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Abstract
1.	 To assess the impacts of climate change on vegetation from stand to global 

scales, models of forest dynamics that include tree demography are needed. 
Such models are now available for 50 years, but the currently existing diversity 
of model formulations and its evolution over time are poorly documented. This 
hampers systematic assessments of structural uncertainties in model-based 
studies.

2.	 We conducted a meta-analysis of 28 models, focusing on models that were used 
in the past five years for climate change studies. We defined 52 model attrib-
utes in five groups (basic assumptions, growth, regeneration, mortality and soil 
moisture) and characterized each model according to these attributes. Analyses 
of model complexity and diversity included hierarchical cluster analysis and re-
dundancy analysis.

3.	 Model complexity evolved considerably over the past 50 years. Increases in 
complexity were largest for growth processes, while complexity of modelled 
establishment processes increased only moderately. Model diversity was lowest 
at the global scale, and highest at the landscape scale. We identified five distinct 
clusters of models, ranging from very simple models to models where specific 
attribute groups are rendered in a complex manner and models that feature high 
complexity across all attributes.

4.	 Most models in use today are not balanced in the level of complexity with which 
they represent different processes. This is the result of different model pur-
poses, but also reflects legacies in model code, modelers' preferences, and the 
‘prevailing spirit of the epoch’. The lack of firm theories, laws and ‘first principles’ 
in ecology provides high degrees of freedom in model development, but also 
results in high responsibilities for model developers and the need for rigorous 
model evaluation.

5.	 Synthesis. The currently available model diversity is beneficial: convergence in 
simulations of structurally different models indicates robust projections, while 
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1  |  INTRODUC TION

Forests provide multiple ecosystem services from local to global 
scales that are crucial to humankind (FAO, 2020). However, anthro-
pogenic climate change is jeopardizing the provisioning of multi-
ple services in many parts of the globe (e.g. Lindner et al.,  2010). 
Therefore, tools are needed to assess the impacts of climate change 
on forests, to evaluate their climate change mitigation potential, 
and to develop adaptive management strategies. Tree demography 
plays a key role in this regard. For example, tree mortality is pivotal 
for ecosystem biogeochemistry (Brienen et al.,  2020; Bugmann & 
Bigler,  2011), and establishment processes are crucially determin-
ing ecosystem resilience after disturbance (Seidl & Tuner, 2022) as 
well as spatial shifts of species and ecosystems (Sharma et al., 2022). 
Thus, models that consider demographic processes in addition to 
growth are needed to study the long-term interactions between for-
ests and the climate system.

JABOWA, published 50 years ago by Botkin et al.  (1972b), was 
the first individual-based tree demography model for mixed-species 
stands, aimed at capturing long-term forest dynamics (here fo-
cused mainly on succession) along an elevational gradient cover-
ing 600 m in the Hubbard Brook Experimental Forest (Bormann & 
Likens, 1979). The success of JABOWA led to a proliferation of simi-
lar models—termed ‘forest gap models’—in the late 1970s and 1980s 
(Shugart,  1984). Forest landscape models (Mladenoff et al.,  1996) 
and dynamic global vegetation models (Friend et al.,  1997; Smith 
et al., 2001) were developed in the 1990s, with clear conceptual re-
lations to forest gap models in terms of fundamental model assump-
tions. From the mid-1980s onwards (e.g. Bugmann & Fischlin, 1994; 
Kienast, 1991; Solomon, 1986), forest gap models have increasingly 
been applied to study the impacts of climate change on ecosystem 
structure, composition and biogeochemistry. Half a century after 
their conception, forest gap models and models influenced by the 
early advances made by the gap modelling community are still in 
use for answering a wide range of fundamental and applied scien-
tific questions (Maréchaux et al.,  2021), including climate change 
impacts (for a brief review, cf. Bugmann,  2014). Subsequently, 
we refer to these models as ‘Models of Forest Dynamics’ (MFDs), 

acknowledging that there are other types of models (such as yield 
tables, forest growth models, species distribution models, Markov 
models, etc.) that we do not address here.

In contrast to physics, there are few fundamental theories, laws 
or ‘first principles’ in ecology based on which a forest model could be 
constructed. Thus, it remains challenging to mathematically capture 
tree demography, growth, competition and other key interactions 
in ecosystems in a way that allows for robust impact assessments 
under future no-analog conditions (Williams & Jackson, 2007). The 
task of developing any model of long-term forest dynamics is faced 
with a daunting number of degrees of freedom for the mathematical 
representation of individual processes (e.g. Huber et al., 2020), and 
this extends to processes that are perceived to be well-understood, 
such as photosynthesis (Walker et al., 2021). This problem is even 
more acute when considering the feedbacks and interactions be-
tween individual processes within an ecosystem.

Our understanding of most ecological processes remains incom-
plete, and the mathematical representation of these processes in 
MFDs is uncertain. It is thus valuable to have different formulations 
available, either as alternatives within one model, or in the form of 
different models (i.e. using a different model architecture). If differ-
ently structured models provide sufficiently similar responses, for 
example to climate change scenarios (e.g. Sebald et al., 2021), our 
confidence that the simulated response is reflecting the system's true 
behavior—rather than being a model artefact—is increased. Thus, 
model comparisons and ensemble model simulations (e.g. Bugmann 
et al., 2019; Cramer et al., 2001; Fisher et al., 2018; Mahnken et al., 
2022; Morales et al., 2005, Petter et al., 2020) are potentially of high 
value for increasing the robustness of projections and highlighting 
conditions under which our current systems understanding as for-
malized in models yields diverging results.

Yet, high agreement in model comparisons and ensemble sim-
ulations does not per se indicate low uncertainty. Model compar-
isons can yield high agreement under future scenarios not only if 
the models are ecologically robust but also if the key formulations 
underlying the models are sufficiently similar. In the most extreme 
case, comparing the projections of a group of equally ill-designed 
models could result in the illusion of low model uncertainty. Also 

convergence of similar models may convey a false sense of certainty. The exist-
ing model diversity—with the exception of global models—can be exploited for 
improved projections based on multiple models. We strongly recommend bal-
anced further developments of forest models that should particularly focus on 
establishment and mortality processes, in order to provide robust information 
for decisions in ecosystem management and policymaking.

K E Y W O R D S
Dynamic Global Vegetation Model, ecological modelling, forest gap model, forest landscape 
model, global change ecology, JABOWA, model design, model evolution
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in science, we are confronted with ‘the prevailing spirit of the 
epoch’ (Baltensweiler & Fischlin, 1987), which is strongly shaping 
our activities. In the specific context of model development, this 
holds the danger of convergence in model formulations due to 
shared but not necessarily correct views. Thus, it is crucial to know 
how diverse the models being used actually are. In the past years, 
multiple review papers and comparisons of dynamic vegetation 
models from stand to global scales were published (e.g. Bugmann 
et al.,  2019; Fisher et al.,  2018; Larocque et al.,  2016; Petter 
et al.,  2020; Shifley et al.,  2017; Shugart et al.,  2018; Thurner 
et al., 2017; Yang et al., 2020), but they either covered only a small 
set of models, focused on selected processes, or remained quali-
tative in describing differences between models. To date, we lack 
a comprehensive approach to quantify the (dis)similarity in models 
that are used to address the same research question.

Fifty years provide ample time for a considerable evolution in 
models at the stand, landscape and global scale. Similar to a spe-
cies that evolves based on changes in genome length and muta-
tions in alleles, models evolve by the addition (or elimination) of 
features and changes in the formulation of individual model prop-
erties. This can lead to the convergence of approaches (e.g. when 
consensus model formulations replace previous, more diverse 
ones), or to diversification (e.g. when a broadening suite of scien-
tific objectives results in more differentiated models). Given the 
original constraints on model complexity due to limited computa-
tional power (cf. Botkin et al., 1972a) and the strongly increasing 
ecological and ecophysiological knowledge over the past 50 years, 
we expect that the complexity of MFDs has increased consider-
ably over time.

In this paper, we quantitatively evaluate the structure, complexity 
and diversity of MFDs, with a focus on models that are in use today 
to assess the impacts of climate change on forests. We compare the 
current models relative to JABOWA (Botkin et al., 1972b) as one of 
the foundational approaches to simulate forest dynamics, and ask how 
their complexity has changed over time. We furthermore quantify the 
current diversity in different model classes (stand, landscape, and 
global models) regarding their process formulations. Specifically, our 
research questions are as follows:

1. How have the complexity and diversity of MFDs changed over 
the last 50 years? Have developments at the stand, landscape, and 
global scales been different?

2. Can MFDs be clustered based on their attributes? If so, does 
this clustering reflect different fundamental aspects of models such 
as their scales of application (stand, landscape, global), or are other 
patterns of model (dis)similarity emerging?

3. Are MFDs currently being used for climate change impact as-
sessments at different spatial scales balanced in their design with 
respect to the representation of key ecological processes such as the 
establishment, growth, and mortality of trees?

4. Are the basic assumptions underlying different MFDs (e.g. the 
entities being modelled and their spatial and temporal grain) pivotal 
for shaping their structure and complexity?

2  |  MATERIAL S AND METHODS

2.1  |  Selection of models

For the present meta-analysis, we did not aim to cover all individual-
based models that have been developed since the late 1960s; these 
were reviewed elegantly and comprehensively e.g. by Shugart (1984). 
Rather, we started from the first forest gap model, JABOWA, and fo-
cused our analysis on its numerous and widespread descendants to 
exemplarily illustrate the evolution of MFDs. Consequently, we used 
a two-pronged strategy to identify the MFDs to be included in our 
analysis, as described below.

First, as a benchmark we selected models that we consider piv-
otal for forest modelling because they introduced new concepts 
or pioneered novel approaches. Starting from the first forest gap 
model, JABOWA (Botkin et al., 1972b), these models constitute dis-
tinct ‘founder events’ for the forest modelling community. This co-
hort includes the following models, ordered according to the date of 
their first publication.

In JABOWA (Botkin et al.,  1972a, 1972b), the establishment, 
growth and mortality of individual trees as well as their competi-
tion for light are modelled based on simple ecological assumptions. 
JABOWA takes into account key environmental influences such as 
growing-season temperature, drought, light availability, and crowd-
ing in dense stands. Trees interact with each other on small patches 
of land (typically, 100–1000 m2), and the behaviour of the forest as 
a whole is determined by averaging across multiple patches. This 
allows to consider both even-aged as well as uneven-aged stands. 
Within patches, horizontal heterogeneity (e.g. tree positions) is 
neglected, and there are no interactions between patches (e.g. via 
light availability or falling dead trees). The simplified structure of 
JABOWA enables the consideration of a wide range of species be-
cause requirements for parameter estimation are reasonably low. 
For more details on the basic structure of forest gap models, com-
pare Shugart (1984).

FORENA (Solomon, 1986) was the first forest gap model applied 
along an extended climatic gradient, from the Canadian tundra to 
the subtropical mixed forests of the state of Georgia in the United 
States, spanning a range of mean annual temperature of c. 27°C. As 
such, it had to account for climatic influences on tree demography 
along this large gradient, which is a prerequisite for model applica-
tions under changing climatic conditions.

ZELIG (Smith & Urban, 1988) was the first forest gap model that 
considered horizontal interactions between the patches. It thus con-
ceptually paved the way for forest landscape models, where hori-
zontal spatial dynamics are essential.

FORSKA (Prentice et al.,  1993) was designed to inject more 
biological realism into MFDs by basing most process formulations 
on physiological considerations. It thus provided the foundation 
for more sophisticated ecophysiological models that have a par-
ticular focus on the interactions between tree demography and 
biogeochemistry.
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HYBRID (Friend et al., 1993) was the first model where a full-
fledged biogeochemical model (BIOME-BGC) was coupled with el-
ements of ‘conventional’ gap models to combine the strengths of 
both approaches in simulating tree demography and biogeochemis-
try. We acknowledge that at the same time, several other research-
ers were working on similar projects, including Martin  (1992) and 
Bonan (1993), but HYBRID is the only model of this cohort that con-
tinues to be in use today. Also, HYBRID was a forerunner of what 
was to become the class of Dynamic Global Vegetation Models 
(DGVMs; see below).

SORTIE (Pacala et al.,  1993) sought to escape (note the pun: 
sortie is a synonym of foray) from some fundamental constraints of 
JABOWA by abandoning the assumption of horizontal homogene-
ity of patches. Instead, it tracks individual tree positions explicitly, 
along with highly detailed calculations of incident radiation at the 
individual-tree level. While earlier studies with forest gap models 
exist where within-patch heterogeneity was explored (e.g. Busing 
& Clebsch,  1987), SORTIE was the first forest gap model to track 
individual tree positions.

LANDIS (Mladenoff et al., 1996) expanded gap model capabili-
ties by including landscape-scale processes such as seed dispersal, 
tree migration and an explicit representation of disturbances such as 
windthrow, insects and fire. We acknowledge that at the same time, 
Roberts (1996) and Keane et al. (1996) were working on similar ideas, 
albeit with a more limited scope on fire.

TreeMig (Lischke et al., 1998) was conceived as a landscape model 
but at the same time provided a bridge towards truly large-scale ap-
plications of MFDs by pioneering model upscaling. Specifically, it 
replaced individual trees or tree cohorts by height classes and intro-
duced a mathematical description of tree population dynamics using 
ordinary differential equations.

ED (Moorcroft et al.,  2001) pursued the upscaling avenue fur-
ther by using similar principles as in TreeMig, but applying them to 
a stand model of much higher complexity, particularly regarding the 
representation of ecophysiological processes. This enabled global 
applications of MFDs.

LPJ-GUESS (Smith et al., 2001) achieved global-scale applicabil-
ity by further developing the principles underlying FORSKA, partic-
ularly invoking principles of ecological optimization. This resulted in 
a considerable simplification of computational demand while main-
taining mechanistic representations of ecophysiological processes.

Second, we screened the recent (defined here as 2016–2021) 
literature via WebOfScience for applications of models to study 
the impacts of climate change on forest dynamics in mid-November 
2021. We identified 400+ entries and scrutinized these by hand, re-
sulting in the selection of nine stand-scale models, eight landscape-
scale models, and seven DGVMs (Table 1). Besides a focus on climate 
change, the models had to include processes of tree demography 
(i.e. at minimum tree establishment and mortality) with a reason-
able level of detail. For example, models that just assume a turnover 
rate of biomass, rather than considering mortality as a demographic 
process, were excluded. Because some of the models that have re-
cently been used in climate change assessments are among the ten 

founder models (i.e. ED, SORTIE, TreeMig, HYBRID, LPJ-GUESS), 
and because some models have been used at both the stand and 
global scales (ED, ED2), the final set for the analysis comprised 28 

TA B L E  1  Models included in the analysis, listed chronologically 
according to the date of their first publication. ‘Founder’ models 
(see the text for details) are printed in italics. In total, 28 unique 
models were analysed

Model First publication
Recenta climate 
change application

(a) Stand models

JABOWA Botkin et al. (1972b) —

FORENA Solomon (1986) —

ZELIG Smith and Urban (1988) —

SIMA Kellomäki et al. (1992) Alrahahleh 
et al. (2018)

FORSKA Prentice et al. (1993) —

SORTIE(-ND) Pacala et al. (1993) Moran et al. (2021)

ForClim Bugmann (1996) Huber et al. (2021)

4C Bugmann et al. (1997) Gutsch et al. (2018)

FORMIND Köhler and Huth (1998) Hiltner et al. (2021)

PICUS Lexer and 
Hönninger (2001)

Boulanger 
et al. (2022)

UVAFME Shuman et al. (2015) Foster et al. (2019)

SIBBORK Brazhnik and 
Shugart (2016)

Brazhnik 
et al. (2017)

ForCEEPS Morin et al. (2021) Morin et al. (2021)

(b) Landscape models

LANDIS Mladenoff et al. (1996) —

Fire-BGC Keane et al. (1996) Keane et al. (2019)

TreeMig Lischke et al. (1998) Scherrer 
et al. (2020)

LANDIS-II Scheller and 
Mladenoff (2004)

Olson et al. (2021)

LandClim Schumacher 
et al. (2004)

Sebald et al. (2021)

iLand Seidl et al. (2012) Sebald et al. (2021)

FATE-HD Boulangeat et al. (2014) Barros et al. (2018)

LANDIS PRO Wang et al. (2015)b Duan et al. (2021)

(c) Dynamic Global Vegetation Models

HYBRID Friend et al. (1993) Thurner 
et al. (2017)

LPJ-GUESS Smith et al. (2001) Schurgers 
et al. (2018)

ED Moorcroft et al. (2001) Ma et al. (2021)

SEIB-DGVM Sato et al. (2007) Wu et al. (2019)

ED2 Medvigy et al. (2009) Longo et al. (2018)

aDGVM Scheiter and 
Higgins (2009)

Martens 
et al. (2021)

FATES Fisher et al. (2015) Holm et al. (2020)

aDefined as published in the period 2016–2021.
bAs coupled to the LINKAGES v3.0 model.
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unique models (Table  1). Five of the founder models (Table  1) are 
not in use any more today (i.e. JABOWA, FORENA, ZELIG, FORSKA 
and LANDIS). They are subsequently referred to as ‘legacy models’.

2.2  |  Selection of model attributes 
(‘genes’) and their expression (‘alleles’)

We used a subjective and iterative approach to define model at-
tributes for comparing the 28 models. Specifically, we distinguished 
between (1) basic assumptions (BA), (2) growth processes (GR); (3) 
establishment processes (ES), (4) mortality processes (MO) and (5) 
soil moisture processes (SM). The latter were included because at 
least some consideration of the water balance is needed to assess 
climate change impacts. Overall, we identified 52 relevant attrib-
utes in these five categories (Table  2). For each attribute, two to 
six levels of expression were defined; they are described in detail in 
Supplementary Material 1. To rephrase in terms of ‘model genomes’: 
The 52 attributes (‘genes’) feature a sum of 178 expressions (‘alleles’) 

and the potential for a total of 
∏52

i=1
ni ≈ 6.7 × 1030 unique ‘genomes’, 

where ni is the number of expressions of attribute i.
For each model, the expression of each attribute (if present) 

was assessed based on published papers, technical model doc-
umentations, model descriptions available on web pages, and in 
some cases also the model's source code. We specifically aimed 
to characterize the version of the model that had been used in 
a recent climate change impact assessment (Table  1). The list of 
attributes and their expressions for each model was subsequently 
sent to the respective PI of each model for cross-checks and cor-
rections. For the legacy models (Table  1), this task was accom-
plished by the first author of this paper. We received feedback 
from all but two PIs. Based on this feedback, we calculated the 
average error of our initial characterization of the 28 models. On 
average, 4.2 out of 52 attributes per model had to be corrected 
based on the feedback of the PIs. This corresponds to an error rate 
of 8.1% with a median of 3 erroneously assigned attributes per 
model. Extrapolating this to the two models for which no feedback 
from the PIs was received, an error rate of 2 × 4.2/(28 × 52) = 0.6% 

TA B L E  2  Attributes considered in the analysis of 28 models of forest dynamics (cf. Table 1). The levels of expression of the attributes are 
described in Supplementary Material 1. Numbers in parentheses indicate the number of attributes in each category

Basic assumptions (8) Growth (21) Establishment 13) Mortality (7) Soil moisture (3)

Horizontal grain Central state variable(s) Approach Background (BG) mortality: 
level

Vertical resolution

Horiz. structure 
within patches

Time step for tree geometry Establishment probability BG mortality formulation Temporal 
resolution

Interactions between 
patches

Time step for productivity Number of established trees Stress-related mortality Drought

Vertical grain Approach to model growth Ingrowth threshold Disturbance mortality

Vertical extent of 
crowns

Allocation Environmental influences Windthrow

Grain of modeled 
entities

Height-DBH ratio Light Bark beetles

Life forms considered Leaf area-DBH ratio Moisture Fire

Focus of application Crown length Temperature

Crown width Frost

Crown transparency Browsing

Light extinction across the 
canopy

Seed production

Light response Dispersal

Environmental influences Vegetative reproduction

Time step for env. influences

Temperature

Soil moisture

Nutrients

CO2

WUE

Crowding

Phenology
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remains in the entire dataset. We deem this error unlikely to affect 
the outcome of our analyses.

All attribute expressions were converted to a numerical scale 
with equal distances between attribute expressions, ranked by in-
creasing complexity. The numerical expressions were scaled to 
an average of zero and a standard deviation of one for each attri-
bute. This approach is an established method in clinical psycholog-
ical research for quantifying the results of qualitative surveys (cf. 
Kline, 2015; Schweizer & DiStefano, 2016): our 52 model attributes 
are equivalent to the questions of a structured survey (test), and the 
expressions of the attributes are equivalent to the standardized an-
swers of the surveyed persons, which in our case are the 28 models. 
To assess the sensitivity of the method, we evaluated varying dis-
tances between attribute expressions and found the results of the 
analyses to be robust to such variations (data not shown).

2.3  |  Analysis of the models

First, we analysed changes in model complexity over time. We did 
this based on the year of first publication (cf. Table 1) with two ex-
ceptions: The FIRE-BGC and 4C models have undergone strong 
conceptual and structural development since their first publication. 
Therefore, for these models we used the year when the currently 
applied version was published, that is Keane et al. (2011) and Lasch-
Born et al. (2020), respectively.

We specifically focused on (1) the number of attributes that were 
considered (‘genome length’), and (2) the average complexity in the 
five attribute groups BA, GR, ES, MO, and SM. Furthermore, radar 
plots were drawn to visualize the complexity of each model for these 
five attribute groups and the diversity within the classes of stand, 
landscape and global models.

Second, numerical distances between the models were calculated 
using multiple distance measures including Euclidean, Manhattan, 
Canberra and Minkowski. Results were generally found to differ lit-
tle, and the Canberra distance metric produced the ecologically most 
plausible results. Similarly, multiple clustering algorithms were tested, 
including Ward, Ward.2, single, complete, and average. Also here, the 
results differed little. Furthermore, a range of multivariate analysis 
techniques such as metric multi-dimensional scaling and k-means 
clustering were evaluated, yielding similar results compared to those 
from hierarchical clustering. These analyses indicate that our findings 
are robust to different techniques being applied. Here, we report the 
results for hierarchical clustering with the complete method based 
on Canberra distances. The clustering was done for the models as a 
whole, and separately for the attribute groups GR, ES, and MO.

Third, heat maps were drawn to visualize the attribute space, 
both unclustered and clustered, using hierarchical clustering based 
on the methods described above. The optimum number of clusters 
was five, being determined using 22 indices and the majority rule.

Lastly, to evaluate whether the basic assumptions underlying the 
models influence their structure and complexity, we conducted a re-
dundancy analysis (RDA) using the set of BA attributes, the model 

class (stand, landscape, global) and the time of first model publi-
cation (Table 1) as explanatory variables for the expressions of the 
other attributes.

All analyses were conducted in the statistical software R 
version 4.1.2 (R Core Team, 2021). For radar plots, package fmsb 
(Nakazawa,  2021) was used. Complex hulls were drawn using 
package grDevices. Distance matrices between the models, hierar-
chical clustering and metric multi-dimensional scaling (MDS) were 
calculated using the stats package. The optimum number of clus-
ters was determined using package NbClust (Charrad et al., 2014). 
k-means clustering was performed using the factoextra package 
(Kassambara & Mundt, 2020). Heat maps were drawn using pack-
age pheatmap (Kolde,  2019), and redundancy analysis was per-
formed using package vegan (Oksanen et al., 2020).

3  |  RESULTS

3.1  |  Temporal evolution of model complexity and 
diversity

The number of attributes being modelled (i.e. ‘genome length’) and 
the complexity of the formulations being used for each attribute in-
creased over time. Increases were strongest for growth attributes 
and weakest for the complexity of basic assumptions and establish-
ment attributes (Figure  1). Genome length increased particularly 
due to the recent development of complex landscape and global 
models. Global models also contributed strongly to an increase in 
the complexity of basic assumptions and even more so of growth at-
tributes. In contrast, these models tend to feature a comparatively 
simple representation of establishment attributes. The complexity 
of mortality attributes increased particularly due to the majority 
of the more recently developed landscape models. Finally, also the 
complexity of soil moisture attributes increased, particularly due 
to the development of global models. The models currently being 
used for climate change impact assessments are highly diverse in 
their overall complexity. Diversity is highest for establishment and 
mortality attributes, and lowest for soil moisture attributes.

3.2  |  Differences between stand, landscape, and 
global models

When analysing model complexity and diversity for stand, land-
scape and global models separately (Figure  2), distinctly differ-
ent patterns emerged for the three model classes (for details see 
Table S1). Global models feature the lowest diversity across all five 
attribute groups. They are characterized by generally high com-
plexity and low diversity in basic assumptions as well as growth 
and soil moisture attributes. At the other end of the spectrum, 
landscape models were found to be the most diverse class of mod-
els in all five attribute groups. Their average complexity is highest 
for establishment and mortality attributes, but lowest with regard 
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to growth and soil moisture attributes. Stand models feature in-
termediate diversity for all five attribute groups. We also found 
them to have intermediate complexity for all attribute groups ex-
cept for mortality, where stand models are on average applying 
the simplest model formulations. Part of the differences in diver-
sity between stand models and the other two classes might be 
explained by the larger number of stand models included in our 
analysis (n = 13). However, an imbalanced sample cannot explain 

the strong differences in diversity between landscape and global 
models, as nearly the same number of models was analysed for 
these two classes (n = 8 and 7, respectively).

A direct comparison of the complexity of growth, establishment 
and mortality attributes by model class (Figure 3) revealed a clear 
‘niche differentiation’: global models excel in the complexity of 
growth formulations, whereas landscape models feature the most 
complex formulations of establishment and mortality attributes, 

F I G U R E  1  Temporal development of genome length (i.e. number of attributes considered by a model) and the complexity of the basic 
assumptions, growth, establishment, mortality, and soil moisture attributes. Legacy models (no longer in use today) are shown in light 
colours. At the right of every panel, the models still in use today are shown with light red circles to illustrate current model diversity. Linear 
trends are provided merely for better visualization; they are not meant to be statistically meaningful.
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with stand models ranking in between the other two classes. The 
legacy models tend to have lower complexity compared to models 
that are still in use today.

3.3  |  Emerging model clusters

When analysing model complexity at the level of individual 
MFDs using heat maps, no distinct patterns discerning the 

three model classes are visible (cf. Figure  S1). Thus, the spa-
tial domain of a model (stand, landscape, globe) is a weak pre-
dictor of its structure and complexity. When the models are 
clustered regardless of their a priori designation to a class, 
however, clear patterns of similarity emerge (Figure  4; cf. 
Figure S2 showing just the clustering and Figure S3 showing a 
similarity matrix).

Overall, five distinct model clusters emerged (Figure  4). We 
start their analysis with the fourth cluster, which includes stand 

F I G U R E  2  Average values for the attributes of the 28 models by attribute group [basic assumptions (BA); growth (GR), establishment (ES), 
mortality (MO) and soil moisture (SM) processes], and scale of model application (model class).

F I G U R E  3  Niche differentiation of stand, landscape and global models with respect to growth (GR), establishment (ES) and mortality 
(MO) attributes. Legacy models (no longer in use today) are shown in light colours.

 13652745, 2022, 10, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2745.13989 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [28/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2296  |   Journal of Ecology BUGMANN and SEIDL

models that have remained relatively similar to the foundational 
model JABOWA. Note that this cluster includes four of the five 
legacy models in the set. Also included in this cluster yet set apart 

clearly from the rest are FORSKA and FORMIND, which feature 
considerably higher complexity in several attributes, particularly 
with regard to tree growth.

F I G U R E  4  Hierarchical clustering and heat map of 28 forest simulation models based on 52 attributes. The clustering uses Canberra 
distances and the ‘complete’ clustering method. Blue and red colours indicate low and high complexity for each attribute, respectively. 
Gaps between columns delineate five main clusters, which are identified by numbers in the middle of the heat map for easier reference in 
the text. Gaps between rows indicate the boundaries between the five attribute groups (from top to bottom: basic assumptions, growth, 
establishment, mortality and soil moisture processes). Numbers to the right of the rows indicate the respective attribute number (cf. 
Supplementary Material 1).
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The fifth cluster is linked closely to the fourth cluster. It con-
tains four stand models that feature higher complexity (Figure 4) 
particularly with respect to growth and establishment attributes 
compared to the models in the fourth cluster. SORTIE is part of 
the fifth cluster as well, but it is separated distinctly from the 
other models, reflecting the fact that its assumptions and struc-
ture deviate strongly from those of the other models in this cluster. 
It is further remarkable that two landscape models, TreeMig and 
LandClim, are part of this cluster. Both models were derived from 
the stand model ForClim, and in spite of added spatial features the 
remainder of their structure is broadly similar to that of the stand 
models in the fifth cluster.

The third cluster is clearly separated from the others and con-
tains four landscape-scale models (Figure  4). They feature lower 
complexity with respect to basic assumptions, growth, establish-
ment, and soil moisture attributes compared to all other clusters. 
However, LANDIS-II is clearly different from the other three mod-
els in this cluster, as it has more complex formulations with regard 
to a number of attributes. Most models in this cluster have highly 
complex mortality formulations, which is due to the spatially ex-
plicit nature of landscape models and their focus on disturbance 
processes.

The second cluster unites the seven global models of the set and 
includes the stand model 4C (Figure 4). This assignment of 4C to the 
global model cluster is robust regardless of the distance metric or clus-
tering method used (results not shown). The models of this cluster share 
highly complex basic assumptions as well as growth and soil moisture 
attributes. The diversity of attribute expressions is particularly low in this 
cluster.

Lastly, the first cluster brings together two models developed 
by scientists who worked together for an extensive period of time, 
that is the stand model PICUS (PI Lexer) and the landscape model 
iLand (PI Seidl), along with the landscape model FIRE-BGC. These 
three models always formed a cluster of their own regardless of the 
clustering method, reflecting the fact that iLand (Seidl et al., 2012) 
was partly inspired by both PICUS (Lexer & Hönninger, 2001; Seidl 
et al., 2008) and FIRE-BGC (Keane et al., 2011). This cluster features 
high complexity across all attribute groups.

3.4  |  Relationships at the level of ecological 
attribute groups

Clustering at the level of the three fundamental processes of forest 
dynamics, that is, growth, establishment and mortality, reinforces 
and sharpens the interpretations made above. When looking at 
growth attributes (Figure 5a), FORSKA and FORMIND are separated 
from the bulk of the other stand models; LANDIS-II is separated 
from the three low-complexity landscape models; and PICUS, iLand 
and FIRE-BGC are found in the same cluster as all global models (and 
4C), being characterized by high complexity.

Regarding establishment attributes (Figure  5b), models of low 
complexity (clusters 1–3) from all three model classes are separated 

from those of intermediate (cluster 4, exclusively landscape models) 
and high complexity (cluster 5, no clear model class).

Regarding mortality attributes (Figure 5c), five landscape models 
of higher complexity are grouped with ED/ED2 in the first cluster, 
whereas the other two landscape models (which feature a lower 
number of spatially explicit processes) are grouped in the second 
cluster with most stand models. In the third cluster, models with in-
termediate to relatively high complexity regarding the formulation 
of ‘background’ (attributes #43 & 44) and ‘stress-related’ (#45) mor-
tality but low complexity regarding spatially explicit processes (#47–
49) are found. The fourth cluster contains two models that do not 
contain a ‘background’ mortality rate at all (#43 & 44), while both 
consider fire disturbance (#49). The grouping in the fifth cluster is 
difficult to interpret.

3.5  |  Relationship between basic assumptions and 
model structure

The redundancy analysis (RDA) had an R2
adj

 of 0.43. Yet, the con-
strained variance was only 80% larger than the unconstrained 
variance, suggesting a limited power of the eight basic assumptions 
along with model class and time of first publication for explaining 
model structural features. Still, the structure of six global models 
(top left in Figure 6; along with FIRE-BGC and iLand) is closely re-
lated to their focus of application (structure, composition and bio-
geochemical cycling), their spatial extent (i.e. model class) and the 
life forms considered (i.e. all global models include a representation 
of the herbaceous understory). Conversely, the structure of five 
landscape models (top right in Figure 6) is closely related to the pres-
ence of horizontal interactions. Lastly, the structure of two mod-
els, HYBRID and 4C, is closely related to their vertical grain and the 
modelling of the vertical extent of tree crowns.

4  |  DISCUSSION

4.1  |  Temporal development of model complexity 
and diversity

The increasing complexity of MFDs over the past 50 years re-
flects enhanced ecological understanding. For example, what is 
now a standard photosynthesis model was formulated only in 
1980 (Farquhar et al., 1980). Similarly, understanding plant carbon 
allocation was in its infancy in the 1970s (Webb,  1977) and re-
mains a challenge even today (Hartmann et al., 2020; Merganicova 
et al.,  2019). Furthermore, strongly increasing computational ca-
pacities (Waldrop, 2016) made it possible to include more complex 
process formulations in MFDs while maintaining or even lowering 
computing time.

The temporal development of growth and soil moisture complex-
ity was largely driven by global models, as their original emphasis 
was on carbon exchange between the biosphere and the atmosphere 
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F I G U R E  5  Hierarchical clustering and heat map of 28 forest simulation models for the demographic attribute groups (a) growth (GR), (b) 
establishment (ES) and (c) mortality (MO). The clustering uses Canberra distances and the ‘complete’ clustering method. Numbers to the 
right of the rows indicate the respective attribute number (cf. Supplementary Material 1).
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(Bonan, 1991), which is intricately linked to the water cycle (Sellers 
et al.,  1986), thus leading to complex formulations. These, how-
ever, can be simplified based on optimality theory (e.g. Harrison 
et al., 2021). At the landscape scale, growth processes are not the 
major driver of vegetation dynamics (Elkin et al., 2012), but demog-
raphy and disturbances strongly determine landscape patterns. This 
partly explains the relatively simple growth formulations in many 
landscape models (e.g. FATE-HD). However, their high simplicity 
raises questions regarding their suitability to assess climate change 
impacts comprehensively. Approaches as adopted in LANDIS PRO 
(Duan et al., 2021), where a modified forest gap model (LINKAGES 
v3.0; Dijak et al., 2017) was coupled with a landscape model, might 
present a way forward. However, we posit that it is more coherent and 
elegant to upgrade the growth process formulations within landscape 
models themselves (cf. Schumacher et al., 2004; Seidl et al., 2012).

The increase in complexity regarding mortality and establish-
ment formulations over time is largely due to landscape model 
development. In these models, crucial processes such as seed pro-
duction, dispersal and tree establishment must be considered, and 
spatially explicit disturbances that kill trees and allow for estab-
lishment of new trees play a pivotal role. Consequently, current 
landscape models have high potential for quantifying forest resis-
tance and resilience to climate change (Albrich et al., 2020; Turner 
et al., 2022). The high level of detail in demographic processes in 
landscape models is contrasted by a low establishment complexity 
of many global models, which we view as a source of concern. For 
example, assessing the consequences of Amazon rainforest die-
back (Boulton et al., 2017) depends not only on accurate modelling 
of tree mortality but also on capturing establishment processes 
following drought-induced mortality. Ecophysiology alone is un-
likely to be sufficient to capture the interactions between climate 
and forest dynamics.

Stand models have contributed least to the overall increase in 
MFD complexity over the past five decades. Yet, notable excep-
tions of complex stand level models are FORSKA, FORMIND, PICUS 

and particularly 4C. This limited increase is partly due to the fact 
that most of the relevant processes at the stand level were already 
included in JABOWA 50 years ago, albeit at a much lower level of 
complexity. The original JABOWA model was developed to cap-
ture vegetation properties along a 600 m elevation gradient, that is 
a range of c. 3°C in mean annual temperature, which was possible 
using a number of simplifying assumptions. For FORENA, this range 
expanded to 27°C (Solomon,  1986), and the simulation of climate 
change scenarios brought the challenge to represent the ecological 
impacts of no-analog climate conditions. This required comprehen-
sive formulations for the influence of climate in MFDs already 30+ 
years ago, although some of them were inflicted with conceptual 
problems (cf. Loehle & LeBlanc, 1996).

The evolution of process formulations in MFDs over the past 
50 years was clearly influenced by major ecological developments. 
The importance to better understand the Earth's carbon balance in 
the context of climate change and the need to resolve the origin of 
the ‘missing sink’ (Gifford, 1994) profited from an improved under-
standing of tree physiology, and led to more elaborate models of 
tree growth (e.g. 4C, FORMIND). The emergence of new sub-fields 
of ecology, such as landscape ecology (in the 1980s; Turner, 1989) 
and macroecology (in the 2000s; Gaston & Blackburn,  2000) fu-
elled the development of MFDs operating at the landscape and 
global scale. More recently, tree mortality has come into focus of 
model developers, not least because of reports of increasing tree 
mortality in many parts of the world (Kharuk et al., 2021; Parks & 
Abatzoglou, 2020; Senf et al., 2021), and expectations of pervasive 
shifts in these processes in a changing world (McDowell et al., 2020). 
The rather moderate increase in the complexity of regeneration 
modelling approaches reflects the fact that the drivers of tree re-
generation remain difficult to grasp (Bugmann et al., 2019) and aligns 
with recent calls for a renewed focus on regeneration processes in 
forest ecology (Seidl & Tuner, 2022).

Overall, increasing the complexity of process formulations in 
MFDs was motivated by accommodating new process understanding 

F I G U R E  6  Redundancy Analysis (RDA) 
to explain the expression of attributes 
of the 28 models as a function of the 
eight basic assumptions (BA), scale of 
application and time of first publication 
(arrows). The blue crosses represent the 
52 attributes. ehGrain:Horizontal grain 
(#1) subGrid: Structure within patches (#2) 
ehorInter: Interactions between patches 
(#3) evGrain: Vertical grain (#4) ecrExt: 
Vertical extent of crowns (#5) eent: Grain 
of modelled entities (#6) elifeF: Life forms 
considered (#7) appl: ocus of application 
(#8) time: ear of first model publication 
escale: Scale of model application (stand, 
landscape, global).
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and enhancing model accuracy. However, this does not imply that 
higher complexity always leads to better projections. Overly com-
plex models tend to be prone to reduced transparency, robustness 
and predictive power (Franklin et al., 2020). After all, the objective 
of modelling is to simplify a complex reality (cf. Pace,  2003), and 
the objective of any given model application dictates the necessary 
model structure. For example, models aiming to reproduce hourly 
or daily patterns of net ecosystem productivity over a couple of 
years (e.g. Harrison et al., 2021) need much higher temporal reso-
lution in simulated growth and soil processes than models aiming to 
project annual tree growth over decades to centuries (e.g. Irauschek 
et al., 2021). Thus, the need for model complexity has to be substan-
tiated relative to model purpose (cf. Albrich et al., 2020), and general 
statements on what processes need to be included in an MFD and at 
what level of complexity are futile.

Lastly, we recommend that model development should always 
proceed in a way that added complexity is implemented as optional 
features, that is that previous model versions remain retrievable. This 
avoids the tendency towards ‘baroque’ models (Prentice et al., 2015) 
and allows for tailoring the complexity of models to the research 
question at hand (Fisher & Koven, 2020).

4.2  |  Differences between stand, landscape, and 
global models

While the overall set of models considered here is highly diverse in 
both the number of processes considered and their complexity, this 
diversity varies strongly between model classes (stand, landscape 
and global) and attribute groups.

Stand models feature intermediate complexity in most attribute 
groups, and they are also of intermediate diversity compared to the 
other two classes. Consequently, the structure and complexity of 
stand models have not converged even 50 years after their first 
appearance. In fact, three paradigms are underlying the current di-
versity of stand models: (i) models that remain quite similar to early 
model formulations (e.g. SIMA, SIKBBORK); (ii) models that are still 
simple but have a substantially enhanced model structure geared to-
wards wide applicability and robustness (e.g. ForClim, UVAFME); and 
(iii) highly detailed process-based forest gap models (e.g. FORMIND, 
4C). This provides the opportunity for comparative simulation stud-
ies to assess the robustness of simulation results under climate 
change by using models from more than one of the three paradigms.

The very high diversity of model formulations at the land-
scape scale partly reflects the fact that some of these models (e.g. 
FATE-HD, to some extent also LANDIS) are inspired by state-and-
transition models (e.g. Noble & Gitay, 1996) and thus build on simple 
schemes particularly with regard to growth attributes. Other forest 
landscape models have their roots with ‘classical’ gap models (e.g. 
LandClim, TreeMig). Still others draw heavily on physiology-oriented 
stand models (e.g. PICUS) or biogeochemistry models (e.g. BIOME-
BGC), resulting in the most complex landscape models in our set, 
that is FIRE-BGC and iLand. This diversity in landscape models 

should be explored more explicitly in comparative studies to un-
derstand the robustness of landscape level projections (e.g. Sebald 
et al., 2021). Yet, the first formal forest landscape model comparison 
has emerged only recently (Petter et al., 2020).

The global-scale models were the least diverse in our set across 
all attribute groups. This reflects two phenomena.

On the one hand, a major original objective for these models was 
to simulate global NPP (e.g. Haxeltine & Prentice, 1996). NPP arises 
from the balance of photosynthesis and autotrophic respiration, which 
are understood reasonably well at the physiological level. This led to 
the inclusion of similar formulations for carbon (C) dynamics and plant 
hydraulics across multiple global models. Examples are the paradig-
matic Collatz et al.  (1991) photosynthesis model and the model of 
stomatal conductance by Leuning (1995). These similarities raise the 
expectation that simulated outcomes of, for example, global NPP are 
similar, which paradoxically is not the case (Prentice et al., 2015).

On the other hand, the focus on C exchange led to low complex-
ity regarding demographic processes, such that some relevant pro-
cesses are not simulated at all in some global models (e.g. aDGVM 
includes only one single mortality process, which is stress-related 
mortality). Therefore, an upgrade of global models with regard to 
tree demographic processes is needed to increase their utility for 
assessing future forest trajectories (cf. Brienen et al., 2020; Friend 
et al.,  2014). Recent developments, however, indicate that the 
focus on photosynthesis and plant hydraulics continues (Harrison 
et al., 2021). We nonetheless agree wholeheartedly with these au-
thors that ‘model development should be refocused on the critical anal-
ysis and evaluation of core process representations, and new processes 
added only if evidence unambiguously shows that they are required’. 
Yet, our interpretation of ‘core processes’ may differ.

4.3  |  Emerging model clusters

The cluster analysis confirmed that model class (stand, landscape, 
global) is only a weak predictor of model properties. An exception 
are global models, which were all part of the same cluster. The stand 
model 4C was also part of this cluster, as it is highly complex regard-
ing its growth and soil moisture attributes, but considerably less so 
with respect to establishment and mortality attributes.

The fact that the landscape models were distributed across 
three of the five clusters (Figure 4) reflects their diverse ancestry. 
Specifically, the placement of LandClim and TreeMig in the same 
cluster as ForClim reflects the fact that these models are closely re-
lated to ForClim (Bugmann, 1996). Similarly, the placement of iLand 
with Fire-BGC and PICUS reflects the influence of the latter in the 
development of the former.

The cluster that contains JABOWA and three other legacy stand 
models is characterized on the one hand by models that have re-
mained very similar to the ancestor JABOWA, and on the other hand 
three models that differ considerably from the earlier approach, 
i.e. SORTIE and two models that are characterized by much higher 
mechanistic detail (FORSKA, FORMIND), which may be surprising 
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as their mathematical structure is rather different indeed. It is note-
worthy that with the exception of FORSKA (a legacy model) and 
FORMID, the rather traditional formulations used in various parts 
of the models of this cluster (e.g. degree-day parabola in SIMA—cf. 
Loehle, 1996, or the number of ‘dry days’ as a drought indicator in 
SIBBORK—cf. Fischlin et al., 1995) raise questions how reliable pro-
jections from these models will be in a changing climate. The other 
cluster that is dominated by stand models (cluster 5 in Figure 4) is 
characterized by considerable advances in this regard, while remain-
ing simple in terms of environmental influences on tree demography 
(e.g. degree-day asymptote and ratio of soil moisture supply to de-
mand as a drought index in ForClim) and the representation of tree 
competition.

Again, modelling objectives inevitably determine appropriate 
model structure. Consequently, there is ample scope for models that 
are not highly ‘mechanistic’ but based on simpler representations of 
tree growth and demography. The fact that there is a large body of 
knowledge about a certain process (e.g. photosynthesis) does not 
imply that this process has to be included with a high level of com-
plexity in all models. High complexity is only warranted if it is crucial 
for accurately and robustly achieving study objectives.

4.4  |  Relationships at the level of ecological 
attribute groups

The most striking insight from the cluster analysis at the level of 
attribute groups (Figure  5) compared to the cluster analysis at 
the level of full model ‘genomes’ was that there are strong dif-
ferences between these two analyses (Figure 4). This shows that 
many models are not balanced in their complexity across different 
attribute groups. This is partly due to differences in importance of 
processes for certain applications (e.g. establishment and mortal-
ity are more important in landscape and partly in global models 
because disturbances are important at these scales; or global mod-
els need to simulate a closed carbon budget to infer the climate 
change mitigation function of global forests). However, these dif-
ferences are in part also due to legacies (cf. Harrison et al., 2021), 
modelers' preferences, and perhaps also ‘the prevailing spirit of 
the epoch’ (Baltensweiler & Fischlin,  1987). For example, within 
the biogeochemical modelling community, the use of a specific 
form of the Farquhar-Caemmerer model of leaf photosynthesis 
is usually taken for granted, although considerable uncertainty 
exists around this formulation (cf. Walker et al., 2021). Similarly, 
funding agencies sometimes are trapped in mainstream thinking 
regarding what should be funded, thus narrowing the scope of 
possible model development trajectories.

Specifically, out of the 23 models still in use today, only one 
was always found in a cluster that was ranked similarly regarding 
its complexity in the three attribute groups (i.e. iLand, which was 
designed with this goal, cf. Seidl et al., 2012). While a few other mod-
els were found in clusters of similar complexity (SORTIE, TreeMig, 
SIMA, SIBBORK and LPJ-GUESS), the majority of models (17) were 

in clusters that indicate highly different complexity with regard to 
growth, mortality and regeneration processes.

When screening model descriptions in the context of this meta-
analysis, it was notable how some models excel in the detail that 
is devoted to physiological growth processes, covering many dozen 
equations and many pages of documentation. However, equally im-
portant aspects such as establishment and mortality often appear 
like an afterthought, with a few lines of text and code, in compar-
ison. This is in stark contrast to the availability of potentially use-
ful research results, syntheses, and recommendations (e.g. Adams 
et al., 2017; Cailleret et al., 2017; Sharma et al., 2022; Thrippleton 
et al., 2021) and calls for a more balanced consideration of ecological 
processes in model development.

4.5  |  Relationship between basic assumptions and 
model structure

The fact that the basic assumptions underlying the models were only 
weak predictors of their structural attributes underlines the scar-
city of theories, laws and ‘first principles’ in the ecological sciences. 
One possibility is that the attributes to capture basic assumptions 
were not chosen appropriately. Alternatively, they may not provide 
rigorous constraints on further model attributes, thus leaving many 
decisions of model formulation to the developers. We lean towards 
the latter interpretation, as it corresponds to our own multi-decadal 
experience in developing MFDs. This underlines the responsibility 
that lies on the shoulders of modellers. It is important to keep in 
mind that modelling is a dedicated scientific activity with strong fun-
daments in the philosophy of science (Winsberg, 2010); it should be 
performed rigorously and, ideally, based on in-depth formal training 
(Ewing et al., 2003; Seidl, 2017). For example, conceptual models, 
mathematical models and computer code (simulation models) are 
different entities. It is pivotal to clearly recognize the role and im-
portance of each of these steps in modelling. In other words: model-
ling should not be mistaken as the activity of adding code to existing 
simulation models.

4.6  |  Methodological considerations

Our analysis revealed multiple patterns of complexity across differ-
ent model classes and attribute groups; all of these patterns were 
robust to variations in analysis methods. Therefore, we are confi-
dent that our findings are not artefacts resulting from erroneous as-
sumptions or inappropriate data analysis. Specifically, we explored 
a number of different approaches for statistical analysis but never 
obtained substantially different results.

Yet, it is clear that the definition of the 52 attributes and their 
expressions is inherently subjective. We consciously approached 
this task by iteratively developing attributes and testing them on the 
four models that we are intimately familiar with because we either 
led their development or were involved in it (PICUS, iLand, ForClim 
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and LandClim). A second test case of the iterative development of 
the attributes were the legacy models, which we also know quite 
well. The attribute expressions were further refined and expanded 
in the assessment of the other 19 models of the set. Importantly, 
our assessment of model expressions for 17 out of these 19 models 
was cross-checked by the respective PIs, such that no errors should 
remain in 26 of the 28 models. Also, in the vast majority of cases the 
PIs found our attributes clear and well-defined, which suggests that 
the system we developed (cf. Supplementary Material 1) is appropri-
ate and useful. This also suggests that further models can be added 
to the model characterization presented here, serving as a consis-
tent and comprehensive framework for cataloguing MFDs.

We also acknowledge that using the year of the first publication 
of a model (with the exception of FIRE-BGC and 4C, as noted in the 
Materials and Methods section) for characterizing model complexity 
over time may induce a bias, since many models are undergoing con-
tinuous development. However, the conceptual basis, fundamental 
assumptions and structure of a model, that is, the main elements 
captured in our attributes, normally are rather stable. Thus, while we 
know that some of the scatter that we found in the development of 
structural diversity over time is due to an imprecise estimate of the 
actual introduction of any given approach, this is unlikely to influ-
ence the overall pattern reported here.

Lastly, it is clear that our analysis necessarily remains coarse at 
the level of individual attributes, only considering between two and 
six different expressions per attribute. Specifically, we did not aim 
to classify models at the grain of individual mathematical equations, 
because this would not have been tractable in both the assessment 
and analysis phases of this work. Nonetheless, given the relatively 
high number of attributes even our coarse characterization of attri-
butes resulted in the potential for 6.7 × 1030 unique descriptions of 
models, and our analyses demonstrating the considerable diversity 
and variation between models underlines the utility of our approach.

5  |  CONCLUSIONS

Over the past 50 years, the complexity of models of forest dynamics 
has increased substantially. This partly reflects enhanced ecological 
knowledge and strongly increasing computing power, but partly also 
the desire to develop models that more realistically represent natu-
ral processes. Whether this increased complexity is warranted must 
be judged based on the objective of individual model applications; 
there are no general rules. Model diversity is generally high—we did 
not find evidence towards a convergence in model formulations, 
which we view as being beneficial. However, model diversity has de-
veloped quite differently for different model classes. The very low 
diversity of some formulations in global models may be detrimental, 
and diversification should be sought to improve the robustness of 
multi-model assessments at the global scale. Yet, we note that for 
some processes such as soil moisture dynamics, where physical prin-
ciples are fairly well established, low diversity may not necessarily 
be a problem.

While global models were clustered together in our analysis, 
landscape models fell into three different clusters, reflecting dif-
ferent underlying paradigms of model formulation and high model 
diversity. Stand models fell broadly into two clusters, with less com-
plex models that are very closely related to JABOWA, and more de-
veloped yet still simple models in another cluster. We propose that 
the model diversity documented here should be harnessed more 
deliberately in multi-model assessments and ensemble simulations 
towards more robust forest projections. Specifically, we argue that 
models in multi-model assessments should be selected to cover the 
variety of available approaches. The cluster analysis presented here 
can help inform such studies. Furthermore, differences in simulated 
outcomes in multi-model assessments could be related to the (dis)
similarity of individual models identified here (cf. Figure S3) in order 
to contextualize remaining uncertainties in simulation-based studies.

Most models in the set were not well balanced in their level of 
complexity across different attribute groups. On the one hand, this 
reflects the different objectives of the different model classes, and is 
thus an inherent aspect of specific models (i.e. a purpose-driven sim-
plification of a complex reality). On the other hand, this imbalance 
reveals implicit paradigms underlying the currently available mod-
els, such as the strong focus on growth processes in global models. 
Where such a focus comes at the cost of low resolution in other 
important processes such as mortality and establishment, biased 
projections under climate change are the likely outcome. We thus 
strongly welcome the ongoing change in perspectives in this regard, 
with an increased focus of the global modelling community on de-
mographic processes (e.g. Fisher et al., 2018; Pugh et al., 2019).

Lastly, our analysis shows that there are few constraints on the 
structure and complexity of MFDs arising from their basic assump-
tions, which continues to make the development of a computer 
model of forest growth challenging, even 50 years after the initial 
gap model JABOWA was published. Yet, the resulting diversity of 
modelling approaches is an asset in the context of multi-model ap-
plications, enabling the assessment of the robustness of projections 
under climate change. This is a standard in the global modelling com-
munity already, and should be adopted more widely also in the stand 
and landscape modelling communities. The large diversity of models 
also makes it imperative that they are evaluated thoroughly against 
independent data before they are applied in the context of decision 
support, scrutinizing the ability of any given model formulation to 
represent the dynamics of the respective study system.
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