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Abstract V

Abstract

In this thesis, we consider different models of unreliable flow lines with intermediate
buffers decoupling adjacent production stages. Each machine contains exactly one unit
of a failure-prone critical component. In case of a component failure, we assume that
the component units can be replaced by ready-to-use spare parts, thus achieving a high
machine availability. For the stock-keeping of spare parts, we assume a one-for-one

replenishment policy.

We present a model of a two-machine flow line with stochastic processing times and
develop a continuous-time Markov chain to exactly evaluate the essential system
characteristics like average throughput or inventories. Based on that, we present a
novel decomposition approach to approximately compute the flow-line characteristics for
systems with stochastic processing times consisting of an arbitrary number of machines,
limited buffer capacity, and spare parts. By means of extensive numerical examples, we
analyze the effects of system parameters on approximation quality. We conclude that
our method vyields striking accuracy after comparing with results obtained by a Markov
approach for smaller lines and discrete-event simulation for longer lines. Our results
indicate the existence of complex interaction and partial substitution effects between

buffer capacity and spare part base-stock levels.

To answer the question of how to design a flow line with buffers and spares, we study
the buffer and spare part allocation problem. Since the buffer allocation problem is
NP-hard, we focus on heuristic solutions. We propose three greedy heuristics and apply
the two metaheuristics, simulated annealing and a genetic algorithm. We compare all
heuristics to complete enumeration for small flow lines in order to find the best-suited
algorithm to apply to longer flow lines. We analyze different balanced and unbalanced
flow line scenarios using a large-scale numerical study. First, we find that spare parts
tend to be more effective when arranged at or near the center of a flow line already

known for buffers. Second, we quantify the interaction between buffers and spare parts
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and amplify the strong cost dependence of the best flow line design. Third, we identify
that results from the literature on spare parts planning still apply but that planners

need our new approach for quantification because of the mentioned interactions.

Using a model of a two-machine system, we study the impact of deterministic and
fixed processing times. We calculate system characteristics with a discrete-time Markov
chain and apply complete enumeration because the search space size allows for this
optimization procedure. We observe that our results are still applicable and get even
more considerable if the processing time variability is not present. Furthermore, we
compare two system models: one with different critical components, as before, and one
with identical components. By comparing both cases, we can identify the impact of
component standardization regularly observed in practice. It turns out that component
commonality can render significant cost savings possible. The reason for this is, on the
one hand, the pooling effect of safety stocks and, on the other hand, the possibility of

reducing buffer capacity.
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Chapter

Introduction

Coffee: the finest organic suspension ever devised.

Captain Kathryn Janeway

Although it has been the focus of researchers for more than 60 years, the design
of stochastic manufacturing systems still raises unanswered questions. Koenigsberg
(1959) reviewed the fundamental problems arising from internal storage in production
lines. He advocated for putting more effort into the scientific analysis of production
systems and their effectiveness. We can observe these efforts via the vast amount
of literature published on evaluating and designing manufacturing systems. Recently,
Gershwin (2018) stated that new technologies will always cause the need for new
solutions. Specifically, reducing random effects, their impact, and the propagation of

these influences are the main issues for further research.

A variety of sources for stochasticity exists. The main problem in stochastic manufac-
turing systems is linked to breakdowns, which typically prevent the failed machine from
further production steps or, occasionally, negatively impact the production quality. The
time between such events (time to failure, TTF) is often assumed to be random as
a breakdown can be caused by many incidents: a malfunctioning piece of equipment,
an operator error, or likewise. Similarly, the time to repair (TTR) is also typically
assumed to be uncertain since, e.g., repair capacity may be limited or the time for
troubleshooting is just problem-dependent. Another source of uncertainty is variability
in processing times due to differences in raw-material quality, the time a human operator
needs at a specific station, or similar. These various random effects make the analysis

of stochastic manufacturing systems even more challenging.
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The necessity of analyzing manufacturing does not only come from changes in technology
or known sources of uncertainty. Another driver is the enormous amount of associated
costs with its planning and operation. Liberopoulos (2018) analyzed data from a
manufacturing body shop. He reported that each unit of buffer capacity could require
an investment of $5,000-$10, 000 and that additional holding costs of around $500
per year per workpiece accrue. For this example and many more production systems,

buffers are inevitable in order to ensure high throughput.

These interstage buffers, on the one hand, help to reduce the impact of processing
time variability. On the other hand, they only cope indirectly with machine downtime.
If a machine fails, accumulated workpieces in a downstream buffer allow subsequent
machines to continue operations; concurrently, an empty upstream buffer enables
antecedent machines to keep up processing for a limited time. The higher the buffer
capacities, the more work-in-process (WIP) can be stored. But higher WIP inventories
are equivalent to a high amount of tied-up capital, and the failed machine still does

not produce any output.

We adumbrated how buffers can tackle downtime of the individual machines. However,
another strategy is often used in practice: Spare parts are held in stock in order to
ensure fast repairs and increase the machines’ availability. For instance, Lamghari-Idrissi
(2021) reported downtime costs of up to €72,000 per hour for a front-end wafer
fabrication process that incorporates machines of ASML, a Dutch original equipment
manufacturer (OEM). Companies are investing millions of dollars in spare parts (Basten
& Van Houtum, 2014), with a single part costing up to thousands of dollars (Cohen et
al., 1997). These investments are reasonable since enhancing the machines’ availability
can be beneficial. Smets et al. (2012) indicated that increasing the system availability

by one percentage point could lead to savings of €12,000 per week.

In contrast to buffers, spare parts can directly deal with machine failures. If a machine
suffers from breakdowns of a critical component, ready-to-use spare parts in stock
allow for fast repairs by implementing a repair-by-replacement strategy. In doing so,
additional spare parts help to reduce machine downtime by avoiding the necessary
replenishment time. In contrast, when using spare parts, the question arises of how

many units should be kept in stock and how the replenishment should be organized.

These considerations reinforce that planners should bear in mind buffers and spare parts
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when planning an unreliable manufacturing system. Moreover, we identify a lack of
models in the scientific literature covering both aspects. Models for separate planning of
buffers (see, e.g., Weiss et al., 2019) and spare parts (see, e.g., Basten & Van Houtum,
2014) exist. However, these models differ drastically in their main assumptions. For
simultaneously planning a manufacturing system with both buffers and spare parts, a
decision-maker could, until now, only rely on rules of thumb derived from anecdotal

knowledge or more or less closely connected models.

The literature mainly considers two classes of approaches for spare parts: item-oriented
and system-oriented, both of which regard a target service level. Item-oriented ap-
proaches strive to reach a target service level for each stock-keeping unit (SKU), causing
high costs compared to system-oriented methods. A system-oriented service level con-
siders the target service level together for all SKUs. Analyzing on a system level was
introduced by Sherbrooke (1968). A possible advantage of system-level approaches is
that inventories of expensive SKUs can be reduced by increasing inventories of cheaper
SKUs. In doing so, planners can achieve a higher service level of the system, reduce
costs, or a combination of both compared to item-level approaches. Unfortunately,
these methods are not conferrable because they cannot factor in the influence of the
buffers.

Building on these ideas, we develop several new mathematical models of manufacturing
systems. In doing so, we strive to build a common ground of assumptions that make our
solutions applicable to the area of flow-line planning. Specifically, this work focuses on
flow lines where processing steps must be carried out in a specific order on sequentially
arranged machines. Between adjacent machines, interstage buffers store WIP to
decouple the production processes. Each of these machines contains one unit of a
critical but failure-prone component. The stock-holding is organized with a one-for-one
replenishment policy. Kiesmiiller and Zimmermann (2018) were the first to consider
this kind of setup in a two-machine system where both machines contain the same
critical component and hence just one spare-part stock is used. They illustrated and
quantified the possible benefits of simultaneous buffer capacity and base-stock level

optimization.
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1.1 Terminology

In order to point out the aim of this thesis, we discuss the relevant terminology next.
We start with focusing on the flow-line model and therefore rely on the review of Dallery
and Gershwin (1992).

The subject of consideration of this thesis is manufacturing flow lines. We use the
terms manufacturing systems, production systems, flow lines, transfer lines, or simply
lines synonymously. The flow lines we consider consist of machines, also called stations.
We label the storage areas between these machines as interstage buffers, intermediate
buffers, or just buffers. The aim of evaluating flow lines is to calculate the maximum
rate of flow of material through the production system in the long run, typically referred

to as production rate, or throughput.

A typical representation of a four-machine flow line with three interstage buffers is
depicted in Figure 1. Important performance measures of flow lines include mainly
throughput and WIP inventories, but also probabilities for starving and blocking.

input A, @ ’—‘]\/fz @ ’—M @ ’—‘]\/14 output

Figure 1. lllustration of a four-machine flow line

Besides machine failures leading to production stops, two sources of non-operating
machines exist: starving and blocking. A machine is starving if its production process
finishes and the preceding buffer is empty. In this case, the machine lacks another
workpiece and suspends operation. If the subsequent buffer of a machine is already
full and the machine finishes processing, this machine gets blocked. This specific case
is labeled blocking-after-service (BAS) in contrast to blocking-before-service (BBS)
where the machine is blocked before it starts the processing of a new workpiece. The
latter is used, e.g., for perishable products in the food industry. In general, buffers
facilitate the decoupling of production processes and reduce starvation and blocking
probabilities.

Most flow-line models analyze unreliable machines where the machines suffer from any
breakdown. In contrast, machines can also be assumed to be reliable. In the case of
unreliable machines, the literature differentiates between operation-dependent failures
(ODF) and time-dependent failures (TDF). ODF means a machine cannot fail while
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idle due to blocking or starving; this is not valid for TDF.

In order to operate, the first machine of a flow line needs raw material. Additionally,
the last machine’s output needs to be stored. Most publications consider saturated
systems where the supply is guaranteed and final products can always be kept. However,
there are plenty of reasons why the supply of raw materials or the demand for the final
product may be disrupted. An unsaturated system covers these sources of uncertainty
explicitly. Saturated systems allow focusing on the production process in isolation in
order to compute the best-case throughput. Furthermore, it is possible to think of a
flow line's first machine's production process as the arrival process and that the last
machine is equivalent to the product’s demand process. Thereby, a model of a saturated
system can describe the unsaturated variant by adding two additional machines if the

assumptions for the supply and demand process are suitable.

The models under consideration can be discrete or continuous regarding time and parts.
Continuous-time models assume that time goes by continuously. Models assuming
discrete time are based upon time steps being days, hours, the length of a production
cycle, or similar. Flow-line models typically assume that raw material, WIP, and end
product are discrete parts. When modeling production steps for liquids, continuous-flow
models are appropriate. They can, however, also be used to approximate discrete-part

systems because a continuous flow of material may be advantageous for optimization.

Manufacturing systems can work synchronously. That is, the machines start and
stop operations at the same time. However, most flow lines perform their production
steps asynchronously because their processing times differ, e.g., they are random, and
buffers decouple their production processes. Even if the machines' processing times are
deterministic and identical, there is no need for synchronous operations if buffers are

present.

In a nutshell, this thesis focuses on asynchronous, saturated, unreliable flow lines with
ODF. We apply BAS as the blocking policy and assume discrete parts. The first model
we study operates in continuous time, whereas the second one is a discrete-time model.
We highlight possible maintenance strategies to know how to cope with the flow line’s

unreliability.

Pintelon and Gelders (1992) stated that maintenance management is crucial for industrial
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equipment in general and that there are five basic maintenance policies: failure- (FBM),
use- (UBM), condition- (CBM), and opportunity-based maintenance (OBM), as well as
design-out maintenance (DOM). FBM, also known as corrective maintenance (CM),
takes place after a breakdown. If more information on the failure behavior is available,
UBM can be carried out. It may be performed after a specific number of processed
units or after a fixed time interval. When it is possible to monitor the machine
state using sensors or other methods, planners can implement CBM. After reaching
a predefined machine state, the machine undergoes maintenance. OBM means that
maintenance activities are carried out when a chance arises. This may be a failure of
a machine component presenting the opportunity to revise other components of the
same machine as well or maintenance during blocking or starving. UBM and CBM are
often summarized as preventive maintenance (PM). OBM requires multiple different
down-states of the machines, which most publications do not consider. DOM aims to
improve equipment to increase reliability or ease maintenance operations. In this thesis,
OBM and DOM will not be considered further.

When using spare parts for any kind of maintenance, we need to consider the question
of how to replenish them. According to Blumenfeld (2001), the basic replenishment
policies are either continuous (CRS) or periodic review systems (PRS). Placing an order
depends on the inventory position (IP), which is defined as stock on hand plus the
number of ordered items. We need four quantities to understand the replenishment
policies: the order quantity (), the reorder point s, the base-stock level S (also known
as order-up-to level), and the review period T', which is the time interval between
reviewing the inventory. CRS do not depend on a review period but check the inventory
position permanently. For CRS, there are the (s, Q) and the (s,S) policy. An order
is placed whenever the IP reaches or undercuts the reorder point s. For the (s,Q)
policy, this order always equals the order quantity (), whereas the order quantity may
differ in the (s, .S) policy because we always order enough so that our IP equals S units.
Similarly, we have two common policies for PRS: the (7, S) and the (T, s, .S) policy.
Here, we review the IP after time intervals of length 7. When applying the (7, .5)
policy, we always order enough to bring the IP up to the given level S. In contrast, we
only place an order when reaching or undercutting the reorder point s if we apply a
(T,s,S) policy. Figure 2 depicts the application of the four different replenishment
policies.

The literature is not consistent with labeling the variables for these different policies.
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Furthermore, despite their categorization, we can recognize strong connections between
the different policies. For instance, the (7, .S) policy is a special case of the (7', s, .S)
policy when s = S. If the fixed ordering costs are low in comparison to the holdings
costs — which is often the case for spare parts —, a (S — 1,.5) is typically applied
(Basten & Van Houtum, 2014; Moinzadeh & Lee, 1986; Muckstadt, 2005). Since
for each used unit, a new one is directly ordered, this is also called a one-for-one
replenishment policy. Since the assumption of a (S — 1,5) policy is reasonable for

spare parts, we will not consider the others.
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Figure 2. Inventory replenishment policies (Blumenfeld, 2001)

1.2 Contribution and methodology

Maintenance activities for manufacturing systems can be included in different ways. With

the increasing availability of historical data, planners can schedule UBM more reliably.
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Kyriakidis and Dimitrakos (2006) and Meller and Kim (1996) analyzed production
systems with UBM and buffers, but there are many more. Another possibility involves
sensors that monitor the state of a machine in order to enable CBM (see, e.g., Fitouhi

et al., 2017). Both maintenance activities can profit from spare part availability (Wang,
2002).

However, not all types of maintenance operations can be carried out in advance. Even
with historical and sensor data, there is still the possibility of unexpected breakdowns
and the resulting necessity for CM. These maintenance activities were typically assumed
to be carried out by repair persons, including a variety of repair time distributions.
Nevertheless, there are plenty of cases where breakdowns cannot be fixed just by an
on-site repair since a spare part is required. In this case, the need for spare part
replenishment would drastically increase the overall repair time, diminish the machine’s

availability, and, eventually, the flow line's throughput.

Consequently, the main objective of this thesis is to generate new insights into the
integrated design of manufacturing systems regarding both buffers with limited capacities

and spare part stocks. This constitutes the overall research question:

How should a flow line with buffers and spare parts provisioning for corrective

maintenance be designed?

We aspire to tackle this problem with newly developed mathematical models. We start
with a two-machine system consisting of one buffer and two spare part stocks and use
it as a building block to analyze systems of arbitrary length (Chapter 3). We model the
two-machine line as a continuous-time Markov chain, enabling us to determine different
performance measures. Based on this, we develop an approximative decomposition
approach extending the general idea proposed by Gershwin (1987). We use discrete
event simulation to validate this new evaluative method, as its trustiness is vital for
answering the raised design question. In the next step, we apply different heuristics
to find efficient solutions (Chapter 4). We use two greedy-type heuristics and two
meta-heuristics (simulated annealing and a genetic algorithm). We compare their results
for small systems to optimal solutions obtained by complete enumeration in order to
emphasize their applicability. Finally, we develop two other two-machine models to
tackle some of the critical assumptions (Chapter 5). These systems are modeled as

discrete-time Markov chains. The corresponding optimization problem uses complete
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enumeration to find optimal system designs.

Using these methods, we continue with a clear distinction between the underlying

research questions.

1.3 Research questions and outline

We introduce a new model of a flow line of arbitrary length where each machine has
a machine-specific failure-prone critical component. Based on this model, we review
the relevant literature in Chapter 2. Our review shows that available methods cannot
determine system characteristics for flow lines with buffers and spare parts. Hence, our

first question arises:

Research Question 1. What is the throughput of a flow line consisting of an arbitrary

number of machines with limited buffer capacities and spare part stocks?

In Chapter 3, we present a mathematical model for flow lines of arbitrary length. We
deduce how to evaluate small systems consisting of two or three machines exactly and
derive a decomposition approach to evaluate longer lines approximately. In doing so,
we target answering Research Question 1. This chapter is published as Sachs et al.
(2022a). With an evaluative procedure at hand, we can start by analyzing the system
design:

Research Question 2. What is the optimal flow-line design regarding buffer capacities

and spare part base-stock levels? How do both decisions interact?

Chapter 4 aims at answering Research Question 2. We introduce the buffer and spare
part allocation problem; it comprises the trade-off between both to reach the target
throughput. An extensive numerical study illustrates how different system and cost
parameters change the best-found allocation. The results in this chapter constitute the
working paper Sachs et al. (2022b).

To emphasize the applicability of our results, we relax the assumption of exponentially
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distributed processing times and consider fixed cycle times. Such a situation is more
closely connected to practical settings because the exponential distribution comes with
relatively high variability. In contrast, practitioners try to synchronize the processing

times of different production steps if possible. This results in the following question:

Research Question 3. Do the results of systems with stochastic processing times

carry over to transfer lines with deterministic cycle times?

Standardization is known to reduce costs in general and can also be applied in the
context of manufacturing systems. Technical appliances, e.g., machines or production
robots, consist of components where some of the components might be identical.
Systems with commonality in spare parts or machines were observed by Kahan et al.
(2009) and Kranenburg and Van Houtum (2007). A setup with identical critical
components could also be the organizational goal if cost savings are realizable. These

thoughts lead to the following question:

Research Question 4. What is the impact of component standardization comparing
a two-machine system with machine-specific failure-prone critical components to a

system with identical ones?

In Chapter 5, we strive to answer Research Questions 3 and 4 by studying a two-machine
transfer line with constant cycle times. In doing so, we can eliminate the influence of
processing time variability and focus on the effect of machine downtime. This analysis
broadens the view of our results since a high processing time variability is rarely observed
in practice. These benefits, however, come at the cost of a higher complexity of the
solution approach since we have to rely on methods in discrete time. In addition, we
compare two models: one with distinct critical components and two stock points, and
the other one with identical critical components and, thus, one stock point. We show
that spare part commonality enables a pooling effect, resulting in reduced spare part
base-stock levels, decreased buffer capacities, or both — depending on the system
specifics. This chapter is based on the publication by Kiesmiiller and Sachs (2020).

Lastly, Chapter 6 concludes with the main insights of our research. Moreover, we

discuss some general remarks, limitations, and future research opportunities.
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Literature Review

It is the struggle itself that is most important. We must strive to be
more than we are. It does not matter that we will never reach our

ultimate goal. The effort yields its own rewards.

Lieutenant Commander Data

The bedrock of this work is the scientific analysis of stochastic production systems, which
Koenigsberg (1959) advocated for when he first described the buffer allocation problem
(BAP). Building upon that, an extensive body of research developed. This literature
review focuses on four distinct yet interrelated branches: evaluating manufacturing
systems, the BAP, spare parts management, and maintenance for manufacturing systems.
Each of these branches is well developed; hence, we will only focus on the most crucial

contributions in order to embed and understand the questions handled in this thesis.

2.1 Evaluating manufacturing systems

For a detailed overview of existing models and methods, we refer to the reviews by
Dallery and Gershwin (1992) on manufacturing systems under various assumptions,
Papadopoulos and Heavey (1996) for queueing-based approaches, Li et al. (2009)
regarding throughput-analysis methods for different settings, and Papadopoulos et al.
(2019) for a review of Markov models. Another fruitful reading is the monograph
of Gershwin (1994) that provides a deep dive into many models and how to obtain

evaluative solutions.
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Many publications focus on how to assess the throughput of a manufacturing system. In
their review, Li et al. (2006) pointed out that the analysis of two-machine systems is still
crucial as it constitutes the building block for any further drill-down of larger systems.
Hence, we will summarize some essential contributions on how to obtain characteristics,
like throughput or average WIP inventories, of a short flow line consisting of two or

three machines.

2.1.1 Evaluation of short flow lines

The following contributions have in common that they assume CM after breakdowns
since this is the elementary approach. Section 2.4 provides an overview of more

sophisticated maintenance policies for manufacturing systems.

Buzacott (1967) proposed a general view of production system effectiveness by using
a discrete-time Markov chain to compute characteristics of two- and thee-machine
systems. He examined the limiting cases where either no or unlimited buffer capacity is
available and inferred that buffers are most effective if the throughput in both cases
differs substantially. Okamura and Yamashina (1977) extended Buzacott's model to
generate further insights into the effects of buffers and their actual usage for different
parameter scenarios. Among others, they found that differences in breakdown rates
reduce the positive influence of buffer installation, which does not hold for repair rates.
In the same vein, Buzacott and Hanifin (1978) discussed different system designs and
compared simulated to analytic results. It turned out that the former suffered from
inaccuracies such that Buzacott and Hanifin interceded for further development of

analytical methods and careful validations of simulated results.

Some effort was devoted to algorithmic improvements (see, e.g., Buzacott & Kostelski,
1987) or different (processing time) distributions like Coxian-2 (Vidalis & Papadopoulos,
1999) or general phase-type (Colledani & Tolio, 2009). Furthermore, the possible setup
broadened. Shanthikumar and Tien (1983) introduced scrapping of currently processed
units in case of a machine failure, which is relevant in the food industry when working
with perishable products. The flow of material could also be continuous instead of
handling discrete parts (Tan & Gershwin, 2009; Wijngaard, 1979). We refer to different
contributions on new models like Kim and Gershwin (2005) regarding quality failures

in processing steps, Gebennini and Gershwin (2013) for waste production, Gebennini
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et al. (2013) considering a restart policy where the production of a blocked machine
is halted until the buffer is empty again, or Gebennini and Grassi (2015) regarding a
buffer-bypass when both machines are functional as well as a constrained production
if one machine is down. Other advancement opportunities are different objectives
such as incorporating energy consumption or workforce constraints (Su et al., 2016) or
state-dependent policies where, e.g., the buffer inventory level determines the system

operations (Gebennini et al., 2017).

After glancing at the general models, we want to highlight how prominent models of
unreliable production systems developed. Again, Buzacott's (1967) model of a two-
machine system, including one interstage buffer, laid the basis for the scientific analysis
and became the reference point for further contributions. He assumed deterministic
processing times and geometric failure and repair time distributions. More critically,
Buzacott required that the probability of two or more machines failing in the same cycle is
neglectable. Gershwin and Schick (1983) relaxed this assumption, changed the order of
events in one cycle, and presented Markov chain approaches for two- and three-machine
lines. Similarly, Gershwin and Berman (1981) used a Markov process model to describe
the behavior of a two-machine flow line with exponentially distributed processing times.
They further assumed blocking before service and that machines stop processing if the
preceding buffer runs empty, leaving one part unprocessed. In using the exponential
distribution, they increased the mathematical tractability and were able to contrive a
closed-form solution of the Markov chain's steady-state probabilities. Hong and Seong
(1993) proposed another model and an efficient Markov chain-based solution algorithm
relying on blocking after service (in contrast to Gershwin and Berman's model). Some
publications analyzed models with multiple failure modes where machines can fail in
more than one way (Colledani & Tolio, 2009; Tolio et al., 2002), the contemporaneous
occurrence of operation- and time-dependent failures (Matta & Simone, 2016), or
multiple up- and down-states including buffer thresholds (Tolio & Ratti, 2018).

We mainly rely on discrete- and continuous-time Markov chain approaches for small flow
lines consisting of two or three machines. The available computational power allows
for a fast determination of steady-state probabilities by numerically solving the system
of balance equations. Our results indicate that a closed-form formula would require
computing the roots of a high-degree polynomial, rendering this approach unfavorable.
Furthermore, we apply a discrete-event simulation to inspect the influence of arbitrary

distributions for spare part replenishment.
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2.1.2 Evaluation of longer flow lines

Hillier and Boling (1967) used a continuous-time Markov chain to model a manufacturing
system of I machines with exponentially (or Erlang) distributed service times needing
the solution of a linear equation system. Using queuing theory, they developed a
more efficient algorithm to approximate the system throughput. The exact Markov
approaches, suitable for small systems, cannot be used for longer flow lines because
the state space explodes and renders the solution incomputable. There are some
approaches to trying to overcome this issue. Papadopoulos et al. (1989) used successive
overrelaxation to compute steady-state probabilities of a Markov chain model for a
reliable manufacturing system with Erlang distributed processing times and buffers.
Heavey et al. (1993) extended this approach to unreliable lines. However, they achieved
only solutions for five- and six-machine systems, respectively, and relatively limited

buffer sizes. Hence, the need for another method becomes obvious.

There are two approximative approaches for analyzing unreliable flow lines of arbitrary
length: aggregation and decomposition. Additionally, one could, of course, conduct a
simulation study. However, simulations are computationally expensive and unsuitable
for optimization problems where many evaluations need to be done (Gershwin & Schor,
2000; Helber et al., 2011). Another possibility is the usage of artificial neural networks
to allow for fast evaluations (Altiparmak et al., 2002; Siidbeck et al., 2022). However,
these networks are still in need of an evaluative procedure for training. These are the
main reasons why approximative methods are so important. The main ideas of both
approaches were developed in the 1960s, but it took until the 1980s when efficient
algorithms were published for manufacturing systems (Li et al., 2009) for them to be

implemented.

Aggregation approaches combine two neighboring machines (including their interstage
buffer if applicable) to a virtual machine and reduce the number of machines in a flow
line by one per step. Accordingly, this procedure is repeated until a two-machine line
is obtained, which can then be evaluated using a Markov chain or similar. The order
of this aggregation can be arbitrarily chosen. De Koster (1987) was one of the first
to use this algorithmic procedure. He started with aggregating the first two stations
and continued in this direction until the end of the flow line. Figure 3 illustrates this
approach. Jafari and Shanthikumar (1987) refined this procedure. However, it can

be further improved by iteratively repeating the aggregation a) starting from the first
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machine to the end of the line in a forward pass and b) starting with the last machine
stepwise to the start of the line in a backward pass (Jacobs & Meerkov, 1995a, 1995b,
1995¢; Lim et al., 1990). This improved version has been proven to be convergent,
and it has been shown that several system-theoretic properties hold. However, the
accuracy of the aggregation still does not match that of the decomposition in all cases
(Li et al., 2009). Therefore, improvements to the aggregation algorithm continue to be

the subject of current research (Bai et al., 2020).
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Figure 3. lllustration of the aggregation approach for a four-machine flow line. M,(I)
describes the aggregated machine in step [.

The decomposition approach relies on the idea that a /-machine line is decomposed
into a sequence of I — 1 virtual two-machine-one-buffer systems. Gershwin (1987)
published the seminal paper and established a system of equations ensuring that the
flow of material in the two-machine lines mimics the behavior of the original system.
All buffer capacities of the virtual systems are identical to the original buffers, and the
equation system determines each virtual machine's set of parameters. Figure 4 depicts
the general procedure of the decomposition approach. Again, the actual algorithm is
based on iterative repetitions where the decomposition happens a) in a forward pass
starting from the first machine and b) starting with the last machine in a backward pass.
To the best of our knowledge, no proof of convergence for this class of approximations
exists. However, there is a large body of literature on algorithms and models which

deliver accurate results and provide valuable insights.

Gershwin (1987) started the analysis of flow lines with deterministic processing times.
Although Gershwin's original algorithm converged in many cases, it revealed some
numerical weaknesses. Hence, Dallery et al. (1988) modified the equation system
leading to the Dallery-David-Xie (DDX) algorithm. Some further improvements came
from Dallery et al. (1989), including a course of action to reduce inhomogeneous
flow lines with processing-time differences to homogeneous complements. Eventually,
Burman (1995) deduced the accelerated DDX (ADDX) algorithm, relying on a closed-
form solution of the decomposition equations. His efforts led to a numerically very stable

and fast evaluation of flow lines with a convergence rate of about 99.9%. However, the
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input ’T‘ @ ’\—[2‘ @ ’T‘ @ ’1\—[4‘ output
Virtual line 1 M, (1) @ My(1)
Virtual line 2 M,(2) @ @l—~
Virtual line 3 M,(3) @ @

Figure 4. lllustration of the decomposition approach for a four-machine flow line.
M, (1) (My(1)) describes the upstream (downstream) machine in the virtual
line {.

main intricacy of the decomposition is that a new set of equations needs to be derived

for each different model. The results do not simply carry over.

Besides the algorithmic improvements, decomposition approaches were derived for other
sets of assumptions. Choong and Gershwin (1987) derived an analysis for exponentially
distributed processing times. To cover more general repair time distributions, Dallery
(1999) and Le Bihan and Dallery (2000) applied two- and three-moment fits. The
decomposition was also applied to assembly-disassembly systems: for fixed processing
times (Gershwin, 1991; Liu & Buzacott, 1990; Mascolo et al., 1991), random processing
times (Helber, 1998, 1999), split in the material flow (Helber, 2000), merges in material
flow (Helber & Jusi¢, 2004), and reworking and scrapping of workpieces (Li, 2005).

We consider two approaches when it comes to evaluating longer flow lines. Based on
the general idea of the decomposition (Gershwin, 1987), we develop a new procedure to
evaluate flow lines with buffers and spare parts. Furthermore, we use a discrete-event

simulation in order to validate the results obtained by our decomposition.

2.2 Design of flow lines and the buffer allocation

problem

We refer to three recent reviews for a detailed overview of cost-efficient flow-line designs
with a focus on the BAP. Demir et al. (2014) summarized and structured the existing

literature, Hudson et al. (2015) focused on results for unbalanced flow lines, and Weiss
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et al. (2019) conducted a comprehensive review of the BAP. Moreover, Weiss et al.
(2019) provided a general survey of the literature on flow lines with detailed overviews of
modeling assumptions. They further introduced a differentiation of solution techniques.

In the following, we briefly discuss important methods for and insights into the BAP.

The literature on the BAP consists of many different problem formulations. These could
be differences in the objective function or regarding the constraint of the optimization
problem. Weiss et al. (2019) identified two main problem formulations which are altered

to different extents:

= the primal BAP (also called BAP B) aims to minimize costs subject to the
condition that the expected target throughput reaches a specific threshold, and

= the dual BAP (also called BAP A) aims to maximize the expected target through-
put subject to the condition that the total buffer capacity equals a specific

value.
We adhere to the notification and nomenclature by Weiss et al. (2019).

Since exact evaluations of flow lines are rare, exact analytical results for the BAP are
even more challenging to obtain. Enginarlar et al. (2002) used a closed-form expression
for the throughput and were able to derive an explicit formula for the optimal buffer
capacity of an unreliable two-machine flow line. Other analytical results are based
on the approximative evaluation of flow lines and using regression (Martin, 1990)
or approximate closed-form solutions (Basu, 1977; Mak, 1986) in combination with

restrictive assumptions like equal capacity of all buffers.

Another way of solving the BAP is called integrated optimization, where the stochasticity
of the flow line is captured by either sampling the random variables or analytical
expressions. After that, general solving techniques can handle this now deterministic
optimization problem. Soyster et al. (1979) used analytical results followed by mixed-
integer linear programming, whereas Matta et al. (2012) developed a kriging meta-model
followed by a nonlinear solver. Yet, the majority of publications consider sampling,
which we now focus on. In the case of a continuous-flow formulation, the buffer
capacities do not need to take integer values, and nonlinear methods can be applied
for optimization (Kolb & Géttlich, 2015). However, if the buffer integrality cannot be
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relaxed, mixed-integer linear programs need to be solved (Helber et al., 2011; Matta,
2008). In this setup, even correlations and general types of probability distributions
can be considered (Weiss & Stolletz, 2015). The number of stations to be solved
by integrated optimization is still somewhat limited. Zhang et al. (2022) reported
results for unreliable lines. They were able to solve a 30-machines system with a total
buffer capacity of 37 units, contemporaneously showing an example of an eight-machine

system that cannot be solved within five hours of computational time.

The vast majority of publications make use of iterative optimization methods. The
central principle for solving the buffer allocation problem iteratively consists of an
evaluative method to compute the characteristics of a specific flow-line configuration
and a generative method to determine the optimal solution. After discussing the
evaluative approaches in Section 2.1, we can now focus on the generative methods.
They can roughly be classified into three different groups: enumeration, meta-heuristics,
and search algorithms. An enumeration of all feasible solutions guarantees optimality.
However, it can only be used for small systems as the only optimization approach
(see, e.g., Kiesmiller & Zimmermann, 2018; Powell & Pyke, 1996) or as a validation
technique for other solution approaches (see, e.g., Papadopoulos et al., 2013). Hillier
(2000) suggested only enumerating the subset of the solution space containing the
most promising solutions. There are many meta-heuristics applicable to the BAP.
Among others, genetic algorithms (Bulgak et al., 1995; Spinellis & Papadopoulos,
2000b), simulated annealing (Spinellis & Papadopoulos, 2000a, 2000b), or tabu search
(Papadopoulos et al., 2013) were applied. Search algorithms include bottleneck-
based approaches (Park, 1993), which determine bottlenecks iteratively and cope with
their impact by allocating buffer capacity, gradients if the buffer integrality can be
relaxed (Gershwin & Schor, 2000; Tempelmeier, 2003), and pseudo-gradients (Jafari &
Shanthikumar, 1989).

The main result of allocating buffer capacity was coined the storage bowl phenomenon
(Conway et al., 1988; Hillier et al., 1993). It means that buffer capacity near or at
the center of a flow line is more effective than locating it at the edges. Hence, with a
fixed buffer capacity available, the throughput of a flow line can be improved by an
unbalanced allocation. Numerous studies confirmed this finding in different settings
(see, e.g., Hillier, 2000). This result is a direct consequence of the bowl phenomenon

described by Hillier and Boling (1979) for the optimal work allocation in flow lines.
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The approach in this thesis is the application of iterative optimization approaches.
Meta-heuristics and search algorithms are applied to find efficient buffer and spare part
allocations. As the literature suggests, we will use enumeration as a validation approach
for our algorithms. In the next section, we focus on how spare parts are used and the

methods usually applied to allocate them.

2.3 Spare parts management

There is a large body of literature dedicated to spare parts management. We refer
to the reviews by Kennedy et al. (2002) on spare parts inventories, Basten and Van
Houtum (2014) regarding system-oriented models, Driessen et al. (2015) focusing on
decision-making for spare parts planning, and Hu et al. (2018) proposing a wider view
for spare parts management including forecasting and optimizing stocking policies. The
monographs by Muckstadt (2005) and Van Houtum and Kranenburg (2015) are also

valuable readings.

We can categorize the causes of spare parts demand according to the maintenance
activities classification: both PM and CM can require spare parts in stock. In the
case of deteriorating machines, PM activities can avoid failures (Wang, 2002). Some
publications already considered simultaneous PM and buffer planning (Gan & Shi, 2014;
Gan et al., 2013, 2015; Meller & Kim, 1996). For a production system, the crucial
question is as follows: How much buffer for WIP is needed to ensure only slight effects
on the production process? However, these models did not comprise that spare parts
could also be required for unexpected breakdowns. Depending on the applied PM
strategy, meeting the correct timing is more straightforward than for CM. PM usually
takes place after a fixed amount of time or processed units (Pintelon & Gelders, 1992),
whereas unexpected breakdowns are difficult to predict. Due to the high downtime costs,
spare parts for CM need to be stocked. If a failure occurs, a repair-by-replacement

strategy is commonly applied (Van Houtum & Kranenburg, 2015).

Even in the context of maintenance, there are many different replenishment policies for
SKUs available (Wang, 2002). Vaughan (2005) investigated (s, .S) policies for spare
parts in the context of PM with deterministic lead times. The one-for-one (S —1,.5)
replenishment policy is typically applied and optimal if fixed ordering costs are relatively
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low compared to holdings costs (Basten & Van Houtum, 2014; Moinzadeh & Lee,
1986; Muckstadt, 2005). Many papers seek the optimal base-stock level under different
assumptions (see, e.g., Feeney & Sherbrooke, 1966; Lamghari-ldrissi et al., 2020b;
Mirzahosseinian & Piplani, 2011; Moinzadeh & Schmidt, 1991).

These solutions usually rely on either a system- or an item-level approach. In a
system-oriented approach, a breakdown of one machine causes downtime of the whole
manufacturing system. Consequently, the system's availability equals the time where
the system is producing (cf. Basten & Van Houtum, 2014; Rustenburg et al., 2000).
This implication is no longer valid for a production system with interstage buffers where
a machine downtime may not cause any stoppage of the whole production process.

Hence, we cannot apply system-oriented methods.

As a consequence, item-level approaches could be used. However, they rely on knowing
the spare parts demand process. This process is complex in a manufacturing system as
blocking and starving influence the fraction of time where a machine is operating. In
the case of time-dependent failures, it might not be a problem to come up with the
demand process, but it is for the more realistic assumption of operation-dependent
failures. Typically, analyzing the machine in isolation would be a solution to eliminate
the influence of the rest of the manufacturing system. This would lead to overestimating
the spare parts demand because of neglecting demand-reducing influences. This effect
is called the passivation effect (Lau et al., 2006). Although Lau et al. (2006) tackled
this problem, their study analyzes the influence of passivation on the system availability.
Thus, item-level approaches would likely lead to overestimating the required base-stock

level.

A solution to this dilemma is a new approach for determining the spare parts base-stock
level. The critical component inside a machine is not critical on the system level but
only at the item level. Recently, Lamghari-Idrissi et al. (2019) and Lamghari-Idrissi
et al. (2020a) addressed the influence of various spare part service measures on the
performance of a wafer production process. They took the manufacturing system
design as given and analyzed how to increase the throughput in a given setup. Their
approaches illustrate the necessity of developing new solutions for planning spare parts

in manufacturing systems.

Algorithmically, greedy heuristics are often used if closed-form solutions are unavailable.
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They deliver solutions reliably and efficiently (Basten & Van Houtum, 2014; Wong
et al., 2005). We observe the application of greedy-type heuristics in many cases.
Basten and Arts (2017) analyzed the joint provision of spare assets and spare parts,
Drent and Arts (2021) determined optimal policies in a multi-item two-echelon spare
parts inventory system, and Rippe and Kiesmiiller (2022) identified which spare parts

to pick on a tour of a repair-person.

Given that the existent methods cannot be applied for designing a manufacturing system
with buffers, we include the characteristics of the spare parts in newly developed math-
ematical models. We especially consider greedy heuristics for solving the optimization
problem because of the widespread success in applying greedy heuristics for spare parts

planning.

2.4 Maintenance for manufacturing systems

The majority of publications in the area of stochastic flow lines consider failure and
repair processes as black boxes. The authors argue for reasonable choices of lifetime
and repair-time distributions but do not specifically state how failures and repairs occur.
Some publications elaborated in more detail on this topic and discussed the failure
process in more detail by analyzing deteriorating machines (see, e.g., Colledani & Tolio,
2012; Meller & Kim, 1996) or focused on the repair process by assuming limited repair
capacity (see, e.g., Dudick, 1979; Li, 1987). Our work differs in both directions. First,
we aim to specify the failure process and assume that failures are caused by critical
components. Second, the repair process depends on spare parts availability. The latter
is comparable to a situation with limited repair capacity as we may encounter limited

spare parts availability.

The first publications considering limited repair capacity presented Markov chain
solutions for two-machine systems in discrete (Dudick, 1979) and continuous time (Li,
1987). Kuhn (2003) used a coupled queuing system to evaluate flow lines of arbitrary
length, including a limited number of repairpersons inducing an additional waiting
time. Gottlich et al. (2012) applied a scheduling approach for allocating limited repair

personnel to stations of a production system.
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Including different maintenance activities for manufacturing systems pictures the repair
process more accurately. Maintenance directly increases the machines’ availability
instead of only handling downtime consequences by buffers. A first approach to cope
with machine downtime was introducing backup machines to circumvent stops in
production (Kubat & Sumita, 1985). In the same vein, other setups increase the
number of machines by parallel downstream machines (Diamantidis & Papadopoulos,
2006), parallel machines in general (Papadopoulos et al., 2009), or batch machines
processing multiple workpieces simultaneously (Chang & Gershwin, 2010). Using a
discrete-time Markov decision process, Van der Duyn Schouten and Vanneste (1995)
determined near-optimal control-limit policies for a deteriorating machine with a buffer.
Under some conditions, they even proved the optimality of their policies. Kyriakidis
and Dimitrakos (2006) generalized this setup to non-stationary deterioration, i.e., the
deterioration probabilities depend not only on the current system state but also on the
machine’s age. In continuous time, Meller and Kim (1996) determined the optimal
buffer level in a two-machine system triggering PM. There are further publications on
how to include PM (Colledani & Tolio, 2012; Karamatsoukis & Kyriakidis, 2010), PM
in a Kanban-controlled assembly system using decomposition (Ruifeng & Subramaniam,
2012), or shared repair capacity (Colledani et al., 2012).

Recently, Fitouhi et al. (2017) introduced CBM for a two-machine, one-buffer flow line.
They assumed that the condition of the machine is perfectly observable, which is often
not the case. Cheng et al. (2017) considered a two-machine, one-buffer flow line with
the first machine containing a component that deteriorates over time. After several
repairs, however, the component needs to be replaced. The authors do not consider
stock-holding of this component, but determine a policy at which buffer level and after

how many failures the replacement should take place.

The three streams of the literature regarding manufacturing system evaluation, buffer
allocation, and spare parts management were finally connected by a recent publication
of Kiesmiiller and Zimmermann (2018). They discussed a two-machine, one-buffer flow
line where a failure-prone component inside every machine induces machine failures.
Both machines have identical components. Hence, they needed only one base-stock
level. Kiesmdller and Zimmermann modeled the system as a continuous-time Markov
chain determining optimal values for buffer capacity and base-stock level. Further, they
quantified the possible savings of a simultaneous optimization approach to an item-level

approach with separate buffer-level determination. Although not directly tackling a
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buffer allocation problem, they studied the question of how to design a flow line in

terms of buffer capacity and base-stock level.

This thesis contributes to the literature on stochastic manufacturing systems by ex-
tending and combining all four streams of the literature. We present a model for flow
lines of arbitrary length with limited interstage buffers and spare parts provisioning for
machine-individual failure-prone critical components, where processing times, compo-
nent lifetimes, and replenishment times are exponentially distributed. Therefore, we
model the process of CM more thoroughly and allow for the stock-keeping of spare
parts. For the two- and three-machine cases, we show how to compute the steady-state
probabilities of a continuous-time Markov chain to obtain performance measures. For
longer flow lines, we devise a new decomposition procedure to calculate performance
measures. To determine cost-efficient buffer and spare allocations, we exemplify three
greedy heuristics and show how metaheuristics used for the BAP perform in comparison.
Eventually, we present two new two-machine models with fixed, deterministic processing
times, a buffer of limited capacity, and spare parts provisioning for failure-prone critical
components, where component lifetimes and replenishment times are geometrically
distributed. By comparing the cases for machine-specific and common components,
we generate new insights into the effects of spare part commonality and its impact on

required buffer capacity for unreliable flow lines.
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Chapter

Evaluation of Flow Lines
With Stochastic Processing

Times

There is a way out of every box, a solution to every puzzle; it's just a

matter of finding it.

Captain Jean-Luc Picard

The following chapter is published in the European Journal of Operational Research
(Sachs et al., 2022a). In the next sections, we lay the groundwork for various analyses
of unreliable flow lines with buffers and spare parts. We start with a general problem
and model description in Section 3.1. Specifically, we discuss how to model the flow
line as a continuous-time Markov chain and how to obtain performance measures
such as throughput or work-in-process inventories. In Section 3.2, we apply different
solution techniques. First, we introduce the solution of the Markov chain via its balance
equations. The two-machine system we discuss is most closely connected to the model
introduced by Gershwin and Berman (1981). The main difference is that we assume
machine failures to be caused by failure-prone critical components. Thus, corrective
maintenance is carried out as a repair-by-replacement strategy with stock-holding of
spare parts. Second, we show how to approximate flow lines of arbitrary length by
extending the decomposition approach first introduced by Gershwin (1987). In doing so,
we can approximately evaluate system designs considering finite buffers and spare parts
provisioning. We demonstrate in Section 3.3 that the decomposition delivers reliable
and accurate results via a comparison with exact performance measures of a Markov
chain approach for smaller lines and for longer lines discrete-event simulation, which is
slow but arbitrarily accurate. Further, we present the first insights into the performance

of different buffer and spare part allocations in flow lines. Finally, Section 3.4 concludes
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with some remarks.

3.1 Problem and model description

3.1.1 Problem description

We consider a flow line for discrete products consisting of I machines in series as
depicted in Figure 5. Interstage buffers B;, each with capacity C; (j € J), are installed
between adjacent machines to decouple the processes on the machines.
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Figure 5. Model of the production system

Workpieces enter the system at machine M; and leave it at machine M;. We consider
blocking after service, i.e., if a machine completes a part and finds the downstream
buffer full, that part remains on the machine, which is now blocked. (Note that the
analysis for blocking before service is very similar (Dallery & Gershwin, 1992).) A
machine is called “starving” if it finishes production and the upstream buffer is empty,

which prevents the machine from starting to process a new workpiece.

We assume an infinite supply of raw material in front of the first machine and infinite
space for storing end products behind the last machine. Hence, the system can be
analyzed in isolation because the first machine can never be starving, and the last

machine can never be blocked.

The processing times of all machines are assumed to be exponentially distributed with
processing rates ji; (i € Z). This is a common assumption that considerably facilitates
the analysis; see Papadopoulos et al. (2019). The great variability of exponentially
distributed processing times can be interpreted as covering various sources of variability

other than that caused by failures of the critical components.
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Each of the machines contains one unit of a machine-specific, failure-prone component.
If that component fails, the machine stops. We assume operation-dependent failures
of the components, i.e., a component can only fail while the machine is working on
a workpiece, i.e., being neither starving nor blocked. The times to failure of the
components are assumed to follow exponential distributions with failure rates \; (i € 7).
This can be a reasonable model, e.g., of failures of electronic components that are
not affected by wear-out effects; see Birolini (2012). Note that this model leads to a
Poisson demand process for spare parts, a typical demand model for such slow-moving
items; see Syntetos et al. (2012).

After a failure occurs, production will be resumed if the machine is repaired. We consider
a repair-by-replacement strategy to reduce downtimes. Spare parts are held in stock
near the production line such that a failed component can be replaced immediately if a
spare part is available. When no spare part is on hand, the machine is down and can
only resume production after a new spare part has been delivered and replaced with
the failed critical component. Workpieces remain at machines while a machine is in a

down state.

Whenever a spare part is used to replace a failed unit of the critical component, a
new part is ordered directly to replenish the spare part inventory. In other words, a
one-for-one replenishment policy with base-stock level S; is implemented. Following
Muckstadt (2005), such a policy is reasonable for valuable spare parts since the fixed
ordering costs can be neglected compared to the substantial holding costs of valuable
spare parts and the opportunity costs of a machine or potentially an entire flow line

being down.

The delivery times of all spare parts are assumed to be exponentially distributed with
replenishment rates 7; (i € Z). The assumption of exponential repair and delivery times
is also common in the spare parts and maintenance literature (Sherbrooke, 2006; Wong
et al., 2006). It is known that the type of distribution does not have a large effect on the
performance of the system. According to the Palm—Khintchine theorem, only the mean
of the distribution has a major influence; see Alfredsson and Verrijdt (1999), Kiesmiiller
and Sachs (2020), and Tan (1998). In manufacturing facilities, machines for different
production steps are located close together, and conveyors connect different machines
to transport work-in-process. Covering these short time intervals would drastically

increase model complexity without generating other insides. Hence, transportation



28 3 Evaluation of Flow Lines With Stochastic Processing Times

times can be assumed to be negligible. We furthermore consider all random times to

be mutually stochastically independent.

As an element of the system state description, we denote the maximum number of units
of the respective critical component at hand for machine 7 as ();. As we assume that

there is also one unit of that component inside of every machine, we have ); = .5; + 1.

To analyze the system, several performance measures are of interest, particularly the
system throughput, the probability of each of the machines being down, blocked, or
starving, and the average inventory for each of the spare parts. Furthermore, the
average work-in-process and the average buffer levels of the workpieces are essential
characteristics. Such a performance analysis helps quantify the effect of buffer sizes

between machines and spare part stocks on the overall system’s performance.

This chapter shows how those performance measures can be computed. For ease of

exposition, we denote the critical component of machine ¢ as component 7.

3.1.2 Mathematical model

The system can be modeled as a continuous-time Markov chain. Each state of the
system is described by the number of workpieces that have already been processed
completely at the different machines and the number of functional units of the critical
component of a machine, either installed inside the machine or in stock as a spare part.
The following notation is in line with the established symbols introduced in Gershwin

and Berman (1981), Choong and Gershwin (1987), and subsequent publications.

We define n; as the number of workpieces in the system that have already been

completely processed by machine j but not yet by machine j + 1 for j € J as follows:

0, M;, is starving, B; is empty
n;=41,...,C;+1, n; —1 workpieces are in B; and one is on M, (1)

C; + 2, B is full, M;, is busy or blocked, M is blocked
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We denote the maximum number of workpieces that have already been processed
completely on machine j but not yet on machine 5 + 1 as the extended buffer size
N; = Cj + 2, hence including the space on machines j and j + 1, and denote
n; = 0,..., N; as the extended buffer level.

We further define «; as the number of functional units of component 7 € Z as follows:

0, M; is down and there are no component i spare parts available

1,...,Q; M;is up and there are a; — 1 component i spare parts available
(2)

With S; as the base-stock level of component i spare parts, we define the maximum
number of functional units of component i as ); = S; + 1. Accordingly, (); — «; is the

number of components in resupply.

Given these definitions of the extended buffer level n; and the number of functional

units ay;, we can describe each possible system state £ as a (2 -1 — 1)-tuple:

f:(71177127---a”[—laalyab---7CYI) (3)

Note, however, that not each tuple describes a possible system state. For example,
the tuple (ny = Ny,ny = No, a1 = 1,a9 = 1,3 = 1) for a three-machine line would
describe a state in which the second machine is blocked (ny = Ny = Cy + 2) with a
workpiece already processed by the second machine still being on that second machine.
However, entry n; = N; = (] + 2 denotes a situation in which the first machine
is blocked, and a workpiece is already processed by the first, but not the second
machine is still on the second machine. If that second machine can hold only one
workpiece, we cannot simultaneously have both n; = N; and ny = N, as a workpiece
on a machine has either been processed completely or not, but not both. Another
example of a state that cannot be reached for that three-machine line is the tuple
(ng =0,n2 =0,y = 1,90 = 0,3 = 0). This indicates a situation in which, on the
one hand, both the second and third machines are starving. However, they are also
down, which violates the assumption of operation-dependent failures that machines

cannot fail when they are not operating and cannot be operating if they are starving.
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We now denote by

p(§) = p(ni,ne, ... ,nj_1,01,Q9,...,05) (4)

the probability of finding the system in state £ with the understanding that some tuples

describe states £ that we will never observe and hence have zero probability.

If we set up the generator matrix for this monolithic Markov model of the system and
determine the steady-state probabilities, we can calculate performance measures. For
example, we can determine the throughput of the system via the throughput of the

final machine [ as

Ni_o Ni_1 Q1 Qr-1
TP = Z DD DD DR S Z
n1=0 nr_o=0 ny_1=1 a1=0 ar_1=0 ar=1
p(n1,na, ... N1, 00,00, ..., Q) - i (5)

by multiplying the sum of the probabilities of all the states in which the last machine is

neither starving (n;_; > 1) nor down («; > 1) with its processing rate ;.

In a similar way, we can define the average total extended buffer level (BL) in the

system as
Ni_1 Q1
BL = Z D DD DR
n1=0 ny_1=0 a1=0 ar=0
p(ni,no, ..., np_1,Q1,00,...,a7) - (ng+ng+...n7_1), (6)

the average extended level BL; of the buffer between machines j and j+1 (j € J) as

Nr_1 Q1
n1=0 n;=1 ny_1=0 a1=0 ar=0
p(ny,no, ..., Nr—1,Q1,Qa, ..., Q1) - Ny, (7)

and the average inventory AI; of spare parts (waiting to replace the currently functional
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unit) of component i (i € Z) as

Nr—1 Q1

Z DD RS Z Z
n1=0 nr—1=0 a1=0 =2 ar=0
p(nl,ng,...,nj_l,ozl,ozg,...,ozf)-(ai—l). (8)

Note that if only one critical component is available for each machine, i.e., Q; = 1,i € Z,
then the replenishment lead time can be interpreted as the repair time, and the model
reduces to the system analyzed by Choong and Gershwin (1987). In the remainder of
the chapter, we derive approximate formulas to compute these performance measures.

3.2 Solution methods

The state space of this Markov chain expands dramatically with a growing number of
machines, buffer sizes, and stock levels of the critical components. However, steady-
state probabilities can be determined for flow lines with two machines. If a flow line
consists of more than two machines, the exact evaluation of practice-relevant systems is
typically impossible. For this reason, a heuristic technique is needed to evaluate longer
flow lines at least approximately, i.e., to determine performance measures for a given
configuration. These measures are a necessary prerequisite for any approach intended

to optimize such a system.

Gershwin (1987) introduced the decomposition approach as a heuristic performance
evaluation method for longer flow lines in the context of discrete-time Markov chains. It
is mainly based on the idea of decomposing long flow lines into a set of coupled virtual
two-machine lines, each of them representing the perspective of a myopic observer
next to a specific buffer in the original system. The idea is illustrated with the help
of a four-machine line example depicted in Figure 6, which is decomposed into three

two-machine lines, each corresponding to a buffer in the original system.

As a flow line composed of I machines is decomposed into I — 1 virtual two-machine
systems, we can exploit the fact that the state space of such a two-machine line is

still manageable, and its steady-state probabilities can be determined exactly. For this
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Figure 6. Flow line with four machines and the three corresponding virtual two-machine
lines

reason, we now first describe the exact analysis of a two-machine line for our type of

system.

3.2.1 Exact analysis of the two-machine line

The state of a two-machine system can be denoted via a tuple (n, a,, ag) with
representing the number of operational units of the critical component at the upstream
machine. The interpretation of ay is analogous, and n is the number of workpieces
already processed by the upstream machine but not yet processed by the downstream
machine. In (4), we introduce the notation p(ni, ng, ..., ny_1, 01, o, ..., ;) to denote
steady-state probabilities for the original line. To denote steady-state probabilities for
two-machine lines, we use the slightly different notation P(n, ay, ay) to keep the

perspectives on the original system and the virtual two-machine lines separate. To
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determine those steady-state probabilities, we have to state the balance equations that
describe the probabilistic and dynamic behavior of the system. To this end, we first

introduce an indicator function 1(L£) operating on a logical proposition £ as follows:

1, if Lis true
1(L) = o (9)
0, if L is false.

Using this indicator function, we can now state the balance equations for the two-machine

system being in steady state forn =0,....N, a, =0,...,Q,, and ag =0, ..., Q4:

P(n, u, aq) - ((uu + M) L(n <N, oy >0)+ (g + Aag) - L(n >0, ag > 0)+
Yu (Qu - au) ’ ]l(au < Qu) +Ya (Qd - ad) ’ ]l(ad < Qd))

=P(n—1,ay,aq) - i - 1(n >0, o, > 0)

+P(n+1,ay,aq) - pg - 1(n < N, ag > 0)

+P(n, o, + 1,04) - Ay - L(n < N, o, < Qy)

+P(n,a, aq+ 1) - Ag- L(n >0, ag < Qq)

P~ 1,0a) 7 (Qu — (@ — 1)) - L(ay > 0)

+P(n,ay, g — 1) - vq- (Qa— (ag — 1)) - L(ag > 0) (10)

For example, a state (n, v, ay) in which the upstream machine is neither blocked
nor down (n < N, a, > 0) can be left because the upstream machine completes the
processing of a workpiece (with the rate p,,) or because its critical component fails
(with the rate \,). State (n, o, og) can be reached, e.g., from state (n — 1, v, )
as the upstream machine completes its process on a part, provided that in the new
(receiving) state, i.e., after receiving that part, the buffer is not empty and the upstream
machine is not down (n > 0, a,, > 0). Note that (10) provides a complete and very
compact description that can be used directly within a program to set up the generator
matrix for this continuous-time Markov chain. Some few states are transient and hence
have a steady-state probability of zero. An example is state (n =0, v, = 1,04 = 0) in
which the second machine is both starving and down. This state cannot be reached

naturally via the protocol of the system, as a machine can only fail while it is working.
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Together with the normalization equation,

N Qu Qd
>3 Y Phawal = 1, (11)
n=0 ay,=0 ayg=0
we obtain a system of linear equations that determines the transition rate matrix
and thus all the steady-state probabilities of the Markov process as well as the zero

probabilities of the few transient states.

This system of equations can be solved numerically very quickly using standard software
such as MATLAB. We hence obtain the steady-state probabilities of the two-machine
system from which we can compute all necessary performance measures for a two-
machine line. This two-machine model serves as a building block to analyze larger
systems via an approximate decomposition to be described below. We also attempted
to develop a closed-form solution for the steady-state probabilities along the lines in
Gershwin and Berman (1981) and Gershwin and Schick (1983) and Tolio et al. (2002).
However, this led to the problem of finding the roots of a polynomial, the degree
of which increases with the number of spare parts, thus rendering this approach less

attractive than the direct solution of the system of linear equations.

3.2.2 Decomposition approach

Each of the virtual two-machine lines in a decomposition, as depicted in the lower
part of Figure 6, is characterized by three parameters for the upstream machine and
three parameters for the downstream machine: processing rates (i) and pq(7),
failure rates A, (i) and A4(7), and spare part replenishment rates 7, (i) and 74(7) with
t=1,...,1 —1. The buffer sizes C; and the base-stock levels in the virtual lines agree
with their respective counterparts in the original line, e.g., in Figure 6 S5 is first the
base-stock level of the second machine in the original line, second of the downstream
machine of the first virtual line, and third of the upstream machine of the second virtual
line. Analogously, C'5 is both the buffer size between the third and the fourth machine
in the original line and the buffer size between the up- and downstream machines of

the third virtual line, as shown in Figure 6.

The first mathematical relationship used in the decomposition developed by Gershwin

(1987) is denoted as the conservation of flow (COF) equation. Since the material can
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neither be destroyed nor created in any step of the production process, the throughput
must be equal for all machines in the original flow line. In addition, it must be equal in
all virtual lines for the decomposition results to be consistent. We use T'P(i) to refer
to the throughput of the virtual line 7 and denote by T'P; the throughput of machine 7

in the original line. Furthermore, we postulate this equality condition as follows:
TPh=TP,=---=TP,=TP(1)=TP2)=---=TP(I - 1) (12)

This equality condition is used in the derivation of equations to determine the virtual
machine parameters. Following the basic approach originally presented by Gershwin
(1987), three types of decomposition equations have to be derived in order to determine

numerical values for the virtual machines in the decomposition:

1. The Flow Rate Idle Time (FRIT) equations address the effects of blocking and
starving on the throughput and serve to determine processing rates i, (7) and

tq(7) for virtual machines.

2. The Resumption of Flow (ROF) equations deal with the delivery of spare parts
and are used to determine spare part arrival rates 7, (i) and ~4(i) for virtual

machines.

3. The Interruption of Flow (IOF) equations characterize the failure of critical
components and are employed to compute failure rates A, () and \4(7) for virtual

machines.

The derivation of those equations requires a major analytical effort that reflects the
specific assumptions about the manufacturing systems, particularly the newly studied
aspect of spare part provisioning. All proofs of the following statements can be found
in the appendix (Section 3.5).

To refer to the steady-state probabilities of a specific virtual two-machine line 7, we still
use the previous notation for two-machine line state probabilities but append a subscript
representing that line. The steady-state probability of a specific state (n, a,, ay) of
virtual line ¢ with 0 <n < N;,0 < a, < @;,0 < ag < Q41 is hence referred to as
Pi(n, v, ag). When we refer to the sum of multiple steady-state probabilities, we use
a probability-like notation, e.g., P;(n > 0,1,0) is the probability that the buffer is

not empty, the upstream machine is functional with no spare part in stock, and the
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downstream machine is down (with regard to the virtual line 7). It can be computed as

=

Pi(n > 0,1,0) :Z (n,1,0) (13)

n=1

For the upcoming approximate analysis of the flow line, we make the following three

assumptions:

(A1)

(A3)

The probability that a machine in the original line is starving and blocked at

the same time is negligible, i.e.,

P(ni_1 =0,n;=Ny,a; = j) ~0, Vi=2,...,I—1VYj=1,...,Q;
(14)

(Note that a machine that is down (a; = 0) cannot be blocked or starving

because we assume operation-dependent failures.)

The probability that machine i of the original line is starving can be approxi-
mated by the corresponding probability of the virtual downstream machine of

the virtual line 7 — 1, i.e.,

P(n;_1 =0,n; < Nj,o; = 7) =~ P;_1(0,c0,, >0, 7),
Vi=2.. ., 1-1¥j=1,... 0
(15)

Similarly, we approximate the probability that machine 7 in the original line is
down via the probability of observing the virtual downstream machine of the

line 7 — 1 being down:
P(ni_l > 0,n; <Ni,ai:())%73i_1(n>0, Qy > 0, O), Vi=2,...,1 -1
(16)

The probability that machine ¢ of the original line is blocked can be approxi-

mated by the corresponding probability of the virtual upstream machine of the
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virtual line 7, i.e.,

P(n,_y >0, n; = N;, oy = j) = P;y(N;, j, ag > 0),
Vie2 . I—1Yj=1,....0Q.
(17)

Similarly, we approximate the probability that machine 7 in the original line is
down via the probability of observing the virtual upstream machine of line ¢

being down:

P(ni,1>O,ni<Ni,OéiZO)%Pi(TL<NZ',O, OédZ()), VZIZ,,[—l
(18)

These assumptions are the basis for a related set of decomposition equations, which we
state below as theorems. They are used to determine the parameters of the machines
of the virtual two-machine lines. The proofs for all those theorems can be found in
the appendix (Section 3.5). As a first step, we provide Flow Rate Idle Time equations
related to the throughput of machine ¢ in the flow line. The throughput can be
determined as the fraction of time that a machine is actually producing, i.e., being

neither down nor starving nor blocked, multiplied by its corresponding processing rate.

Theorem 1. For given values of p;,~;, \i, N; and Q; of the original line and under
Assumptions (A1), (A2) and (A3), we can approximate the throughput of machine
1=2,....,0—1as

A

where A; is defined as

=S @ (1) XS Te—m- (1)

Jj=1m=0 j=1k=1m=k
Pi—1(0, 0, > 0, k) Pi(Ni, k,aq > 0) (20)
P¢_1<n > 0,0éu > 0,0) Pz(n < Ni,0,0éd > 0) )

The interpretation of formula (19) is that the throughput of machine i of the original

line is the product of that machine's processing rate ;, the fraction of time Aﬁ-l with
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at least one operational unit of the critical component, and the probability of machine
1 being neither starved nor blocked. Note that if the base-stock level of spare parts
is S; = 0 and hence ); = 1, i.e., at most one functional copy of the critical unit is
available, then we find that A; = $* from (20) and have A‘;‘jrl = -7, the standard
availability expression for machine 7. An equivalent approach can be used to analyze the

throughput of a virtual two-machine line's upstream and downstream machines. This
enables us to connect the throughput from Equation (19) of the original line with the
processing rates of the virtual upstream machine from virtual line ¢ and the downstream

machine of the line 7 — 1 as expressed in the following corollary:

Corollary 2. For given values of ;,v;, \i, N; and Q); of the original line, with an
analogous definition of A, (i + 1) and Aq4(i — 1) to A; in (20) given in the appendix
(Section 3.5) as (70) and (71) and under Assumptions (A1), (A2) and (A3), the

processing rate of the virtual upstream machine i = 2,...,1 — 1 can be calculated as

(i) = 1 A+1 1 1+ Ag(i — 1) 1 1+ A,3)

Pl =\ A =1 Ai—1) T TP(i—1) ()
(21)
and for the virtual downstream machinei =1,...,1 — 2 as
, 1 A +1 1 1+ Au(i+1) 1 1+ A0)

pa(i) = : - : : + : : .

pivi A pa(i+1)  Au(i+1) TP(i+1) Aq(i)
(22)

In a second step, we present the Interruption of Flow equations that characterize the
failure rates of the virtual machines in terms of parameters of both the original and

virtual machines as given in the following theorem:

Theorem 3. For given values of 1;,~;, \;, N; and Q); of the original line and under
Assumptions (A1), (A2) and (A3), the failure rate for the virtual upstream machine

t=2,...,1 —1 can be calculated as

'Pi_l(l, 0, 1) ,ud(i — 1) + Pi_l(O, 1,a4 > 1) )\u(l — 1)

v T/]Zil(;)l) —Pi(n < Nijy o > 2,04 > 0)

(23)
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and for the virtual downstream machinei =1,...,1 —2 as
. ,Pi+1(Ni+1 — 1, 1, O) ,uu(z + 1) -+ ,Pi+1(Ni+1, Qy, Z 1, 1) )\d(Z + 1)

) Pz(n > 0,0, > 0,04 > 2)

(24)

Similarly, the Resumption of Flow equations describe the rates at which individual

outstanding spare parts arrive for virtual machines:

Theorem 4. For given values of 1;,~;, \;, N; and Q; of the original line and under
Assumptions (A1), (A2) and (A3), the replenishment rate for an outstanding critical
component of the virtual upstream machine of virtual linei = 2,...,1 — 1 can be

calculated as

<Qéil”yu(i -1) - yi)Pi_l(0,0, ag 2 1)

(i) =%+ =5 - (25)
Gauty (. — Piln < Noyaw 2 2,00 2 0))
and for the virtual downstream machine of virtual linei =1,...,1 —2 as
(%ﬁw(i +1) — %’+1>7)z‘+1(Nz‘+1, a, > 1,0)
Ya(i) = Yit1 + G TP . (26)
Qiggyj(i) ( M(Ez(j_) = PZ(n > 0,04 20,00 2 2))
3.2.3 Algorithmic notes
In the decomposition approach, we seek for all virtual lines i =1,..., 1 — 1 numerical

values for all virtual machine parameters 1, (7), pa(i), Au(2), Aa(2), 7. (i) and ~4(i) so
that (21) to (26) hold simultaneously. We observed some numerical problems during
the initial implementation of the iterative algorithm used to solve those equations.
The updates for failure and replenishment rates ((23) to (26)) contain quotients that
represent conditional probabilities, as can be seen in the derivation in the appendix
(Section 3.5). Being (conditional) probabilities, they are known to be bound from
above by 1. The derivation also indicates that they are as well bound from below by a

positive value. We can hence impose those bounds in the iterative updating process.
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To this end, we define a function

Fz,y) = min{l,max {xz}} (27)

and use the following updating formulas:

TP(i — 1)

(i) =N+ f <73i_1(1,0, 1), )

— PZ(TL < Ni,ozu Z 2,ozd Z 0)) . Md(l — 1)

+ f (Pi_l((), 1,0éd Z 1), TPN(Z(Z_)D — ’PZ(TL < Ni,au Z 2,0éd Z 0)) .

At — 1) (28)
Aa(i) = Aip1 + f (P@'+1<Ni+1 —1,1,0), Ti(;(gm —Pi(n > 0,0, > 0,aq > 2))

il + 1)+ (PN, 00 2 1,1),

TP/&;;” —Pi(n> 0,0, > 0,04 > 2)) A+ 1) (29)
Yuli) =i + (Qé_,l%(i -1)- %) : f(Pi1(0>07ad > 1),

Ao (7) TP(i—1)

goy (T P < Moo 22.0020) ) 0

Ya(i) = Yir1 + (gli%l(l +1) - %‘+1> : f(Pz‘H(NiH,Oéu >1,0),
Nl (TPG+1)
Qiv17a(i) ( f1a(%) Piln> 0,002 0,00 2 2)> ) S

inside of the iterative Algorithm 1. The algorithm was implemented in MATLAB. To
determine new parameters, e.g., of the upstream machine of virtual two-machine line ¢
in the forward pass of the algorithm, the nonlinear system of (21), (23), and (25) in
the unknowns 11, (7),v,(7), and A, (i) has to be solved. As we did not find a general
analytic solution for arbitrary numbers of spare parts, we apply a fixed-point iteration

to solve the nonlinear system of equations numerically.

We observe situations in which the decomposition approach did not converge to a final
set of parameters and performance measures to any given measuring accuracy. In these
situations, it cycles between different values with neighboring performance measures

infinitely long. Hence, we first try to increase € by one order of magnitude to achieve a
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Algorithm 1. Decomposition algorithm

1 Initialize € := 0.001;

2 for all virtual linesi=1,2,...,1 —1 do

3 Initialize Ay, (7) := Ai, 7(2) = iy (7)) := piy Aa(?) := N1, Ya(?) = Yig1,

ta(i) == p;41, and determine steady-state probabilities P;(n, a,, org) and

| throughput T'P(3);

4 while [TP(1) —TP(I —1)| > ¢ do

5 fori=23,...,] —1do

6 Forward pass: Solve for line i (21), (28), and (30) iteratively via

fixed-point iteration to determine new values for rates y, (%), v.(7), and
A (1), updating steady-state probabilities P;(n, av,, aq) and throughput

| TP(i) after each iteration of the fixed-point iteration;

7 fori=1—-21-3,...,1do

Backward pass: Solve for line i (22), (29), and (31) iteratively via
fixed-point iteration to determine new values for rates 1i4(i),v4(7), and
Aq(7), updating steady-state probabilities P;(n, a,, ag) and throughput
T P(i) after each iteration of the fixed-point iteration.

result with slightly lower accuracy. If this does not solve the problem, we abort the

iterations and use the latest values as final performance measures.

3.3 Numerical analysis

Our numerical analysis aims to understand the behavior of our algorithm in terms of
both accuracy and reliability, as well as the behavior of the specific manufacturing
system. To this end, we studied a series of systematically generated artificial systems
via discrete-event simulation, via our approximate decomposition approach, and, for
the special case of short flow lines with only three machines, via the exact analysis of
a monolithic continuous-time Markov chain model. Additionally, real-world examples
of manufacturing systems are used to examine the applicability of the proposed de-
composition. Tempelmeier (2003) lists several systems he observed in practice. These
systems contain between 8 and 23 machines or, more generally, stations. He states that

algorithms must be capable of managing 50 up to 100 stations for practical purposes.

Each of the simulation studies contains a warm-up period of 1,000 time units. After that,

100,000 time units are simulated and used for the calculation of the system throughput.
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The 95% confidence interval (i.e., @ = 0.05) of the throughput is computed after each
run following Law (2014, p. 235) as

(X (k) = HW (k) , X (k) + HW (k)] (32)

with sample mean, sample variance, and half-width defined as

X() = 13X (53)

Sk) = =7 - (i - X(k))" (34)
HW (k) =ty 112/~ S2(k) (35)

where ¢_1 12 is the upper 1 — § critical point of the ¢ distribution with k£ — 1 degrees
of freedom and X refers to the throughput of simulation run [, I =1,... k when k
runs are already through. We conduct at least 10 runs of the simulation but follow a
sequential procedure (as described by, e.g., Law, 2014, p. 505) such that we conduct
additional simulation runs and recalculate all statistical values as long as the half-width

of the 95% confidence interval is less than or equal to a specified small value
HW (k) <0.01. (36)

For each simulation, we use the abbreviated notation HW for the half-width of the

final 95% confidence interval.

All algorithms were implemented in MATLAB. The calculations took place on a machine
with MATLAB R2021a on an Intel Xeon Platinum 8280 processor with a base frequency

of 2.70 GHz. Run times were measured using single-core calculations.

For our further analysis, we define the terms “balanced” and “unbalanced” flow lines.
A balanced flow line consists of similar machines, spare parts, and buffers, i.e., for a

given number of machines I, it holds that

C; =C Vi l=1,...,1—1 (37)
Qi = Qr, i =Mk, A=, V=N Vi,k=1,...,1. (38)

Consequently, a flow line is called unbalanced if one of these equalities does not apply.
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3.3.1 Short lines

Short flow lines consisting of three machines are studied because the exact analysis is still
possible for these lines, and the performance measures obtained by the decomposition
approach can be compared with exact results. To this end, we also developed a
monolithic Markov chain model for the three-machine lines (which is not presented
in this thesis). We additionally include results from a simulation to validate this
simulation approach. Table 1 lists cases for different parameter constellations of the
three-machine line. These cases provide insights into a wide variety of three-machine
systems. Although the presented cases are synthetic, they show the characteristics
of real-world flow lines. Importantly, the failure and replenishment rates as well as
the production rates, are realistically chosen compared to real-world systems, such as
those studied by Tempelmeier (2003). These parameters are given in the appendix
(Section 3.5) and are discussed later in more detail (Tables 14 and 15).

Case 1 is a system design equivalent to those studied in Gershwin (1987) because there
are no spare parts for critical components (i.e., Q1 = Q2 = Q3 = 1). By comparing
cases 2 and 3, we can identify the effects of buffer capacity on our algorithm in a
situation with spare parts. Comparing the results of cases 1, 2, and 4 helps to understand
the effect of the spare part base-stock level on the algorithm. For cases 5 to 8, case 4
must be considered as the baseline case. Case 5 indicates longer replenishment lead
times. Cases 6 to 8 show the impact of unbalanced lines. In this way, two virtual flow
lines of the decomposition are affected, and hence, this has a relatively strong influence
on the algorithmic behavior. We consider a higher processing rate for the second
machine (case 6) as well as a higher failure rate (case 7) and a lower replenishment
rate (case 8) for the first and third machines. Cases 6 to 8 have in common that they
lead, relative to baseline case 4, to a higher probability of simultaneously starving and
blocking (in the three-machine line only possible at the second machine). This situation
is expected to pose a potential problem for the algorithm, as we assume in Assumption
(A1) that its probability is negligible.

The corresponding results are listed in Table 2. We compare the throughput obtained
by the exact Markov analysis (T Pexact) With the throughput of the decomposition
approach (T Pgec) and our simulation (7' Pg). Furthermore, the actual and relative



44 3 Evaluation of Flow Lines With Stochastic Processing Times

deviations of decomposition and simulation compared to the exact solution

. TPdec - TPexact

A ec = TP ec TPexac ) Areelc = 39

d ’ t ’ TPexact ( )
TPgm — TP

Asim = TPsim - TPexac A;Ier!n = sim exact 40

i TPexact ( )

as well as the half-width of the 95% confidence interval of our simulation study are
given. Additionally, we provide computation times, which are abbreviated as T'eyact,
T4ec, and T, for exact Markov analysis, decomposition approach, and simulation,
respectively. In order to better understand the impact of spare parts on the specific
machines’ performance, we introduce the isolated machine availability and the isolated

machine throughput as follows

Qi Nk B
. Vi Q!
v Sy e ) "
2% @-w (1)
iTP; :=iAV; - ;. (42)

The proof for (41) can be found in the appendix (Section 3.5). As a consequence, all

availabilities of the different machines are identical in case of balanced flow lines.

Table 1. Cases for the three-machine line

Case Ny Ny Q1 Q2 Q3 p po 3 M A2 A3 " Y2 V3 iAVY 1AV, 1AV

1 10 10 1 1 1 1 1 1 0.005 0.005 0.005 0.1 0.1 0.1 0.9524 0.9524 0.9524
2 10 10 2 2 2 1 1 1 0.005 0.005 0.005 0.1 0.1 0.1 0.9988 0.9988 0.9988
3 20 20 2 2 2 1 1 1 0.005 0.005 0.005 0.1 0.1 0.1 0.9988 0.9988 0.9988
4 10 10 3 3 3 1 1 1 0.005 0.005 0.005 0.1 0.1 0.1 1.0000 1.0000 1.0000
5 10 10 3 3 3 1 1 1 0.005 0.005 0.005 0.01 0.01 0.01 0.9873 0.9873 0.9873
6 10 10 3 3 3 1 1.1 1 0.005 0.005 0.006 0.1 0.1 0.1 1.0000 1.0000 1.0000
7 10 10 3 3 3 1 1 1 005 0005 005 01 01 0.1 09873 1.0000 0.9873
8 10 10 3 3 3 1 1 1 0.005 0.0056 0.005 0.01 0.1 0.01 0.9873 1.0000 0.9873

The values given in Table 2 clearly show that the decomposition approach delivers very
accurate results in all cases. The relative deviation between the throughput of the exact
and decomposition approaches is considerably less than 1% in all cases. As expected,
the accuracy is diminished in the cases with an increased probability of simultaneous
starving and blocking (case 4 compared to case 6). However, the accuracy in cases 7
and 8 is still very good. The same is true (in an extenuated manner) if we increase
the number of spare parts since this reduces the downtimes and accordingly increases
the probability of simultaneous starving and blocking (comparison of cases 1, 2, and

4). Furthermore, the algorithm is more accurate for a larger buffer capacity (case 2
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Table 2. Results for the three-machine line cases. Asterisks indicate that TPy et iS
included in the 95% confidence interval of the simulation result.

Case T'Pexact T'Pgec  Adec AR TPsm  Asim ALy HW

0.8133 0.8124 —0.0009 —0.0011 0.8142  0.0009  0.0012 0.0027*
0.8927 0.8915 —0.0012 —0.0013 0.8906 —0.0021 —0.0024 0.0022*
0.9381 0.9377 —-0.0004 —0.0004 0.9372 —0.0009 -0.0009 0.0018*
0.8944 0.8932 -0.0012 —-0.0014 0.8957  0.0013  0.0014 0.0026*
0.8715 0.8717  0.0002 0.0002 0.8693 —0.0022 —-0.0025 0.0026*
0.9216 0.9250  0.0034  0.0037 0.9228  0.0012  0.0013 0.0023*
0.8840 0.8842  0.0002 0.0002 0.8827 —0.0013 —0.0015 0.0017*
0.8791 0.8783 —0.0008 —0.0009 0.8784 —0.0006 —0.0007 0.0045"

0 N & Ot = W N

compared to case 3). This is in line with previous findings for similar decomposition
approaches. The throughput calculated with the decomposition algorithm is always

within the simulation’s very tight 95% confidence intervals.

Additionally, the results show how well our simulation model reproduces the system
behavior. Again, we only have minor throughput deviations of less than 1% in all cases.
Moreover, the exact throughput of the considered flow line is always inside the very
tight 95% confidence intervals from the simulation.

The computation times for the different cases are listed in Table 3. As expected, the
time consumed by the exact Markov approach using a monolithic three-machine model
depends mainly on the buffer capacity and the spare part base-stock levels because they
increase the size of the state space. In all cases, the decomposition approach is faster
than the exact solution method. Additionally, the decomposition is much faster than
the simulation in all instances. lts computational speed seems to be nearly independent

of the machine parameters.

In addition, Table 4 shows further performance measures obtained by the decomposition
approach: The average extended buffer levels and the average spare part inventories.
The decomposition approximates both measures accurately. We observe a maximum
deviation of about 2% for the average buffer level and about 8% for the average
stock on hand. In this respect, the differences are slightly higher than the throughput
results. Previous studies of decomposition approaches reported similar findings with
less accurate approximated buffer levels compared to throughput. However, there are

system characteristics that positively affect the approximation. Balanced and small
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Table 3. Computation times for the three-machine line cases

Case Teact (5) Tdec (5) Tsim (5)

1 0.33 0.15 45.12

2 2.94 0.18 50.04

3 78.29 0.18 51.33

4 38.39 0.24 52.75
5 35.34 0.19 47.50
6
7
8

37.49 0.22 99.33
34.94 0.27 51.85
38.58 1.50 51.40

systems and systems with larger buffer capacities show a good overall accuracy (see, e.g.,
Dallery et al., 1989; Helber, 2000; Le Bihan & Dallery, 2000). We tested about 20,000
instances of unbalanced three-machine flow lines (whose results are not presented in
this thesis). Even though unbalanced systems negatively influence the decomposition
performance, we confirmed a minor mean absolute percentage error of about 1.60% for

the average buffer levels and 1.78% for the average spare part stocks on hand.

Table 4. Average extended buffer levels and spare part inventories obtained by the
Markov approach (exact) and by the proposed decomposition (dec) along
with the relative deviation (A)

Case BL BL, Al Al Al

exact dec A exact dec A exact dec A exact dec A exact dec A
1 693 690 0.00 5.07 507 000 0.00 000 000 0.00 0.00 0.00 0.00 0.00 0.00
2 682 680 0.00 5.18 5.18 0.00 0.96 0.96 0.00 096 095 —0.01 096 0.96 0.00
3 1244 1236 —-0.01 956 958 0.00 095 095 0.00 0.95 0.95 0.00 0.95 0.95 0.00
4 681 679 000 519 519 0.00 196 196 0.00 1.96 1.95 0.00 1.96 1.96 0.00
5 685 685 0.00 5.15 513 0.00 1.57 1.57 0.00 1.57 1.51 —0.04 1.57 1.57 0.00
6 598 592 —-001 6.02 6.06 001 195 195 0.00 196 1.95 0.00 1.95 1.95 0.00
7 6.74 6.73 0.00 5.26 5.26 0.00 1.57 1.57 0.00 196 180 -—0.08 1.57 1.57 0.00
8§ 679 6.78 000 521 510 -0.02 1.57 1.57 0.00 1.96 1.93 —0.01 1.57 1.57 0.00

In a further experiment, we deliberately provoke in Figure 7 a situation with simultaneous
starving and blocking of the second machine of our three-machine line. To this end, we
fix all parameters but p5 to show how much the probability of concurrently starving and
blocking increases with an increasing machine M5 processing rate p5. Even in this case,
the accuracy of the production rate approximation of the decomposition diminishes
only up to a certain point. The probability of concurrently starving and blocking as
well as the relative error compared to the exact Markov chain approach, are depicted in

Figure 7. Although the deviation increases with increasing values of js, it does not
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become worse than 5% even for this unrealistically unbalanced flow line.
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Figure 7. Performance of the decomposition approach with varying ps; p1 = ps =
1,0, =Cy=10,Q; = 3,\; = 0.005,v, = 0.05 (i =1,2,3)

The presented results clearly show that the decomposition approach can generate highly
accurate production rate estimates. Furthermore, the results validate our simulation
study. We will therefore compare our decomposition results to those obtained via

simulation to analyze longer lines.

3.3.2 Longer lines

In order to illustrate the effectiveness of the proposed decomposition on a broader base,

we analyzed a large number of unbalanced flow lines.

We first randomly generated 1,000 sets of parameters for a five-machine flow line. The
parameters were chosen from a uniform distribution with the following intervals.

p; €10.8,1.2], A; €]0.004,0.006], ~; € [0.04,0.06] Viel (43)
Thus, we altered the parameters used before by a maximum of 20% up and down.
As a baseline case we use only one spare part, i.e.,, ); = 2,7 € Z, and identical
buffer capacities, i.e., C; = 20,5 = 1,...,4, for all instances. In this setting, we
altered only one specific parameter in five different values. We did this for both design
parameters (buffer capacities and spare part base-stock levels) and machine parameters.
All parameter ranges are given in Table 5. Figure 8 depicts the results as boxplots.

Each of the boxplots represents 1,000 instances. This yields 25,000 solved instances for
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the whole figure. The actual and relative deviations of the throughput are calculated as

TPdec - TPsim

44
TPsim ( )

Adec/sim = T'Pgec — TPsima Al(’:leelc/sim =

In each of the presented cases, the parameters in Figure 8 are altered in a way that the
throughput of the system increases from the left to the right, e.g., from u; = 0.8 over
i = 0.9 until g; = 1.2. All in all, the relative deviation decreases slightly if the system
parameters change towards a better throughput. However, this effect is limited due to

the good overall accuracy of the proposed decomposition.

Table 5. Parameter ranges for the different examined variables in the boxplots; ¢ =
1,...,5,5=1,...,4

Examined variable C; Q: i Ai i
Parameter range of
G {10,15,20,25,30} 20 20 20 20
Qi 2 {1,2,3.4,5} 2 2 2
i Uios,1.9) Uo.s,1.9) {0.8,0.9,1.0,1.1, 1.2}  Ujps1.2) Uos,1.9)
)\l u[ll,i)l)-’l,ﬂ.('()ﬁ] u[l).()ﬂ-’],().['('ﬁ] u[i).('()h].('.(l['ﬁ] {0007' 00067 0005' 0004' 0003} u[ll,i)l)-’l,ﬂ.('()ﬁ]
i U0.04,0.06) U0.04,0.06) U0.04,0.06) U0.04,0.06) {0.03,0.04,0.05, 0.06,0.07}
00251+ . M i .
+ + *
NS A A S L I
002+ g L | O i + L 1 % 2
| i + } + }
0015 | | § | |
- I
: | ! I I | I T ‘ .
3¢ 001 } } } | ‘ | | } | | | I | I | |
< I ! ! ! [ ‘ [ \
o [ Lo N
0.005 b SR
SRRl CEE S 'Hogn
0 | €1 L i
‘ ‘ | [ } | | ‘ \ Ty T | | | \ | | | [ | |
R O A S N A R R T S R T A B
-0.005 - | Lt L L 1
| | | | | | | | | | | | |
8B B R M 29 0% o2 A0 \) A S (o0 o o 08,0 o 0P oF o'

v Oy Oy Oy W e AT W \\/ WAl AT AT AT A

Figure 8. Boxplots of relative throughput deviations for in total 25,000 randomly
generated instances of unbalanced flow lines

Moreover, we find that a good proportion of the results are within the 95% confidence
intervals from the simulation. Table 6 shows the number of instances where the
decomposition results are inside the confidence interval. As for the general accuracy,
the numbers increase with an increasing system throughput. Hence, the decomposition
works better for more effective systems, which are, after all, the practically relevant
instances. Only for the processing rates can we observe a decrease. However, the
maximum deviation from the confidence interval in the instances with p; = 1.2 is
no more than 0.0045 (on average, even only 0.0015) at an average throughput level

obtained by simulation of 1.0970.
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Table 6. Number of instances where the resulting throughput of the decomposition is
inside the 95% confidence interval of the simulation (in total 1,000 instances
per parameter); i =1,...,5,j=1,...,4

Parameter Parameter value (number of instances with result inside 95% confidence interval)

C; 10 15 20 25 30
(468) (531) (600) (675) (710)
Qi 1 2 3 4 5
(325) (596) (632) (645) (620)
i 0.8 0.9 1 1.1 1.2
(631) (504) (415) (314) (247)
Y 0.007 0.006 0.005 0.004 0.003
(587) (572) (613) (630) (629)
Yi 0.03 0.04 0.05 0.06 0.07

(453)  (579)  (628)  (630)  (638)

Tables 7 and 8 list different cases for longer flow lines with more than five machines
to further study the influence of the different parameters (Table 13 in the appendix,
Section 3.5, shows all values including availabilities). We alter the buffer capacity
between adjacent machines as C; € {10,30} and the number of available units of the
critical components per machine as @Q); € {2,3,4} and additionally vary the number of
machines [ € {5,25,45} (i € Z,j € J). The instances in both tables differ only in
their replenishment rate. Table 7 uses v; = 0.1, whereas we have only one-tenth of the
original replenishment rate in Table 8. The throughput is given for the simulation and
the decomposition approach, as well as the actual and relative error compared to the
simulation results. Additionally, we indicate whether the confidence interval contains
the result of the decomposition approach. This is the case for most instances with five
machines. The results clearly show that the throughput generated by the decomposition
approach is very close to the simulated value in all cases with a higher replenishment
rate (Table 7). The deviation is even less than 2% in the worst case. The deviation

increases with the number of machines, which is in line with prior research.

One should also know under which conditions the method fails to give accurate
throughput estimates. We observed that long lines consisting of machines with a
very low availability seem to be difficult for the method to evaluate. Such a case is
presented with the parameters in Table 8. For cases with only one spare part (Q; = 2)
in combination with a relatively large number of machines (25 or 45), we observed
relative deviations to the simulated throughput, e.g., of up to 28.1% for the case
C; = 10,Q; = 2,1 = 45. The simulated throughput here was 0.4801, which is
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substantially below the processing rates u; = 1.0, while the decomposition computed
0.6149. In other words, we can say that the method becomes inaccurate for systems
that show poor performance, and it gets quite accurate for systems that show a good
performance due to sufficiently large buffer sizes and a sufficient number of spare parts.
This behavior could be caused by the assumption that starving and blocking cannot
happen concurrently for each of the machines. On the one hand, improved machine
availabilities realized by a higher number of spare parts would be able to face this issue
since the only remaining source of starving and blocking would be the variability in
processing times. On the other hand, a higher buffer capacity also reduces the influence
of failed machines, as starving and blocking will occur less frequently. We observe both

when we compare Tables 7 and 8.

Table 7. T P4 and AQ‘Z’C/Sim (in brackets) for longer flow lines in case of high replenish-

ment rates. Asterisks indicate that 7' Pgyec is included in the 95% confidence
interval of the simulation result; p; = 1, \; = 0.005,v;, = 0.1, € Z,5 € J.

c, 10 30

Qi 2 3 4 2 3 4

I=5 08678 (—0.0005)" 0.8696 (0.0013)* 0.8696 (0.0020)* 0.9465 (0.0010)* 0.9481 (0.0008)* 0.9482 (0.0020)*

I=25 08434 (0.0122)  0.8453 (0.0125) 0.8454 (0.0117)  0.9366 (0.0078)  0.9383 (0.0060)  0.9383 (0.0097)

I =45 0.8366 (0.0101)  0.8386 (0.0036) 0.8386 (0.0071)  0.9294 (0.0047)  0.9311 (0.0042)  0.9312 (0.0043)

Table 8. TPy and Ag‘z'c/s;m (in brackets) for longer flow lines in case of low replenish-
ment rates. Asterisks indicate that 7' Py is included in the 95% confidence
interval of the simulation result; u; = 1, \; = 0.005,v;, =0.01,2 € Z,5 € J.
C; 10 30
Qi 2 3 4 2 3 4
I=5 07021 (0.0151) 0.8440 (0.0065) 0.8667 (0.0007)* 0.7711 (0.0360) 0.9202 (0.0083) 0.9449 (0.0015)

I=25 0.6220 (0.2091) 0.8145 (0.0699) 0.8419 (0.0166)  0.7226 (0.1624) 0.9068 (0.0561) 0.9347 (0.0126)
I=45 0.6149 (0.2808) 0.8071 (0.1029) 0.8351 (0.0183)  0.7184 (0.1913) 0.9002 (0.0661) 0.9276 (0.0107)

In order to emphasize the relevance and applicability of the proposed decomposition,
the previous synthetic results are broadened to some real-world examples documented
by Tempelmeier (2003). Table 9 shows the performance of the decomposition. All
relevant parameters as well as the availability are provided in the appendix (Section 3.5:
Tables 14 and 15). System C has relatively low availabilities. Although the system
is a transfer line with deterministic processing times, it is useful to generate insights
regarding the class of less reliable flow lines. Hence, we take the given processing time
as the mean processing time. One spare part was introduced for all adapted cases
(C1, C2, C3, D1, D2, and D3). Additionally, the replenishment rates were adjusted to
include that replenishment will usually take longer than an on-site repair. Thus, we

have the same value for ~; as in the baseline case for C1 and D1, %% for C2 and D2,
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and i% for C3 and D3. Comparing the throughput to the baseline cases clarifies that

the introduction of spare parts increases the throughput.

Table 9. Results for adapted real-world flow lines with baseline cases C and D from
Tempelmeier (2003). Asterisks indicate that T'Pgye is included in the 95%
confidence interval of the simulation result.

Case TPy TPsm Adecssim Afcjsim HW Relative TP increase
compared to baseline case

C 0.1905 0.1899 —0.0006 —0.0030 0.0008*

C1 0.2081 0.2079 —0.0002 —0.0011 0.0012* 0.0926

C2  0.2057 0.2055 —0.0002 —0.0008 0.0010* 0.0800

C3  0.1951 0.1938 —0.0013 —0.0067 0.0009 0.0246

D 1.1994 1.1894 —0.0100 —0.0083 0.0035

D1 1.2905 1.2757 —0.0148 —0.0115 0.0028 0.0760

D2 1.2848 1.2748 —0.0099 —0.0077 0.0025 0.0712

D3 1.2688 1.2700 0.0012 0.0009 0.0045* 0.0579

Overall, the decomposition tends to work better in cases with a realistically high
throughput of the flow line, as the addressed effects all tend to negatively influence
the throughput of the flow line and the accuracy of the decomposition. Hence, the
presented decomposition can be expected to work well for cases that are of practical

relevance.

3.3.3 Managerial insights

Our newly developed method enables us to evaluate different system designs. Since
this is the first study where spare part stocks are allowed for flow lines of any length
with intermediate buffers, we focus on the impact of the number of spare parts on
the throughput. Moreover, in this preliminary study, we generate insights about the
best position of an additional spare part, and we illustrate that less buffer capacity
is necessary if spare parts are kept in stock. We start our discussion with balanced

systems concerning all parameters except the base-stock level.

Previous research on stochastic flow lines suggested that buffers should be installed at
the center or near the center of balanced flow lines (see, e.g., Hillier and Boling, 1979

or Conway et al., 1988). Table 10 lists different cases for the allocation of spare parts
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in a balanced flow line. Cases 1 through 6 illustrate how the first additional spare part
should be allocated most efficiently. It unfolds that a spare part at or near the center of
the flow line increases the throughput more than spare parts located at the beginning

or end of the flow line.

Observation 3.1. Additional spares should be located near the center of the flow line
to improve throughput the most if the flow line is balanced. The spare part allocation

tends to show a bow! effect.

This observation holds for the situation where each machine already has one spare part
in stock, and we wish to add an additional part (cases 7 to 12). A closer examination
of the situation with two parts in stock for all machines (cases 13 to 18) reveals that
the throughput can only be increased slightly by simply adding additional spare parts.
The spare parts have already increased the isolated availability of the single machines
to such an extent that the effect of more parts is negligible. In this situation, the

throughput can only be increased by adding additional buffer capacity.

By analyzing cases 13 and 19 to 21, we observe that the equal distribution of a constant
number of spare parts is beneficial (all cases have 15 spare parts in total). In summary,
the bow! allocation (case 20), where we have more spare parts at the center and fewer at
the boundaries, is here slightly less efficient than an equal allocation that allocates the
rest of the spare parts equally near the center. This effect is caused by the availability
of the center machine, as it has already reached 0.9928 and, therefore, additional spare

parts are useless.

We now consider the case of unbalanced flow lines. The results in Table 11 tend in
a similar direction. To obtain the results, we increased the failure rate of the second
machine by 20% such that it becomes the bottleneck in the flow line. The first two
groups of cases (1 to 6 and 7 to 12) indicate that the best position (in terms of
throughput increase) for an additional spare would be the second machine. Only in the
third group (cases 13 to 18), we observe that the center machine should receive an

additional spare part. However, the isolated availabilities are already very similar.

The observations above can be shown to apply to a large set of similar situations.
For this purpose, we have again created random sets of flow lines. A random sample

of all stochastic parameters also means a massive sample of positions for different
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Table 10. Different spare part allocations along the flow line. Asterisks indicate that
T Pgec is included in the 95% confidence interval of the simulation result;
I=50C;=10,pu; =1,A =0.02,7, =005 withi € Z,5 € J.

Case Q1 Q2 Q3 Qi Qs iAVI iAVe  iAVy AV, iAVs  TPyn TPac ODdecssim  Afcisim HW

1 1 1 1 1 1 0.7143 0.7143 0.7143 0.7143 0.7143 0.4194 0.4163 —0.0031 —0.0074 0.0045*
2 2 1 1 1 1 0.9459 0.7143 0.7143 0.7143 0.7143 0.4434 0.4411 —-0.0023 —0.0051 0.0037*
3 1 2 1 1 1 0.7143 0.9459 0.7143 0.7143 0.7143 0.4558 0.4678 0.0121 0.0264 0.0053
4 1 1 2 1 1 0.7143 0.7143 0.9459 0.7143 0.7143 0.4583 0.4658 0.0075 0.0164 0.0023
5 1 1 1 2 1 0.7143 0.7143 0.7143 0.9459 0.7143 0.4553 0.4748 0.0195 0.0428 0.0027
6 1 1 1 1 2 0.7143 0.7143 0.7143 0.7143 0.9459 0.4451 0.4412 —0.0039 —0.0089 0.0045*
7 2 2 2 2 2 0.9459 0.9459 0.9459 0.9459 0.9459 0.7617 0.7709 0.0092 0.0120 0.0038
8 3 2 2 2 2 0.9928 0.9459 0.9459 0.9459 0.9459 0.7752 0.7806 0.0054 0.0069 0.0023
9 2 3 2 2 2 0.9459 0.9928 0.9459 0.9459 0.9459 0.7815 0.7889 0.0074 0.0095 0.0022
10 2 2 3 2 2 0.9459 0.9459 0.9928 0.9459 0.9459 0.7829 0.7896 0.0067 0.0085 0.0032
11 2 2 2 3 2 0.9459 0.9459 0.9459 0.9928 0.9459 0.7790 0.7861 0.0071 0.0091 0.0043
12 2 2 2 2 3 0.9459 0.9459 0.9459 0.9459 0.9928 0.7730 0.7804 0.0074 0.0096 0.0041
13 3 3 3 3 3 0.9928 0.9928 0.9928 0.9928 0.9928 0.8567 0.8577 0.0011 0.0013  0.0025*
14 4 3 3 3 3 0.9993 0.9928 0.9928 0.9928 0.9928 0.8577 0.8591 0.0014 0.0016  0.0029*
15 3 4 3 3 3 0.9928 0.9993 0.9928 0.9928 0.9928 0.8574 0.8605 0.0032 0.0037 0.0024
16 3 3 4 3 3 0.9928 0.9928 0.9993 0.9928 0.9928 0.8578 0.8607 0.0030 0.0035 0.0017
17 3 3 3 4 3 0.9928 0.9928 0.9928 0.9993 0.9928 0.8605 0.8607 0.0002 0.0002 0.0013*
18 3 3 3 3 4 0.9928 0.9928 0.9928 0.9928 0.9993 0.8591 0.8591 0.0000 0.0000 0.0023*
19 4 4 3 2 2 0.9993 0.9993 0.9928 0.9459 0.9459 0.8153 0.8197 0.0044 0.0053 0.0039
20 2 3 5 3 2 0.9459 0.9928 0.9999 0.9928 0.9459 0.8193 0.8316 0.0123 0.0151 0.0031
21 2 2 3 4 4 0.9459 0.9459 0.9928 0.9993 0.9993 0.8160 0.8188 0.0028 0.0034 0.0026

Table 11. Different spare part allocations along the flow line with second machine as
bottleneck. Asterisks indicate that 7' Pgec is included in the 95% confidence
interval of the simulation result; I = 5,C; = 10, p; = 1, Ay = 0.02,; =
0.05withieZ, je J,k=1,3,4,5and Ay = 0.024.

Case Q1 Q2 Q3 Qi Q5 iAV) 1AV, 1AV 1AV, iAVs TPgm  TPgec Adec/sim Aaesslc/sim HW

1 1 1 1 1 1 0.7143 0.6757 0.7143 0.7143 0.7143 0.4073 0.4083 0.0010 0.0024 0.0048*
2 2 1 1 1 1 0.9459 0.6757 0.7143 0.7143 0.7143 0.4358 0.4326 —0.0032 —0.0074 0.0042*
3 1 2 1 1 1 0.7143 0.9278 0.7143 0.7143 0.7143 0.4542 0.4641 0.0098 0.0216 0.0042
4 1 1 2 1 1 0.7143 0.6757 0.9459 0.7143 0.7143 0.4499 0.4607 0.0108 0.0241 0.0042
5 1 1 1 2 1 0.7143 0.6757 0.7143 0.9459 0.7143 0.4446 0.4623 0.0176 0.0396 0.0028
6 1 1 1 1 2 0.7143 0.6757 0.7143 0.7143 0.9459 0.4338 0.4304 —0.0034 —0.0079 0.0049*
7 2 2 2 2 2 0.9459 0.9278 0.9459 0.9459 0.9459 0.7568 0.7632 0.0065 0.0085 0.0026
8 3 2 2 2 2 0.9928 0.9278 0.9459 0.9459 0.9459 0.7662 0.7735 0.0073 0.0096 0.0029
9 2 3 2 2 2 0.9459 0.9886 0.9459 0.9459 0.9459 0.7764 0.7925 0.0162 0.0208 0.0039
10 2 2 3 2 2 0.9459 0.9278 0.9928 0.9459 0.9459 0.7729 0.7815 0.0086 0.0111  0.0024
11 2 2 2 3 2 0.9459 0.9278 0.9459 0.9928 0.9459 0.7726 0.7776 0.0050 0.0064 0.0026
12 2 2 2 2 3 0.9459 0.9278 0.9459 0.9459 0.9928 0.7655 0.7719 0.0064 0.0084 0.0033
13 3 3 3 3 3 0.9928 0.9886 0.9928 0.9928 0.9928 0.8541 0.8560 0.0020 0.0023 0.0030*
14 4 3 3 3 3 0.9993 0.9886 0.9928 0.9928 0.9928 0.8581 0.8574 —0.0007 —0.0008 0.0026*
15 3 4 3 3 3 0.9928 0.9986 0.9928 0.9928 0.9928 0.8590 0.8605 0.0015 0.0018 0.0016*
16 3 3 4 3 3 0.9928 0.9886 0.9993 0.9928 0.9928 0.8571 0.8611 0.0040 0.0047 0.0025
17 3 3 3 4 3 0.9928 0.9886 0.9928 0.9993 0.9928 0.8566 0.8582 0.0017 0.0019 0.0021*
18 3 3 3 3 4 0.9928 0.9886 0.9928 0.9928 0.9993 0.8579 0.8574 —0.0005 —0.0006 0.0018*
19 4 4 3 2 2 0.9993 0.9986 0.9928 0.9459 0.9459 0.8143 0.8209 0.0066 0.0081 0.0029
20 2 3 5 3 2 0.9459 0.9886 0.9999 0.9928 0.9459 0.8185 0.8312 0.0128 0.0156  0.0024
21 2 2 3 4 4 0.9459 0.9278 0.9928 0.9993 0.9993 0.8049 0.8083 0.0034 0.0042  0.0032
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bottleneck machines. Because of the evaluative nature of the method presented in this
chapter, an additional optimization methodology cannot be reasonably described and
analyzed in our setting and shall be subject to future research. Hence, we must reduce
the complexity by randomly changing one specific machine's parameters. Thereby,
the bottleneck can be identified and enables us to investigate the impact of different
bottleneck positions on reasonable spare part allocations. The parameter ranges are as
follows for I = 5 and a bottleneck i, € {1,...,5}

C; =20,Q; = 2,11; = 1, \; = 0.005,~; = 0.05 VieJ.ieI\{i} (45)
1, € [0.8,0.9], \;, € [0.0055,0.006],7;, € [0.04,0.045] (46)

To produce noticeable changes, we worsen (increase or decrease, respectively) the
parameters by a minimum of ten percent and again up to 20 percent. Thus, we have
five machines, whereby four machines are similar, and one machine is the bottleneck.
We created 500 sets of parameters for each bottleneck machine, i.e., 2,500 instances in
total. We used the same random set for each of the machines and evaluated which
spare part allocations yield the highest throughput. We compare which of the cases with
one additional spare part at one of the five machines performs best, e.g., )1 = 3 and
Qi =2,1=2,3,4,5. In all cases, the additional spare part allocated at the bottleneck
position yields the highest throughput.

Observation 3.2. The best position for an additional spare part for a flow line with a
bottleneck is the stock point near it. This positioning leads to the highest increase in

throughput.

This outcome alone is not surprising. However, quantifying the system behavior creates

the possibility of later including cost considerations for optimization purposes.

Finally, the new possibilities to achieve target throughputs are investigated with the
help of the examples of five-machine lines shown in Table 12. Cases Al and A2 plus B1
to B3 are chosen to guarantee a target throughput of 80% and 86%, respectively. Small
deviations can occur due to the discrete values of the buffer levels and spare part stocks.
There are two main results. First, it is clear that spare parts drastically influence the
performance of the flow line. In the case A1, not a single spare part is in stock, whereas
in the case A2, the base-stock level for the spare parts is increased to one. As a result,
the buffer capacity can be reduced by more than 86% from 45 to 6 units per buffer,
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Table 12. Different flow lines with similar throughput. Asterisks indicate that 7" Pgyec
is included in the 95% confidence interval of the simulation result; I =
51 =1, =0.005,v =0.05with: e Z,j € J.

Case Oj Qz ZAV; TPsim TPdec Adec/sim AEjeelc/sim HW

Al 45 1 09091 0.7951 0.8016 0.0065 0.0082 0.0033
A2 6 2 09955 0.8065 0.8044 —0.0021 —0.0026 0.0029*
B1 120 1 0.9091 0.8581 0.8603 0.0021 0.0025 0.0052*
B2 10 2 09955 0.8592 0.8614  0.0022 0.0026  0.0022*
B3 10 3 0.9998 0.8685 0.8693 0.0008 0.0010 0.0023*

while a slightly higher throughput can be achieved. Similarly, cases B1 to B3 support
this finding for a higher target throughput. Second, the latter cases also indicate that
situations exist in which spare parts and buffers should be considered simultaneously.
The additional spare part (case B2 compared to B3) facilitates no buffer reduction at
all. Obviously, a combination of buffers and spare parts is needed to guarantee specific
throughput levels. Spare part provisioning increases machine availability, e.g., from
approximately 0.91 to over 0.99 (case Al compared to A2), but does not hedge against
processing times variability. Therefore, some buffers are still inevitable. These findings

lead to our final observation.

Observation 3.3. There exists a limited trade-off between the buffer capacity and the
spare part base-stock levels. Both are only substitutable to a limited extent, which

heavily depends on the system characteristics.

However, to determine the optimal design of a manufacturing system in terms of
optimal buffer capacities and spare part stock levels, cost considerations must also be

taken into account, which will be a topic for future research.

3.4 Summary

In this chapter, we investigated how performance measures of long flow lines with buffers
as well as spare parts for critical machine components can be determined. To facilitate
the analysis, processing times, component lifetimes, and spare part replenishment times

are assumed to be exponentially distributed. The two-machine flow line is modeled as
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a continuous-time Markov chain, such that the steady-state behavior and the relevant
performance measures can be determined numerically. Using this building block, a
decomposition approach is presented to analyze longer flow lines and to determine
relevant performance measures. We examine the algorithmic behavior as a function
of the flow line parameters. Furthermore, the influence of buffer capacity, spare part

stock sizes, and distribution parameters on the flow line performance are studied.

For the cases we studied, the results of the decomposition approach are very accurate
compared to the exact results from the Markov chain approach for three-machine
lines. The deviations of the throughput are considerably less than 1% in all instances,
and the approximation is fast. Even for worst-case scenarios with unrealistically high
probabilities of simultaneous blocking and starving, the resulting performance measures
differ only to a limited extent. Similar results hold for longer flow lines compared to
a simulation study: The deviations of the throughput are slight for many cases of
practical relevance. Overall, the proposed solution appears to be promising for further
applications and performs very well, especially for economically efficient balanced flow

lines.

We were able to generate some first insights into the allocation of spare parts in longer
flow lines with interstage buffers. When aiming for maximum throughput in balanced
flow lines, spare parts tend to show a bowl effect as buffers do: A centered position for
additional spare parts is more beneficial than positioning it at the beginning or end of
the flow line. Furthermore, we illustrated that situations exist where buffer capacities
and spare parts are substitutable for reaching target throughput levels. However, this

substitution is limited depending on the system's properties.

This chapter lays the foundation to focus on the design problem: How many units of
buffer capacity and spare parts should be provided to achieve a specific throughput?
The proposed model and solution technique are useful elements for answering this

question in the next chapter.
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3.5 Appendix

3.5.1 Proofs for FRIT

Proof for Theorem 1. For machine 7, we can write the throughput as

P(ni_l >0,n; < NZ‘,OZZ‘ > 0)

=pi - P(ni—1 > 0,n; < Nj, o > 1>'P(n 1 >0,n; < Nj, 05 > 0)

P(ni,1 > O,ni < NZ',OQ' > 1)
P(ni_l >0,n; < NZ',O(Z' > O)

=H; - (49)
. <1 — P(ni,l =0,n; < Ni,Oéi > 1) —P<ni,1 >0,n; = Ni,OéZ' > 1)

+ P(ni—1 = 0,n; = Ny, a5 > 1))

(é}) P(ni_l >0,n; < N;,a; > 1)

e P(ni_y > 0,n; < N;,a; > 0) (50)
. (1 — P(ni—1 =0,n; < Njya; > 1) = P(nj—1 > 0,n; = Nj, o > 1))
P(n;—1 > 0,n; < N;,a > 1)
—Hi P(ni—1 > 0,n; < Njya; =0) + P(n;—1 > 0,n; < Njya; > 1) (51)
: <1 — P(nj—1=0,n; < Nj,a; > 1) — P(n;_1 > 0,n; = Ny, o; > 1))

and with the auxiliary quantity

P(ni,l > O,?”Li < Ni,ai > 1)

P(ni_l >0,n; < Ni, o = O) ( )
this reduces to
TP, = A (1 P(ni—y = 0,n; < Ny, > 1)
7 - H/z A,L —I— 1 nz—l - an Zaaz -
— P(n;—1 > 0,n; = N;,a; > 1)) (53)
A2),(A3 Al
P A (1 P00 2 0002 1) P(No0u 2 1,002 0)

(54)

Since the probabilities used for the definition of A; are not known, they are approximated
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in terms of probabilities of the virtual two-machine line. First, by analyzing the two-
machine Markov chain, we find P(n;_; > 0,n; < N;,c; = j) for j =1,2,...,Q; and
i=2,...,1 —1. We start with a level crossing argument in terms of states in which
either no or exactly one functional unit of machine i's critical component is available.
The "boundary” between those two levels (o; = 0 and a; = 1) must be crossed equally

often in the long term:

)\i-P(ni_l >0,77,i <Ni,Oéi: 1) :Ql")/lp(nl_l >0,nl- <Ni,CYi:O) (55)
=4 P(ni,l >0,7LZ’ <N,L',CY,L': 1) :Qlﬁp(nz,l >0,7LZ’ <N1,CY,L:O)

A
(56)

We further find a balance equation for transitions between states with two and one

available component(s) by inserting the previous equation that

Ai- P(ni—1 >0,n; < N;,o,; = 2) (57)
=(Q; — 1)y; - P(nj—1 > 0,n; < Nj,o; = 1)
+(Qi = 1)vi - P(ni—1 = 0,n; < Nj, 0 = 1)
+(Qi — 1)vi - P(ni—1 > 0,n; = Nj, a5 = 1)

< P(ni—1 >0,n; < Ny = 2) (58)
— (Qi - 1)% - P(ni_1 > 0,n; < Ny, = 1)
+(Qi - 1)12 . P(niy = 0,n; < Nj i = 1)
+(Qi — 1)11 - P(niy > 0,n; = Nj,op = 1)

< P(ni_1>0,n; < N;,ap = 2) (59)
=Qi(Q; —1) (11)2 - P(nj—y > 0,n; < N;,a; = 0)

+ (QZ — 1)% . (P(ni_l =0,n; < NZ‘7(){Z‘ = 1) + P(ni_l >0,n; = Nl‘,Oéi = 1))
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Eventually, one can formulate the following induction hypothesis for j = 1,2, ..., Q; —1
P(?’Ll‘_l >0,n; < Ni,Oéi = ]) (60)

i—1 N\
= H (Qz —m) . <ZZ> P(ni_l > O,ni < Ni,Oéi = O)
m=0 7

j—1j-1

SET@-m- (1)

k=1 m=k
(P(?’Lz‘_l =0,n; < Ni7a/7ﬁ = k’) + P(?’Li_l >0,n; = Ni7ai = k’)),

with 3% | := 0. The base case was already done with j = 1,2 since j = 1 is a special

case. Then, the inductive step is as follows:

N P(ng1 > 0,n; < Niyow = j + 1) (61)
= (Qi — j)vi- P(ni-a > 0,n; < Ny, o = j)
+(Qi — J)vi - P(nicy = 0,n; < Ny, = j)
+(Qi — J)vi - P(nic1 > 0,m; = Nj, a; = j)

& P(ni—1 >0,n; < Nj,a; = j+1) (62)
= (Qi —j)% - P(ni—1 > 0,n; < Nj, o = j)
+(Qi —j);y\z - P(ni1 = 0,n; < Ny, o = j)
+(Qi —j)z\i ~P(ni1 > 0,n; = Ny, o = j).

The induction hypothesis (60) yields

P(ni_l >O,ni <Niuai:j+1)

, i-1 N\ J
:(Qz _])% : ( H (Qz _m) : <;\}/Z')]P(7’Lz‘_1 >0,n; < N;, o = 0)
i m=0 i

FY L@ (1)

k=1m=k

(P(ni,l = O,ni < Ni,Oéi = k) +P(ni,1 > O,ni = Ni,ai = k)))
Vi N _
+(Qi_])y'P(nifl =0,n; < Nj, 0 = j)

+(Qi = j)5t - Pluicy > 0,ms = Niay = j),
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whereat the factors can be incorporated into the products such that we obtain

P(ni—l >0,n; < Njya; = j +1)

s i\ G+

H (z> P(ni—1 > 0,n; < N;,;a; = 0)

m=0 )\z

]z_:l (JJﬁ 1 <%>(j+l)k

k=1 m=k AZ

(P(ni—y =0,n; < Ny, = k) + P(ni_y > 0,n; = Njya; = k))
+(Qi — ))\, P(ni1 = 0,n; < Nj, o = j)

A

Finally, the last two summands are put into the sum, and the induction is finished:

P(ni1>0,n; < Nj,o; = j+1)

-1 i\ G+
= H (Qz—m) (;) P(ni,1>0,ni<Ni,ai:0)
m=0 i
U+D)-1(+1)-1 N (G+1D)—k
i
£ I @-m- ()
k=1 m=k )\Z

(P(nj—1 =0,n; < Nj,o; = k)+ P(ni—1 > 0,n; = N;,o; = k’)))

Because (60) was shown to hold for all @Q; > 1and j = 1,2,...,Q;, we can reformulate

P(ni,1 >0,n; < NZ',OQ' > 1) (63)
P(?’Ll 1 >0, ni<Ni,ai:O)

A=

_Z P(n;—1 > 0,n; < N;j,a; = j)
P(n;—1 > 0,n; < N;,a; = 0)

(64)
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and further

=1 m=0 )\Z P(ni_l > 0,7’Li < Ni,&i = O)
Qi j—13

e Te-m- (7))

j=1k
P(ni_l = O,TLZ' < NZ’,Oéi = kﬁ) P(ni_l > O,TLZ' = Ni70éi = k’)
P(ni_l >0,n; < Ni,ai = O) P(ni_l >0,n; < NZ‘,CYZ‘ = 0)

i) ®
Qi j—=1j

e Te-m- (7))

1k
(P(ni_l =0,n; < Ni,Oéi =k
(
Q

) i P(n,_l > O,TLZ‘ :Ni,Oéi = k’)
Pni1>0ni<Ni,ai:O) P(TLZ1>O’I’LZ'<NZ‘,OQ‘:0)
2),(43) Qi Jj— 1 Qi j—1 j-1 Vi j—k
A § ) () XY M@-m- (X)) - (60
j=1m= Z j=1k=1m=k ?
1 0 Qy, Z 0 k) P1<Nz> klvoéd Z 0)
Pia( n>0 a, >0,0)  Pi(n < N;,0,aq4 >0)
O
Proof for Corollary 2. Applying (19) for virtual flow line i yields
TP(i) 1+ A.(
O I+ A6 b, an > 1,04 > 0) (68)

,Uu(2> . Au(z)

because virtual upstream machine M, (i) can never starve. For the virtual downstream

machine of line i — 1, i.e., My(i — 1), we obtain

TP(i—1) 1+Afi—1)
pa(t—1)  Ag(i —1)

=1-Pi1(0,cq > 0,04 > 1) (69)

since this machine cannot be blocked. The constants for the virtual machines are given
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as

)
SE e (5 (o S te) o

Qi j—1 j-1 va(i — 1) gk Pi—1(0, 0 > 0, k)
2.2 H@i—m)'(m—m) '(pil(n>o,auzo,0)>'
(71)

due to (20). Therefore, we use the result of Theorem 1 and reformulate with the help
of (68) and (69)

TP A, +1
‘ A+ =1-Pi1(0,a, > 0,09 >1)+1—Pi(Njya, > 1,04 >0) — 1
Hi i
(72)
TP(i) 14+ A,(i) TPGE—1) 14 Ag(i—1)
= = . . : : -1 (73)
pa(i)  Au() pa(i—1)  Aa(i—1)
The results are then given by applying (12). O

3.5.2 Proof for IOF

Proof for Theorem 3. Definition of virtual machine states. To derive the Interrup-
tion of Flow equations for failure rates and the Resumption of Flow equations for the
replenishment rates, we need to define when the upstream and downstream machines
of the virtual machine lines are said to have a certain number of operational units of

their respective failure-prone component, thus being either up or down.

(D1) M,(7) is down if no material is flowing into the buffer B; due to a failure of

an upstream machine. Hence, M, (i) is down if M; is down or M; is not down,
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but n;—; =0 (i.e., My(i — 1) is starving) and M, (i — 1) is down:

ay(i,t) =0 (74)
& (n;—1(t) > 0 and «a;(t) =0) or

(ni—1(t) =0 and a;(t) > 1 and (i — 1,t) = 0)
Note that a;(t) = 0 implies n;_1 () > 0 since machine M, cannot fail while it
is starved. Similarly, ., (i — 1,t) = 0 and n,;_1(t) = 0 implies that a;(t) > 1,

i.e., we can have more than one operational unit at machine M;.

A single replenishment at either M; (if we have «;(t) = 0) or M, (i) (if we
have «, (i — 1,t) = 0 and n;_1(t) = 0) is sufficient to leave a state with

ay(i,t) = 0 again.

M, (i) is up if we have either a,(i,t) = 1 or a,(i,t) > 1. A state with
ay(i,t) = 1 is one in which a single failure of real machine M; or virtual

machine M, (i — 1) is sufficient to reach a state with «,,(i,t) = 0:

ay(it) =1 (75)
< (ni—1(t) >0 and a;(t) =1) or

(ni—1(t) =0 and o;(t) > 1 and o, (i — 1,t) = 1)

There are other states for which a single failure is not sufficient to reach a
state with o, (7,t) = 0 and that cannot be reached via a single replacement

arrival from states with a,(i,t) = 0:

ay(i,t) > 1 < a,(i, t) # 0 and (i, t) # 1 (76)

Analogously, M(i) is down if no material is flowing out of the buffer B; due to
a failure of a downstream machine. Hence, M;() is down if M;,4 is down or
M, 1 is not down, but ;1 = N;1q (i.e., M,(i+ 1) is blocked) and M,(i + 1)
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is down:
& (nig1(t) < Nigp and a;41(t) = 0) or
(niy1(t) = Nip1 and a;41(t) > 1 and aq(i + 1,t) = 0)
Note that «;,1(t) = 0 implies n;;1(t) < N;y1 since machine M;.; cannot
fail while it is blocked. Similarly, (i 4+ 1,¢) = 0 and n;41(t) = N;41 implies
that o;41(t) > 1, i.e., we can have more than one operational unit at machine
M.
(D4) M,(i) is up if we have either a4(i,t) = 1 or ag(i,t) > 1. A state with

ay(i,t) = 1 is one in which a single failure of the real machine M;,; or the

virtual machine M,(i 4 1) is sufficient to reach a state with «,(i,t) = 0:

aqli t) =1 (78)
< (nip1(t) < Nipq and a4 (t) = 1) or
(nip1(t) = Nip1 and o 1(t) > 1 and ag(i +1,t) = 1)

There are other states for which a single failure is not sufficient to reach a
state with ay(i,t) = 0 and that cannot be reached via a single replacement

arrival from states with «ag4(i,t) = 0:

Oéd(i,t) >1< ()éd<i,t) 7é 0 and Oéd(i,t) 7é 1 (79)
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We start with the IOF condition for M, (i) and apply definition (D1) such that

Au(7)0t = P(ov,(i,t + 0t) = O|n;(t) < Nyi, ap(i,t) = 1) (80)
T P(ny_y(t+6t) > 0,a5(t + 5t) = Ofns(t) < Ny, (i, 1) = 1) (81)
+ P(n;—1(t +t) = 0, a;(t + ) > 1, (1 — 1, + 6t) = 0]
n;(t) < Ny, (i, t) = 1)
D pn_y(t + 6t) > 0, a4t + 6t) = 0|ny(t) < N, (82)
(i1 () > 0,a,(t) = 1) or (ny_1(t) = 0, a;(t) > 1,0 (i — 1,¢) = 1))
+ P(n;—1(t +t) = 0, c;(t + 6t) > 1, (i — 1, + 6t) = 0]
ni(t) < N, (i, t) = 1)
=N\0t + P(n;_1(t + t) = 0, a4 (t + 0t) > 1, (1 — 1, t + 5t) = 0| (83)
ni(t) < Nj, o (i, t) = 1).

To handle the latter probability, we note that there are two possibilities to reach the
state n;_1(t + 0t) = 0,4 (t + 0t) > 1, (i — 1,t + 0t) = 0 subject to the condition
that «,(i,t) = 1. First, machine M,(i — 1) may finish processing during the time
interval [t,t 4 6t] with rate p4(i — 1)dt. Second, machine M, (i — 1) was up at time
point ¢ with no available spare part («, (i — 1,¢) = 1), and the machine fails, which
occurs with rate A, (i — 1)dt. For small values of ¢, the probability that more events

occur is zero.

P(n;_1(t + 0t) = 0, (t + 5t) > 1,0, (i — 1, + 6t) = 0|n;(t) < Ny, (i,t) = 1)
(84)
=P(n;—1(t) = 1, 4(t) > 1, (0 — 1,t) = 0|n;(t) < Ny, (i,t) = 1) - pa(i — 1)0t
(85)
+ P(ni—1(t) = 0,05(t) > 1, e, (2 — 1,8) = 1|n;(t) < Ny, (i,8) = 1) - A (i — 1)dt

Both conditional probabilities in (85) can be simplified by applying the definition of
conditional probabilities and the definition (75) of the virtual machine being in a state

with «,(i,t) = 1 and then using the steady-state probabilities of the virtual two-machine
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line 7 — 1. We obtain

P(n—1(t) =1, 04(t) > 1,0, — 1,t) = 0n;(t) < N;, oy, (i,t) = 1)
:P(ni_l(t) =1,n;(t) < Ny, a;(t) > 1, (i — 1,t) = 0,0, (3, t) = 1) (86)
P(n;(t) < N;,au(i, t) = 1)
(E)P(ni,l(zﬁ) =1,n;(t) < Ny, a;(t) > 1, (i — 1,¢) = 0, (n;—1(t) > 0, 5(t) = 1))
P(ni(t) < N;,au(i,t) = 1)

(87)
_ P(ni_1(t) = 1,n(t) < Ny, ai(t) = 1, (2 — 1,£) = 0)
N P(ni(t) < Ny, (i £) = 1) (88)
@) P(ni_1(t) = 1, 00,(i — 1,8) = 0,a4(i — 1,1) = 1)
B Pt <N-asli ) = 1) (89)
Pi—1(1,0,1) )

" P(ni(t) < Ny, o (3,) = 1)

for the first conditional probability in (85). In a similar way, we proceed for the second

conditional probability in (85):

P(ni—1(t) =0, 0;(t) > 1,0,(i — 1,t) = 1ni(t) < N;, e, (i,t) = 1)
P(ni—1(t) = 0,n;(t) < Nijyau(t) > 1, e,(1 — 1,8) = 1, (4, ) = 1)

= Plna(t) < Ny, (i t) = 1) (91)
(75) 1 _ -

= Pt < Nl D) = 1) - P(n;_1(t) = 0,n,(t) < Niya4(t) > 1,
a,(i—1,t) =1, (ni—1(t) = 0,;(t) > 1, a0, (i — 1,¢) = 1)) (92)
:P(ni_l(t) =0,n;(t) < Ny, (t) > 1, (i — 1,¢) = 1) (93)

P(ni(t) < Ni,au(it) = 1)
(79478)]3(712-,1(15) =0,0,(i—1,t) =1, q(i — 1,¢) > 1) (04)
P(ni(t) < N;, (i t) = 1)

7)1'_1<0, 1, aq 2 1) (95)

" P(ni(t) < Ni,aw(int) = 1)

Consequently, (85) can be reformulated by applying (90) and (95) such that (83) leads

to

o (1,0, 1) prali — 1)6¢ + Py (0, 1, ag = 1) A(i — 1)5¢

Aa(i)8t = Mot + (96)

Finally, the denominator must be expressed in terms of steady-state probabilities of the
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virtual two-machine line 2. We use the FRIT condition
TP() = (i) - (P(ni(t) < Ny, aliyt) > 1)) (97)
= (i) - (P(u(t) < Na(i8) = 1)+ Plmi(t) < Noaa(i,#) > 1)) (98)

and by rearranging the terms and imposing conservation of flow (i.e., TP (i) = TP(i —

1)) and replacing the probabilities, we obtain the following expression:

Plrlt) < Naulist) =1) = 1) - Plos(t) < Niait) > (99)
_ T];(i(i‘)l) — Pi(n < Njyay > 2,04 > 0).  (100)

Finally, (100) can be used to evaluate the denominator of (96) such that we obtain
after dividing by ot

Pi1(1,0,1) pai — 1) + Py (0,1, 0 > 1) Ay (i — 1)

Tfii(i_)l) — Pi(n < Ni, oy > 2,04 > 0)

() =N +

(101)

as the failure rate of the upstream machine in the virtual flow line 2. Analogously, we
can start with the IOF condition for M,(i) and apply definition (D2) such that

Aa(i)5t =P(aq(i, t + 6t) = 0|ni(t) > 0, agli, t) = 1) (102)
D P(nyar (t+6t) < Nivr, i (£ + 6t) = 0[ny(8) > 0, (i, ) = 1) (103)
+ P(niy1(t + 0t) = Niy1,a541(t) > 1 ag(i + 1,¢ + 6t) = 0|
ni(t) > 0,a4(i,t) = 1)
D P(nyar (t+6t) < Niwr, i (£ + 6t) = 0 () > 0, (104)
(iy1(t) < Nip1, aipr(t) = 1) or
(Rit1(t) = Nigpr, i (t) > 1 aq(i + 1,t) = 1))
4 P(nisa(t +6t) = Nijr, aipn (£) > 1, aq(i + 1, + 6t) = 0|
ni(t) > 0, aq(i, t) = 1).
A0t + P(ngsr (t+6t) = Ny, i () > 1, 0q(i + 1, ¢+ 6t) = 0 (105)
ni(t) > 0, aq(i, t) = 1).

Eventually, we obtain a similar result for the failure rate of the downstream machine in
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the virtual flow line 7:

, Pix1(Nig1 — 1,1,0) o (8 + 1) + Pipa (Niga, > 1,1) Agi + 1)
Aa(i) = Aip1 + TP(it1) :
Tl —Pz(n > 0,0éu > O,de > 2)

(106)

]

3.5.3 Proof for ROF

Proof for Theorem 4. First, we want to find expressions for the ROF condition for

virtual upstream machine M, (7). We can reformulate the equation by applying (D1)

and obtain
Qivu(i)0t = P(av,(i,t + 0t) = 1|ni(t) < Ny, a (i, t) = 0) (107)
D Playli,t + 6t) = 1ni(t) < N, (108)
(ni—1(t) > 0,04(t) = 0) or (n;—1(t) =0,4(t) > 1, (i — 1,t) = 0)).
=P(ay(i,t + 0t) = 1|(n;_1(t) > 0,n;(t) < Ny, i (t) = 0) (109)

or (ni—1(t) = 0,n;(t) < Ny, a;(t) > 1, 0, (i — 1,¢) = 0)).

Let A, B and C be events with B and C mutually exclusive, i.e., P(BNC) = 0. Then,

one will find that

P(ANn(BUC)) PANBUANC) PANB) P(ANC)

PABUC) =—"5@0e) ~ PBUC)  P(BUC) T P(BUC)
(110)
_ P(AB)- P(B) | P(A[C) - P(C) (111)
P(BUC) P(BUC)
_ P(AIB)- P(BN (BUC)) | P(AIC) - P(CN(BUC)) (112)
P(BUC) P(BUC)
and finally

P(AIBUC) = P(AIB) - P(BIBUC) + P(A|C) - P(C|BUC).  (113)



3 Evaluation of Flow Lines With Stochastic Processing Times 69

Accordingly, to rewrite (109) as this kind of concatenation of probabilities, we define

C = P(ay(i,t + 6t) = 1n;_1(t) = 0,n;(t) < Ny, au(t) > 1, (1 — 1,¢) = 0)
(116)
D = P(?’Lz_l(t) = O,Tll(t) < Nz,al(t) > 1,0éu(i — 1,t) = 0|7’Lz(t) < Ni,au(i,t) = O)
(117)
and obtain by applying (113)
Qivu(i)st=A-B+C-D. (118)
The probabilities A and C' can easily be rewritten with the replenishment rates
A= Qiot (119)
C = Qi-1u(i — 1)dt (120)
and it is clear that
B=1-D. (121)

For D, we use the definition of conditional probability and definition (D1) to obtain

P(ni—1(t) = 0,n;(t) < Nij,a;(t) > 1, a0,(i — 1,t) = 0, (4, ) = 0)
(74) 1
" P(ny(t) < Ny, o (i,t) = 0) (123)
P(nz_l(t) = O,Tll(t) < Ni, Oéz(t) > 1,0éu(7: — 1,t) = 0,
((nz_l(t) > O, Oéz(t) = 0) or (nl_l(t) = O,O[Z(t) > 1,()4u(l' — 1,t) = 0)))
~ P(nia(t) = 0,mn4(t) < Ny, () > 1,a(i — 1,t) = 0)
B P(n;(t) < Ny, ay(i, t) = 0) (124)
(79),(78) P(ni—1(t) = 0, . (1 — 1, 1) = 0, aq(i — 1,2) > 1)

- Plni(t) < N an(it) = 0) : (125)

(122)

The numerator of this expression can directly be reformulated via the steady-state
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probabilities of the virtual two-machine line i — 1

P(nioy(t) = 0,au(i — 1,8) = 0,aq(i — 1,£) > 1) = P,_1(0,0,aq > 1) (126)

For the denominator, we make use of the FRIT condition
TP(i) = pyu(i) - (P(ni(t) < Ny (i, t) = 1) + P(ni(t) < Ny, o (i,t) > 1))
(127)

& P(ni(t) < Nj,ay(ist) =1) =

— P(ni(t) < N;,a(i,t) > 1) (128)
and the balance equation

Qivu(?) - P(ni(t) < Niyaw(i,1) = 0) = Au(2) - P(n(t) < Ny (4, 1) = 1)

(129)
Au(i)

1EN P(n;(t) < Ni,ap(i,t) =0) = Q)

- P(n;(t) < Ni,an(i,t) =1).

(130)

so that (128) together with the explicit steady-state probabilities of the virtual flow

line 7 lead to
. Au(1) (TP(i) )
P(n;(t) < N;,ay(2,t) =0) = - —~ —Pi(n < Nj,ap, > 2,04 > 0) .
(1) < Mool =00 =50 0 Uity 7 =0

(131)

In summary, (118) can be rewritten as
Qivu(i)ot =A-B+C-D (132)
=A-(1-D)+C-D (133)
=A-A-D+C-D (134)
=A+D(C-A) (135)

. i — O~ , >

(Qi—17u(i — 1)0t — Q;0t)P;_1(0,0, 4 > 1) (136)

= Qiidt + Aa(i) (TP(i)

5o Uy — Piln < Niyay 2 2,00 > o))

and finally after dividing by d¢ and @; and using conservation of flow (i.e., TP (i) =
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TP(i—1))
o (Ltyu(i—1) %) Pi-1(0,0, a4 > 1) a7
’Yu(z) - 71 (z) TP(’L 1 N > 2 > 0 ( )
Qz'Yu(Z ( /—Lu(’L n < “au O[d ))
Equivalently, we obtain
Qit2 1) — 1 (N > 1,0
'Yd(i) = Yi+1 + (/\Qd(j)1 7d(ZTIJ;(iJr)l) %H> PZH( rnte= ) (138)
Qit+17a(%) ( pa(i) /Pz(n > 0,00 20,00 2 2))
for the downstream machine of the virtual line 3. O]

3.5.4 Proof for isolated availability and throughput

Proof for (41). In the following, we omit the index i as we only have one machine.
Thus, we have for a specific machine in total () units of the critical component, a
replenishment rate -, and a failure rate A\. Analyzed in isolation, we can describe this
situation by a Markov chain (Y'(¢));>0 with a one-dimensional state space, which can
be identified as {0,1,...,Q}. Y(t) = a € {1,2,...,Q} means that a total of « units
of the component are available: one inside of the machine and the rest (if applicable)
in stock. Y(t) = 0 represents the situation where the machine is down, and we have @
outstanding orders. The transitions are similar to the two-machine system described by
(10) and (11). We find two possible transition probabilities (for time-points ¢ > 0 and
small 6t > 0):

1. When a failure happens, one unit of the component is used. Hence, we get for

aed{l,...,Q}

PY(t+6t)=a—1Y(t) =a) = A (139)

2. A spare part is replenished with cumulative rate for o € {0,1,...,Q — 1}

PY(t+0t) =a+1Y(t)=a)=(Q —a) -7 (140)
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The steady-state probabilities of this Markov chain are represented by
T = (M, 1, ..., 7Q) (141)

where 7., € {0,1,...,Q}, is the proportion of time the machine stays in state « in
the long run. With a level crossing argument between every two neighboring states and
the normalization equation, one can find the following system of equations to determine

the steady-state probabilities:

ANmp=(Q—(k—1)) v 7 ViE=1,...,Q (142)
Q
Yom=1 (143)
k=0

Isolating 7, in (142) and solving the emerging recursion yields Vk = 1,...,Q

T = % (Q—(k—1)) - m (144)
k Q!
() o (149

This expression for 7, k = 1,...,Q, is inserted in (143) to find that

1:7T0+ZQ:<7>1€-Q!!-7T0

k=1 A (Q_k)
Q ~y k Q!
< 1:k20(>\> O—m ™

Finally, the availability results as

Q k -1
AV =1 —my=1— (,;0 (Z) : (Q?'k)') (146)
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Table 13. Details for the longer flow lines given in Tables 7 and 8. Asterisks indicate
that T'Pyec is included in the 95% confidence interval of the simulation
result; p; = 1, \; = 0.005 (per row: i € Z,j € J).

Case I Cj Qz Vi ZAV; TPsim TPdec Adec/sim AEi?alc/sim HW

1 5 10 2 0.1 0.9988 0.8682 0.8678 —0.0004 —0.0005 0.0026*
2 25 10 2 0.1 09988 0.8332 0.8434 0.0102 0.0122 0.0024
3 45 10 2 0.1 0.9988 0.8283 0.8366 0.0083 0.0101 0.0017
4 5 30 2 0.1 0.9988 0.9456 0.9465 0.0009 0.0010 0.0019*
5 25 30 2 0.1 09988 0.9293 0.9366 0.0072 0.0078 0.0026
6 45 30 2 0.1 0.9988 0.9251 0.9294 0.0043 0.0047 0.0027
7 5 10 3 0.1 1.0000 0.8684 0.8696 0.0011 0.0013 0.0032*
8 25 10 3 0.1 1.0000 0.8349 0.8453 0.0105 0.0125 0.0017
9 45 10 3 0.1 1.0000 0.8314 0.8386 0.0072 0.0086 0.0027
10 5 30 3 0.1 1.0000 0.9474 0.9481 0.0007 0.0008 0.0019*
11 25 30 3 0.1 1.0000 0.9326 0.9383 0.0056 0.0060 0.0019
12 45 30 3 0.1 1.0000 0.9272 0.9311 0.0039 0.0042 0.0022
13 5 10 4 0.1 1.0000 0.8679 0.8696 0.0017 0.0020 0.0020*
14 25 10 4 0.1 1.0000 0.8356 0.8454 0.0098 0.0117 0.0020
15 45 10 4 0.1 1.0000 0.8327 0.8386 0.0060 0.0071 0.0019
16 5 30 4 0.1 1.0000 0.9462 0.9482 0.0019 0.0020 0.0023*
17 25 30 4 0.1 1.0000 0.9293 0.9383 0.0090 0.0097 0.0026
18 45 30 4 0.1 1.0000 0.9272 0.9312 0.0040 0.0043 0.0025
19 5 10 2 0.01 0.9231 0.6917 0.7021 0.0105 0.0151 0.0098
20 25 10 2 0.01 09231 0.5145 0.6220 0.1076 0.2091 0.0042
21 45 10 2 0.01 0.9231 0.4801 0.6149 0.1348 0.2808 0.0048
22 5 30 2 0.01 0.9231 0.7443 0.7711 0.0268 0.0360 0.0077
23 25 30 2 0.01 09231 0.6217 0.7226 0.1009 0.1624 0.0048
24 45 30 2 0.01 0.9231 0.6031 0.7184 0.1154 0.1913 0.0063
25 5 10 3 0.01 0.9873 0.8385 0.8440 0.0055 0.0065 0.0041
26 25 10 3 0.01 09873 0.7613 0.8145 0.0532 0.0699 0.0055
27 45 10 3 0.01 0.9873 0.7318 0.8071 0.0753 0.1029 0.0040
28 5 30 3 0.01 0.9873 0.9126 0.9202 0.0076 0.0083 0.0047
29 25 30 3 0.01 0.9873 0.8586 0.9068 0.0482 0.0561 0.0019
30 45 30 3 0.01 0.9873 0.8443 0.9002 0.0558 0.0661 0.0020
31 5 10 4 0.01 0.9984 0.8661 0.8667 0.0006 0.0007 0.0022*
32 25 10 4 0.01 0.9984 0.8281 0.8419 0.0138 0.0166 0.0031
33 45 10 4 0.01 0.9984 0.8201 0.8351 0.0150 0.0183 0.0020
34 5 30 4 0.01 0.9984 0.9435 0.9449 0.0014 0.0015 0.0025*
35 25 30 4 0.01 09984 0.9231 0.9347 0.0116 0.0126 0.0031
36 45 30 4 0.01 0.9984 0.9178 0.9276 0.0098 0.0107 0.0025
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Table 14. System designs based on system C from Tempelmeier (2003). Slight
deviations due to rate conversion and rounding occur.
i C; i i Qi Vi iTP;
Cc C1 C2 3 C (C1 C2 i cC C1 C2 C3
1 21 0.2575 0.0247 1 2 2 2 0.2 0.2 0.1 0.05 0.8901 0.2558 0.2514 0.2381
2 31 0.2575 0.0273 1 2 2 2 0.2 0.2 0.1 0.05 0.8799 0.2554 0.2502 0.2349
3 20 0.2564 0.0286 1 2 2 2 0.2 0.2 0.1 0.05 0.8749 0.2541 0.2485 0.2322
4 24 02778 0.0299 1 2 2 2 0.2 0.2 0.1 0.05 0.8699 0.2751 0.2686 0.2498
5 19 0.2830 0.0500 1 2 2 2 0.2 0.2 0.1 0.05 0.8000 0.2761 0.2612 0.2264
6 4 0.2727 0.0299 1 2 2 2 0.2 0.2 0.1 0.05 0.8699 0.2701 0.2636 0.2453
7 12 0.2353 0.0083 1 2 2 2 0.2 0.2 0.1 0.05 09602 0.2351 0.2346 0.2326
8 0.2335 0.0083 1 2 2 2 0.2 0.2 0.1 0.05 09602 0.2333 0.2328 0.2308
Table 15. System designs based on system D from Tempelmeier (2003). Slight
deviations due to rate conversion and rounding occur.
i G Ai Qi Vi iTh
D DI D2 D3 D DI D2 D3 D D1 D2 D3

1 8 24000 00010 1 2 2 2 005 005 0.025 0.0125 0.9804 2.3995 2.3982 2.3929
2 25 1.7647 0.0015 1 2 2 2 0.05 0.05 0025 0.0125 0.9709 1.7639 1.7617 1.7534
3 1 1.7910 00005 1 2 2 2 005 005 0.025 00125 0.9901 1.7909 1.7906 1.7896
4 2 1.6901 00010 1 2 2 2 005 005 0.025 0.0125 0.9804 1.6898 1.6888 1.6851
5 16 27273 0.0005 1 2 2 2 0.05 0.05 0025 0.0125 0.9901 2.7272 2.7268 2.7252
6 7 1.6667 0.0015 1 2 2 2 005 005 0.025 0.0125 0.9709 1.6660 1.6639 1.6561
70032 27273 00015 1 2 2 2 0.05 0.05 0025 0.0125 0.9709 2.7261 2.7227 2.7099
8§ 1 1.7647 00015 1 2 2 2 0.05 005 0.025 00125 0.9709 1.7639 1.7617 1.7534
9 8 23077 00015 1 2 2 2 005 005 0.025 00125 0.9709 2.3067 2.3038 2.2930
10 20 2.0000 0.0015 1 2 2 2 005 0.05 0.025 0.0125 09709 1.9991 1.9966 1.9872
11 9 22642 00010 1 2 2 2 005 0.05 0025 00125 0.9304 2.2638 2.2625 2.2575
12 21 18182 0.0015 1 2 2 2 005 005 0.025 00125 09709 1.8174 1.8151 1.8066
13 16 20339 00015 1 2 2 2 005 005 0.025 00125 09709 2.0330 2.0305 2.0209
14 17143 0.0005 1 2 2 2 0.05 0.05 0025 0.0125 09901 1.7142 1.7140 1.7130




Chapter

Design of Flow Lines With
Stochastic Processing

Times

Things are only impossible until they are not.

Captain Jean-Luc Picard

The following chapter is based on a working paper (Sachs et al., 2022b). Based on the
problem formulation, the mathematical model, and solution techniques developed in
Chapter 3, we can continue to answer the design question of how flow lines with buffers
and spare parts should be built optimally. Section 4.1 introduces the optimization
problem. After that, Section 4.2 explains the applied algorithms. We develop two
greedy heuristics, which are later on combined to get a third heuristic. Furthermore, we
apply two common metaheuristics to our problem: simulated annealing and a genetic
algorithm. The numerical study in Section 4.3 starts with validating results for our
heuristics. We compare the (meta)heuristics to optimal results obtained by complete
enumeration for a two-machine line. Besides, we amplify how the different algorithms
perform and which of them are worth further consideration. It turns out that the
greedy approaches outperform the metaheuristics. Finally, Section 4.3 also delivers
managerial insights on the optimal buffer and spare part allocations in flow lines. We
can confirm well-known phenomena from spare parts planning and present novel findings
for interaction effects and joint allocation patterns. Section 4.4 concludes with the

most crucial findings.
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4.1 Description of the optimization problem

Regarding the general description of the flow line and the corresponding assumptions,
we refer to Section 3.1. Building on this, we continue with the optimization problem.
According to Weiss et al., 2019, we formulate the primal buffer and spare part allocation
problem (BSAP) based on the primal BAP as

i TC(C, Q) = DG G+ D Qi (147)

Q€T €T €L

st. TP(C,Q)>TPT", (148)
0< O <Oy <O VieJ (149)
1 <M <Q < Qe VieZ (150)
C; € Ny, Q; €N VieJ,iel (151)

where TC(C, Q) is the objective function, specifically the total costs, TP(C, Q) is the
expected throughput, TP is the target throughput, C™", j € 7, and Q*",i € Z,
(C5** and Q;***) are the lower (upper) bounds for buffer capacities and the number
of units. We use C := (C4,...,Cy) and Q := (Q1, ..., Q) as vector representations
of Cj,j € J, and Q;,i € Z. Naturally, we have Q"™ > 1,Vi € Z, as each machine
contains exactly one unit of its specific component, whereas additional spare parts are

optional.

4.2 Solution methods

The proposed optimization problem (primal BSAP) is NP-hard since it is an extension of
the BAP, known to be NP-hard (Weiss et al., 2019). Thus, we apply different heuristic
approaches. First, we implement two pseudo-gradient-based greedy procedures, inspired
by both greedy approaches from spare parts planning and pseudo-gradient methods, to
solve the BAP. Second, we use two common metaheuristics: simulated annealing and a

genetic algorithm.
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4.2.1 Greedy heuristics

Greedy heuristics are iterative procedures that start with initial values C;(0),j € J,
and @Q;(0),7 € Z. Then, these values are changed iteratively until a termination
criterion is reached. The corresponding values in iteration n € N are C;(n),j € J,
and Q;(n),i € Z.

The first greedy heuristic (greedy with increasing steps — Gl) is presented in Algorithm 2.
It starts with a minimally equipped system C**" .= C™" Q" .= Q™". During the
iterations, the current solution’s neighborhood is searched for a better solution. Each
neighbor originates from the current solution by increasing one single decision variable
by one. Therefore, we define the index k € K :={1,...,2-1 — 1} where k < I means
that the capacity of buffer By, is increased by one and k > [ implies that the base-stock

level Si._;.1 is increased by one. This determines the new state for given £ as

Ci(n, k) :==Cij(n— 1)+ 1(k < I Aj=k), Vn>1lkek,jeJ (152)
Qin k) ==Qin—1)+1(k>INi=k—I1+1) Vn>1kek,icI. (153)

C(n) :== (Ci(n),...,Cz(n)) VYn >0 (154)
Q(n) == (Ql(n) ., Qz(n)) ¥n >0 (155)
C(n, k) = (Cy(n, ) ., Cz(n,k)) Vn>1,kek (156)
Q(n, k) := (Q1(n, k), ..., Qz(n, k)) Vn>1,kek (157)

We choose to increment either one buffer level or the spare part stock by one to
facilitate the maximum throughput-per-cost increase. The following function reflects

this decision:

TP(C(n,k), Q(n,k)) = TP(C(n — 1), Q(n — 1))

k) =
I (k) 1(k < ])-c,l;“frequ]l(kZ])-czFfﬁl

Vn>1,kek (158)

The numerator consists of the throughput change, whereas the denominator considers
the difference in the objective function, which is of this form since only one decision

variable is changed. Eventually, the iterative procedure is based on the following
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Algorithm 2. Greedy heuristic with low starting values and increasing steps
(G)

Result: TP =TP(n),C =C(n),Q = Q(n)

Input: Target throughput TP, starting values C**", Q**", boundaries

Cm Q™M™ costs (e j e T, P iel

/* initialize */
1n+0
2 adjust Q*" such that the isolated machine's throughput > T PT
3 C(0) « Cstat
4 Q(O) — Qstart

/* iterate until feasibility is reached */
5 while TP(n) < TPT do

6 n<n+1
/* check all feasible neighboring increments */
7 fork<1to2-1—-1do
8 Cn—1,k)«< C(n—1)
9 Qn—1,k) + Q(n—1)
10 if £ < I then
11 Ck(n— 1,]{3) < Ck(n— 1,](7)—{—1
12 if Cr(n—1,k) > C"™ then continue
13 else
14 Qk_1+1(n— 1,/6) (—Qk_1+1(n— 1,/{3>+1
15 if Qr_r+1(n—1,k) > Q™ then continue
16 use the Markov approach or decomposition to compute
TP(C(n—1,k),Q(n—1,k))
17 TP(n—1,k) < TP(C(n—1,k),Q(n—1,k))
18 evaluate f(k)
/* find the best increment (if feasible steps exist) */
19 index <— arg max,, f(k)
20 if index does not exist then return
/* store new solution x/
21 C(n) < C(n — 1,index)
22 Q(n) < Q(n — 1,index)
23 | TP(n) <+ TP(n—1,index)

optimization problem:

k* .= argmax f(k). (159)
kek



4 Design of Flow Lines With Stochastic Processing Times 79

Based upon this, we have the state for the next iteration given as
C(n) := C(n,k*) and Q(n) := Q(n, k") Vn>1,k" ek (160)
The algorithm stops as soon as the throughput overshoots the target throughput.

Besides the actual algorithm, we make two adjustments for our implementation. These
are necessary because the decomposition approach suffers from rare numerical problems
for poorly performing system designs. This is the case for the starting values of the
greedy heuristic with increasing steps. First, we allow step sizes of one to five for the
increasing steps if such a numerical issue arises. Second, we modify the starting values
and rerun the algorithm if it does not come up with a feasible solution. We start at
Csert = %™ and allow up to 5™ = 10,5 € J.

Similarly, we propose the second greedy heuristic with the opposite search direction
(greedy with decreasing steps — GD). We list the pseudo-code in the appendix
(Algorithm 3). It starts with a maximally equipped system C**" := C™** Q%" .= Q™**
and decreases either a single buffer level or a single component base-stock level by one
in each of its iterations. Similarly, we choose the decision variable with the minimum
throughput-per-cost decrease and apply the following formulas instead of (152), (153),
and (159):

Ci(n,k):=Cij(n—1)—L(k<INj=k), Vn>1,kek,jeJ (161)
Qiln, k) =Qin—1)—L(k>INi=k—-1+1), Vn>1keK,icI (162)
k* := argmin f(k). (163)

kel

The algorithm stops as soon as the throughput undercuts the target and gives the last

feasible solution as output.

In addition, we apply simulated annealing and a genetic algorithm to check whether
we had become stuck in a local optimum due to the integer optimization problem.
This is a problem the proposed greedy approaches could suffer from in contrast to the

metaheuristics.
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4.2.2 Metaheuristics

Simulated annealing and genetic algorithms are widely used metaheuristics to solve the
BAP (cf. Bulgak et al., 1995; Papadopoulos et al., 2013; Weiss et al., 2019). Since
both metaheuristics are known to work better for unconstrained optimization problems,
we include the target throughput constraint in the objective function (147) by adding a
penalty term and obtain the penalized total cost (P7T'C) as follows:

TPT —TP(C,Q)

TC(C, Q) + 1,000 - if TP(C,Q) < TPT

PTC(C,Q) := TPT
TC(C,Q), else.
(164)
We implement simulated annealing using a logarithmic cooling scale
7(0)
Tn) = ———~ Vn >1 165
(n) log (1 +n) "= (165)

which cools sufficiently slowly to achieve — theoretically — globally optimal solutions
(cf. Geman & Geman, 1984; Hajek, 1988). However, this theoretical property comes
at a high computational cost (Papadopoulos et al., 2013). To react to this issue, we
use a start temperature of 7'(0) := 20 - log(2) degrees and stop when the temperature
reaches 7™ := 2 degrees or after ny., = (2-1 — 1) - 200 iterations. We obtain a

similar neighborhood as for our greedy approaches:

a) increase a single buffer level that is not yet maximal by one (I — 1 neighbors),
b) increase a single base-stock level that is not yet maximal by one (I neighbors),
c) decrease a single buffer level that is not yet minimal by one (I — 1 neighbors),
d) decrease a single base-stock level that is not yet minimal by one (I neighbors),
e) increase all buffer levels which are not yet maximal by five (1 neighbor),

f) decrease all buffer levels which are not yet minimal by five (1 neighbor),

g) increase all base-stock levels which are not yet maximal by one (1 neighbor), and

h) decrease all base-stock levels which are not yet minimal by one (1 neighbor).
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Each of these neighbors has an equal probability of being chosen. There is one
noteworthy difference: we design the latter four neighbors in order to make it easier
to leave local optima. Furthermore, the main idea of simulated annealing is that not
only are improvements selected as the next solution but also worse solutions may be
accepted with a certain probability. This probability depends negatively on the cost
difference: the worse the neighboring solution, the less its probability of being accepted.
Let [* be the chosen neighbor in iteration n > 1 with associated values of the decision
variables C(n,[*) and Q(n,[*). Then, the acceptance probability equals

o (PTC(C(n, I),Q(n,1*)) — PTC(C(n — 1), Q(n — 1))

T ) Vn>1. (166)

Based on this procedure, we apply simulated annealing twice: with low starting values
cstert .— Ccmin QS .= Q™" such that we need to increase the decision variables per
iteration to gain feasibility (SAl), and with high starting values C**" := C™ Q*" :=
Q™ similar to GD with decreasing steps (SAD).

To choose the parameters of our genetic algorithm (GA), we adapt the suggestions by
Spinellis and Papadopoulos (2000b). We iterate over 100 generations and allow 32
individual solutions to exist in each generation. Each individual consists of 2- 1 —1 genes:
the first I — 1 encoding buffer levels, the next I encoding number of component units.
When mating a new individual, we use two solutions as parents for the new solution. At
this point, a one-point crossover is applied, i.e., anindex k € L ={1,...,2- 1 —1}is
chosen randomly and specifies the crossover point for the genes. Additionally, one of the
genes is randomly mutated to take a value in the allowed boundaries. Per generation,
we keep one parent and apply a steady-state selection rule which means that we keep

the individuals with the highest fitness and remove the ones with the lowest fitness.

We start our numerical study by setting up the instance parameters and validating all

of the proposed algorithms against a complete enumeration of the search space.

4.3 Numerical study

Our numerical experiments show that the greedy heuristic with low starting values

and increasing steps suffers from a problem-specific drawback. Due to the expected
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interaction between buffer capacities and base-stock levels, a late base-stock-level
increase may overshoot the target throughput. In order to counter this issue, we
augment the Gl algorithm with a phase of the GD algorithm, which starts with the Gl
solution. In doing so, we can reduce the costs while still obtaining a feasible solution.
An overview of the implemented algorithms is provided in Table 16. We implemented
all algorithms except the genetic algorithm in MATLAB R2022a Update 3 (MATLAB,
2022). For the genetic algorithm, we relied on Python 3.9.13. (Van Rossum & Drake,
2009) and used the package PyGAD 2.17.0 (Gad, 2021).

Table 16. Implemented algorithms and their abbreviation

Algorithm Abbreviation
Complete enumeration (brute-force optimization) ENUM
Greedy heuristic with low starting values and increasing steps Gl

Greedy heuristic with high starting values and decreasing steps  GD

Greedy heuristic with low starting values and increasing steps GID
followed by decreasing steps

Simulated annealing with low starting values SAl
Simulated annealing with high starting values SAD
Genetic algorithm GA

For all parts of this numerical study, we choose the following parameters as our baseline

scenario:

cbuffer _ 1, Cj{“i“ =1, C]r.“ax =25 Vied

J

C:pare — 17 Q;ﬂin — 17 Q;nax — 5 VZ c I (167)

Our further analysis distinguishes between balanced and unbalanced flow lines. A

balanced flow line in this context is a flow line where the conditions
Wi = My AN = ANey Vi = Yk Vi,k el (168)
hold. Hence, our baseline scenario for balanced flow lines sets
wi=1, X\ =0.005, ~; =0.05 Viel (169)

We will refer to the situation reflected in (167) and (169) as the balanced scenario. Since
we want to generate generalizable insights, we mainly consider unbalanced systems

whose parameters are derived from the balanced scenario. For these unbalanced
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flow lines, we allow deviations of up to 5% (processing rates) or 10% (failure and

replenishment rates), respectively. This yields the following range of parameters:
w; € 10.95,1.05], \; € [0.0045,0.0055], -, € [0.045,0.055] VieZ (170)

The actual parameters for each instance are drawn randomly from a continuous uniform
distribution over these intervals. We label these parameter settings given in (167)

and (170) the unbalanced scenario.

We conduct several numerical experiments with this setup to validate our algorithmic
approaches and generate numerical insights. Table 17 lists these experiments, including
the number of instances and highlighting the parameter differences per scenario. Our
experiments will focus on the optimal or the best-found solutions. We will primarily

measure and report the relative cost deviation as

TC(C™e, Q) — TC(C™, Q)

Acos s -
‘ TC(Cre, Q)

(171)

where C?'2. Q"2 is the solution of a specific algorithm, and C™, Q™ describes the
reference-point solution. Furthermore, we measure the total buffer capacity (TBC) and

the total number of component units (TCU) for a given solution as follows

TBC :=TBC(C) =Y _Cj, TCU :=TCU(Q) :=>_Q, (172)

jeT i€l

where we omit the function inputs when they are clear from the context.

This section starts by comparing the different heuristics to optimal results obtained
via complete enumeration. In doing so, we can validate the approximate optimization
procedures’ results and decide which algorithms to consider for further instances. In
all cases, we report results for different target throughput levels. However, the results
carry over to arbitrarily but reasonably chosen target throughput levels. For simplicity,
we present an unbiased choice of target throughput levels that aim to be sufficiently

high to be of practical relevance.
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Table 17. Overview of numerical experiments

Experiment  Aim/setting Number of instances Parameters

1 Validation 500 flow lines I = 2, unbalanced scenario

2 Algorithm selection 500 flow lines I =5, unbalanced scenario

3 Illustrate  integrated 100 flow lines x 3 planning I = 3, unbalanced scenario with
planning modes (integrated, only only buffers: Q"™ = 1,Vi € Z,

buffers, or only spares) only spares: C7"> =1,Vj € J,

4 Influence of different 100 flow lines x 5 cost sce- [ = 5, unbalanced scenario with
cost ratios of all spare narios P € {0.01,0.1,1,10,100}, Vi €
parts compared to A
buffers

5 Influence of different 100 flow lines x 5 cost sce- I = 5, unbalanced scenario with
cost ratios of just one narios ey €40.01,0.1,1,10,100}

spare part compared to
buffers and other spares
6 Influence of bottlenecks 100 flow lines x 5 bottle- [ = 5, balanced scenario with
neck scenarios (bottleneck p, € [0.90,0.95],
My, b € T) and 1 balanced )\, € [0.0040, 0.0045],
flow line for comparison Y € [0.040, 0.045]

4.3.1 Validation

The validation considers small systems with / = 2 machines. Sachs et al. (2022a)
presented an exact numerical solution based on steady-state probabilities of a continuous-
time Markov chain. We implement this evaluative procedure using MATLAB and Python.

The latter implementation is only used for the genetic algorithm.

We generate 500 instances of unbalanced two-machine lines using the unbalanced
scenario (see Table 17, Experiment 1). Furthermore, we can increase ™ =100,Vj €
J, in this small setting. Table 18 shows the results of the optimization approaches for
different target throughput levels and compares the relative deviation to the optimal
solution found by complete enumeration. For each target throughput level, all 500
instances are solved by each of the proposed algorithms. Besides the genetic algorithm,
all approaches were able to find feasible solutions for all instances. Furthermore,
the greedy approaches always found the optimal solution. Both simulated annealing
procedures found the optimal solution in the vast majority of instances. The genetic
algorithm exhibits the poorest performance. In the appendix (Tables 23 and 24), we
provide further evidence of the algorithms' performance by showing the fraction of
cases where each algorithm found the optimal solution and where each algorithm was

outperformed by another.
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Table 18. Results for Experiment 1 (see Table 17): 500 instances of randomly gener-
ated, unbalanced five-machine lines

# infeasible # optimal Computational time (s) Acosts compared to ENUM
TPT  Algorithm solutions solutions ~ Mean Std. error Min  Max Mean  Std. error Min Max
0.80 ENUM 0 500  3.87 0.02 293 5.00
GD 0 500 67.20 0.41 42.57 98.76 0.0000 0.0000 0.0000 0.0000
Gl 0 500  6.27 0.03 4.84 897 0.0000 0.0000 0.0000 0.0000
GID 0 500  6.64 0.03 5.06 9.42 0.0000 0.0000 0.0000 0.0000
SAD 0 493 22.60 0.08 18.72 28.79 0.0020 0.0007 0.0000 0.1667
SAIl 0 492 1.40 0.01 0.78 2.37 0.0022 0.0008 0.0000 0.1667
GA 17 463 9.47 0.08 536 24.41 0.0066 0.0015 0.0000 0.2857
0.90 ENUM 0 500  4.06 0.02 323 5.29
GD 0 500 66.43 0.41 41.97 97.87 0.0000 0.0000 0.0000 0.0000
Gl 0 500 12.20 0.05 9.42 16.25 0.0000 0.0000 0.0000 0.0000
GID 0 500 12.59 0.06 9.73 16.71 0.0000 0.0000 0.0000 0.0000
SAD 0 497 26.90 0.14 19.95 39.80 0.0004 0.0003 0.0000 0.0769
SAl 0 486  4.18 0.10 1.43 16.92 0.0022 0.0006 0.0000 0.0909
GA 71 426 10.94 0.11 7.52 28.46 0.0006 0.0003 0.0000 0.1000

Nearly all algorithms revealed promising results in this first experiment. In the next
step, we shed light on the algorithmic behavior for longer flow lines. Given that the
performance of the genetic algorithm cannot keep up with the others, we do not consider
it further.

4.3.2 Algorithm selection

To decide which algorithms to use eventually, we conduct another numerical experiment
using a similar setting but increase the number of machines to five (I = 5). Again, we
randomly generate 500 flow line instances using the unbalanced scenario (see Table 17,
Experiment 2). All 500 instances are solved for the different target throughput levels
with each algorithm. Table 19 summarizes the results. The three greedy heuristics still
outperform the two simulated annealing approaches. There are only very few instances
where SAD or SAI find better solutions than GD or GID, e.g., for TPT = 0.80, there is
just one instance with SAD finding a better solution than GD and two instances for
SAIl. Additionally, these cases may be due to rare numeric issues of the decomposition
approach described in detail in Sachs et al., 2022a. Tables 25 and 26 in the appendix
list the fraction of cases where each algorithm found the optimal solution and where
each algorithm was outperformed by another one, providing further support for our
findings.
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Table 19. Results for Experiment 2 (see Table 17): 500 instances of randomly gener-
ated, unbalanced five-machine lines

# infeasible # best ~ Computational time (s) Acosts compared to GD
TPT  Algorithm solutions solutions Mean Std. error  Min Max Mean  Std. error Min Max
0.80 GD 0 497  4622.84 39.21 2978.09  9320.24
Gl 0 391 910.48 40.70 97.31 11331.99 0.0074 0.0007 —0.0294 0.1333
GID 0 493  915.31 40.71  100.53 11335.58 0.0003 0.0002 —0.0294 0.0625
SAD 0 36 1601.91 26.00  925.27 10117.67 0.0543 0.0013 —0.0606 0.1563
SAl 0 36 1389.99 29.14  714.69 11147.63 0.0573 0.0014 —0.0294 0.1563
0.90 GD 0 500 4125.11 39.91 2285.86  8956.80
Gl 0 493  1855.37 122.37  291.00 37791.21 0.0002 0.0001 0.0000 0.0179
GID 0 498 1872.80 122.52  296.78 37876.05 0.0001 0.0000  0.0000 0.0161
SAD 0 62 4383.43 48.21 2092.36  8737.69 0.0192 0.0005 0.0000 0.0811
SAI 2 59 4317.01 57.71 1862.81  9854.94 0.0203 0.0005  0.0000 0.1099

Since GD and GID demonstrate exceptional performance, we use these two approaches
for further analyses. We call the best solution found by running both GD and GID an

“efficient” solution since we cannot prove its optimality nor determine the optimality

gap.

4.3.3 Managerial insights

Up to now, there is only limited evidence about how buffer capacities and spare part
base-stock levels interact. This section aims to widen the understanding of how decision-
makers should simultaneously plan buffers and spare parts for manufacturing systems.
Additionally, we are the first to report efficient allocation patterns of spare parts and
buffer capacity for longer flow lines. Due to the lack of analytic results, we base our

findings on numerical results of several thousand flow-line instances.

The first experiment stresses the differences between buffers and spare parts in the
context of manufacturing systems and quantifies their impact. We decide to solve the
same instances in three different modes: a) integrated planning, as proposed by this
study, b) only buffers, and c) only spares. We generate 100 instances of unbalanced
three-machine flow lines (see Table 17, Experiment 3) and solve them with each mode
and different target throughput levels. Table 20 shows the results in terms of the best
solutions’ mean TC, mean TBC, and mean TCU. Furthermore, we compare the costs
with integrated planning. On the one hand, using solely spare parts is only suitable for
a relatively low target throughput. For higher values, only spares can often not reach

the throughput constraint because spare parts alone cannot cope with differences in
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processing times. This effect intensifies for longer flow lines because of their increasing
processing times interference. On the other hand, using only buffers delivers feasible
solutions for higher required throughput. But still, the highest throughput can seldom
be obtained by isolated approaches. Buffers have inherent flexibility and can tackle
breakdowns as well as processing time differences. This flexibility, however, comes
at a cost: compared to the integrated approach, we find not only higher costs but
also a much higher TBC. Hence, we also need much more space to operate such a

manufacturing system. This yields our first observation:

Observation 4.1. Integrated planning of buffer capacities and spare parts can drastically

reduce the buffer capacity while giving a higher throughput.

Table 20. Results for Experiment 3 (see Table 17): 100 instances of randomly gener-
ated, unbalanced three-machine lines under three different planning modes

Acosts compared to Integrated

TPT  Case # solvable Mean TBC Mean TCU Mean TC Mean Std. error Min  Max
0.65  Integrated 100 2.40 5.94 8.34
Only buffers 100 7.94 3.00 1094 0.31 0.01 0.11 0.56
Only spares 81 2.00 6.41 841 0.02 0.01 0.00 0.33
0.75  Integrated 100 5.74 6.00 11.74
Only buffers 100 27.39 3.00 30.39  1.58 0.03 0.73 2.46
Only spares 0
0.85 Integrated 100 13.90 6.00 19.90
Only buffers 7 88.71 3.00 91.71  4.43 0.24 3.31 5.06
Only spares 0

We want to amplify this effect for one instance of Experiment 3 listed in Table 21.
Table 22 shows the results in detail. For this instance, all three planning modes meet
the target throughput constraint. However, integrated planning saves costs of 30%
(25%) compared to only buffers (only spares). Concurrently, the integrated approach
achieves a slightly higher throughput. This example illustrates the possible gains of
integrated planning: by just adding one spare part per stock point (three in total), we

can save seven units of buffer capacity compared to planning with buffers only.

For our next experiment, we focus on the influence of spare part costs. This setup
allows the first insights into the efficient allocation of buffer space and spare parts for
longer flow lines. We generate 100 unbalanced five-machine instances and solve them
for different target throughput levels and cost parameters from cheap, i.e., ¢;** = 0.01,

to expensive spares, i.e., ¢;" - = 100,Vi € Z, (see Table 17, Experiment 4). Figure 9
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Table 21. One instance of Experiment 3 (see Table 17): randomly generated, unbal-
anced three-machine line

Machine @ p; A Yi

1 0.963881652 0.005115477 0.046924179
2 0.982347920 0.005102008 0.045660356
3 1.023938779 0.005098789 0.047708449

Table 22. Results for one instance (see Table 21) of Experiment 3 (see Table 17) and

TPT =0.65
Case TP TC TBC TCU C; Cy Q1 Qs Q3
Integrated 0.6782 9 3 6 2 1 2 2 2
Only buffers 0.6560 13 10 3 5 5 1 1 1
Only spares  0.6500 12 2 w1 1 3 4 3

displays the results. We can observe several things: First, buffer space strongly tends
to be arranged in a bowl pattern, i.e., buffers at or near the center of a flow line are
more effective (cf. Conway et al., 1988 or Hillier et al., 1993). Second, spare parts
reveal the same effect. Its smaller magnitude is caused by the immense impact of an
additional spare in combination with the discrete step sizes. Third, specific interactions
exist between the number of component units and the buffer sizes. Comparing both
allocations for the cases TPT = 0.80 and (very) expensive spares, we notice that a
strong bowl effect for spare parts diminishes the bowl effect for buffers. That concludes

our next observation:

Observation 4.2. Additional spare parts should be allocated near or at the center of a

flow line. Their allocation strongly influences optimal buffer allocations.

Our two experiment highlights efficient flow line designs for cases where units of one
component differ from the others regarding their costs. The most interesting trade-off
is created when we choose the centered machine’'s component to be the unit with
different prices, i.e., ¢ € {0.01,0.1,1,10,100}. Again, we generate 100 unbalanced
five-machine instances and solve them for different target throughput levels and the
specified cost parameters (see Table 17, Experiment 5). Figure 10 depicts the results.
We still observe the bowl pattern for buffers and spares — the latter at least for cheap
units of component 3. In this case, the effect even increases, and the cheap spare is

used as a supplement for the proportionately more expensive spares. More interestingly,
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Figure 9. Mean buffer capacities and mean number of component units, including
standard errors for Experiment 4 (see Table 17): 100 instances of randomly
generated, unbalanced five-machine lines combined with different spare part
costs ¢;7¢ € {0.01,0.1,1,10,100},7s €

we notice that cheap spares are used more frequently, whereas expensive spares are
avoided, which is a well-known effect in spare parts planning. Beyond that, we extend
the established knowledge as we can quantify the substitution effects. On the one hand,
more neighboring spare parts compensate for the lesser usage of expensive spares, e.g.,
for TPT = 0.80 when moving from c3 = 10 to c3 = 100 or for TPT = 0.90 when the
costs change from ¢3 = 1 to ¢3 = 10. On the other hand, additional buffer space can
counterbalance the expensive units of component 3, e.g., for TPT = (.80 when the

costs increase from c3 = 10 to c3 = 100. We summarize these findings as follows:

Observation 4.3. Cheaper spares are stocked more often, and expensive spares less

often. Both cases cause substitution effects for buffer sizes and other base-stock levels.

Our last experiment emphasizes the influence of bottlenecks. The literature reports
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Figure 10. Mean buffer capacities and mean number of component units, including
standard errors for Experiment 5 (see Table 17): 100 instances of randomly
generated, unbalanced five-machine lines combined with different spare
part costs ¢3**° € {0.01,0.1,1,10,100}

that bottlenecks drag attention towards them (Weiss et al., 2019). In order to focus
on the bottleneck itself, we use the balanced scenario of a five-machine flow line. From
this setup, we deduce 100 instances per bottleneck position b € Z. The bottleneck
parameters are randomly generated (see Table 17, Experiment 6). Then these 501
instances (1 balanced flow line without any bottleneck and 100 flow lines for each
bottleneck position) are solved for different target throughput levels. The results are
depicted in Figure 11. For both target throughput levels, we can observe that the
allocation of buffer capacities shifts considerably towards the bottleneck. The same
effect holds for the spare parts, especially for a high target throughput. This leads us

to the following result:

Observation 4.4. The occurrence of bottlenecks changes efficient system designs to

have more buffer capacity and spare parts located close to the bottleneck.
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Figure 11. Mean buffer capacities and mean number of component units, including
standard errors for Experiment 6 (see Table 17): 100 instances of ran-
domly generated, unbalanced five-machine lines combined with different
bottleneck scenarios (bottleneck: none or M, b € T)

In summary, we provide new insights on efficient joint allocations of buffer capacity and
spare part stocks in manufacturing systems. Although some previous evidence carries
over to the new design problem, there are complex interaction effects that make a joint

analysis necessary.

4.4 Summary

This study analyzed the efficient joint allocations of buffers and spare parts in a
manufacturing system with stochastic influences. Processing times, lifetimes of the
machine-specific critical components, and spare part replenishment times were assumed
to be exponentially distributed. Amplifying the existing terminology, we coin the

proposed optimization problem primal buffer and spare part allocation problem (primal
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BSAP). To solve this NP-hard problem, we developed three greedy heuristics, which
are related to pseudo-gradient-based approaches from the buffer planning literature.
Additionally, we implemented two metaheuristics (simulated annealing and a genetic
algorithm). We validated all algorithms using complete enumeration as a benchmark for
two-machine systems and compared them for larger systems. Therefore, we randomly
generated and solved hundreds of flow line instances. The results reveal the well-suited
behavior of the greedy approaches, which deliver superior performance compared to the
metaheuristics. As the evaluative procedure, we rely on the decomposition approach by
Sachs et al. (2022a).

Our research fits well in the body of literature as we developed new insights and
observed common knowledge. Our results explicitly show that the bowl allocation of
buffers is beneficial in most situations. We also observed exceptions as already known
for bottlenecks. In addition, we verified the results from spare parts planning, indicating

that expensive spares are avoided, whereas cheap spares are included numerously.

We studied several situations and based our novel findings on thousands of instances
of unbalanced flow lines. We observed that planners should install additional spares
at or near the center of the flow line even if buffers are already arranged similarly. In
our analysis, this effect was only dominated by the bottleneck’s need for additional
spares. Furthermore, we were able to illustrate and quantify the substitution effects for

expensive spare parts as they can be substituted by buffers, spares, or a combination of
both.

The most questionable assumption is probably about the exponentially distributed
processing times. Typically, processing times are not concerned with high variability as
induced by the exponential distribution (cf. Inman, 1999). Practitioners try to achieve
similar cycle times, which could be modeled by identical processing times of all flow-line

machines.

Additionally, an OEM could also opt for component standardization as it is known to
make cost savings possible (cf. Kranenburg, 2006). Hence, all or some of the machines
could contain an identical critical component. In this case, there would be no need to

have separate stock points for different machines.

We address these two important issues in the next chapter by modeling a two-machine
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flow line with deterministic processing times in discrete time. Moreover, we provide
two models: one with different critical components per machine, whereas the other one

yields standardized components.
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4.5 Appendix

4.5.1 Pseudo code

Algorithm 3. Greedy heuristic with high starting values and decreasing steps
(GD)

Result: TP =TP(n—1),C=C(n—1),Q=Q(n—1)

Input: Target throughput TP, starting values C**" Q**", boundaries

i QM costs e j e T, P ie T

/* initialize x/
1n+0
2 C(0) + Cstat
3 Q(0) « Qe

/* iterate as long as feasibility is not lost */
4 while TP(n) > TPT do

5 n<n+1
/* check all feasible neighboring decrements */
6 fork<1to2-1—1do
7 Cn—1,k)+ C(n—1)
8 Qn—1,k) + Q(n—1)
9 if £ < I then
10 Ck(n — 1,l€) < Ck(n -1, k‘) —1
11 if Cr.(n— 1,k < Cj"™ then continue
12 else
13 Qk_“_l(n— 1,]€> <—Qk_1.+1(n— 1,]6) —1
14 if Qr_r+1(n —1,k) < QM then continue
15 use the Markov approach or decomposition to compute
TP(C(n—1,k),Q(n—1,k))
16 TP(n—1,k) < TP(C(n—1,k),Q(n—1,k))
17 evaluate f(k)
/* find the best decrement (if feasible steps exist) */
18 index <— arg min,, f(k)
19 if index does not exist then return
/* store new solution */
20 C(n) < C(n — 1,index)
21 Q(n) «+ Q(n — 1, index)
22 TP(n) < TP(n —1,index)
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4.5.2 Further results

Table 23. Results for each algorithm on how many optimal solutions were found and
the proportion of these that the other algorithms also found. The results
are based on 500 instances of randomly generated, unbalanced two-machine

lines.
Proportion of also found optimal solutions
TPT  Algorithm # optimal solutions ENUM GD Gl GID SAD SAl GA
0.80 ENUM 500 1.0000 1.0000 1.0000 0.9860 0.9840 0.9260
GD 500 1.0000 1.0000 1.0000 0.9860 0.9840 0.9260
Gl 500 1.0000 1.0000 1.0000 0.9860 0.9840 0.9260
GID 500 1.0000 1.0000 1.0000 0.9860 0.9840 0.9260
SAD 493 1.0000 1.0000 1.0000 1.0000 0.9980 0.9249
SAI 492 1.0000 1.0000 1.0000 1.0000 1.0000 0.9248
GA 463 1.0000 1.0000 1.0000 1.0000 0.9849 0.9827
0.90 ENUM 500 1.0000 1.0000 1.0000 0.9940 0.9720 0.8520
GD 500 1.0000 1.0000 1.0000 0.9940 0.9720 0.8520
Gl 500 1.0000 1.0000 1.0000 0.9940 0.9720 0.8520
GID 500 1.0000 1.0000 1.0000 0.9940 0.9720 0.8520
SAD 497 1.0000 1.0000 1.0000 1.0000 0.9759 0.8511
SAI 486 1.0000 1.0000 1.0000 1.0000 0.9979 0.8477
GA 426 1.0000 1.0000 1.0000 1.0000 0.9930 0.9671
Table 24. Results for each algorithm on the proportion of better solutions found by
the other algorithms. The results are based on 500 instances of randomly
generated, unbalanced two-machine lines.
Proportion of found better solutions
TPT  Algorithm  # solvable instances ENUM GD Gl GID SAD SAIl GA
0.80 ENUM 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GD 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gl 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GID 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SAD 500 0.0140 0.0140 0.0140 0.0140 0.0000 0.0140
SAl 500 0.0160 0.0160 0.0160 0.0160 0.0020 0.0160
GA 500 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400
0.90 ENUM 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GD 500  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gl 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GID 500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SAD 500 0.0060 0.0060 0.0060 0.0060 0.0020  0.0060
SAI 500 0.0280 0.0280 0.0280 0.0280 0.0240 0.0280
GA 500 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060




96

4 Design of Flow Lines With Stochastic Processing Times

Table 25. Results for each algorithm on how many optimal solutions were found and

the proportion of these that the other algorithms also found. The results
are based on 500 instances of randomly generated, unbalanced five-machine
lines.

Proportion of also found best solutions

TPT  Algorithm # best solutions GD Gl GID SAD SAl

0.80 GD 497 0.7847 0.9899 0.0704 0.0704
Gl 391 0.9974 1.0000 0.0818 0.0767
GID 493  0.9980 0.7931 0.0710 0.0710
SAD 36 0.9722 0.8889 0.9722 0.0833
SAl 36 0.9722 0.8333 0.9722 0.0833

0.90 GD 500 0.9860 0.9960 0.1240 0.1180
Gl 493  1.0000 1.0000 0.1258 0.1197
GID 498 1.0000 0.9900 0.1245 0.1185
SAD 62 1.0000 1.0000 1.0000 0.2258
SAl 59 1.0000 1.0000 1.0000 0.2373

Table 26. Results for each algorithm on the proportion of better solutions found by

the other algorithms. The results are based on 500 instances of randomly
generated, unbalanced five-machine lines.

Proportion of found better solutions

TPT  Algorithm  # solvable instances GD Gl GID SAD SAl

0.80 GD 500 0.0020  0.0020 0.0020 0.0020
Gl 500 0.2140 0.2140 0.0220 0.0220
GID 500 0.0100 0.0000 0.0020  0.0040
SAD 500 0.9280 0.8500 0.9200 0.3240
SAl 500 0.9280 0.8620 0.9220 0.3760

0.90 GD 500 0.0000 0.0000 0.0000 0.0000
Gl 500 0.0140 0.0100  0.0000 0.0000
GID 500 0.0040 0.0000 0.0000  0.0000
SAD 500 0.8760 0.8720 0.8740 0.2780

SAIl 500 0.8780 0.8700 0.8740 0.3520
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4.5.3 Numeric values for figures

Table 27. Data for Figure 9, based on Experiment 4 (see Table 17)

Mean number of component units (std. error)

Mean buffer capacities (std. error)
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Table 28. Data for Figure 10, based on Experiment 5 (see Table 17)

Mean number of component units (std. error)
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Mean buffer capacities (std. error)
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Table 29. Data for Figure 11, based on Experiment 6 (see Table 17)

Mean number of component units (std. error)
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Mean buffer capacities (std. error)
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Chapter

Two-Machine Flow Line
With Fixed Cycle Times

The soufflé will either rise or it won't, and there's not a damn thing

you can do about it.

Captain Benjamin Sisko

The following chapter is published in the European Journal of Operational Research
(Kiesmiller & Sachs, 2020). Its main focus is widening the view on the design problem
of flow lines with buffers and spare parts. We want to tackle two important issues:
Get rid of the assumption of exponentially distributed processing times and analyze
the impact of component standardization. The exponential distribution is questionable
when using it for processing times (cf. Inman, 1999). Hence, this effort can be seen
as a robustness check for the previously obtained results. We know that component
standardization can enable cost savings (cf. Kranenburg, 2006). However, we strive
to generate insights into the impact on manufacturing systems. For both issues, we
use two-machine flow lines. Section 5.1 describes the general problem. In Section 5.2,
we introduce a transfer-line model with two machines suffering from breakdowns of
an identical failure-prone critical component. We present the discrete-time Markov
chain model and how to compute steady-state probabilities. Furthermore, we show the
optimization problem, solve it via complete enumeration, and present optimal system
designs regarding buffer capacity and base-stock level. Similarly, Section 5.3 introduces
the mathematical model for a situation with two different critical components. Again,
we generate insights on optimal system designs. Moreover, we illustrate that the
lead-time distribution only impacts the results to a very limited extent and derive
managerial insights on the effects of component standardization. Lastly, in Section 5.4,

we summarize the fundamental results.



100 5 Two-Machine Flow Line With Fixed Cycle Times

5.1 Problem description

We consider a transfer line consisting of two machines in series, which is used to produce
a single discrete product, where the first production step is executed on machine 1, and
afterward, the workpiece has to be processed on machine 2. The processing times on
both machines are constant and equal such that the processing time can be interpreted
as a time unit. Although perfectly identical processing times are hard to achieve, it is
one of the goals of lean manufacturing. Efforts should be invested to achieve balanced
processing times (Linck & Cochran, 1999). Furthermore, the idea of balanced cycle
times is to simultaneously decrease WIP inventories and adjust the production rates
to the customer’'s demand rates (Frandson et al., 2013). This approach can realize

remarkable savings (Frandson & Tommelein, 2014).

In a perfect environment, the transfer line would be able to produce one unit per time
unit. However, it is usually impossible to achieve this throughput due to unexpected
events. In this chapter, we assume that each machine contains one unit of a critical
component, which means that failure of this component leads to a stoppage of the
related machine. We consider operation-dependent failures of the component such that
a component can only fail if the machine is producing. The lifetime of a component is
assumed to be geometrically distributed, and the probability of failure of the component
during the processing of a unit at machine i is denoted as p;, (i = 1,2). This type
of distribution is especially applicable for electronic components because they are not
affected by wear-out effects (Birolini, 2012). Additionally, Bernoulli demand models for
slow-moving spare parts, which are induced by geometrically distributed failure times,
are supported by empiric data (see Syntetos et al., 2012, for an overview of spare parts

demand distributions).

In order to prevent the production stop of one machine from affecting the other machine,
a buffer with a capacity of C' can be installed between the two machines. Thus, if
the second machine stops working due to a failed component, the first machine can
continue to work, and processed workpieces can be temporarily stored in the buffer
until machine 2 is repaired. The first machine only has to stop producing when the
buffer is full for it to get blocked. In this chapter, we consider blocking after service.
This means that the first machine continues the production of the workpiece even if
the buffer is full and gets blocked after the production process is finished. However,

the analysis for blocking before service is similar. In addition, the buffer helps to reduce
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the starving of machine 2 if the first machine fails and there are still workpieces in the
buffer available. We assume that the transportation times for the workpieces from the

machine to the buffer and the other way around are negligible.

After the failure of a component, the machine can only continue to work if the machine
is repaired. In this chapter, a repair-by-replacement strategy is considered, which means
that spare parts are kept close to the transfer line such that the broken part can be
immediately replaced with a new part if there is one in stock. If a spare part is available,
it is assumed that the repair time is negligible such that failure of the component does
not lead to a stoppage of a machine and expensive downtime due to production loss.
Only if no spare part is available does the machine stop working in case of a failed
component, and it remains down until a new part is delivered. During this period, the

workpiece stays at the machine, and processing is resumed after repair.

If a failed component has been replaced by a spare part, a new spare part has to be
ordered to replenish the inventory. Fixed ordering costs are assumed to be negligible
compared to the holding cost of a spare part such that a one-for-one replenishment
policy (Muckstadt, 2005) with base-stock level S; is applied. It is assumed that
the replenishment lead time for a spare part for machine 7 can be modeled with a
geometrically distributed random variable with parameter r;, (i = 1,2). This choice
of the distribution is in line with earlier assumptions regarding the repair times (see,
e.g., Buzacott, 1967; Dallery & Gershwin, 1992) and therefore ensures comparability.
Furthermore, it is known as a conclusion of the Palm—Khintchine theorem that the type
of the distribution does not have a large effect on the performance of the system but
especially the mean value does (Alfredsson & Verrijdt, 1999; Zimmermann & Kiesmiiller,
2019). This issue is also addressed in Section 5.3.3.

We assume the following sequence of events: at the beginning of a time unit, failures
are observed and spare parts delivered if appropriate, while buffer level changes occur
at the end of a time unit. We further assume that if both machines are waiting for
a spare part, machine 2 is repaired first because the output can only be produced if

machine 2 is working.

In order to obtain a high throughput of the unreliable transfer line, a designer can
consider two different design options for the manufacturing system. On the one hand,

he has to determine the size C' of the interstage buffer, which helps to decouple adjacent
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machines. On the other hand, he has to determine how many spare parts to keep in
stock. This decision has an influence on the isolated production rate of a machine,
which can be increased with higher stock levels due to higher machine availability.
Hence, both options can improve the throughput of the system. However, a large buffer
capacity can lead to high WIP, and a large number of spare parts can lead to high
inventory levels, both of which result in high tied-up capital costs. Thus, the planner
has to resolve the trade-off between production output and the high cost of tied-up

capital.

5.2 Analysis of a system with one critical component

Component part standardization can lead to a situation where the same critical compo-
nent is built into each machine of the transfer line. This situation can be encountered
in manufacturing systems using production robots such that sequential processing steps
are carried out using very similar robots (for systems with commonality in spare parts or
machines see, e.g., Kranenburg and Van Houtum (2007) and Kahan et al. (2009) and
for production systems including robots and incorporating cycle times, e.g., Lopes et al.
(2017) and Weckenborg et al. (2019)). According to Okamura and Yamashina (1977),
differences in breakdown rates reduce the utility of buffers. Thus, roughly identical
breakdown rates should be achieved. This is far easier to obtain by incorporating
identical critical components. Therefore, we assume that both machines suffer from
the same failure mode such that we can use p = p; = ps in the following. Since there
is only one type of spare part, there is only one stock point with one base-stock level

S, which also results in » = r; = r5. The system is illustrated in Figure 12.

C
input ° m o] output
B RN =

s

Figure 12. Transfer line with two machines and one critical component




5 Two-Machine Flow Line With Fixed Cycle Times 103

5.2.1 Mathematical model

The system can be modeled as a discrete-time Markov chain, where the state of the
system is denoted by the quadruple (n, s, a;, as). The first component is related to
the number of units in the buffer and at machine 2. Since there is a buffer with a
capacity of C, we have n = 0,1,...,C,C 4 1. In addition, we have to model the
situation where the first machine is blocked, which is done by setting n = C' + 2. The
second component is related to the spare parts and denotes the number of outstanding
replenishment orders. At the beginning of the process, there are S units in stock
and two units in the machines, resulting in a maximum number of outstanding orders
given as S + 2. Finally, o; (i = 1,2) denotes the state of machine i, where a; = 0
means that machine ¢ is down and waiting for a spare part, while a;; = 1 stands for an

operational machine. Summing up, all possible quadruples are given as:

SS={(n,s,a1,02) | 0<n<C+20<s<S+2,a5,a, € {0,1}}  (173)

Note that not all quadruples included in S'S are possible due to our assumptions. Hence,
the impossible states will be identified and excluded to get the state space of the
Markov chain (see (183) below).

In order to derive mathematical expressions for the performance measures, we determine

the steady-state probabilities denoted as
Pp(n, s, ar, az). (174)

We are interested in the throughput of the system, which is defined as the average
number of units produced per time unit. It can be computed by summing up all

probabilities for states where machine 2 is working:

c+2 S C+2
TPp(C,S)=>"> Ppln,s,1,1)+ > Pp(n,S+1,0,1). (175)
n=1 s=0 n=1

The average number of spare parts in stock is given as

c+2 S
S)=>>(5—5)-Pp(n,s,1,1) (176)

=0 s=0

3
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and the average number of workpieces in the system is given as

c+1 S C+1

WIP(C,S)=14+>"> n-Pp(n,s,1,1)+ > n-Pp(n,S+2,0,0)
n=1 s=0 n=1
C+1 C+1
+> n-Pp(n,S+1,0,1)+ > n-Pp(n,S+1,1,0)
n=1 n=1
+(C+1)-Pp(C+2,5+1,1,0) (177)

We formulate the following optimization problem where TP? denotes the target
throughput, and c is the cost-value ratio for a spare part with respect to the cost for a
workpiece in the system, which is normalized to one. Thus ¢ > 1 reflects the situation
where spare parts are more expensive than workpieces and ¢ < 1 where one spare part is
cheaper than a workpiece. In our optimization problem, we also formulate a restriction
for the maximum buffer capacity because many companies only have limited space
available for buffers.

min  TCp(C,5) = WIP(C,8) +c-I(C,S) (178)
st. TPp(C,S)>TP"

O S S S Smax

C,S e Ny

If the base-stock level is chosen as S = 0, then there are no spare parts in stock,
and each failure of a component results in a production stop of the corresponding
machine and a replenishment order for the spare part. If additionally, both machines are
down, then an arriving spare part is used to repair machine 2. Therefore, our system
is different from the system studied in Gershwin (1994), where there is no relation

between the two repair processes.

5.2.2 Analysis of the system

In order to obtain the steady-state probabilities, we have to formulate a system of
equations for all possible states. We start with a discussion of states where both

machines are down. This can only happen if the spare part stock is empty and the
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number of outstanding replenishment orders is equal to S + 2. Since a failed machine
cannot be blocked or suffer from starvation, we obtain C'+1 states where both machines

are down:
SS; ={(n,54+2,0,0)|1<n<C+1}. (179)

When only the second machine is down, and the first is still working, then it can happen
that the buffer capacity is reached and the first machine is blocked. In addition, the
number of outstanding spare parts is equal to S + 1. Furthermore, the first machine
cannot starve, and we know that a state (1,5 + 1,1,0) cannot be reached because a

starving machine cannot fail. This yields:
SSy={(n,S+1,1,0) | 2<n<C+2}. (180)

Similarly, the number of outstanding replenishment orders is equal to S + 1 if only the
first machine is down. In this situation, it can happen that the buffer is running empty,
and the second machine is starving. Furthermore, the state (C'+ 1,5 + 1,0, 1) is not

possible because a blocked machine cannot fail. Thus, we get
SS3={(n,541,0,1) |0 <n<C}. (181)

Finally, starving and blocking cannot be observed when both machines are working,

and the number of outstanding replenishment orders cannot be larger than S.
SSy={(n,s,1,1) | 1<n<C+1,0<s< S} (182)
Summing up, the state space of the Markov chain is given as
SS =955 USS,USS5USS, (183)

and the number of states is given as |SS| = (S + 4)(C + 1). We formulate the
equations for the general situations where C' > 2 and S > 2. The special cases for
smaller values of C' and S can be derived in a similar manner. The balance equations

can be found in the appendix (Section 5.5).

The equations reveal that there is a large difference between the transitions related to
the buffer and the transitions related to the spare parts stock. While only one workpiece

can be transferred to or from the buffer during one unit of time, it can be seen that
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several spare parts can arrive at the stock point at the same time, and up to two spare
parts can be taken out of stock to repair failed machines. Consequently, transitions do
not only occur between neighboring states, making the system equations intractable

for an analytic solution.

5.2.3 Numerical results

Based on the equations formulated above, the steady-state probabilities for each state
as well as the performance measures can be computed numerically. We implemented the
model in MATLAB to solve the optimization problem (178) and computed the optimal
system design (C*, S*) for several instances. We applied a complete enumeration
with C™* = 100 and S™* = 6 because this latter value already leads to a machine
availability of almost 100%. For different target values for the throughput, different
cost-value ratios ¢ and a failure probability of p = 0.1, the optimal system designs are
presented in Table 30.

It can be observed that no buffer is installed between the two machines when spare
parts are cheap compared to the cost of a workpiece (small value for ¢). In order to
reach the required throughput, only spare parts are held in stock. An interstage buffer
is only used for large values of ¢, which means that the costs for holding spare parts
are higher than those for WIP. In addition, if the base-stock level necessary to reach
the target throughput leads to much higher throughput than required, it may be more
beneficial to install buffer capacity in addition to spare parts stock. This effect can be
observed for the instances with T'PT = 0.65, ¢ € {10,50,100} and r = 0.06 or r = 0.1,
or TPT =0.75,c € {10,50,100} and r = 0.14, or TPT = 0.80, ¢ € {1, 10,50, 100}
and r = 0.1, or TPT = 0.90,c € {10,50,100} and » = 0.14. We can conclude
that spare parts stock is mainly used to come close to the target throughput, and
sometimes, depending on the cost value, buffer capacity is used for fine-tuning. The
reason for this is the different effect of an additional buffer capacity or spare part on
the throughput. This is also illustrated in Figure 13a, where the impact of one spare

part on the throughput (Azp(p)) is depicted as a function of the failure probability p
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Table 30. Optimal system designs with one critical component

r=0.06 r=20.1 r=20.14

TPT ¢ (C*S58*) TPp() TCp(-) (C*S*) TPp(-) TCp(-) (C*S*) TPp(-) TCp(-)
0.1 (0,2) 0.6209 1.83 (0,1) 0.6061 1.81 (0,1) 0.7108 1.88

1.0 (0,2)  0.6209 2.13 (0,1) 0.6061 1.99 (0,1) 0.7108 2.13

0.60 10 (0,2) 0.6209 5.04 (0,1) 0.6061 3.75 (0,1) 0.7108 4.69
50 (0,2)  0.6209 17.99 (0,1) 0.6061 11.56 (0,1) 0.7108 16.04

100 (0,2) 0.6209 34.18 (0,1) 0.6061 21.32 (0,1) 0.7108 30.23

0.1 (0,3) 0.7629 1.95 (0,2) 0.7958 1.95 (0,1) 0.7108 1.88

1.0 (0,3) 0.7629 2.58 (0,2) 0.7958 2.51 (0,1) 0.7108 2.13

0.65 10 (7,2) 0.6522 7.23 (8,1) 0.6525 6.29 (0,1) 0.7108 4.69
50 (7,2)  0.6522 19.43 (8,1) 0.6525 13.66 (0,1) 0.7108 16.04

100 (7,2) 0.6522 34.68 (8,1) 0.6525 22.86 (0,1) 0.7108 30.23

0.1 (0,3) 0.7629 1.95 (0,2) 0.7958 1.95 (0,1) 0.7108 1.88

1.0 (0,3) 0.7629 2.58 (0,2) 0.7958 2.51 (0,1) 0.7108 2.13

0.70 10 (0,3) 0.7629 8.91 (0,2) 0.7629 8.09 (0,1) 0.7108 4.69
50 (0,3) 0.7629 37.04 (0,2) 0.7629 21.91 (0,1) 0.7108 16.04

100 (3,3) 0.7775 71.90 (1,2) 0.8037 63.91 (0,1) 0.7108 30.23

0.1 (0,3) 0.7629 1.95 (0,2) 0.7958 1.95 (0,2) 0.8829 2.02

1.0 (0,3) 0.7629 2.58 (0,2) 0.7958 2.51 (0,2) 0.8829 2.80

0.75 10 (0,3) 0.7629 8.91 (0,2) 0.7629 8.09 (6,1) 0.7515 6.74
50 (0,3) 0.7629 37.04 (0,2) 0.7629 21.91 (6,1) 0.7515 17.71

100 (3,3) 0.7775 71.90 (1,2) 0.8037 63.91 (6,1) 0.7515 31.43

0.1 (0,4) 0.8663 2.05 (0,3) 0.9105 2.08 (0,2) 0.8829 2.02

1.0 (0,4) 0.8663 3.18 (1,2) 0.8037 2.94 (0,2) 0.8829 2.80

0.80 10 (0,4) 0.8663 14.44 (1,2) 0.8037 8.48 (0,2) 0.8829 10.54
50 (0,4) 0.8663 64.51 (1,2) 0.8037 33.12 (0,2) 0.8829 44.94

100 (3,4) 0.8765 126.78 (1,2) 0.8037 63.91 (0,2) 0.8829 87.95

0.1 (0,4) 0.8663 2.05 (0,3) 0.9105 2.08 (0,2) 0.8829 2.02

1.0 (0,4) 0.8663 3.18 (0,3) 0.9105 3.22 (0,2) 0.8829 2.80

0.85 10 (0,4) 0.8663 14.44 (0,3) 0.9105 14.67 (0,2) 0.8829 10.54
50 (0,4) 0.8663 64.51 (0,3) 0.9105 65.56 (0,2) 0.8829 44.94

100 (3,4) 0.8765 126.78 (0,3) 0.9105 129.16 (0,2) 0.8829 87.95

0.1 (0,5) 0.9330 2.16 (0,3) 0.9105 2.08 (0,3) 0.9623 2.15

1.0 (0,5) 0.9330 3.92 (0,3) 0.9105 3.22 (0,3) 0.9623 3.64

0.90 10 (0,5) 0.9330 21.56 (0,3) 0.9105 14.67 (4,2)  0.9003 11.91
50 (0,5) 0.9330 99.96 (0,3) 0.9105 65.56 (4,2) 0.9003 45.97

100 (1,5) 0.9357 197.87 (0,3) 0.9105 129.16 (4,2)  0.9003 88.54
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and compared with the impact of buffer capacity on the throughput (A7rp(p)) given as

TPp(0,1) — TPp(0,0)

Arp(p,r) = TP0.0) -100% (184)
TPp(C,0) — TPp(0,0
Arp(p,r) = ol %;D(O O)D( 9 00% (185)

The latter is shown as a function of the failure probability p in Figure 13b for different
values of the buffer capacity C'.
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Figure 13. Impact of decision variables on throughput depending on failure and repair
probabilities

It can be seen that keeping one spare part in stock has a much larger effect than having
one unit of buffer capacity. However, ten or fifty additional units of buffer capacity also

cannot achieve the same throughput increase as just one spare part.

The results in Table 30 also suggest that there is another reason for installing a buffer to
guarantee a specific target throughput when spare parts are very expensive. Especially
for r = 0.06 and TPT > 0.7, the optimal design includes positive buffer capacity for
¢ = 100. This can be explained by the impact of buffer space on the average spare
parts stock. More buffer capacity leads to less starving and blocking and, therefore, to
a higher machine productivity. Thus, there are more opportunities to fail, and more
spare parts are needed. This reduces the average stock on hand of spare parts. When
spare parts are very expensive, this reduction in holding costs also compensates for the
higher WIP-related costs and is optimal for designing a system with spare parts and
buffers. However, the relative difference in cost to an optimal system without a buffer

is quite small in such situations because this effect is small. This is completely different
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in situations where a buffer is used instead of an additional spare part. In these cases,
it can be very expensive if only spare parts are used to avoid long machine downtimes.
For example, the relative cost difference between systems (4,2) and (0, 3) in case of
¢ =100 and r = 0.14 is 90%. Thus, we can conclude that it is necessary to optimize

the base-stock level and buffer capacity simultaneously.

5.3 Analysis of a system with two critical components

In situations where machines have two diverse critical components, there are different
failure modes for each machine, and two stock points are needed with base-stock levels
S1 and S5. Hence, we use p; as the probability of a failure of component i during the
processing of a unit at machine ¢ and r; for the probability that a replenishment order
arrives at stock point i (i = 1,2). All other assumptions mentioned in Section 5.1 still

hold. The system is presented in Figure 14.

input )

C
0
— M B M,
N

(]

output

|1 [P

v

Figure 14. Transfer line with two machines and two critical components

5.3.1 Mathematical model

In line with the former notation, the state of the system is denoted by (1, s1, s2). Again,
the first component is related to the size of the buffer and denotes the number of
workpieces in the system where production on machine 1 is already finished (n =
0,1,...,C +2). In the case of n = 0, the second machine is starving, and the first
machine being blocked is reflected by n = C' + 2. The second and third component
s; denote the number of outstanding replenishment orders of component i (i = 1, 2).
At the beginning of the process, there are S; units of component i in stock, and there

is also one additional unit in the corresponding machine. This gives at most S; + 1
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outstanding orders for each component. If there are S; + 1 outstanding orders for
component %, it implies that machine ¢ is failed and not working. In all other cases,
machine 7 is not failed. Hence, it is not necessary to model a failed machine separately

with «; as required in the situation with one critical component.

Furthermore, not all states are possible. It is easy to see that machine 1 cannot fail

while it is blocked:
SS1 ={(C+2,51+1,s5)]s0 €{0,1,...,5, +1}} (186)
An analogous finding holds for machine 2, which cannot fail while it is starved:
5SSy = {(0,51,59 +1)[s; € {0,1,...,5; +1}} (187)

Due to the system structure, the states with a starving machine 2 and a producing
machine 1 are also impossible because a producing machine 1 would have increased
the buffer.

SS5 ={(0,s1,52)|s1 €{0,...,51},80€{0,1,...,5 +1}} (188)

Conversely, a blocked machine 1 with a producing machine 2 is also impossible since

machine 2 would have decreased the buffer.

575’4: {(C+2,81,82)|81 c {O,...,Sl + 1},82 € {0,1,...752}} (189)

This results in the state space as

SS ={(n,s1,8)|0<n<C+2,0<s5 <S5 +1,0< s, <S5+ 1}

(190)
\ (581U S8, USS; USS;) .
We determine the steady-state probabilities of the system and denote them as
Pn(n, s1,52). (191)

The throughput of the system can be computed again by summing up all probabilities
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for states where machine 2 is working:

C+2851+1 S

TPD C 51752 Z Z Z PD ’fL 51752 (192)

n=1 s1=0 s2=0
The average number of spare parts in stock can be determined as

C+2 51 Sa+1

1(C,81,8) = > > > (S1 —s1)Pp(n, s1, 52) (193)

n=0 s1=0 s2=0

for the first machine and

C+251+1 S

2(C, 51, 9) = > > > (82— 52)Pp(n, 51, 82) (194)

n=0 s1=0 s2=0
for the second machine. The average number of workpieces in the system is given as

C+1851+1 S2+1
WIP(C,5,8) =1+ Z Z Z nPp(n, s, s2)
n=1 s1=0 s2=0
S1+1 .52+1
+ > D (CH1)Pp(CH+2,51,52).

s1=0 s2=0

(195)

We extend the optimization problem from (178) and introduce the cost-value ratios ¢;
for a spare part for component ¢ with respect to the cost for a workpiece in the system.

Summing up, the problem to be solved is given as

Juin TCp(C, Sy, S9) = WIP(C, Sy, Ss) + 111 (C, Sy, S2) + caly(C, Sy, So)
(196)
st. TPp(C,S,,S,) >TP"
0<C < omex
0< S, 8, < gmax
C, 51,5, € Ny

If the base-stock level is chosen as S; = 0, there are no spare parts in stock, and each
broken component has to be repaired before it can be used again. Thus, each failure
of a component implies a machine failure. In this case, the system is equivalent to the
model analyzed by Gershwin (1994).
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The balance equations are obtained in a similar way as before. They are presented in
the appendix (Section 5.5).

5.3.2 Numerical results

The optimal system designs (C*, S}, S5) were determined as a solution of the opti-
mization problem (196), where a complete enumeration was conducted again with
C™max =100 for the buffer capacity and S™** = 6 for the base-stock levels. For different
target values for the throughput and different cost-value ratios ¢y, ¢y the results for a

complete symmetric line are presented in Table 31.

Similar conclusions as in the case where both machines contain an identical component
can be drawn: spare parts are held in stock to guarantee the target throughput, and
the buffer is only installed for fine-tuning or used to increase the operational time of a
machine and reduce the spare parts inventory level. The latter effect can mainly be
observed for expensive spare parts, i.e., high values for ¢q, co, because the small changes
in the average spare parts inventory caused by increased buffer capacity lead to higher
savings for expensive spare parts. The impact of buffer size on the average spare parts

inventories is illustrated in Figure 15a.

Furthermore, we can observe that the optimal base-stock level for component 2 is always
greater than or equal to the one for component 1. To amplify this effect, Figure 15b
depicts the average WIP as a function of the buffer size. As the buffer size increases, so
does the average WIP; however, this effect is considerably more vital for a system with
a higher base-stock level for component 1. The reason for this is the higher availability
of machine 1, which leads to higher buffer usage because workpieces are pushed into
the buffer at a higher rate than workpieces are pulled out of the buffer. Since a higher
WIP results in higher costs, system designs with S; > S5 are only reasonable in specific

situations with noticeably distinct characteristics of the components.

In the next step, we investigate optimal system designs where the second machine is
the bottleneck since the critical component in the machine is less reliable (p, = 0.2).
The numerical results are presented in Table 32, where the probability of failure of

component 2 is doubled compared to component 1.
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Table 31. Optimal system designs for symmetric lines

1 = 0.1000, s — 0.1000 1 = 0.1000, ps — 0.1000 1 = 0.1000, ps — 0.1000
r1 = 0.0600, r2 = 0.0600 r1 = 0.1000, r, = 0.1000 r1 = 0.1400, ry = 0.1400

TPT a e (C7,51,85) TPp() TCp() (C*87,85) TPp() TCp() (C*,57,5;5) TPp() TCp()

0.10 0.10 (0,1,2) 0.6121 1.83 (0,1,1)  0.6906 1.94 (0,1,1) 0.7891 2.00

1.00 1.00 (0,1,2) 0.6121 3.05 (0,1,1)  0.6906 2.78 (0,1,1) 0.7891 2.98

0.60 10.00  10.00 (0,1,2) 0.6121 15.20 (0,1,1)  0.6906 11.16 (0,1,1) 0.7891 12.75

50.00  50.00 (27,1,1)  0.6007 45.10 (1,1,1)  0.6990 48.41 (0,1,1) 0.7891 56.18

100.00  100.00 (27,1,1)  0.6007 74.80 (7,1,1) 0.7311 93.32 (4,1,1) 0.8163 109.77

0.10 0.10 (0,1,4) 0.6568 1.98 (0,1,1)  0.6906 1.94 (0,1,1) 0.7891 2.00

1.00 1.00 (0,2,2) 0.7516 3.62 (0,1,1)  0.6906 2.78 (0,1,1) 0.7891 2.98

0.65 10.00  10.00 (18,1,2)  0.6507 17.55 (0,1,1)  0.6906 11.16 (0,1,1) 0.7891 12.75

50.00  50.00 (18,1,2)  0.6507 68.05 (1,1,1)  0.6990 48.41 (0,1,1) 0.7891 56.18

100.00  100.00 (35,1,2) 0.6578 130.78 (7,1,1) 0.7311 93.32 (4,1,1) 0.8163 109.77

0.10 0.10 (0,2,2) 0.7516 2.05 (0,1,2) 0.7759 1.98 (0,1,1) 0.7891 2.00

1.00 1.00 (0,2,2) 0.7516 3.62 (0,1,2) 0.7759 3.49 (0,1,1) 0.7891 2.98

0.70 10.00  10.00 (0,2,2) 0.7516 19.32 (2,1,1) 0.7062 11.99 (0,1,1) 0.7891 12.75

50.00  50.00 (3,2,2) 0.7652 88.83 (2,1,1) 0.7062 48.46 (0,1,1) 0.7891 56.18

100.00  100.00 (12,2,2) 0.7893  172.30 (7,1,1) 0.7311 93.32 (4,1,1) 0.8163 109.77

0.10 0.10 (0,2,2) 0.7516 2.05 (0,1,2) 0.7759 1.98 (0,1,1) 0.7891 2.00

1.00 1.00 (0,2,2) 0.7516 3.62 (0,1,2) 0.7759 3.49 (0,1,1) 0.7891 2.98

0.75 10.00  10.00 (0,2,2) 0.7516 19.32 (14,1,1)  0.7503 17.47 (0,1,1) 0.7891 12.75

50.00  50.00 (3,2,2) 0.7652 88.83 (14,1,1)  0.7503 51.62 (0,1,1) 0.7891 56.18

100.00 100.00 (12,2,2) 0.7893  172.30 (14,1,1)  0.7503 94.32 (4,1,1) 0.8163 109.77

0.10 0.10 (0,2,3) 0.8142 2.10 (1,1,3) 0.8003 2.13 (0,1,2) 0.8594 2.07

1.00 1.00 (0,2,3) 0.8142 4.33 (0,2,2) 0.8962 4.26 (0,1,2) 0.8594 3.79

0.80  10.00 10.00 (0,2,3) 08142 2658  (12,1,2) 0.8004  19.86 (2,1,1) 08052  13.61

50.00  50.00 (20,2,2) 0.8011 92.54 (12,1,2)  0.8004 85.30 (2,1,1) 0.8052 56.39

100.00 100.00 (20,2,2) 0.8011 173.13 (16,1,2) 0.8022 167.07 (4,1,1) 0.8163 109.77

0.10 0.10 (0,3,3) 0.8970 2.26 (0,2,2) 0.8962 2.18 (0,1,2) 0.8594 2.07

1.00 1.00 0,3,3) 0.8970 5.06 (0,2,2) 0.8962 4.26 (0,1,2)  0.8594 3.79

0.85 10.00  10.00 (0,3,3) 0.8970 33.08 (0,2,2) 0.8962 25.07 (0,1,2) 0.8594 21.01

50.00  50.00 (0,3,3) 0.8970 157.62 (0,2,2) 08962 11754  (21,1,1) 0.8502  63.66

100.00  100.00 (6,3,3) 0.9107 312.12 (3,2,2) 0.9074 232.68 (21,1,1) 0.8502 114.86

010 010  (0.3,4) 09292 234 (0,2,3) 09328 226 (0,2,2) 09510  2.24

1.00 1.00 (1,3,3)  0.9000 5.56 (1,2,2)  0.9006 4.76 (0,2,2) 0.9510 4.67

0.90 10.00  10.00 (1,3,3) 0.9000 33.49 (1,2,2)  0.9006 25.49 (0,2,2) 0.9510 28.88

50.00  50.00 (1,3,3) 0.9000 157.66 (1,2,2) 0.9006 117.66 (0,2,2) 0.9510 136.50

100.00 100.00 (6,3,3) 0.9107 312.12 (3,2,2) 0.9074 232.68 (0,2,2) 0.9510 271.02

It is not surprising that a comparison of the results in Tables 31 and 32 leads to the
conclusion that more spare parts are often needed for component 2 or larger buffer
capacity is required or both together if the probability of failure is increasing. However,
in the case of long replenishment lead times and cheap spare parts, we can also observe
a higher base-stock level for the first component (see, for example, the instance with
TPT =0.80,¢; = ¢, = 1.0), which may be necessary to avoid starving of the second
machine. If an additional spare part for component 2 not only compensates for the
higher failure probability but also increases machine availability, it pulls workpieces out
of the buffer faster than machine 1 is supplying units. Thus, it is beneficial to avoid

starvation and increase the availability of machine 1 by adding one spare part.
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Figure 15. Impact of buffer size on inventories; r; = r, = 0.1,p; = p, = 0.1, 5] =
Sy =2

Furthermore, in some instances we observe the same base-stock levels in Tables 31 and 32
with a reduced buffer capacity (e.g., for 71 = ry = 0.14 and TP? = 0.60,0.65,0.70
and ¢; = ¢ = 100). This counterintuitive effect is again driven by the fact that a
decreased buffer size leads to less operational time and a reduced number of failures.
Therefore, even with an increasing failure probability, the spare parts inventory levels

do not have to be increased.

An increasing failure probability of the first component is usually combined with an
increased buffer size, a higher base-stock level for component 1, or a combination of
both, as can be seen in Table 33 where the results for the more unreliable component 1
are presented. A comparison of the results in Tables 31 and 33 also implies that for
low values of ¢; and ¢y it may be optimal to raise the base-stock level not only for
component 1 but also for component 2. This action may be necessary because a larger
spare parts inventory level for component 1 can increase the first machine’s availability
despite the higher failure probability. Thus, the buffer is filled more often, and starvation
of the second machine is reduced, which means that the second machine can fail more
often. To compensate for the increasing number of failures, keeping more spare parts

in stock may be beneficial.

In addition to previous research, we conclude that not only buffer capacity can be used
if the line efficiency is low. Installing buffers and stocking spare parts are possible ways
to increase the efficiency and, thus, the throughput of a transfer line. For unreliable

transfer lines, it is always a good decision to use at least some spare parts, especially for
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Table 32. Optimal system designs for an asymmetric line with a more unreliable
component 2

p1 = 0.1000, ps = 0.2000 p1 = 0.1000, ps = 0.2000 p1 = 0.1000, ps = 0.2000
71 = 0.0600, r5 = 0.0600 71 = 0.1000, r5 = 0.1000 71 = 0.1400, r5 = 0.1400

TP ¢ e (C*,87,S5) TPp() TCp(-) (C*,8;,8) TPp() TCp() (C*, 81, S;5) TPp() TCp()

0.10  0.10 (0,1,4) 06264  1.91 (0,1,2) 0.6920 1.97 (0,1,1) 0.6625  2.02

100 1.00 (0,2,3) 0.6994  3.70 (0,1,2) 0.6920  3.08 (0,1,1) 0.6625  2.85

0.60  10.00  10.00 (3,1,3) 0.6006 17.23 (0,1,2) 0.6920  14.21 (0,1,1) 0.6625 11.15

50.00 50.00  (48,1,2) 0.6004 6430  (19,1,1) 0.6001  54.29 (0,1,1) 0.6625  48.04

100.00 100.00  (48,1,2) 0.6004  97.05 (19,1,1) 0.6001  90.25 (2,1,1) 0.6784  93.61

0.0  0.10 (0,2,3) 0.6994  2.08 (0,1,2)  0.6920 1.97 (0,1,1) 0.6625  2.02

.00 1.00 (0,2,3) 0.6994  3.70 (0,1,2) 0.6920  3.08 (0,1,1) 0.6625  2.85

0.65  10.00  10.00 (0,2,3) 0.6994  19.96 (0,1,2) 0.6920  14.21 (0,1,1) 06625 11.15

50.00  50.00  (32,1,3) 0.6500  72.85 (5,1,2) 0.7251  62.70 (0,1,1) 0.6625  48.04

100.00 100.00  (40,1,3) 0.6535 13550  (12,1,2) 0.7477 119.52 (2,1,1) 0.6784  93.61

010  0.10 (0,2,4) 07725 211 (0,1,3) 0.7631 2.02 (0,1,2) 0.8006  2.04

.00 1.00 (0,2,4) 07725  4.24 (1,1,2) 0.7007  3.61 (0,1,2) 0.8006  3.38

070  10.00  10.00 (1,2,3) 0.7047  20.41 (1,1,2) 0.7007  14.56 (0,1,2) 0.8006  16.75

50.00  50.00 (5,2,3) 07206  91.29 (5,1,2) 07251  62.70 (9,1,1) 0.7015  52.89

100.00 100.00  (12,2,3) 0.7373 175.45 (12,1,2)  0.7477  119.52 (9,1,1) 0.7015  96.38

0.10  0.10 (0,2,4) 07725 211 (0,1,3) 0.7631 2.02 (0,1,2) 0.8006  2.04

.00 1.00 (0,2,4) 07725  4.24 (0,1,3) 07631  3.77 (0,1,2) 0.8006  3.38

075  10.00  10.00 (0,2,4) 07725 2553  (14,1,2) 0.7519  20.34 (0,1,2) 0.8006  16.75

50.00  50.00  (23,2,3) 0.7505  98.40  (14,1,2) 0.7519  64.47 (3,1,2) 0.8229  75.81

100.00 100.00  (23,2,3) 0.7505 178.32 (14,1,2) 0.7519 119.64 (7,1,2) 0.8386 147.46

0.10  0.10 (0,2,5) 08134 217 (0,1,5) 0.8013  2.19 (0,1,2) 0.8006  2.04

100 1.00 (0,3,4) 08382  4.93 (0,2,3) 0.8744  4.45 (0,1,2) 0.8006  3.38

0.80  10.00  10.00 (8,2,4) 0.8009  28.01 (16,1,3) 0.8002  23.42 (0,1,2) 0.8006  16.75

50.00 50.00  (10,2,4) 0.8052 117.69  (16,1,3) 0.8002  97.75 (3,1,2) 08229 7581

100.00 100.00  (22,2,4) 0.8211 226.92 (24,1,3) 0.8029 190.55 (7,1,2) 0.8386 147.46

010  0.10 (0,3,5) 0.8940  2.31 (0,2,3) 0.8744  2.20 (0,1,3) 08553 211

100 1.00 (0,3,5) 0.8940  5.59 (0,2,3) 08744  4.45 (0,1,3) 08553  4.19

085 10.00  10.00 (5,3,4) 0.8516  34.82 (0,2,3) 0.8744 2698  (13,1,2) 0.8507  22.05

50.00  50.00 (5,3,4) 0.8516 151.27 (1,2,3) 0.8795 127.06  (13,1,2) 0.8507  78.07

100.00  100.00 (6,3,4) 0.8533  296.80 (5,2,3) 0.8925 250.62 (13,1,2) 0.8507 148.10

0.0  0.10 (0,4,5) 09249  2.43 (0,2,4) 09203  2.28 (0,2,3) 09444  2.28

100 1.00 (0,4,5) 09249 6.4 (0,2,4) 09203 526 (0,2,3) 09444  5.01

0.90  10.00  10.00 (2,3,5) 09003  39.15 (10,2,3) 0.9009  32.82 (0,2,3) 09444  32.30

50.00  50.00 (3,3,5) 00028 18340  (10,2,3) 0.9009 130.10 (0,2,3) 09444 153.59

100.00 100.00  (10,3,5) 0.9141 361.70  (10,2,3) 0.9009 251.70 (1,2,3) 0.9482  305.04

the second machine. Beyond that, the decision highly depends on costs. In situations
with different machine characteristics, the provisioning of spare parts influences the
best decisions. Additional spare parts can be used to cover differences in breakdown
rates directly. Thus, the effectiveness of the buffer capacity is not necessarily smaller in

systems with different breakdown rates.

These effects illustrate the interdependency of spare part stocks and buffers and explain
why a separate optimization of base-stock levels and buffer capacity may not lead to

the optimal system design.
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Table 33. Optimal system designs for an asymmetric line with a more unreliable
component 1

p1 = 0.2000, p» = 0.1000 p1 = 0.2000, p» = 0.1000 p1 = 0.2000, ps = 0.1000
71 = 0.0600, r5 = 0.0600 71 = 0.1000, r5 = 0.1000 71 = 0.1400, r5 = 0.1400

TP ¢ e (C*,87,S5) TPp() TCp(-) (C*,8;,8) TPp() TCp() (C*, 81, S;5) TPp() TCp()

0.10  0.10 (0,2,3) 0.6112 1.87 (0,1,3) 0.6027  1.87 (0,1,1) 0.6625 1.84

100 1.00 (0,3,2) 06994  3.61 (0,2,1) 0.6920  3.08 (0,1,1) 0.6625  2.67

0.60  10.00  10.00 (5,2,2) 0.6011 16.88  (19,1,1) 0.6001  11.58 (0,1,1) 0.6625  10.97

50.00 50.00  (48,2,1) 0.6004  53.05 (19,1,1) 0.6001  40.35 (8,1,1) 0.6998  46.86

100.00 100.00  (48,2,1) 0.6004 85.80  (31,1,1) 0.6034 7620  (20,1,1) 0.7094  90.04

0.0  0.10 (0,3,2) 0.6994  1.99 (0,2,1)  0.6920 1.97 (0,1,1) 0.6625 1.84

.00 1.00 (0,3,2) 0.6994  3.61 (0,2,1) 0.6920  3.08 (0,1,1) 0.6625  2.67

0.65  10.00  10.00 (0,3,2) 0.6994  19.87 (0,2,1) 0.6920  14.21 (0,1,1) 0.6625  10.97

50.00 50.00  (16,3,2) 0.7433  88.10 (6,2,1) 0.7294  62.40 (8,1,1) 0.6998  46.86

100.00 100.00  (32,3,1) 0.6500 151.30  (13,2,1) 0.7499 118.87  (20,1,1) 0.7094  90.04

010  0.10 (0,3,3) 0.7456  2.03 (0,2,2) 07729  2.00 (0,1,2) 0.7033 1.90

.00 1.00 (1,3,2) 07047  3.94 (1,2,1) 07007  3.54 (0,2,1) 0.8006  3.39

070  10.00  10.00 (1,3,2) 0.7047  20.01 (1,2,1) 0.7007  14.50 (9,1,1) 0.7015  12.07

50.00 50.00  (16,3,2) 0.7433  88.10 (6,2,1) 0.7294  62.40 (9,1,1) 0.7015  46.86

100.00 100.00  (35,3,2) 0.7574 167.68  (13,2,1) 07499 118.87  (20,1,1) 0.7094  90.04

0.10  0.10 (0,3,4) 0.7604  2.11 (0,2,2) 0.7729  2.00 (0,2,1) 0.8006  2.06

.00 1.00 (0,4,2) 07725 427 (0,2,2) 07729  3.72 (0,2,1) 0.8006  3.39

075 1000 10.00  (23,3,2) 0.7505 2437  (14,2,1) 0.7519  19.59 (0,2,1) 0.8006  16.77

50.00 50.00  (23,3,2) 0.7505  88.30  (14,2,1) 0.7519  63.73 (2,2,1) 08170  75.84

100.00 100.00  (35,3,2) 0.7574 167.68  (14,2,1) 0.7519 118.90 (6,2,1) 0.8355 147.70

0.10  0.10 (0,4,3) 08382  2.18 (0,3,2) 08744 217 (0,2,1) 0.8006  2.06

100 1.00 (0,4,3) 0.8382 485 (0,3,2) 0.8744  4.43 (0,2,1) 0.8006  3.39

0.80  10.00  10.00 (8,4,2) 0.8009  28.71 (0,3,2) 0.8744  26.95 (0,2,1) 0.8006  16.77

50.00  50.00 (8,4,2) 0.8009 11846  (16,3,1) 0.8002 107.94 (2,2,1) 08170  75.84

100.00 100.00  (15,4,2) 0.8134 229.25 (16,3,1) 0.8002  200.86 (6,2,1) 0.8355 147.70

010  0.10 (0,4,4) 08617  2.26 (0,3,2) 08744 217 (0,2,2) 08714 212

100 1.00 (0,5,3)  0.8940  5.58 (0,3,2) 08744  4.43 (0,2,2) 08714 415

085 10.00  10.00 (5,4,3) 0.8516  32.28 (0,3,2) 0.8744  26.95 (13,2,1) 0.8507  22.89

50.00 50.00  (13,4,3) 0.8615 148.13 (4,3,2) 0.8900 12646  (13,2,1) 0.8507  78.91

100.00 100.00  (31,4,3) 0.8684 20044  (10,3,2) 0.9009 248.65 (13,2,1) 0.8507 148.94

0.0  0.10 (0,5,4) 09249  2.38 (0,3,3) 09069  2.25 (0,3,2) 09444  2.27

100 1.00 (0,5,4) 09249  6.39 (0,3,3) 0.9060  5.29 (0,3,2) 09444  5.00

0.90  10.00  10.00 (2,5,3) 09003 3890  (10,3,2) 0.9009  29.76 (0,3,2) 09444  32.29

50.00  50.00 (5,5,3) 09069 182.98  (10,3,2) 0.9009 127.04 (0,3,2) 09444 153.58

100.00 100.00  (12,5,3) 0.9162  360.61 (10,3,2)  0.9009 248.65 (3,3,2) 0.9531 304.65

In order to point out that the lead-time assumptions do not reduce the transferability of

these results, a detailed analysis of the lead-time distribution influences is carried out.

5.3.3 Influence of the lead-time distribution

We conduct a simulation study to illustrate the influence of the lead-time distribution.

In each case, we simulate one million time units and as many runs as necessary such
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that the half-width of the two-sided 99% confidence intervals of all four performance
measures gets below 1% of the simulated values, i.e., if a throughput of 0.8 is achieved
by the simulation the half-width has to be smaller than 0.008.

With the use of the exact Markov results, we validate the simulation. The simulated and
exact results for geometric lead-time distributions, i.e., completely identical assumptions,
only differ in the magnitude of stochastic influences. Hence we can assume the simulated

values to be reliable for all analyzed lead-time distributions.

In the following, simulated results for the four main performance measures, which are
average throughput, average WIP, and average spare part inventories for each of the
two components, are presented. We simulated five different lead-time distributions:
constant as well as binomial distributed, and geometric distributed lead times. They all
have the same mean value but different variances, which are given in Table 34. Note
that the expected value is taken as constant with a value of 10. For reasons of clarity
and comprehensibility, we focus on these distributions. However, the results are very

similar for different expected values and their corresponding distribution parameters.

Table 34. Different lead-time distributions

ID Distribution Expected value Variance Coefficient of variation

1  Constant 10 0 0.00
2 Binomial 10 ) 0.22
3 Binomial 10 6 0.25
4 Binomial 10 8 0.28
5 Geometric 10 90 0.95

The graphs in Figure 16 and the boxplots in Figure 17 illustrate the simulation results for
the performance measures for different given system designs and different distributions
of the replenishment lead-times. The results are similar both on the individual and
on the aggregated level. The data clearly shows that the variance of the lead-time
distribution does not influence the performance measures. Thus, only the mean of the
distribution is relevant. Hence, using geometrically distributed lead times to model
our system as a Markov chain does not restrict the informative value of the presented

results.

Because the results do not show any systematic differences, even for a relatively small

number of spare parts and buffer capacity, we must analyze the situation of the boundary
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Figure 17. Impact of variance for different buffer capacities and base-stock levels;
boxplots of 176 instances with p; = ps = r; = ro = 0.1 and for each
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states. Hence, a system without buffers and spare parts is a good starting point to
distinguish between the positive effects of buffer capacity and spare parts. Therefore,
we consider both: on the one hand, a system without spare parts and, on the other
hand, a system without buffers. Figure 18 depicts the relative throughput deviation
between the exact Markov results with geometrically distributed lead times and the

simulated results for the different lead-time distributions, which is calculated as

|TPsim - TPexact|
TPexact

AT, = (197)

The simulated values get closer to the exact values for increasing buffer levels (without

any spare parts) as well as increasing base-stock levels (without any buffers). These
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results are in line with earlier research. Tan (1997) and Tan (1998) analysed a flow-line
with continuous flow of material, zero buffers and time-dependent failures with different
repair time distributions. They found that the repair time variance has no influence
on so-called first-order measures such as throughput or WIP. These results were also
obtained for transfer lines with geometric failure and repair time distributions assuming
time-dependent failures and no inter-station buffers (Tan, 1999). The previous findings
confirm the Palm—Khintchine theorem, which says that the superposition of a large
number of renewal processes, which are not necessarily needed to be Poisson processes,
will behave Poissonian. In the case of time-dependent failures and exponentially
distributed lead times, this is exactly true as even the single processes are Poissonian.
The introduction of operation-dependent failures results in small deviations, which are
shown in Figure 18. Decreasing the probabilities of starving, blocking, and downtimes
through increasing buffer capacity or base-stock levels directly yields better fitting
results as the operation-dependent failures approach time-dependent failures. It is
apparent that spare parts have a much higher effect on the deviation, which is caused
by different lead-time distributions. Thus, we can conclude that the provisioning of
spare parts additionally absorbs variability and flattens the effect of lead-time variability

also in case of operation-dependent failures to zero.

01r 01r
Lead-time distribution Lead-time distribution
0osl o constant 008 D cgnstgnt
' ¢ binomial, Var =5 ' ¢ binomial, Var =5
binomial, Var = 6 binomial, Var = 6
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(a) Without spare parts; S; = S2 =0 (b) Without buffer space; C' =0

Figure 18. Relative throughput deviation; p; = p, =1 =1ry = 0.1

All in all, the lead-time distribution only affects situations where the system performs
very poorly because of missing buffer space and no available spare parts. In systems of
practical relevance, there is no noticeable difference between the different lead-time

distributions.
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5.3.4 Managerial insights

In the last part of our discussion, we compare the results of Tables 30 and 31 in order to
investigate the impact of component part standardization. In addition to the well-known
effects on the unit production cost due to larger lot sizes or lower purchase material

prices, we can observe a positive effect on the system designs.

The most apparent effect is that the number of spare parts held in stock is reduced in
the situation with only one type of component compared to systems with two different
types of critical components. In 82% of the instances, the optimal number of spare
parts in stock diminishes. However, there are no instances with a higher number of
spare parts. This means that inventory pooling of spare parts positively impacts the

optimal system design.

Furthermore, less buffer capacity is needed in a system with one critical component
type when spare parts are relatively expensive. In over 90% of the instances, the buffer
capacity is less than or equal compared to the optimal design with two different types
of components. We can conclude that there is also a pooling effect between the spare

parts inventory and the buffer.

Due to the pooling effects, the costs of the optimal system designs in around 97% of
the instances are much lower if both machines contain the identical critical component.
Thus, our numerical results show the positive effect of component part standardization
on the life-cycle costs of flow lines. Therefore, the planner of a manufacturing system
should not only determine the locations and capacities of buffers but also consider
component commonality and spare parts stocks in order to increase flow line efficiency

and decrease costs.

5.4 Summary

In this chapter, we formulate a new problem where the designer of a flow line has to
determine the required buffer capacity and spare part stock levels. The situations with
one or two different critical components are modeled as a discrete-time Markov chain

in order to obtain the relevant performance measures. Optimal system designs are
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computed, which minimize the average cost for WIP and stocking spare parts while
meeting the required target throughput level.

We use numerical experiments to analyze optimal system designs and show that buffers
are often not needed, especially when the holding costs for spare parts are lower than
those for WIP. The reason for this is the different impact of one spare part or one unit
of buffer capacity on the throughput. One additional spare part can lead to a much
higher increase in throughput than an additional unit of buffer capacity, which explains
why the optimal buffer capacity is equal to zero in 78% of our instances. Thus, we
can conclude from our analysis that the optimization of buffer capacity and spare parts
stock levels has to be done simultaneously. In a more general sense, this means that the
potential of after-sales service should not be neglected when designing a manufacturing

system.

Another finding is related to spare parts planning. A larger buffer leads to longer opera-
tion times due to less starving and blocking, and thus to more failures of components.
This can result in lower spare parts inventory levels such that an increase in buffer
capacity can lead to lower holding costs. On the other hand, it may also be necessary

to increase the base-stock level in order to guarantee the required target level.

Further insights were gained regarding the situation with two different critical compo-
nents. Even if both parts have the same stochastic characteristics, different stock levels
may be required for an optimal system design. In such situations, the higher stock
level is consistently implemented for the critical component of the second machine.
This is justified because the higher stock level leads to higher availability of the second
machine, such that the workpieces are pulled out of the buffer faster, which positively
affects WIP. A higher spare part stock level for the first machine will only push more
workpieces into the buffer and increase WIP, which clearly shows that an optimal system

design requires an adequate balance of the spare parts stock levels.

Finally, the simultaneous optimization of spare parts base-stock levels and buffer capacity
also enables the utilization of pooling effects between spare parts stock and buffers
and helps to reduce investments. Pooling effects are the main reason component part

standardization leads to significant cost reductions.
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5.5 Appendix

5.5.1 Balance equations for Section 5.2

A state where both machines are down can only be reached when there are already at

least .S outstanding replenishment orders:

Pp(C +1,542,0,0) = (1 —r)5"2.Pp(C +1,5+2,0,0)
+ (1 =7y Pp(C+1,5+1,1,0)
+ (1 =r)%p? - Pp(C +1,5,1,1) (198)

For 2 <n < (', we get:

Pp(n, S +2,0,0) = (1 —7)°"-Pp(n,S +2,0,0)
+ (1 =7)5*p-Pp(n,S+1,1,0)
+ (1 =7r)%p-Pp(n,S+1,0,1)
+ (1 =r)%p* - Pp(n,S,1,1) (199)

and for the lower boundary condition, we obtain:

Pp(1,S +2,0,0) = (1 — 7). Pp(1,S +2,0,0)
+ (1 =7)5p-Pp(1,5+1,0,1)
+ (1 =7)p*-Pp(1,5,1,1). (200)

Machine 1 can only get blocked if the buffer is already full:

Pp(C+2,8+1,1,0)= (1L - )% Pp(C+2,5 +1,1,0)
+(1—7)""(1—p)-Pp(C+1,5+1,1,0)

For the internal states where the second machine is down (3 <n < C + 1), we get:

Pp(n, S +1,1,0) = (1 =r)°"* (1 =p) - Pp(n 1,5+ 1,1,0)
+(1=7)°p(1 =p)-Pp(n—1,5,1,1) (202)
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and for the lower boundary state, we obtain:

Pp(2,S +1,1,0) = (1 —7)°p(1 —p) - Pp(1,S,1,1). (203)

If the first machine is down, we get the following for the upper boundary state:

Pp(C, S +1,0,1) = (1 —7)5 (S +2) - Pp(C + 1,5 +2,0,0)
+ (1 =7)r(S+1)p-Pp(C+1,S+1,1,0)
+((1=r)"p(1=p) +r(1 = 1)57'Sp?) - Pp(C +1,5,1,1)
+p*(1—7)" - Pp(C+ 1,5 —1,1,1). (204)

For the internal states with 1 <n < C' — 1, we get:

Pp(n,S+1,0,1) = (1 =) (S +2)-Pp(n+1,5+2,0,0)
+(1—=7)°r(S+1)p-Pp(n+1,5+1,1,0)
+ (=) (1= p) + (S + r(1 = r)°p)
-Ppn+1,541,0,1)
+ ((1 —7)%p(1 —p) +p*r(l — r)S—ls) -Pp(n+1,5,1,1)
+ (1 =7 P(n+1,5 —1,1,1). (205)

The equation for the lower boundary state where machine 2 is starving is given as:

Pp(0,S +1,0,1) = (1 — 7)1 (S +2)-Pp(1,5 +2,0,0)
+ (1 —7)5t - Pp(0,5 +1,0,1)
+ (1 =) (1= p) +p(S + Dr(1 =1)%) - Pp(1,5 +1,0,1)
+ ((1 —7r)°p(1 —p) + p*r(l — T)S_IS> -Pp(1,5,1,1)
+p*(1 = 7)1 Pp(1,8 —1,1,1). (206)

If both machines are working, we must distinguish between the situation where more

than one outstanding spare part order exists and the situation with fewer outstanding
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spare part orders. For 2 < s < S, we get the following for a full buffer:

PD(C +1,s,1, 1) =
p2(1 - T)S_2 ’ 7DD(Cv + 17 S — 27 1a 1)
+ (201 =p) A=) 4P (s = r(1=7)"2) - Pp(C + 1,s = 1,1,1)

+ zij ((1 —p)? <i>ri‘9(1 —7)¥ 4+ 2p(1 — p)r' st (1 —r)*! (S i 1))

S

: PD(C + 17Z‘7 1a 1)
S

+ Z <p27ﬂi—s+2(1 . T)S_2 (s j 2)) . ’PD(C + 17 i, 17 1)
¥ ((1 ~p) (S N 1)r5+1-8<1 ) pl1 = ey (5 + 1))
S s—1
-Pp(C+1,5+1,1,0)

1
+ (Sj )rSHS(l —7)*-Pp(C+2,5+1,1,0)

<S+2
+

S

>TS+2S<1 — 1) Pp(C+ 1,5 +2,0,0). (207)
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For 2 < n < C, we obtain:

Pp(n,s, 1,1) =
p*(1—r)*"2-Pp(n,s —2,1,1)
+ (219( —p) (A =7 (s — Dr(1 - 7“)5_2) Pp(n,s —1,1,1)

£y (<1 - p>2© P =) 2p(1 = )T (L >( | >>

i=s s—1

+§S: prriet(1 —T)S_2< ! )) -Pp(n,i, 1,1)

p 5—2
S+1 s s S+1 (s s
+ (( . )TS+1 (1—r) (1—p)+p<8_ 1>TS+1 =D(1 —7) 1)

(S :— 1>7’S+18(1 _ 7”)8(1 _ p) +p<§j11> 7nSJrlf(sfl)(l _ 7a)sl)

PD n S+1,1,0)

2
+ <S+ ) S+2-5(1 _ )5 Pp(n, S + 2,0,0). (208)

The lower boundary case is given as:

Pp(l,s,1,1) = p*(1 —r)* - Pp(1l,5s — 2,1,1)
+ (2001 =p) (A =) P (s = Dr(1 = 1)) - Po(lis = 1,11)

(
s : |
+ Z ((1 — p)2<;> P — ) 4 2p(1 — p)r (1 — r)5_1< i >>

s—1
* 7>D(lu iv 17 1)

2 i— s+2 s—2 Z . .
+ ( T) (8—2)) PD(LZal?l)

S
N (S + 1) 7,S+1fs(1 _ 7»)3 . PD<O, S+1,0, 1)
S

<S + 1>7,S+1—s(1 _ 7’)8(1 _ p) +p<S +11) TS+1_(S_1)(1 _ T)s—l)
S 5 —

-Pp(1,5+1,0,1)
S+2
S

>r5+2—8(1 —7)*-Pp(1,S +2,0,0). (209)
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For s = 1, the following equation holds:

S+2
S+1

S+1
+ (%

n ((5 N 1)r5<1 1-p) p)

-Pp(C+1,541,1,0)
S

+2 (G) (1=p*(L=r)r* "t +2(1 - p)pr5>

s=1

PD(C+1,1,1,1):< >TS+1(1—T)'PD(C—i-l,S—I—Q,O,O)

)rs(l—r)-PD(C'—|—2,S+1,1,O)

-Pp(C+1,s,1,1)
+2(1—p)p-Pp(C+1,0,1,1). (210)

For 2 <n < (), it holds that:
2
7)D(n: L1, 1) :<S—1i_ )TSJrl(l - 7“) ’ PD(nas+ 27070)

(1Y) p4 ) Pos +110)

+ <(ST 1>7~S<1 )(1-p)+ r5“p> Pp(n.5+1,0,1)

S
2 ((1) (1=p)*(1—r)r* 4201 ‘p)”s> Prlnsdy

+2(1—p)p-Pp(n,0,1,1). (211)
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The lower boundary equation in this situation is given as:

S+2

Pp(1,1,1,1) = ( ]

)rsﬂ(l —r)-Pp(1,5+2,0,0)

+ ((S 1L 1)7“5(1 —r)(1—-p)+ r5+1p> -Pp(1,5+1,0,1)

1
+ (SIL )7‘5(1 —7)-Pp(0,5+1,0,1)

S
> ((g . 1) (1=p)r(1=r)+2(1 —p)pr5> - Pp(l,s,1,1)

+2(1—p)p- Pp(1,0,1,1). (212)

Finally, we have to derive the equations for the situation without outstanding re-
plenishment orders for the spare part stock. The upper boundary equation is given

as:

Pp(C +1,0,1,1) = 972 . Pp(C + 1,5 4+ 2,0,0)
+ 5 Pp(C 42,8 +1,1,0)
+ 751 —p) - Pp(C +1,5 +1,1,0)
S
+(1=p)>*> r*Pp(C+1,s,1,1). (213)

s=0

For 2 <n < C, we get:

PD(nvou 17 1) = TS+2 ’ PD(nu S+ 27070)
+ (1 —p) - Pp(n, S+ 1,1,0)
+ 7“5“(1 —p)-Pp(n,S+1,0,1)
S
+(1=p)*> r* Pp(n,s,1,1). (214)

s=0
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For the lower boundary equation, we obtain:

Pp(1,0,1,1) = 7572 . Pp(1,S +2,0,0)
+ (1 —p) - Pp(1,5 4+ 1,0,1)
+ 75 Pp(0,S +1,0,1)

+(1—p)2§:7“5~73[)(1,s,1,1). (215)

s=0

5.5.2 Balance equations for Section 5.3

The state space leads to a complex variation of balance equations. In particular, the
boundary equations are complex and must follow a set of conditions. Hence, we use a
combined form of all balance equations, which depends directly on these conditions.
This formulation allows for better readability and provides more insights into the problem

structure.

Before setting up the balance equations, some of the characteristics that lead to using
indicator functions should be explained. As only one failure can happen per machine
and period, the number of outstanding orders s; can only increase by a maximum of
one. Conversely, the number of delivered components can take any number from zero
to s;. Hence, the formulation of the balance equations mainly uses (-, sq, $2) as the
state notation for incoming transitions and (-, z1, 22) as the state notation for outgoing
transitions with z; and z, defined accordingly. There are five types of conditions for
indicator functions used in the balance equations, which can be combined for concurrent

validity. Outstanding orders can only be delivered when s; > 0. Therefore we need:
I(s; #0). (216)

If there are S; 4+ 1 outstanding orders and thus machine ¢ is not working due to this
failure, the probability that the machine will not fail has to be adjusted to one, which

requires the following function:

1(z; # S; + 1) in combination with (1 — p,»)]l(zﬁésﬁl). (217)
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The function
1(0< 2z < S;+1) (218)

is used in equations where the number of outstanding orders stays equal. There are
four possibilities to guarantee the same number: a) neither machine fails, b) machine 1
fails and machine 2 does not fail, but one outstanding component 1 is delivered, c) vice
versa, and d) both machines fail with one outstanding component for each component
is delivered. The last three situations require a positive number of outstanding orders

0 < z; and for the corresponding machine to not already be down z; < S; + 1.

Finally,

I(n # 1) and (219)
L(n#C+1) (220)

handle cases, which would lead to blocking and starving when changes in the buffer

level are involved, prohibiting some types of transitions.

For 1 <n < C+1, we get with 0 < s7 < 51,0 < s5 < 95 the balance equations of
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internal states:

PD(”? S1, 82) -

1(s1 # 0,82 # 0)Pp(n,s1 — 1,85 — 1) - <p1p2 (1 =) (1 - r2>821>

So+1

+1(s1#0) > Pp(n,s1— 1,2)

zZ2=82

— Z zZ2—S8 S
(plﬂ = pa) P (1L ( 2>7”22 Y1 =)

S2

+ 1(0 < 2 < 52 + 1) - D1p2 - (1 o 7,1>s171 . <S2Zi 1>r§282+1(1 o 7,2)821>

S1+1

+1(s2 #0) > Pp(n, 21,5 — 1)

Z1=81

((1 . pl)l(zl7ﬁ51+l)p2 . <Z1>Tflsl(1 . ,rl)s1 . (1 . 7”2)5271

S1

+1(0< 21 <S1+1) pipa- < “ 1)7”?51“(1 —r)" 7 (1 7’2)821>
S1 —

S1+1 S2+1
+ Z Z PD(TL, 21, ZQ) ((]_ — pl)ﬂ(zﬁésl—i-l)(l _ p2)]1(z27552+1).

Z1=81 22=52

S1 52

+1(0 < 2z, < Sy +1) - py(1 — py) L7520,

21 z1—81+1 1— s1—1 | Z2 29—S82 1 — S2
(e (2

+10<2z<S+1)-(1 —pl)l(zﬁéSlH)pQ . <zl>7‘f1_51(1 —rp)°t

1
< Z9 ),,,52—82-&-1(1 _ 7,2)82—1

52—1

Another set of internal equationswith 1 <n < C+1and 0 < sy < Sy but s1 = 57+1
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leads to:

Pp(n,S1+1,89) =

]1(52 # O,Tl # C —+ 1)PD(” -+ 1, Sl, S9 — 1) . <p1p2 . 7’1(1 — Tl)sl . 7’2(1 — 7’2)821>
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+ ]l(n §£ C + ].) Z PD(TL + 1, Sl, ZQ)'
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(= g (2o
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+ ﬂ(O < 29 < 52 + 1) - D1ps - (1 o 7”1)51 . ( 22 1>T§232+1(1 o 702)5*21)
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+ ]]_(82 7A O)PD(” + ]., Sl + ].782 — ].) . (pz . (1 — 7”1)S1+1 . (]. — 7"2)82_1)

So+1
+ > Po(n+1,8 41, 2)
22=82
<(1 . pz)]l(227’552+1) . (1 . 7,1)51+1 . <22>7’§282<1 . 7,,2)82
52

+1(0 < 25 < So+1) - py- (1 —ry)5FL. (S 2 1>r§2—82+1(1 - r2)52_1).
L —

(222)
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Conversely, for 1 <n < C+1and 0 < s1 < .51, s = S5 + 1 can be fixed and yields:

Pp(n, s1,S + 1) =

I(s1 #0,n# 1)Pp(n—1,51 —1,5,) - <p1p2 (L —r)? (1 — 7’2)52>

+ ]]_(51 §£ O)PD(TL - ]., Sl + ]., S9 — 1) . (pg . (1 - Tl)sl+1 . (1 — T2)821>

S1+1
+ ll(n 7é 1) Z PD(’/L — 1,211, SQ)
z1=81
((1 _ pl)]l(Z17éSl+1)p2 . (’21)7412151(1 _ 701)31 . (1 . 7‘2)52
S1
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S1 —
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+ Z PD(TL — ]_, 21, SQ + 1)
21=581
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S1

+10<z<S1+1) p;- <S 21 1) Tfl_sﬁ_l(l _ 7’1)81_1 (11— T2)52+1),
L —
(223)

Finally, for 1 <n < C+1 and s; =51 + 1,55 = S5 + 1, we get the last equation for

internal values of the buffer level as:
Pp(n, S+ 1,5 + 1) = Pp(n, Sy, Ss) - <p1p2 (=71 - r2)52>
+ Pp(n,S; +1,5,) - <p2 (L =r)S (1= 7"2)52>
+ Pp(n,S1, 52+ 1) - <p1 (1=r)® (1= 7"2)52“)

+ PD(TL, Sl + ]_, 52 + ]_) . <(1 _ r1)51+1 . (1 _ T2)SQ+1> '
(224)

As a lower boundary n = 0 is set. This directly implies s; = S7 + 1 as machine 2 can
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only be starving if machine 1 is not working. Accordingly, we get with 0 < s < S5:

Pp(0,51+1,89) =
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So+1 29
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22=82 2

The upper boundary equations can be obtained with setting n = C' + 2. Analogously,
this implies s, = S5 4+ 1 since machine 1 can only be blocked if machine 2 is not
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working. With 0 < s; < 5] the last equations can be obtained:

Pp(C+2,81,5 +1) =
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Chapter

Summary and Outlook

Logic is the beginning of wisdom, not the end.

Commander Spock

This thesis aimed at integrating spare parts planning into the design process of man-
ufacturing systems. Until now, there were only low-fidelity insights on how planners
could incorporate spare parts. Hence, we developed several models of flow lines and
corresponding solutions techniques. We presented results amplifying the necessity of
simultaneous buffer and spare parts planning. This chapter summarizes the key findings
of this thesis by answering the research questions and raises suggestions for future

research.

6.1 Summary

Research Question 1: What is the throughput of a flow line consisting of
an arbitrary number of machines with limited buffer capacities and spare

part stocks?

In Chapter 3, we answered Research Question 1. We presented a continuous-time
Markov chain formulation and determined its steady-state probabilities using a system
of balance equations. In doing so, we were able to calculate performance measures for
small systems consisting of two machines and, to some extent, three-machine systems,

exactly. Using the idea of Gershwin's (1987) decomposition approach, we developed



136 6 Summary and Outlook

an approximate algorithm to compute performance measures for flow lines of arbitrary

length.

Our results indicate how fast the exact Markov chain evaluation is for small systems.
Applying this as the building block in the decomposition algorithm, we obtained very
accurate and prompt evaluations for longer systems. We tested about 20,000 instances
for unbalanced three-machine lines in order to validate the decomposition with exact
results. We obtained mean absolute deviations of 0.60% for the throughput, 1.60% for

the average buffer levels, and 1.78% for the average spare part stocks on hand.

The decomposition algorithm is known to cause convergence problems in some instances.
Since proofs for convergence — even for the initially proposed decomposition — are
still to be found, we shed light on examples raising concerns. Long lines consisting
of machines with low availability seem especially challenging to evaluate. Moreover,
system designs with relatively poor performance produce poor results. An explanation
may be the assumption that the probability of concurrent blocking and starving is zero.
Overall, a good proportion of cases has throughput estimates inside our tight 95%

confidence intervals.

Eventually, we were able to get throughput estimates for a wide variety of flow-line
instances. We presented some first insights that buffers and spare parts interact and
that allocating spare parts with identical costs actually makes a difference in throughput.
Therefore, it is vital to analyze optimal allocations to generate robust insights into

allocation patterns of spare parts in flow lines with interstage buffers.

Research Question 2: What is the optimal flow-line design regarding buffer

capacities and spare part base-stock levels? How do both decisions interact?

Chapter 4 made use of the developed ability to evaluate long flow lines in order to
answer Research Question 2. We proposed the Primal buffer and spare part allocation
problem, which comprises the trade-off between buffers and spare parts in order to
reach the target throughput. In order to solve this NP-hard optimization problem, we
developed three greedy heuristics and applied the metaheuristics simulated annealing

and a genetic algorithm.

We validated all algorithms against complete enumeration. Using results for hundreds of
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unbalanced flow line instances, we inferred that the greedy heuristics are most promising

for further application.

We observed several well-known phenomena. The buffer allocation often follows a bowl
pattern, even in the presence of spare parts. Comparable to results for system-level
approaches from spare parts planning, cheap spare parts are used numerously, whereas

expensive spares are avoided if possible.

Moreover, we identified multiple unknown effects. The allocation of spare parts tends
to follow a bowl pattern, too. Also, there are complex interactions between buffers and
spare parts. In some cases, even the bowl pattern of spare parts stashes away the bowl
allocation for buffers. These results support the necessity of further analysis on how
integrated flow line planning should optimally occur. Two interesting special cases were

further analyzed in this thesis.

Research Question 3: Do the results of systems with stochastic processing

times carry over to transfer lines with deterministic cycle times?

In Chapter 4, we presented two new models of two-machine transfer lines with deter-
ministic and identical processing times: one with machine-specific and the other one
with identical critical components. The results related to the former model gave us
the answer to Research Question 3. Using discrete-time Markov chains, we obtained

performance measures for both.

We observed that the interaction between buffers and spare parts is even more remarkable
for deterministic processing times. Since there is no need to cope with processing time
variability, the only source of production stoppage is a failure of a critical component.
Thus, the impact of costs per buffer or spare is more sweeping, yielding system designs

without buffers if they are very expensive and vice versa for spare parts.

Similarly, we find that cheap spares are stocked numerously, whereas expensive spares
are avoided. The effect of bottlenecks is comparably causing more spare parts to

increase their availability, a higher buffer capacity to overcome its impact, or both.

Research Question 4: What is the impact of component standardization

comparing a two-machine system with machine-specific failure-prone critical
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components to a system with identical ones?

The comparison of the two different models regarding identical and machine-specific
critical components discussed in Chapter 5 enables us to answer Research Question 4.
On average, the optimal flow line design with spare part commonality reduces costs by
about 38%. Moreover, we find that in 97% of the 105 analyzed instances, a common
critical component facilitates a cost reduction. The impact on the achieved throughput
was ambiguous. There are instances with a throughput increase as well as a decrease.

The mean throughput change is negligible at about —0.005%.

In 82% of the analyzed instances, spare part commonality reduced the number of
spare parts in stock. On average, the reduction amounts to 29%. This is in line with
the literature on component standardization. However, even more noteworthy, we
observe that buffer capacities could be reduced in 40% of the instances. On average,
buffer capacities could be reduced by 30%. This result once again amplifies the strong

interaction between buffers and spare parts.

How should a flow line with buffers and spare parts provisioning for corrective

maintenance be designed?

We shed light on the integrated design for flow lines with limited buffer capacities and
spare parts provisioning for corrective maintenance. In our research, it became apparent
that substantial cost-savings can be rendered possible if planners consider the decisions
on buffers and spare parts jointly instead of treating them separately. We presented
results for flow lines of arbitrary length and illustrated that our results become even

stronger for more realistic fixed cycle times.

With the models, solutions, and numerical results presented in this thesis, we provide
the basis for future research on this topic. Our results indicate the importance of

integrated flow-line planning and that it should be pursued.
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6.2 Further research opportunities

Future research could focus on the influence of digital transformation. 3D-printed spares
are about to become an alternative to traditional replenishment and stock-keeping
of spare parts (Song & Zhang, 2020). Hence, 3D-printed spare parts could also be
adopted for manufacturing system maintenance. This dual-sourcing approach would
pose additional questions that need to incorporate the differences in replenishment

times, etc., in 3D printing.

Another issue arises from the inclusion of critical components. It is apparent that
neither all failures are caused by critical components nor do complex appliances contain
only one component, which is vital for their functioning. Further analysis should include

additional failure modes: some are component-related, and some are not.

We amplified in Chapter 5 how component standardization could facilitate cost savings
for a two-machine system. However, for longer manufacturing systems, it becomes even
more likely that some — or even all — machines share identical critical components. In
such a system, component commonality could render even higher cost savings possible.
Future research could, therefore, develop models for longer flow lines, including multiple

critical components per machine.

In our analysis of the transfer line with deterministic and identical processing times
we restricted our analysis to the two-machine case. This research direction may allow
for further insights into spare parts provisioning since the impact of spare parts is
considerably stronger if no variability in processing times occurs. A new decomposition
approach could be developed where the presented Markov chain is a valuable building
block.

It has been 63 years since Koenigsberg (1959) reviewed the state regarding buffer
allocations in flow lines. This thesis contributes to this stream of research by integrating
further decisions into the design process of manufacturing systems. Still, there are open

questions requiring scientific analysis and being the subject of future publications.
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