
Conversion of ConvNets to Spiking Neural Networks With Less Than One Spike
per Neuron
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Abstract
Spiking neural networks can leverage the high efficiency of
temporal coding by converting architectures that were previ-
ously learnt with the backpropagation algorithm. In this work,
we present the application of a time-coded neuron model for
the conversion of classic artificial neural networks that re-
duces the computational complexity in the synaptic connec-
tions. By adapting the ReLU activation function, the network
achieved a sparsity of 0.142 spikes per neuron. The classifi-
cation of handwritten digits from the MNIST dataset show that
the neuron model is able to convert convolutional neural net-
works with several hidden layers.
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Introduction
The main mechanism for transmitting information in the brain
are spikes, by either using specific spike times or spike rates
over a time period. Research has shown that the reaction time
of the brain for certain tasks like face detection is very low, al-
lowing only few spikes per neural layer involved (Martin, Davis,
Riesenhuber, & Thorpe, 2018). Moreover, time coding is more
efficient, which could also explain the low power consumed by
the brain. Multiple studies have also shown that only few neu-
rons spike at similar times in the brain, pointing towards a high
sparsity in the neural activity.

Many algorithms developed within computer science have
brought the performance of deep neural networks closer to
biology over the last decades. The high synaptic density of
dense neural layers has been dramatically reduced by using
convolutional kernels that take advantage of the translation in-
variance present in natural data. Furthermore, the well-known
Rectified Linear Unit (ReLU) activation function provides a
high degree of sparsity by maintaining neurons inactive unless
their aggregated input is positive. As feature maps in convo-
lutional layers respond to specific input patterns, most of the
neurons stay silent for a given sample. Recently, research
has also focused on replacing the floating point arithmetic of
artificial neural networks (ANNs) by spikes with the aim of
increasing their efficiency. In the case of supervised tasks,
the strategy that provides the best performance is based on
training a traditional ANN using the backpropagation algo-
rithm, and then converting the ANN to a spiking neural net-
work (SNN). Even though initial attempts of converting ANNs

to SNNs used spike rates (Rueckauer, Lungu, Hu, Pfeiffer, &
Liu, 2017; Blouw & Eliasmith, 2020), the focus is shifting to
the conversion into sparse time-coded spike trains (Stöckl &
Maass, 2021). On current hardware only SNNs with an ex-
pected number of spikes < 1.72 per output can consume less
energy than comparable ANNs (Davidson & Furber, 2021).

In this work, we adapt the neuron model developed in
(Lopez-Randulfe et al., 2022) for converting ANNs into SNNs
using no more than one spike per neuron. We tested the
model on a multi-layer convolutional neural network (CNN) on
the handwritten digit dataset MNIST.

Neuron and network model
The neuron model relies on linear time-to-first-spike encoding,
and it takes data x that is normalized to the range [0,xmax]
due to the ReLU activation function. Therefore, we simplify
the encoding from (Lopez-Randulfe et al., 2022) to

t(x) =
tmax

xmax
· (xmax− x) , (1)

which maps a real value x to a single spike in the time domain
t ∈ [0, tmax].

Two-stages neuron model
The neuron model performs the multiplication u = W · x be-
tween an NxM matrix W and an M dimensional vector x over
two stages in the time domain, i.e., silent and spiking stage,
respectively.

During the silent stage, neuron i processes the incoming
spikes from causal neurons Γ

<
i following the voltage dynamics

ui(t) = ∑
j∈Γ

<
i

Wi j(t− t j) , (2)

with t j being the spike time of input neuron j, and Wi j the
element of the weight matrix connecting neuron i and j.

If we use (1) for encoding the input x, the voltage (2) after
the silent stage gives the scaled result of the scalar product

ui(tmax) =
tmax

xmax

M−1

∑
j=0

Wi j · x j . (3)

During the spiking stage, the neuron maps the voltage
ui(tmax) to spike times by charging it with a constant current
Iext and producing a spike when ui reaches a given threshold
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uth. The output spike time follows the same encoding as in
(1).

Tuning the model for converting deep nets
The tuning of the neuron model involves setting the values of
the constants uth, Iext, and tmax.

For representing a ReLU function, we need to map the pos-
itive voltages in (3), i.e., u ∈ (umin = 0,umax] to spike times.
Thus, negative and zero values are represented by the ab-
sence of a spike, granting the resulting SNN a high degree of
sparsity. We obtain this behaviour by setting Iext to

Iext =
uth−umin

tmax
=

uth

tmax
. (4)

Moreover, for mapping the whole range of u, uth needs to
be equal to the largest possible voltage umax

umax = max{u(tmax)}= ∑
j

W+tmax , (5)

where W+ is the subset of positive weights. In general, setting
uth = umax leads to a poor resolution, as natural data typically
use a portion of the whole range. Alternatively, we determined
empirically a lower uth that minimizes the error of the conver-
sion for the used data depending on tmax (see Figure 2).

Finally, tmax is fixed as a trade-off between the SNN preci-
sion and its computational complexity.

From this description, the proposed model of (Lopez-
Randulfe et al., 2022) can be used for generic matrix-vector
multiplications. Since the spike outputs of the neurons utilize
the same encoding as the input spikes, a naturally stacking of
populations is possible and allows the replication of ANNs.

Experiment results
We have tested the neuron model by converting a previously
trained convolutional neural network (CNN) for the classifica-
tion of handwritten digits from the MNIST dataset. The trained
CNN consists of two convolutional layers, two max pooling lay-
ers (one after each convolutional layer), and two dense layers
(see Figure 1). For training, we used a dropout of 0.2 before
each of the dense layers, and we augmented the training set
by rotating, scaling, and shifting the original images.
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Figure 1: CNN architecture for MNIST data set. Each convo-
lutional and dense layer uses a ReLU activation function.

Table 1 shows the performance summary of the CNN and
the converted SNN. We recorded the number of floating point
operations (FLOPs) required for the synaptic connections be-
tween the different layers of the CNN, and the number of spike
operations for the equivalent SNN. Due to the nature of the
converted ReLU, the spiking neurons with a negative inter-
nal state do not produce a spike after integrating the inputs,
whereas neurons with a positive state produce a single spike.
This results in the SNN emitting on average 0.142 spikes per
neuron.

Table 1: Performance comparison a traditional CNN and its
equivalent converted SNN on the MNIST dataset.

FLOPs synaptic ops. Acc.

ANN 14316496 - 99.56

SNN - 1015015 99.44

We have also analyzed the impact of the total simulation
steps and the threshold voltage, which are the two hyperpa-
rameters that the spiking neuron model introduces with regard
to the original ANN. Figure 2 depicts the impact of these two
parameters on the root-mean-squared error between the out-
put of the SNN and the ANN for a single convolutional layer.
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Figure 2: Error between the output of a convolutional layer
and its spiking equivalent.

Conclusion
In this paper, we have tested the performance of a time-coded
neuron model for converting convolutional neural networks
into SNNs. The results of the experiments show a consider-
able reduction in the number of synaptic operations required
during inference, while maintaining a small loss in accuracy.

Further experiments shall assess the performance of the
model for more complicated architectures and datasets, as
well as providing a comparison between the energy consumed
by the SNN and the original ANN. Future research can also
focus on the encoding of the information for increasing the
sparsity of the SNN. Coding techniques like rank or M-of-N
encoding have already shown high performance while achiev-
ing a big reduction in the amount of required spikes. Moreover,
the model could incorporate prior information about the input
data for fine tuning parameters like the encoding range or the
voltage threshold of the neurons.
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