
IEEE DESIGN AND TEST, SPECIAL ISSUE “TESTABILITY AND DEPENDABILITY OF AI HARDWARE” 1

API-based Hardware Fault Simulation
for DNN-Accelerators

Patrik Omland, Yang Peng, Michael Paulitsch (Senior Member, IEEE), Jorge Parra, Gustavo Espinosa (Mem-
ber, IEEE) Abishai Daniel, Gereon Hinz and Alois Knoll (Senior Member, IEEE)

Abstract—Computer hardware experiences random faults in
some cases causing program failure. The rate of faults can
accumulate to notable effect in computer clusters and warrants
consideration for high dependability applications.

Deep Neural Networks (DNNs) are relatively robust to hard-
ware faults. When designing DNN-accelerators, performance may
be gained by optimizing the hardware protection overhead,
subject to dependability requirements.

We propose a novel method for hardware fault simulation
to investigate the end-to-end, hardware fault to DNN output
failure probability for common DNN-accelerators. In a proof of
concept, speed ups of the order of 105 compared to full hardware
simulations have been achieved.

Index Terms—deep neural networks, hardware faults, hard-
ware reliability, fault model, fault tolerance, fault injection,
program vulnerability

I. INTRODUCTION

CONTINUED transistor scaling results in lower operating
voltages that enable increased levels of integration within

a given silicon area footprint. However, it also entails an
increase in the likelihood of unintended bit flips and data
corruption at the device level.

The rate of these faults per computational resource requires
special consideration when

1) combining many computational resources (e.g. super
computers, server farms).

2) executing applications with high dependability require-
ments, such as in automotive (requiring failure rates
below 10−8 failures/hour for safety critical functions).

To reduce the likelihood of data corruption, hardware de-
signers identify high-risk components and add protection cir-
cuitry, such as parity checks and error correction codes (ECC).
However, protection circuitry requires die area and increases
power consumption which could otherwise be used to increase
performance. The more comprehensive the protection, the
higher the error detection or correction capabilities, but the
more area it occupies.

A balance must be found in the trade-off between an in-
tegrated circuit’s dependability and performance. Experiments
indicate that Deep Neural Networks (DNNs) are more resilient

P. Omland, Y. Peng, M. Paulitsch, J. Parra, G. Espinosa and A. Daniel are
with the Intel Corporation.

P. Omland, G. Hinz and Alois Knoll are with the Department of Informatics,
Technical University Munich, Garching, Munich, Germany.

Direct questions and comments about this article to Patrik Omland, Depend-
ability Research Lab, Intel Deutschland GmbH, Lilienthalstraße 15, 85579
Neubiberg; patrik.omland@intel.com.

Manuscript received 2021-05-14; revised 2022-06-03.

to hardware faults than other programs.1 In this context, spe-
cial “DNN-accelerators” have been designed for efficient DNN
execution [3]: These may require lower than usual levels of
hardware protection, while satisfying the same dependability
targets for DNN applications.

So what is the probability of output failure due to hardware
faults for DNNs running on these DNN-accelerators? In this
work we present a novel method for estimating this probability.
Our approach works by expanding the primitives of application
program interfaces (APIs) used by DNNs with hardware-
specific fault simulations: First, the original primitive is run,
then the output is modified in the way it would be corrupted
due to faults in the target hardware. The actual hardware
is not required. By executing a DNN with this modified
API simulating hardware faults, statistics may be generated
on output failures. Unlike existing approaches our approach
uniquely combines

• Accuracy: The actual workload is run on an accurate
hardware fault simulation

• Speed: The simulation time is not constrained by the lack
of, nor the speed of hardware to be simulated

• Scale: By sharing the modified API implementation, ac-
curate dependability estimates for specific workloads may
be generated without hardware / algorithmic knowledge.

In the following, we first define what we mean by “DNN-
accelerator” (II). We then argue that established methods to
estimate the probability of DNN output failure due to hardware
faults have their limitations (III) and present the proposed
method (IV, V).

II. DNN-ACCELERATORS

Computing platforms tailored specifically to the needs of
DNNs have become more common over the past years. Promi-
nent examples are Google Tensor Processing Units, Nvidia
Tensor Cores, Intel Xeon Tile Matrix Multiply units and Intel
Xe HPC GPUs [3].

By far, most computer operations carried out by DNNs are
spent on matrix multiplication: In DNN-terminology, the fully-
connected and convolution layers are calculated by algorithms
using matrix multiplication.2 For DNNs such as ResNet-50,
these multiplications involve large matrices with dimensions,
n, in the thousands. Matrix multiplication is, approximately, an
O(n3)-operation. All other commonly used DNN-operations

1Compare bit error rate thresholds found in [1] with requirements in [2].
2[4] Explains how to convert convolution to matrix multiplication.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3180977

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:20:46 UTC from IEEE Xplore. Restrictions apply.

IEEE DESIGN AND TEST, SPECIAL ISSUE “TESTABILITY AND DEPENDABILITY OF AI HARDWARE” 2

Fig. 1. Typical architecture of a DNN Accelerator. Memory hierarchy depth (L4-L1) and number of units on each level (four, eight, 16) chosen arbitrarily.

are O(n)-operations. Consequently, accelerators geared to-
wards DNNs specifically aim to accelerate large matrix mul-
tiplications. Most of them

1) adopt an architecture which consists of Systolic Arrays
operating in parallel, and

2) feature a memory hierarchy designed to maximize the
reuse of data cached close to the Systolic Arrays,

where each Systolic Array computes small matrix-multiply-
accumulate (MMA) operations, D = A ·B + C.

We will refer to this class of accelerators as “DNN-
accelerators”. The typical architecture of a DNN-accelerator
is shown in fig. 1. The white blocks inside the Systolic Array
represent Multiply-Accumulate-Fused (MAF) units, perform-
ing the actual calculations.

When designing DNN-accelerators, the relative robustness
of DNNs w.r.t. hardware faults is taken advantage of by
optimizing the level of hardware protection for performance
gains. In this context, Systolic Arrays and their caches present
particularly good opportunities for such gains.

Protection circuitry for large caches (L4-L2 in fig. 1)
requires relatively little die area. In comparison, the Systolic
Array caches (L1 in fig. 1) are very small and there may be
thousands of them - here, protection carries a high perfor-
mance cost. Analogously, while an ALU on the “slice level”
in fig. 1 may be implemented with hardware protection, doing
the same for each of the dozens of MAF-units comprising a
single Systolic Array places a large burden on performance.

III. RELATED WORK

Many methods of estimating the likelihood of program
failure due to hardware faults exist. Below, we present the
most prominent ones.

A. Statistical Fault Injection

In statistical fault injection, faults are injected at program
runtime. These faults may be injected at different system
abstraction levels (gate, microarchitecture, etc.). In general,
lower level fault injection provides more accurate results but
may not be scalable in practice due to long execution times,
while higher level fault injection may run much faster, but at
the price of lower accuracy [5].

Hierarchical simulations have been applied to address this
trade-off by simulating different parts of the system at different
abstraction levels, so that required details are modeled only for
the parts of interest [5]. The proposed method in this work
follows a similar concept as hierarchical simulations.

B. Vulnerability Factors

In the vulnerability factor approach, simulating lower sys-
tem abstraction levels individually for each program is avoided
by estimating the fraction of faults affecting a given level from
the next lower level. Frequently used factors are the Hardware
Vulnerability Factor (HVF, [6]), the Program Vulnerability
Factor (PVF, [7]) and the Timing Vulnerability Factor (TVF,
[8]). The overall failure rate for a program, P , is then estimated
by (1), where F denotes the fraction of time in a particular use
condition, uc, itself dependent on the clock frequency, fclk.

Failure Rate(P) ≈
∑
uc

Fuc,P (fclk) ·
∑

c∈circuits

Fault-Ratec·

TVFuc,c ·HVF uc,c · PVF uc,c,P

(1)

However, not much is gained if PVF uc,c,P has to be
estimated individually for each DNN, each use condition
and each circuit.3 As will be shown in V, hierarchical fault
injection simulations not only deliver more accuracy, but may
be implemented in a general, scalable fashion.

C. Evaluating vulnerability of DNN-based applications

To understand the vulnerability of DNN-based applications,
many existing work (e.g. [9][1]) adopt application level fault
injection by, say, injecting faults directly into the DNN model
(e.g. weights). However, this approach does not reflect the
actual impact of the underlying platform on which the DNN
is executed. As will be shown in V, microarchitectural details
of DNN accelerator designs have profound impact on how
hardware faults propagate to the level of the DNN model.

3For many CPU applications, the approximation PVFuc,c,P ≈ 1 may be
used, making this approach useful for rough estimates. However, in this work,
we are particularly interested in the PVFuc,c,P << 1 property of DNNs.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3180977

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:20:46 UTC from IEEE Xplore. Restrictions apply.

IEEE DESIGN AND TEST, SPECIAL ISSUE “TESTABILITY AND DEPENDABILITY OF AI HARDWARE” 3

IV. PROBLEM STATEMENT

The task at hand is a risk assessment for DNNs when
facing hardware faults on DNN-accelerators. Generally, given
a program, p, the risk of a hardware fault, f , causing failure
with severity ∈ {0 = none, 1, . . . }, may be defined as

risk = Pr
(
f, severity

∣∣ p) · severity (2)

commonly known as the risk matrix approach, where short-
hand Pr denotes probability.

The probability on the right-hand side of (2) may be
separated into two parts

Pr
(
f, severity

∣∣ p) = Pr
(
f
∣∣ p)︸ ︷︷ ︸

exposure

·Pr
(
severity

∣∣ f, p
)︸ ︷︷ ︸

conditional failure

(3)

The “exposure probability” measures the likelihood of the
fault, f , occurring while a given program, p, is exposed to
it. For instance, if a program makes no use of floats, and the
hardware fault considered is a fault in an FPU, the program’s
exposure probability to that fault equals zero.

The “conditional failure probability” measures the likeli-
hood of the program, p, failing with severity , conditional on
it being exposed to a fault, f . For instance, if the program’s
output is a single-precision floating point value and the fault
only ever flips the least significant bit of that value, the relative
output error equals 2−23: For most programs, this error won’t
be considered program failure, so the associated conditional
failure probability would equal zero.

As calculating the risk using (2) becomes trivial once the
failure probability, (3), has been estimated, moving forward,
we only consider the latter problem.

V. NOVEL API-BASED FAULT SIMULATION

Numerical programs, in particular DNNs, rely on standards-
based application program interfaces (APIs) to implement
mathematical operations such as matrix multiplication. The
actual operation is usually implemented by the hardware man-
ufacturer, requiring intimate knowledge of the accelerator’s
memory hierarchy, instruction pipelining, etc. In the proposed
approach, hardware fault simulations are implemented into
these APIs for the very same reason. Also, fault simulations
thus implemented become available immediately to every
program linking the given API.

The proposed API-based fault simulation for a given API
comprises the following steps: For each API-operation exe-
cuted on the accelerator

1) MoC: Develop a model of computation (MoC), model-
ing how the operation is executed on the actual hardware

2) Fault MoC-Scope: For the hardware fault under consid-
eration, find the execution steps affected in the MoC by
one such fault.

3) API Fault Simulation: Develop a fault simulation for
these execution steps making as much use of the API-
operation’s (efficiently computed) output as possible and
include the simulation with the API-operation.

Without loss of generality, we provide a sample application
with a simplified model of computation, following the steps
outlined above, to illustrate the proposed method.

Fig. 2. Matrix multiplication on DNN-Accelerators

A. Simplified Model of Computation

We implement the fictitious general matrix multiply API-
function GEMM16(A,B) = A16×16 · B16×16, on a DNN-
accelerator featuring four Systolic Arrays. Each Systolic Array
itself may execute a matrix multiply accumulate (MMA)
instruction, A4×4·B4×4+C4×4. The generalization to arbitrary
dimensions and number of Systolic Arrays is straight forward.

The multiplication is depicted in fig. 2. The 16 submatrices,
C4×4

mn , may be calculated by

C4×4
mn =

k<4∑
k=0

A4×4
mk B4×4

kn (4)

The GEMM16-algorithm using MMA-instructions is given by
alg. 1. It divides C into quadrants, each assigned one Systolic
Array (cp. fig.2).

Algorithm 1 GEMM16: Returns A16×16 ·B16×16 using four
Systolic Arrays (SAs) capable of A4×4 ·B4×4 +C4×4-MMA
Input: Matrices A16×16, B16×16

Output: C = A ·B
1: C = 0
2: for SA = 0 to 3 do
3: m0 = ⌊SA/2⌋ ∗ 2
4: n0 = ⌊SA mod 2⌋ ∗ 2
5: for k = 0 to 3 do
6: for m = m0 to m0 + 1 do
7: for n = n0 to n0 + 1 do
8: Cmn = MMASA (Amk, Bkn, Cmn)
9: return C

Unrolling the m, n loops for the upper right quadrant we
get

1: for k = 0 to 3 do
2: C02 = MMA1 (A0k, Bk2, C02)
3: C03 = MMA1 (A0k, Bk3, C03)
4: C12 = MMA1 (A1k, Bk2, C12)
5: C13 = MMA1 (A1k, Bk3, C13)

Notice, that each k-iteration requires only four different A,
B inputs, namely A0k, A1k, Bk2, Bk3. Now, consider the
memory hierarchy in fig. 1: For L1A (L1B) large enough to

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3180977

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:20:46 UTC from IEEE Xplore. Restrictions apply.

IEEE DESIGN AND TEST, SPECIAL ISSUE “TESTABILITY AND DEPENDABILITY OF AI HARDWARE” 4

cache one (two) 4 × 4-submatrices, data requests to L2 for
these inputs is halved.4 Moving forward we assume just that.

B. Simulating Transient L1 Cache faults

Suppose one of the L1 caches of the upper right quadrant’s
Systolic Array experiences a transient bit-flip - what is the
fault’s MoC-scope? From the unrolled loop above, we see that
any such fault is confined to one k-iteration (data is not reused
across k-iterations) and affects at most two Cmn (e.g. if B12

is corrupted in line 2, it affects C02 and then C12 in line 4).
Next, we develop the API fault simulation. In the unrolled

loop above, suppose the fault occurs at iteration k = 2: line
4 and has the effect B23

E7→ B̃23. The corresponding effect on
the output, C E7→ C̃, reads

C̃12 = C12 −MMA1(A12, B23, 0) +MMA1(A12, B̃23, 0)

As C12 is returned by the regular API-operation, we do
not need to calculate it ourselves but can utilize the high-
performance API-implementation as input to the simulation.

More generally, the effect of a cache fault occurring in
Systolic Array SA, at iteration (k,m, n) ∈ [0, 3]×[0, 1]×[0, 1]
and cache index X ∈ {A,B0, B1, C}, may be modeled by alg.
2.5

Algorithm 2 GEMM16 FI C: Simulate L1A/B/C Cache
fault during GEMM16 execution
Input: A, B, C = GEMM16(A,B), SA, (k,m, n), X
Output: C̃, fault-simulated output of GEMM16

1: m = m+ ⌊SA/2⌋ ∗ 2
2: n = n+ ⌊SA mod 2⌋ ∗ 2
3: if (X == A) then
4: if (n == 0) then
5: Cm0 = MMA(−Amk, Bk0, Cm0)
6: Cm0 = MMA(Ãmk, Bk0, Cm0)
7: Cm1 = MMA(−Amk, Bk1, Cm1)
8: Cm1 = MMA(Ãmk, Bk1, Cm1)
9: else if (X == B0) then

10: . . .
11: . . .
12: return C

Note that in alg.2 timing matters: If a fault in L1A happens
at n = 0, then two of C’s 4 × 4-submatrices are affected,
otherwise only one. Similarly, if L1B suffers a fault corrupting
B0 at n = m = 1, C will not be affected.

The API hardware fault simulation is listed in alg. 3. To
inject one random fault into a program making multiple use
of GEMM16, we count the overall MMA-instruction calls,
MMA total , of that program, and pick a positive random
number, MMA FI ≤ MMA total , representing one of these
calls.

4 For real-world DNN-accelerators with M×K×N -MMA: If L1A caches
a single M × K-submatrix and L1B caches LB K × N -submatrices, each
Systolic Array may be assigned LB ×LB M ×N -submatrices in the output
to reduce L2-requests for A, B by a factor of 1/LB using alg. 1.

5By not using the actual Cmn-input to MMA for the given (k,m, n),
alg.2 does not account for “(a+ b) + c ̸= a+ (b+ c)”. To account for that,
the k-loop needs to be executed as in alg. 4.

Algorithm 3 GEMM16 FSIM: Simulate fault in GEMM16
execution
Input: A, B. Global: MMA Calls , MMA FI
Output: C̃, fault-simulated output of GEMM16

1: C = GEMM16(A,B)
2: if MMA FI ∈ [MMA Calls,MMA Calls + 64) then
3: Choose random (SA, k,m, n,X)
4: C = GEMM16 FI C(A,B,C,SA, k,m, n,X)
5: MMA Calls = MMA Calls + 64
6: return C

By far most of the work in alg.3 is performed through
the API-call to GEMM16: This will be executed with
maximal performance on any hardware with a GEMM16-
implementation. In comparison, the up to two MMA-calls
from GEMM16 FI are insignificant - in particular for real
world large GEMM operations with thousands of MMA calls.

Coming back to the original problem of estimating (3): We
may approximate Pr(severity | f, p) by the relative failure
frequency of program runs with hardware fault simulation. To
estimate Pr(f | p), the likelihood of encountering a transient
fault, random in time and space, does not depend on the level
of parallelization: Whether four Systolic Arrays are used, or
a single one four-times as long, does not matter. Accordingly,
given the fault rate, Rf , of one L1 cache and the duration,
τMMA, of one MMA-execution, we may estimate

Pr(f | p) ≈ 1− exp (−MMA total · τMMA ·Rf) (5)

where the exponential failure distribution was used to model
the probability of fault given fault rate and duration.

C. Simulating Transient faults inside Systolic Arrays

The same method applied for simulating transient faults in
the Systolic Array’s caches (V-B), may be used for the simu-
lation of arbitrary faults inside the Systolic Arrays MMA

E7→
M̃MA. For the Systolic Array’s digital arithmetic, however,
simulating the correct Cmn-input to the MMA-instruction
matters6 and thus needs to be calculated by simulating the
k-loop - see alg. 4. For real world applications with large k-
loops, the additional simulation overhead is notable.

Algorithm 4 GEMM16 FI L: Simulate fault inside Systolic
Array Logic during GEMM16 execution.
Input: A, B, C = GEMM16(A,B), SA, (kFI ,m, n)
Output: C̃, fault-simulated output of GEMM16

1: m = m+ ⌊SA/2⌋ ∗ 2
2: n = n+ ⌊SA mod 2⌋ ∗ 2
3: Cmn = 0
4: for k = 0 to 3 do
5: if k ̸= kFI then
6: Cmn = MMASA (Amk, Bkn, Cmn)
7: else
8: Cmn = M̃MASA (Amk, Bkn, Cmn)
9: return C

6The Systolic Array may, for instance, perform optimizations if Cmn = 0.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3180977

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:20:46 UTC from IEEE Xplore. Restrictions apply.

IEEE DESIGN AND TEST, SPECIAL ISSUE “TESTABILITY AND DEPENDABILITY OF AI HARDWARE” 5

TABLE I
TRANSIENT BUFFER FAULT SIMULATION FOR DNN-ACCELERATORS

RUNNING RESNET-50 INFERENCE.

M ×K ×N LB #MMA ∆Top [%] Overh.[%]

32× 32× 32
4

117,216
-1.12 11.0

2 -1.05 3.3

16× 16× 16
4

994,368
-1.07 1.2

2 -0.92 0.5

8× 8× 8
4

7,923,456
-0.96 0.1

2 -0.76 0.0

D. Simulating Permanent faults

A permanent fault in a Systolic Array or its caches affects
every k, m and n and thus alg. 4 needs to be modified
accordingly. The challenge in simulating permanent faults lies
in modeling the likelihood of encountering the faulty Systolic
Array.

Suppose we execute a program with ten GEMM16 invo-
cations on a DNN-accelerator with 16 Systolic Arrays. As
GEMM16 requires four Systolic Arrays, each time GEMM16
is invoked, there are 16!/(16−4)! = 43680 ways of assigning
four output quadrants to 16 Systolic Arrays. For the whole
program we get 4368010 ≈ 1046 possibilities.

One approach to handle this problem is to model worst- and
best-case scenarios. For instance, considering fig.1, in a worst-
case the program’s GEMM16s might always be mapped to
the same slice and randomly distributed among its 16 Systolic
Arrays, one of which has a permanent fault. In a best-case
each Systolic Array might be chosen at random from the 512
Systolic Arrays comprising fig.1’s DNN-accelerator.

VI. RESNET-50 PROOF OF CONCEPT

We applied the method presented in V to ResNet-50 [10]
inference on several DNN-accelerator configurations by mod-
ifying the oneDNN API. Two of the oneDNN operations used
by ResNet-50 utilize Systolic Arrays: Matrix multiplication
and convolution.2 We analyzed the algorithms implemented
by oneDNN for DNN-accelerators and developed fault models
according to the method described above. The buffers (FP16
data format) were corrupted by a single random transient bit-
flip each inference, analogously to alg. 2. 24.8k ImageNet [11]
inferences were executed for each configuration. The results
are shown in table I.

The simulation was run on an Intel i9-7960X CPU. A single
inference without fault injection took 104ms. The overhead in
table I is given w.r.t. to this duration. “M ×K ×N” specifies
the MMA dimensions and “LB” the number of K×N matrices
cached in L1B.4 “∆Top” lists the change in percentage of
inputs for which the highest rated output label is correct with
vs. without fault simulation. “#MMA” lists the number of
MMA calls for a single inference.

As expected from section V, the conditional failure prob-
ability (3), which may be identified with “∆Top”, decreased
with decreasing MMA dimensions: The corrupted buffer ele-
ment affects fewer output elements. The effect on the exposure
probability (3) is more complicated: While smaller buffers

result in a smaller frequency of buffer corruption, accounting
for the time the application is exposed to these buffers is not
straight forward: While the number of required MMA calls
obviously increases with decreasing MMA dimensions, esti-
mating the duration of each such call for different dimensions
requires knowledge of the Systolic Array’s implementation.
Consequently, one should not draw conclusions on the risk (2)
associated with different Systolic Array configurations from
table I without accounting for these factors.

In conclusion, we successfully applied our novel method-
ology to a large workload, performing hundreds of thousand
hardware fault simulations within hours on a regular CPU,
where more traditional approaches would have taken days for
a single simulation.

VII. FUTURE WORK

The best-/worst-case approach for modeling permanent
faults (V-D) does not yield the single probability for program
failure we are after (3). Rather, it delivers upper/lower bounds
on that probability. Moving forward we are developing models
of computation incorporating scheduling algorithms for DNN-
accelerators to accurately estimate this probability.

In section V-C, we suggest running a hardware simulation,
M̃MA, for the complete MMA-instruction. When modeling
permanent faults inside the Systolic Arrays, this simulation
overhead becomes significant. In future work, we will develop
methods reducing the simulation overhead to simulating single
MAF-units (II) only.

Finally, while our research has focused on utilizing DNN-
accelerators for the class of DNN programs, other classes of
matrix multiplication heavy programs would profit from using
DNN-accelerators (e.g. finite element methods). In upcoming
work we will investigate the effect of hardware protection de-
sign choices on the dependability of these kinds of programs.

ACKNOWLEDGMENT

We would like to thank Yue Qi, Fangwen Fu and Mourad
Gouicem for technical insights on DNN-accelerators and al-
gorithms utilizing their architecture.

REFERENCES

[1] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 2018.

[2] H. T. Nguyen and et al., “Chip-level soft error estimation method,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, 2005.

[3] A. Rodriguez, Deep Learning Systems: Algorithms, Compilers, and
Processors for Large-Scale Production. Morgan & Claypool Publishers,
2020.

[4] S. Chetlur et al., “cuDNN: Efficient Primitives for Deep Learning,”
arXiv:1410.0759v3, Oct. 2014.

[5] Z. Kalbarczyk et al., “Hierarchical Simulation Approach to Accurate
Fault Modeling for System Dependability Evaluation,” IEEE Transac-
tions on Software Engineering, 1999.

[6] V. Sridharan and D. R. Kaeli, “Using hardware vulnerability factors to
enhance AVF analysis,” Proc. Int. Symp.Comput. Arch. (ISCA), 2010.

[7] ——, “Eliminating microarchitectural dependency from Architectural
Vulnerability,” International Symposium on High Performance Computer
Architecture (HPCA-15), 2009.

[8] N. Seifert and N. Tam, “Timing vulnerability factors of sequentials,”
IEEE Transactions on Device and Materials Reliability, 2004.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3180977

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:20:46 UTC from IEEE Xplore. Restrictions apply.

IEEE DESIGN AND TEST, SPECIAL ISSUE “TESTABILITY AND DEPENDABILITY OF AI HARDWARE” 6

[9] G. Li et al., “Understanding Error Propagation in Deep Learning Neural
Network (DNN) Accelerators and Applications,” Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (ACM), 2017.

[10] K. He et al., “Deep Residual Learning for Image Recognition,”
arXiv:1512.03385v1.

[11] J. Deng et al., “ImageNet: A Large-Scale Hierarchical Image Database,”
in CVPR09, 2009.

Patrik Omland is a Research Scientist at Intel Corporation and is pursuing
a PhD with the Department of Informatics, Technical University Munich. His
research interests include the effect of hardware faults on program execution
and digital arithmetic / numerical algorithms. He holds a Masters degree in
Mathematical Physics from the Ludwig-Maximilians-University Munich.

Yang Peng is a research scientist and system architect at Intel Corporation.
His research interests include system architecture for dependable AI/ML-
based systems. He holds a Ph.D. in Electrical Engineering from the Technical
University of Munich.

Michael Paulitsch (Senior Member, IEEE) is a Principal Engineer at Intel
Corporation, where he leads the Dependability Research Labs. His research
interests include novel architectures for dependable systems and machine
learning. He has (co)authored 50+ technical papers and holds a Ph.D from
the Technical University Vienna and a Ph.D from the Vienna University of
Economics and Business.

Jorge Parra is a computer architect currently working on Intel’s Xe GPU
products. He holds a Ph.D. and a M.Sc. from the University of New Mexico in
Electrical Engineering and a B.Sc. in Electronics Engineering from Pontificia
Universidad Javeriana. His interests are in Computer Architecture, Machine
Learning Hardware Architectures, and Artificial Intelligence.

Gustavo Espinosa (Member, IEEE) is Senior Principal Engineer at Intel
Corporation, where he leads reliability and security architecture development
for discrete GPU products. He previously led the architecture development
of a number of Intel’s processors. He holds a Masters degree in Computer
Engineering from Boston University and a Bachelors degree in Electrical
Engineering from Cornell University.

Abishai Daniel is a staff RAS quality and reliability engineer at Intel
Corporation with a focus on statistical predictive model development and
application of novel machine learning techniques to reliability modeling. He
has served as program committee member/session chair for various IEEE
conferences, published more than 15 papers and holds 2 patents. Abishai has
an MSEE and a PhD from the University of Michigan and an AB from Wabash
College.

Gereon Hinz is CEO of STTech, providing solutions to current and upcoming
technological challenges in the autonomous systems domain. For the Technical
University Munich, he organizes a yearly Autonomous Driving lecture series.
He holds a Masters degree in cybernetics from the University of Stuttgart.

Alois Knoll (Senior Member, IEEE) is Professor of Computer Science with
the Department of Informatics of the Technical University Munich. His
research interests include robotics, artificial intelligence and real-time systems.
He has (co)authored 600+ technical papers and guest-edited international
journals. He initiated the First IEEE/RAS Conference on Humanoid Robots
and was General and Program Chair of various IEEE conferences. He is
Specialty Chief Editor of the Frontiers in Neurorobotics.

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3180977

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on November 29,2022 at 14:20:46 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	DNN-Accelerators
	Related work
	Statistical Fault Injection
	Vulnerability Factors
	Evaluating vulnerability of DNN-based applications

	Problem Statement
	Novel API-based fault simulation
	Simplified Model of Computation
	Simulating Transient L1 Cache faults
	Simulating Transient faults inside Systolic Arrays
	Simulating Permanent faults

	ResNet-50 Proof of Concept
	Future work
	References
	Biographies
	Patrik Omland
	Yang Peng
	Michael Paulitsch
	Jorge Parra
	Gustavo Espinosa
	Abishai Daniel
	Gereon Hinz
	Alois Knoll

