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Abstract. We compute the density and velocity power spectra at next-to-next-to-leading
order taking into account the effect of time- and scale-dependent growth of massive neu-
trino perturbations as well as the departure from Einstein-de-Sitter (EdS) dynamics at late
times non-linearly. We determine the impact of these effects by comparing to the commonly
adopted approximate treatment where they are not included. For the bare cold dark mat-
ter (CDM)+baryon spectrum, we find percent deviations for k & 0.17h Mpc−1, mainly due
to the departure from EdS. For the velocity and cross power spectrum the main difference
arises due to time- and scale-dependence in presence of massive neutrinos yielding percent
deviation above k ' 0.08, 0.13, 0.16h Mpc−1 for ∑mν = 0.4, 0.2, 0.1 eV, respectively. We
use an effective field theory (EFT) framework at two-loop valid for wavenumbers k � kFS,
where kFS is the neutrino free-streaming scale. Comparing to Quijote N-body simulations, we
find that for the CDM+baryon density power spectrum the effect of neutrino perturbations
and exact time-dependent dynamics at late times can be accounted for by a shift in the
one-loop EFT counterterm, ∆γ̄1 ' −0.2 Mpc2/h2. We find percent agreement between the
perturbative and N-body results up to k . 0.12hMpc−1 and k . 0.16hMpc−1 at one- and
two-loop order, respectively, for all considered neutrino masses ∑mν ≤ 0.4 eV.
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1 Introduction

Ongoing and upcoming large-scale structure (LSS) surveys are expected to return a rich
amount of information that likely will yield valuable insights into the properties of the
dark components of the Universe, gravity on large scales as well as the initial conditions
from the early Universe [1–8]. Moreover, they offer the prospect of measuring the absolute
neutrino mass scale [9–19]. Given the extended coverage of larger scales and increased
redshift of future probes, it is of major importance to model structure formation in the
mildly non-linear regime accurately. Perturbative approaches [20, 21] have gained a lot of
attention, and over the last decades been improved by including elements such as effective field
theory (EFT) methods [22, 23], bias expansion [24], IR resummation [25–30], redshift-space
distortions (RSD) [31–34], as well as techniques for fast evaluation [35–37]. The matter power
spectrum has been computed up to three-loop in the EFT [38] and the bispectrum up to
two-loop [39]. In particular, perturbation theory has been applied to analyse the full shape
BOSS galaxy clustering data at the level of the one-loop power spectrum [40–46] (see also [47])
as well as tree-level and one-loop bispectrum [48–51] (see also [52, 53]).

The sum of neutrino masses is known to be greater than 0.06 eV from oscillation
experiments [54], and β-decay experiments sets an upper bound mβ < 0.8 eV at 90% C.L.
for the effective electron anti-neutrino mass [55]. Cosmological probes offer complementary
constraints because of observable impacts left by the neutrinos on the cosmological evolution.
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In particular, mainly due to late ISW and lensing effects, CMB measurements constrain the
sum of neutrino masses toMν ≡

∑
mν ≤ 0.26 eV at 95% C.L. [56], improving toMν ≤ 0.12 eV

when combined with data on the scale of baryon acoustic oscillations (BAO). In addition, the
large neutrino velocity dispersion after their non-relativistic transition in the late Universe
slows down structure formation on scales smaller than the neutrino free-streaming length,
corresponding to a wavenumber kFS ∼ 0.01hMpc−1 [9]. This characteristic impact is expected
to be detectable by the Euclid satellite, yielding a forecasted measurement of the neutrino
mass sum with σ(Mν) ' 0.02–0.03 eV [9–19]. On the other hand, the presence of the neutrino
free-streaming scale introduces a scale-dependence in the clustering dynamics, making the
modelling of neutrino perturbations beyond linear theory complicated.

In order to model the mildly non-linear scales in a robust and efficient way as necessary for
MCMC analyses, certain approximations have to be made. Accordingly, the approximations
should be scrutinized both in ΛCDM and extensions of it to determine the theoretical
uncertainty. In this work we perform a precision calculation of the matter power spectrum
with the aim of examining the accuracy of certain common approximations. In particular,
our analysis involve the following:

• computing the matter density and velocity power spectrum at next-to-next-to-leading
order (NNLO) in perturbation theory, using the method that can capture scale- and
time-dependent dynamics introduced in [57] (see also [58–60]),

• including neutrino perturbations up to fifth order (i.e. at two-loop) and their impact
on the cold dark matter (CDM) and baryons fluid via gravity, utilizing a hybrid
two-component fluid scheme introduced in [61] and further developed in [57],1

• relaxing the Einstein-de-Sitter (EdS) approximation [39, 57, 66–70] and taking into
account the exact ΛCDM (+Mν) time-dependence at two-loop order (as first done
in [57], see also [70]),

• extending the work of [57] by including EFT corrections to the power spectrum in
the two-component fluid model, promoting the approach of [71] to a cosmology with
scale-dependent dynamics, and further resumming the effect of large bulk flows in the
IR [25–30],

• comparing theory predictions to and calibrating EFT parameters using N-body data
from the Quijote simulation suite [72] for three cosmologies with Mν = 0.1, 0.2 and
0.4 eV.

Our work extends previous studies [16, 73–75] for massive neutrinos within the EFT context
in evaluating the power spectrum at NNLO (two-loop) order, and including the full scale- and
time-dependence of neutrinos imprinted on non-linear kernels. The EFT setup used in this
work is based on [71], and we argue that it can be extended to the case of massive neutrinos
in the limit k � kFS ' 0.01h Mpc−1, being satisfied for current and future galaxy surveys.
Nevertheless, we stress that our unrenormalized results capture also the scale dependence in
the transition region k ∼ kFS.

1See also [62, 63] for applications of a two-fluid setup at linear order as well as [64, 65] for attempts to
include higher moments of the neutrino distribution non-linearly.
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With these elements, we can perform an assessment of the accuracy of neglecting neutrino
perturbations as well as the EdS approximation on the power spectrum at two-loop order:

• We first compare the unrenormalized CDM+baryon power spectrum between the full
solution including non-linear neutrino perturbations and departure from EdS (which
we name the 2F scheme) to the simplified treatment with linear neutrinos and EdS
dynamics for CDM+baryons (named 1F scheme). We find deviations beyond one percent
for k & 0.17h Mpc−1 at z = 0, mainly arising from the departure from EdS.

• As a proxy for redshift space distortion effects, we analyze the neutrino mass dependence
of the velocity divergence power spectrum and the cross spectrum. We indeed find devia-
tions between the full 2F and approximate 1F scheme that strongly depend on the value
of the neutrino mass, and reach more than one percent for k & 0.08, 0.13, 0.16h Mpc−1

for either the cross- or velocity spectrum and Mν = 0.4, 0.2, 0.1 eV, respectively. There-
fore, the 1F approximation is not sufficient to access the neutrino mass information
encoded in redshift space [75, 76].

• After including EFT corrections, we compare both 2F and 1F results to N-body data,
and determine to what extent the discrepancy of the simplified treatment can be
absorbed by a readjustment of counterterms at NNLO. For the CDM+baryon density
spectrum we find that this is indeed the case to high accuracy, with a shift mainly in
the one-loop EFT term by ∆γ̄1 ' −0.2 Mpc2/h2. Note that the impact of massive
neutrinos themselves on the power spectrum is not degenerate with counterterms, but
only the difference between the 2F and approximate 1F treatment.

We also address the level of degeneracy between neutrino free-streaming suppression and
the overall amplitude of fluctuations [76] for the power spectrum within perturbation theory.
We note that the approach presented here can be extended to the (one-loop) bispectrum
in a straightforward manner. It has been shown that this additional information could be
instrumental to break the degeneracy of neutrino masses with the overall power spectrum
amplitude [17, 77].

A main result of this work is shown in figure 1, where we plot the power spectrum
computed in the full perturbative solution, incorporating neutrino perturbations beyond the
linear order as well as the departure from EdS. The results are normalized to the N-body
results, and we show the linear, NLO and NNLO perturbative predictions for three neutrino
masses. It is clear that adding higher order corrections extends the wavenumber range with
percent accuracy. In particular, the NLO and NNLO results deviates by more than 1% for
k & 0.12h Mpc−1 and k & 0.16h Mpc−1 in all cosmologies, respectively. We refer to section 5
for further discussion, including potential limitations related to overfitting.

Our work is structured as follows: in the next section we describe how we capture neutrino
perturbations in a two-component fluid model and compare it to a simplified approach for
the (unrenormalized) density and velocity power spectra in section 3. We detail how we
renormalize the power spectrum using an EFT approach in section 4 and compare and
calibrate both models to N-body simulations in section 5. We conclude in section 6.

2 Perturbative modelling with massive neutrinos

In this section we briefly review Standard Perturbation Theory (SPT) and the generic extension
of it introduced in [57] that can describe cosmologies with multiple species in addition to scale-
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Figure 1. CDM+baryon density power spectrum predictions at linear, next-to-leading- and next-to-
next-to-leading order in perturbation theory, normalized to Quijote N-body results, for three neutrino
masses Mν = 0.1, 0.2 and 0.4 eV. The NLO curve correspond to the 0-parameter model and the NNLO
curve to the 2-parameter model defined in section 5, and we use a pivot scale kmax = 0.148h Mpc−1.
The gray area indicates uncertainty from the N-body simulation.

and time-dependent dynamics. We will apply this framework to cosmologies with massive
neutrinos, therefore we next summarize a two-component fluid setup of CDM+baryons and
neutrinos introduced in [61] and further developed in [57], which can readily be captured by
the extension of SPT. Finally, we compare the two-component fluid model at the linear level
to the full neutrino Boltzmann hierarchy.

2.1 Standard perturbation theory

The equations of motion for the density contrast δ and velocity divergence θ = ∂ivi (neglecting
vorticity) in Fourier space reads

∂τδ(k, τ)+θ(k, τ) =−
∫

k1,k2
δD(k−k12)α(k1,k2)θ(k1, τ)δ(k2, τ) ,

∂τθ(k, τ)+Hθ(k, τ)+ 3
2H

2Ωmδ(k, τ) =−
∫

k1,k2
δD(k−k12)β(k1,k2)θ(k1, τ)θ(k2, τ) , (2.1)

where τ is conformal time, H = d ln a/dτ the conformal Hubble rate and Ωm the time-
dependent matter density parameter. We introduced the shorthand notations k12 = k1 + k2
and

∫
k =

∫
d3k and used δD to denote the Dirac delta function. The mode coupling

functions are

α(k1,k2) = 1 + k1 · k2
k2

1
, β(k1,k2) = (k1 + k2)2(k1 · k2)

2k2
1k

2
2

, (2.2)

as usual. In SPT one assumes that the anisotropic stress of the fluid vanishes. We also make
this assumption here initially, but will relax it when discussing an effective field theory setup
in section 4.

The equations of motion can be written in a compact form after defining the tuple
ψ = (δ,−θ/Hf) and using η = logD, with D and f being the linear growth factor and growth
rate, respectively, thus [20]:

∂ηψa(k, η) + Ωab(η)ψb(k, η) =
∫

k1,k2
δD(k− k12)γabc(k,k1,k2)ψb(k1, η)ψc(k2, η) . (2.3)
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The matrix Ωab governing the linear evolution is given by

Ωab(η) =
(

0 −1
−3

2
Ωm
f2

3
2

Ωm
f2 − 1

)
, (2.4)

and the only non-zero components of the non-linear vertex are γ121(k,k1,k2) = α(k1,k2) and
γ222(k,k1,k2) = β(k1,k2).

In SPT one typically adopts the Einstein–de-Sitter (EdS) approximation, in which
Ωm/f

2 = 1 so that the Ωab-matrix becomes time-independent. This approximation greatly
simplifies eq. (2.3), allowing for analytic solutions order by order. Only the decaying mode
is affected by changes in the ratio Ωm/f

2 and moreover the ratio only departs significantly
from one at late times, z . 2 in ΛCDM (and also in moderate extensions). Consequently, the
EdS-approximation has been shown to work at the percent-level for the power spectrum [57, 66–
68, 70] as well as the bispectrum [39, 69]. In particular, in EFT analyses the departure
from EdS can be largely degenerate with counterterms, only leading to a shift in the EFT
parameters [39, 68]. In this work we consider schemes with and without the EdS approximation,
which we will specify accordingly.

2.2 Extension of SPT
Following [57], we extend SPT by allowing for multiple species in the fluid as well as allowing
for a general time- and wavenumber-dependence. More precisely, for an N -fluid we collect
the density contrast and velocity divergence for each component i into the field vector
ψa = (. . . , δi, θi, . . . ) with the index a running from 1 to 2N . In addition, we permit a general
dependence on time and wavenumber in the (now 2N × 2N) matrix describing the linear
evolution Ωab = Ωab(|k|, η). This extension can capture multiple models beyond ΛCDM in
addition to effective models of clustering dynamics. It has in general no analytic solution
however, hence we will mostly need to solve the dynamics numerically.

The equations of motion (2.3) can also in this case be solved perturbatively, at each
order furnished by 2N kernels F (n)

a labeled by the index a at order n:

ψa(k, η) =
∞∑
n=1

∫
q1,...,qn

δD(k− q1···n) en∆η F (n)
a (q1, . . . ,qn; η) δ0(q1; ηini) · · · δ0(qn; ηini) ,

(2.5)
where ∆η ≡ η − ηini and δ0 is an initial condition that we discuss shortly. Note that due to
the assumed non-trivial time-dependence in the dynamics, we allow for a dependence on η in
addition to the wavenumbers q for the kernels. Inserting this solution into eq. (2.3) yields the
following recursive solution at n-th order in perturbation theory:

(∂η + n)F (n)
a (q1, . . . ,qn; η) + Ωab(k, η)F (n)

b (q1, . . . ,qn; η)

=
n−1∑
m=1

[
γabc(k,q1···m,qm+1···n)F (m)

b (q1, . . . ,qm; η)F (n−m)
c (qm+1, . . . ,qn; η)

]
sym.

. (2.6)

Here, k = ∑
i qi, and the right hand side is understood to be symmetrized with respect

to all permutations exchanging momenta in the {q1, . . . ,qm} set with momenta in the
{qm+1, . . . ,qn} set and normalized to the number of permutations.

Note that setting N = 1 and using the Ωab-matrix from eq. (2.4) with Ωm/f
2 = 1 (EdS

approximation) in eq. (2.6), we recover in the limit ηini → −∞ the usual kernel recursion
relations with the replacements F (n)

1 → Fn and F (n)
2 → Gn.

– 5 –
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We still need to specify suitable initial conditions in order to solve the above equations.
Taking ηini after recombination but long before non-linearities become important at the scales
of interest, we assume that the initial conditions for each fluid component is correlated, so that

ψa(k, ηini) = F (1)
a (k, ηini) δ0(k) , (2.7)

which holds for adiabatic initial conditions. Furthermore, we assume that δ0 is a Gaussian
random field, so that we only need to specify the initial linear power spectrum 〈δ0(k)δ0(k′)〉 =
δD(k +k′)P0(k) in order to compute correlations of ψa’s. The initial linear kernels F (1)

a (k, ηini)
impose the relative normalization for each perturbation and wavenumber. Deep in the linear
regime ηini →∞ the higher order initial kernels can be set to zero. In practice however, using
ηini after recombination, we find that those n > 1 initial conditions work poorly because they
excite transient solutions that do not entirely decay by η = 0 (z = 0). We return to this
issue below.

We are ultimately interested in the statistical properties of the fields ψa(k, η), in particular
auto- and cross power spectra

〈ψa(k, η)ψb(k′, η)〉 = δD(k + k′)Pab(k, η) . (2.8)

The perturbative expansion (2.5) combined with the Wick theorem yields as a result the loop
expansion of the power spectrum

Pab(k, η) = P lin
ab (k, η) + P 1-loop

ab (k, η) + P 2-loop
ab (k, η) + . . . . (2.9)

To compute loop corrections, we employ the numerical algorithm described in [57] (see
also [58–60]). In short, at L-loop it consists of integrating over L loop momenta using Monte
Carlo integration (with CUBA [78]) where at every integration point a set of (2L+ 1)-order
kernels needs to be evaluated using the recursion relation (2.6). In general, there is no analytic
solution of eq. (2.6), therefore we solve for the kernels numerically. We refer to [57] for further
details on the algorithm.

2.3 Two-component fluid: CDM+baryons and massive neutrinos

We will employ the hybrid two-component fluid setup described in [57] to model structure
formation in massive neutrino cosmologies. In the following, we repeat the main elements of
this setup for convenience, but refer to [57] for details of the implementation.

In the hybrid two-component fluid model, the system is described linearly by the full
Boltzmann hierarchy until some intermediate redshift zmatch, after which the evolution is
mapped onto a two-component fluid, suitable for computing non-linear corrections (see
also [61]). Baryons and CDM comprise jointly one fluid component, which is coupled to the
second component, the neutrinos, via gravity. A fluid description of massive neutrinos is
suitable at late times because the coupling to higher moments in the Boltzmann hierarchy is
suppressed by powers of Tν/mν . We may therefore follow only the lowest moments of the
hierarchy for the neutrinos, with an effective sound velocity to capture free-streaming. We
show below that this only leads to sub-percent differences compared to the full hierarchy. The
CDM+baryon component is treated both as a perfect, pressureless fluid (SPT) as well as an
imperfect fluid with corrections to the effective stress tensor (EFT).

We consider three massive neutrino cosmologies with Mν ≡
∑
imνi = 0.1, 0.2 and

0.4 eV. In all models we assume that the neutrinos are degenerate, each with mass Mν/3.

– 6 –



J
C
A
P
0
9
(
2
0
2
2
)
0
5
4

This approximation works well because cosmological observables are very insensitive to the
neutrino mass hierarchy except for the total mass, see e.g. [79]. Furthermore, we choose a
matching redshift zmatch = 25, which for the neutrino masses of consideration is well after the
non-relativistic transition

znr = 1890 mν

1 eV , (2.10)

in addition to being sufficiently earlier than the point at which non-linearities become
important, z . 10.

The weighted density contrast for the CDM+baryon fluid component reads

δcb = fbδb + fcdmδcdm
fb + fcdm

, (2.11)

with fi ≡ Ωi/Ωtot, and similarly for the velocity divergence. We collect the density contrasts
and (suitably rescaled) velocity divergences of both fluid components into a vector2

ψa =
(
δcb , − θcb

Hf
, δν , − θν

Hf

)
. (2.12)

The equations of motion for the two-component fluid are given by eq. (2.3) with

Ωab(k, η) =


0 −1 0 0

−3
2

Ωm
f2 (1− fν) 3

2
Ωm
f2 − 1 −3

2
Ωm
f2 fν 0

0 0 0 −1
−3

2
Ωm
f2 (1− fν) 0 −3

2
Ωm
f2 [fν − k2c2

s,eff(k, η)] 3
2

Ωm
f2 − 1

 , (2.13)

and the non-zero components of the vertex γabc being

γ121(k,k1,k2) = γ343(k,k1,k2) ≡ α(k1,k2) ,
γ222(k,k1,k2) = γ444(k,k1,k2) ≡ β(k1,k2) . (2.14)

In the part of the evolution matrix Ωab describing the neutrino dynamics, we introduced
the effective neutrino sound velocity c2

s,eff . This term captures the free-streaming of the
neutrinos c2

s = δPν/δρν as well as the neutrino anisotropic stress σν :

c2
s,eff(k, η) ≡ 1

k2
FS(k, η) = 2

3ΩmH2

[
c2
s(k, η)− σν(k, η)

δν(k, η)

]
, (2.15)

where we defined the associated effective free-streaming wavenumber kFS. We compute the
terms in the bracket in linear theory, however in a manner that is informed about the complete
neutrino distribution function, including all higher moments (see [57]).

The equations for the two-component fluid are precisely of the form that can be solved
by the extension of SPT discussed above. We expand ψa in powers of δ0 = δcb(ηmatch)
using eq. (2.5). The accompanying kernels are solutions of eq. (2.6), with Ωab and γabc from
eqs. (2.13) and (2.14). We find that we need to be cautious in choosing initial conditions for
the kernel hierarchy at the matching redshift; one easily excites transient solutions that do not

2Due to neutrino free-streaming the linear growth functions D(z) and f(z) become scale dependent in
massive neutrino cosmologies. To avoid a time-parameterization and rescaling in eq. (2.12) dependent on scale,
we redefine η = ln

(
D
∣∣
fν =0

)
and f = f

∣∣
fν =0

in the two-fluid setup.

– 7 –



J
C
A
P
0
9
(
2
0
2
2
)
0
5
4

entirely decay away by η = 0. Ultimately, we opt for numerically finding the growing mode
solution for the kernels with fixed Ωab(k) = Ωab(k, ηmatch) and using this as initial condition.
This method is described more comprehensively in [57]. We check that this initial condition
matches at the linear level the transfer functions from the Boltzmann solver CLASS [80] for
the wavenumbers of interest, and that we obtain the same linear power spectrum at z = 0
(see below).

The total matter power spectrum is the sum of the weighted auto spectra for each
component as well as the cross-spectrum,

Pm,m = (1− fν)2Pcb,cb + 2(1− fν)fνPcb,ν + f2
νPν,ν . (2.16)

The neutrino energy fraction is fν = 0.75, 0.15 and 0.3% (constant for z � znr) for the three
models withMν = 0.1, 0.2 and 0.4 eV, respectively. For wavenumbers larger than the neutrino
free-streaming scale kFS ∼ 0.01 h/Mpc, neutrinos are hardly captured in gravitational wells
and the neutrino spectra are suppressed compared to Pcb,cb. In total, the first term in
eq. (2.16) gives the dominant contribution to the matter power spectrum. Nevertheless, via
the backreaction on the gravitational potential, the presence of massive neutrinos leads to a
reduction of growth of the CDM+baryon fluid. At the linear level, the relative suppression of
the matter power spectrum between a model with massive neutrinos and one without (with
Ωcdm tuned so that Ωm is the same) is the well-known −8fν [9].

In figure 2, we compare the two-fluid scheme with the full solution using the Boltzmann
hierarchy (CLASS, with maximum neutrino multipole lmax = 17) at the linear level. The
matter power spectra have sub-permille agreement for k > 0.03 h/Mpc for all neutrino
masses. For very low wavenumber, k → 10−3 h/Mpc there are percent-level deviations.
These arise because at the matching redshift zmatch = 25, the wavenumbers have not yet
completely reached the growing mode after entering the horizon, while the two-fluid model
initial condition assumes that all scales already reside in the growing mode. In addition, for
scales close to Hubble, relativistic corrections become important. Nevertheless, these large
scales have negligible impact on loop corrections for a realistic power spectrum.

The neutrino auto power spectrum agrees better than 1% for scales k ∼ 0.01 – 0.1 h/Mpc.
On smaller scales the difference increase, however in this region errors from the truncation of
the Boltzmann hierarchy (choice of lmax) also become significant. We see that the deviation
of the neutrino spectrum has a minimal effect on the total matter power spectrum, whose
dominant contribution is the CDM+baryon component.

3 Effect of neutrino perturbations on density and velocity spectra

Having set up the formalism and procedure for computing non-linear corrections taking
neutrino perturbations into account beyond the linear level, we proceed in this section to
comparing it to simplified treatments. We consider the bare density- and velocity power
spectra, and leave a comparison of the renormalized power spectra to section 5. Furthermore,
we assess to which extent the effect of free-streaming neutrinos is degenerate with the
primordial amplitude of fluctuations at one- and two-loop on BAO scales.

The schemes for describing the growth of structure in presence of massive neutrinos that
we will consider in this work in increasing order of complexity are:

1. EdS-SPT scheme (1F). The impact of neutrinos is only taken into account at the
linear level. Therefore, the only species modelled non-linearly by the fluid eqs. (2.3)
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Figure 2. Relative difference between the linear power spectra computed using the two-fluid model
and using the full Boltzmann hierarchy for the neutrino perturbation (CLASS), ∆P = |1−P/PCLASS|.
The solid, dashed and dotted lines correspond to Pm,m, Pcb,cb and Pν,ν , respectively, while the blue,
orange and green lines correspond to Mν = 0.1, 0.2, and 0.4 eV, respectively.

is CDM+baryons (joint fluid). In addition, the ratio Ωm/f
2 is approximated to 1 so

that analytical EdS-SPT kernels may be used. This approach is frequently used in the
literature because of its simplicity and efficiency, the latter being particularly favorable
for data analysis and parameter scans.

2. One-fluid scheme (1F+). Equivalent to the 1F-scheme, but relaxing the EdS ap-
proximation by including the time-dependence of Ωm/f

2. This scheme is included in
order to estimate to what degree the EdS approximation is the source of inaccuracies
when comparing 1F and 2F.

3. Two-fluid scheme (2F). Baryons+CDM and neutrinos are both modelled beyond the
linear theory in the two-component fluid setup. The time- and scale-dependence of the
dynamics both arising from the departure from EdS at late times as well as neutrino
free-streaming are captured by solving the kernel hierarchy (2.6) numerically, with the
linear evolution and non-linear vertices given by eqs. (2.13) and (2.14), respectively.

For the 1F and 1F+ schemes, we use the linear power spectrum at z = 0 (from CLASS) as
input to the loop correction calculations. The 2F scheme however, captures also accurately the
linear evolution (see discussion above), thus we take the linear power spectrum at zmatch = 25
as input. The increasing complexity of the different schemes leads to longer processing times;
in table 1 we list the approximate times to compute one integration point on one core on a
laptop at one- and two-loop in each scheme. A typical calculation of a loop correction for a
single external wavenumber entails O(106) integral evaluations.

3.1 Comparison

To address the accuracy of treating neutrinos only linearly as well as the EdS approximation,
we compare the 1F and 2F schemes for the CDM+baryon density and velocity power spectra
at z = 0. We consider the power spectrum both at NLO (linear + one-loop) and NNLO
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EdS-SPT (1F) One-fluid (1F+) Two-fluid (2F)
1-loop 3 620 1600
2-loop 50 5400 15000

Table 1. Approximate time in microseconds to compute one integration point (the integrand for a
fixed set of integration variables) at one- and two-loop in the different schemes. Measured on a laptop
using one core.

(linear + one-loop + two-loop), without EFT corrections (we repeat the comparison including
these in section 5).

The comparison is presented in figure 3. In the leftmost panel we show the density
auto spectrum Pδcb,δcb in the 1F and 1F+ schemes, normalized to the 2F result. At one-loop
(dashed lines), the 1F scheme deviates at most by 0.5% from the full 2F solution, while at
two-loop (solid lines) the deviation exceeds one percent at k ' 0.17 h Mpc−1 and grows as
the two-loop correction becomes increasingly significant. A similar comparison was done
for different neutrino masses in [57], and it is reassuring to see consistent results. Since the
deviations are roughly independent of neutrino mass and there is insignificant difference
between the 1F+ (EdS approximation relaxed) and 2F schemes at two-loop (dotted lines),
we conclude that the main source of inaccuracy for the density spectrum comes from the
EdS approximation.3

The middle and right panels display the same comparison for the cross spectrum Pδcb,θcb

and velocity spectrum Pθcb,θcb . In contrast to the density spectrum, they show a clear
dependence on the neutrino mass in the fractional difference. Moreover, the deviations of the
1F and 1F+ schemes from the full 2F solution are very similar for Pθcb,θcb , indicating that the
main error comes from neglecting the effect of non-linear neutrino perturbations. It is not too
surprising that this effect is larger on the fluid velocity than the density contrast: for scales
smaller than the free-streaming scale the growing mode for the CDM+baryon component
is approximately (1, 1− 3/5 fν) in the 2F scheme, while it remains (1, 1) in 1F (and 1F+).
Therefore, there is an extra suppression for the velocity field compared to the density field,
in addition to the change of the growth factor. Nevertheless, the deviation for the smallest
neutrino massMν = 0.1 eV is less than a percent at two-loop for k . 0.15 and 0.2 h Mpc−1 for
the cross- and velocity spectra, respectively. We note that for wavenumbers k & 0.2 h Mpc−1

the two-loop correction is of the order of the one-loop correction, signalling the breakdown of
perturbation theory. Finally, for the velocity spectra it is curious to see that the deviations
of 1F to 2F for the one- and two-loop corrections go in opposite directions, thus adding the
two-loop seemingly improves the agreement.

3.2 Degeneracy with amplitude of fluctuations

The suppression of power on scales smaller than the neutrino free-streaming scale is largely
degenerate with a change of the clustering amplitude As. This may pose a major limitation
on constraining the neutrino mass with large-scale structure [81–84]. The complication is
somewhat mitigated by measuring at different redshifts, including higher-order statistics [17,
77] and by redshift-space distortions [34]. Moreover, the degeneracy can be broken by including
other probes, such as CMB data.

3Our results for the difference between EdS (1F) and exact time-dependent kernels (1F+) at one- and
two-loop are consistent with those of [70].
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Figure 3. Comparison of the 1F, 1F+ and 2F schemes for the CDM+baryon density and velocity
spectra. We show the power spectrum at one-loop (dashed lines) and two-loop (solid lines) in the
1F scheme, divided by that from the 2F scheme. The dotted lines correspond to the 1F+ scheme
normalized to the 2F scheme, at two-loop order. Shaded regions indicate uncertainty from the Monte
Carlo integration. Left: density auto spectrum, middle: density-velocity cross spectrum and right:
velocity auto spectrum.

In this light, we check to what extent we can reproduce our results for the 2F matter
power spectra in massive neutrino models using massless models by adjusting As. To isolate
the effect of neutrino suppression and overall amplitude, we use the 1F+ scheme for the
massless models. Furthermore, we remove completely the double-hard limit of the two-
loop corrections, which otherwise yields a large contribution at the scales of interest (after
renormalization this contribution is considerably reduced). In section 4 we go into details on
this procedure and include EFT corrections to renormalize the power spectrum. For simplicity,
we set A′s = (1− 8fν)As to mimic neutrino free-streaming suppression in the massless models.
The results are shown in figure 4. For the lowest neutrino mass, the massive and modified
massless models agree within a percent. As the characteristic free-streaming wavenumber
increases for larger neutrino mass, it becomes more difficult to reconstruct the shape of the
massive neutrino non-linear power spectrum with a change of As. The shape dependence of
the linear suppression is more prominent at k ' 0.1 – 0.2h Mpc−1 and due to mode-coupling,
the loop-corrections are affected beyond just a rescaling by the presence of the neutrinos.

4 Effective field theory setup

In order to precisely assess the performance of the simplified treatment of neutrinos (1F)
and the full two-fluid solution (2F) versus N-body simulations, we need to take into account
EFT corrections. In this section we elaborate on the EFT setup we employ for obtaining a
renormalized CDM+baryon power spectrum at next-to-next-to-leading order.

In the effective theory approach, long wavelength fluctuations are modelled perturbatively
while systematically taking into account the impact of short wavelengths [22, 23]. This is
done by coarse-graining the fluid, leading to a modified Euler equation with an effective stress
tensor that in addition to the microscopic stress includes corrections from coarse-grained
products of short fluctuations. In the notation introduced in section 2, the equations of
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Figure 4. Comparison of the total matter power spectrum in massive neutrino models and massless
models with the amplitude of fluctuations changed. We show massless models with A′s = (1− 8fν)As
normalized to massive models with amplitude As for the linear (blue), NLO (orange) and NNLO
(green) power spectrum. To isolate the effect of the neutrinos, we compute the massless model in the
1F+ scheme and the massive model in the 2F scheme. Errorbars indicate uncertainty from Monte
Carlo integration.

motion (2.3) in the two-fluid model are modified as

∂ηψa(k, η) + Ωab(k, η)ψb(k, η) =
∫

k1,k2
δD(k− k12)γabc(k,k1,k2)ψb(k1, η)ψc(k2, η)

+ δ
(K)
a2 τθcb(k) + δ

(K)
a4 τθν (k) , (4.1)

where δ(K)
ij is the Kronecker delta, and the effective stress terms are defined equivalently for

the CDM+baryon and neutrino fluid in real space as

τθ = ∂i
1

1 + δ
∂jτ

ij . (4.2)

The effective stress tensor τ ij can in the effective theory be split into a deterministic and
stochastic contribution; the deterministic part can be modelled in terms of the perturbative
solution, while the stochastic part is uncorrelated with the long modes and must be modelled
statistically. Due to momentum conservation, the deterministic part must scale as the density
contrast times k2 as k → 0, while the stochastic power spectrum vanishes faster than k4 in
this limit [85, 86]. Therefore, we neglect the stochastic contribution in this work.

In the effective theory the deterministic part of the stress tensor is not described from
first principles, but written down as a sum of all possible operators allowed by symmetries,
with a priori unknown EFT coefficients that must be fitted to simulations or marginalized
over in data analysis. Due to Galilean invariance and the equivalence principle, the operators
are restricted to gradients and products of the building blocks ∂i∂jΦ and ∂ivj , where Φ is the
rescaled gravitational potential satisfying ∆Φ = δ. At leading order in gradients and number
of factors of fields, the effective stress term is [86]

τθ
∣∣
1 = d2

δ ∆δ(1) + d2
θ ∆θ(1) , (4.3)

where d2
δ and d2

θ are (time-dependent) EFT coefficients, and δ(1) and θ(1) are the linear
solutions in perturbation theory. In massless neutrino cosmologies, they are related by
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δ(1) = −θ(1)/Hf , so that the sum above can be reduced to d2∆δ(1) with d2 = d2
δ − d2

θ/Hf .
This is not the case for massive neutrino models, due to free-streaming, therefore we in
principle need to write down

τθcb

∣∣
1 =

4∑
i=1

d2
cb,i ∆ψ(1)

i and τθν
∣∣
1 =

4∑
i=1

d2
ν,i ∆ψ(1)

i (4.4)

in the two-fluid model with EFT coefficients dcb,i, dν,i. This leads to a counterterm
CDM+baryon density field

ψ̃
(1)
1 ≡ δ̃(1)

cb = k2
4∑
i=1

d2
i ψ

(1)
i (4.5)

in Fourier space. Each coefficient di depends on a linear combination of both sets of coefficients
dcb,i, dν,i because the linear propagation after the insertion of the sources τθcb and τθν mixes
the contributions from the four components.

Although the two-fluid approach to neutrino clustering discussed above is valid both
in the case k � kFS and k � kFS as well as in the transition region, we are in practice
often most interested in scales of order k ∼ 0.1h Mpc−1, that are most relevant for galaxy
clustering observations. Therefore, as far as the construction of the EFT correction terms
is concerned, we will use some simplifications that are strictly valid within the regime
kFS � k � kNL, where kNL ∼ 0.3h Mpc−1 is the non-linear scale. As we return to below,
these approximations are justified for Mν = 0.1 and 0.2 eV but begin to break down for
Mν = 0.4 eV. In particular, the linear CDM+baryon density contrast and (rescaled) velocity
divergence can be related by a constant factor far below the free-streaming scale: we have
approximately ψ

(1)
2 = (1 − 3/5 fν)ψ(1)

1 , see the left panel of figure 5 (the linear solutions
are ψ(1)

i ∝ F
(1)
i δcb(ηini)). Furthermore, based on the expectation that d2

i /k
2
NL = O(1) and

that the neutrino perturbations are more than an order of magnitude smaller than the
CDM+baryon ones around the scales of interest — see the right panel of figure 5 — we
neglect the contribution from the ψ(1)

3 - and ψ(1)
4 -terms. Note also that the sound velocity in

the microscopic part of the τ ijν stress tensor is already captured in the 2F model, as defined
in eq. (2.15). In total, the leading CDM+baryon counterterm density can be written as

ψ̃
(1)
1 (η) = e2∆ηγ1(η) k2ψ

(1)
1 (ηini) , (4.6)

where γ1 is an EFT parameter and we extracted the overall growth e2∆η for convenience.
Since we will determine γ1 via calibration to N-body simulations, its explicit relation to the
coefficients di and kernels F (1)

i (η) is not important.

4.1 Renormalization of the one-loop correction

To assess whether the counterterms from the effective stress term in the EFT can cure the
cutoff-dependence of SPT (also in the 2F scheme), we study its UV sensitivity, starting with
the one-loop correction. In the EdS approximation (1F scheme), the leading contribution (i.e.
at leading power in the gradient expansion k2/k2

NL) to the SPT one-loop power spectrum for
hard loop momentum q →∞ is

P h1L(k, η) = −2e4∆ηk2P0(k) c 4π
3

∫ Λ
dq P0(q) = −2e4∆ηk2P0(k) c σ2

d , (4.7)
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Figure 5. Linear kernels F (1)
a at z = 0 for Mν = 0.1 eV.

where
σ2

d = 4π
3

∫ Λ
dq P0(q) (4.8)

is the displacement dispersion. P0 is the input linear power spectrum from the initial
condition, as defined above. From here on we will only consider the CDM+baryon power
spectrum, and we drop the cb subscript for brevity. Due to momentum conservation, the
kernels F (n)(q1, . . . ,qn) scale as k2 when the sum k = ∑

i qi goes to zero. Therefore, the
dominant contribution to the hard limit above comes from the diagram containing F (3), and
the coefficient c is given by

c = 9
∫ dΩq

4π

(
lim
q→∞

q2

k2F
(3)(k,q,−q)F (1)(k)

)
= 61

210 . [1F scheme] (4.9)

We expect the k2-scaling guaranteed by momentum conservation also in the 2F scheme,
but the c-coefficient can change and acquire a time-dependence inherited from the kernels.
To analyse the UV and determine c(η) in the 2F model, we compute the hard limit of the
one-loop integral numerically. This can be done as follows: define the one-loop integrand
p1L by

P1L(k, η) = e4∆η
∫ Λ

dq q2P0(q)
∫

dΩq p1L(k,q; η) . (4.10)

It contains the different diagrams contributing to the one-loop correction with the corre-
sponding kernels and an additional linear power spectrum. In the hard limit, the leading
contribution to p1L should scale as F (3)(k,q,−q) ∼ k2/q2, therefore we can factorize the
integration:

P h1L(k, η) = 3e4∆η
∫ dΩq

4π

(
lim
q→∞

q2p1L(k,q; η)
) 4π

3

∫ Λ
dqP0(q) ≡ e4∆ηph1L(k, η)σ2

d . (4.11)

To evaluate ph1L, we fix the loop momentum to a large value q � Λ and integrate over the
angle numerically. Comparing to eq. (4.7), we find

c(η) = − p
h
1L(k, η)

2k2P0(k) . (4.12)
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Figure 6. Hard limit of the one-loop correction in the 1F and 2F schemes (for the three neutrino
masses), represented by the coefficient c today (η = 0). In the dashed lines the linear kernel is divided
out: c/F (1)

1 (k)|η=0. The black, dashed line indicates where we read off the value in each model.

In figure 6 we show the results for the c-coefficient at η = 0 for the different neutrino
masses, using Λ = 1h Mpc−1 and fixing q = 10h Mpc−1. The constant c = 61/210 in the
1F scheme is shown for comparison. Furthermore, we display dashed lines where the linear
kernel is divided out in order to isolate the scaling of the F (3) kernel in the hard limit, i.e.
c/F

(1)
1 (k)|η=0. We see that the presence of an additional scale, the free-streaming scale kFS,

induces a k-dependence: c = c(k2/k2
FS).4 In the limit k � kFS, neutrinos behave as dark

matter, and the system can be mapped onto a set of standard dark matter fluid equations for
which the hard limit yields c constant. We do not recover the 1F limit of 61/210, because
the EdS approximation is relaxed and because the kernel F (3)(k,q,−q; η) is sensitive to the
dynamics at q � kFS where the growth rate is dampened due to neutrino free-streaming. For
the largest neutrino mass with the largest free-streaming wavenumber, this limit is visible
around k = 10−3h Mpc−1 in figure 6.

On scales much smaller than the free-streaming scale, neutrinos do not cluster and the
CDM+baryon and neutrino fluid system effectively decouple. The CDM+baryon fluid is then
equivalent to the standard case (1F), with the EdS approximation relaxed and with reduced
growth due to the effect of the neutrinos on the background evolution. Hence c approaches a
constant for k � kFS.

Our aim is to obtain a renormalized power spectrum in the mildly non-linear regime,
k ' 0.1h Mpc−1, therefore we assume a large scale separation kFS � k � q.5 In this limit c
is constant, which implies that the counterterm (4.6) can absorb the cutoff dependence of
the one-loop correction, as we show explicitly below. For the lowest neutrino masses, we
see indeed a plateau in the value of c around k = 0.1h Mpc−1 in figure 6. The measured
value is read off at the dashed line and quoted in table 2. For the largest neutrino mass,
the assumption of large scale separation kFS � k starts to break down (from eq. (2.15) we

4The free-streaming scale only enters the equations of motion (2.13) via the dimensionless ratio k2/k2
FS.

5Note that the free-streaming scale as defined in eq. (2.15) is not a single scale, but rather a function of
scale and time. We have approximately kFS(k, z) ∝ (1 + z)−1/2 and a slight, monotonic increase as a function
of wavenumber.
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have e.g. kFS(k = 0.1h Mpc−1, η = 0) = 0.07h Mpc−1), and the plateau emerges only on even
smaller scales. Nevertheless, we read off the value of c and include the model in our analysis
for illustration. In practice, the limit kFS � k � q is well satisfied for relevant values of the
sum of neutrino masses.

The counterterm (4.6) gives the additional contribution

P ctr
1L (k, η; Λ) = −2e4∆η γ1(Λ)k2P0(k) , (4.13)

to the power spectrum, which is exactly of the form to absorb the UV sensitivity (4.7). The
renormalized one-loop CDM+baryon power spectrum therefore reads

P ren
1L (k, η,Λ) = P1L(k, η; Λ) + P ctr

1L (k, η; Λ) . (4.14)

Demanding that the renormalized result is cutoff-independent yields the renormalization
group equation

0 = d
dΛ

[
P1L(k, η; Λ) + P ctr

1L (k, η; Λ)
]

= −2e4∆ηk2P0(k) d
dΛ

[
c(η)σ2

d(Λ) + γ1(Λ)
]

(4.15)

at leading power in gradients k2/k2
NL, which has the solution

γ1(Λ) = γ1 + 4πc
3

∫ ∞
Λ

dqP0(q) , (4.16)

where γ1 is an initial condition.

4.2 Renormalization of the two-loop correction

Next we discuss the UV-sensitivity of the two-loop correction and how we can treat it in the
EFT. The second order contributions to the effective stress term are [87, 88]

τθ
∣∣
2 = d2∆δ(2) + e1∆

[
δ(1)

]2
+ e2∆

[
s

(1)
ij s

(1)ij
]

+ e3∂i
[
s(1)ij∂jδ

(1)
]
, (4.17)

where the number superscript indicates the perturbative order and the tidal tensor is defined
as

sij =
(
∂i∂j − 1

3δ
ij∂2

)
Φ . (4.18)

Three additional EFT parameters e1, e2 and e3 appear at this order. In writing down
eq. (4.17) we have used again that in massless neutrino cosmologies (1F) θ(1) = −Hfδ(1). In
addition, the operator ∆θ(2) can be written as a linear combination of the existing operators,
hence it is also redundant. These simplifications do not hold in general for massive neutrino
cosmologies (2F). While the linear CDM+baryon perturbations could be related far below
the free-streaming scale, ∆θ(2) is not redundant in general. Furthermore, there are additional
operators including the neutrino perturbations at second order as well as mixed operators
with linear CDM+baryon and neutrino perturbations. Given the smallness of the neutrino
perturbations around the weakly non-linear scales those should be negligible however.

Even in the massless case, solving the perturbative equations of motion in the presence
of the second order counterterms (4.17) is quite complex. Moreover, in practice, there
are significant degeneracies between the EFT parameters when calibrating to simulations.
Therefore, making an ansatz for a linear relation between the parameters and fitting the
overall amplitude is typically sufficient [71]. One also easily overfits the data when introducing
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too many free parameters (we return to this issue in section 5). All in all, we follow the
prescription of [71] for renormalizing the two-loop correction and extend it to the 2F scheme.
This works well for the power spectrum and an analogous method has also been applied
successfully to the bispectrum at two-loop [39]. The upshot is that we do not need to know
the specific form of the second order effective stress term, also in the massive neutrino case.

Note that for renormalizing the two-loop, one in principle also needs counterterms from
the third order effective stress term. However, for the power spectrum, they have been argued
to yield contributions that are degenerate with those arising at lower order [89]. The explicit
third order correction to the stress tensor is not needed within the approach followed here.

To study the UV limit of the two-loop correction, it is useful to distinguish between
the double-hard (hh) limit where both loop momenta are hard compared to the external
momentum k, and the single-hard (h) limit where one of the momenta are hard compared to
the external and the other loop momentum. We discuss first the double-hard limit.

4.2.1 Double-hard limit
In the 1F case, the leading contribution to the double-hard region of the two-loop comes
from the propagator correction diagram containing F (5) [71]. This follows from the k2-scaling
of the kernels in the limit k/q1 ∝ k/q2 � 1, and also holds in the 2F case guaranteed by
momentum conservation. The other diagrams enter in this limit with additional powers of k2

and can be neglected at leading order in gradients. The F (5)-diagram contribution scales as
k2P0(k) and is therefore degenerate with the UV-limit at one-loop and can be absorbed by
the counterterm (4.13). We can split the corresponding EFT parameter at NNLO into a one-
and two-loop part,

γNNLO
1 = γ1L

1 + γ2L
1 . (4.19)

Following [71], we use a renormalization scheme where we choose γ2L
1 so that it exactly cancels

the double-hard region of the two-loop, while γ1L
1 is calibrated to simulations and contains

the finite part of the counterterm. We drop the superscript and use γ1 ≡ γ1L
1 in the numerical

analysis below. This means in practice that we subtract the double-hard contribution from
the two-loop correction:

P̄2L(k, η; Λ) ≡ P2L(k, η; Λ)− P hh2L (k, η; Λ) . (4.20)

The double-hard contribution P hh2L can be computed analytically with EdS-kernels in the
1F scheme (see e.g. [71]), and numerically in the massive neutrino models by fixing the
loop momenta to large values. Alternatively, one can fit the low-k region by computing
bhh = limk→0 P2L/k

2/P0 and subtracting P hh2L = bhhk2P0. The double-hard limit is realized
in this region because the loop integral has sole support from wavenumbers q1, q2 � k. We
use the latter method. In the left panel of figure 7 we show the ratio P̄2L/k

2/P0 for the 1F
scheme and for the different neutrino masses using the 2F scheme (more precisely, we show the
corresponding IR resummed quantities defined in eqs. (4.47) and (4.48) below). The results
are obtained using a cutoff Λ = 1h Mpc−1. In the 1F scheme, we see that the two-loop attain
the k2P0(k)-scaling below k ' 10−2h Mpc−1. Due to the presence of the free-streaming scale
in the 2F neutrino models, they only recover the asymptotic k2P (k)-scaling for even smaller
k. We read off the limit bhh at k = 10−3h Mpc−1 (dashed vertical line in figure 7). Note that
bhh defines the renormalization point, and changing its value only leads to a shift in the EFT
parameter γ1. We check that adjusting the wavenumber at which we read off the limit bhh
has insignificant impact on our conclusions, up to the shift. Therefore we find it convenient
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Figure 7. Subtracted two-loop and subtracted single-hard two-loop power spectrum correction over
k2P0(k). We plot the corresponding IR resummed quantities as defined in eq. (4.47) and (4.48) below,
rescaled by the two-loop growth factor power e6∆η. The three neutrino mass models computed in 2F
as well as the result in 1F are shown (for simplicity we set Mν = 0.1 eV for 1F; any difference due
to neutrino mass enters there only in the input linear power spectrum). Errorbars show uncertainty
from the Monte Carlo integration. The dashed vertical lines indicate the subtraction points defining
the limits bhh (left panel) and bh (right panel). The double-hard subtraction points coincide for all
neutrino masses, while for the single-hard limit the subtraction points left to right correspond to
increasing neutrino mass.

to evaluate the limit for k � kFS, while we will obtain the corresponding limit bh for the
single-hard two-loop contribution at k � kFS as we discuss below.6

4.2.2 Single-hard limit
Next, we consider the limit in which one of the loop momenta becomes large: q1 � k, q2 ∼ k
(or equivalently with q1, q2 switched). The counterterms that renormalize this limit are
one-loop diagrams with insertions of EFT operators. Computing those diagrams is rather
complicated even in the 1F case, and would in the 2F scheme potentially involve further
operators from the generalization of (4.17) including neutrino perturbations. Therefore we
opt for the approach put forward in [71], using an ansatz for the single-hard counterterm with
one extra EFT parameter.

Analogously to the one-loop case, we start by defining the two-loop integrand p2L:

P2L(k, η) = e6∆η
∫ Λ

dq1 q
2
1P0(q)

∫ Λ
dq2 q

2
2P0(q)

∫
dΩq1 dΩq2 p2L(k,q1,q2; η) . (4.21)

In the single-hard limit q1 → ∞, the leading contribution comes from kernels
F (n)(. . . ,q1,−q1, . . . ) ∝ 1/q2

1. The two-loop integral can thus be factorized in this limit
6One could obtain bhh at k � kFS numerically by fixing the loop momenta to a large value q1, q2 � k,

yielding a different value than on scales larger than the free-streaming length, however ultimately this would
just lead to a shift in the measured value of γ1.
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giving the single-hard result

P h2L(k, η) = 2e6∆η ph2L(k, η)σ2
d , (4.22)

where
ph2L(k, η) ≡ 3

∫ Λ
dq2 q

2
2P0(q)

∫ dΩq

4π

(
lim
q1→∞

q2
1p2L(k,q1,q2; η)

)
. (4.23)

The factor 2 in (4.22) accounts for the equivalent contribution where q2 is hard. We compute
the limit (4.23) both in the 1F and 2F schemes numerically by fixing the hard loop momentum
to a large value q1 � Λ and evaluating the resulting integral using Monte Carlo integration.

Following the prescription of [71], we assume that we can correct for the spurious UV
contribution in the single-hard limit by a shift in the value of the displacement dispersion
σ2

d, i.e.
σ2

d(Λ) 7→ σ2
d(Λ) +Nγ2(Λ) , (4.24)

where the γ2-term corresponds to the EFT correction and N is a factor introduced for
convenience that we define below. The replacement yields an additional counterterm

2e6∆η ph2L(k, η)Nγ2 , (4.25)

to the power spectrum. This term could in principle immediately be added to the renormalized
power spectrum, however we notice that part of it is still degenerate with the double-hard
limit. The definition (4.23) integrates over a hard region q2 � k for external wavenumbers
far below the cutoff, which yields a contribution proportional to k2P0(k). Such a contribution
is absorbed by the γ1-counterterm defined above, however as discussed for the double-hard
limit, we adopt a renormalization scheme where γ2L

1 exactly cancels the double-hard region of
the two-loop, now including also the double-hard contribution from the counterterm (4.25).
In practice this means that we subtract the degenerate double-hard part from the single-hard
contribution in analogy to the subtracted two-loop correction:

p̄h2L = ph2L − phh2L . (4.26)

To obtain the double-hard limit phh2L, we use the same method as for the full two-loop
correction: we evaluate numerically the limit bh = limk→0 p

h
2L/k

2/P0(k). In this limit the
integral (4.23) only has support where q2 � k and since q1 is hard we recovered the double-hard
limit and phh2L = bhk2P0(k).

The subtracted single-hard limit p̄h2L divided by the double-hard scaling k2P0(k) is shown
in the right panel of figure 7 (we plot the corresponding IR resummed quantities defined
in the next section). We set the cutoff to Λ = 1h Mpc−1 and the hard loop momentum
to q1 = 10h Mpc−1. In the 1F scheme, the low-k limit has indeed the k2P0 scaling, and
we subtract the value at k = 10−2h Mpc−1 so that the single-hard limit p̄h2L does not give
a contribution degenerate with the one-loop counterterm. For the 2F scheme we also find
the k2P0 scaling is approached, however for very small wavenumbers certain deviations
occur. They may in part be attributed to large numerical cancellations due to our choice
q1 = 10h Mpc−1, and we checked that the k2P0 scaling extends to lower k for q1 = 5h Mpc−1,
without changing the result within the relevant range k & 0.05h Mpc−1 where p̄h2L gives a
significant contribution to the renormalized two-loop power spectrum. We therefore use a
subtraction point k ' 0.015, 0.027, 0.04h Mpc−1 for Mν = 0.1, 0.2, 0.4 eV, to read off bh and
subtract the double-hard contribution (indicated by the vertical dashed lines in figure 7).
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As for the full two-loop correction, the definition of the double-hard subtraction point and
corresponding value bh determines the renormalization point, hence a change of bh only results
in a shift of γ1. We check in particular that choosing 0.027h Mpc−1 as subtraction points
also for Mν = 0.1 and 0.4 eV has negligible impacts on the results.

All in all, we have the two-loop counterterm

P ctr
2L (k, η; Λ) = 2e6∆ηNγ2(Λ) p̄h2L(k, η) , (4.27)

and the renormalized two-loop correction reads

P ren
2L (k, η; Λ) = P̄2L(k, η; Λ) + P ctr

2L (k, η; Λ) . (4.28)

After renormalization, the CDM+baryon power spectrum at NNLO should be independent of
the cutoff:

d
dΛP

ren
NNLO(k, η; Λ) = 0 , (4.29)

where
P ren

NNLO(k, η; Λ) = Ptree(k, η) + P ren
1L (k, η; Λ) + P ren

2L (k, η; Λ) . (4.30)
By removing the double-hard contribution to the two-loop correction (i.e. by using the
subtracted quantities P̄2L and p̄h2L), there are no degenerate UV contributions between the
one- and two-loop corrections, and we can solve the RGE (4.29) independently for each term.
Furthermore, the one-loop RGE (4.15) and its solution stay the same.

The remaining cutoff-dependence comes from the single-hard region of the two-loop
correction, which should be corrected for by the two-loop counterterm,

0 = d
dΛ

[
P̄ h2L(k, η; Λ) + P ctr

2L (k, η; Λ)
]

= 2e6∆ηp̄h2L(k, η) d
dΛ

[
σ2

d(Λ) +Nγ2(Λ)
]
, (4.31)

valid at leading power in gradients. This result reflects the assumption that the single-hard
region is regulated by a shift in the displacement dispersion σ2

d. The solution is

γ2(Λ) = γ2 + 4π
3N

∫ ∞
Λ

dq P0(q) , (4.32)

where γ2 is an initial condition.7 We choose N = 1/c, with c defined in eq. (4.9) (and
evaluated in the 2F scheme using eq. (4.12)), in order to treat γ1 and γ2 on equal footing (cf.
RGE for γ1 (4.15)).

To check that we indeed obtain cutoff-independent loop corrections, we show the various
loop and counterterm results in figure 8, for Mν = 0.1 eV using two cutoffs Λ = 0.8 (dashes
lines) and 1h Mpc−1 (solid lines). The top panels show the absolute contributions, while the
bottom panels show the fractional difference between the renormalized power spectra using
the two cutoffs. We see that the cutoff-dependence of the renormalized one-loop correction is
on the permille level up to k ' 0.4h Mpc−1; for increasing k the neglected next-to-leading
gradient corrections O(k4/k4

NL) become more and more important. The double-hard limit
gives the largest contribution to the bare two-loop correction, as indicated by the bare (blue)
and subtracted (yellow) graphs in the right panel of figure 8. The single-hard limit is regulated
by the counterterm (green) yielding the renormalized two-loop correction (red). We display
its fractional difference using the two cutoffs in the bottom plot, where the large relative
deviations at small k come from the renormalized correction being very close to zero. The
difference is less than 1% up to about k = 0.25h Mpc−1.

7For the EFT parameters γ1 and γ2 we use the bar notation to indicate the value as Λ → ∞. This is
unrelated to the bar notation we adopt for the subtracted power spectra, e.g. P̄2L as defined in eq. (4.20).
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Figure 8. Cutoff-dependence of one- and two-loop corrections. Dashed and solid lines display results
using Λ = 0.8 h/Mpc and Λ = 1 h/Mpc, respectively, and the colored bands show the difference. Upper
left: bare and renormalized result at one-loop. Upper right: bare, subtracted and renormalized two-loop
correction, as well as the two-loop counterterm. The fractional difference between the renormalized
power spectra using the two cutoffs are shown in the lower panel. The EFT parameters are set to
γ1 = γ2 = 1 Mpc2/h2.

4.3 IR resummation

A well-known issue with the Eulerian perturbative description is that the effect of large
bulk flows on the BAO peak is inadequately modelled [25, 90]. Nevertheless, this effect
can relatively straightforwardly be taken into account non-perturbatively by resumming the
contributions from long-wavelength displacements, known as IR resummation [27–30]. We use
IR resummation for both schemes 1F and 2F in order to model the BAO scales as accurately
as possible.

The large bulk flows affect only the BAO wiggles and not the broadband part of the
power spectrum, therefore it is useful to split the linear power spectrum into a wiggly and
non-wiggly part

P0(k) = Pnw(k) + Pw(k) . (4.33)

We perform this split using the method described in [91, 92], i.e. we obtain Pnw by Fourier
transforming the power spectrum to real space, removing the BAO peak, and smoothly
interpolating the power spectrum without the peak. Following [30], the next step is to
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compute the damping factor

Σ2 = 4π
3 e2∆η

∫ ks

0
dq Pnw(q)

[
1− j0

(
q

kosc

)
+ 2j2

(
q

kosc

)]
, (4.34)

where jn are spherical Bessel functions, kosc = h/(110 Mpc) is the wavenumber that corre-
sponds to the BAO period and ks is the separation scale of long and short modes, introduced
to have separate perturbative expansions in the two regimes. We use ks = 0.2h Mpc−1, as
recommended by [30].8 The IR resummed power spectrum at N -th order is

P IR =
N∑
L=0

PL-loop

[
Pnw + Pw e−k2Σ2

N−L∑
n=0

(k2Σ2)n
n!

]
≡

N∑
L=0

PL-loop
[
P IR,N−L

0

]
, (4.35)

where the bracket notation PL-loop[X] indicates that X is the linear input power spectrum
that enters in the L-loop integrals. The exponential damping factor resums the infrared
contributions, while the sum over n corrects for overcounting (the IR contributions are also
included perturbatively order by order in the loop evaluations) [30].9 In the last equality
we defined a shorthand notation for the input power spectrum in the IR resummed result
P IR,N−L

0 , i.e. the quantity in the bracket, which depends on the difference N −L. Specifically,
at the orders in perturbation theory in which we work one has

P IR
LO = Ptree

[
Pnw(k) + e−k2Σ2

Pw(k)
]
, (4.36)

P IR
NLO = Ptree

[
Pnw(k) + e−k2Σ2(1 + k2Σ2)Pw(k)

]
+ P1L

[
Pnw(k) + e−k2Σ2

Pw(k)
]
, (4.37)

P IR
NNLO = Ptree

[
Pnw(k) + e−k2Σ2

(
1 + k2Σ2 + 1

2(k2Σ2)2
)
Pw(k)

]
+ P1L

[
Pnw(k) + e−k2Σ2(1 + k2Σ2)Pw(k)

]
+ P2L

[
Pnw(k) + e−k2Σ2

Pw(k)
]
. (4.38)

Note that the tree-level power spectrum is non-trivial in the 2F scheme and given by

Ptree [P0] (k, η) =
[
F (1)(k, η)

]2
P0(k) . (4.39)

In deriving eq. (4.35) in the Eulerian theory, the following property of the kernels in the
soft limit is key [30]:

F (n)(q1, . . . ,qn)→ m!
n! F

(m)(q1, . . . ,qm)q · qm+1
q2
m+1

· · · q · qn
q2
n

(4.40)

in the limit where q1, . . . , qm are much smaller than the remaining arguments qm+1, . . . , qn and
where q = ∑

qi. This factorization follows from Galilean invariance [93], which is certainly
also a symmetry in the 2F scheme. Therefore the IR resummed equation (4.35) is valid also
in the 2F case.

8We checked that changing the separation scale to ks = 0.1h Mpc−1 has negligible impacts on our results
and conclusions.

9We have limN→∞ P
N−L
0 = Pnw + Pw = P0 such that the exact spectra with and without IR resummation

agree; the difference arises only when working at finite order in perturbation theory.
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In practice, we use the following simplified expression to evaluate IR resummed loops

PL-loop

[
Pnw + Pw e−k2Σ2

N−L∑
n=0

(k2Σ2)n
n!

]

→ PL-loop [Pnw] + (PL-loop [Pnw + Pw]− PL-loop [Pnw])× e−k2Σ2
N−L∑
n=0

(k2Σ2)n
n! , (4.41)

which is valid up to corrections of O(P 2
w) as well as diagrams involving Pw inside a hard loop.

Neglecting these corrections is a good approximation because Pw is small compared to Pnw,
and it oscillates around zero so that its integral vanishes.

4.4 All together: summary

We end this section by writing down the final expressions for the power spectrum up to NNLO
including both IR resummation and EFT corrections. We have

P IR
LO(k) = Ptree

[
P IR,0

0

]
, (4.42)

P IR
NLO(k) = Ptree

[
P IR,1

0

]
+ P1L

[
P IR,0

0

]
+ P ctr

1L

[
P IR,0

0

]
, (4.43)

P IR
NNLO(k) = Ptree

[
P IR,2

0

]
+ P1L

[
P IR,1

0

]
+ P ctr

1L

[
P IR,1

0

]
+ P̄2L

[
P IR,0

0

]
+ P ctr

2L

[
P IR,0

0

]
, (4.44)

where the counterterms are given by

P ctr
1L

[
P IR,N−L

0

]
(k, η; Λ) = −2e4∆η γ1(Λ)k2P IR,N−L

0 (k) , (4.45)

P ctr
2L

[
P IR,N−L

0

]
(k, η; Λ) = 2e6∆η

c(η) γ2(Λ) p̄h2L
[
P IR,N−L

0

]
(k, η; Λ) , (4.46)

with c defined in eq. (4.9) and the subtracted quantities defined as

P̄2L
[
P IR,N−L

0

]
(k, η; Λ) = P2L

[
P IR,N−L

0

]
(k, η; Λ)− bhhk2P IR,N−L

0 (k) , (4.47)

p̄h2L

[
P IR,N−L

0

]
(k, η; Λ) = p̄h2L

[
P IR,N−L

0

]
(k, η; Λ)− bhk2P IR,N−L

0 (k) . (4.48)

The single-hard contribution ph2L was defined in eq. (4.23) and the RGEs for the EFT
parameters were given in eqs. (4.15) and (4.31). The double-hard limit constants bhh and
bh are computed in the same way as in subsections 4.2.1 and 4.2.2, but using P IR,N−L

0 as
the linear power spectrum, e.g bhh = limk→0 P2L

[
P IR,N−2

0

]
/k2/P IR,N−2

0 . In general, the
EFT discussion in subsections 4.1 and 4.2 above can immediately be promoted to include IR
resummation by the replacement P0 → P IR,N−L

0 .
For completeness, we note again that in the 1F scheme the time-dependence is factored

out, so to obtain the power spectrum at z = 0 we can use ηini = 0 and ∆η = 0. In the 2F
scheme on the other hand, we chose the matching between the Boltzmann hierarchy and
the two-fluid description at ηini corresponding to z = 25. Therefore, to obtain the quantities
P IR,N−L

0 , we take the linear power spectrum from CLASS at z = 0 or z = 25 depending on
the scheme, split it into its wiggly and non-wiggly components, compute the damping factor
Σ2 and use the definition in eq. (4.35).
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5 Comparison to N-body simulations

To calibrate the EFT parameters and perform a comparison of the 1F and 2F schemes in the
effective theory, we utilise the Quijote N-body simulations [72]. In particular, we use the set of
massive neutrinos simulations with 5123 CDM particles and 5123 neutrino particles in a cubic
box of size (1 Gpc/h)3. Moreover, we use the simulations with pair fixed initial conditions that
significantly reduce the cosmic variance for the power spectrum. The cosmological parameters
are Ωm = 0.3175, Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834 and the neutrinos mass is
Mν = 0.1, 0.2 and 0.4 eV in the different models respectively. We estimate the power spectrum
and uncertainty at z = 0 using the average and standard deviation of the 500 realizations.

On the largest scales, the binning method used to obtain the power spectrum from the
simulations become significant and has to be taken into account when comparing simulation
and theory. We use the Pylians library10 to perform the same binning on the linear power
spectrum. Instead of binning also the loop corrections, we can equivalently compare the
theoretical results to the “unbinned” N-body power spectrum

Pdata(k) = P0(k, z = 0)
P binned

0 (k, z = 0)
P binned

data (k) . (5.1)

The EFT parameters are calibrated by minimizing the following χ2 at NLO and NNLO:

χ2
NLO =

kmax∑
k=kmin

[
Pdata(k)− P IR

NLO(k, γ1)
]2

[∆Pdata(k)]2
, (5.2)

χ2
NNLO =

kmax∑
k=kmin

[
Pdata(k)− P IR

NNLO(k, γ1, γ2)
]2

[∆Pdata(k)]2
, (5.3)

where ∆Pdata(k) is the estimated uncertainty of the N-body power spectrum. We have
kmin = 0.0089h Mpc−1 and at kmax = 0.1 and 0.3h Mpc−1 we have 14 and 46 wavenumber
grid points in the sum, respectively. The perturbative results P IR

NLO and P IR
NNLO are calculated

using eqs. (4.43) and (4.44) with cutoff Λ = 1hMpc−1 and where the hard limits are evaluated
by fixing the hard momenta to q1 = 10h Mpc−1 as described in the previous section.

We consider the following cases

NLO {γ̄1} one-loop, 1-parameter,

NLO, γ̄1 = γ̄
[NNLO]
1 {∅} one-loop, 0-parameter with γ̄1 fixed from NNLO fit,

NNLO, γ̄2 = γ̄1 {γ̄1} two-loop, 1-parameter with γ̄2 = γ̄1 ,

NNLO {γ̄1, γ̄2} two-loop, 2-parameter,

where the NLO cases are fit using eq. (5.2) and NNLO cases using eq. (5.3). We calibrate
the EFT parameters in the limit Λ→∞ (cf. eqs. (4.16) and (4.32)). The second case, NLO
γ̄1 = γ̄

[NNLO]
1 , is not fitted since γ̄1 is fixed from the two-parameter NNLO case. We explain

the motivation for this case below. The third case, NNLO γ̄2 = γ̄1, is motivated by the
assumption that in the EFT, the displacement dispersion is corrected in a universal manner
as σ2

d → σ2
d + γ1/c both at one- and two-loop.

10github.com/franciscovillaescusa/Pylians.
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Figure 9. CDM+baryon power spectrum computed in the 2F scheme normalized to N-body data. We
show the perturbative results at NLO and NNLO with different assumptions on the EFT parameters,
for pivot scales kmax = 0.103 (left) 0.148 (middle) and 0.204h Mpc−1 (right). The gray band indicates
the N-body uncertainty, while the red shaded area display estimated theoretical uncertainty at one-loop
(light shading) and two-loop (darker shading). The sum of neutrino masses is Mν = 0.1 eV.

5.1 Results

We begin by comparing the full 2F solution for the various NLO/NNLO calibration cases
above with the most phenomenologically relevant neutrino mass Mν = 0.1 eV. In figure 9
we show the power spectrum using three pivot scales kmax = 0.103, 0.148 and 0.204h Mpc−1,
normalized to the N-body results. The gray band indicates estimated uncertainty from the
N-body simulation and the red shading corresponds to an ansatz for the expected theoretical
uncertainty at NLO (light shading) and NNLO (darker shading) [94]. In all panels, there is a
“bump” feature in the relative difference around k = 0.01 – 0.05h Mpc−1 of a few permille (i.e.
well within the uncertainty of the N-body data) that arises due to finite N-body box size and
binning uncertainty not captured by the correction (5.1). Nevertheless, all cases can be fitted
to lie within the N-body uncertainty up to even the largest pivot scale. Depending on the loop
order, we are subject to overfitting above a certain kmax. In particular, given the expected
theoretical uncertainties, we see that the NLO result differs much less from N-body beyond
k ' 0.10hMpc−1 than expected from the missing two-loop correction, and similarly the NNLO
result remains in good agreement above k ' 0.10h Mpc−1, indicating overfitting. Ideally, we
would be able to calibrate the EFT parameters precisely below k = 0.05h Mpc−1 where the
perturbative uncertainty is small, but in practice the moderate simulation uncertainty (even
after cosmic variance is reduced), a small number of grid points and finite box size effects
complicates the picture.

To gauge the extent of overfitting at NLO, we introduce a 0-parameter NLO case where
the γ1 parameter is fixed to that in the NNLO case with the same pivot scale. At NNLO,
there is a larger window in which the theoretical uncertainty is still small and hence more
data points to measure γ1 precisely. Moreover, in our renormalization scheme γ1 remains
the same after adding the two-loop correction, up to numerical uncertainty and overfitting.
Therefore, the degree of overfitting is reduced in the NLO γ̄1 = γ̄

[NNLO]
1 case.

The χ2 per degree of freedom (d.o.f.) is shown for the different fits in figure 10. Since
we are ultimately interested in assessing the effect of non-linear neutrino perturbations on the
power spectrum, i.e. comparing the performance of the 1F and 2F schemes, we chose a simple
estimator for the N-body uncertainty, for example not taking into account correlations between
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Figure 10. Reduced χ2 for the various calibration cases at NLO and NNLO as a function of the pivot
scale kmax.

different bins. This is reflected by the small χ2/d.o.f.� 1. We find that the γ̄1 = γ̄2 ansatz
at NNLO proposed by [71] does not work as well when including the exact time-dependence
and effect of neutrinos, and even performs worse than the NLO case at k ' 0.12h Mpc−1.

The best-fit EFT parameters γ̄1 and γ̄2 as a function of kmax are displayed in figure 11.
We show the results from both schemes 1F and 2F, indicating 1σ uncertainty in the shaded
bands. At NLO, we find that the γ̄1 measurement is consistent with a constant up to
about kmax ' 0.11h Mpc−1 where the parameter starts exhibiting a running. At NNLO
(with both parameters varied), this plateau for γ̄1 extends to kmax ' 0.14h Mpc−1, and the
measurement within 1σ is consistent with a constant up to around 0.2h Mpc−1. The γ̄2
parameter (rightmost panel) can only be constrained beyond kmax ' 0.15h Mpc−1, because
the two-loop counterterm (i.e. the subtracted single-hard limit (4.27)) is exceedingly small for
lower wavenumbers. We find that when both parameters are allowed to vary at NNLO, they
assume different values, giving another confirmation that the NNLO 1-parameter γ̄1 = γ̄2
model cannot match the data with the same accuracy. In the second leftmost plot we show
the best-fit parameter in this model. It features a considerable running compared to the other
cases even at low kmax ' 0.1h Mpc−1, suggesting a degree of overfitting already from large
scales. Before commenting on the difference in the calibrated EFT parameters in the 1F and
2F schemes as is seen in figure 11, we discuss the power spectrum and χ2 in the two schemes.

Next, we compare the 1F and 2F schemes for Mν = 0.1 eV. We find similar conclusions
for the other neutrino mass cosmologies. The power spectra for the two schemes are shown
in figure 12, using kmax = 0.15h Mpc−1, and the χ2/d.o.f. as a function of the pivot scale
is shown in the left panel of figure 13. We find that both schemes can broadly model the
data equally accurately, with some minimal differences. This suggests that the difference
between the schemes for the bare density power spectrum (arising mostly due to relaxing the
EdS approximation, see figure 3 and discussion in section 3) can to large extent be absorbed
into the counterterms. In particular, the difference can be captured by the k2P0-counterterm
leading to a shift in the value γ̄1. This is exactly what we see in figure 11. Both in the NLO
and NNLO cases, we have an approximate shift ∆γ̄1 ≈ −0.2 Mpc2/h2 between the 1F and
2F schemes. The shift is consistent with the findings of [39] for the one-loop bispectrum with
the EdS approximation relaxed. Furthermore, we find that the two-loop EFT parameter γ̄2
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Figure 11. Measured parameters γ1, γ2 and γ = γ1 = γ2 as a function of kmax. We show the results
from the 1F scheme (blue) and 2F scheme (green) for a neutrino mass sum Mν = 0.1 eV. The shaded
regions indicate 1σ uncertainty.
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Figure 12. CDM+baryon power spectrum at NLO (left) and NNLO (right) in the 1F (blue) and 2F
(green) schemes, normalized to the N-body result. The gray band indicates the N-body uncertainty,
while the red shaded area display estimated theoretical uncertainty at one-loop (light shading) and
two-loop (darker shading). The pivot scale is kmax = 0.148h Mpc−1 and the sum of neutrino masses
is Mν = 0.1 eV.

is unchanged in the 2F scheme as compared to 1F, as seen for kmax > 0.15h Mpc−1 in the
rightmost panel of figure 11.

Finally, we consider the three cosmologies with Mν = 0.1, 0.2 and 0.4 eV, computed
at NNLO (2-parameter) in the full 2F solution. The reduced χ2 for the different models is
displayed in the right panel of figure 13. By accident, the “bump” feature from finite box
effects is slightly smaller for Mν = 0.2 eV than the other neutrino masses, leading to a smaller
χ2 for low kmax. Moreover, for Mν = 0.4 eV, the linear 2F solution is off by almost a percent
for k < 0.01h Mpc−1 (see figure 2), yielding a slightly larger χ2 around kmin. Apart from these
insignificant discrepancies, we find that all neutrino models can match the N-body results
accurately using the 2F scheme. This is also seen from the power spectra plots in figure 1.

The best-fit EFT parameters for the different neutrino mass models are shown in figure 14.
In the left plot we use the 1-parameter NLO approach while in the middle and right plots
we show the NNLO 2-parameter model. It is not surprising that the parameters acquire
different values for the different cosmologies: the part of the counterterms correcting for
the inaccuracy of SPT is altered due to different values of the displacement dispersion σ2

d
and the c-coefficient, and the part accounting for the impact of actual short-scale physics
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Figure 14. Measured parameters γ̄1, γ̄2 and as a function of kmax for the different cosmologies with
Mν = 0.1, 0.2 and 0.4 eV. The shaded regions indicate 1σ uncertainty.

c γ1(Λ) γ̄1 γ2(Λ) γ̄2

Mν = 0.1 eV 0.269 1.81± 0.41 1.58± 0.41 −0.62± 2.4 −0.85± 2.4
Mν = 0.2 eV 0.254 1.71± 0.42 1.48± 0.42 −0.072± 2.3 −0.3± 2.3
Mν = 0.4 eV 0.228 1.61± 0.39 1.4± 0.39 0.46± 2.1 0.25± 2.1

Table 2. Measured EFT parameters and constant c for different neutrino masses with cutoff Λ =
1h Mpc−1 and pivot scale kpivot = 0.15h Mpc−1.

changes due to the impact of massive neutrinos on strongly non-linear scales. At NNLO, we
measure a shift ∆γ̄1 ' −0.14 Mpc2/h2 at kmax = 0.14h Mpc−1 and ∆γ̄2 ' −0.2 Mpc2/h2 at
kmax = 0.17h Mpc−1 when doubling the sum of neutrino masses. We quote the value of the
c-coefficient as well as the measured EFT parameters γ1(Λ) and γ2(Λ) for Λ = 1h Mpc−1 and
Λ→∞ for the different neutrino cosmologies in table 2.

In summary, we can accurately match the Quijote N-body data both at NLO and NNLO
using the full 2F solution, however being subject to a certain degree of overfitting. The
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window where the EFT parameters can be precisely measured is relatively small and involve
uncertainties from the N-body simulation. We compared the 1F and 2F schemes and found
that the difference of the unrenormalized power spectrum can largely be absorbed in the
one-loop counterterm, leading to a shift in the EFT parameter γ̄1.

6 Conclusions

In this work we have performed a precision calculation of the CDM+baryon density and
velocity power spectrum at next-to-next-to-leading (two-loop) order taking the full time- and
scale-dependence of neutrino perturbations beyond the linear level as well as exact ΛCDM
(+Mν) time-dependence into account. Our aim is to assess the accuracy of the commonly
used approach in which the aforementioned effects are neglected.

To describe the impact of neutrinos in gravitational collapse, we use a hybrid two-
component fluid scheme introduced in [61] and further developed in [57]. The idea is that
neutrinos can only be described by a fluid well after they have become non-relativistic, because
the lower and higher order multipoles effectively decouple by powers of Tν/mν . Therefore,
we can use the full, linear Boltzmann hierarchy until an intermediate redshift z = 25, where
we map the equations onto a two-component fluid consisting of CDM+baryons (one joint
component) and neutrinos. The large neutrino free-streaming is reflected in an effective
neutrino sound velocity, which we compute from linear theory. The two-component fluid
system can readily be realized in the framework for computing loop corrections in cosmologies
with general time- and scale-dependence introduced in [57].

We compare the (unrenormalized) two-loop CDM+baryon density and velocity power
spectra at z = 0 from the full solution including neutrino perturbations beyond the linear
level and exact time-dependence (2F scheme) to the commonly used simplified treatment
with only linear neutrino perturbations and EdS dynamics for CDM+baryons (1F scheme).
For the density spectrum, the main difference arises due to the departure from EdS, leading
to 0.7% deviation at k = 0.15h Mpc−1 (consistent with the results in [57]), approximately
neutrino mass independent. On the other hand, for the velocity spectrum, the deviation
in the 1F scheme is neutrino mass dependent; for the largest neutrino mass Mν = 0.4 eV
the deviation is larger than a percent for k & 0.08h Mpc−1. For k = 0.15h Mpc−1 the
deviation in the velocity or cross power spectra up to two-loop are 2.7%, 1.3%, 0.8% for
Mν = 0.4, 0.2, 0.1 eV, respectively, and even somewhat larger, 2.7%, 2.0%, 1.6%, when going
only up to one-loop, due to a partial cancellation between one- and two-loop terms. Therefore,
the commonly used 1F approximation is questionable for the velocity spectra when aiming at
percent accuracy, implying that the 2F scheme should be used to access the neutrino mass
sensitivity in redshift space.

Furthermore, we check to what extent the two-loop power spectrum on mildly non-linear
scales in the presence of free-streaming massive neutrinos can be reproduced by a massless
model by adjusting the overall amplitude of fluctuations. We find that the massless model can
reproduce the total matter density power spectrum of the smallest neutrino mass to within a
percent, but for the larger neutrino masses the neutrino free-streaming scale kFS is larger and
mimicking the power spectrum in the massless model is more challenging.

To assess the performance of the full 2F solution and the simpler 1F scheme as accurately
as possible, and to compare to N-body data, we take into account EFT corrections as well as
effects of large bulk flows from the IR. We find that the k2 scaling of the kernels — expected
from momentum conservation in the limit when the external wavenumber k goes to zero (or the
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other momenta go to infinity) — is slightly spoiled by the free-streaming scale, but recovered
when k � kFS or k � kFS. Therefore, we assume a large scale separation kFS � k � q,
where q is the scale of hard loop momenta, when analysing the UV limit of the 2F model.
This assumption is appropriate for the smallest neutrino masses, but breaks down for the
largest neutrino mass. At one-loop, we show that the usual k2P0(k) counterterm absorbs the
cutoff-dependence. The double-hard region of the two-loop contribution can also be corrected
by this counterterm. For the single-hard region, we employ a numerical treatment yielding a
counterterm that exactly captures the scale-dependence of the UV-limit of SPT, with one
extra EFT parameter.

We compare the perturbative results of both the 1F and 2F schemes to N-body data,
at different orders in perturbation theory and with various number of free parameters.
The power spectrum in the 2F scheme matches the N-body data within a percent up to
k ' 0.12h Mpc−1 and k ' 0.16h Mpc−1 for NLO and NNLO, respectively, using a pivot scale
kmax = 0.148h Mpc−1. We find that the 1F scheme can achieve similar accuracy, indicating
that the deviation in the bare power spectrum can be absorbed by the counterterms. In
particular, the main source of error in the 1F density power spectrum comes from the EdS
approximation, and it is largely degenerate with the one-loop counterterm. We measure
a shift in the EFT parameter ∆γ̄1 = −0.2 Mpc2/h2 between the 1F and 2F schemes that
accounts for the discrepancy.

In total, we have scrutinized the effect of massive neutrino perturbations taking into
account the full impact of time- and scale-dependent growth on non-linear kernels for
CDM+baryon as well as neutrino density and velocity. We further capture the exact time-
dependence of ΛCDM (+Mν). The impact on the two-loop density power spectrum is to great
extent degenerate with counterterms. The influence of time- and scale-dependent growth due
to massive neutrinos is larger on the velocity spectrum, suggesting that the full 2F treatment
for neutrinos is warranted to access the neutrino mass information encoded in redshift space
distortions. This motivates an analysis of the power spectrum in redshift space within the 2F
scheme, which we leave to future work. In addition, we note that the treatment of neutrino
perturbations and the numerical algorithm used in this work can readily be applied to other
large-scale structure observables such as the bispectrum.
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