer pair functions as cut-off coils by faster decreasing the magnetic field outside
the coil system.

3.7.3 RF-coil

The RF-coil is the key component of the MIEZE setup. In NRSE or MIEZE the static
field B0 is combined with a rotating RF field, which constitute together the RF-flipper.
Since a rotating field is rather difficult to realise, one uses a linearly oscillating field, which
can be decomposed into two counter-rotating fields. In the rotating coordinate system,
the first field component is static, the second rotates with twice the frequency. The linear
combination of the second component and the static field B0, results in an effective field
B0,eff. This effect, referred to as the Bloch-Siegert shift, leads to a small shift of the

Figure 3.9: Radio frequency coil used for the NSE coils. (i) Main coil, (ii) compensation coils,
(iii) high voltage connector, (iv) Teflon holders, (v) aluminum support and frame
(vi) small c-box. The desgin was developed by RESEDA and the figure was obtained
from [48].

resonance frequency due to the new effective field. It is negligible for cold neutrons and
frequencies of 50 kHz and above [49], but reduces the contrast for lower frequencies.

In order to prevent any static perturbations of the static field and reducing the power
loss, one has to minimise the stray fields of the RF-flipper [50]. This is realised by
guiding back the magnetic flux in form of two closed loops. Figure 3.9 shows a completely
assembled RF-coil. The original design was developed for the instrument RESEDA [48].

The body of the main coil is made of glass-fibre reinforced plastic (GRP) and the
body for the loops is made of Teflon. The flat wire, where the neutrons pass, is made of
99.5% pure, uncoated aluminium, in order to reduce disturbing incoherent scattering. The
loops are made of high frequency (HF) copper wire to avoid heat production at higher
frequencies due to the skin effect. The Al band and the HF filament at the end of the
neutron window frame are connected by soldering tags.
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3.7 MIEZETOP setup

Figure 3.10: A π/2-flipper consists of two perpendicular magnetic fields. The vertical field is
generated by a rectengular Al coil. The horizontal field is generated by a Helmholtz
configuration.

3.7.4 π/2-flipper

The π/2-flipper consists of two orthogonal fields of the same strength, one parallel to the
beam and one perpendicular to the beam. The magnetic field along the beam direction is
realised by a Helmholtz configuration (hsf). The magnetic field perpendicular to beam is
realised by a flat rectangular coil made of Al wire (sf), such that the neutrons can pass
through the coil.

By superposition of both orthogonal fields with same strength, the effective field points
by an angle of 45◦ with respect to the neutron beam. The strength of the effective field is
chosen such that the spin rotates exactly by π around the effective field vector. A neutron
which is initially polarised along the beam direction receives a π-rotation around a vector
with an angle of 45◦ with respect to the initial spin direction. By that polarisation of the
neutron beam receives effectively π/2-flip in respect to the initial one.

In order to preserve the polarisation, a guide field is indispensable. Otherwise magnetic
field of the earth or other weak stray fields disturb the polarisation. Since it is very
difficult to change the polarisation in a small space by 90◦ without any disturbance, it
is easier to involve the guide field into the spin-flip procedure. Therefore the Helmholtz
setup is not only a crucial part of the flipping process, it further acts as a guide field.

3.7.5 Polariser

To polarise the neutron beam, a supermirror bender manufactured by Swiss Neutronics
was used. A supermirror polariser consists of a stack of silicon wavers coated with Fe/Si
multilayers. This multilayer systems is magnetised and placed in the neutron trajectory.

At the interfaces of this magnetised multilayer system the spin components parallel
and antiparallel experience different potentials. Consequently, the total reflection edge
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Figure 3.11: a) Picture of the used polarisers. b) Principle of the of a solid state polariser.
An unpolarised neutron beam impinges on magnetised Fe/Si multilayers. Due
to the different total reflection edges, the unwanted spin component is reflected
away, while the other spin component is transmitted. The collimator after the
multilayered system absorbs the reflected component.

of the neutron beam differs for the spin components parallel and antiparallel to the
magnetisation of the coated wavers. This difference is utilised by choosing a small angle
between the wavers and the beam such that one spin component gets reflected away from
the beam path, while the other one is transmitted. The multilayer system is followed by
a collimator, that absorbs the reflected neutrons.

The polariser that was used in the later described experiments achieved a polarisation
> 95%. The resulting polarisation is perpendicular to the neutron beam, guided by the
strong magnetic dipole field Bcenter ≈ 500G of the polariser. The polarisers and their
working principle is shown in figure 3.11.

3.7.6 Detector

A MIEZE signal is a high-frequency modulation of intensity, which has to be measured at
a specific distance after the RF-coils. Therefore, the detector has to be able of detect the
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neutrons precisely in space and time.
The CASCADE neutron detector consists of 6 gas electron multiplier (GEM) foils,

which transport and amplify charges in the counting gas. The total absolute detection
efficiency is for cold neutrons around ≈ 30% (5% for each foil). The detector covers
a position sensitive area of 20 × 20 cm2 and has a readout structure with 128 × 128
pixels. The lateral pixel size is therefore 1.56 mm. The single conversion foils are ≈ 1µm
thick. The maximum time resolution per time-channel is 100 ns (10 MHz). The detector
is operated such that it measures 16 frames per oscillating intensity period.
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The following measurements with the MIEZETOP setup (see figure 3.7) took place in
autumn 2018 and in spring 2020. The first period was used for characterising the coils and
to test all components in operation. The first oscillating MIEZE signal was measured. In
the second period, newly implemented modifications and, subsequently, the applicability
of MIEZE in diffraction and triple axis mode were tested. Since then, the reactor operation
is unexpectedly paused, which made it impossible to conduct any further experiments.

4.1 MIEZE Setup

The MIEZE setup, as shown in figure 3.7, has to be optimised such that the accessible
range of echotime τMIEZE is maximised, without violating the MIEZE condition given
by equation (3.48). The echotime τMIEZE as defined in equation (3.52) depends on the
difference of the frequencies of both RF-flippers

τMIEZE = (ωB − ωA)
4ℏLs

mv3
, (4.1)

where ωA,B are the frequencies of the RF-flippers, Ls the sample detector distance and
v the neutron velocity. Since the applicable frequencies ωA,B have technically an upper
limit, the distances between the components of the setup have to be optimised to achieve
the maximal range. If one inserts the MIEZE condition

ωB

ωA
=

L1 + L2

L2
, (4.2)

into equation (4.1), it becomes

τMIEZE =
L1

L2
ωA

4ℏLs

mv3
. (4.3)

For limited applicable frequencies, L1/L2 and Ls have to be maximised in order to
increase the maximal range in τMIEZE. The physical limits of the ratio L1/L2 are mainly
determined by the available space at the beamline, without reducing the flexibility of
the scattering angles of MIRA and, hence, the available Q range. Bearing in mind that
MIEZETOP should act as an easily exchangeable addition to the TAS, the already existing
setup should not be drastically altered. Thus, any rearrangement of components should
be restricted to the MIEZE-table, which is shown figure 3.7. The resulting distances are
shown in figure 4.1.
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Figure 4.1: Schematic of the MIEZETOP setup. The position of each component is labelled
with the distance to the first polariser as reference. L1 and L2 are the distances,
that determine the MIEZE condition.

4.2 Characterisation of the MIEZE components and Tuning
of the Echotimes

The oscillating magnetic field Brf of the RF-flipper has to be chosen such that a passing
neutron performs exactly a π-flip, as described in section 3.4. To determine the necessary
field strength of Brf , firstly, one applies an arbitrary magnetic field in the B0 coils, sets
the frequency fL of the oscillating field to resonant condition and measures the neutron
counts versus Brf . With increasing Brf , the polarisation of the neutron beam starts
rotating and the measured intensity decreases, as the second polariser selects only one
spin component. At minimum intensity, the polarisation of the neutron beam is exactly
changed by π.

However, in order to minimise external disturbances of this adjustment process, the
chosen field B0 has to be high enough to avoid the influence of the Bloch-Siegert shift.
On the other hand, the applied frequency should be low enough such that parasitic
effects, e.g. of the coaxial cable, do not damp or disturb the amplitude of the resonant
circuit. The applied field was B0 ≈ 48G and the corresponding Larmor frequency is
fL = 88 kHz. The corresponding scan is shown figure 4.2 a), for technical simplicity, the
applied RF-voltage was scanned and the minimum is found at UBrf

= 1.55 V. Since the
necessary field strength of Brf only depends on the neutron velocity, it is kept - likewise
the neutron velocity - constant over the whole experiment.

Since in MIEZE experiments, one measures the contrast in dependence of the echotime
τMIEZE, one has to determine a set of echotimes a priori. Each echotime has two different
resonant frequencies in the respective RF-flipper, which have to be optimised, in order
to obtain the maximal contrast. To ensure that the calculated resonant condition is at
an optimum, the B0 field is scanned, while fL and Brf are kept fixed. Due to the same
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Figure 4.2: Determination of the magnetic fields for the π/2 flip condition in the RF coil. The
RF coil voltage versus the intensity (a) and the current of the B0 coil versus intensity
(b). The minimum intensity gives a flipping voltage of UBrf

= 1.55V. The resonant
flipping current is IB0 = 2.3A correspondingly. The fluctuations in the right figure
originate from the dense steps and the lower counting time compared to the left
figure.

reason as for the adjustment of Brf , the resonant condition is optimised in the minimum
of the measured intensity. This adjustment of the resonant condition has to be repeated
for every applied eigenfrequency of the RF-flipper. Figure 4.2 b) shows an exemplary B0

scan for fL = 88 kHz and UBrf
= 1.55V.

Using the distances L1 = 522mm and L2 = 2610mm, the two coil sets have be
calibrated such that the MIEZE condition (see equation (4.2)) is fulfilled. For the MIEZE
setup, as illustrated in figure 3.7, the ratio of the two coil sets is

ωB

ωA
=

L1 + L2

L2
= 1.2. (4.4)

In total six echotimes τMIEZE were configured, which are, using the definition given
by equation (4.1): 0.017 ns, 0.0355 ns, 0.0426 ns, 0.0737 ns, 0.106 ns and 0.22 ns with
a neutron wavelength λ = 4.33Å, ki = 1.45Å−1 and a neutron velocity v ≈ 913m/s,
respectively.

4.3 Configuration of the spin-flipper and the adiabatic
transition

Since MIEZETOP is based on the longitudinal MIEZE, the polarisation of the neutron
beam adiabatically rotates from perpendicular to parallel along the beam in the region
between the first polariser and the first π/2-flipper. The π/2-flipper flips then the
polarisation of the neutron back again perpendicular to the beam. The adiabatic transition
is illustrated in figure 4.3. The first π/2 flip defines the starting point of the MIEZE
procedure. If the polarisation deviates from perpendicular to the beam after the π/2-
flipper, this deviation continues throughout the MIEZE process. Therefore, the adiabatic
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transition followed by the π/2-flip is a critical process, since every imperfection reduces
the maximal achievable initial contrast and limits the quality of experiment measurements.

Figure 4.3: Schematic of the adiabatic transition. The polarisation of the neutron beam rotates
adiabatically from perpendicular to parallel along the neutron beam. The π/2-flipper
rotates the polarisation back perpendicular to the beam and defines the starting
point of the spin precession and MIEZE procedure, respectively.

Due to the limited space within in the MIEZE setup, there are two sources, that
decrease the perfection of the transition:

• The quality of the adiabatic transition depends on the adiabaticity parameter
E , as defined in equation (3.12). The effective field for the adiabatic transition
downstream is a linear combination of the decreasing dipole field of the polariser
and the increasing field of Helmholtz coils of the π/2-flipper, such that the effective
field rotates from perpendicular to parallel to the beam. If the π/2-flipper is too
close to the polariser the effective field rotates to fast and the adiabaticity parameter
becomes E < 10. Even though, the simulation yielded an adiabaticity parameter
of at least E ≈ 10.9, not considered perturbations like external stray fields might
disturb adiabatic transition and reduce the adiabaticity parameter to E < 10.

• if the π/2-flipper is too close to the B0-coil, the spatial extension of the B0 field is
present in th e π/2-flipper and disturbs the flipping process.

These two negative influences can be compensated to a certain degree by adjusting the
horizontal field Bhsf and the vertical field Bsf of the π/2-flipper. Thus, in order to find the
optimal initial contrast, for each echotime two maps of the contrast as a function of Bhsf
and Bsf were measured, one for the first π/2-flipper and one for the second, the results
are shown in figure 4.4. Since the spin-flipping procedure of each flipper is independent of
each other, the optimisation can be carried out for each flipper separately. It is sufficient
to characterise the first spin flipper in dependence Bhsf and Bsf while the second spin
flipper is set to a calculated maximum. Thereafter the second spin-flipper is characterised
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4.3 Configuration

Figure 4.4: The different Bhsf-Bsf maps and the resulting contrast for the tuned echotimes. The
left column corresponds to the first π/2-flipper and the right column corresponds to
the second flipper. Each row refers to a specific echotime with the maximum achieved
contrast. The circular structure of high contrast originates from the different spin
directions and should be halved at Bhsf = 0 (see figure 4.5). However, the centre
of the ring is shifted to Bhsf > 0, for lower echotimes. With increasing echotime
the ring structure shifts to lower Bhsf, until the influence of B0-field becomes too
dominant and the ring structure is no longer visible.

while the previous measured optimum from the first π/2-flipper is used. The maximal
achieved contrast is listed for each echotime in figure 4.4.

The typical contrast profile in dependency of the two orthogonal fields of the flipper
has a ring-like structure, as shown in figure 4.4. Ideally the contrast is maximal, if
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the effective field of the π/2-flipper has an angle of 45° towards the beam direction, as
described in section 3.7.4. However, since the measured contrast directly correlates with
the component of the polarisation that is perpendicular to the beam, a magnetic field
perpendicular to the beam (Bhsf = 0) is also able rotate the polarisation out of the beam
direction and a certain contrast can be measured. In principle, the ring structure shows
to which degree the polarisation has been rotated away from the beam direction and,
hence, refers to the effective fields, which are able to provide an initial contrast. This is
illustrated in figure 4.5.

Figure 4.5: Exemplary contrast map. The ring-like structure originates from the influence of
the two magnetic fields of the π/2 flipper, that are perpendicular to each other. For
Bhsf = 0, i.e. just Bsf is scanned, the first maximum is caused by a π/2-flip, the
minimum by a π-flip and the second maximum by a 3π/2-flip. By increasing Bhsf,
the maximum of the contrast shifts towards the π/2-flipper condition. The point,
where the effective field of Bhsf and Bsf leads to a π flip (and a effective π/2 flip), is
the point of the highest contrast and the π/2-flipper is best configured.

In figure 4.4, two effects of the ring structure are observed, which both are based on
the before mentioned spatial challenges: Firstly, the centre of the ring structure does not
lie on the x-axis. This indicates that the transition between polariser and π/2-flipper is
not adiabatic and, thus, the polarisation is not parallel to the neutron beam at the flipper
position. For small echotimes, this can to be compensated by the horizontal field Bhsf,
resulting into a shift of the ring structure to higher fields.

Secondly, the ring-like structure gradually shifts to lower Bhsf values as the echotime
increases. This behaviour is caused by the by magnetic field of the B0 coils, which extends
to the flipper position and influences the flipping process. For τMIEZE = 0.22 ns the
circular structure becomes stripe like as the B0 field becomes too dominant inside the
flipper. Due to the proximity of the π/2-flipper to the B0-coil, τMIEZE = 0.22 ns is the
highest achievable echotime with a reasonable contrast C ≳ 0.5, which is possible within
the current setup.

The slightly lower contrast of τMIEZE = 0.017 ns originates from the Bloch-Siegert
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shift, which is prominent for low applied frequencies in the RF-flipper, as mentioned in
section 3.7.3.

Beside the aforementioned reduction factors, the polariser in combination with the
compact design is possibly another contrast reducing element. Due to the narrow scattering
angle of the polariser, a small contribution of neutrons with the unwanted polarisation
direction is still contained in the beam, resulting in a decrease of the contrast.

4.4 Reduction Factor in Forward Scattering

The reduction factors of the contrast are especially important for the application of the
MIEZE in combination of TAS, as the initial contrast determines the maximal performance
of the setup. As described in section 3.6, the angle of the detector influences the contrast
of the MIEZE signal, as the path length of the left and the right side of the beam might
differ and, thus, a difference in phase ∆ϕ is measured over the cross section of the beam,
see equation (3.56). The thickness ϵ = 1 µm of the foils of the CASCADE detector does
not significantly influence the contrast in this setup, see equation (3.61) Rdetector ≈ 1.
The influence of detector angle on the contrast is measured with a polycrystalline graphite
sample in forward scattering geometry. The geometric shape of the sample was defined
by an overlaying cadmium sheet with round cut-out with a diameter of 15 mm, such
that the sample can be assumed as a disk. The shape of the neutron beam is 20 × 20
mm2 defined by the slit. The six echotimes were measured with three different detector

θD

DetectorGraphiteMIEZETOP

n

Slit

Figure 4.6: Schematic of the setup in forward scattering. A neutron beam passes the MIEZETOP
setup, followed by a polycrystalline graphite sample, and impinges on the detector
under different angles. The slit defines the beam shape as 20× 20 mm2.

angles (θD = 0◦, 10◦, 20◦), where 0◦ is defined such that the beam is normal to the
detector surface. Figure 4.7 a) shows the measured contrast for the different detector
angles, whereas Figure 4.7 b) shows the measured contrast normalised with the contrast
measured at a detector angle of θD = 0◦. The solid lines show the reduction in contrast
in dependency of the detector angle, following section 3.6. Hereby equation (3.57) was
calculated with the Monte-Carlo method as well as numerical quadrature, since in case of
a disk the integral has no analytical solution. Both methods yielded the same result.
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Figure 4.7: MIEZE measurement on graphite powder on forward scattering. a) shows the
measured contrast for the different applied angles. b) shows the reduction in
contrast of the rotated detector compared to θD = 0°. The solid lines show the
expected contrast reduction of the detector angles θD = 10°, 20° , as described in
section 3.6.

There is a drastic deviation of the measured contrast in comparison with the theoretical
calculated contrast reduction. In the forward scattering configuration and with a disk of
a diameter d = 15mm and a thickness t = 5mm, only marginal changes in contrast with
detector angle of maximal ≈ 1% are expected as illustrated by the solid lines in figure 4.7.
In this scattering geometry, only the difference of the flight path over the cross section of
the neutron beam contributes to the contrast reduction.

The mean spatial width of the MIEZE condition lies in a range of 0.6 < ∆ < 6m (see
equation (3.53)) for the applied echotimes τMIEZE and the mean width of the velocity
distribution δv/v ≈ 0.01 [32]. The given range of the spatial width of the MIEZE group
is of the same order as the distance between sample and detector Ls = 1.93m and,
thus, an unfocused MIEZE condition can not explain the strong contrast reduction. The
theoretical calculations have already shown to be valid in earlier experiments[51]. A
divergent beam, such that the circle on the detector is enlarged does not significantly
change the reduction in contrast, as a circle narrows towards the edge and the regions
at the edge of no significant statistical influence. Until now, the origin for the drastic
contrast reduction has not been resolved.

4.5 Reduction Factor in Diffraction

The influence of the path differences that occur in the diffraction mode on the reduction
of contrast was determined by measuring a highly pyrolytic graphite square (HOPG)
sample under Bragg condition, illustrated in figure 4.8. HOPG has a high reflectivity
80% for the applied wavelength λ ≈ 4.3 Å [23], which allows fast measurements due to
a high intensity. For the chosen wavelength the Bragg peak lies occurs 80.47◦, which is
expected to have a significant influence on the reduction factor, but still a measurable
contrast. Since HOPG is as well the monochromator material, the scattering angles of
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the monochromator and the sample stage are the same. Likewise to section 4.4, the shape

HOPG
sample

MIEZETOP

n

θD
Detector

Slit

Figure 4.8: Schematics of the diffraction setup. The neutron beam passes the MIEZETOP and
gets elastically scattered by a HOPG plate. The analyser crystal lies parallel to the
beam such that the beam passes without being scattered. The resulting contrast is
measured against the detector angle. The slit defines the beam shape.

of the neutron beam is 20× 20 mm2 defined by the slit.
Under this scattering condition, the contrast was measured in dependence of the detector

angle θD ranging −15 < θD < 15, for each of the six predefined echotimes τMIEZE. By
rotating the detector, the reduction factor, due to the path difference of over the beam
profile, can be partly compensated, as described in section 3.6. The measurements are
shown in figure 4.9. The measured contrast is given by the circles, where the colours refer
to the applied echotimes as labelled on the right. With increasing echotime, the decrease
in contrast with respect to the detector angle becomes more significant. Especially for
echotimes τMIEZE < 0.05 ns, the contrast is nearly independent of the detector angle in
the observed regime. The angle, where the contrast is maximised, is shifted to θD,opt ≈ 3◦.
The solid line is the result of equation (3.58), but normalised to the initial contrast.

The increasing dependence of the contrast to the detector angle with respect to
increasing echotime τMIEZE originates from the decreasing Λ, where Λ = 2πv/∆ω is the
distance a neutron with velocity v travels over one period MIEZE period 2πv/∆ω as
defined in section 3.6. The angular shift in peak position of the measured contrast follows
the prediction of equation (3.59) and is at the expected detector angle θD,opt ≈ 3◦.

However, the measured contrast is higher contrast than the theoretical calculations
of the reduction factor suggest. This is especially for visible for the higher echotimes
τMIEZE > 0.05 ns. The contrast in dependency of the detector angle decreases faster
than the theoretical calculation predicts. The increased sensitivity with respect to the
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Figure 4.9: The contrast in diffraction mode. The contrast in dependence of the detector angle
θD is shown. The lines show the expected contrast, following equation (3.58). The
circles show the measured data. Each colour correspond to on of the six different
echotimes τMIEZE, whose labels are given on the right.

detector angle has been already observed in the forward scattering geometry, section 4.4.
Nevertheless, while the contrast can be reduced by several influences like geometry (see
section 3.6), misconfiguration of the RF-flipper or misalignment of the components, an
increase of the contrast by external influences should not be possible. The contrast which
is distinctly higher than predicted in section 3.6, can not be explained, yet.

4.6 Reduction Factor in TAS

For the triple axis mode, the analyser stage was taken into operation and was adjusted
to the same wavelength λ ≈ 4.33 Å or wavevector kf = 1.45 Å−1, respectively. As the
analyser crystal is HOPG as well, the same scattering angle 2Θ = 80.47◦ as in section 4.5
has been used. The same measurements as in diffraction mode (section 4.5) have been
carried out, but in the triple axis configuration, as illustrated in figure 4.10. As the
reduction factors strongly depend on the width of the sample, a not completely illuminated
sample would lead to higher than expected contrast. To ensure the higher contrast does
not originate from a under illuminated sample, the measurement was carried out for two
different slit sizes. Once, the slit was maximally opened to 120 × 120 mm2, while the
other time the slit size of previous experiments 20× 20 mm2 was applied.

The measurements are shown in figure 4.11. Similarly as in section 4.5, the measured
contrast is given by the circles, where the colours refer to the applied echotimes as labelled
on the right. The results are in general similar to those without analyser (section 4.5): The
angular dependence increases with increasing echotimes, the peak of maximum contrast
is shifted, following prediction of the calculation of section 3.6, illustrated by the solid
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Figure 4.10: Schematics of the triple axis setup. The neutron beam passes the MIEZETOP and
gets elastically scattered by a HOPG sqare-plate. The beam is reflected under the
same Bragg condition by the analyser. The resulting contrast is measured against
the detector angle. The slit defines the beam shape.

line. Again, especially for longer echotimes τMIEZE, the measured contrast is higher than
the theory suggests. The relative deviation of the calculated contrast and the measured
one is of the same order as in the diffraction mode. Similar to the results of section 4.4
and section 4.5, the contrast reduces more drastically with deviation from the optimal
detector angle than the theoretically expected. The different slit sizes do not significantly
influence the behaviour of the contrast and, thus, the sample is fully illuminated.

Even though, there is no explanation for the increased contrast, the results are promising
that the MIEZE technique can be used for inelastic scattering experiments offering high
resolution. As the contrast after two elastic scattering processes remains higher than
expected, the accessible range in echotime can be extended. Nevertheless, it is inevitable
to enlarge distances between components in the MIEZE setup in order to improve the
initial contrast. Further a moveable detector or the recently presented subtraction coil [52]
can improve the to adjustment of the MIEZE condition and increase the initial contrast.

4.7 Summary

The characterisation of the adiabatic transition between the polariser and the π/2-flipper
showed that there are two negative influences to the initial contrast (figure 4.3). The field
of the B0 coils is still present in the π/2-flipper and, thus, the π/2 flip is disturbed. Further
the adiabatic transition is either incomplete or not slow enough (adiabatic parameter
E < 10) and, consequently, the polarisation is not fully parallel to the beam. Both
influences originate from the spatial restrictions and hamper the polarisation or initial
contrast, respectively.

The MIEZE measurement on graphite powder showed that the contrast in dependence
of the detector angle decreases more drastically than expected, especially in forward
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Figure 4.11: The contrast of the TAS mode in dependence of the detector angle θD is shown.
The lines show the expected contrast, following equation (3.58). The reduction
factor of the analyser is treated the same way as the HOPG sample. The circles
show the measured data. Each colour corresponds to one of the six different
echotimes τMIEZE, whose labels are given on the right. Figure a) shows the data
measured with a neutron beam of the shape 120× 120 mm2, figure b) shows the
data measured with a neutron beam of the shape 20× 20 mm2.

scattering. The measurements in diffraction and TAS mode showed that contrast does
not decrease as much as expected by theoretical calculations. The difference of reduction
of the contrast between calculation and measurements can not be explained, yet.

However, the presented results demonstrated the general suitability of the MIEZETOP
setup for spectroscopy with neutrons.
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Presently, there are over hundred different known compositions of vanadates [53]. Vana-
dium compounds show a variety of physical and chemical properties which are suitable for
various applications. Typical applications are the layered lithium vanadates, which are
used as electrode material in lithium batteries [54] or bismuth vanadate oxides, which are
used as solid electrolytes in fuel cells [55]. Among the magnetic vanadates, especially the
low dimensional spin systems have attracted great interest as they reveal extraordinary
magnetic ordering such as one-dimensional (1-D) chains, zigzag chains, ladders, and
dimers [56]. In this context, the high-temperature superconducting vanadates, which
have been found by Anderson [57, 58], increased the interest, due to their square lattice
system.

Some of the square lattice vanadates exhibit quasi two dimensional (Q2D) magnetic
systems with nearest neighbour (NN) and next nearest neighbour (NNN) interaction
of similar magnitude [59]. This is in contradiction to the expected fast decrease of the
interaction strength with increasing distance as they couple via super exchange [60].

The exact magnetic order of a 2D square lattice depends on the ratio of the NN
interaction and NNN interaction. However, in case of antiferromagnetic interaction
between NNN, a 2D square lattice system is frustrated. Depending on type (ferromagnetic
or antiferromagentic) and strength of the NN interaction, the system exhibits different
types of order, namely Neél antiferromagnetism (NAF), columnar antiferromagnetism
(CAF) and ferromagnetism (FM). This will be explained in more detail in section 5.1.
The different types ordering are illustrated in figure 5.1.

Figure 5.1: Different types of magnetic order. a) FM b) NAF c) CAF

The first two prototypes of a Q2D frustrated square lattice were Li2VOSiO4 and
Li2GeSiO4 [61, 62, 63]. Their square lattice consists of vanadium oxides, where the V4+
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ion with (S = 1
2) is located in the centre of an O5 square pyramid. The vanadium oxide

pyramids are connected via the SiO4 or GeO4 tetrahedra, respectively, and thereby build
the square lattice plane. These planes are separated by the Li ions [64]. Both compounds
order antiferromagnetically in a columnar fashion [61, 62, 63, 65, 66, 67, 68, 69]. In
contrast to them, there are other materials with a square lattice structure that order Neél
antiferromagnetic, though, e.g. VOMoO4 and PbVO3 [70, 71, 72].

In this context the family of vanadate phosphates AA’VO(P04)2 (with A,A’ = Pb,
Zn, Sr, Ba, Cd) [62, 63, 73, 74, 75, 76] have raised interest. It has been argued that
these square lattice systems are frustrated as well, but with the NN interaction being
ferromagnetic, while the NNN coupling stays antiferromagnetic. Among the vanadate
phosphates, BaCdVO(PO4)2 is expected to show strong magnetic frustration as the
competing NN and NNN interactions are very close to each other. By applying an external
field, BaCdVO(PO4)2 is expected to exhibit a spin nematic phase, where neighbouring
spins dimerise into antiferroquadrupolars.

In the following the J1−J2 model for two dimensional systems is introduced. Thereafter
the physical properties of BaCdVO(PO4)2, the material of investigation, is described and
subsequently the experimental procedure is explained. Finally the obtained results are
presented and discussed.

5.1 J1 − J2 model

The J1−J2 model is very common for antiferromagnetic Heisenberg square lattices, where
the interaction of nearest neighbours (J1) and the next nearest neighbours (J2) are included.
J1 and J2 are the respective coupling constants, illustrated in figure 5.2. Conventionally,

Figure 5.2: J1 − J2 sqare lattice. Square lattice of magnetic ions showing NN coupling constant
J1 and NNN coupling constant J2. Figure obtained from [77].

negative values refer to ferromagnetic and positive values to antiferromagnetic interaction.
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In this specific model the focus lies on just one adjustable parameter, the ratio of α = J2
J1

.
This appears rather simple but offers a rich phase diagram including Néel antiferromagnetic
phase (NAF) with J2

J1
≪ 1, a columnar antiferromagnetic phase (CAF) phase, with J2

J1
≫ 1

and a spin-gapped phase for intermediate coupling [78]. This model provides many
applications, e.g. the simple spin-gapped phase might provide a realisation of Anderson’s
resonating valence bond (RVB) model.

In the following this model is presented in more detail, starting from the well-known
two dimensional Heisenberg antiferromagnet on a square lattice with J1 > 0. Thereafter
the frustrating interaction J2 > 0 is included and by that, the change of the magnetic
properties is discussed. This model is then generalised by considering ferromagnetic
interactions as well and, thus, providing the basis for the complete J1− J2 phase diagram,
determined by α = J1

J2
.

5.1.1 Two-Dimensional square lattice Heisenberg antiferromagnet

We consider an infinite square lattice with a lattice constant a, where the magnetic
moments are located at the corners. In case of pure NN interactions the Hamiltonian is
given by

H = J1

NN∑
i,j

SiSj , (5.1)

where J1 is the exchange interaction strength and
∑NN

i,j denotes the sum over all nearest
neighbours i, j. The ground state for J1 > 0 of this system is a two dimensional NAF, as
shown in figure 5.3 and all spins are aligned antiferromagnetically. The ordering vector in
this state is k = (12 ,

1
2). Due to strong quantum fluctuations, as proven by Mermin and

Figure 5.3: Néel antiferromagnetic structure on a square lattice. Figure obtained from [77]

Wagner, Néel ordering is only possible in long range at the temperature TN = 0K for the
isotropic 2D Heisenberg model [79].
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Nevertheless, real systems are usually not described by such an ideal model. Pure
two dimensional systems are difficult to realise and in reality there is usually a weak
interaction J⊥ perpendicular to the planes, which stabilises the antiferromagnetic square
lattice. These systems are called Quasi-two-dimensional (Q2D) materials and the Néel
temperature is TN > 0. In this Q2D one would expect that the Néel temperature is in
the same order as the weakest coupling constant J⊥, but the observed Néel temperature
in Q2D, systems is actually in the order of J1, instead of J⊥. Thus, the phase transition
is driven by the intra-layer interactions. Siurakshina et al. [80] presented a theoretical
background for the dependence of TN in a Heisenberg antiferromagnet with a strong
spatial anisotropy within the J1−J2 model. These results agree well with the experimental
observations of Q2D systems.

If one considers an additional antiferromagnetic interaction between NNN, J2, the
two dimensional system exhibits frustrated interactions, due to the competing couplings
of J1 and J2. The two couplings in a square lattice are illustrated in figure 5.2. The
Hamiltonian is then supplemented by NNN interactions and becomes

H = J1

NN∑
i,j

SiSj + J2

NNN∑
i,k

SiSk, (5.2)

the second sum J2
∑NNN

i,k denotes the sum over all next nearest neighbours. If one now
considers that J1 is strongly dominating (J1 ≫ J2), the NNN interaction is negligible
and acts as a small pertubation. Thus the NN interactions lead to an antiferromagnetic
ordering as described above, where J2 was not included (figure 5.3). In this case the
frustration introduced by J2 has no crucial impact on the system.

In the opposite case, when J1 = 0 and J2 ≠ 0, the magnetic system splits into two
interpenetrating, independent sublattices. These sublattices are rotated by 45◦ compared
to the square lattice and enlarged by a factor of

√
2. The magnetic ordering of this

sub-lattice is of the same NAF type, illustrated in figure 5.4 a. Due to the lack of
interaction with the NN the magnetic moments of the two sublattices order independently.
The two systems can be rotated with respect two each other without any cost in energy,
hence, the system in the ground state is degenerated.

Villain’s principle of order by disorder stated [81, 82, 83], that by introducing a
small perturbation by the NN coupling J1 ≪ J2, the two sublattices are losing their
independency and the system gains energy by partially satisfying J1. Thus, the spins
are aligned antiferromagnetically in one direction and ferromagnetically in the other, as
illustrated in figure 5.4 b. The ordering vector is then k = (0,±1

2) or k = (±1
2 , 0) and

the spin rotational symmetry of an antiferromagnet and the 90◦ rotational symmetry of
the square lattice are broken.

Already Shender [84] used this order by disorder theory to explain the experimental
data on Mn3Cr2Ge3O12. He considered magnetic materials in which it is possible to
separate two antiferromagnetic sub-lattices that are placed relative to each other such that
the molecular field of the first sub-lattice ions and the one of the second cancel each other.
In an analysis beyond the framework of molecular-field theory, where fluctuations were
taken into account, a small exchange interaction between the spins of both sub-lattices
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Figure 5.4: Spin structures on a square lattice for the case of J1 ≪ J2 illustrating a) two
independent Néel sublattices with an infinite degeneracy J1 = 0, and (b) a columnar
antiferromagnetic structure by introducing a small J1. Figure obtained from [77].

lead to coupling. The system can gain energy by making these fluctuations coplanar to
the neighbouring site. Further Brückel et al. [85, 86, 87] has presented similar behaviour
in (FexGa1−x) Ca3Ge3, where this behaviour has been observed as a spin wave gap and a
splitting of the acoustic magnon branch.

In the intermediate case, where neither J1 nor J2 are strongly dominating the ground
state properties are determined by the ratio of α = J2

J1
. Classically (S = ∞), one would

expect a first order phase transition exactly at α = 0.5 from NAF (α < 0.5) to CAF
(α > 0.5). At α = 0.5 any state with a total spin of zero for an elementary square unit
cell would be a ground state of the system, but it does not necessarily include long range
spin order.

Quantum mechanically, zero-point fluctuations come into play, which destabilise the
ordered state depending on the magnitude of the spin S and the frustration α. If α ≈ 0.5,
the frustration of the system can become so dominant that fluctuations might be able
to break down any long range order and the system can exhibit a spin liquid state
[88, 89, 90, 91]. The exact ground state of these disordered phases have been studied with
many different approaches, e.g. numerical exact diagonalisations [92, 93], field theoretical
methods [94, 95, 96] or Dimer-Series Expansions [97, 98, 99], and these approaches predict
the disordered regime in the range 0.34 < α < 0.65. In this ground state, without long
range order, the system decreases its energy by dimerisation-like short-range formation of
spin singlets between neighbours. These first-neighbour dimers can form various patterns
in the lattice, each corresponding to a different valence bond crystal. The simplest scenario
is a regular pattern. More specifically, even if there is no long range spin order, there is a
long range order in dimers. Green-function Monte Carlo calculations have raised questions
about the exact structure of these dimers in the intermediate highly frustrated state.
Depending on the reference it yields different results [100, 101]. Finally Sushkov et al [102]
claimed that they have solved this problem and presented a phase diagram for frustrated
antiferromagnets. This phase diagram was calculated as a function of the frustration
parameter α, for a S = 1

2 system at T = 0 with J1, J2 antiferromagnetic. They have
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found 4 critical points α = 0.34, 0.38, 0.5, 0.6. Whereas the phase transition at α = 0.6 is
of first order, the other three are second order phase transitions. For 0.34 < α < 0.38
the state is predicted to be a columnar dimerised Néel state, for or 0.38 < α < 0.5 a
columnar dimerised spin liquid, and for 0.5 < α < 0.6 a columnar dimerized spin liquid
with plaquette type modulation, visualised in figure 5.5. Even though, there are several
theoretical predictions of this ground state, due to the lack of experimental data the
intermediate frustrated region remains still an open question.

Figure 5.5: Theoretical calculated phase diagram of the J1 − J2-model by Sushkov et al. [102].
Figure obtained from [103].

5.1.2 Generalisation of the J1 − J2-model

For the generalisation of the phase diagram of the J1 − J2-model one has to introduce
ferromagnetic interactions. This is a less prominent case than the pure antiferromagnic
J1 − J2-model and was first introduced by Shannon et al. [78] and then experimentally
observed by Skoulatos et al. [74]. The simplest case is if both J1 and J2 are ferromagnetic
(J1, J2 < 0) and the system is a ferromagnet, where J2 enforces the ferromagnetic structure
figure 5.6 a.

Furthermore, if J1 is antiferromagnetic (J1 > 0) and J2 ferromagnetic (J2 < 0), J2
enforces the systems structure as well, resulting in a non-frustrated NAF square lattice,
figure 5.6 b. The opposite case, if J1 is ferromagnetic and J2 is antiferromagnetic, the
system is frustrated, as in J1, J2 > 0, as either J1 or J2 are not fully satisfied figure 5.6 c.
One refers to such a system as a frustrated ferromagnet.
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Figure 5.6: Spin frustration and order in a square lattice for a) a uniform ferromagnet (J1, J2 <
0), (b) NAF with J1 > 0 and J2 < 0 with no frustration and (c) a frustrated FM
with J1 < 0 and J2 > 0. Continuous yellow lines are used for ‘satisfied’ spin pairs
while the dashed one indicates the frustrated pairs. Figure obtained from ref. [77].

Analogous to the antiferromagnetic case J1, J2 > 0, the frustrated system J1 < 0,
J2 > 0 has two extreme ground states, where either J1 or J2 vanish. On the one hand, if
|J2| ≪ |J1| the system is a ferromagnet, as shown in figure 5.6 a), on the other hand, if
J2 is strongly dominating, the ground state is columnar due to the same reasons as in the
antiferromagnetic square lattice case discussed above. In frustrated ferromagnets, one
might expect an intermediate regime with strong frustration as well. The difference in
the frustrated ferromagnet to the antiferromagnet is the behaviour of the magnetisation.
In contrast to the case J1, J2 > 0, where the total magnetisation is zero independent
of α, in the J1 < 0, J2 > 0 regime the total magnetisation changes from maximum
(ferromagnetism) to zero (antiferromagnetism) with respect to α. The regime where J1 is
strongly dominating the magnetisation is the maximised, while the magnetisation of a
CAF phase is zero as J2 dominates. Theoretically, Dmitriev, Krivnov and Ovchinikov
[104, 105] claimed that the transition from a ferromagnet to a columnar antiferromagnet
is expected to be quite abrupt at |α| = 0.5.

However, in a more recent work of Shannon et al. [106], numerical calculation on a
extended Hamiltonian, including cyclic interaction terms, were performed. The calculation
predicts a spin liquid phase in a frustrated ferromagnet that exhibits spin nematicity.
Since the J1−J2-model only depends on the relative ratio J2

J1
of the two coupling constants,

one can rephrase these parameters, J1 and J2, as

Jc =

√
J 2
1 + J ,2

2 and Φ = tan−1

(
J2
J1

)
, (5.3)

where the Φ is the frustration angle and Jc is the overall energy scale. This allows to
draw a circular phase diagram including the three phase NAF, CAF and FM, which is
shown in figure 5.7. Additionally the known spin liquid phase around α ≈ 0.5 and further,
the new spin nematic phase around α ≈ −0.5 is illustrated.
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Figure 5.7: Circular phase diagram of the J1 − J2-model. The areas show the different types
of ordering in dependence of the ratio α = J2

J1
. Conventionally positive J values

correspond to antiferromagnetic interaction (AF) and negative to ferrmagnetic
(FM). Further the spin nematic and spin liquid phase are labelled which lie in the
corresponding transition region. Known compounds, where the J1 − J2 model is
applicable, are noted on the circular phase diagram. Figure obtained from ref. [107].

5.1.3 Spin nematic

Nematicity is a term that is usually connected to liquid crystals, like they are used in
liquid crystal display (LCD) TVs. In the nematic phase a system orders only in one
dimension and is random in the other two. The most common example for the nematic
phase are a liquid of rods, where all rods are parallel.

A similar effect can be considered for spin systems. The simplest spin nematic phase
is the S = 1 state. The S = 1 state has 3 projection on the z-axis m = 1, 0,−1, where
m = ±1 is considered as spin up |1, 1⟩ or spin down |1,−1⟩.

Figure 5.8: The 3 different projections of the S = 1 state. Left and right correspond to spin up
and spin down state, respectively. The center one is the quadrupole state. The blue
surface is the probability distribution. Figure is taken from ref. [108]

Figure 5.8 shows the three projections. The blue volume is the probability distribution
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5.1 J1 − J2 model

Figure 5.9: Two S = 1/2 spin states can build a triplet state. A system with two bonding
S = 1/2 spins has three basis states with a total spin angular momentum of s = 1.
A basis transformation results into three orthogonal quadrupole states. Figure is
taken from ref. [108].

for the spin direction. For m = ±1 the probability distribution is above or below the x−y
plane. The average spin direction is indicated by the red arrow. In contrast to the dipole,
the spin state m = 0, namely the quadrupole state, lies in average in the x − y plane,
but never along the z-axis. The axis with no possible spin state, which has no specific
direction is called a director, as opposed to a vector, which has a pointing direction. A
system consisting of these quadrupoles can exhibit long range order, where the time
reversal and translational symmetry is preserved but the spin rotational symmetry is
broken with anisotropic spin fluctuations. This is the spin analogy of a liquid crystal
[109].

Figure 5.9 shows a different possible realisation of spin quadrupoles, compared to the
previous S = 1 case. In case of a frustrated magnet with S = 1

2 , a spin nematic phase
can still occur. This can be realised by two neighbouring spins bound together and build
triplet state, leading to the term bond-spin nematic. [106, 110, 111, 112]. In a S = 1

2
system, which consists of a spin up and a spin down state, the triplet state obtained by
the bonding of the two spin states is usually given by the basis

|↑↑⟩ , |↓↑⟩+ |↑↓⟩√
2

, |↓↓⟩ . (5.4)

By the transformation of this basis into a time reversal invariant basis one obtains [109]

i
|↑↑⟩ − |↓↓⟩√

2
, −i

|↓↑⟩+ |↑↓⟩√
2

,
|↑↑⟩+ |↓↓⟩√

2
, (5.5)
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resulting into three orthogonal quadrupole states. These quadrupole states can exhibit
long range order. The simplest order of such a spin nematic phase is the onsite quadrupolar
spin order, where spin fluctuations show an anistropy regarding their different axes. This
type of spin nematic is called ferroquadrupolar, since the fluctuations form a quadrupole
moment of S with a common axis on all sites [113]. More generally, quadrupole moments
prefer to select orthogonal axes, resulting in a antiferroquadrupolar. Antiferroquadropolar
ordering is illustrated in figure 5.10.

Figure 5.10: Two-sublattice, bond-centered spin nematic state. The ordering of this type
can be found in spin-1/2 frustrated ferromagnets in applied magnetic field. The
green spheres represent a magnetic ion that bonds with the neighbouring spin
into quadrupoles. The resulting quadrupolar spin fluctuations are visible in the
probability distribution for spin fluctuations on the bonds of the lattice, here
represented by a blue surface. The red rods represents the corresponding director.
Figure obtained by ref. [109]

However, the time reversal invariance makes the spin nematic states “invisible” for the
most common probes of magnetism, as they do not exhibit magnetic Bragg peaks or a
static splitting of lines in NMR spectra [17]. In thermodynamic measurements, e.g. heat
transport, the phase transition behaves like a AFM transitions. Since spin nematics are
expected to exhibit a linearly dispersing goldstone mode [109], the spin nematic state
might be detected by inelastic neutron scattering.

Spin-nematic order is known to occur close to saturation in the spin-12 J1 − J2 model
on a square lattice for ferromagnetic J1 and antiferromagnetic J2 [106, 110, 114]. This
model is believed to describe a number of quasi-two-dimensional magnets, including
BaCdVO(PO4)2. Among the vanadate phosphates BaCdVO(PO4)2 is a possible candidate
to exhibit such a spin nematic phase [115]. The H-phase diagram of BaCdVO(PO4)2
is illustrated in figure 5.11. By applying an external magnetic field one can change the
favorable phase of BaCdVO(PO4)2 from antiferromagnetism to ferromagnetism passing
the spin nematic phase.
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5.2 BaCdVO(PO4)2

Figure 5.11: H-Phase diagram of J1-J2 model systems. The external magnetic field in depen-
dency of r. The parameter r denotes the ratio of J1

J2
. The dashed line shows the

expected location of BaCdVO(PO4)2. Figure is adapted from ref. [59]
.

5.2 BaCdVO(PO4)2

BaCdVO(PO4)2 belongs to the group of vanadium phosphates AA’VO(PO4)2, which
present a realisation of frustrated ferromagnets [62, 63, 73, 75, 76]. These compounds
crystallise in layered structures, where the V+4 (S = 1

2) ions arrange in a square lattice.
This square lattice layer consists of VO5 square pyramids, which are linked via PO4

tetrahedra [76]. These tetrahedra take the transmitting role for superexchange interactions
for both NN and NNN. Metal cations and additional PO4 tetrahedra are separating these
square lattice layers. The structure of BaCdVO(PO4)2 is illustrated in figure 5.12. Among
the vanadate phosphates, frustrated square lattices were found for AA’ = Pb2, SrZn and
BaZn. All of them order magnetically as CAF. First Nath et al. [76] identified via heat
capacity measurements a phase transition in BaCdVO(PO4)2 at around TN ≈ 1K for
magnetic fields H < 3.5T. Further Ref. [76] reported that the system saturates at fields
H ⪆ 4T. These results were interpreted as a model with NN exchange J1 ≈ −3.6K and
NNN exchange J2 ≈ 3.2K. Hereby the low-field ordered state is assumed to be a canted
AFM with propagation vector qsq = (1/2, 0) [78, 116]. Povarov et al. [117] have extended
the magnetic phase diagram of BaCdVO(PO4)2 by thermodynamic measurements and
thereby, filled the gaps at fields close to saturation and low temperatures TN < 1K, where
the spin liquid phase is expected. They found a high spin fluctuating regime around
H = 4T, but the exact nature of the low-temperature phase stays elusive.

By using a combination of neutron-scattering and AC susceptibility measurements
performed in the range of 0 < H < 4.5T, Skoulatos et al. [59] recently identified the
ground state as an unusual “up-up-down-down” antiferromagnet. This is an evidence of
strong frustration, but also that the J1−J2-model is not sufficient to describe this system
properly. Further they showed that this order breaks down at B = 3.8T and saturation
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Figure 5.12: Crystal structure of BaCdVO(PO4)2 : single VO(PO4) layer are shown in the
left figure while the stacking of the layers are shown in the right figure. The
superexchange interactions J1 and J2 are given by the arrows. Larger and smaller
spheres denote Ba and Cd cations, respectively. Obtained from ref. [76].

is reached at B ≫ 4.5T.

More recent results by Bhartiya et al. [118] revealed that the crystal structure is not
the expected usual square lattice, but instead showed that the crystal structure is of lower
dimensionality than expected. The magnetic ordering is a 2D collinear ferromagnet, which
orders up-up-down-down. This leads to alternating interactions along one direction and
the previous defined J1 − J2-model has to be extended. Hereby each J1 and J2 have to
be distinguished by symmetry and direction. Hence, J1 and J2 splits into Ja

1 , J
b
1 , J

′a
1 , J ′b

1

and J+
2 , J−

2 , J ′+
2 , J ′−

2 , respectively, as illustrated in figure 5.13. Based on that Bhartiya
et al. [119] have presented full-scale neutron measurements in the saturation regime of
BaCdVO(PO4)2. With the collected data and by the use of a global model developed by
Smerald [120] they were able to fit the spin wave dispersion and by that, obtained values
for the eight coupling constants at high magnetic fields in the saturated phase. The most
general Hamiltonian of such a system, that includes small spatial deviations of the V4+

within the square lattice, is given by

H =
∑
i,j

Ji,jSiSj − h
∑
i

Sz
i (5.6)

where i, j runs over all NN and NNN bonds and S is the spin-1/2 operator. The Ji,j are
the corresponding eight coupling parameters. The resulting spin wave dispersion of this
system consists of two branches corresponding to two crystallographic in-equivalent V4+

sites [119]

ℏωq =
Aq +A′

q

2
±
√

Aq −A′
q

2
+ |Bq|2, (5.7)
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J1a J’1a

J1bJ’1b

J
2+

J’2+

J2-J’2
-

a

b

Figure 5.13: The magnetic unit cell in the a,b plane of BaCdVO(PO4)2. BaCdVO(PO4)2 orders
as a collinear antiferromagnet with an up-up-down-down magnetic structure where
pairs of rows are parallel ordered but the paired rows are ordered antiparallel
with respect to each other. This leads to in total 8 different coupling constants
including nearest and next nearest neighbours. Nearest neighbours are indexed by
’1’ while next nearest neighbours are indexed by ’2’. The coupling constants along
the ferromagnetic ordering are labelled by ’a’ and the one along the antiparallel
ordering by ’b’. The coupling constants within a paired row are primed. The ±
are introduced to distinguish between the two next nearest neighbours within one
square.
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where

Aq = h̃− J1a(1− cos(qa))
A′

q = h̃− J ′
1a(1− cos(qa))

2Bq = (J1be
iqb + J ′

1be
−iqb)

+ (J2+e
−i(qa−qb) + J ′

2+e
i(qa−qb))

+ (J2−e
i(qa+qb) + J ′

2−e
−i(qa+qb))

h̃ = gµBµ0H − 1

2
(J1b + J1b + J2+ + J2− + J ′

2+ + J ′
2−).

The labelling of the coupling constants J is the same as given in figure 5.13, a and b are
the different crystal directions in the square lattice plane. H is the applied magnetic
field. This model was used to fit our powder spectra data as well to fit the high saturated
field data by Bhartiya et al. [119]. If this model can be applied to a extended data set
and verified for different magnetic fields, one could get a deeper insight into the system.
Further, this might open the possibility of studying the spin liquid phase in more detail.

5.3 Experimental procedure

The production of the powder sample is described in [76]. They were prepared by the
solid-state reaction technique using BaCO3, CdO, V2O3, V2O5, and (NH4)2HPO4. First,
the intermediate compound BaCdP2O7 was prepared by firing the stoichiometric mixture
of BaCO3 and (NH4)2HPO4 at 950 ◦C in air for 48 h. Thereafter, stoichiometric amounts
of BaCdP2O7, V2O3, and V2O5 were grinded, pelletised, and annealed in dynamic vacuum
(10−5mbar) or evacuated in a sealed quartz tube (10−2mbar) at 800 ◦C for 30 h.

The neutron scattering experiments were performed on the time-of-flight (TOF) instru-
ments LET and IN5 at ISIS, Oxfordshire, United Kingdom and ILL, Grenoble, France,
respectively, with applied field. The polycrystalline specimen was placed in a cylindrical
hollow wall aluminium container, to reduce the absorption but still maintaining the
cylindrical geometry. The cylinder had a diameter of 25 mm with a hollow space in the
wall of 2 mm. Cadmium coverage at the top and bottom of the cylinder reduced the Al
scattering. All measurements were performed at 40 mK. Varying fields up to 8 T were
applied and various wavelengths have been selected, between 5.5 Å and 10 Å. Thereby
one obtains powder spectra which were used to fit the a model.

5.4 Results and Discussion

The powder spectra of the TOF measurements are shown in the first column of figure 5.14.
Measurements were performed at various magnetic fields between 0 T and 8 T, but only
the measurements at B = 0T and B = 8T had a signal to noise ratio where a further
analysis was possible. Further the measurements were performed for various incident
wavelengths ranging from λ = 3.5 Å to λ = 10 Å. For B = 0T, a wavelength of λ = 6.5
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Figure 5.14: Measured data obtained at IN5 or LET (first column), simulated powder spectrum
(second column) and the simulation with the parameter from Bhartiya et al. (third
column). First row corresponds to the 0T and the second row to 8T

Å yielded the best match to the system’s energy scale and signal to noise ratio, whereas
for B = 8T, a wavelength of λ = 5.5 Å was found as an optimum.

The dispersion relation equation (5.7), described in section 5.2 was used as the model
to fit the powder data obtained from the TOF measurements at B = 0T and B = 8T
at LET and IN5, respectively. The fitting procedure of the powder spectra was done
using the SpinW library in MATLAB [121]. Since the calculation was very performance
consuming, the fit was performed on the supercomputer "deep-thought" with help from
Georg Brandl. The coupling terms that were obtained by the fitting procedure are shown
in table 5.1. With these parameters and the SpinW library in MATLAB, the powder
spectra of BaCdVO(PO4)2 were simulated for 0 T and 8 T, which is shown in the second
column of figure 5.14.

Concurrently to the powder measurements performed by us, Bhartiya et al. performed
triple axis spectroscopy at IN12, ILL, Grenoble, France and Multi-Axis Crystal Spectrom-
etry (MACS) at National Institute of Standards and Technology, Gaithersburg, Maryland,
USA on a single crystal of BaCdVO(PO4)2 in the fully saturated phase B = 9T [118, 119].
By using the same dispersion relation (equation (5.7)) as model, they fitted the data of
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coupling constant powder Bhartiya et al. [119]
(meV) (meV)

J1a −0.75 ± 0.08 −0.135
J ′
1a −0.82 ± 0.09 −0.614

J1b −0.94 ± 0.10 −0.314
J ′
1b −0.87 ± 0.09 −0.464

J2+ 0.75 ± 0.08 0.384
J ′
2+ 0.41 ± 0.05 0.039

J2− 0.64 ± 0.07 0.361
J ′
2− 0.18 ± 0.02 0.181

Table 5.1: Coupling constants of obtained by the fitting procedure on the powder spectra
of B = 0T and B = 8T and coupling constants of obtained by single crystal
measurements at B = 9T by Bhartiya et al. (uncertainties have not been provided).

the single crystal measurement. The obtained parameters by Bhartiya et al. show a large
discrepancy to the parameters obtained by our fitting procedure (see table 5.1). Using
SpinW and the parameters reported by Bhartiya et al., powder spectra for B = 0T and
B = 8T were simulated, which is shown in the third column of figure 5.14.

The powder spectra in figure 5.14 of BaCdVO(PO4)2 could be nearly perfectly re-
produced by the simulated spectra using the parameter set as obtained by our fitting
procedure. If one considers the background that is present in real experiments, the
measurement and simulation match very well for both fields, B = 0T and B = 8T. The
strong signal close to E = 0 in the measurements originates from elastic scattering and is
not included in the simulation.

By comparing the powder spectra obtained by parameter set of Bhartiya et al. with
the powder spectra of our parameter set (listed in table 5.1), one sees that both yield
nearly identical spectra in the saturated field region at B = 8T. However the simulation
of our parameter set shows a small splitting around E ≈ 0.9meV, which is not present
in the spectrum of Bhartiya et al., but such details are not distinguishable with the
given resolution of the TOF spectrometer used by us and the present background. In
contrast, the simulated spectra at B = 0T do not agree in the regime of E > 0.2meV.
The disadvantage in TOF measurements on powder samples is that one measures |Q| and
thus, the dispersion relations of all directions that fulfil |Q| at once. The fact that several
dispersions are seen in one measurement make the analysis more difficult and further,
there might not only exist one parameter set that can reproduce the observed spectra,
especially if one considers the background and a limited resolution. Hence, although
the parameter set obtained by us and the parameter set by Bhartiya et al. differ, both
parameter sets can generate a nearly identical powder spectrum. Generally a single crystal
measurement as done by Bhartiya et al. is more reliable for the analysis of the spin wave
dispersion. However, the parameter set by Bhartiya et al. is not able to describe the
powder spectrum at B = 0T. Since the single crystal measurement was only done in the
saturated field phase and only covers a limited regime in the reciprocal space, it might not
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be sufficient to identify the correct parameter set for the dispersion relation equation (5.7)
of BaCdVO(PO4)2.

In contrast, the dispersion relations of the single crystal data were simulated as measured
by Bhartiya et al., using the parameter set that was obtained by the analysis of the TOF
powder data. The simulations of the dispersion relations are shown in the first two rows of
figure 5.15 and are compared to the model with parameters as given by Bhartiya et al. in
the latter two rows of figure 5.15. Some of the dispersions show a similar trend (figure 5.15
c↔m, d↔n, g↔q), but most of them are very different. Although our parameter set was
obtained at different fields, it also does not describe the dispersion properly, since our
parameter set cannot reproduce the dispersion relation of the single crystal measurements.

In order to obtain a better insight into the magnetic system of BaCdVO(PO4)2, it is
inevitable to use a more extensive data set to determine the correct coupling constants.
The super computer Deep Thought is right now out of operation, but as soon as it is
available again, a new fitting procedure is prepared including the measurements on the
single crystal obtained by Bhartiya et al. as well as the powder spectra obtained by
our TOF measurements. Nevertheless, extensive measurements on the single crystal at
different fields, especially B = 0T, would provide a more reliable basis for a spin wave
analysis.

5.5 Summary

Measurements of a BaCdVO(PO4)2 powder sample were presented and compared to the
single crystal data obtained by Bhartiya et al. [119]. By fitting of the dispersion relation
(equation (5.7)) to the powder spectra, coupling constants were obtained which were able
to reproduce the B = 0T and the B = 8T powder spectra in a simulation. However, the
parameter set that is obtained by fitting a powder spectrum is not necessarily unique. A
concurrently published analysis of the spin wave dispersion of a BaCdVO(PO4)2 single
crystal in the saturated phase yielded a set of coupling constants which differs from the
set obtained by us. The simulation of the powder spectra using the coupling constants of
Bhartiya et al. showed that the parameter set is able to reproduce the measured spectra
at B = 8T, but not the B = 0T powder spectra. In contrast, our parameter set was
used to simulate the dispersion of the single crystal data of Bhartiya et al. which was
not successful either. Both parameter sets only agree with a limited data set, but do not
successfully describe all available data.
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Figure 5.15: Dispersion of the spin wave of BaCdVO(PO4)2 as measured by ref. [119]. The
figures (a-j) are the simulated spin wave dispersions of a BaCdVO(PO4)2 single
crystal using the exchange couplings obtained by our powder measurements, which
are listed in table 5.1. The spin wave dispersions were simulated according phase
space (E,Q), which was measured by ref. [119]. The figures (j-t) are the spin wave
dispersions simulated in the same phase space using the exchange couplings of ref.
[119], which is listed in table 5.1.
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CuMnSb is a so-called "half-Heusler" compound. Fritz Heusler discovered in 1903 the
first compound Cu2MnAl, which exhibited - at that time - surprisingly ferromagnetism,
although none of the constituents is magnetic. Nowadays, more than 1000 different
Heusler compounds are known, exhibiting a variety of magnetic and electronic properties,
which can be often predicted by counting the valence electrons [122, 123]. Over 250
of the "Heuslers" are semiconductors with a band gap varying from 0 to ≈ 4 eV [124].
Some "Heuslers" express several kinds of magnetic behaviour, like magneto-optical,
magneto-caloric, magneto-electrical and magneto-structural characteristics. Especially
the half-metallic ferromagnets are a crucial element of interest in the field of spintronics
[125, 126, 127, 128].

The half-Heusler and full-Heusler compounds differ by composition with the nomencla-
ture of XY Z for half-Heusler and X2Y Z for full-Heusler materials. The X and Y atoms,
usually transition metals, possess cationic character, whereas Z is often an element from
the main group of the periodic table and is seen as the anionic counterpart.

Full-Heuslers crystallise in the L21 cubic structure with space group Fm3m̄, with
all four atoms ordered in a face-centered cubic (fcc) lattice, but each is shifted by a
quarter of the cube’s diagonal with respect to each other resulting in four fcc sub-lattices
at (0, 0, 0), (1/4, 1/4, 1/4), (1/2, 1/2, 1/2) and (3/4, 3/4, 3/4). In contrast to the full-Heuslers, a
half-Heusler compound crystallises in the C1b structure with space group F4̄3m, which
is equal to a full-Heusler, except one of the four fcc sub-lattices not being occupied.
Consequently half-Heuslers lack a centre of inversion [122].

The half-Heusler CuMnSb is one of few in the group of magnetic Heuslers that orders
type-II antiferromagnetic, making it unique among Heuslers based on 3d-transition metal
as of the time of writing [19]. CuMnSb has raised interest as a possible candidate of a half-
metallic ferromagnet [129], but was identified as a compensated semimetal via electronic
structure calculations by Jeong et al. [130]. Furthermore, Jeong et al. argued that there
are possibly two competing interactions mechanisms, namely local-moment and itinerant
magnetism that is realised by the heavy conduction electrons and the light valence band
holes. In combination with the low Neél temperature of TN ≈ 55K, this intimates that
there is magnetic frustration within this compound. Additionally, theoretical calculations
of Maca et al [18] indicated that the magnetic ground state of CuMnSb is more complex
than initially assumed and it is assumed that the type-II antiferromagnetism is stabilised
by defects in the crystal, namely, Mn antisites on Cu lattice, and Mn interstitials. Regnat
et al [22] observed in a high quality single crystal a canting of the spins away from the
antiferromagnetic ordering direction at temperatures below T ∗ = 34K, indicating also
a more complex magnetic ground state. In order to obtain insight into the interplay of
local-moment and itinerant ferromagnetism and thus, determine magnetic properties of
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tailored Heusler compounds, it is inevitable to understand the magnetic interactions in
CuMnSb that are responsible for the ordering. In this context, inelastic neutron scattering
is the technique of choice to quantify the exchange coupling constants by the analysis of
the dispersion of the spin wave.

In the following the structural and magnetic properties of CuMnSb are introduced.
Thereafter the results of triple axis spectroscopy are presented, which where measured by
Georg Brandl at EIGER, PSI, Villigen, Switzerland. The obtained data was fitted by a
spinwave model, which is based on analysis of the spin wave dispersions in the transition
metal oxides CoO, MnO, NiO and FeO, since these oxides order type-II antiferromagtic
as well. By fitting the model, we obtained the coupling constants of neighbouring spins,
where neighbours up to the 4th order where taken into account.

6.1 Structural and Magnetic Properties of CuMnSb

As described above, half-Heusler compounds crystallise in C1b, space group F4̄3m, with a
lattice constant of a = 6.07Å, shown in figure 6.1 a) [19, 131, 132]. Castelliz found that
doping NiMnSb with Cu on the Ni site gradually reduces the observed ferromagnetism
[131], but it took more ten years until Endo et al. [19] identified the ordering in CuMnSb
as antiferromagnetic and, further, identified CuMnSb as the very first antiferromagnetic
Heusler material. By using AC-susceptibility measurements on a polycrystalline sample,
Endo et al. found a Neél-temperature of TN = 55K, a Curie-Weiss-temperature ΘCW =
−160K and a fluctuating moment of 5.6µB/Mn. Other publications on powder of CuMnSb
[20, 21] reported various Neél-temperatures (50K − 62K), Curie-Weiss temperatures
(−250K−−120K), and effective fluctuating moments (6.3µB/Mn − 5.2µB/Mn). The
varying magnetic properties are most likely related to structural defects.

Foster et al. [133] was the first, who studied the magnetic structure of CuMnSb via neu-
tron powder diffraction on a polycrystalline sample. They confirmed the antiferromagnetic
structure and reported a magnetic moment of µ = 3.9µB/Mn. Furthermore, they showed
that the magnetic structure of CuMnSb is a type-II antiferromagnet, with the magnetic
space group R[I]3c. A type-II antiferromagnet only orders antiferromagnetically in one
dimension, while the other two dimensions order ferromagnetically. In a crystal, this
results in planes, where the in-plane magnetic moment exhibit ferromagnetic order, while
the stacked planes order antiferromagetically with respect to the neighbouring planes. In
CuMnSb, the planes of ferromagetic order are the {111} planes, and the antoferromagnetic
stacking is along the [111] direction, as visualized in figure 6.1 b. In figure 6.1 b, the
Mn sub-lattice is shown, since in CuMnSb only Mn ions carry a magnetic moment. The
magnetic space group R[I]3c of the Mn sub-lattice is shared with the well-known and
understood transition metal oxides MnO, FeO, NiO and CoO.

The type-II antiferromagnetic structure intimates a frustrated system, since nearest
neighbour interactions are never satisfied. Further the large ordered moments, the
commensurate spin order [133], and the high saturation field suggest local-moment
magnetism. In contrast to that, the high metallic conductivity [134], the low transition
temperature TN and the independence of TN on the applied magnetic field strength
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a) b)

Figure 6.1: Unit cell of CuMnSb. a) crystal structure of CuMnSb. The brown spheres repre-
senting Cu-sites, the big purple Sb and the small purple Mn. b) Mn atoms and
magnetic moments. The unit cell only including the Mn2+ ions with the respective
magnetic moments, since only the Mn contributes to the magnetic moment. The
magnetic structure is a type-II antiferromagnet with the stacking direction [111].

[135] suggests itinerant magnetism. Further the absence of an inversion symmetry may
give rise to spin orbit coupling. Electronic structure calculations of Jeong et al. [130]
yielded that CuMnSb is of semimetallic nature, i.e. a zero-gap semiconductor with a small
overlap between the conduction and the valence band. Jeong et al. stated, that the
antiferromagnetic phase can be heuristically described as a self-doped Cu1+Mn2+Sb3−

system, where the heavy mass electrons and light valence mass holes independently mediate
magnetic interaction between neighbouring spins. These two mechanisms possibly raise
competing local-moment and itinerant magnetism as it is known in EuB6 [136].

The ab initio calculations based on a Heisenberg model performed by Máca et al. [18]
suggests that type-II antiferromagnetism might not be the ground state of a perfect
CuMnSb crystal, instead a way more complex structure is expected. They report that
the experimentally observed antiferromagnetic structure is stabilised by point defects.
Already small concentrations of Mn interstitials or Mn antisites on a Cu position in the
order of a few percent promote the antiferromagnetic ordering in the ⟨111⟩ direction [18].
Furthermore geometric frustration may also play a role as the ratio f = −ΘCW /TN ≈ 3
and systems with f > 1 are considered as frustrated [137].

Regnat et al. [22] reported the first results on a high-quality single crystal. It was grown
as part of the PhD thesis of Andreas Bauer at the Physics Department of the Technical
University of Munich using the optical floating-zone technique. The magnetisation of
CuMnSb was measured along different crystal orientations versus the temperature at
various fields ranging from 1-9 T. Regnat et al. argued, that the field independence of TN

and the small absolute magnetisation in combination with the weak anisotropy rather hint
for strong isotropic exchange interactions, in favour of the previously discussed itinerant
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magnetism. Further, an additional phase transition at T ∗ = 34K below TN = 55K was
reported, independent of applied field strength and direction, observed by magnetisation
measurements. Their sample was characterised by a fluctuating moment of µ ≈ 4µB/Mn
and a Curie-Weiss temperature of ΘCW = −160K.

With powder neutron diffraction prior results were confirmed and moreover the magnetic
structure of the additional phase was revealed. The magnetic space group changes from
R[I]3c to C[B]c, more precisely, the spin orientation is slightly canted from ⟨111⟩ by
δ ≈ 14◦ [22]. This result does agree with the calculations by Máca [18] suggesting that
collinear antiferromagnetism is not the ground state of CuMnSb and underlines the
importance of defects and disorder, stabilising long-range order.

6.2 Measurement strategies

The interaction mechanism of the antiferromagnetic phase in CuMnSb has a multitude
of unresolved issues and to understand the magnetic ground state it is inevitable to
quantise the coupling constants within the magnetic phase. The coupling constants can
be determined by measuring the dispersion of the spin waves and finding a descriptive
model. Since a high-quality single crystal is availlable, TAS is a very good tool as it is
possible to measure precisely specific directions in reciprocal space, which is necessary to
fit precisely a model for the spin wave dispersion to the acquired data. A big data set,
which covers a broad range in reciprocal space is of advantage since one avoids overfitting
or multiple parameter sets yielding similar results. The measurements presented in the
following paragraphs were carried out by Georg Brandl on a TAS at EIGER, PSI, Villigen,
Switzerland. The momentum transfer Q = (h, k, l) is given in reciprocal lattice units
(rlu), where 1 rlu = 1.032 Å−1 for CuMnSb with a lattice constant of a = 6.088Å.

First, the temperature dependence of the energy of a single magnon was measured
to see if the additional phase is visible in the magnon excitation energy as reported by
Regnat et al. [22] and to determine the transition temperature T ∗ of the additional phase
and the Neél-temperature TN . For that, the momentum transfer in TAS was kept fixed at
Q = (0.55, 0.5, 0.5) rlu, where one observes a strong magnon mode. The energy transfer
was scanned from −5meV to 10meV at every temperature step. The temperature was
increased in steps of 5K ranging from 5K up to 65K.

For the characterisation of the spin canted phase at low temperatures, the dispersion
of the magnon mode was measured at T ≈ 2K. In total ten different paths in Q were
scanned and at each Q point the energy was scanned. Thus, a two dimensional (E,Q)-map
may be created for every of the ten Q scans. The typical step size along the paths in
Q is δq = 0.05 rlu, where q is the varying parameter within the three components of
Q. The energy scans were typically performed from 0 meV to 12 meV with a step size of
δE = 0.5meV. The measurement of the energy loss was omitted, since any inelastic signal
is strongly reduced due to the Bose factor. All scans were performed in the reciprocal
plane formed by the vectors [100] and [011], because it allows simultaneous access to the
[100], [011], and [111] directions. The ten Q-scans, that are displayed in figure 6.2, were
chosen such, that a large area is covered. However, the magnetic form factor decreases
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rapidly with increasing Q, limiting the range of reciprocal space that is useful for magnon
measurements [23].

Every line in figure 6.2 corresponds to a scanned (E,Q)-map, whose paths in Q are
listed on the right hand side with ’q’ as varying parameter. The blue dots are the reciprocal
lattice points of the nuclear lattice. The black lines denote the first Brillouin zone around
the (111) position, while the Brillouin zone of neighbouring cells are separated by the
dashed lines.

(000)

(200)

(022)

(222)

(111)

q,0.5,0.5
1.5,q,q
1,q,q
1+q,q,q
0.5,q,q
q,q,q
2-q,q,q
q,1,1
1-q,q,q
q,2,2

Figure 6.2: A two dimensional projection of the ⟨100⟩-⟨011⟩ reciprocal lattice plane. The
coloured lines correspond to the performed (E,Q) scans and are labelled on the
right legend. The parameter q denotes which components of Q are varied within
the scan. The blue dots are the reciprocal lattice points of the nuclear lattice. The
black lines denote the first Brillouin zone of the (111) point, while the Brillouin
zone of neighbouring cells are separated by the dashed lines.

6.3 Temperature dependence of magnon excitation energy

The sixteen energy scans performed at every temperature are displayed in appendix B.1.
One exemplary energy scan, which was done at T = 32.5K, is shown in figure 6.3 (a).
The blue dots show the measured intensity in dependence of the energy transfer. At
E = 0, there is the incoherent signal with two broader peaks next to it, one on the energy
gain side the other on the energy loss side, originating from inelastic scattering. Close
to the incoherent peak, there is a very sharp and strong signal at E ≈ 0.34meV, which
is identified as a spurious signal. In figure 6.3 (b) the same energy scan is shown after
removal of the spurious signal at E ≈ 0.3meV. Figure 6.3 (c) shows all energy scans that
were performed at different temperatures, which are summarised in a temperature-energy
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map. The measured intensity is encoded by the colour scale on the right. The intensity
of the inelastic signal on the energy gain side is higher compared to the energy loss side,
due to the Bose factor. The blue dots display the peak positions of the inelastic signal
on the energy gain side. With increasing temperature, the inelastic peak position shifts
towards smaller energy transfers until it becomes E = 0 at TN = 57K. At T ∗ ≈ 34K,
there is a small kink in the dependence of the peak position on T .
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Figure 6.3: Temperature-energy scan at Q = (0.5, 0.5, 0.5). a) typical energy scan is shown.
The blue dots are the intensity in dependence of the energy transfer. The dashed
lines indicate the following components: The magnon mode (orange), the incoherent
scattering (red) and the spurious signal (purple). The green solid line corresponds
to the sum of all components. b) The same energy scan as in a) is shown, but – for
better visualisation – the fitted spurion is subtracted from the data and the model.
c) Intensity of all energy scans in dependence of the temperature. The energy scans
for the different temperatures are summarised as a interpolated colour map. Hereby,
the spurious signal is also subtracted. The blue dots indicate the peak positions
of the magnon mode, which were obtained by the fitting procedure of the energy
scans. The blue line is the fitted model of the two magnetic phases with different
structures.
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6.3 Temperature dependence of magnon excitation energy

The energy scans are modelled for every applied temperature. The model

Imodel(E,Q) = Iinc(E) + Ispurion(E) + Imagnon(E) + C, (6.1)

consists of four contributions: The incoherent scattering is described by a Gaussian
function

Iinc(E) = I0,inc × exp

(
− E2

2σ2
inc

)
, (6.2)

the spurious signal, also described by a Gaussian function

Ispurion(E) = I0,spurion × exp

(
−(E − Espurion)

2

2σ2
spurion

)
. (6.3)

The inelastic scattering by the magnon excitation Imagnon(E), is described by the spectral
weight function as defined in equation (2.32),

Imagnon(E) =
1

2π
⟨n+ 1⟩ I0,Lorentz

×

 Γ(
E − E0(T )

)2
+ Γ2

+
Γ(

E + E0(T )
)2

+ Γ2

 ,
(6.4)

and a constant background C, which is assumed to be independent of E and T . The
incoherent signal Iinc(E) originates from random fluctuations of the scattering length
among the crystal sites and is a property of the material [23]. In general, incoherent
scattering is nearly isotropic and assumed to be temperature independent within the
measured temperature range. The spurious signal Ispurion(E) at E = 0.34meV is not
necessarily associated with the sample itself, it can also be a systematic contamination
originating from the instrumental setup. Typical origins of spurious contamination are
among others higher-order neutrons, unwanted reflections and artefacts of resolution
function or sample environment. A detailed explanation can be found in chapter 6
’Spurious peaks’ in ref. [23]. The spurions observed in our experiments were identified
as a Bragg tail from the magnetic Bragg peak at Q = (0.5, 0.5, 0.5), as the position in
E fits very well with where one would expect the magnetic Bragg tail and the intensity
of the spurion decreases with increasing temperature. Furthermore, the signal was also
measured in a monitor placed after the analyser, thus excluding it to be caused by a
phonon. This monitor records the full scattered intensity without the filtering effect of the
analyser crystal. As the signal is quite strong, it is most likely of elastic nature and not
fully filtered by energy selection at the analyser. Due to instrumental resolution effects at
our measurement position, one measures this elastic signal at seemingly finite energies.

For the fitting procedure, the I inc(E) (equation (6.2)) was fitted consistent for the
whole data set, such that the intensity I0,inc = 2514 ± 33 (arb. units) and σinc =
0.300 ± 0.004meV are the same for all temperatures. The spurious signal Ispurion(E)
(equation (6.3)) is in terms of peak position Espurion = 0.340± 0.001meV and peak width
σspurion = 0.120 ± 0.001meV temperature independent, whereas the peak amplitude
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decreases with increasing temperature. The magnon mode Imagnon(E) (equation (6.4)) is
the only contribution that shows temperature dependence in peak position, peak width
and amplitude and is fitted with all parameters individually for every temperature. An
typical example of the fitting result is shown in figure 6.3 (a) and (b) for the energy scan
at T = 32.5K. The three different fitted contributions are presented by the coloured,
dashed lines, where the magnon is represented by the orange, the spurion by the green and
incoherent scattering by the red line. The solid green line is the sum of all aforementioned
contributions. All fits with the respective temperatures are shown in figure B.1.

The excitation energy of the magnon mode correlates with the magnetisation of the
specimen and thus, is temperature dependent, too [60]. The energy of the magnon mode
is proportional to a T

5
2 power law

E(T ) ∼

(
1−

(
T

TN

)5/2
)
, (6.5)

where TN is Neél-temperature. The small kink in the magnon mode at T ∗ ≈ 34 is
associated with additional phase transition of spin canting, as already reported by Regnat
et al. [22]. In order to describe the magnon mode over the two different magnetic phases,
a phenomenological model was applied, that includes the additional phase transition and
is expressed as

E(T ) =


A1 ×

(
1−

(
T
T ∗

)5/2)
+A2, for T < T ∗

A2 ×
(
1−

(
T
TN

)5/2)
for T ∗ < T < TN

, (6.6)

with the amplitudes A1 and A2, the Néel-temperature TN and the transition temperature
for the canted phase T ∗. The resulting fit of the model is shown in figure 6.3 (c). The fit
yields A1 = 0.73±0.05meV, A2 = 1.97±0.04meV, T ∗ = 34.2±1.3K for the spin canting
transition and TN = 57± 1K for the Néel-temperature. With a reduced χ2 = 1.15, the
applied model describes the data very well. The fitting results agrees perfectly with the
reported results on CuMnSb by Regnat et al [22]. Especially the noticeable transition at
T ∗ = 34 was reproduced at the very same temperature as the magnetisation measurements
of Regnat et al.. This structural change agreed very well with the theoretical consideration
of Maca et al. [18], that at low temperatures, the magnetic system of CuMnSb takes a
more energetically favourable ground state. The two competing magnetic mechanisms
predicted by electronic structure calculations of Jeong et al. [130] are possible explanation
for the present frustration and the resulting phase transition at low temperatures.

6.4 Dispersion

In the following, first the analysis of the energy scans along different Q-paths is described.
Subsequently a model describing the dispersion is presented. Based on the excitation
energies of the magnon mode obtained by the fits of the energy scans, the model is fitted
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to the measured magnon mode. Thereafter the thereby obtained results are presented
and discussed.

6.4.1 Energy Scans

The 116 energy scans performed for different Q values are displayed in appendix B.2.
Four exemplary energy scans performed at are shown in figure 6.4. The blue dots show
the measured intensity in dependence of the energy transfer. The hollow blue circles are
data points that are not taken into account for the later fitting procedure, as these are
contributions of either the incoherent signal at E = 0 or a spurious signal, which disturb
the later fit of the magnon. The small inset in the top left corner shows the position of
the energy scan in the reciprocal space. The exact Q-point, where the energy scan was
performed is shown in the top right.

For the analysis of the dispersion of the magnon mode, all energy scans of the different
Q directions were modelled. In comparison to section 6.3, the model includes only the
magnon mode

Imodel(E,Q) = Imagnon(E) (6.7)

which analogous to equation (6.4) is described by the spectral weight function. In contrast
to section 6.3, the incoherent and spurious signal were not included in the model, since
in the displayed measurements the step size in energy was bigger and only positive
energy transfers were measured. Hence, the incoherent and spurious scattering are only
respresented by three data points next to E = 0 and are present as one strong, sharp peak,
which makes any later analysis attempt unreasonable. Instead, the three data points close
to E = 0 are excluded from the fitting procedure and the model does not consider any
incoherent contribution. Furthermore, a few energy scans show a sharp small peak, as it
is visible in figure 6.4 at Q = (1.4, 0.6, 0.6) at E ≈ 9meV. This peak shifts linearly with
a very steep slope to higher energy as the distance to Q = (1, 1, 1) increases. This mode
was identified as a spurious Bragg tail originating from the elastic nuclear scattering at
Q = (1, 1, 1) and is – similar to the Bragg tail in section 6.3 – visible in the monitor after
the analyser. For the same reasons as for the strong peaks close to E = 0, this mode was
also carefully excluded, in order to not disturb the fitting process. The energy scan in
figure 6.4 for Q = (1.2, 1.2, 1.2) is the only energy scan that shows this atypical shape of
two separated sharp peaks. This spectral feature is not understood.

As fitting routine the ’lmfit’ package in python was used [138]. The fitting procedure of
this model converged well and the results of all fits are presented in appendix B.2, each
labelled with the respective Q position. A resolution function of the instrument was not
included, because it would not have a significant influence as the magnon peak is very
broad. The fit usually agrees very well with the measurements, as shown in figure 6.4 for
Q = (0.5, 0.5, 0.5). If the magnon mode comes close to E = 0meV, there is no clearly
visible peak, however, the peak tails are sufficient for a reasonable fit, as one can see in
figure 6.4 at Q = (0.1, 2, 2). For a few energy scans, the measured peak has rounded
compared to the spectral weight function, as it is visible in figure 6.4 at Q = (1.4, 0.6, 0.6).
One possible explanation that this mode consists of two very close modes, which are
not distinguishable, however fitting two Lorentzian peaks did not improve the results.
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Figure 6.4: Exemplary energy scans at the given Q-positions. The dots show the measured
intensity in dependence of the energy transfer. The hollow blue circles are data
points that are not taken into consideration in the fitting procedure. The green
solid line denotes the result of the fitting procedure. The small inset in the top left
corner shows the position of the energy scan in the reciprocal space. Each scan is
labelled with the exact Q-point, where the energy scan was performed.

Another possible explanation is that the spectral weight function is not sufficient in the
form as it was applied. However, since the resulting fit agrees well with amplitude and
peak position, the results were still taken into account in the further analysis of the
magnon mode, but with the according higher error.

The amplitude of the magnon mode versus Q is shown in figure 6.5. The amplitude
directly correlates with the magnetic structure factor and is fitted by Lorentzian functions,
which describes the obtained amplitudes very well with the magnetic structure factor
being high at Q = (0.5, 0.5, 0.5), Q = (1.5, 0.5, 0.5) and Q = (0.5, 1.5, 1.5), while vanishing
at Q = (1, 1, 1). Less stronger local maxima of the magnetic structure factor are found at
Q = (1, 1, 1), Q = (0.4, 1, 1), Q = (1, 0.5, 0.5),Q = (0, 2, 2) and Q = (0.5, 2, 2).

The line width of the magnon mode is expected to be correlated with the magnon
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Figure 6.5: Amplitude of the magnon mode. The blue dots show the amplitude of the magnon
signal in dependence of the momentum Q. The amplitudes were obtained by
fitting the energy scans, shown in appendix B.2, with spectral weight function
equation (6.4). The amplitudes are fitted with Lorentzian functions.

energy. The results obtained by the fitting procedure, given in appendix B.3, show that
in most directions the magnon line width is correlated with the magnon energy. However,
in the directions Q = [1, q, q], Q = [1+ q, q, q] and Q = [1− q, q, q] the magnon line width
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and magnon energy appear uncorrelated or even partly anticorrelated. Until now no
descriptive model could be developed, which can explain this behaviour. Further, including
the resolution function of the instrumental setup is inevitable for the development of a
line width model.

6.4.2 Model of Spin Wave Dispersion

For the analysis of the dispersion of the spin wave, a model was developed, which was
already successfully applied for the well-known materials NiO [139], MnO [140, 141], and
FeO [142]. These metal oxides are likewise CuMnSb type-II antiferromagnets, where the
antiferromagnetic planes stack along [111]-direction. Futhermore, they could have been
all described by a nearly identical spin wave model, even though the models are written
down in different forms within the literature. The very first formalism to describe the
spin wave dynamics of collinear antiferromagnetism was introduced by Lines [143] for
MnO. Following ref. [143], the Hamiltonian for spin waves is expressed as

H =
∑
j

∑
⟨i,δj⟩

JjSiSi+δj +
∑
i

D1(S
x
i )

2 +
∑
i

D2(S
y
i )

2. (6.8)

Hereby the z-axis is assumed to lie along the spin direction [111], whereas the y- and
x-axis lie in the [111]-plane.

∑
i runs over all the spins in the lattice and

∑
⟨i,δj⟩ denotes

the sum of all distinct pairs at ri and ri + δj , coupled through an exchange interaction Ji.
The index j increases with the order of neighbouring spins, e.g. j = 1 denote the nearest
neighbours and j = 2 the next nearest neighbours, etc. . D1 and D2 are the anisotropy
factors which correspond to the strength of the out-of-plane and in-plane anisotropy,
respectively.

By introducing the spin-wave creation and annihilation operators of Holstein and
Primakoff the Hamiltonian can be diagonalised [143, 144]. The resulting dispersion
relation of the magnon mode is given by [139, 141]

E(Q)±sw = S ·
[(
A(Q)∓B(Q) + 2D1

) (
A(Q)±B(Q) + 2D2

)] 1
2
, (6.9)

where

A(Q) =

↑↑∑
j

∑
δj

Jje
iQδj +

↓↑∑
j

zjJj −
↑↑∑
j

zjJj , (6.10)

and

B(Q) =

↓↑∑
j

∑
δj

Jje
iQδj . (6.11)

As the 12 nearest neighbours in a type-II antiferromagnet are split into two sets of 6
parallel and 6 antiparallel spins, the sums are performed over these two set individually.
Hereby, the ↑↑ and ↓↑ above the summation indicate the sum over parallel or antiparallel
spins. The anisotropy terms D1 and D2 are the only terms that lift the degeneracy of
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E(Q)±. The integer zj is the number of equivalent neighbours and the total spin of the
Mn2+ ions is S = 5

2 . In the metal oxides, only the nearest and next nearest neighbours
are considered to contribute significantly to the spin wave dispersion [139, 140, 141, 142].
Thus, equations (6.10) and (6.11) can be expressed as

A(Q) = 6J+
1 − 6J−

1 + 2J−
1 C1 + 6J2

B(Q) = 2J+
1 C2 + 2J2C3

(6.12)

where, with Q = (qx, qy, qz),

C1 = cos
(
π(qx − qy)

)
+ cos

(
π(qy − qz)

)
+ cos

(
π(qz − qx)

)
C2 = cos

(
π(qx + qy)

)
+ cos

(
π(qy + qz)

)
+ cos

(
π(qz + qx)

)
C3 = cos(2πqx) + cos(2πqy) + cos(2πqz)

(6.13)

Following the notation of Lines [143], the interactions of the nearest neighbours are J+
1

and J−
1 , where the plus sign denotes coupling between antiparallel neighbours and the

minus sign between parallel neighbours. For more distant neighbours such in-equivalences
were omitted. Even though, a model up to the second order was sufficient for modelling of
the spin wave dispersion in transition metal oxides, it might be not for CuMnSb. Since, for
CuMnSb characteristics of different interaction mechanisms were reported, e.g. itinerant
exchange [130, 135], the applied model might be insufficient as the interaction range
might exceed the next nearest neighbours. In this context, the introduced model was
expanded by more distant neighbours of order 3 and 4. Thus, equations (6.10) and (6.11)
are expressed as [139]

A(Q) = 6J+
1 − 6J−

1 + 6J2 + 2J−
1 C1 + 2J3C4 − 12J4 + 2J4C6

B(Q) = 2J+
1 C2 + 2J2C3 + 2J3C5 (6.14)

where C1, C2 and C3 are the same as given in equation (6.13). C4, C5 and C6 are

C4 = 2
[
cos
(
π(qx + qy)

)
cos(2πqz)

+ cos
(
π(qy + qz)

)
cos(2πqx)

+ cos
(
π(qz + qx)

)
cos(2πqy)

]
C5 = 2

[
cos
(
π(qx − qy)

)
cos(2πqz)

+ cos(π
(
(qy − qz)

)
cos(2πqx)

+ cos(π
(
(qz − qx)

)
cos(2πqy)

]
C6 = 2

[
cos(2πqx) cos(2πqy)

+ cos(2πqy) cos(2πqz)

+ cos(2πqz) cos(2πqx)
]
.

(6.15)

The inclusion of more distant neighbours results contribute terms to the dispersion model,
that are able to describe higher frequency Fourier components in the magnon dispersion.
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6.4.3 Magnon Dispersion

Both, the 2nd order as well as the 4th order model were fit to the dispersion of the
magnon. The resulting parameters are shown in table 6.1. The respective fits of the

coupling constant NN and NNN up to 4th NN
(meV) (meV)

J+
1 0.066 ± 0.005 0.104 ± 0.005

J−
1 0.063 ± 0.004 0.086 ± 0.004
J2 0.210 ± 0.003 0.327 ± 0.012
J3 0.092 ± 0.004
J4 0.033 ± 0.004
D1 0.152 ± 0.010 0.080 ± 0.006
D2 0.146 ± 0.004 0.066 ± 0.002

red. χ2 11.5 5.2

Table 6.1: Results obtained in the fitting process. The model of the first column includes only
the nearest neighbours (NN) and the next nearest neighbours (NNN). The model of
the second column include up to the fourth next neighbours.

model equation (6.14) are illustrated together with the measured data in figure 6.6. The
colours of the dispersions given as solid lines are following the same pattern as in figure 6.2
and the path in reciprocal space is illustrated in the small inset in the upper left corner.
The gray-scaled background shows intensity of the (E,Q)-map. The blue dots are the
peak positions of the magnon mode, which were obtained from the fits of the energy scans.
The Miller indices above the figure show the respective reciprocal lattice points along the
path in Q. For most of the Q-directions the fitting procedure worked well, however, for
[q, 12 ,

1
2 ], [q, 1, 1] and [q, 2, 2] the model does not yield a optimal match. One notes, that

only one of the two modes is plotted, since the anisotropy factors D1 and D2 are small
compared to the exchange couplings. The modes E(Q)−sw and E(Q)+sw only differ in the
vicinity of magnetic Bragg peaks, their difference in energy is ∆E(Q)±sw < 0.15meV, and
are, thus, nearly degenerate in the measured range.

Comparing the two different models, the reduced χ2 of the 4th order model decreased
more than half in comparison to the 2nd order model, that includes only nearest and next
nearest neighbours. Although no exact Bayesian model evaluation was performed, the
smaller reduced χ2 and the well fitted data suggest, that the expansion of the model is
valid.

The deviation of the fit and the data along the paths [q, 12 ,
1
2 ], [q, 1, 1] and [q, 2, 2]

might be due to fact that the model is optimised for transition metal oxides exhibiting
the magnetic space group R[I]3c, while in CuMnSb, as mentioned in section 6.1, the
magnetic moments are slightly tilted from [1, 1, 1] to the direction [0, 1, 1] by an angle of
δ ≈ 14◦, resulting in the magnetic space group C[B]c and indicating a different ground
state. Furthermore, the in-equivalence of parallel and antiparallel neighbours was only
considered for nearest neighbour interaction.

The coupling constant J2 is larger, but of the same order of magnitude as J±
1 . Although
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6.4 Dispersion

Figure 6.6: Results of the spin wave model. The colour map in the background indicates the
measured intensity S(E,Q) in grey scale, where darker indicates higher intensity.
The blue data dots are the respective peak positions. The fitted spin wave modes
are given by the coloured lines. The path in reciprocal space is given in the small
inset in the upper left corner. Above the reciprocal lattice points are indicated.
Below the specific direction is labelled, where ’q’ is the varying parameter.
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it is necessary that J2 > J±
1 to obtain type-II antiferromagnetism, the closeness of

these values indicates strong frustration. This might be the origin of the low transition
temperature compared to transition metal oxides even though the exchange constants are
of a similar order of magnitude. J3 is of the same size as J±

1 , which again shows that
it is necessary to include more distant neighbours compared with the transition metal
oxides. The coupling constant between the 4th nearest neighbours J4 is with J4/J2 ≈ 0.1
small compared to the most dominant coupling constant J2 and gives just local small
corrections to the model’s fit. Nevertheless, the contributions of the 3rd and 4th order
neighbours lead to significant improvement and are therefore not negligible. This shows,
that a local-moment magnetism is not sufficient to describe the magnetic interactions of
CuMnSb as the interaction range suggests an interaction mechanism of longer range. The
strong frustration might originate from the two competing mechanism predicted by Jeong
et al. [130]. The very small contribution of the out-of-plane and in-plane anisotropy D1

and D2 are agreeing excellently with the reported weak anisotropy of ref. [22]. Even
though the obtained anisotropy is quantitatively small, it has a significant impact on
the energy gap of the spin wave dispersion in the applied model. The two branches
of E±

sw are only separated by the anisotropy terms as it can be seen in equation (6.9).
Although the two branches are not distinguishable within the resolution of a triple axis
measurement, the small splitting of the magnon modes ∆E(Q)±sw < 0.15meV serves as a
possible explanation for the broad peak of the measured signal as one comes closer to the
magnetic Bragg peaks.

A possible option to improve the spin wave model would be to include the symmetry
breaking of the spin canting and to implement possible antisymmetric exchange interac-
tions. Since the corresponding Hamiltonian would drastically increase in complexity, in a
future investigation numerical calculations would be of advantage. To take even more
distant neighbours into account, would results in higher frequent Fourier components
than already included in equation (6.15) to the model. However, since the model follows
in general the trend of the measured data, higher orders would lead to more fitting pa-
rameters than can be justified by the data and are therefore not reasonable. Furthermore,
spin-flip dependent measurements would be also advantageous, in order to distinguish
between spin wave excitations and lattice vibrations.

6.5 Summary

The results of inelastic neutrons scattering on the high-quality single crystal CuMnSb
are reported. Temperature dependent energy scans of magnon mode showed in general
the expected temperature dependence of a magnon mode. However, a kink in the energy
temperature curve reveals an additional phase transitions inside the magnetic phase,
which can be described by a simple phenomenological model. The observed kink agrees
perfectly with the change in the magnetic space group R[I]3c to C[B]c as reported by ref.
[22], corresponding to a canting of the magnetic moments in the crystal.

The analysis of the spin wave dispersion is performed for low temperatures data, where
ten different paths in Q were measured. The measurement of the spin waves along
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each Q-directions results in a (E,Q)-map revealing the energy dispersion of the magnon
mode for the corresponding direction. Due to the similar magnetic structure of a type-II
antiferromagnet with the metal oxides, the same Hamiltonian is used and fitted globally to
the data, where interactions up to the 4th nearest neighbours are included. The obtained
parameters showed that the system is magnetically frustrated, which explains the low
transition temperature of CuMnSb compared to other known systems and may be related
to the spin canting at T ∗. The fact that up to the 4th next neighbours need to be included
into the model, shows that CuMnSb has indeed partially contributions of long range
interaction mechanisms, i.e. itinerant interaction. This conclusion agrees well with the
considerations of Jeong et al. [130] of two different competing interaction mechanism.
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In many magnetic materials the mechanisms of the underlying interactions are still not
fully understood. Neutron scattering is the technique of choice to study magnetism
on a microscopic scale as one is able to obtain quantitatively the exchange interaction
between of neighbouring spins. However, with the increasing complexity in magnetic solids,
one often reaches the limits of established neutron techniques, i.e. resolution, accessible
energy and momentum range or applicable environment. The development of new, more
sophisticated scattering techniques becomes necessary to deepen the insight into the
condensed matter magnetism.

In this context, the development and the implementation of the MIEZE add-on for the
triple axis spectrometer MIRA is presented in chapter 2. The combination of the MIEZE
technique with a TAS drastically improves the energy resolution, while maintaining the
resolution and accessible range in momentum. Especially, for magnon excitations at small
momentum transfers, where the excitation energy is small, a high energy resolution is
necessary. Further, with spin echo techniques the line width can be measured. Thereby one
can investigate quasielastic processes or determine the lifetime of an inelastic excitation.
The performance of the MIEZE technique strongly depends on the initial contrast, as for
this spectrometric method the transferred energy is deduced from the reduction of the
initial contrast. In chapter 3, the first test results of the MIEZETOP performance were
evaluated. The tests showed that the adiabatic transition between the polariser and the
π/2-flipper was not fully performed, due the strong spatial restriction of the setup. Further,
for increasing echotimes τMIEZE, the magnetic fields of the B0 coils of the RF-flippers
reach into the respective π/2-flippers next to the RF-flipper, disturbing the flipping
procedure. These two factors reduce the initial contrast and, thus, reduce the accessible
range in echotime τMIEZE and quality of the MIEZE spectroscopy. Additionally, MIEZE
in diffraction and triple axis mode in comparison to forward scattering was analysed.
The different scattering geometries are expected to reduce the initial contrast, because
the path length across the cross section of the neutron differs.In both configurations,
the dependency of the contrast with respect to the detector angle showed the expected
behaviour. However, the overall reduction factor was practically not applying at all and
the measured contrast was higher than expected. Only for long echotimes, there was a
significant reduction in contrast, but still less than expected. Even though, there was no
explanation yet found, this shows that the combination of MIEZE and TAS is in principle
possible and might offer an even better performance than expected. Unfortunately, due
to the temporal shut-down of the FRM2 reactor operation, no further experiments could
be performed.

Nevertheless, future improvements are inevitable, especially for the adiabatic transition
and the mutual disturbance of the coils, as it would drastically boost the performance of
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the setup since the initial contrast is the most limiting factor. The simplest approach is
to stretch the MIEZE setup, which would, however, reduce the flexibility of the whole
instrument. A different approach is to shield the magnetic fields, which would improve
the situation of mutual disturbance of the B0 coils, but the problems of the adiabatic
transition would still be unanswered. Further a detector, which is movable along the
beam direction, would improve the tuning procedure of the various MIEZE conditions
and, thus, also increase the initial contrast.

Two materials, whose magnetic interaction is not fully understood are BaCdV(PO4)2 and
CuMnSb. Both materials order antiferromagnetically and exhibit competing interactions
resulting in magnetic frustration.

The quasi two dimensional antiferromagnet BaCdV(PO4)2 is a candidate for exhibiting
a spin nematic phase, where competing interaction between the nearest and next nearest
neighbours are expected to lead to a dimerisation of neighbouring spins. In chapter 4 the
inelastic time-of-flight measurements of the powder sample BaCdV(PO4)2 at B = 0 T
and B = 8 T are presented. By modelling the powder spectra, the exchange constants
between nearest and next nearest neighbours were extracted. However, in comparison to
concurrently performed single crystal measurements in magnetic saturation by Bhartiya et
al., the coupling constants obtained by us do not agree with the single crystal measurements.
Oppositely, the exchange couplings extracted by Bhartiya et al. do not agree with our
B = 0 T measurements. Because both research groups used the same model for describing
their measurements on the same material, the two different sets of parameters showed
that both data sets were not sufficient to yield the correct exchange couplings. In this
context, calculations are prepared, where the measurements of both research groups are
included and will be performed as soon as the super computer "Deep Thought" at FRM2,
Garching, Germany is available again. However, single crystal measurements at various
magnetic fields would be advantageous to find the correct model describing the system.
The spin nematic phase stays unrevealed.

In CuMnSb, the additional phase transition within the magnetic phase has been
observed using temperature dependent triple axis measurements on a single magnon
excitation and was described by a phenomenological model. The obtained transition
temperatures TN = 57 K and T ∗ = 34 K agree very well with other reported magnetisation
measurements. The dispersion of the spin waves along ten different directions in reciprocal
space at T = 2 K were described by a model based on the results of transition metal oxides
MnO, FeO, CoO and NiO, which also order as a type II antiferromagnet. The model fitted
the results well, except for one crystal direction. The origin of this difference might be of
the slightly different symmetry in this direction due to the spin canting at T ∗ = 34 K.
The obtained coupling constants showed that the magnetic phase of CuMnSb is strongly
frustrated as nearest and more distant neighbours compete in their interaction. This
explains the low TN compared to the metal oxides, although the interactions strengths are
of the same order of magnitude. Furthermore, the fact that neighbours up to the 4th order
had to be included into the model suggests that CuMnSb does have an itinerant interaction
mechanism, additionally to the characteristics of local-moment magnetism. However,
in order to improve the results of the model, spin flip dependent neutron scattering
experiments could be beneficial in order to separate magnetic modes and phonon modes.
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Further the same measurements in the non-canted phase T ∗ < T < TN should be
performed to evaluate the influence of the spin canting on the magnon mode. Additionally,
a modified model that includes the spin canting lead to an improved modelling of the
data.
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A Appendix: Electronic devices

A simplified circuit diagram for the MIEZE-setup is shown in figure A.1 as it was connected
in the presented experiment. The DC current driven B0 coils are omitted as their circuit
plan is simple and well described in section 3.7.2. The RF-coils need a stable oscillating
current with a specific frequency depending on the configurated MIEZE time. This is
realised by creating a resonant LC-circuit inside these coils. In order to realise a LC-circuit
one needs are frequency generator, an amplifier and a capacitor with variable capacity.

Wave function generator The Keysight 33500B Series Waveform and the Agilent
arbitrary waveform generators 33220A, depicted in Fig. 2.24 (top) are able to produce
sinusoidal signals from 1 µHz to 20 MHz.

The Keysight generator acts as a trigger, which phase-locks the Agilent generators.
Otherwise the detector’s time channel would drift over time and therefore averaging and
flattening the MIEZE signal. Further it determines one full sine period of MIEZE signal
and the 16 time frames per oscillating intensity period. The choice of 16 time bins is
arbitrary, nevertheless it is a sufficient amount for extracting the sinusoidal signal without
reaching the limits of the device to early. The two Agilent generator are providing the
driving frequency for the two RF-coils LC-circuit.

Amplifier To order to receive a sufficient field strength in the RF-coils an amplifier is
required. Higher harmonics need to be sufficiently surpressed as well, in order to improve
quality oscillating current in the coils.

The used amplifiers are the AG1017L by Agilent whose third harmonic is better than
−20 dBc and any other harmonics > −28 dBc. The quantity dBc describes the power
ratio of a signal to a carrier signal. For the tuning of the signal strength inside the
RF-Coil, one can either vary the gain of the amplifier or the output of the frequency
generator. In experiments it turned out that the latter method allowed a finer and faster
adjustment of the oscillating field strength.

Variable Capacitor The design of the RF resonator circuit, and in particular that of
the capacitance adaptation devices (C-boxes), has been adapted from the RESEDA
instrument [48]. The eigenfrequency of a resonant LC-circuit is given by

ω0 =
1√
LC

, (A.1)

where L is the coil’s inductance and C the capacity. The tuning of the eigenfrequency
is achieved by varying the capacity of the resonant circuit. In MIEZE two capacitance
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Figure A.1: The circuit diagram of the two RF-coils. It consists of three frequency generators.
The Keysight sets the frequencies for the detector time channel and acts as a trigger
for the other two Agilent frequency generators. Each RC current generated by
the Agilents is amplified and coupled into the resonant circuit of the capacity box
(cbox) and the RF-coil.
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adaption devices (cbox) are needed, as the two RF-flippers have their own resonant circuit
driven at different frequencies. Technically, the capacitance adaption device has three
subunits, which are labelled by increasing numbers for both cboxes (Cbox1_1, Cbox1_2...,
Cbox2_3 ). For simplicity, the three different subunits are referred as ’unit 1’, ’unit
2’ and ’unit 3’. Regarding the circuit diagram figure A.1, unit 1 and 2 are physically
installed in the ’Cbox’, while unit 3 is installed in ’Cbox1 small’, since the latter one was
added later in order to reach higher frequencies.

Each of these sub-units consists of a set of parallel connected capacitors with different
capacities, where each capacitor can be activated independently. The capacity of the
parallel connected capacitors sums up linearly

Ctot =
∑
i

Ci. (A.2)

Each box covers a different range of capacitance and by the combination of all three of
them one can increase the range of capacity. The covering range of the sub-units is given
in table A.1. unit 1 and cbox 2 can be connected in parallel and in series configuration,
while unit 3 is connected in series to the others. In series connection, the capacity sums
inversely

1

Ctot
=
∑
i

1

Ci
. (A.3)

In theory eigenfrequencies from ≈ 25 kHz up to ≈ 7 MHz can be achieved. However

Sub-unit 1 2 3

Range 10-1750 nF 0.22-17.18 nF 22-798 pF

Table A.1: Range of capacitance of the capacitor sub-units.

in reality parasitic capacities, e.g. coaxial cables, are limiting the maximal possible
eigenfrequency. The highest achieved eigenfrequency was ≈ 1MHz, which is sufficient for
recent setup.

Oscilloscope An oscilloscope is used to assess the quality of the amplified oscillating
signal in the RF coils. For this MIEZE setup the Rhode & Schwarz RTE1104 was used,
which is a 4 channel oscilloscope with a bandwidth of 1 GHz, a sampling rate of 2.5
GSa/s per channel and is sensitive to signals down to -50dBmV which is sufficient for our
purpose. Its capability of being integrated via Ethernet into the measurement system
allows further to automatise the tuning of the RF coils [145].

DC power supply B0 coils The DC power supplies must provide a high and sufficiently
stabilized current to ensure that the accumulated phase of the neutrons does not vary.
Due to the low resistance of the coils R = 260 mΩ the voltage is not a factor. The devices
used for MIEZE measurements were Heinzinger PTN 3p 80-80 (80 V/80 A). They are
highly stabilised and comply with these requirements [146].
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B Appendix: CuMnSb

All performed temperature dependence scans are shown in figure B.1 as referred to
in section 6.3. The blue dots are the measured intensity in dependence of the energy
transfer. In the top right corner the respective temperature is shown. The solid green
line displays the fit including all components, while the dashed lines show the different
fitted components contributing to the fit.

In appendix B.2 all performed energy scans are shown as referred to in section 6.4.1.
The blue dots are the measured intensity in dependence of the energy transfer. In the top
right corner the respective reciprocal lattice point is shown, which is visualised together
with the reciprocal lattice in top left corner. The solid green line displays the fit of the
measured peak.

Appendix B.3 shows the magnon line width Γ in comparison with the excitation energy
of the magnon obtained by the fits of the energy scans as referred to in section 6.4.1. The
blue dots are the line widths in dependence of the momentum transfer, while the red dots
refer to the energy of the magnon mode.
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B.1 Temperature dependence of energy scans
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Figure B.1: Fits of the magnon mode at different temperatures. The labeling follows figure 6.3.
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B.2 Energy scans at T = 2 K for different Q directions

B.2 Energy scans at T = 2 K for different Q directions
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Figure B.2: Energy scans in direction (0.5,q,q).
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Figure B.3: Energy scans along (1.5,q,q).
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B.2 Energy scans at T = 2 K for different Q directions
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Figure B.4: Energy scans along (1+q,q,q).
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Figure B.5: Energy scans along (1,q,q).
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B.2 Energy scans at T = 2 K for different Q directions

0 3 6 90.0

0.6

1.2

1.8

1e3
Q = (0.5,0.5,0.5)

0 4 8 120.0

0.4

0.8

1.2

1e3
Q = (0.45,0.55,0.55)

0 4 8 120

3

6

9

1e2
Q = (0.4,0.6,0.6)

0 4 8 120.0

2.5

5.0

7.5

1e2
Q = (0.35,0.65,0.65)

0 4 8 120

2

4

6

1e2
Q = (0.3,0.7,0.7)

0 4 8 120.0

1.5

3.0

4.5

1e2
Q = (0.25,0.75,0.75)

0 4 8 120.0

1.5

3.0

1e2
Q = (0.2,0.8,0.8)

0 4 8 120

1

2

3

1e2
Q = (0.15,0.85,0.85)

0 4 8 120

1

2

3

1e2
Q = (0.1,0.9,0.9)

0 4 8 120.0

0.8

1.6

2.4

1e2
Q = (0.05,0.95,0.95)

0 4 8 120.0

0.8

1.6

2.4

1e2
Q = (0.0,1.0,1.0)

In
te

ns
ity

 (a
rb

 u
ni

ts
)

Energy (meV)

Figure B.6: Energy scans along (1-q,q,q).
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Figure B.7: Energy scans along (2-q,q,q).

114



B.2 Energy scans at T = 2 K for different Q directions
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Figure B.8: Energy scans along (q,0.5,0.5).
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Figure B.9: Energy scans along (q,1,1).
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B.2 Energy scans at T = 2 K for different Q directions
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Figure B.10: Energy scans along (q,2,2).
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Figure B.11: q,q,q
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Figure B.12: Linewidth of the magnon mode. The linewidth Γ of the magnon mode obtained
by the fits of the energy scans. The linewidth Γ is compared to the magnon mode
energy.
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