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Abstract

When planning road networks, inhomogeneous traffic conditions and the effects of multimodal interactions are often
neglected. This can lead to a substantial overestimation of network capacities. Empirical macroscopic fundamental diagrams
(MFDs) or volume delay relationships show considerable scatter, reflecting a reduction in network performance and an ineffi-
cient use of infrastructure. The implication is that the external costs of vehicular (car) traffic get underestimated, when plan-
ning traffic capacities and speeds based on optimal rather than on real estimates. In this paper, we contribute with an
explorative and empirical approach to analyze network inefficiency and quantify its drivers. VWe propose to measure network
efficiency by introducing the idea of excess delays for the MFD. We define excess delays as the difference between the
observed speed and the optimal network speed at a given density. We apply the concept to traffic data sets of six European
cities that differ in the data collection method and we use quantile regression methods for analysis. We find that excess
delays are present in every data set and increase with the road network’s traffic load. We further confirm the intuition that
traffic signal control, network loading, and multimodality influence the level of network inefficiency. The excess delay formula
allows quantifying this information in a simple way and provides additional insights apart from the standard MFD model. The
approach supports planners to obtain better real-world and less optimistic speed predictions for traffic analyses and suggests
shifting urban transport to more spatially and temporally efficient modes.
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We plan our road networks based on guidelines assum-
ing normal and homogeneous traffic conditions, not
accounting for multimodal interactions, and therefore on
an overestimation of capacities. This results in rather
best-case estimates of road traffic. Cost—benefit analyses
may only consider these best-case estimates and may lack
information on some of the factors that can negatively
affect network performance, which, in turn, potentially
alters planning decisions. Such negative effects are
observed everywhere in the unpredictable reality: empiri-
cal macroscopic fundamental diagrams (MFDs) or vol-
ume delay relationships show considerable scatter,
implying a reduction in performance and inefficient use
of infrastructure (/-5). In urban road networks, the liter-
ature suggests at least three sources contributing to ineffi-
cient infrastructure use: (i) interaction effects between
different vehicles types, (ii) traffic dynamics, and (iii) traf-
fic control strategies. The implication is that when cities

plan and manage traffic capacities and speeds based on
optimal rather than on the real estimates, the external
costs of vehicular (car) traffic get underestimated.

In this paper, we contribute with an explorative and
empirical approach to analyze network inefficiency and
quantify its drivers. We propose to measure network effi-
ciency by introducing the idea of excess delays for the
MFD. Excess delays add up to inherent delays of traffic.
The latter are already described by the MFD (6, 7) and
fundamental diagram (FD). In this paper, we define the
original MFD as idealized, that is, as the maximum flow
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Figure I. Network inefficiency and estimating excess delays using the MFD.
Note: MFD = macroscopic fundamental diagram; veh/s = vehicles per second; veh/m = vehicles per meter.

for each density independently from demand. In contrast,
the observed MFD is what we observe from empirical or
simulation data, and includes multimodal interactions
and demand-related effects. Excess delays are the differ-
ence between both MFDs for a given density. More spe-
cifically, for a certain density, we compare the speed,
measured in units of pace, derived from the idealized and
the observed MFD. The excess delay approach allows
quantifying the effects of signal control, network loading,
and multimodality on urban traffic in a simple way.
Furthermore, it provides additional insights such as the
possibility of facilitating the modeling of hysteresis pat-
terns in the MFD.

Based on this procedure, we can measure excess delays
for four real-world loop detector data sets, one drone
data set, and one simulation-based data set. We find that
excess delays are present in every data set and that they
increase with the road network’s traffic load. We find also
that there is a difference between the network loading
and unloading dynamics, and that there exists an intuitive
influence of traffic signal control and multimodality on
network inefficiency. Interestingly, the estimates of all six
sources are comparable, even though the data sets differ
in the collection method and the underlying network
sizes, suggesting the global applicability of the quantita-
tive results of this analysis. The proposed approach of
network inefficiency and excess delays helps planners and
decision-makers to obtain better real-world and less opti-
mistic speed predictions for their particular analysis.

The remainder of this paper is organized as follows.
In the next section, we will briefly stress MFDs as a traf-
fic analysis tool, define excess delays, and outline the
resampling approach that we use to generate MFDs. In
the following section, we will present three explorative
approaches to fit an optimal speed curve to the resampled
data sets. Thereafter, we will describe the empirical data

sets of five cities and the simulation data set. Then, we
will present the results of the analysis, and finish with a
conclusion on our findings and policy implications.

Method

We quantify urban network inefficiency by the measure
of excess delays based on the formulation of the MFD.
As mentioned above, we define excess delays as those
that exist in addition to the delays which can be derived
by the idealized MFD for a given density. In the follow-
ing subsections we discuss each building block in the pro-
cess to calculate excess delays from MFD data.

The Macroscopic Fundamental Diagram

The MFD describes the relationship between vehicle
accumulation (density) and average traffic speed (or
flow) in an urban road network (6). The general shape of
the MFD can be seen in Figure 1. One can distinguish
between the idealized or upper MFD (6, 8, 9) and the
observed MFD (10, 11), both in the flow—density and in
the speed—density relationship. The upper MFD repre-
sents the upper envelope to all possible states that are
observed in the MFD. We define the optimal (desired)
relationship between vehicle density, flow, and speed as
the idealized MFD, which can be related to the social
optimum. However, the desired speed—density relation-
ship is rarely reached in reality and therefore difficult to
measure. Delays in addition to the delays defined by the
MFD then always occur when an observed data point
does not match the desired speed—density relationship.
In this paper, we will fit an upper speed MFD and derive
an optimal speed—density relation by using a resampling
approach (/2). The resampling method is expected to
result in less biased upper-bound estimates with more
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Table I. Model Specification

Variable Meaning

k Average network density in vehicles per meter

Vobs Average journey speed observed in the network in meters per second

Vi Desired journey speed in the network in meters per second

Y Excess delays in seconds per meter

L Network loading indicator. Equal to one when network is in the loading state (increasing
vehicle density), zero otherwise. Unitless

Parameter Meaning

N MFD smoothing parameter (see Ambiihl et al. [9]). Unitless

Bo Intercept of the excess delay model in seconds per meter

Bk Effect of traffic density on excess delays in seconds per vehicle

By Effect of network loading on excess delays in seconds per meter

Note: MFD = macroscopic fundamental diagram.

supporting data (time span, experimental variation). If
the underlying data is biased—for example, only exhibit-
ing one loading pattern—it could be that the resampled
upper bound is biased in such a way that the excess delay
estimation is less reliable in the sequel analysis. The
MFD literature suggests that additional or excess delays
occur for three main reasons:

1. Multimodal vehicle interactions: So far, most
MFD literature has focused on car traffic,
although in the last years, interactions between
different modes have been receiving increasing
attention: for example, bimodal interactions, that
is, between cars and buses (/3—15) or cars and
pedestrians (/6), but also trimodal interactions
between cars, buses, and bicycles (/7). As the lat-
ter show, interactions between different modes
have different effects on the overall pace of the
vehicles compared with cases where only unimo-
dal interactions are considered. Multimodal inter-
action effects come on top of the delays that
occur because of network loading and unloading
(increasing and decreasing vehicle densities).

2. Network loading processes and hysteresis:
Research has shown that the onset and offset of
congestion leads to different density distributions
from a spatial perspective (18, 19). This is reflected
in the MFD, where for a given density the observed
flows during unloading of the network, that is, the
offset of congestion, are usually lower than during
the loading phase. While the corresponding traffic
dynamics can be explained by the FD on the link
level, the upper MFD curve fails to do so.

3. Traffic signal control: In some circumstances, the
urban traffic controller may exert additional red
times for car traffic—for example, to protect a
certain perimeter from overcrowding (20) or to

prioritize public transport (2/). In either case,
general traffic experiences additional delays that
are in excess to those that are reflected in the
desired MFD.

Another contributor to excess delays could be the net-
work topology (22) and supply characteristics, such as
speed limits, lane widths, number of intersections, or its
structure. For example, in a city with a high number of
links with speed limits below the citywide speed limit, the
mean speed could be lower than average on the other
links and therefore result in “artificial” excess delays. For
single analyses focusing on one city, this effect may be
negligible. When comparing two different cities with sub-
stantial differences in the network topology, we suggest
controlling for these effects in the delay model. This lim-
itation will be further investigated in our future research,
for example by simulation experiments that analyze the
interaction effects of network structure and loading on
excess delays in particular.

Network Inefficiency Based on Excess Delays

Figure 1 shows where network inefficiency can be seen in
the MFD. We define inefficiency as the gap between the
upper or desired MFD, and the observed traffic states in
the flow—density representation of the MFD. In the
speed—density relationship, the gap can be directly trans-
lated into an additional delay. Here, we express delay in
the units of additional time per unit distance (s/m). We
quantify these additional delays in the following
sequence. See Table 1 for the model specification.

1. Estimate the resampled MFD: To approximate
the smooth upper bound as well as possible so
that it may correspond to the upper or desired
speed MFD, we apply the resampling method
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Table 2. Overview of the Traffic Data Sets from Six European Cities and the Resampling(*) Parameters

Data set Athens Innsbruck London Lucerne Paris Zurich
Population size (mil.) 0.664 0.131 8.961 0.082 2.161 0.403
Network size (km?) 1.3 33 160 5 24 15
Detection method Drone Simulation Loop det. Loop det. Loop det. Loop det.
Time window 4 days 4h 22 days 365 days 335 days 365 days
Aggregation interval (s)* 120 300 300 300 3600 300

No. of subsamples* 100 100 20 100 20 100
Fraction size* 0.25 0.25 0.2 0.25 0.2 0.25

Note: mil. = millions; loop det. = loop detector; no. = number.
"
Resampling parameters.

proposed by Ambiihl et al. (/2) on the aggregated
data. The authors propose to apply sampling of
representative subsets to generate the resampled
data set. This procedure aligns the data to more
homogeneous distributions of network flow and
density. Additionally, it results in a smooth upper
bound or boundary between observed and not
observed traffic states. This method has also been
used similarly in Loder et al. (23) to identify the
capacity of urban road networks.

2. Estimate the observed speed MFD: The observed
MFD from which v,y is derived and for which
the delays vy are being calculated is estimated
using the methods described in Leclercq et al.
(24) depending on the data source.

3. Estimate the desired speed MFD v*: We estimate
the upper or desired speed MFD, v*(k), using the
data from the resampled speed MFD and three
different estimation methods to test for sensitivity
of the relationships. More specifically, we fit in a
quantile regression in the 99th percentile using (i)
the functional form for the MFD proposed by
Ambiihl et al. (9) with the smoothing parameter
\; (i1) the 99th percentile of the speed distribution
at density bins; and (iii) the exponential function
proposed by Underwood (25) v*(k) = exp(log
(co) + log(er * k).

4. Estimate excess delays: Finally, we calculate
excess delays by vy = 1/vops — 1/v*, where v* is
evaluated at the same density as observed for vops.

Data

To enable an extended empirical comparison of excess
delays and network inefficiency, we use traffic data from
six European cities: Athens, Innsbruck, London,
Lucerne, Paris, and Zurich. The cities are diverse, with
large differences in, for example, surface areas, popula-
tion size, network size, traffic densities, and average
speeds. We choose two very large cities (>1million

inhabitants), two mid-size cities (>400,000 inhabitants)
and two smaller cities (>>50,000 inhabitants) to test the
method for different network scales. Also, the data col-
lection methods for the data sets differ. Table 2 shows an
overview of the six data sets.

We first aggregate the data based on 2 min time inter-
vals for the Athens data set, and on 5min intervals for
all other data sets, except for Paris. We choose a shorter
time interval for Athens to generate a larger database.
The aggregated data sets are used as base data for the
resampling approach. Here, the number of randomly
generated subsamples and the fraction size has to be
specified. We choose a size of 100 subsamples and frac-
tion sizes between 0.2 and 0.25. In other words, we
resample 20% to 25% of the aggregated data for each
subsample (see Table 2).

Loop Detector Data: Lucerne, London, Paris, Zurich

The data of Lucerne, Zurich, London, and Paris is part
of the UTDI19 data set (23, 26). The large-scale traffic
data was assembled through stationary loop detectors in
the city areas. Loop detectors measure the occupancy
(i.e., the time fraction that a vehicle occupies a detector)
and the traffic count (i.e., the number of vehicles passing
the detector) for a fixed time interval. In Lucerne and
Zurich, data was collected over a time period of a year.
In London and Paris, data was collected over 22 and
335days, respectively. We select all observations during
the daytime, between 6a.m. and 8§ p.m. The Paris data
set is aggregated on a time interval of 1h, as the loop
detector only generates observations in this frequency.
The other three data sets are aggregated in intervals of
Smin. In contrast to Loder et al. (23), this paper uses the
data in each mentioned city as published in Loder et al.
(26), that is with no separation into subnetworks. The
loop detector data differs from the pNEUMA data set
(27) and Innsbruck simulation data, with the former cov-
ering the morning hours only and the latter simulating
4 h of weekday traffic.
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Drone Data: Athens

The observations of the data set pNEUMA (27) were
collected by 10 drones flying over the central business
district of Athens, Greece, during the morning hours.
The data contains the latitude and longitude values for
different vehicle types, namely car, bus, motorcycle,
medium and heavy vehicles, and taxis over time fractions
of 0.04s. The data set offers a variety of uses, for exam-
ple the extraction of lane-specific information (28),
MFDs, and stop and go patterns (29). The number of
observations for pNEUMA is smaller than for the
detector-based UTD data sets, as the measurement
period comprised four weekdays only. Because the obser-
vations of some drone flights indicated measurement
errors, the preprocessing was extensive. For example, we
removed the eighth drone flight and the observations of
the last 2 min of every drone flight, as the reported speeds
and densities indicated that there might be measurement
errors. To derive density values from the data set, we
assume a network length of 100 km according to the offi-
cial data set description. Finally, we aggregate the obser-
vations in 2 min intervals.

Simulation Data: Innsbruck

The Innsbruck data is generated with a microscopic traf-
fic simulation using SUMO (30). The network is retrieved
from OpenStreetMaps (37). For all included traffic beha-
vior models, the default parameters are chosen. Thus, the
simulation is not calibrated. However, for the current
study, such a calibration is not essential as we investigate
traffic flow dynamics and their effects on the network
level. Such mechanisms are included in the simulation
through the physical modeling of driving behavior.

The origin—destination patterns are randomly gener-
ated. The loading curve has a trapezoidal shape; that is,
after a stepwise loading, the maximum demand is kept
for some time intervals, until the demand is decreased
again in a stepwise manner. Such loading curves are com-
monly applied to mimic a peak hour including its onset
and offset. The loading and unloading phases last for
1.5h each, and the plateau phase for 1 h, which results in
a total simulation time of 7 = 4 h.

Vehicles follow the shortest path from their origin to
their destination. In the simulation, we apply a quasi-
dynamic traffic assignment, where the shortest paths are
updated for all vehicles considering the current traffic
states in the network for every 2 min. In other words, all
vehicles can adapt their route before they reach their des-
tination if such a change is of advantage. Such an assign-
ment represents a reasonable trade-off between realism
and computational cost (32).

To allow the analysis of the impact of signal control
on the network inefficiency, we vary the signal control

parameters. We assume that all traffic signals follow a
fixed-time control logic, have a common cycle length,
have the same green-to-cycle ratio of 0.5, and no offsets
apply. Three different cases with a cycle length of 60, 90,
and 120s are investigated. Previous research has shown
that offsets do not have a major impact on the resulting
MFD (33).

Results

The resampling method proves successful to build the
upper bound of the MFD for all six data sets. As
expected, we obtain a decreasing nonlinear speed—density
relation for all cities (see Figure 2). We see that the range
of vehicle density is higher for London, Lucerne, Paris,
and Zurich than for Innsbruck and Athens. Not surpris-
ingly, the larger data sets show less scatter than the
smaller ones (Athens, Innsbruck). For the latter, the
resampling method proves especially useful as it gener-
ates a more reliable database. In Figure 2, we obtain for
every estimation method (Ambiihl et al. [9], the percen-
tile approach, and Underwood [25]) the optimal speed
curves v* for all six data sets. We find that all three fit-
ting methods for v* obtain comparable relationships.
Eventually, differences can be explained by the estima-
tion methods—for example, a limited flexibility resulting
from functional assumptions in the Underwood and
Ambiihl case. With substantial observations and scatter
in the uncongested regime and less in the congested
regime, these two functions, which weigh each point
equally in the estimation, have to balance these differ-
ences. This leads to a relationship that appears to be
below the upper MFD in the uncongested regime, while
better describing the upper MFD in the congested
regime. This has implications for the estimation of excess
delays potentially being less reliable in the uncongested
regime.

Based on the fitted optimal speed curves from Figure
2, we examine the relationship between excess delays and
densities. The kernel density estimates of delays on the
right-hand side of Figure 3 show the frequency of the
delay value range, calculated with Underwood’s method.
As expected, Athens and Innsbruck show more variance
in the excess delay distribution as the database is small.
The UTD data sets approach a Gaussian bell shape,
especially Lucerne and Zurich, being the largest data sets.
Athens, Innsbruck, and Zurich have a mean excess delay
of approximately 0.05 to 0.06 s/m. London, Lucerne, and
Paris have a mean excess delay of approximately 0.02 to
0.03s/m. As can be seen in Figure 3, we obtain positive
relationships between higher vehicle densities and excess
delays, especially in higher density ranges, for Innsbruck,
London, Lucerne, and Zurich. This indicates that v* is
less likely to be obtained, the more density is observed in
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Figure 2. Desired flow—density (left) and speed—density (right) MFDs and three fitting methods for v* for six cities.
Note: MFDs = macroscopic fundamental diagrams; v* = optimal speed curve; veh/s = vehicles per second; veh/m = vehicles per meter; veh/km = vehicles
per kilometer.
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Figure 3. Relationship between vehicle density and excess delays (left), and kernel densities (right), for each fitting method.
Note: veh/m = vehicles per meter.
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Table 3. Model Estimation Results for Excess Delays

Data set Effect of density Effect of loading R? Density range (veh/m)
Athens 2.96 (p>0.01) —0.038 (p>0.01) 0.26 0.01 to 0.02
Innsbruck 3.53 (p>0.01) —0.090 (p>0.01) 0.53 0.0l to 0.03
London 1.13 (p>0.01) 0.001 (p>0.01) 0.19 >0.02
Lucerne 2.30 (p>0.01) —0.003 (p>0.01) 0.30 >0.02
Paris —0.24 (p > 0.05) 0.001 (p>0.01) 0.006 >0.02
Zurich 0.48 (p > 0.01) —0.002 (p>0.01) 0.03 >0.02
Note: veh/m = vehicles per meter.
Loading Unloading
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Figure 4. Influence of cycle lengths on excess delays using the Innsbruck simulation data.

Note: veh/m = vehicles per meter.

an urban road network. The plotted results indicate that
the estimation methods do not differ considerably.

Network Loading

To test the influence of the network loading and unload-
ing process on the development of excess delays, we
derive from the data an indicator variable L that equals 1
if the network is loading and 0 otherwise. We assume
that the network is in a loading state when the difference
in density of two consecutive intervals is positive, after
applying a three-interval moving average on the density
to reduce the noise in the data. We then estimate a linear
regression to analyze the effect of density £ and slope L
on excess delays y. We estimate the linear model as given
in Equation 1, where B, B; and B; are parameters to be
estimated using ordinary least squares, and & represents
the error terms that are assumed to be normally
distributed.

Y=Bo t B kT B, Lte (1)

As the excess delay values and relationships that result
from the three v* fitting approaches look very similar
(see Figure 2), we present the results only for the
Underwood model in Table 3. The results for the other
three models do not alter the findings. Generally, we find
that the model formulated in Equation 1 explains sub-
stantial variance found in Athens, Innsbruck, London,
and Lucerne. The low R? in Paris and Zurich suggests
that the model does not well describe the data for these
cities. Potentially, the value for Paris results from the
temporal aggregation at 1h intervals instead of 2 to
Smin intervals, where many of the dynamic effects might
be averaged out. In future research, we will investigate
further the factors of the distribution of excess delays in
Paris and Zurich.

For Athens, Innsbruck, London, Lucerne, and Zurich
we find positive and statistically significant effects of
vehicle density on excess delays. However, their effect
sizes differ by one order of magnitude. Future research
has to investigate why this effect is so substantially differ-
ent between the shown networks. Potential reasons are
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data bias, network topology, traffic control, and so forth.
In addition, Figure 4 for Innsbruck suggests that the lin-
ear model in Equation 1 is falsely specified as the loading
and unloading effect and their interaction are clearly not
linear. This means that the model formulation from
Equation 1 might not capture all underlying mechanisms,
which could be a reason for the alternate effect direction
found in Paris. Here, the effect estimation for the loading
part results in B, = 0.377 (p < 0.01), which supports the
findings related to the other five cities. The effect corre-
sponds to increasing excess delays with traffic density.
More specifically, we observe an increase of the estimates
around 1s/m for every 0.01 veh/m (vehicles per meter)
increase. Note that this effect is in addition to the speed
reduction already captured in the MFD. Nevertheless,
the findings from Paris indicate that an analysis of the
differences could reveal further insights.

The six cities cover different spatial scales to under-
stand the behavior of the loading indicator for different
city sizes. The indicator variable for loading is negative
and statistically significant in Athens, Innsbruck,
Lucerne, and Zurich, while Zurich and Lucerne report
an effect of one order of magnitude less than Athens and
Innsbruck. It means that during the network loading,
fewer excess delays are present than during the unload-
ing, for example, supporting the development of hyster-
esis in the MFD. The positive effect in London and Paris
deserves more attention, especially from an econometric
perspective. In the model specification from Equation 1,
there are no control variables included. Consequently,
any factor that could contribute to excess delays and that
correlates either with traffic density or with the loading
indicator variable is partially included in the estimated
effect. As the model is estimated for the entire urban area
in London and Paris, this could be an increase in bus ser-
vices during the loading phase that increases excess
delays (34), a gating traffic control scheme that increases
red phases for inbound traffic to protect the urban core
from gridlock which adds waiting time and thus increases
excess delays (20), or any origin—destination effect.
Consequently, future research should improve the esti-
mates with more detailed model formulations.

Traffic Control

The simulation of Innsbruck enables us to vary signal
control parameters and study corresponding effects on
the excess delay. For this purpose, we investigate three
different scenarios, where the cycle length of all signals
equals 60, 90, and 120s. Figure 4 shows the resulting
scatter plot for the loading and unloading part of the
MFD as well as a local polynomial regression fitting
(loss) of R’s ggplot package to investigate the trend in
the data.

For all three scenarios, we observe the already
revealed positive relationship between vehicle density
and excess delays in the loading part. In the unloading
part, we see that excess delays are decreasing with vehicle
density, hinting at a clockwise hysteresis. Importantly,
the data suggests that differences in the relationship
between different traffic signal settings and excess delays
exist. The influence seems to be nonlinear in respect of
the cycle length as the trend lines do not appear in
ascending or descending order, but in the sequence 90,
120, and 60s. This confirms that traffic control indeed
has an effect not only on inherent delays already included
in the MFD, but indeed also on excess delays as sug-
gested in this paper. The impact of cycle times seems to
be larger in the unloading part than in the loading part
as can be seen in Figure 4. However, in future research,
we will investigate this relationship more extensively
using more simulation scenarios.

Note that the apparent relationship between excess
delay and density in Figure 4 in the unloading part sug-
gests that simple mathematical modeling of hysteresis
effects is possible. This will be further explored in future
research.

Multimodal Trdffic in Athens

We further investigate the variation of excess delays in
Athens by distinguishing between different vehicle types.
We use the pPNEUMA data here, as it is the only data set
allowing such in-depth multimodal analyses. Note that
there exists already a paper on multimodal interactions
at space-mean network speed working with the
pNEUMA data set (29). The authors use regression mod-
els of the space-mean speed on the vehicle accumulations
of the multimodal traffic. The core distinction of the
analysis presented in this paper is that we do not use a
speed-accumulation relationship but an excess delay for-
mulation, that is, additional time delay in s/m in relation
to the maximum speed at a given density. In each time
interval, we compute the share of taxis, large vehicles
(labeled as “large and medium-sized vehicles” in the orig-
inal data), buses, and motorcycles. Figure 5 shows the
resulting scatter plots. For the share of taxis, large vehi-
cles, and motorcycles we find a positive relationship with
excess delays, while for the share of buses we find a nega-
tive relationship. This seems perhaps surprising given
that the 3D-MFD assumes negative interaction costs
between cars and buses (/3), and that car accumulation
influences the formation of bus hysteresis (35). To
explore the multivariate nature of the data, we estimate a
linear model of excess delays as a function of the taxi,
large vehicle, bus, and motorcycle share. We find statisti-
cally significant (1% level) marginal effects of taxi share
of 0.39 (s/m), and truck share of 0.62 (s/m). This means
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Figure 5. The influence of multimodal traffic on excess delays in Athens.

that when the taxi share increases by 10 percentage
points, excess delays increase by 0.04 (s/m). This can be
translated to an additional delay of 3.3 min for a typical
journey with a length of Skm per 10% taxi share
increase. When the large vehicle share increases by 10
percentage points, excess delays increase by 0.06 (s/m).
For buses, the model estimate of —1.37 (s/m) (statistically
significant at 1% level) confirms the relationship from
Figure 5. This counterintuitive relationship may result
from the limited sample size and experimental variation:
The share of buses correlates strongly negatively with
vehicle density. In other words, the share of buses only
increases as a consequence of an overall decreasing

vehicle density (fixed timetable). Thus, this variable
approximates more the high- and low-demand traffic
states and less the impact of buses. This makes the
revealed estimate reasonable. Nevertheless, this finding
emphasizes that an important variable is omitted in the
present model formulation. The model does not reveal a
statistically significant effect of motorcycles—that is, the
relationship found in Figure 5 is not supported. Overall,
the model has a goodness of fit of R?> = 0.27, and when
controlling for potential outliers it increases to R> = 0.37.

Multimodal traffic occurs in all cities including the
resulting interaction effects. In larger cities such as Paris
or London, the flows of bicycles and scooters are clearly
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observable and are quite likely contributing to excess
delays. To account for them in the excess delay formula-
tion, many observations and sufficient experimental var-
iation are required (high/low volumes of cars and high/
low volumes of bicycles or scooters) to reveal the interac-
tion effects shown in field experiments (17, 36). Another
modeling challenge is the violation of traffic regulations,
which might impede the observation and estimation of
effects. In the case of the pPNEUMA data set, the experi-
mental variation was limited, leading to a high correla-
tion of densities and the expected effects could not be
revealed. In cities with loop detector data, one approach
to control for the impact of bicycles/scooters on excess
delays would be to use bicycle counts from permanent
counting locations as a proxy. Unfortunately, such data
was not available to the authors.

Conclusion

In this paper, we showed that urban road networks expe-
rience substantial inefficiencies as seen in the presence of
excess delays. We defined excess delays as the difference
between the optimal and observed pace. Using five
empirical data sets (loop detector and drone data) from
European cities and one simulation data set, we observed
network inefficiencies in every city. Even though the
extent of excess delays differs across cities, their general
effects and evolution are highly similar. This supports
the applicability of the method for other cities. We fur-
ther investigated causes for the emergence of excess
delays, which would make them predictable: (i) network
loading, causing inherent delays produced by increasing
density; (ii) signal control, which we showed for different
cycle lengths in Innsbruck; and (iii) multimodal interac-
tion effects between different vehicle types, supported by
data from multimodal traffic data set of Athens. In
respect of (i), the results of the delay—density relation for
the Innsbruck data suggest that our approach might sim-
plify the mathematical modeling of hysteresis effects.
With this paper, we contribute not only to improved
modeling of the evolution of congestion in cities at the
network level but also to a more realistic capacity plan-
ning for urban road networks. We show that there exists
an optimal, achievable speed curve for large, medium-
sized, and small cities. We also demonstrate that the pro-
posed method applies to different forms of data sets—
loop detector data, drone data, and simulation data. The
inefficiency of excess delays can be measured easily by
the proposed methods and only requires average speed
and density values for a given area and time period. To
find out which factors affect excess delays, it would be
suitable to compare the measured excess delays of a spe-
cific area in a city for a given time period with a simula-
tion of this respective scenario. Then, measures could be

derived to reduce the effects on excess delays and there-
fore minimize speed drop.

The practical implications of this paper primarily con-
cern the applications of the proposed approach. First, it
helps to identify and quantify factors in excess delays in a
city more conveniently than by modeling speeds directly,
using either empirical data or simulation experiments.
Then, measures (design features, traffic management)
could be derived, to reduce excess delays and therefore
minimize speed and accessibility losses, either by scenario
analysis or by a cross-sectional analysis of several cities.
Second, applications of the proposed network ineffi-
ciency approach may be possible everywhere in the field
of network-wide traffic management where an improved
capacity and speed estimate is valued for improved traffic
and economic outcomes (e.g., road pricing or perimeter
control). Third, the proposed method can be applied as a
performance indicator to assess the impact of time and
space allocation in an urban network: in those areas or
hours with a high share of excess delays, traffic could be
allocated to other roads or shifted to other time periods,
for example through intelligent passenger information
systems. As the optimal speed v* is almost never reached
in real-world scenarios, network planners might create
more space and capacity to obtain the optimal speed for
cars. This is difficult to realize, for example because of
limited space in urban areas and the risk of induced traf-
fic. Multimodal system improvement in combination with
setting up mode-independent accessibility values (for
example, by measuring the minimum required transport
speed or maximum acceptable travel time) which have to
be met by a traffic system, could be a possible solution.

This paper introduces and discusses the idea of mea-
suring network inefficiency by the concept of excess
delays. Therefore, there are limitations to the study and
opportunities for future research. First, we did not con-
sider at the present stage the influence of structural net-
work effects, such as speed limits or network design, on
the evolution of excess delays. As the MFD is governed
by network topology, one could argue that it influences
excess delays too. Second, the fitting of v* to identify the
upper MFD can be improved as the relationships do not
perfectly match the resampled upper MFD, for example
by weighting observations. Only when we can correctly
describe the upper MFD can we retain unbiased excess
delay estimates that are important for further modeling.
This also requires data filtering throughout and unbiased
MPFD estimation before the derivation of excess delays.
Once unbiased excess delays estimates are retrieved, we
can follow the first evidence present for the driving fac-
tors (network loading, signal control, and multimodality)
to improve the estimates and, using more extensive
experiments (empirical data, simulation), obtain global
validity of these estimates.
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In closing, describing network inefficiency by excess
delays seems to be promising because it makes the former
predictable. As effect sizes are similar, too, across cities
in our study, we are convinced that the revealed effects
can be found in every city. Last, we consider that using
drone data for calibrating a city’s multimodal excess
delays effects is promising, as it allows quantifying other-
wise unobserved factors.
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