
1 INTRODUCTION 

In the construction industry and related research 
sectors, the concept of Digital Twin is becoming in-
creasingly essential. It aims to bring the building 
model, object information, and data received from 
sensors and actuators together into one representa-
tion, generating a digital duplicate of the physical en-
vironment and processes (Wahbeh et al., 2020). In or-
der to capture the current physical state of the built 
environment, 3D point clouds can be utilized to depict 
the precise details of the as-is physical environment 
(Tan Qu and Wei Sun, 2015). More speficially, Scan-
to-BIM describes approaches that interpret generated 
point clouds and create a valid as-built BIM model 
from them (Braun, 2020), which has been brought to 
the process of generating digital twins. However, 
original point clouds do not provide any semantic in-
formation. For any further automated assessment, the 
3D point cloud needs to be processed by deep learn-
ing and/or with feature engineering techniques to ob-
tain useful semantic data. 

Traditional deep learning algorithms for 3D scene 
recognition usually use only a single modality such as 
a point cloud as input. Based on the representation of 
point cloud, the deep learning-based point cloud pro-
cessing approaches can be briefly divided into three 
categories: voxel-based, point-based and multi-view-
based. The voxel-based approaches partition the point 
cloud into fixed-resolution 3D grids with a discrete 
regular data structure. However, the voxel-based 

methods require high memory consumption due to the 
sparsity of the voxels. Some spatial resolution and 
fine-grained 3D geometry information can also be 
lost during voxelization (Cui et al., 2021). Point-
based approaches process point clouds directly with-
out transforming them into an intermediate data rep-
resentation (Xie, Tian and Zhu, 2020). A pioneering 
deep learning network in this direction is PointNet 
(Qi, Su, et al., 2017). It uses a shared Multi-Layer 
Perceptron (MLP) to process individual points for 
per-point feature extraction. But applying the point-
based methods directly on a massive point cloud can 
be time-consuming and memory-expensive. The tra-
ditional multi-view-based methods try to represent 
the 3D point cloud by multi-view 2D images, which 
can then be processed by standard 2D convolution 
(Chen et al., 2017). However, the performance of this 
kind of method was not satisfactory. The main reason 
is that the approximate 2D projection leads to the loss 
of the geometric structure.  

In summary, employing these unimodal algo-
rithms to convert point clouds into other representa-
tions or directly process them, usually results in data 
loss or unsatisfactory performance. In addition, such 
algorithms understand 3D scenes mainly through the 
geometric information provided by the point cloud, 
but not all objects can be distinguished by their 3D 
shape, especially if they have flat surfaces such as 
windows or are richly textured. 

To solve this problem, additional color and texture 
information needs to be exploited. This makes 
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multimodal fusion networks using 2D images as sup-
plementary information more advantageous com-
pared to unimodal networks. Generally speaking, 
multi-modal fusion gathers rich characteristics of 
complicated scenarios from various sensors and inte-
grates them to gain more spatial and contextual infor-
mation for robust, accurate, and fast scene under-
standing (Zhang et al., 2020). Particularly, we want 
to employ mature 2D CNN to extract semantic fea-
tures of 2D images to enrich the expression of point 
clouds. Multi-modal fusion methods derive from ex-
isting unimodal algorithms. For example, the voxel- 
or point-based unimodal approaches can be chosen as 
the backbone network for processing data in a holistic 
or segregated manner.  

2 RELATED WORKS 

In recent years, multiple advanced deep multi-
modal fusion algorithms for 3D scene understanding 
were developed. Classic examples in the field of 3D 
object detection are Frustum-PointNet (Qi et al., 
2018), Frustum-ConvNet (Wang and Jia, 2019) and 
SIFR-Net (Zhao et al., 2019). The idea behind this 
kind of result-level fusion algorithms is to limit the 
3D search space for object detection by using the re-
sults of off-the-shelf 2D object detectors, thus reduc-
ing the computational effort and improving the 
runtime. However, the information from images is not 
fully leveraged. Unlike them, the EPNet (Huang et 
al., 2020) processes point clouds and images with two 
separate networks and gradually fuses image seman-
tics and point features with an adaptive fusion mod-
ule. 3D-CVF (Yoo et al., 2020) is proposed to com-
bine two heterogeneous feature maps in the bird's eye 
view (BEV) domain and did a total of two fusions to 
further improve the accuracy. 

In the field of 3D semantic segmentation, Virtual 
MV-Fusion (Kundu et al., 2020) employed synthetic 
images generated from virtual viewpoints of the 3D 
scene rather than processing raw photographic im-
ages captured by a physical camera, which allows 
them to freely choose the camera parameters that are 
most effective for the 2D semantic segmentation. The 
semantic features of the rendered images will then be 
fused in the 3D domain. The unified point-based 
framework proposed by Chiang et al. (2019) also uses 
2D CNN to learn semantics from rendered images. 
The 2D features are projected onto two point sets that 
are sampled to varying resolutions. Then they use two 
different encoders to extract local geometric features 
and global context from the fused data, and finally 
employ a decoder to combine the features by interpo-
lation. Unlike this type of approach using rendered 
images, MVPNet (Jaritz, Gu and Su, 2019) proposes 
a more flexible 2D-3D lifting method to transfer im-
age semantics to point cloud. First, a small number of 
images that can accurately cover a given point cloud 

are selected in real-time by their proposed algorithm. 
The semantic features extracted from these images 
through a 2D network are then transferred to the 3D 
point cloud through an end-to-end feature aggrega-
tion module. Finally, PointNet++ (Qi, Yi, et al., 2017) 
is applied to fuse the features in 3D canonical space 
to predict 3D semantic labels.  

As one of the open-source multi-modal algorithms 
on the ScanNet benchmark, MVPNet has the poten-
tial to continuously improve and extend its perfor-
mance. Firstly, Pointnet++ being a relatively old 3D 
network may limit the performance of the overall 
model. Since the final output of the 2D-3D lifting 
method of MVPNet is 3D point-like features, it is 
possible to process these features using a different 
and more powerful point-based 3D network. Sec-
ondly, the original MVPNet only provided a solution 
for processing standard RGB-D datasets, such as 
ScanNet, where images and 3D scenes were already 
aligned and each image had a corresponding depth 
map and camera parameters. In the Scan2BIM pro-
cess, however, we usually use the 3D point cloud data 
captured by laser scanners for higher accuracy. 
Therefore, and in order to enhance the semantic seg-
mentation of 3D laser-scanned point clouds in practi-
cal application scenarios, we need a flexible method 
to acquire and process not only 3D but also 2D data.  

To address these issues, we employed the better-
performing KPConv (Thomas et al., 2019) to replace 
PointNet++ as a 3D network to further improve the 
performance of MVPNet. Also, by integrating 
COLMAP (Sch and Z, 2016) into the entire work-
flow, our proposed MV-KPConv can be applied in la-
ser-scanned point clouds along with images, which fit 
the practical Scan2BIM application scenarios. 

3 METHODOLOGY 

3.1 Overview 

An overview of the proposed approach is illus-
trated in Figure 1. The method starts with prepro-
cessing stage. In an initial step, point clouds are sub-
sampled to reduce the computational cost. Then the 
overlap of each image with the point cloud is com-
puted in order to determine the coverage area of each 
image in the scene.  

During the data loading phase, spherical sub-
clouds are selected from the scene point cloud as in-
put to the 3D network. Using the overlap information 
provided in the previous stage, a certain number of 
images that can cover the input sphere well will be 
selected instantly. The pixels with a valid depth of 
these images are projected into 3D space to form a 



dense point cloud. We then establish a correlation be-
tween the image pixels, the dense projected point 
cloud, and the sparse input point cloud using the K-
Nearest Neighbors (KNN) algorithm.  

Finally, the selected images are fed into a pre-
trained 2D network to obtain feature maps of the same 
size as the input images. The feature aggregation 
module receives these feature maps associated with 
the dense point cloud, as well as the sparse spherical 
sub-clouds as inputs, and then transfers 2D semantic 
features from the dense point cloud to each input 
point through the previously established KNN corre-
lations. Finally, the sparse point cloud augmented by 
the image features is fed into KP-FCNN to fuse with 
the geometric information. Using this fusion infor-
mation, KP-FCNN will predict the 3D labels and per-
form the semantic segmentation task. Three different 
fusion architectures are designed and compared in 
KP-FCNN. 

3.2 Preprocessing 

3.2.1 Point cloud sampling 

Point clouds of real scenes usually show different 
densities. Different densities affect the results and ef-
ficiency of point cloud processing methods. The sub-
sampling method balances the point cloud density by 
ensuring a certain average data spacing. In addition, 
it is a first step towards reducing computational costs, 
as the number of points is greatly reduced. In our 
method, grid subsampling provided by KPConv is 
used as the sampling strategy. It projects the point 
cloud into a 3D grid, where each voxel retains only 
one point closest to the barycenter of the voxel. This 

method is fast and allows the sampling density to be 
easily controlled by the size of the voxels. 

3.2.2 Point cloud – Image overlap  

Although the point cloud has been subsampled be-
fore being fed into the network, the scene is still too 
large to be processed as a whole. Therefore, KPConv 
actually takes spherical sub-clouds in the scene and 
processes them. Due to this reason, we need to know 
which region of the scene is covered by each image, 
so that we can accurately select the images that max-
imize coverage of the input sphere during data load-
ing. 

Similarly as done by Jaritz et al. (2019) the follow-
ing steps are performed to compute the coverage re-
gions. Firstly, 6000 base points are randomly selected 
in the sampled point cloud. After that, a KD-tree is 
created for these base points for later neighborhood 
search. Then, all RGB images belonging to this scene 
are looped over. Each image will be projected into the 
3D domain using its depth map and camera parame-
ters. If using images captured by ourselves, a correc-
tion matrix will also be required here (see section 4.1). 
For each point in the projected point cloud, we find 
its nearest neighbor (only one and up to 1 cm away) 
in the base point set and save the mapping infor-
mation. After these steps we can know which area of 
the original point cloud is covered by this image by 
knowing which base points the image can cover.  

Figure 1 Overview of proposed method. For the 3D laser-scanned data, we use a camera to take 2D pictures in the corre-

sponding 3D scene and employ COLMAP to predict the depth maps and camera parameters that are used to project the 

pixels into 3D domain. In KP-FCNN we designed three different fusion structures to find the optimal fusion timing. 



3.3 Data loading 

3.3.1 The picking strategy  

In order to have every region of the scene sampled 
evenly, we use a potential picking strategy provided 
by KPConv to pick the input spheres. In simple terms, 
this solution is to assign a potential value at each 
sphere center, which are obtained by continuously 
subsampling the point cloud. Whenever the network 
picks a sphere, the potential values of all coarse points 
(sphere centers) included in this sphere radius are in-
creased so that we know this region has been selected. 
The potential value is increasing as a Gaussian func-
tion (the center increases the most and the increasing 
value decreases with distance). The next sphere will 
always be chosen in the region of lowest potential so 
that each part of the dataset will be selected approxi-
mately the same number of times. Similarly as done 
by Thomas (2020), the spatial regularity of the pick-
ing can be ensured by tracking the potential value of 
each coarse point in this way. 

3.3.2 View selection 

During data loading, the overlap information ob-
tained in chapter 3.2.2 is used to select the RGB im-
ages on-the-fly with a greedy algorithm (Jaritz et al., 
2019). Knowing which base points are included in the 
input sphere, the overlap information can be further 
filtered. This filtering is needed to know by which im-
ages these base points can be covered. The image that 
covers the largest number of base points is selected 
first. After one selection is done, all the base points 
covered by this image are set to invalid and then the 
next round of image selection is started until 5 images 
are selected. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2 View selection procedure (a) Complete point cloud 

scene. (b) Input spherical subcloud. The red dots are the base 

points inside it. (c) Dense point cloud formed by the projection 

of the 5 selected views. (d) Dense point cloud in the full scene 

view. It can be seen that the selected 2D views cover the input 

subcloud very well. 

3.3.3 The pixel-point-point correlation 

In order to use information from selected images, 
we also need to establish a correlation between pixels 
and points during data loading. The pixel-point-point 
association here can be understood as follows: "pixel-
point" can be explained as the pixels in image having 
a mapping relationship to a point in the dense point 
cloud generated by its projection. This means that the 
semantic features of a pixel on the image feature map 
can be interpreted as features of a point on the dense 
point cloud, as long as the feature map and the image 
have the same size. The "point-point" represents the 
KNN correlation between the projected point cloud 
and input point cloud. For each point in the input 
point cloud, we find its K nearest neighbors in the 
dense point cloud and save their indices. This allows 
point features on the dense point cloud to be trans-
ferred to the input point cloud. 

3.4 The Network 

3.4.1 The 2D network 

The 2D network architecture from the original 
MVPNet was adopted. The backbone of the encoder 
network is an ImageNet-pretrained ResNet34 (He et 
al., 2016) with batch normalization and dropout. The 
decoder network is a lightweight variant of U-Net 
(Ronneberger, Fischer and Brox, 2015). Here, the 
convolution is used to fuse concatenated features 
from skip connections, and the transposed convolu-
tion is applied for upsampling. Batch normalization 
and ReLU are attached after each convolution layer. 
This 2D network was pretrained first on the task of 
2D semantic segmentation on a ScanNet sub dataset, 
and then integrated into the whole pipeline with fro-
zen weights. The feature map output by the 2D net-
work has 64 channels of semantic features. Further-
more, the size of the output feature map H×W is equal 
to that of the input image. This makes subsequent 2D-
3D feature lifting possible (Jaritz, Gu and Su, 2019). 

3.4.2 Feature aggregation module 

The feature aggregation module is the core module 
of the 2D-3D lifting method proposed by MVPNet. 
Using the pixel-point-point correlation, this module is 
able to transfer 2D semantic features to 3D points by 

𝐹𝑖 = ∑ 𝑀𝐿𝑃(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒[𝑓𝑗, 𝑓𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗)])𝑗∈𝑁𝐾(𝑖)   (1) 

where 𝑓𝑗 represents the 2D feature of a point 𝑥𝑗 
on dense point cloud. This point 𝑥𝑗 is one of the K 
nearest neighbors of a point 𝑥𝑖  in the input point 
cloud. 𝑓𝑗 is first concatenate with a distance feature. 
The distance feature expresses the distance relation-
ship between 𝑥𝑗 and 𝑥𝑖 which can be defined as: 

𝑓𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑥𝑗) = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒[𝑥𝑖 − 𝑥𝑗, ∥ 𝑥𝑖 − 𝑥𝑗 ∥
2]   (2) 



After that, the connected feature is fed into a three-

layered MLP. Jaritz et al. (2019) argued that the MLP 

can transform 2D image features to an embedding 

space more consistent with the 3D representation. Fi-

nally, the features of these K neighbor points (in our 

case K = 3) are aggregated by a sum operation and 

become 64-channel semantic features 𝐹𝑖, which will 

be fed into KP-FCNN together with points. 
The feature aggregation module is differentiable 

and the weights inside the MLP need to be learned 
and updated by back propagation of the network. And 
since this module has no loss function of its own, its 
internal weights are adjusted by the loss function of 
the 3D network, i.e., KP-FCNN. 

3.4.3 KP-FCNN 

Kernel Point Convolution is a novel point convo-
lution operator inspired by image-based convolution, 
but instead of kernel pixels, a set of kernel points are 
utilized to define the spherical area where each kernel 
weight is applied. The distribution of kernel points 
within the sphere can be defined in advance, i.e., the 
rigid kernel, or be learned by network to adapt local 
geometry of point cloud, i.e., the deformable kernel 
(Thomas et al., 2019). Based on the KPConv operator, 
KP-FCNN designed for the segmentation tasks 
demonstrates strong performance, outperforming 
PointNet++ on multiple benchmarks, e.g., S3DIS 
(Armeni et al., 2017), ScanNet etc. 

 
Figure 3 Demostration of two network architecture base on 

KPConv (Thomas et al., 2019) 

The architecture of the KP-FCNN in this study ba-
sically follows the standard structure presented in fig-
ure 3. The encoder part still consists of five layers, but 
except for the initial layer, a standard KPConv block 
has been added to the remaining layers, making the 
network structure deeper and thus better able to ex-
tract features. Based on this module, three fusion ar-
chitectures in figure 4 were implemented to investi-
gate the impact of fusion timing on the proposed 
network. 

In the early fusion variant, the geometric features 
are concatenated with image features output by the 
feature aggregation module and fed into the KP-
FCNN. In the late fusion, geometric features are 
passed through the encoder and decoder of KP-FCNN 
and then connected with image features in front of the 
segmentation head. In middle fusion, geometric 

features and image features are passed through sper-
ate encoders and then averaged and fused before the 
decoder. Consistent with the standard architecture, 
the skip connection is also used to pass the features 
from the middle layers of the encoder to the decoder. 
The only difference is that the upsampled features in 
the decoder are concatenated with features from both 
encoders. 

 
(a) Early fusion 

 
(b) Late fusion 

 
(c) Middle fusion 

Figure 4 Three fusion architectures base on KP-FCNN 

4 RESULTS AND ANALYSIS 

4.1 Datasets 

The ScanNet dataset (Dai et al., 2017) covers var-
ious indoor scenes such as offices, meeting rooms, 
etc., with a total of 2.5 million frames collected using 
a depth sensor attached to iPad Air2. The complete 
dataset contains 1201 training scenes and 312 valida-
tion scenes. Each scene's data contains an RGB-D se-
quence, corresponding camera postures, and a whole 
scene mesh annotated with 20 semantic classes. Due 
to disk capacity limitations and because doors and 
windows are more generic and common objects for 
interior scenes, we only selected scenes containing 
these two classes from all training and validation sets. 
This sub-dataset containing 118 training scenes and 
28 validation scenes was used in this study. 

In order to test our method in real scenarios, we 
also constructed a custom dataset using scenes, cap-
tured in the Technical University of Munich. We used 
a laser scanner to scan and obtain 3D point clouds of 
two office rooms and captured an average of 200 pho-
tos of each room using a camera. These photos were 



fed into COLMAP to obtain depth maps, camera in-
trinsic/extrinsic of these color images and a recon-
structed point cloud. COLMAP is a general-purpose, 
open-source Structure of Motion (SfM) and Multi-
View Stereo (MVS) pipeline. For the reconstruction 
of both ordered and unordered image collections, it 
provides a wide range of capabilities. By aligning the 
reconstructed point cloud with the laser-scanned 
point cloud, we obtain a correction matrix for the pho-
tos. This information is used later in the data loading 
session to ensure the accuracy of the pixel projection. 
We use the same semantic classes as ScanNet to label 
the point clouds. 

4.2 Implementation details 

The network implementation is adapted from 
KPConv and MVPNet. All experiments were run on 
a workstation with a NVIDIA 5GB Quadro P2000 
GPU and 32 GB RAM. The size of grid voxels in grid 
subsampling was set to 4 cm. The input sphere radius 
is chosen as 1.2 m. Multiple experiments showed that 
the network needed roughly 400 - 450 epochs to con-
verge, so the maximum epoch was set to 500. The 
batch size of input point clouds was set to 5. Each 
epoch contains 500 steps, which means that 2500 
spheres are processed per epoch. The remaining pa-
rameter settings follow the default settings of 
KPConv. As for the 2D part, 5 views are selected for 
each input sphere during training and validation. Dur-
ing the training of 2D network, an SGD optimizer 
with a momentum 0.9 and a weight decay of 0.0001 
was used. The image batch size was set to 32 and the 
network was iterated 80,000 times. 

4.3 Results 

The table 1 summarizes the performance of several 
fusion structures with the rigid or deformable kernel. 
The proposed network is named as Multi-view-
KPConv, i.e., MV-KPConv. The original MVPNet 
and KPConv are applied as the baseline models here. 
To be fair, the original MVPNet also uses 5 input im-
ages. The tests were done on a validation set consist-
ing of 28 scenarios.  

All fusion structures in the Table 1 fuse one chan-
nel geometric features (Z-coordinate of points) with 
64-channel image features. Regardless of the fusion 
structure and kernel types, the proposed MV-KPCon-
v's mIoU scores exceeded both baseline models. 
Comparing the different kernel types, we can find that 
rigid kernel generally performs better than deforma-
ble kernel on ScanNet dataset. This is largely con-
sistent with what is reported in the KPConv. Compar-
ing different fusion structures, we can see that the 
early fusion using rigid kernel has the best perfor-
mance. This also confirms the advantage of early fu-
sion, which allows the network to fully exploit the in-
formation of the raw data.  

Table 2 shows the segmentation scores of the pro-
posed method on 3D laser-scanned data and figure 5 
visualizes the prediction results. We use the best mod-
els trained on the ScanNet sub-dataset to perform in-
ference on our custom dataset. It can be seen that MV-
KPConv, which uses 2D images as additional infor-
mation, has an advantage over KPConv, which uses 
point cloud data alone, in recognizing objects with 
flat and glassy surfaces or rich textures, such as win-
dows, bookshelves and pictures on the wall.  

Table 1 Semantic segmentation IoU scores on ScanNet sub-dataset 

Network Kernel mIoU wall floor 
cabi-

net 
bed chair sofa table door 

win-

dow 

book-

shelf 

pic-

ture 

coun-

ter 
desk 

cur-

tain 
fridge 

show

er 
toilet sink bath other 

MVPNet - 71.2 83.2 92.8 59.8 84.2 87.8 84.0 74.4 81.1 79.6 93.7 11.4 95.5 72.2 40.6 85.6 20.7 86.7 52.0 68.1 81.0 

KPConv* rigid 52.6 73.1 92.1 46.1 71.2 81.7 53.2 57.5 38.0 53.9 63.9 3.8 60.8 62.2 15.3 5.5 20.3 88.1 46.6 74.3 44.0 

MV-

KPConv 

(Early 

fusion) 

rigid 74.4 86.0 93.5 60.4 91.2 90.2 83.5 74.9 83.1 79.7 95.2 10.9 84.7 74.0 49.0 88.7 44.0 90.5 56.5 66.6 85.6 

deform 72.9 85.7 93.4 61.5 91.5 89.7 80.6 77.2 81.0 79.5 94.7 12.0 84.4 75.2 45.3 78.5 43.0 83.2 52.6 63.1 85.4 

MV-

KPConv 

(Middle 

fusion) 

rigid 73.7 85.6 93.5 60.9 88.9 89.2 83.7 76.2 82.5 81.1 95.2 11.0 86.5 74.5 51.6 87.1 40.1 87.7 55.2 59.8 84.4 

deform 72.3 85.6 93.4 57.5 90.0 89.8 81.8 73.0 81.6 78.5 95.0 11.4 86.2 71.6 44.4 84.5 39.8 84.3 54.4 61.8 82.1 

MV-

KPConv 

(Late fu-

sion) 

rigid 72.2 85.3 93.1 62.1 88.3 90.1 84.3 72.4 79.8 80.5 92.9 11.7 85.4 74.6 39.4 84.6 35.3 85.9 55.7 59.7 82.5 

deform 71.5 84.6 93.5 57.7 89.7 89.1 83.3 75.5 78.6 78.6 93.1 12.4 80.5 72.7 41.4 86.0 34.1 83.1 54.8 60.6 80.8 

* Only used Z as additional geometric feature 

Table 2 Semantic segmentation IoU scores on our custom dataset  

Network mIoU wall floor 
cabi-

net 
chair sofa table door 

win-

dow 

book-

shelf 

pic-

ture 

coun-

ter 
desk other 

MV-

KPConv 
45.1 77.9 95.0 13.4 69.5 0.0 32.7 34.8 57.8 91.4 37.4 0.0 25.3 51.4 

KPConv 42.4 79.3 74.1 19.4 30.0 93.4 52.5 36.6 5.7 83.3 6.0 0.0 55.1 16.3 



4.4 Computational time 

Table 3 compares the computation times of differ-
ent versions of MV-KPConv and MVPNet on Scan-
Net data. Both networks spend a lot of time in the pre-
processing stage to calculate the overlap of images 
and point clouds. In the training phase, it can be seen 
that although MV-KPConv has better semantic seg-
mentation capability, the time required and the vol-
ume of the model are much larger than that of 
MVPNet. This is in view of the fact that KPConv has 
a deeper and more complex structure than Point-
Net++. The late fusion takes slightly more time than 
early fusion. This is because an additional small linear 
transformation layer is added to the end of decoder in 
order to make the shape of the fused features accepta-
ble to the segmented head. Moreover, due to the use 
of two encoders, the intermediate fusion structure has 
a much larger number of parameters than the other 
two structures, which makes the training time re-
quired much higher. 

Table 3 Runtime and model size based on ScanNet data 

Step Network 
Model size 

[MB] 

Computa-

tional time [h] 

Preprocessing 
MVPNet - 2.4 

MV-KPConv - 3.3 

Training 

2D Network 180 16 

MVPNet 282 5 

KPConv 186 28 

MV-KPConv rigid 

(Early fusion) 
457 47 

MV-KPConv rigid  

(Middle fusion) 
500 56 

MV-KPConv rigid  

(Late fusion) 
457 48 

Inference 

MVPNet 282 0.13 

MV-KPConv rigid  
(Early fusion) 

457 0.25 

4.5 Discussion 

To analyze the design choices and to better under-
stand the network characteristics, we further con-
ducted some ablation experiments on the ScanNet da-
taset. To understand whether fusing 3D geometric 
features is really beneficial for the network, or 
whether 2D image features are sufficient, we tried 
fusing image features and geometric features com-
pletely (XYZ), partially (Z) and not at all. The results 
show that the MV-KPConv does benefit from the 
complementary information provided by the geomet-
ric features (height) compared to the use of image fea-
tures alone. Interestingly, good results can be ob-
tained using only Z coordinates, and XY coordinates 
seem to be useless to the network. This can be ex-
plained by the fact that X and Y do not make any 
sense in a dataset where the orientation of the objects 
in the scene can be in any direction. On the contrary, 

the Z value is the height of the point and has a very 
valuable geometric meaning.  

In addition, we also investigate the effect of point 
cloud color by fusing 3D RGB with input features. 
However, the use of point cloud colors has a negative 
effect on the network. This can be explained by the 
fact that the 2D network has already processed the 
color information, and it is confusing to pass the un-
processed color information to the 3D network again 
at this time. Moreover, the possible conflict between 
the image color and the point cloud color can lead to 
wrong predictions. 

5 CONCLUSION AND FUTURE WORKS 

In this paper, we successfully improve the perfor-
mance of the multi-modal fusion algorithm MVPNet 
on 3D semantic segmentation tasks by using 
KPConv instead of PointNet++ as a better 3D back-
bone. We investigate the impact of different fusion 
structure designs on the network and further improve 
the performance of the network by choosing a suita-
ble fusion structure. For practical Scan2BIM appli-
cation scenarios, we propose a flexible scheme using 
a photogrammetric technique to obtain 2D supple-
mentary information of 3D scenes. While it might be 
possible to use images that some laser scanners pro-
vide, using an external camera provides the flexibil-
ity of having different camera positions which con-
tributes to avoid occlusions and capture more 
features of the environment. On our dataset, we 
demonstrate that multi-modal fusion algorithms have 
performance advantages over traditional unimodal 
algorithms for 3D scene understanding, particularly 
in recognizing the objects with flat and glassy sur-
faces or rich textures.  

In addition, we found in our study that since SfM 
estimates depth by geometric constraints and feature 
correspondence between image sequences, the depth 
maps it predicts are usually sparse. This may result 
in some useful pixel features on color images not be-
ing projected onto the point cloud, thus affecting the 
prediction performance. A possible approach is to 
use deep neural networks to perform end-to-end 
dense depth map estimation on individual images. 
Project page: https://github.com/dcy0577/Enhanc-
ing-3D-Point-Cloud-Segmentation-Using-Multi-
Modal-Fusion-with-2D-Images 
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Figure 5 Qualitative results on our custom dataset. Our 

method has a great advantage in identifying windows. 
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