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Abstract

Communication network are one of the main pillars of our digital society. That is, they enable the ex-
change of information between humans, machines, computers, mobile phones, satellites and so forth
over both, short and long distances. In addition, communication networks and the corresponding
technologies are also always evolving in order to support the requirements of cutting-edge services,
or to utilize the available physical resources in a more efficient manner.

Particularly, to utilize the resource more efficiently, network operators are currently striving
to utilize two novel concepts in their networks, i.e., network programmability through Software-
Defined Networking (SDN) and network virtualization. Firstly, by decoupling the Control Plane
(CP) from the Data Plane (DP), SDN offers network operators the opportunity to program the be-
haviour of their network dynamically from a logically centralized place (i.e., through SDN controller)
according to the current traffic demands. Therefore, with SDN, network operators can utilize their
resources in a more optimal way. Secondly, motivated by the cloud revolution, network operators
are additionally aiming to utilize virtualization technologies within the physical network itself. That
is, they aim to provide Network as a Service (NaaS) through sharing of the phyiscal infrastructure
on-demand between multiple tenants. By utilizing softwarized network hypervisor (or SDN hyper-
visor), it becomes possible to combine both virtualization and network programmability at the same
time, thus obtaining the benefits of both technologies. That is, virtualized programmable (or SDN)
networks enable tenants and operators at the same time: (1) network programability from a central-
ized location and (2) sharing of the physical infrastructure.

On the other hand, future networks are envisioned to support novel services coming from techno-
logical fields such as Industry 4.0 and Multi-access Edge Computing (MEC). Services such as flexible
factories, automated manufacturing, smart cities, and virtualized manufacturing control are par-
ticularly attractive. However, these services often have very high Quality of Service (QoS) traffic
requirements which networks should satisfy. For example, to avoid downtime in flexible factories,
the DP traffic often must be delivered with no packet loss and bounded end-to-end delay. However,
doing both at the same time, i.e., supporting services with high QoS requirements in virtualized
programmable networks, is still challenging. Firstly, the data plane devices (e.g., swithces) and re-
sources (e.g., links, buffers, queues) are shared between tenants. Thus, it is cruical to ensure that
the tenants do not overutilize the resources and degrade the performance of traffic with high QoS
requirements. In addition, the forwarding behaviour of programmable networks is often updated,
therefore, networks have to be updated in a consistent and predictable manner (e.g., within a certain
time).
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Therefore, this thesis designs, develops, and investigates new concepts which enable supporting
services with high QoS requirements in virtualized programmable networks. In addition to network
virtualization concepts, also the generic networking concepts which aim to enable such realization
are studied. The major contributions of this thesis can be divided into two groups. The first group
studies how to provide QoS guarantees in the CP. That is, initially, we present a novel methodology
which provisions the CP hardware resources (i.e., of network hypervisors) while ensuring that the
expected QoS is achieved. This was achieved by desiging the accurate resources estimation models
based on the two comprehensive measurement campaigns. In addition, in this thesis, a novel network
update mechanism relying on in-band CP is presented (part of the introduced NAGA system). It
enables reliable delivery of CP messages to the physical devices and consistent network updates.
Hence, the combination of the two previous approaches enable network operators to achieve high
end-to-end QoS in CP while managing their resources efficiently.

The second major group aims to study concepts needed for practical realization of a virtualized
programmable network with deterministic DP guarantees and isolated traffic. To do so, initially a
novel traffic policing measurement methodology is presented. By utilizing it, it becomes possible
to model the worst-case traffic policing performance of programmable switches and end-hosts. Af-
terwards, by utilizing the previously introduced measurement methodology, we were able to design
a system (i.e., NAGA) which is capable of providing deterministic DP guarantees in programmable
networks. In addition to relying on the measurement and modeling methodology, it uses centralized
network control, and only priority queuing and label-based forwarding capabilities of programmable
switches. Therefore, it can be deployed in virtualized programmable networks. By performing real
implementations and deployments in multiple testbeds, in this thesis, it was demonstrated that the
proposed solutions perform as expected and are able to provide guaranteed performance in the con-
sidered scenarios.



Kurzfassung

Kommunikationsnetze sind eine der wichtigsten Säulen unserer digitalen Gesellschaft. Sie ermögli-
chen den Austausch von Informationen zwischen Menschen, Maschinen, Computern, Mobiltelefo-
nen, Satelliten usw., sowohl über kurze als auch über lange Entfernungen. Darüber hinaus entwi-
ckeln sich die Kommunikationsnetze und die entsprechenden Technologien ständig weiter, um den
Anforderungen modernster Dienste gerecht zu werden oder die verfügbaren physischen Ressourcen
effizienter zu nutzen.

Um die Ressource effizienter zu nutzen, bemühen sich die Netzbetreiber derzeit um den Einsatz
zweier neuartiger Konzepte in ihren Netzen, d. h. die Programmierbarkeit des Netzes durch Software-
Defined Networking (SDN) und die Netzvirtualisierung. Erstens bietet SDN durch die Entkopplung
des Control Plane (CP) vom Data Plane (DP) den Netzbetreibern die Möglichkeit, das Verhalten ihres
Netzes dynamisch von einer logisch zentralen Stelle aus (d.h. durch den SDN-Controller) entspre-
chend den aktuellen Verkehrsanforderungen zu programmieren. Mit SDN können Netzbetreiber ih-
re Ressourcen daher optimaler nutzen. Zweitens streben Netzbetreiber, motiviert durch die Cloud-
Revolution, zusätzlich die Nutzung von Virtualisierungstechnologien innerhalb des physischen Net-
zes selbst an. Das heißt, sie wollen Network as a Service (NaaS) durch die gemeinsame Nutzung der
physischen Infrastruktur auf Abruf zwischen mehreren Mietern bereitstellen. Durch den Einsatz ei-
nes softwarisierten Netzwerk-Hypervisors (oder SDN-Hypervisors) wird es möglich, Virtualisierung
und Netzwerkprogrammierbarkeit gleichzeitig zu kombinieren und so die Vorteile beider Technolo-
gien zu nutzen. Das heißt, virtualisierte programmierbare (oder SDN) Netze ermöglichen es Mietern
und Betreibern gleichzeitig: (1) Netzwerkprogrammierbarkeit von einem zentralen Standort aus zu
nutzen und auch die (2) gemeinsame Nutzung der physischen Infrastruktur.

Andererseits sollen künftige Netze neuartige Dienste unterstützen, die aus Technologiebereichen
wie Industrie 4.0 und Multi-access Edge Computing (MEC) stammen. Dienste wie flexible Fabriken,
automatisierte Fertigung, intelligente Städte und virtualisierte Fertigungssteuerung sind besonders
attraktiv. Diese Dienste haben jedoch oft sehr hohe Anforderungen an den Datenverkehr, denen die
Netze gerecht werden müssen. Zum Beispiel, um Ausfallzeiten in flexiblen Fabriken zu vermeiden,
muss der DP-Verkehr oft ohne Paketverlust und mit begrenzter Ende-zu-Ende-Verzögerung zuge-
stellt werden. Darüber hinaus müssen Netzwerkaktualisierungen konsistent und zeitnah geliefert
und ausgeführt werden. Beides gleichzeitig zu tun, d. h. Dienste mit hohen Quality of Service (QoS)-
Anforderungen in virtualisierten programmierbaren Netzen zu unterstützen, ist jedoch immer noch
eine Herausforderung. Erstens werden die Geräte der Datenebene (z. B. Switches) und die Ressourcen
(z. B. Links, Puffer, Warteschlangen) von verschiedenen Benutzern gemeinsam genutzt. Daher muss
sichergestellt werden, dass die Benutzer die Ressourcen nicht übermäßig nutzen und die Leistung
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von Datenverkehr mit hohen Anforderungen an die QoS beeinträchtigen. Darüber hinaus wird das
Weiterleitungsverhalten programmierbarer Netze häufig aktualisiert, so dass die Netze auf konsis-
tente und vorhersehbare Weise (z. B. innerhalb einer bestimmten Zeit) aktualisiert werden müssen.

Daher werden in dieser Arbeit neue Konzepte entworfen, entwickelt und untersucht, die es er-
möglichen, Dienste mit hohen QoS-Anforderungen in virtualisierten programmierbaren Netzwerken
zu unterstützen. Zusätzlich zu den Netzwerkvirtualisierungskonzepten werden auch die generischen
Netzwerkkonzepte untersucht, die eine solche Realisierung ermöglichen sollen. Die Hauptbeiträge
dieser Arbeit lassen sich in zwei Gruppen unterteilen. Die erste Gruppe untersucht, wie man QoS-
Garantien in CP bereitstellen kann. Das heißt, wir stellen zunächst eine neuartige Methodik vor,
die die CP-Hardware-Ressourcen (d. h. von Netzwerk-Hypervisoren) bereitstellt und gleichzeitig ge-
währleistet, dass die erwarteten QoS erreicht werden. Dies wurde durch die Entwicklung genauer
Modelle zur Ressourcenschätzung auf der Grundlage der beiden umfassenden Messkampagnen er-
reicht. Darüber hinaus wird in dieser Arbeit ein neuartiger Netzaktualisierungsmechanismus vorge-
stellt, der sich auf in-band CP stützt (Teil des eingeführten NAGA systems). Es ermöglicht die zuver-
lässige Zustellung von CP-Nachrichten an die physischen Geräte und konsistente Netzwerkaktuali-
sierungen. Durch die Kombination der beiden vorangegangenen Ansätze können Netzbetreiber also
eine hohe end-to-end QoS in CP erreichen und gleichzeitig ihre Ressourcen effizient verwalten.

Die zweite Hauptgruppe zielt darauf ab, Konzepte zu untersuchen, die für die praktische Reali-
sierung eines virtualisierten programmierbaren Netzwerks mit deterministischen DP-Garantien und
isoliertem Verkehr erforderlich sind. Zu diesem Zweck wird zunächst eine neuartige Messmetho-
dik des traffic-policing vorgestellt. Mit ihrer Hilfe ist es möglich, die Worst-Case Traffic-Policing-
Performance von programmierbaren Switches und End-Hosts zu modellieren. Durch die Verwen-
dung der zuvor vorgestellten Messmethodik konnten wir anschließend ein System (d. h. NAGA) ent-
werfen, das in der Lage ist, deterministische DP-Garantien in programmierbaren Netzwerken be-
reitzustellen. Es stützt sich nicht nur auf die Mess- und Modellierungsmethodik, sondern nutzt auch
eine zentralisierte Netzwerksteuerung und ausschließlich die Prioritätswarteschlangen- und Label-
basierten Weiterleitungsfunktionen programmierbarer Switches. Daher kann es auch in virtualisier-
ten programmierbaren Netzwerken eingesetzt werden. Durch die Durchführung realer Implemen-
tierungen und Einsätze in mehreren Testumgebungen wurde in dieser Arbeit gezeigt, dass die vorge-
schlagenen Lösungen wie erwartet funktionieren und in der Lage sind, in den betrachteten Szenarien
eine garantierte Leistung zu erbringen.
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Chapter 1

Introduction

Communication networks represent the backbone of our society. By connecting people, machines,
data centers, and other devices they enable the exchange of information. Throughout history, com-
puter networks were always evolving to support novel services and to satisfy upcoming require-
ments. For instance, during the 60s, to support services with high survivability (requirement of
US Air Force) packet-switched networks were developed and they slowly started replacing circuit-
switched networks. Over the last few years, novel requirements are emerging from the industry, and
they require further evolvement of computer networks [Jab+16]; [Wan+20]; [BAP17].

The fourth industrial revolution [BAP17], or Industry 4.0, strives to utilize information and com-
munication technologies, to enable automated manufacturing, convertible factories, and intelligent
logistics. To enable such services, the networks are now supposed to support Machine-to-Machine
(M2M) communication [Zha+17] at the same time as human-based communication. M2M communi-
cation typically has high Quality of Service (QoS) requirements [LC11] as it can involve the exchange
of data between sensors, actuators, controllers, cloud systems, and 5G networks. For instance, one
of the recent trends in the industry is virtualizing manufacturing hardware controllers (e.g., Pro-
grammable Logic Controller (PLC)) and moving them to the cloud [Giv+14]. The virtual controllers
(e.g., vPLCs) are then connected to sensors and actuators over a shared network and can control the
manufacturing processes. To enable such scenarios, the networks must provide high per-packet QoS
guarantees such as bounded packet delay and loss, and high reliability [MN22]. Failing to ensure that
these guarantees are met can cause catastrophic failures in industrial networks. For example, losing
control of a manufacturing robot in a factory even for a split second could cause serious injuries to
the people working besides it.

On the other hand, changing, updating, and upgrading computer networks whenever a new
service or application emerges is rather expensive. Therefore, during the last couple of years,
programmable networks are gaining more traction to enable faster innovation and adaptabil-
ity [Nun+14]; [KCB21]. Technologies such as Software-Defined Networking (SDN) [McK+08] and
Programming Protocol-independent Packet Processors (P4) [Bos+14] are particularly attractive as
they offer programmability in the Control Plane (CP) and Data Plane (DP) of a network, respectively.
That is, SDN decouples the CP from the DP devices (e.g., switches, routers) and it places it in a
logically centralized controller. In such a network, the controller is responsible for managing the
network, i.e., it handles the networking traffic and generates the forwarding rules for the underlying
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2 Chapter 1. Introduction

DP devices. The rules can be delivered to SDN-enabled devices with an open and standardized CP
protocol such as Open Flow (OF) [Fou21].

On top of that, virtualized programmable networks are emerging. That is, the recent cloud
computing revolution demonstrated that the benefits of virtualization such as cost reduction and
scalability far outweigh the drawbacks [SUK19]; [Mas+14]. Therefore, intending to achieve the
same benefits, solutions for virtualizing programmable networks started emerging [She+09]; [Al-
+14]. In virtualized programmable networks [She+09] (or virtualized SDN networks), tenants (or
virtual network users) can request virtual networking resources, and later control them with their
SDN controller. The integral component realizing virtualization of a programmable network is a
Network Hypervisor (NH) [She+09]. It is logically located between the tenants’ SDN controllers
and the physical infrastructure (e.g., forwarding devices/switches). Moreover, it processes all the CP
messages (e.g., switch forwarding rules) exchanged by the tenants’ SDN controllers and the physical
switches. Since virtualization is a complex process, NHs are often developed as a software application
running on commodity hardware.

Virtualized programmable networks offer benefits of the both worlds. On one hand, virtualization
enables network operators to share the physical network between multiple tenants. Hence, the
physical resources can be more efficiently used, and virtual resources can be more easily scaled up
or down. On the other hand, programmable technologies offer network operators and tenants the
ability to control their resources dynamically. Thus, the network operation can be tailored to the
current demands.

However, virtualized programmable networks are still not able to support high QoS require-
ments of the aforementioned services (e.g., from Industry 4.0). Therefore, the main goal of this thesis
is to investigate, develop, and deploy novel concepts for enabling QoS-aware virtualization of pro-
grammable networks. In addition to improving virtualization concepts, this thesis also enhances
general mechanisms and technologies which enable the realization of programmable network virtu-
alization with QoS guarantees.

Fig. 1.1 illustrates the architecture of virtualized programmable (i.e., SDN) networks. In addition,
it also highlights the mapping of open reasearch questions and the main contributions of this thesis
to the architecture. The open research questions are discussed in more detail in Section 1.1, while,
the contributions are presented in Section 1.2. The outline and structure of this thesis is shown in
Section 1.3.
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Figure 1.1: Architecture of virtualized SDN network. Additionally, the main research areas of the contri-
butions presented in this thesis are highlighted. In this scenario, the NH virtualizes the underlying physical
network, and it provides two virtual SDN networks to two different tenants (i.e., to tenants 𝐴 and 𝐵). Thus,
enabling the tenants to control their own virtual network through their SDN controller.

1.1 Research Challenges

In this section, the main research challenges of designing and deploying QoS-aware virtualized pro-
grammable networks are presented.

Provisioning and estimating the required NH resources.

In virtualized SDN networks, the performance of an NH can influence the underlying DP net-
work [Ble+19]. For instance, if an NH loses a CP packet containing a forwarding rule, it might mean
that two hosts might not be able to communicate with each other. Therefore, to ensure that the
performance of an NH meets certain QoS, it is crucial to correctly provision it. However, doing so is
challenging as it requires deep knowledge of NH requirements.

In the DP, deriving the requirements (e.g., bitrate) for applications is often easy as they are usually
already known. For instance, YouTube recommendation for streaming 1080𝑝 video at standard frame
rate is 8𝑀𝑏𝑝𝑠 [You]. Although CP requirements can be expressed with certain parameters such as
network update rate, deriving the required NH resources is still challenging. That is, as NHs are
realized as software instances, it is challenging to map these CP requirements to the corresponding
hardware resource requirements (e.g., Central Processing Unit (CPU), memory). Moreover, NHs offer
many additional and optional functionalities [Ble+16a] (e.g., topology abstraction) which might have
an impact on the required resources. Even though there are approaches in the literature that focus
on NH resource estimation [Sie+16]; [SOK17], they are not suitable for resource provisioning. To
elaborate, they estimate only the average resource utilization and they do not consider various NH
functions. Therefore, novel models for estimating the real hardware requirements are needed, and
they should be NH aware. In addition to the estimation models, novel solutions are needed which can
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utilize these models to provision the resources of an NH while ensuring that there is no performance
degradation.

CP aware virtual network embedding algorithms.

Most of the state-of-the-art (SotA) Virtual Network Embedding (VNE) algorithms consider only
the DP networking resources (e.g, link bandwidth, delay) and generic compute (e.g., CPU) resources
on virtualized servers. However, the separation of CP and DP and the introduction of NHs adds
a new dimension to the VNE algorithm – control plane. Failing to consider CP requirements and
resources might result in a sub-optimal VNE algorithms. However, including them is challenging as
NHs offer different functionalities which can have an impact of the resource requirements [Ble+19].
Additionally, different NHs might have different architectures, thus, making the problem even more
complex. Therefore, novel control plane aware VNE algorithms are needed, and they should include
different NH functionalities and architectures.

Modeling and measuring the performance of traffic policing.

In virtualized environments, the DP is shared between tenants. Thus, if two tenants share the
same resources (e.g., tenants 𝐴 and 𝐵 share link 𝑆4, 𝑆5 in Fig. 1.1), it can happen that one tenant
overutilizes the resources at the expense of the other one. Therefore, it is cruical to provide DP iso-
lation between tenants. To do so, NHs can rely on the plethora of available solutions which provide
high QoS guarantees in the literature. Most of these solutions rely on either in-network or host-based
traffic policing to ensure that the hosts are not exceeding the agreed rate [Jan+13]; [Jan+15]. In ad-
dition, they often assume that the offered performance of such traffic policing entities is ideal. How-
ever, even though there are many measurement studies of OF-enabled devices [Van+19a]; [Kuź+18];
[Bau+18]; [DBK15], none of them evaluated the performance of in-network traffic policing. There-
fore, novel measurement studies are needed to understand how the devices police the traffic and
what is the offered accuracy. In addition, novel modeling methodologies which enable extracting the
crucial data from the measurements in an automatic manner are necessary as well.

Achieving DP guarantees and consistent and timed network updates.

To support services with high QoS requirements (or to enable DP isolation), network operators
could utilize one of the already available SotA solutions providing deterministic guarantees in the DP.
However, the best performing systems are tailored to Data Center (DC) networks [Jan+15]; [Van+20]
and are not suitable for virtualized networks. For instance, currently the best performing system is
Chameleon [Van+20] and it achieves 50% higher network utilization compared to the other solutions.
Unfortunately, Chameleon is not usable in virtualized networks as it offloads certain functionalities
to the applications running on end-hosts. However, in virtualized networks, end-hosts belong to the
tenants or virtual network users and not to the network operator (see Fig. 1.1). Therefore, either
the current SotA systems have to be enhanced or novel systems have to be designed to achieve DP
isolation and high network utilization in virtualized scenarios.

In addition to isolation, in virtualized environments, forwarding devices (e.g., switches) are more
often reconfigured as the physical network is shared between the tenants. Hence, the CP of the
corresponding hardware devices can be overloaded, and this can cause unexpected device behavior.
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For example, certain Pica8 switches may ignore certain CP messages (e.g., adding a forwarding rule) if
the CP at that time is overloaded [Van+19a]. Therefore, it is crucial to schedule the updates to ensure
that the forwarding devices are updated consistently and correctly without impacting the already
embedded flows. Even though many solutions aim to achieve consistent network updates [Zho+21];
[NCC17], they do not consider DP with high QoS requirements and they support only low update
rates. Therefore, novel and faster network update solutions that ensure consistency and correctness
are needed.

1.2 Contributions

The contributions presented in this thesis are summarized in this section. The main objective of
this thesis is to enable the development of QoS-aware virtualized programmable networks by de-
veloping and designing either new technological concepts or enhancing the already existing ones.
An overview of the structure of this thesis is illustrated in Fig. 1.2. It highlights the three main re-
search directions in addition to the methodologies, concepts, and corresponding publications from
the author. Fig. 1.1 presents the mapping of the contributions to the research areas of virtualized
SDN networks.

To begin with, the background chapter (i.e., Chapter 2) sets the scene for the following chapters
by introducing the necessary basic information regarding the current SotA networking concepts.
It introduces the concept of programmable networks (including both SDN and P4) and it provides
an overview of the realization of virtualized programmable networks. In addition, it also provides
detailed insights regarding architectures of virtualized programmable network, performance issues
of SDN-enabled switches, and the best performing deterministic systems at the current time (i.e.,
Chameleon).

The first group of contributions of this thesis are the development of a new NH provisioning
methodology and the investigation of VNE approaches (see Chapter 3). Network provisioning and
VNE solutions in the literature both neglected the NH requirements (e.g., in terms of resources such as
CPU). For instance, most of the VNE algorithms only considered the DP requirements when embed-
ding Virtual Network (VN)s. Therefore, in this part, to understand the possible impacts, we present
and study the results of two comprehensive NH measurement campaigns. To be precise, we measure
the resource utilization of two most famous NHs, i.e., FlowVisor [She+09] and OpenVirtex [Al-+14],
in difference scenarios. By studying the measurement traces, it was possible to develop very accurate
models capable of estimating the required CPU resources based on the various scenario parameters.
The evaluations showed that the developed models exhibit a relative average error of around 4%.
By using these models, firstly, we were able to design a novel VNE algorithm based on a carefully
designed Integer Linear Programming (ILP) model which includes both DP and CP requirements.
By comparing the developed model with a baseline, it was possible to demonstrate that including
NH requirements is crucial for developing an optimal VNE algorithm. Secondly, we have developed
and evaluated a novel measurement-based methodology that can provision the resources of an NH
for almost arbitrary networks, while ensuring that there is no significant performance degradation.
The performance of this provisioning approach was demonstrated on a real test-bed available at
our chair. One of the main benefits of this approach is the reduction of resource over-provisioning
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which could be particularly useful for network operators as they could utilize their resources more
optimally. Since both of the previosly mentioned approaches focus on the CP aspect of virtualized
programmable networks, this group of contributions can can be mapped to the research questions
related to the NH area (see Fig. 1.1).

The second major group of contributions presented in this thesis is related to the modeling,
measuring, and realization of traffic policing in in-network OF-enabled switches and end-host based
solutions (see Chapter 4). The challenges in this field are often overlooked in SotA. For example, the
SotA measurement studies such as [DBK15] only measure and model the average traffic policing
accuracy, which is insufficient for many systems and mathematical frameworks providing strict
QoS guarantees [Van+20]. To be precise, they often require upper bounds and not average values.
Therefore, to resolve this issue, we have developed and presented a measurement and modeling
methodology that enables deriving more detailed traffic policing performance models. These models
are rather focused on obtaining and modeling worst-case traffic policing performance (e.g., including
all deviations). Hence, they can be used as input parameters to the mathematical frameworks which
provide deterministic guarantees such as Deterministic Network Calculus (DNC) [LT01]. By utilizing
the presented measurement methodology, it was possible to measure and model the accuracy of both
in-network OF-enabled switches and end-hosts based solutions. This measurement study unraveled
many interesting effects. For instance, in-network OF-enabled switches in certain scenarios exhibit
very inaccurate traffic policing (e.g., the relative error reaches 60%). This motivated us to investigate
the impact of such inaccuracies on the performance (e.g., number of accepted flows) of one SotA
system which provides deterministic QoS guarantees. Overall, this group of contributions (e.g.,
methodology and measurements of the switches) enables network operators to model networking
devices and deploy accurately various DP isolation strategies directly in their physical networking
infrastructure (see Fig. 1.1).

The third major contribution of this thesis is system NAGA (see Chapter 5). It provides deter-
ministic DP guarantees and consistent on-demand network updates with timing guarantees in pro-
grammable networks. Deterministic DP guarantees are provided by relying on a DNC-based ad-
mission control algorithm initially presented in [GVK17] and already deployed in a DC network
in [Van+20]. However, to realize such a system in networks without end-hosts control, we have of-
floaded certain networking functions to the P4 hardware devices located at the network edge. That
is, by utilizing the previously introduced traffic policing measurement methodology, we were able to
measure the preformance of traffic policing in P4 switches, and to model it NAGA. Therefore, from a
DP perspective, the combination of contributions presented in Chapters 4 and 5 enabled the practi-
cal realization of a DP supporting (without the need for end-host control) deterministic services. To
provide the aforementioned CP benefits (i.e., consistent and timed network updates), NAGA relies on
two mechanisms. Firstly, it uses an in-band CP embedded over an already discussed deterministic DP
to ensure that the CP messages are delivered within a certain time. Secondly, by utilizing the devel-
oped network update scheduling algorithm, network updates are performed consistently and with
timing guarantees. Whereas the real implementation of NAGA in a P4-based testbed demonstrates
that applications indeed received guaranteed performance in terms of latency, data rate and network
update timing guarantees, simulation studies show the ability of NAGA to be even deployed in large
scale scenarios, which are common for virtualized networks. Therefore, in virtualized architecture
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(see Fig. 1.1), in order to support services with high QoS, NAGA could be used to realize: (1) the CP
network connected to the Southbound Interface (SBI) of an NH and (2) the physical DP network.

The CP focused contributions presented in Chapter 3 and 5 take an integral step towards pro-
viding end-to-end CP guarantees. Firstly, as mentioned, the CP aspects of NAGA can be used for the
realization of control network with update timing guarantees between an NH SBI and physical de-
vices (see Fig. 1.1). Secondly, the main contribution of Chapter 3 (i.e., QoS-aware resource provision-
ing) enables providing predictable processing time between the two NH interfaces (i.e., Northbound
Interface (NBI) and SBI in Fig. 1.1) in dynamically changing scenarios.

1.3 Outline

The outline of this thesis is presented in this section. An overview is shown in Fig. 1.2.
Chapter 2 presents the necessary information regarding the related technologies and it sets the

scene for this thesis. Section 2.1 presents two main branches of programmable networks, i.e., SDN
and P4. Afterward, in Section 2.2, concepts such as server and network virtualization are introduced.
Section 2.3 presents the details of one SotA DNC-based system (i.e., Chameleon) which provides DP
deterministic guarantees.

Chapter 3 presents novel concepts which aim to improve the virtualization of programmable
networks. Section 3.1 presents a measurement-based and CP aware VNE algorithm. This algorithm
also includes the effect of different NH functions. QoS-aware NH CPU provisioning procedure is
introduced, presented, and evaluated in Section 3.2. Section 3.3 demonstrates the benefits of VN
reconfigurations in virtualized programmable networks.

Chapter 4 investigates the problems related to in-network and end-host based traffic policing.
The proposed modeling and measurement methodology based on DNC mathematical framework is
presented in Section 4.3. Section 4.4 and 4.5 present two measurement surveys aiming to shed light
on the accuracy of traffic policing in hardware OF-enabled switches and software end-host based
solutions. The impact of traffic policing inaccuracies on network utilization achieved by one SotA
solution is discussed in Section 4.6.

Chapter 5 presents a novel system (i.e., NAGA) capable of providing deterministic data and CP
guarantees. Additionally, it also enables consistent network updates. The system model and net-
work architecture are introduced in Section 5.2. Section 5.3 presents in-depth measurement study of
one P4-enabled hardware device. Section 5.4 presents the performance evaluation of NAGAsystem.
Section 5.4.1 provides the details related to the deployment of the NAGA system in the test-bed avail-
able at our chair (i.e., at Chair of Communication Networks, Technical University of Munich). Sec-
tion 5.4.2 verifies that NAGA updates the network consistently. Section 5.4.3 present the performance
comparison of NAGA with the other SotA systems. Section 5.4.4 studies the scalability of NAGA.

Finally, this thesis is concluded in Chapter 6. Additionally, the potential interesting future re-
search directions are included in the same chapter.
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Research Area

QoS-Aware Virtualization of Programmable Networks

Investigated Fields

Chapter 1:

Background and SotA

[Van+19a]; [Van+19b]; [Van+20]

minor contributions

Chapter 2:

Hypervisor Provisioning
[Ðer+21]; [Ðer+18]; [Ðer+19]

Chapter 3:

Traffic Policing
[Ðer+21]; [Van+20]

Chapter 4:

Providing QoS Guarantees
[Ðer+]

major contributions

Methodologies & Concepts

Embedding algorithms
Sec. 3.1.4

CPU modeling
Sec. 3.1.3, 3.2.4

Software measurements
Sec. 3.1.2, 3.2.3

Testbed deployment
Sec. 3.2.5.5,3.3

Model evaluations
Sec. 3.1.5, 3.1.6, 3.2.5

Measurement procedure
Sec. 4.3

Algorithm implementation
Sec. 4.5.1

Switch measurements
Sec. 4.4

End-host measurements
Sec. 4.5.2,4.5.3

Simulations
Sec. 4.6

System design
Sec. 5.2

Network update algorithm
Sec. 5.2.2

Hardware measurements
Sec. 5.3

System deployment
Sec. 5.4.1,5.4.2

System evaluation
Sec. 5.4.3, 5.4.4

Conclusion, Discussion, and Future Work

Figure 1.2: An overview of the structure of this thesis. In this thesis, three different main research direction
related to the QoS-aware virtualization of programmable networks are investigated. The first direction focuses
on provisioning of the CP of virtualized SDN networks. While the following two directions are focused on the
challenges of achieving guaranteed QoS in the DP.



Chapter 2

Background

The first goal of this chapter is to provide the necessary basic background information needed for un-
derstanding the contributions presented in the following chapters of this thesis. The second goal of
this chapter is to introduce in detail the network architectures of programmable networks and their
requirements. To be precise, firstly, the architecture of non-virtualized and virtualized Software-
Defined Networking (SDN) networks is presented. Afterward, the architecture and an overview of
the most performing Data Center (DC) deterministic network, i.e., Chameleon, is presented. Under-
standing these architectures and their requirements is important as Chapter 3 proposes concepts
that enhance the operation of the Control Plane (CP) of virtualized SDN networks, while Chapter 5
resolves certain drawbacks and improves Chameleon even further.

This chapter is structured as follows. Section 2.1 introduces the novel approaches in pro-
grammable networks. This includes SDN (see Sec. 2.1.1) and Programming Protocol-independent
Packet Processors (P4) (see Sec. 2.1.2). Section 2.2 provides background information regarding
server virtualization (see Sec. 2.2.1), network virtualization (see Sec. 2.2.3), and Network Function
Virtualization (NFV) (see Sec. 2.2.2). Finally, Section 2.3 discusses the deterministic networks and it
provides an overview of Chameleon system.

2.1 Programmable Networks

There are two main branches of programmable networks. The first branch is SDN, which aims to
enable programming of the CP of a networks. While the second one is P4, which is focused on
providing programmability of the Data Plane (DP).

2.1.1 Software-Defined Networking

In traditional legacy networks, CP and DP are coupled. Meaning that all of the devices (e.g., switches
or routers) are in charge of both, forwarding the packets in a DP, and exchanging the control infor-
mation (e.g., routing decisions) in a CP. To be precise, to exchange information, the devices relied on
distributed control protocols such as Border Gateway Protocol (BGP). The legacy network architec-
ture is illustrated in Fig. 2.1a.

SDN proposes to decouple CP and DP [McK+08], as depicted in Fig. 2.1b. In SDN, the control
of a network is determined by a logically centralized SDN controller. They are typically realized

9
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as software applications (e.g., Java programs) running on generic computing servers. A centralized
SDN controller is connected via one of the SDN protocols (e.g., Open Flow (OF) [Fou21]) to all of
the SDN-enabled switches, and it controls them during the network operation. For instance, it could
insert routing rules to route the traffic between hosts (or users). In SDN, the networking switches
have to only implement the DP functionality and an agent for communication with a controller.

Controlling the DP packets in SDN networking (hardware) switches is done with a match and
action paradigm. That is, each SDN switch maintains a flow table that can contain multiple entries.
A flow entry is typically defined with a specific match and one or more actions. Matching is usually
done based on the packet headers (e.g., source Media Access Control (MAC) address). One example of
an action is forwarding the packet on a certain port of a switch. To summarize the whole procedure,
upon packet reception, an SDN-enabled switch firstly tries to find a flow to which the corresponding
packet belongs (i.e., matching). This is done based on the header of a packet and all of the entries
in its flow table. After finding the matching flow, the switch applies the action(s) of that flow to the
corresponding packet.

To control the behavior of a network (e.g., routing), a centralized SDN controller populates flow
tables of all the deployed DP switches in a network via one of the SDN-based protocols.

There are many benefits of SDN [TPR14]; [Thi+19], for example:

1. Centralized Network Control. In SDN [McK+08], the control of a network is logically cen-
tralized. Therefore, monitoring a network and deploying advanced traffic steering algorithms
becomes easier. Utilizing such technologies enables network operators to potentially increase
their network utilization.

2. Simple Switches. In SDN networks, the switches only have to implement the DP forwarding,
and an agent for communicating with a centralized SDN controller. This means that switch
vendors do not have to implement and maintain all of the available CP protocols. In turn, this
might make designing and developing the switches cheaper.

3. Faster Innovation. With SDN [McK+08], the network operators do not have to wait for
switch vendors to incorporate new CP protocols into their own devices. They simply can
just update their SDN controller with a new network control logic and deploy it instantly
without changing the underlying switching (hardware) devices. Thus, SDN enables faster
innovation [McK+08].

However, SDN also exhibits a couple of drawbacks:

1. Single Point of Failure. Since a logically centralized SDN controller is in charge of controlling
the network, it represents a single point of failure. That is if a controller fails, the network
operator loses full control of a network, and the management of a DP becomes unavailable.

2. Scalability. With every day, the total number of internet users is growing [For+19]. Therefore,
the total number of flows in one large network can easily reach over 1 milion. Therefore,
having one centralized controller can be a bottleneck for such networks.
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Figure 2.1: (a) Legacy and (b) SDN network architecture.

To overcome the two aforementioned issues, many state-of-the-art (SotA) works propose to use a
distributed CP instead of a centralized one [KCG14]; [Dix+13]; [Dix+14]. While this indeed resolves
single point of failure and scalability issues, it also raises a couple of novel problems. For instance,
if multiple distributed SDN controllers are managing the network, they might have to be synchro-
nized to ensure that the underlying network is updated consistently [SK18]. To enable that, novel
consensus algorithms such as Raft [OO14] and Paxos [Lam01] can be deployed in various SDN net-
work controllers [SK17]. Additionally, during network operation, distributed SDN controllers might
become buggy, fail, or even malicious. Hence, to protect a network from these issues, a distributed ar-
chitecture supporting Byzantine Fault Tolerance (BFT) principles [MNR19] can be used. In [SÐK18],
it was demonstrated how BFT can be implemented into a distributed SDN CP architecture. More-
over, the aforementioned study also demonstrated the effectiveness of a such solution in various
networking settings.

Since the focus of this thesis is Quality of Service (QoS) in programmable networks, the contri-
butions presented later rely on a centralized SDN CP architecture. Therefore, even though scalability
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and distributed CP are important topics, we consider them orthogonal compared to the contributions
of this thesis.

2.1.1.1 OpenFlow

OpenFlow [Fou21] is one of the most famous and widely used protocols for communication between
a SDN controller and OF-enabled switches. It is supported by many different switch vendors (e.g.,
Dell, HP, Pica8, and many others), and it is currently the de facto standard for the realization of SDN
networks. OF uses both Transmission Control Protocol (TCP) and Transport Layer Security (TLS) to
ensure that the packet is reliably and securely exchanged between a controller and switches.

The procedure to enable a CP OF connection based on version 1.0 between an SDN controller
and a OF-enabled switch is as follows.

1. Configuration Phase. An SDN controller is run (typically) as an application on a general
purpose server in a network. It is configured to listen on one available Internet Protocol (IP)
address and one TCP port (default TCP ports for OF are 6633 and 6653). The OF-enabled
switches can then initiate the connection towards the configured SDN controller.

2. Handshake Phase. After TCP 3-way handshake is completed, the initial handshake proce-
dure of OF starts. The main objective of OF handshake procedure is to exchange the capabili-
ties and supported features between an SDN controller and a switch. For example, during this
phase, a controller and a switch agree on which OF version to use.

3. Operational Phase. After an OF handshake procedure is finished, the operational phase
starts. During this phase, an SDN controller and a switch exchange keep-alive messages to
ensure that there is no failure. Additionally, during this phase, an SDN controller can manage
the switch as desired by following the OF specification. For instance, it can insert flow rules
into the flow table of a connected switch to enable packet forwarding in the network.

Flow Table. Since OF is an SDN control protocol, it also follows the match and action paradigm.
In OF 1.0, each flow table entry has the following attributes: (1) header fields, (2) counters, and (3)
actions. Header fields are used for matching. Counters are used for monitoring and statistic gath-
ering, and they are updated after each packet is processed. Finally, actions are applied accordingly
based on the matching outcome. Tab. 2.1 presents the available header fields in OF 1.0 version.

In the following, the most important OF 1.0 messages are listed.

1. FlowMod Add (OFPT_FLOW_MOD message with command OFPFC_ADD in OF 1.0 specifica-
tion [Spe09]) - This message is sent by an SDN controller towards a OF-enabled switch, and
the main purpose of this message is to instruct a switch to add a new flow rule into it’s flow
table.

2. FlowMod Delete (OFPT_FLOW_MOD message with command OFPFC_DELETE or
OFPFC_DELETE_STRICT in OF 1.0 specification [Spe09]) - This message is also sent by an SDN
controller towards a OF-enabled switch, and the main purpose of this message is to instruct a
switch to delete an already inserted flow rule from it’s flow table.
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Header OF 1.0

Ingress Port ✓

Ether src. ✓

Ether dst. ✓

Ether type ✓

VLAN id ✓

VLAN priority ✓

IP src. ✓

IP dst. ✓

IP proto. ✓

IP ToS bits ✓

TCP/UDP src. port ✓

TCP/UDP dst. port ✓

Table 2.1: Supported header fields in OF 1.0.

3. FlowStatsRequest (OFPT_STATS_REQUESTmessage in OF 1.0 specification [Spe09]) - By sending
this message to a OF-enabled switch, an SDN controller requests the information regarding
flow statistics. It could request the statistics of all flows, or only a certain subset of flows. In
OF, flow statistics are gathered by utilizing counters which are part of every entry in a flow
table. There are multiple types of counters, such as packet, byte, and drop counters, and so on.

4. FlowStatsReply (OFPT_STATS_REPLY message in OF 1.0 specification [Spe09]) - With one or
more 𝐹𝑙𝑜𝑤𝑆𝑡𝑎𝑡𝑠𝑅𝑒𝑝𝑙𝑦 message(s), a OF-enabled switch reports back to the controller current
values of counters for all of the requested flows.

The first two messages are used to enable packet routing (or forwarding) in an SDN-enabled
network, i.e., they are used by an SDN controller to insert and update the flow rules on OF-enabled
switches deployed in a network. While the last two messages are mostly used for monitoring the
state of a network (e.g., for calculating link utilization). Of course, OF [Fou21] specification or a
standard provides many more messages. However, since in this thesis we mostly rely on these four
messages, the other ones are not introduced in this section.

Newer OF Versions. Every couple of years a new version of OF is introduced. With each
version, new functionalities are added. For instance, OF 1.1 version further extends the supported
header fields listed in Tab. 2.1. OF 1.3 introduces traffic metering and multi-controller support (and
many other things). For more information we refer readers to OF specifications (e.g., [Fou21]).

SDN Controllers. There are many different SDN controllers which support OF. The main dif-
ference between SDN controllers is the offered functionalities, performance, and the used program-
ming language. Some of the well known controllers are Ryu [Com17], OpenDayLight [Med+14],
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ONOS [Ber+14], FloodLight [Flo15], and NOX [KSG14]. For more information regarding SDN con-
troller we refer readers to SotA studies [Sha+13]; [Kho+14]; [Zhu+20].

For more information about SDN and OF, we refer readers to either the original paper [McK+08]
or one of the comprehensive surveys [Row+14]; [BEE16]; [SOS13].

2.1.1.2 Performance of OF-enables switches.

To control reliably the traffic traversing a network, SDN controllers must understand what
performance the physical and virtual SDN switches support. For instance, if an SDN controller
aims to provide end-to-end latency guarantees, it must be aware of the processing time of each
deployed SDN switch. Therefore, many works [Van+19a]; [KPK14a]; [KPK15]; [Kuź+18]; [He+15a];
[BR13]; [DBK15]; [Laz+14]; [HYS13]; [Rot+12]; [He+15b]; [Bau+18]; [PMK13]; [Bia+10]; [Emm+14];
[Van+19b]; [HYS13]; [Jar+11]; [Nao+08]; [GYG13]; [Lin+17] in the SotA investigate and measure
the data and CP performance of the available OF-enabled switches. Based on the literature, the
following conclusions regarding the performance of hardware OF switches can be extracted. The
following conclusions influenced certain system design choices which are presented later in the
thesis.

Data Plane Processing Time. Most of the carrier-grade OF switches exhibit very deterministic
processing time. For instance, the packet processing time of Dell S4048-ON, Pica8 P3297, HP E3800,
and NEC PF5240 was always within 0 − 6𝜇𝑠 [Van+19a] regardless of the packet size, match type, or
action type. Since the processing time is very low, this indicates that the main sources of delay in a
network are propagation time and packet queuing at transit switches.

Throughput. Almost all of the carrier-grade OF switches support full line rate throughput even
if all of their physical ports are fully used [Van+19a]. Additionally, packet size, match type, and action
type did not produce any impact on the throughput. Following two OF-enables switches failed to
support do the same: HP E3800 and HP 2920. However, the newer version of HP device might perform
better and potentially offer full line rate.

Traffic Manager and Packet Queuing. Traffic manager is an entity that is in charge of for-
warding the packets between ports. Therefore, it implements various queuing strategies (e.g., strict
priority queuing [BP02] or weighted fair queuing [BP02]), and it allocates the available buffer space
to queues [Van+19a] based on the configured strategy. Additionally, this entity is also in charge of
traffic replication. Traffic manager is not part of OF protocol and standard, however, all OF-enabled
switches to have to implement it. Therefore, it is important to understand what are the offered func-
tionalities of traffic manager and the corresponding performance. In [Van+19a], the authors analyzed
the features offered by traffic managers deployed in 5 different OF switches and they tried to evalu-
ate if their behavior is predictable. The overall conclusion was that the provided features vary from
switch to switch. However, the observed performance was predictable. For example, for a given
scenario, it is possible to measure and estimate how much buffer space will be allocated to a certain
priority queue [Van+19a].

Traffic Policing. In OF, traffic policing is realized with the metering feature [McK+08]. Metering
was introduced as part of the OF v1.3 [McK+08] specifications and it is supported by most of the
carrier-grade switches. However, surprisingly, the performance of traffic policing in OF-enabled
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switches was never comprehensively evaluated. Therefore, one of the main contributions presented
in Chapter 4 is the corresponding comprehensive measurement results.

Flow Management. Many works in the literature demonstrated that inserting the rules into
a flow table of a carrier-grade switch offers unpredictable and unexpected performance [Van+19a];
[KPK14a]; [KPK15]; [Kuź+18]. For instance, in [Van+19a], it was shown that inserting the flow rules
can be surprisingly slow – the time needed to insert 1000 flow rules into a flow table of NEC PF5240
took over 16 minutes. Additionally, in some scenarios, some switches even ignore adding the flow
rules sent by an SDN controller [Van+19a]; [Kuź+18]. Therefore, to avoid reconfiguring often SDN
switches, some works proposed to use source routing [Van+20]. With the same goal (avoiding often
reconfigurations), the presented SDN-based system and the main contribution of Chapter 5 routes
the packets based on the decision made by edge-switches.

2.1.2 Programming Protocol-independent Packet Processors (P4)

Even though SDN architecture and OF protocol enable network operators to have CP programma-
bility, at that time, there was still one glaring problem. That is, each OF version had a fixed set of
functionalities. For instance, in OF 1.0, it is possible only to match 13 different header field values. Of
course, new OF versions always extended the set of functionalities (e.g., header field list). However,
developing a new version always took a couple of years, and updating the software (or agent) of
the hardware switches deployed in a network also took at least a couple of months. Therefore, to
increase flexibility and speed up the innovation, P4 [Bos+14] programming language was developed.

The main objective of P4 is to provide DP programmability [Bos+14]. With P4 it becomes pos-
sible to program how the switches (or SmartNICs) process the packets in the DP. It is based on 𝐶

programming language, thus, enabling network operators to quickly and easily develop new ap-
plications. Fig. 2.2 illustrates the architecture with the corresponding stages of one P4 processing
pipeline. This pipeline represents the logical pipeline of one P4-enabled (hardware) switch or Net-
work Card Interface (NIC), thus, packets enter it on the left-hand side, and sequentially traverse
the depicted stages before being forwarded further (alternatively they could also be intentionally or
unintentionally dropped).

In the following, P4 stages are discussed and presented in more detail [Bos+14].
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Programmable Parser. Upon packet reception, most of the switches first extract headers from
a packet. For instance, SDN-enabled switch might extract the header fields listed in Tab. 2.1 (e.g., Vir-
tual Local Area Network (VLAN) id or IP src.). In a programmable parser of P4 pipeline, it is possible
to define arbitrary headers and specify how they should be extracted from a (received) packet that
just started traversing the pipeline. This allows us to design new headers, and deploy rapidly novel
protocols. The parsed headers and packet metadata are later on forwarded to the programmable
match-action pipeline. Packet metadata usually contains additional information regarding packet
processing (e.g., ingress port of the packet, or timestamp representing packet reception). Addition-
ally, usually, metadata also contains information about how the packet should be processed further
(e.g., it usually contains a flag to indicate if a packet should be dropped). Packet metadata is usually
forwarded across multiple stages.

Programmable match-action pipeline. In this part of the pipeline, similarly as in SDN, pack-
ets are matched (based on the extracted arbitrary defined headers) to flows, and actions are applied
to the traversing packets. With P4 it is possible to program different matching strategies (e.g., we
could match on already arbitrary defined headers), and different actions. Additionally, there could
be multiple stages in a programmable match-action pipeline.

Programmable Deparser. The main goal of the code located in the programmable deparser
is to define how the packet is later on assembled from the extracted headers and packet metadata.
Therefore, based on the defined logic, for instance, not all headers have to be appended to the packet
during the assembly in deparser. The previous three stages together are called an ingress pipeline.

Traffic Manager. As explained in Sec. 2.1.1.1, the main goal of the traffic manager entity is to
forward the packets between ports. Since traffic manager is not included in the current version of
P4, it is not possible to program its behavior of it with P4.

Ingress and Egress Pipeline. After the packet traverses a traffic manager, it gets processed by
an egress pipeline. Conceptually, an egress pipeline performs the same tasks as ingress pipeline. The
main purpose of as an egress pipeline is to provide additional options for the programming of the
DP, and it is can be potentially useful in certain scenarios.

Supported devices. During the last couple of years, many vendors such as Intel, Netronome,
Xilinx have developed hardware devices (including both switches and SmartNICs) that support P4
programming language. Therefore, network and data center operators are now able to use P4-
enabled devices in their networks and reap the benefits provided by P4 programming language.

2.2 Virtualization

In this section, initially, a short background regarding server virtualization, containerization, and
NFV is provided (see Sec. 2.2.1 and Sec. 2.2.2). Afterward, background regarding network virtualiza-
tion in SDN networks is presented.

2.2.1 Server Virtualization and Containerization Approaches

In computing, virtualization enables the creation of virtual resources from the underlying physical
resources. Therefore, it is often said that virtualization abstracts physical resources and provides a
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Figure 2.3: (a) Non-virtualized and (b) Virtualized server. Each black dashed rectangleon the right figure
represents one VMs.

virtual representation of them. Computing resources such as computer hardware platforms, storage
devices, and computer network resources can be virtualized.

Server virtualization (or hardware/platform virtualization) is a process of creating and running a
Virtual Machine (VM) that acts like a real computer with an operating system. Server virtualization is
enabled by a hypervisor. It can be implemented in software, hardware, or as a hybrid solution. The
hypervisor manages the hardware resources (e.g., Central Processing Unit (CPU), Random Access
Memory (RAM), input/output (I/O) stack, and more) and allocates them to VMs when needed. An
example of a non-virtualized and virtualized server is presented in Fig. 2.3.

There are two types of hypervisors.

1. Type 1. Type 1 hypervisor (or a native or bare metal hypervisor) is a hypervisor that runs
directly on the server’s hardware (or on the host), and it controls the hardware to manage
VMs (or guest operating systems). Examples of Type 1 hypervisors: KVM (part of Linux kernel
since 2007), Microsoft Hyper-V, and VMware vSphere.

2. Type 2. Type 2 hypervisors run as a normal application or program on a generic operating
system. They abstract the guest operating systems from the underlying operating system
running on the host server. Examples of Type 2 hypervisors: VMware Workstation and Oracle
VirtualBox.

To reduce the possible overheads introduced by running a hypervisor, containerization ap-
proaches were developed. Containerization is a type of lightweight virtualization. In it, applications
are deployed in isolated user spaces, called containers, and they utilize the same shared operating
system. Containers contain and encapsulate everything an application might potentially need to
run. For instance, it can contain required libraries, configuration files, source code binaries, and
all dependencies. To enable containerization on commodity server, typically, one of the following
container runtime tools [Esp+20] is used: containerd, CRI-O, Docker Engine, and many more.
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There are many benefits of using either, classical server virtualization or containerization. To
start with, it is possible to consolidate services (e.g., apps) in a centralized location (e.g., data center).
Additionally, it is possible to scale up or down the number of deployed services (e.g., apps) based
on the current requirements and load in a highly portable manner. Therefore, this enables network
operators and service providers to reduce their operational costs. Moreover, these approaches allow
application or service programmers to separate monolithic applications into microservices. That is,
in microservice architecture, the full application is a collection of smaller, and independently deploy-
able services. This service architecture provides some benefits such as easier updating of services,
Continuous Integration/Continuous Developement (CI/CD), and many more.

In this thesis, server virtualization and containerization are often used when designing systems
to utilize their benefits. For instance, in Chapter 3.2, network hypervisors are often deployed within
a VM. Additionally, the presented traffic policing Data Plane Development Kit (DPDK) application in
Chapter 4 is always run within a container. This is done to increase portability of the evaluated and
developed applications. For example, running the presented DPDK application on any other server
which supports containerization becomes trivial.

2.2.2 NFV Architecture

NFV proposes a new way of managing and deploying network functions [Bas+14]. The network
functions (e.g. firewall, Network Address Translation (NAT), load balancer) are decoupled from the
dedicated hardware and realized as software instances, i.e., Virtual Network Function (VNF)s run-
ning on commodity servers. The main enabler of NFV is server virtualization and containerization
(see Sec. 2.2.1), The benefits of NFV are manifold [Han+15]. Firstly, consolidating services and by
using Commercial Off-The-Shelf (COTS) hardware instead of special purpose equipment can lead to
reducing network over-provisioning. Secondly, the dynamic and automated orchestration of VNFs
(e.g., VNF instantiation or migration) based on the current service requirements is possible through
cloud systems (e.g., Kubernetes, OpenShift, AWS). Hence, in this case, the experienced QoS can be
improved.

Additionally, in SotA, the NFV architecture are even extended further to incorporate pro-
grammable P4 devices [He+18].

Unfortunately, the benefits can come with a price: the observed end-to-end delay might increase
due to the function softwarization [Li+17]; [Li+13] (because of additional server virtualization layers)
or due to placing functions at server locations that promise low resource costs but are far away
from users [Var+19]. Besides, running multiple VNFs on the same server with a limited amount
of resources can lead to the resource over-utilization and degraded performance of certain VNFs.
This drawback is not acceptable for network functions with high QoS requirements. Therefore,
understanding how many resources one VNF needs is crucial. To solve this problem, in Chapter 3.2
a novel measurement-based procedure for provisioning of one VNF is presented.

2.2.3 Virtualization of Programmable SDN Networks

Virtualization of SDN networks enables the Network as a Service (NaaS) model. Tenants can request
network resources (e.g., a custom virtual topology with bandwidth requirements) from a network
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Figure 2.4: Overview of network virtualization. A network hypervisor acts as a proxy between the tenants
controllers and the physical infrastructure. A hypervisor can provide different virtualization policies to dif-
ferent tenants, i.e., in this case different levels of topology abstraction.

provider. Through network virtualization, the provider allows different tenants to share a common
physical infrastructure. The concept is illustrated in Fig. 2.4. Each tenant is given a Virtual Network
(VN), i.e., a set of virtual (interconnected) switches and hosts, to which it can connect its custom SDN
controller. Furthermore, in the DP, tenants are differentiated by their flowspace, where a flowspace is
a subset of all possible OF [McK+08] matching fields. If the tenants flowspaces are not overlapping,
all the DP traffic can be easily mapped to the corresponding tenant. For instance, we can define a
flowspace of a tenant A (see Fig. 2.4) as the 10.0.0.1/24 subnet with full port access on physical switches
highlighted in red color (they are interconnected with dashed lines). Through their controller, tenants
can then fully control the DP forwarding behavior in their VN and steer the traffic as they desire
within their VN. To provide such a service, the provider uses a Network Hypervisor (NH) which acts
as a proxy between the controllers of the tenants and the physical infrastructure. NHs are usually
realized as software applications (e.g., a Java program) running on generic commodity computation
servers. The most famous NHs are FlowVisor [She+09] (written in Java) and OpenVirtex [Al-+14]
(written in Java).

To enable the existence of such an architecture, network hypervisors typically provide some of
the following functionalities [Ble+16a].

1. Monitoring the Network. At all times, network hypervisors should maintain the state of
the network by either tracking all of the embedded VNs and their requirements in the DP and
CP and/or they have to monitor all of the switches in the underlying physical networks. This
information can be later used to determine if a new VN can be added or not.
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2. Running Virtual Network Embedding (VNE) Algorithm. When a tenant requests a new
VN, a VNE algorithm within NH is responsible for checking if there is a sufficient amount of
resources to embed this request. Additionally, it is also in charge of mapping the requested VN
to the physical infrastructure [CRB09]; [Fis+13].

3. Establishing Isolation Policies. After a VN request has been accepted by a VNE algorithm,
an NH has to reserve the required data and CP resources for the request [Van+19b]; [She+09].
For example, in the DP, an NH could reserve the resources by inserting traffic policing rules
(based on the required bandwidth) on the corresponding underlying physical switches. The
main goal of establishing isolation policies is to prevent tenants from over-utilizing the phys-
ical resources and causing performance degradation to the other tenants (e.g., increased end-
to-end delay).

4. Establish Abstraction Policies. NHs could present the physical networking resources to
the tenants’ SDN controllers as simplified virtual resources. All types of resources (e.g., link,
node, topology) can be simplified (abstracted). By abstracting the physical resources, NHs can
simplify to tenants the management of their own VNs. To provide this functionality, NHs have
to keep internally additional abstraction mappings.

5. Message Translation and Inspection. NHs have to during the runtime translate and inspect
all of the CP messages exchanged between the tenants SDN controller and the physical infras-
tructure. The inspection of messages is performed to ensure that the tenants do not configure
or use the resources reserved for a different tenant.

Naturally, not all NHs implement all the previously listed functionalities, and some even provide
additional ones. Moreover, NHs often vary in terms of features and they often implement these
functionalities in a different manner. For a more detailed overview of network virtualization in SDN,
the readers are referred to the following survey [Ble+16a].

In the following section, certain implementation details of the most well known NH, i.e., FlowVi-
sor, are presented. This information is later on used in Chapter 3.2 to design a measurement-based
methodology for provisioning the hardware resources available to a FlowVisor NH.

2.2.3.1 Message Inspection/Processing in FlowVisor

FlowVisor [She+09] implements partial topology abstraction and full port abstraction. Partial topology
abstraction can be defined in the following way: besides the requested end-point physical switches,
the intermediate switches on the paths between the end-point switches are also shown to the tenants’
controllers, while all other physical switches are hidden. This corresponds directly to the red dashed
VN in Fig. 2.4 (i.e., tenant A), where the physical switches are mapped with one-to-one configuration
to the virtual switches. Full port abstractionmeans that only the physical ports containing the tenants’
hosts and interconnecting the VN are shown, while all other existing physical ports are hidden
or abstracted away. To achieve such functionalities, each CP message has to be processed by the
NH. In OF [McK+08], the forwarding behavior of a switch is modified with FlowMod Add message1,

1In OF 1.0 specification [Spe09] FlowMod Add is called OFPT_FLOW_MOD.
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hence, the corresponding message is one of the most complex to inspect. For instance, match and
action fields contained in every FlowMod Add message have to be checked concerning the agreed
virtualization policies. As we focus on provisioning the resources for the flow embedding task, in
the following we explain the FlowVisor’s processing pipeline of FlowMod Add in more detail.

Upon a reception of FlowMod Add message, FlowVisor firstly checks the contained action set. For
instance, the corresponding message might be trying to add a rule that forwards the traffic to a port
which is not part of the tenant’s flowspace. Thus, we suspect that the number of virtual ports could
have an impact on the processing workload of FlowVisor. If the contained action set is not violating
the agreed policies, FlowVisor then inspects the match. This is done by intersecting the match with
the flowspace and evaluating if the tenant has permission to match on those fields. If a tenant is
using additional field (not included in its flowspace), FlowVisor rewrites them. Similarly, we suspect
that type of matching can have an impact. Thus, if we use port-based matching (common to L2 and
L3 forwarding applications), the required resources might scale again with the number of virtual
ports. Finally, the message is forwarded to the targeted physical switch. Moreover, the size of the
topology could have an impact on the total processing workload, as it can affect the lookup time for
determining the correct physical switch destination. Furthermore, the topology size and edge density
directly impact the total number of ports in the network, thus, potentially affecting the required
workload for inspecting the match and action fields of FlowModAdd. Although FlowVisor implements
most of the look-ups with hashmap (scales with O(1)), some look-ups use linked lists (scales with
O(𝑛)), thus the lookup and workload could be affected by the aforementioned parameters.

2.3 Deterministic Performance in SDN Networks

In this section, to begin with, the general notion of providing deterministic guarantees in the DP of
a network is introduced along with an overview of the few systems which provide it (see Sec. 2.3.1).
Afterwards, the most promising SotA system, i.e., Chameleon [Van+20], which provides such guar-
antees is introduced in detail (see Sec. 2.3.3).

2.3.1 General Notion of Determinism in Networking and Literature Survey

Deterministic networking focuses on providing deterministic (or non-stochastic) bounds on packet
loss, packet end-to-end latency, and high reliability [COS17]; [VK16]; [LT01] in the DP. There are
two main groups of networking solutions which aim to provide such guarantees.

The first group of solutions is mostly used in industrial networking and it includes IETF’s De-
terministic Networking (DetNet) Working Group, many networking standards (e.g., Time-Sensitive
Networking (TSN) developed by IEEE 802.1 TSN Task Group [COS17]), and various proprietary solu-
tions (e.g.„ PROFINET [FFV06], EtherCAT [JB04]) which aim to provide such guarantees. However,
even though some of the works are standardized, often proprietary hardware devices are needed to
realize such networks. Additionally, these devices often have limited amount of ports (e.g., around
4), and they often support only low link rates (e.g., 100𝑀 , or 1𝐺) which is common for industrial
networks. Therefore, these solutions are not applicable in networks with higher bandwidth require-
ments such as DC or Wide Area Network (WAN) networks (where link rates are either 10𝐺 or 100𝐺
or more).
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The second group relies on advanced mathematical frameworks such as Deterministic Network
Calculus (DNC) [LT01] to design networking systems [Van+20]; [Jan+15]; [Gro+15]; [Van+19b]
which can provide such strict DP guarantees. These systems often can be realized with generic
switching hardware such as OF-enabled devices. Thus, they support much higher rates and can be
used in various scenarios. For example, in [Van+19b], the authors demonstrated that by utilizing
DNC mathematical framework it is possible to even provide deterministic guarantees in small net-
works with low-cost OF-enabled switches. That is, the deployed deterministic network consisted
only of 4-port Zodiac FX switches which cost around 100$. Therefore, DNC-based deterministic so-
lutions maybe even used in networks that resemble industrial scenarios (e.g., network within a robot
or an airplane).

Since the goal of this thesis is to improve and develop new concepts which provide QoS guaran-
tees in virtualized programmable networks (e.g., SDN and/or P4) in the following we only focus on
the second group of deterministic networking solutions.

2.3.2 DNC Theory

DNC is a mathematical framework for deriving and analyzing worst-case performance bounds in
computer networks. It was firstly introduced by R. Cruz in [Cru91a]; [Cru91b] and later extended
in [LT01]. In the following, a short overview of the DNC is provided, for more information, we refer
the readers to [Cru91a]; [Cru91b]; [LT01].

To provide such worst-case bounds, the following network characteristics have to be modeled
and provided as input parameters to DNC.

FlowModeling. First of all, all the flows in the network have to be modeled. Typically, a flow in
a packet-based network is described as a unidirectional sequence of packets sent by a single sender
to a single receiver. In DNC, a flow is modeled with an arrival curve. The example of an arrival curve
is shown in Fig. 2.5. The vertical part (overlapping with the data axis) of the arrival curve represents
the maximal allowed burst size of a flow (i.e., 𝑏𝑎), while the diagonal part represents the rate of a
flow (i.e., 𝑟𝑎). In practical systems [Van+20]; [Jan+15], usually, the generated flows are limited with
either a traffic policing or shaping entity to ensure that they are not exceeding the pre-defined arrival
curve.

Service Modeling. Similarly to flows, all the forwarding devices in a network have to be mod-
eled as well. In DNC, they are modeled with a service curve. The example of a service curve is shown
in Fig. 2.5. The horizontal part (overlapping with the time axis) of the service curve represents the
processing time of a device (i.e., 𝑝𝑠 ), while the diagonal part represents the offered throughput (i.e.,
𝑟𝑠 ). Many works in the literature measure the forwarding devices [Van+19b]; [Hel+21] with a goal
of obtaining or generating the corresponding service curves.

After all the flows and forwarding devices are represented with the corresponding arrival curves
and service curves, DNC can quantify worst-case performance bounds by utilizing the min-plus and
max-plus algebra. To be precise, DNC derives the worst-case bounds such as worst-case end-to-end
delay and the maximal amount of backlog in the system. The maximal amount of backlog refers to
the maximal amount of data held inside the system. Therefore, it corresponds to the needed buffer
space for the temporary storing of the traversing data.
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Figure 2.5: Example of an arrival curve (red dashed line) and a service curve (blue dotted line).
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Figure 2.6: Example of a small network with 1G links and two flows, where each flow utilizes 0.5G. Embedding
a new flow request of 1G between switch A and B is not possible without reconfiguration.

2.3.3 Chameleon System

In this part, initially, it is discussed why Chameleon system performs better (i.e., achieves
higher utilization) compared to the other state-of-the-art approaches. Afterward, an overview of
Chameleon system is presented. Chameleon system is already published in detail in one conference
paper [Van+20] and in one PhD thesis [Bem+20].

2.3.3.1 Why does Chameleon perform better?

There are two major reasons why Chameleon system performs better compared to the other SotA
approaches such as Qjump [Gro+15] and Silo [Jan+15]. They are explained in the following.

1. Flow Reconfigurations. Both Qjump and Silo, do not reconfigure the flows after they have
been embedded into a network. In contrast, if there are not enough resources to embed (or accept) a
new flow request, Chameleon tries to optimize the already embedded flow in the network to create
enough space for a new flow. By doing so, network utilization could be increased. Consider the
following example in Fig. 2.6. If the link speed is 1𝐺 , and there is a new flow request (e.g., Flow 3)
with the required bandwidth of 1𝐺 between switches 𝐴 and 𝐵, both Qjump and Silo will not be able
to satisfy this request. In contrast, Chameleon will try to reroute one of the already embedded flows
(e.g., Flow 1 or Flow 2) in order to create enough space for the new flow request.

2. Queue Level-Topology. Typically, most of the carrier-grade switches to support multiple
priority queues per one physical port. In most cases, they have either 4 or 8 queues [Van+19a].
Having more queues enables more fine-grain prioritization of flows and supports a higher range of
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Figure 2.7: Chameleon architecture. Taken from [Van+20].

applications with vastly different delay requirements [GVK17]. Both Qjump and Silo do not utilize
all the available resources on switching devices, for instance, Qjump and Silo use only one or two
priority queue(s) per port. On the other hand, Chameleon utilizes all of the available resources on
switching devices, such as the number of queues and available buffer space.

2.3.3.2 Chameleon Architecture

Fig. 2.7 presents an overview of Chameleon system architecture. Firstly, Chameleon system aims to
provide deterministic guarantees in the DP of a cloud network (i.e., in a DC network). Therefore, it
is assumed that the end hosts (i.e., servers) can be controlled if desired. They are virtualized through
QEMU 2.11.1 with KVM.

Centralized Control. Chameleon uses an SDN architecture, where the whole network is con-
troller by a centralized controller. This controller listens on the Northbound Interface (NBI) for flow
requests. A flow request is defined by its source and destination server nodes, required rate, required
burst, and delay deadline. Upon flow request reception, Chameleon firstly tries to find a route for the
flow by utilizing LARAC [Jut+01] algorithm. Afterward, DNC [LT01]; [Cru91a]; [Cru91b] mathemat-
ical framework is used to ensure the embedding of the new flow does not violate the guarantees of the
other already embedded flows. Moreover, if the outcome of DNC framework is negative, Chameleon
tries to reroute the already embedded flows to free up the resources. To do so, the proposed greedy
reconfiguration algorithm is used. After each reconfiguration attempt, the previous procedure (flow
routing and DNC bound checking) is repeated.

Source Routing. Since Chameleon relies on reconfiguration, it is important that the physical
hardware switches can be reconfigured in a deterministic manner. Unfortunately, that is not the
case for certain of SDN switches [Van+19a]; [KPK14b]; [Kuź+18]. For instance, it was shown that



2.3. Deterministic Performance in SDN Networks 25

VM1 VM2 VM2

VSwitch

DPDK App

Interface

Figure 2.8: Architecture of DPDK application running on end-host.

certain switches sometimes ignore adding rules sent by an SDN controller. Therefore, Chameleon
system utilizes source routing. In source routing, the route of a packet in the network is determined
by a source host, and it is usually encoded within the packet header. Hosts in Chameleon append
VLAN tags which carry the information about a route of a packet. To enable source routing in the
network, the switches are configured once at the network start-up with the predefined set of VLAN
tags. Fig. 2.7 illustrates how one packet can be routed in a network with source routing. In this case,
a source host appends 4 tags (i.e., with VLAN IDs 502, 102, 101, and 2). The first tag determines on
which port and priority queue should the first switch forward the packet. Based on a VLAN tag with
an ID of 502, the switch can deduct that the packet should be forwarded on port 5 and priority queue
2. The second tag determines the forwarding on the second switch, and so on.

DPDK Application. To realize source routing on end hosts (or server) in a DC, a DPDK appli-
cation based on Intel’s VMDq application was developed. The logical representation of the DPDK
application is presented in Fig. 2.8. The main objective of the developed application is to connect
VMs of users with the physical network in a deterministic manner, hence, it behaves as an enhanced
virtual switch. The VMs belonging to users are connected to the developed DPDK application via
virtio using a vhost-net/virtio-net para-virtualization [Ada+15]. Additionally, each VM is assigned
one Rx/Tx queue pair. The DPDK application utilizes three separate cores: one for receiving packets
(i.e., Rx part), one for sending packets (i.e., Tx part), and one for the control of the DPDK application.

Rx Part. In the receiving part, the DPDK application uses Virtual Machine Device Queues
(VMDQ) technology available on Intel’s NIC to sort the incoming packets into the physical Rx queue
dedicated to the corresponding VMs. The (software) Rx part of the DPDK application (running in an
infinite loop) then pulls a batch of packets and forwards them to the corresponding VMs based on
the MAC destination address and VLAN tag. Additionally, in the receiving part, there is no need for
any other additional functionality.

Tx Part. In the sending part, the DPDK application runs an infinite loop. In it, it pulls packets
(in a batch) from queues connecting the VMs in a round-robin manner. After pulling the packets,
the DPDK application adds the corresponding VLAN tags and it polices the traffic based on the
configured parameters. This is done in order to ensure that the VMs do not exceed the agreed arrival
curves (see Sec. 2.3.2)
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Figure 2.9: (a) Measured packet latency and loss of 5 flows in the deployed network managed by Chameleon.
(b) Number of accepted flows in 8 different scenarios by Chameleon,Qjump and Silo. Source: [Van+20].

Ensuring Predictability. To ensure that the DPDK application processes packets in a pre-
dictable manner, the following configurations were applied on each server before running the appli-
cation.

• Hyperthreading and Turbo-Boost were disabled. Additionally, all power-saving features were
disabled, and the running frequency of each CPU was set to the (maximal) base value. For
example, on Intel Xeon E5-2650 v4 CPU, the running frequency was set to 2.2 GHz for each of
the 24 cores.

• The three parts of DPDK application (e.g., Rx, Tx, and control part) were running on isolated
cores. The isolation was achieved by setting kernel isolcpus parameter for certain 3 cores and
by pinning the DPDK application to those three cores.

• To isolate the available cache to the DPDK application, Intel’s Cache Allocation Technology
(CAT) was leveraged on each server.

By deploying Chameleon in a small data center network, it was possible to demonstrate that
Chameleon system indeed can provide deterministic guarantees in the DP and higher utilization
compared to the SotA. Fig. 2.9a shows packet latencies and loss of 5 different flows along with the
required delay during one deployment measurement run. It can be seen that for all of the evaluated
flows, none of the packets were lost, and the achieved delay was always lower compared to the
requested one. Fig. 2.9b illustrates the number of accepted flows in various scenarios of Chameleon,
Qjump, and Silo. Compared to Qjump and Silo, Chameleon was able in every scenario to accept more
flows.

2.4 Summary

In this section, an overview of the relevant technologies and network architectures were presented.
Since this thesis aims to enhance technologies needed for realizing QoS-aware virtualization of pro-
grammable networks, initially, the most promising programmable technologies such as SDN (in-
cluding OF protocol) and P4 are presented along with their benefits. Throughout this thesis, many
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concepts utilize or rely on the features of programmable networks, hence, understanding them may
be beneficial. For example, NAGA system presented in Chapter 5 relies on SDN network architecture,
while Chapter 4 utilizes OF protocol to configure the switches. Afterward, the technologies such
as server virtualization, network virtualization, and NFV are introduced. In particular, one of the
most promising solutions offering SDN network virtualization, i.e., FlowVisor, is described in detail.
Understanding SDN network virtualization concepts and implementation details of FlowVisor is cru-
cial for understanding the contributions presented in Chapter 3, which deals with provisioning the
CP of virtualized SDN networks. Subsequently, an overview of the SotA solutions (including the
necessary background) for realizing deterministic DP guarantees is presented as well. Moreover, an
extensive overview of the best performing system, i.e., Chameleon, is presented. The requirements
and shortcomings of these concepts motivated development of the contributions presented in Chap-
ter 4. That is, certain drawbacks of the best performing SotA system (i.e., Chameleon) are highlighted
and resolved in Chapter 5.





Chapter 3

QoS-Aware Network Hypervisor
Resource Provisioning

The realization of network virtualization in Software-Defined Networking (SDN) networks is
achieved by deploying a softwarized Network Hypervisor (NH) [BBK15]; [Al-+14]; [Han+18]
between the tenant’s SDN controllers and the physical Data Plane (DP) (as explained in Sec. 2). The
introduction of such an entity generated many novel challenges [Ðer+17]; [Ble+16a], especially
related to the Control Plane (CP) (e.g., network management and orchestration). Therefore, this
chapter presents solutions for some of the novel problems.

First of all, to enable network virtualization, NHs perform a certain set of virtualization functions.
That is, as classified in [Ble+16a] and explained in background section (see Sec. 2), they have to: 1)
isolate DP and CP traffic of all the tenants, 2) translate all the messages exhanged by the tenant’s
SDN controllers and the physical DP, and 3) abstract the networking resources (if required by the
tenants). As suggested by the state-of-the-art (SotA) works [Ble+16a]; [Sie+16]; [Al-+14], these func-
tions can potentially have an impact on the resource utilization of NHs, e.g., Central Processing Unit
(CPU) or Random Access Memory (RAM). If this is the case, it is crucial to consider the impact of
such functions when designing network management algorithms (e.g., Virtual Network Embedding
(VNE) problem), or the output of the corresponding algorithms might be sub-optimal. Hence, this
observation motivated the first contribution presented in this chapter (see Section 3.1.2). That is, to
evaluate if such functions indeed have a significant impact, initially the results of one measurement
campaign are presented. The goal of this campaign was to analyse the impact of different topology
abstraction policies on the resources utilization (i.e., CPU) of an NH. The presented measurement
study indicates that indeed the impact of topology abstraction on the CPU utilization is significant,
i.e., depending on the used abstraction policy the difference can reach values up to 400%. Further-
more, even though the difference is significant, the results are predictable, thus, three novel CPU
estimation models are presented in Section 3.1.3.

The observed big variance in CPU utilization (e.g., from 10% − 150%, where 100% corresponds
to fully utilized 1 CPU thread) during our measurement study motivated the second contribution of
this chapter (see Section 3.1.4). In this part, by utilizing the developed simulation tool and the novel
CPU estimation models, the impact of topology abstraction on an offline VNE problem is studied. In
contrast, most of the SotA VNE solutions [Ble+16c]; [CRB12]; [CRB09] do no consider neither NH
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nor its functions in their VNE problem formulation. Therefore, in this part, it is studied what is the
performance penalty of a such design choice. The simulation results revealed that different topology
abstraction policies can have a serious impact on the performance of the presented VNE algorithm.
For instance, considering topology abstraction as part of a Virtual Network Request (VNR) can im-
prove the total number of embedded Virtual Network (VN) for 30% in certain scenarios. Therefore,
both NH resources and it’s functions should be considered when designing VNE algorithms.

The previously introduced contributions suggest that the NH-specific functions and DP networks
can have a significant influence on the NH CPU utilization and the performance of network opti-
mization algorithms (e.g., VNE problem). Thus, in Sec. 3.2 a novel Quality of Service (QoS)-aware
measurement-based NH CPU provisioning approach is presented (the main contribution of this chap-
ter). The objective of this approach is to determine how much CPU resources should be allocated
to an NH while avoiding performance degradation (e.g., impact on processing latency). To do so,
initially, the CPU utilization of one SotA NH is measured and studied in various scenarios while
considering a grid topology. Afterward, based on the presented measurements, an accurate CPU
estimation model is developed. In the SotA, there are a few works [Sie+16]; [SOK17] focused on
estimating the mean NH CPU utilization in various scenarios. However, they are not applicable for
provisioning, as provisioning with a mean CPU value introduces a big performance penalty (i.e., in-
crease in processing time). In contrast, the proposed estimation model is focused on estimating the
maximal amount of needed CPU resources while avoiding performance degradation. Finally, by us-
ing the proposed model on a deployed SotA NH and an emulated DP network, it is demonstrated that
the presented model can be used for provisioning the resources of an NH even in scenarios consisting
of unseen (DP) network topologies (e.g., Internet2, NobelEU, etc.) while keeping the performance
degradation to a minimum. Therefore, by utilizing the presented QoS-aware provisioning proce-
dure, network operators can maximize their overall resource utilization while incurring negligible
performance degradation.

Moreover, in Section 3.3, a demonstration of the benefits of VN reconfiguration and Virtual
Machine (VM) migration on the performance of a remote control application is presented.

The majority of the contributions presented in this chapter are already published in three scien-
tific papers. To be precise:

• The contributions presented in Section 3.1 are published in the following conference paper:
N. Ðerić et al. “SDN hypervisors: How much does topology abstraction matter?” In: 2018 14th
International Conference on Network and Service Management (CNSM). IEEE. 2018, pp. 328–332.
Moreover, this section also presents some unpublished results. Namely, Section 3.1.4 presents
additional analysis regarding the VNE problem.

• The contributions presented in Section 3.2 are published in the following journal paper: N.
Ðerić et al. “Enabling SDN Hypervisor Provisioning through Accurate CPU Utilization Predic-
tion.” In: IEEE Transactions on Network and Service Management (2021).

• The practical demonstration presented in Section 3.3 is published as part of the following con-
ference paper: N. Ðerić et al. “Coupling VNF orchestration and SDN virtual network reconfig-
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uration.” In: 2019 International Conference on Networked Systems (NetSys). IEEE. 2019, pp. 1–
3.

The structure of this chapter is as follows. Section 3.1 presents the impact of topology abstraction
on NH CPU utilization and an offline VNE problem. Section 3.2 presents the QoS-aware provisioning
approach. Furthermore, the demonstration is presented in Section 3.3. Section 3.4 concludes the
chapter, and Section 3.5 outlines the possible future research directions.

3.1 Function-Aware Virtual Network Embedding Problem

This section presents a realistic VN embedding problem which considers the impact of the topology
abstraction function on resource utilization. To develop such an algorithm, it is necessary to under-
stand if different topology abstraction policies have an impact on the resource utilization of an NH
(e.g., CPU). Therefore, in the first part of this section, a comprehensive measurement campaign of
one SotA NH, i.e., OpenVirtex (OVX) is conducted. The goal of the campaign is to investigate if two
VNs with the same DP requirements (e.g., topology, flow rate) and different topology abstraction
policies utilize the same amount of CP resources (i.e., CPU utilization of an NH) or not. Two po-
lices are considered: transparent and big-switch abstraction policy (see Sec. 2.2.3). As expected, the
two considered topology abstraction policies indeed do produce different CPU loads on NH. How-
ever, since the observed measurement results for both policies are predictable, we also present three
estimation models which predict the CPU utilization of an NH based on the DP requirements and
the corresponding topology abstraction policy. Furthermore, based on the presented measurement
results and models, in the second part of this section, a realistic offline VNE problem is presented
and evaluated. The presented algorithm takes into consideration the impact of topology abstrac-
tion, hence, it achieves better performance compared to the baseline algorithm based on the SotA
approaches.

This section (i.e., Section 3.1) is organized as follows. In Section 3.1.1, the related work is pre-
sented. Section 3.1.2 presents the considered measurement setup, results and the proposed NH CPU
estimation model. Section 3.1.4 presents the problem formulation and the proposed optimization ap-
proach. Thereafter, the simulation setup and performance evaluation are presented in Section 3.1.6.1.
Finally, in Section 3.1.7 presents the additional discussion regarding the major points presented in
this section.

3.1.1 Related Work

Since in this section, we present measurement results, CPU estimation models, and an offline VNE
problem, we divide the related work into three categories. The following categories are considered:
1) slice abstraction, 2) network hypervisor CPU estimation, and 3) VNE problem.

3.1.1.1 Slice Abstraction

FlowVisor is the first proposed network hypervisor [She+09] and it provides abstraction of physical
ports. To be precise, FlowVisor shows only the physical ports (on forwarding devices) containing the
tenants hosts to the tenants controller. Since FlowVisor acts like a transparent proxy, it is unable to
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abstract or hide the intermediate switches. AdVisor [Sal+11] enhances the topology abstraction by
hiding the intermediate nodes of the virtual path by forwarding only the Open Flow (OF) [McK+08]
messages coming from the endpoint switches. Topology abstraction is improved even further in
VeRTIGO [Cor+12], where authors allow tenants to select the desired level of topology abstraction.

OpenVirtex [Al-+14] provides arbitrary topology abstractions, with a limit that one physical
switch cannot be represented as two virtual ones. Furthermore, optimization of the data-plane
within the abstracted switches is possible by specifying the desired routing algorithms using the
provided API. In [Han+18], authors presented Virtualization Layer (VL) developed on ONOS plat-
form [Ber+14], which also fully supports big-switch abstraction. Furthermore, in [Han] authors
evaluated the performance of the previously mentioned VL platform in terms of processing time.
CoVisor [Jin+15] explores how to abstract the physical network in order to improve the performance
of tenants’ SDN controllers. On the other hand, efficient rule placement algorithm within the big-
switch was proposed in [Kan+13]. Further, in [Geb+15]; [Gei+17], authors abstracted multiple OF
1.0 physical switches into one virtual switch in order to provide OF 1.3 functionalities.

3.1.1.2 Network Hypervisor CPU Estimation.

The DP performance is greatly influenced by the CP performance [TG10]. Therefore, in [Ble+16b];
[Ble+15], authors evaluated NH placement problem. The objective of their work was to determine
the number of needed NH instances and their locations in the physical network. In [She+09]; [Al-
+14] authors performed offline benchmarks of NH hypervisors in order to correlate the number of
OF messages and SDN hypervisor CPU utilization. In order to avoid long offline benchmarks, online
machine learning algorithm was proposed in [Sie+16]. Furthermore, the algorithm was extended
in [SOK17] to support environments with varying resources. However, to the best of our knowledge,
the impact of topology abstraction on the CPU utilization was not considered in any SotA work.

3.1.1.3 Virtual Network Embedding

Realization of the virtualization in SDN provides a new dimension and challenges to the VNE prob-
lem [Gue+14]. For example, in virtual SDN environment, the network hypervisor and the DP re-
sources (e.g., NH CPU, link bandwidth, etc..) have to be considered in VNE problem. However,
even in traditional networks VNE problem is NP-hard [Fis+13], i.e., it can be solved optimally, but
the solving run-time increases exponentially. The run-time can be reduced by restricting the prob-
lem [Fis+13]; [Yu+08] or by employing heuristic approaches [Qin+12]; [BCB10].

However, to the best of our knowledge, the impact of different NH functions on the control plane
resources (e.g., NH CPU or RAM) has not been addressed in the literature. Furthermore, the impact
of different topologies on the CP resources (i.e., NH CPU) is not yet explored.

3.1.2 Topology Abstraction Measurements

In this part, the considered measurement setup and results of two topology abstraction corner cases
are presented. It is shown that the topology abstraction can have substantial effects on NH CPU
utilization. Additionally, an NH CPU estimation models is also presented. This model is based on
the tenant requirements, such as: flow rate, network topology, and topology abstraction.
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Figure 3.1: Control and Data-plane measurement setup.

3.1.2.1 Measurement Setup

The goal of the shown measurements is to answer the following question:
Does the topology abstraction produces an impact on the NH CPU utilization? If yes, how much?

To find out the answer, the measurement setup as illustrated in Fig. 3.1 is considered. Three
different Personal Computers (PC)s are used in order to emulate the SDN controller, the NH, and
the data-plane network. The first PC (i.e., Thinkpad P50) emulates the SDN controller by using SDN
benchmarking tool, perfbench [Bas+17]. Perfbench enables us to easily generate OF_FlowModAdd

messages with a variable rate. The second PC (i.e., Quad-Core Dell Optiflex 7040) hosts the VM
which runs the NH. OVX [Al-+14] is used as an NH. It provides fully topology abstraction, and the
implementation is available online on github. Topology abstraction is realized by mapping the phys-
ical switches and ports to the corresponding virtual switches and ports, respectively. Additionally,
the same VM holds VM monitor, developed with python psutil library [Ble+16a]. The third PC (i.e.,
Quad-Core Dell Optiflex 7040) is used to emulate a line DP topology as shown in Fig. 3.2a.

3.1.2.2 Measurement Scenario

In general, to process one OF_FlowModAddmessage with a topology abstraction function, the NH has
to receive the message, decode it, perform routing based on the data within the message (e.g., two
requesting end-points), and potentially send multiple OF_FlowModAdd to the corresponding switches
(as explained in background chapter). There are two ways to perform the routing. Either the NH
calculates during the run-time path between two requesting endpoints (online) or all the paths are
pre-calculated at the beginning and are stored in list or hash table (offline). Therefore, in the first
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Figure 3.2: (a) Physical representation of the measurement topology, and the two considered topology ab-
straction cases: (b) transparent case with no abstraction and (c) big-switch abstraction.

case, since finding a path with a routing algorithm is more challenging in more complex topologies,
the considered topology and routing algorithm can have an influence on NH CPU utilization. In the
second case, since the paths are pre-calculated, the influence is minimal (hash table has constant
look-up time 𝑂 (1)). Hence, depending on the implementation details of a corresponding NH, the
considered routing strategy can have an impact on the NH CPU utilization. In this part, we aim to
minimize the impact of routing, and to focus only on the basic task which every topology abstraction
function has to implement, i.e., receiving an OF_FlowModAdd message, decoding it, and potentially
sending multiple OF_FlowModAdd to the corresponding switches. Therefore, in the following, all the
measurements and modeling are performed on a line topolgy. Additionally, if we assume that the
NH pre-calculates paths and stores them in a hash table, it can be assumed that the routing tasks
should not have a significant impact on the presented CPU estimation models in Sec. 3.1.3.

The data-plane topology consists of two hosts (i.e., H-1 and H-2) connected in a line topology,
with k switches between them. The VN is established between the two hosts and spans across all
the corresponding physical switches and links as in Fig. 3.2a. Furthermore, two topology abstraction
corner cases are considered: transparent abstraction (i.e., without any abstraction) as in Fig. 3.2b,
and big-switch abstraction in which the VN is completely abstracted as a big-switch as it can be seen
in Fig. 3.2c.

In OF, the OF_FlowModAdd message is used to add forwarding rules to switches. Thus, in order to
establish one traffic flow between the two data-plane hosts, each switch on the path has to receive at
least one OF_FlowModAdd message. Hence, in total k OF_FlowModAdd messages are sent by the NH
on the Southbound Interface (SBI) for both corner cases. However, the situation on the Northbound
Interface (NBI) differs based on the considered topology abstraction case. In case of transparent
abstraction (Fig. 3.2b), the SDN controller has to generate k OF_FlowModAdd messages towards each
switch, while the NH has to only forward the messages to the corresponding physical switches.
However, in the case of big-switch abstraction (Fig. 3.2c), the whole DP network is abstracted, thus,
the SDN controller has to generate only one OF_FlowModAdd message in order to establish the
same traffic flow. In this case, the NH has to find a physical route between the virtual ports, and
translate one northbound OF_FlowModAdd into k OF_FlowModAdd southbound messages which are
sent towards each switch on the corresponding physical path.
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Figure 3.3: CPU utilization with respect to the flow rate between two hosts when there are 𝑘 number of
switches between them. Left column of each box plot represents the case when VN is transparently embedded,
while the right column box plots represents if the VN is embedded using big-Switch.

The CPU utilization of the NH for the two topology abstraction corner cases is compared. To do
so, the number of switches in between the two hosts is varied between 2 and 10 (i.e., 𝑘 = {2...10}),
and the DP flow request rate between the two hosts is increased from 10 to 100 with increments of
10 (i.e., 𝑟 = {10...100}). The length of one measurement instance is 90 seconds. During the each
measurement instance, perfbench generates OF_FlowModAdd messages with a rate corresponding
to the data-plane flow request rate. The CPU monitor gathers CPU utilization samples of the VM
hosting OVX instance every 0.5 seconds. The samples are represented as in percentages of the cores
used, hence, 150% corresponds to the one and a half cores utilized. The first 5 seconds and the last 5
seconds of each measurement run are discarded due to the fluctuations which are caused by start-up
and close-down of CPU monitor.

3.1.2.3 Measurement Results and Observations

The measurement results for 𝑘 = 5 and 𝑘 = 10 are shown in Fig. 3.3. All the other measurements
follow the same trend and are used for modeling. Two box plot samples are shown for each x-
axis value, the left box-plots represent the transparent abstraction corner case, while the right ones
represent the big-switch case. In both abstraction cases, increasing the data-plane flow rate increases
the average NH CPU utilization linearly. This is due to the fact that the number of northbound and
southbound messages is increased. Furthermore, it can be observed that the CPU utilization for the
transparent case is much more pronounced. Since the NH southbound message rate is the same for
both corner cases, we can conclude that forwarding 𝑘 × 𝑟 messages in the transparent abstraction
case requires more CPU resources than calculating physical routes and translating 𝑟 messages in the
big-switch abstraction case.

Moreover, if we take a look at the big-switch abstraction case for 𝑘 = 5 (the blue line in Fig. 3.3a)
and 𝑘 = 10 (the blue line in Fig. 3.3b), it can be seen that the CPU utilization difference is not drastic.
Since the northbound messages rates in both cases are the same, it can be concluded that the number
of southbound messages in this case does not make the biggest impact on the CPU utilization.
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3.1.3 Modelling CPU Estimation

Based on the measurements, we suspect that the CPU utilization depends either linearly or poly-
nomially on the required DP flow rate 𝑟 , the number of switches on the path 𝑘 , and the requested
abstraction level 𝑎. Thus, we formulate linear, quadratic and 3rd order polynomial functions to fit
the CPU utilization, as in the following:

𝑔𝑙𝑖𝑛 (𝑟, 𝑘, 𝑎) = 𝑐𝑙0 + 𝑐𝑙1𝑟𝑘𝑎 + 𝑐𝑙2𝑟𝑘 (3.1)

𝑔𝑞𝑢𝑎 (𝑟, 𝑘, 𝑎) = 𝑐
𝑞

0 + 𝑐
𝑞
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3 (3.3)

where 𝑐 represents coefficients in the equations. The parameter 𝑎 is the requested abstraction
level which represents the ratio of virtual switches on the virtual path and physical switches on the
corresponding physical path. For the big-switch abstraction case, there is one virtual switch and 𝑘

physical ones, hence 𝑎 = 1/𝑘 . In the transparent case, 𝑎 = 𝑘/𝑘 = 1. Therefore, the multiplications
𝑟𝑘𝑎 and 𝑟𝑘 actually represent the NBI and SBI OF_FlowModAdd message rates, respectively.

Using the scipy Python library, we take the average workload CPU utilization values from the
measurements and find the best fitting coefficients in Eq. 3.1, Eq. 3.2, and Eq. 3.3. Table I contains
all of the corresponding coefficient values. Moreover, it also shows the average relative errors for all
CPU estimation functions based on the all data (Error) and the data consisting only of samples where
the CPU utilization is higher than 30% (Error30). Fig. 3.4 shows the measured CPU utilization and the
corresponding estimates of all the models for the transparent case with k = 10 switches between the
end hosts. As it can be seen in Fig. 3.4 and Table 3.1, among all functions, the 3rd order polynomial
fits the best, but the error is not significantly lower compared to the other models. Therefore, in
Fig. 3.3, 3rd order polynomial model is used for fitting and estimating the mean CPU utilization.
From Table I and Fig. 3.4, it can be generally seen that the models actually perform worse for the
lower CPU utilization. Fig. 3.5 depicts the 3rd order polynomial estimation model. It can be observed
that increasing either the number of switches or the required flow rate increases the CPU utilization.

3.1.4 VNE Problem Formulation

In this part we mathematically formulate the substrate physical network and virtual private network
request. Furthermore, two offline VNE problems are outlined. The mentioned problems are solved
optimally in order to show the importance of the correct provisioning of NH CPU resources.

3.1.4.1 Substrate Network

As the substrate network, an undirected connected graph𝐺𝑆 = (𝑁 𝑆 , 𝐸𝑆 , ℎ𝑆 , 𝐴𝑆 ) is considered. Super-
scripts are used to differentiate substrate 𝑆 and virtual private network𝑉 , unless otherwise specified.
𝑁 𝑆 denotes the set of all substrate nodes, which is defined as 𝑁 𝑆 = {𝑛𝑆1 , 𝑛𝑆2 , ..., 𝑛𝑆|𝑁𝑆 |}. 𝐸

𝑆 represents
the set of all substrate edges 𝐸𝑃 ⊆ 𝑁 𝑆 × 𝑁 𝑆 and 𝑒𝑆𝑖,𝑗 = (𝑛𝑆𝑖 , 𝑛𝑆𝑗 ) represents one substrate edge con-
necting the substrate nodes 𝑛𝑆𝑖 and 𝑛𝑆𝑗 . A substrate path connecting the arbitrary substrate nodes
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Table 3.1: Values of Modeling Parameters

Model Linear Quadratic 3𝑟𝑑 Order Polynomial

𝑐0 5.8956 7.5945 5.4317

𝑐1 0.0665 0.0345 0.0418

𝑐2 0.0215 4.568 × 10−5 1.8250 × 10−5

𝑐3 - 0.0251 2.1590 × 10−8

𝑐4 - −9.0565 × 10−6 0.0497

𝑐5 - - −7.2677 × 10−5

𝑐6 - - 4.2753 × 10−8

Error 12.29% 10.87% 10.22%

Error30 7.55% 5.78% 4.49%

Figure 3.4: Mean measured CPU utilization for the transparent case with k = 10 switches in the data plane
and the corresponding estimation models.

𝑛𝑆𝑥 , 𝑛
𝑆
𝑦 ∈ 𝑁 𝑆 without loop(s) is represented as a set of substrate edges, 𝑝𝑆𝑥,𝑦 = {𝑒𝑆𝑥,𝑧, 𝑒𝑆𝑧,𝑞, ..., 𝑒𝑆𝑟,𝑥 },

where 𝑛𝑆𝑧 , 𝑛
𝑆
𝑞, 𝑛

𝑆
𝑟 ∈ 𝑁 𝑆 are intermediate nodes on the path. Furthermore, it is considered that NH

is represented as an additional node ℎ𝑆 , which is connected to every substrate node via an out-of-
band control-plane channel. Every object (substrate edge or an NH) 𝑜 ∈ 𝐸𝑆 ∪ ℎ𝑆 has a capacity
attribute 𝐴𝑆 (𝑜) = 𝑎𝑆𝑜 . In this part, total amount of CPU resources is considered as the NH at-
tribute 𝐴𝑆 (ℎ𝑆 ) = 𝐴𝑆

𝐶𝑃𝑈
(ℎ𝑆 ). Actually, the CPU resources are represented by the total number of

cores, therefore, 𝐴𝑆
𝐶𝑃𝑈
(ℎ𝑆 ) ∈ Z. Besides, bandwidth is considered as the substrate edge attribute

𝐴𝑆 (𝑒𝑆𝑖,𝑗 ) = 𝐴𝑆
𝑏𝑤
(𝑒𝑆𝑖,𝑗 ), thus, 𝐴𝑆

𝐶𝑃𝑈
∪𝐴𝑆

𝑏𝑤
= 𝐴𝑆 .
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(a) Transparent (No) Abstraction
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(b) Big-Switch Abstraction

Figure 3.5: Estimation of CPU utilization based on the presented model for both abstraction cases, i.e., trans-
parent (no) abstraction and big-switch abstraction.

A

B

C

D E

(a) Physical Topology

A

B D E

(b) Transparent

A

B E

(c) Source-Destination

A-B-E

(d) Big-Switch

Figure 3.6: Physical representation of the topology and three supported VNE abstraction levels.

3.1.4.2 Topology Abstraction Levels

Let us consider an arbitrary substrate topology as in Fig. 3.6a and a VN request that requests to
connect the terminals located on the substrate nodes A, B, and E. In this part, three different topology
abstraction levels are conidered:

• Transparent (Fig. 3.6b): topology abstraction assumes that all of the intermediate substrate
nodes are shown to the tenant.

• Source-Destination (Fig. 3.6c): topology abstraction hides all of the intermediate substrate
nodes, but shows the substrate nodes hosting the tenants’ terminals.
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• Big-Switch (Fig. 3.6d): topology abstraction hides all of the substrate nodes, hence, the whole
VN is shown as one big-switch to the tenant.

3.1.4.3 Virtual Network Request (VNR)

VNE problem is NP-hard, therefore, we consider hard node location constraints (as in [Yu+08]) in the
definition of VNR. In the literature, sometimes this kind of a constraint problem is also referred to as
Virtual Private Network Embedding (VPNE) problem [Gup+01]. Therefore, VNR is defined as a graph
𝐺𝑉 = (𝑁𝑉 ,𝐶𝑉 , 𝑙). 𝑁𝑉 represents a subset of substrate nodes (𝑁𝑉 ⊂ 𝑁 𝑆 ) which contains the tenants
terminals (we refer to it as terminal nodes, defined as𝑛𝑉

𝑖
). New services, such as Machine-to-Machine

(M2M) communication, differ greatly from the traditional services as they generate a huge number of
short-lived traffic flows with very low bandwidth requirements. Therefore, we define two matrices
𝐶𝑉
𝑏𝑤 |𝑁𝑉 |× |𝑁𝑉 | and𝐶𝑉

𝑓 𝑟 |𝑁𝑉 |× |𝑁𝑉 |
to represent the bandwidth and flow rate requirements between each

pair of terminal nodes, respectively. Moreover, in every VNR, the required abstraction level 𝑎 is
specified. Three different topology abstraction levels are considered (as explained in Sec. 3.1.4.2),
hence, 𝑎 ∈ {transparent, src-dst, big-switch}.

3.1.4.4 Estimating NH CPU Requirements of a VN Request

In the following, we present how to estimate the total required NH CPU resources for a given VNR
𝑉𝑥 . To achieve this, the following procedure is used. For every traffic demand between the two
terminal nodes (e.g., 𝑛𝑉

𝑖
and 𝑛𝑉

𝑗
), it is possible to find a substrate path 𝑝𝑆𝑖,𝑗 which contains all of the

substrate edges between the two terminal nodes. Furthermore, in a similar way, a virtual path can be
derived, defined as a set of virtual nodes (i.e., the substrate nodes shown to the tenant based on the
selected abstraction requirement) between the same two terminal nodes (𝑝𝑉𝑥

𝑖, 𝑗
). We can then define

the topology abstraction level for the traffic demand 𝑎
𝑝
𝑉𝑥
𝑖,𝑗

as bellow:

𝑎
𝑉𝑥
𝑝𝑖,𝑗

=
| 𝑝𝑉𝑥

𝑖, 𝑗
|

| 𝑝𝑆
𝑖,𝑗
|

(3.4)

where | 𝑝𝑉𝑥
𝑖, 𝑗
| and | 𝑝𝑃𝑖,𝑗 | represent the total number of hops on the virtual and substrate

path, respectively. In fact, this metric represents the ratio of an NH’s northbound and southbound
OF_FlowModAdd messages rates. Thus, since the flow rate𝐶𝑉𝑥

𝑓 𝑟
(𝑛𝑉𝑥

𝑖
, 𝑛

𝑉𝑥
𝑗
) and the number of physical

nodes 𝑘 =| 𝑝𝑆𝑖,𝑗 | on the physical path is known, it is possible to estimate the required CPU for this
virtual path using one of the proposed CPU estimation functions in Sec. 3.1.3. These functions are
based on the measurements performed on a line topology, thus, they do not include the impact of
complex topologies and routing algorithms. However, if we assume that the NH pre-calculates all
the possible paths in the substrate graph and stores them in a hash table, we can assume that the
overhead of routing is not significant as the look up time of hash table scales with 𝑂 (1). In general,
using the propsed line-based estimation functions with complex VNs can introduce some error in
CPU estimation. However, modeling the network with them still can provide important insights
regarding the impact of topology abstraction on the NH provisioning and VNE problem.

Including the notations presented in this part of the thesis, function presented in Eq. (3.1), can
be written as:
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𝑔
𝑝
𝑉𝑥
𝑖,𝑗

= 𝑔(𝐶𝑉𝑥
𝑓 𝑟
(𝑛𝑉𝑥

𝑖
, 𝑛

𝑉𝑥
𝑗
), 𝑘, 𝑎𝑉𝑥𝑝𝑖,𝑗 ) (3.5)

Finally, it is possible to estimate the total required NH CPU resources 𝑔𝑉𝑥 for the whole VNR by
summing up the corresponding required CPU values for each traffic demand between each pair of
terminal nodes as follows:

𝑔𝑉𝑥 =

𝑁∑︁
𝑖

𝑔
𝑝
𝑉𝑥
𝑖,𝑗

(3.6)

where 𝑁 is the number of traffic demands between pairs of terminal nodes in in 𝐶
𝑉𝑥
𝑏𝑤

.

3.1.4.5 Data-plane Constraints.

As explained before, every substrate edge 𝑒𝑆𝑖,𝑗 is associated with a bandwidth capacity 𝐴𝑆
𝑏𝑤
(𝑒𝑆𝑖,𝑗 ).

Additionally, all of the traffic demands between terminal nodes are embedded in the physical network
using Dijsktra’s shortest path algorithm [Dij+76]. As a result, the bandwidth requirements of each
terminal node pair in 𝐶𝑉

𝑏𝑤 |𝑁𝑉 |× |𝑁𝑉 | can be translated to the corresponding (i.e., equal) bandwidth

requirements on each substrate edge of the shortest path. Therefore, if we consider that𝐶𝑉𝑇
𝑥

𝑏𝑤 |𝑁𝑆 |× |𝑁𝑆 |
is the total bandwidth requirement of VNR 𝑉𝑥 between the two substrate nodes 𝑛𝑆𝑖 and 𝑛𝑆𝑗 , we can
specify the data-plane constraints as:

𝐴𝑆
𝑏𝑤
(𝑒𝑆𝑖,𝑗 ) ≥

𝑁∑︁
𝑥=1

𝑧𝑉𝑥𝐶
𝑉𝑇
𝑋

𝑏𝑤
(𝑛𝑆𝑖 , 𝑛𝑆𝑗 ) (3.7)

where 𝑧𝑉𝑥 ∈ {0, 1} is a decision variable which equals to 1 if the VNR 𝑉𝑥 is embedded, and 0 if it
is not. Thus, this constraint makes sure that the amount of used bandwidth for VNR does not exceed
the physical link bandwidth capacity.

3.1.4.6 Control-plane Constraints.

The total NH CPU capacity is defined as 𝐴𝑆
𝐶𝑃𝑈
(ℎ𝑆 ). Also, 𝑔𝑉𝑥 is used to represent the NH CPU

requirements of VNR𝑉𝑥 . How the 𝑔𝑉𝑥 is calculated from the data-plane requirements of a VNR𝑉𝑥 is
explained in Sec. 3.1.4.4. Finally, the control-plane constraint can be formulated as:

𝐴(ℎ𝑆 ) ≥
𝑁∑︁
𝑥=1

𝑧𝑉𝑥𝑔𝑉𝑥 . (3.8)

3.1.4.7 Objectives.

The main goal of the first objective function is to maximize the embedding ratio. Therefore, it can
formulated as below:

𝑚𝑎𝑥

𝑁∑︁
𝑥=1

𝑧𝑉𝑥 (3.9)
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Table 3.2: Simulation Parameters

Parameters Values

Network Topologies Abilene, Internet2, Germany50

Physical Node Capacity (CPU) Uniformly distr. 𝑈 (50, 100)
Physical Edge Capacity (bw) Uniformly distr. 𝑈 (50, 100)

Number of VN nodes Uniformly distr. 𝑈 (2, 10)
VN traffic demand prob. 0.5

VN edge capacity demand (bw) Uniformly distr. 𝑈 (0.2, 0.3)
VN edge flow demand (flow rate) Uniformly distr. 𝑈 (10, 100)
VN topology abstraction level Uniformly distr.

VN arrival time all at start

VN lifetime inf

VNE problem type offline

1𝑠𝑡 VNE objective Max-Acceptance

2𝑛𝑑 VNE objective Max-DP-Utilization

Solver Gurobipy 8.0.1

The main goal of the second objective function is to maximizing data-plane utilization. Therefore,
it can formulated as below:

max
∑︁
∀𝑖, 𝑗∈𝐸𝑆

∑𝑁
𝑥=1 𝑧

𝑉𝑥𝐶𝑆
𝑏𝑤
(𝑒𝑆𝑖,𝑗 )

𝐴(𝑒𝑆
𝑖,𝑗
)

. (3.10)

3.1.4.8 Baseline

Since the goal is to investigate the impact of topology abstraction on VNE, we consider a baseline
case for comparison purpose. In the baseline case, the estimation of CPU resources does not include
the topology abstraction (it is labeled as without-abstraction in the following figures). Hence, it is
assumed that each VNR uses only the transparent toplogy abstraction. Therefore, the estimated
VNE resource requirements in terms of NH CPU are overprovisioned.

3.1.5 Simulation Scenario

In this part we present the considered substrate topology and selected parameters used for the eval-
uation of the impact of topology abstraction on the performance of VNE problem. We implemented
and solved the proposed VNE optimization model using gurobipy [Gur16], and ran the simulations
on a Dell OptiPlex 7040 PC. The simulations were repeated 100 times in order to obtain stable and
confident results.
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3.1.5.1 Physical Network

Three widely used physical network topologies are considered to evaluate the proposed approach:
Internet2 (34 nodes, 50 edges) [Hoc+14], Germany50 (50 nodes, 88 edges) [Orl+07], and Abilene (11
nodes, 14 edges) [Kni+11]. Ofline VNE problem is considered, in which all VNRs are known at the
start of the simulation. Also, their request time is defined an infinite (i.e., the embedded VNs are
never removed until the end of the simulation). Moreover, all parameters used in the simulation are
shown in Table 3.2.

We use unit-less values which are uniformly distributed between 50 and 100 (𝑈 (50, 100)) for
substrate edge capacity constraints (data-plane bandwidth) [CRB09]; [CRB12]; [Ble+16c]. Further-
more, the number of terminal nodes in the VNRs is uniformly distributed between 2 and 10 (𝑈 (2, 10))
[CRB12]. Also, the flow request rate between these pairs is uniformly distributed between 10 and 100
flows per second (𝑈 (10, 100)), while the bandwidth requirement is uniformly distributed between 0.5
and 1 (𝑈 (0.5, 1)).

As presented in Section 3.1.2.3, big-switch abstraction requires the least amount of NH CPU
resources, therefore, it is the most attractive solution for our problem. However, some industrial
scenarios have deterministic delay requirements, thus, fine grained control of priority queues on
every intermediate node is needed [GVK17]. Since we do not have the exact data on the distribution
of VN topology abstraction requirements, we consider that topology abtraction level of each VNR is
selected uniformly from the set 𝐿 = {transparent, src-dst, big-switch}.

3.1.6 Simulation Results

In this part, we initially evaluate and compare how the topology abstraction level affects the total
amount of needed NH CPU resources if all VNRs are embedded (CPU provisioning problem). There-
after, we show the impact of the topology abstraction on the achieved objective function values for
both defined objective functions, in case of varying NH CPU capacity.

3.1.6.1 Impact of Topology Abstraction on NH CPU Provisioning

To evaluate the impact of topology abstraction on the CPU provisioning problem, only in this sub-
section, the DP and CP constraints are ignored (i.e., they are set to unlimited). This makes it possible
to embed all of the 100 VNRs. Further, it is assumed that in one simulation cycle, all VNRs have
the same topology abstraction requirement, either transparent, src-dst, or big-switch. The required
NH CPU resources depending on the abstraction level are shown in Fig. 3.7. For each topology, it
can be observed that the big-switch topology abstraction case requires the least amount of NH CPU
resources. The biggest difference is observed for Internet2 topology where the big-switch abstrac-
tion case requires 50% less resources then the transparent one. Furthermore, it can be seen that even
though Internet2 is a smaller network than Germany50 in terms of the number of nodes, it requires
the most resources. This is because Internet2 topology has a lower density of edges (i.e., the ratio of
the number of nodes and edges). Hence, the paths are typically longer and require a higher number
of control-plane messages in order to be established.
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Figure 3.7: Required NH CPU resources based on topology abstraction.

3.1.6.2 Comparing the Performance of the Objective Functions

The total NH CPU capacity 𝐴𝑆
𝐶𝑃𝑈
(ℎ𝑆 ) is varied from 1 to 30 cores. Fig. 3.8 depicts the comparison

of achieved values of VNE objective functions for the two cases: i) with abstraction: when the VNE
problem relies on the proposed topology abstraction aware NH CPU estimation model ii) without
Abstraction: when the topology abstraction is not included in the VNE problem.

The red vertical lines highlight the lowest NH CPU value with the achieved objective function
value (e.g., either acceptance ratio or unit-less data-plane utilization) of at least 95% of the maxi-
mal one (in case when topology abstraction is used for the estimation). Therefore, if the topology
abstraction is considered in the VNE problem, increasing the total CPU resources further from this
line does not increase the values of objective functions significantly. In this region (on the right side
of the red lines), the data-plane reseources (e.g., bandwidth) becomes the bottleneck and limits the
embedding. For instance, as it can be seen in Fig. 3.8a, the acceptance ratio is almost the same for
the cases when the total number of NH CPU cores is 25 or 30.

The highest difference between the achieved objective function values for the two considered
cases (i.e., with abstraction and without abstraction) is observed in the close proximity of the red
lines. For example, the highest absolute error of 20% is made when maximizing the acceptance rate
with 20 available NH CPU cores (Fig. 3.8d). In this case, the NH CPU resources are almost optimally
provisioned, thus, every decision based on the incorrect estimation of the CPU resources incurs a big
error. However, when the NH CPU resources are over-provisioned (e.g., 30 available cores), there is
no difference in the achieved values of the objective functions. The highest relative error is achieved
in cases when there is only one available CPU core. For instance, the relative error of around 100%
is made when the objective is to maximize the data-plane utilization with 1 available NH CPU core
(Fig. 3.8d).

3.1.6.3 Distribution of Topology Abstractions in the Embedded VNs

Fig. 3.9 shows the distribution of the topology abstraction levels of the embedded VNRs when the
total NH CPU capacity is varied from 1 to 30 cores. In case when the control-plane resources are
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Figure 3.8: Difference in achieved objective function values when topology abstraction is considered and
when it is not. Normalized with the maximal achieved value for maximize data-plane utilization objective.

scarce (e.g., total NH CPU is between 1 and 10), it can be observed that VNs with a big-switch
abstraction are preferred strongly. Further, Fig. 3.8a shows that when there is only one CPU available,
only around 10% of VNs are embedded, and 60% of them use the big-switch topology abstraction (see
Fig. 3.9a).

Although big-switch abstraction requires the least amount of resources in the control-plane,
we can observe that the other types of VNs are also embedded. This is due to the fact that also
the locations of the terminal nodes and flow rate requirements between them affect the required
resources. For example, VNs with very short physical paths and low flow rate requirements would
require a low amount of control-plane resources regardless of the abstraction level.
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Figure 3.9: Distribution of topology abstraction levels of embedded VM when the NH CPU resources are
varied.

In case when the NH CPU resources are over-provisioned with respect to the data-plane (on the
right side of the vertical red line), the distribution of the topology abstractions becomes uniform as
the data-plane becomes the limiting factor in embedding the VNR.

3.1.7 Insights and Discussion

Initially, the NH (i.e., OpenVirtex) CPU utilization is studied, measured and modeled for the two
topology abstraction corner cases, i) transparent (no topology abstraction), and ii) big-switch. For
the measurement setup, a line topology with a variable number of switches is considered. The pre-
sented measurements indicate that the VNs with the big-switch abstraction actually requires less
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control-plane resources (i.e., NH CPU) compared to VNs with the transparent abstraction. The dif-
ference comes mostly from the difference in the OF message rate on the NH’s NBI. In the transparent
abstraction case, tenant’s SDN controller has to establish flow rules on every switch, while in the
big-switch case, this is done by the NH. Therefore, the difference is larger in bigger networks with
(on average) longer paths. For instance, transparent abstraction of the path with 10 switches requires
around 4× more CPU resources compared to the big-switch abstraction case. Additionally, the pre-
sented measurement results are predictable, hence, three novel NH CPU topology abstraction aware
estimation models are presented in Sec. 3.1.3.

In the later part of the section, the impact of topology abstraction on the NH CPU provisioning
problem and VNE problem are studied. Firstly, the proposed estimation models are used to provi-
sion the control-plane resource (i.e., NH CPU) based on the topology abstraction for three different
networking topologies (Internet2, Germany50, Abilene). The simulation results indicate that con-
sidering the topology astraction while provisioning the resources can reduce the total amount of
needed CPU cores for around 50% compared to the baseline (topology abstraction oblivious case).

Secondly, an offline VNE optimization problem is presented with two objective functions in
order to evaluate how different topology abstraction levels influence the embedding of VNs (i.e.,
the selection of VNR to embed). The achieved objective function values are compared in different
scenarios (e.g., different toplogies, amount of available NH CPU resources) with a baseline algorithm
which does not consider topology abstraction. The simulation results for three different networking
topologies (Internet2, Germany50, Abilene) indicate that including the topology abstraction in VNE
problem improves the results significantly in the cases when the NH CPU cores are the limiting
resource in a network. The highest observed absolute error is around 20% in case when the NH has
only 10 available cores for the whole Internet2 network. Moreover, it is also shown that the VNs with
the big-switch abstraction are heavily preferred in cases when the NHs have low amount of available
CPU resources. However, if the NH is over-provisioned, the topology abstraction does not influence
the embedding.
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3.2 QoS-Aware Network Hypervisor Resource Provisioning

The previous section is motivated by the fact that the impact of various NH functions (e.g., topology
abstrction) on the CPU utilization of a NH is still not well studied in the literature. Therefore, the
previous section has two main goals: 1) to demonstrate that different topology abstraction policies
can have a significant impact on the CPU utilization of a NH, and 2) to assess how much can such
a NH function influence the performance of NH provisioning and VNE problem. Additionally, the
previous section also unravelled another interesting effect which motivated the work presented in
this section.

To be precise, it became evident that different DP scenarios can have a significant impact on the
CPU utilization of an NH. For instance, managing larger networks (with higher number of nodes
or switches) requires significantly more resources compared to the smaller ones. Therefore, the
NH CPU utilization can vary greatly depending on the scenario. This effect motivated us to to
investigate the problem of provisioning the CPU resources of an NH. For instance, overprovisioning
the CPU resources of a NH based on the worst-case is simply waste of resources. On the other hand,
underprovisioning the resources is risky as it can lead to performance degradation (e.g., increase
in the processing time). In this section, a novel approach which provisions NH CPU resources
efficiently, while avoiding performance degradation is presented. Three steps are taken to achieve
the aforementioned goal: (i) a profound measurement campaign is conducted to determine what
is the minimum amount of CPU resources that needs to be allocated to a NH in order to have no
performance degradation; (ii) the key properties of VNs that affect the CPU utilization are studied;
(iii) a precise CPU prediction model is developed. Further, the presented evaluations indicate that
provisioning the CPU resources of an NH based on the proposed QoS-Aware prediction model does
not degrade the NH forwarding performance.

The rest of this section (i.e., Section 3.2) is organized as follows. Section 3.2.1 motivates the
alreday introduced problem and it shows the benefits of solving it. Section 3.2.2 presents the related
work. Section 3.2.3 outlines the benchmarking procedure, the considered measurement setup and
its results. The NH CPU prediction model is developed in Section 3.2.4 and thoroughly evaluated
in Section 3.2.5. Finally, Section 3.2.6 presents a short discussion regarding the main points of this
section.

3.2.1 Motivation: Predictable Virtual Network Performance

This section presents a short measurement study which motivates the problem of provisioning the
CPU resources of an NH. Additionally, it also highlights the potential benefits which could be ob-
tained by solving such a problem.

To begin with, different strategies from SotA can be used to allocate hardware resources to hy-
pervisors. One existing strategy simply over-provisions hypervisors [She+09]; [Ble+19] — a clearly
too expensive strategy in terms of resource consumption. Another strategy is to derive hypervisor
performance models [Sie+16]; [SOK17] and to provision resources accordingly. However, as it will
be shown, SotA performance models fall short in terms of accuracy and precision.

In order to illustrate this, we evaluate the CP processing latency of one NH (i.e., FlowVisor) for
varying amount of allocated CPU resources (see Fig. 3.10). In this scenario, allocating around 90 %
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Figure 3.10: Impact of the allocation of CPU resources of an NH on the control plane message latency and
loss. Dashed black lines show the maximal and average observed CPU utilization during an unconstrained
run, where all of the cores where allocated to network hypervisor (CPU limit is 800 %). The server running an
NH has in total 4 physical cores, thus 8 hyperthreads, making the maximal CPU utilization of 800 %.

capacity of a single CPU core represents an ideal resource allocation decision. In Fig. 3.10, this is
shown as the highlighted area around the left dashed line (i.e., green area). Allocating fewer re-
sources, i.e., under-provisioning the CPU resources, increases the CP message latency by up to three
orders of magnitude and the loss of CP messages by 20 %1 — a clearly unacceptable performance
degradation. On the other hand, over-provisioning the CPU resources does not yield performance
benefits: the latency stays below 1𝑚𝑠 for 100 % − 800 %2 of CPU capacity. However, as the figure
illustrates, over-provisioning leads to a waste of resources and is actually not needed when having
a precise performance model. Furthermore, Fig. 3.10 also shows why state-of-the-art CPU predic-
tion approaches [Sie+16]; [SOK17] are not suitable for provisioning. They simply predict the mean
CPU utilization (in this scenario 60 %), which results in under-provisioned NH. An ideal NH pro-
visioning system allocates the least amount of CPU resources so that no performance degradation
occurs; in this case, the ideal allocation lies around 90 % of one CPU core. Furthermore, state-of-
the-art prediction models are also too simplistic: they base their CPU prediction solely on the CP
message rate [Sie+16]; [SOK17]. Thus, these models ignore the potential impact of (virtual) network
parameters and dynamic configuration changes (e.g., the number of VNs or a changing VN topology
in case of varying demands or, e.g., failures). In this chapter we tackle the challenge to derive gener-
alizable performance models that allow for precisely determining such CPU provisioning in various
scenarios.

3.2.2 Related Work

The presented approach for provisioning the CP resources (i.e., CPU) of an NH is based on a carefully
designed measurement based CPU prediction model. Since an NH can be considered as a Virtual Net-
work Function (VNF), firstly, state-of-the-art VNF and NH resource prediction models are described

1In case the resources are limited to 20%, an NH throttles the Transmission Control Protocol (TCP) connections in order to
reduce the total amount of received messages. Hence, in this case processing time and latency are better compared to a scenario
when the limit is 40%.

2Note that 800 % means a dedicated reservation, i.e., pinning of 8 threads.
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along with their shortcomings. Furthermore, as the presented model is based on comprehensive NH
measurements, subsequently, existing works dealing with the benchmarking of NHs are covered.

3.2.2.1 Resource Prediction Models

In order to reduce excessive power consumption in cloud computing systems through dynamic
resource scaling, many authors focused on designing accurate VNF resource prediction mod-
els [Suk+16]; [JKE17]; [Mij+17]; [Mij+16]; [MAC18]; [Tan+19]. Although an NH can be considered
as a VNF, these approaches cannot be directly applied. For instance, they often consider different
input parameters (e.g., Internet Protocol (IP) source address, TCP destination port etc.) [JKE17];
[MAC18] which do not affect NH CPU utilization. Or they are based on already observed CPU
samples [Mij+16]; [Mij+17]; [Tan+19]. However, as the VN configurations can change over time
(e.g., number of virtual switches), the prediction performance of these models would also suffer.

On the other hand, there are also a few NH specific CPU prediction models [Sie+16]; [SOK17];
[Ðer+18]. However, there are two problems with these approaches. Firstly, they predict the average
NH CPU utilization only. Using the average CPU utilization only does not count for potential vari-
ability in the overall CPU utilization. This can result in a significant performance degradation of the
perceived tenant performance (as shown in Sec. 3.2.1). Secondly, the prediction is only based on the
CP message rate. Thus, the algorithm cannot react to changes in the VN configuration parameters,
e.g., the number of virtual switches or hosts. Furthermore, as these parameters have a significant
impact on the utilization of NHs [Ble+19], the prediction performance would suffer in dynamic sce-
narios. On the contrary, the proposed model predicts the 90th percentile of the CPU utilization,
which does not incur a forwarding performance degradation on average. Moreover, the model also
accounts for performance-critical parameters such as the number of virtual switches or ports.

3.2.2.2 Hypervisors Benchmarks

Network hypervisor benchmarks have so far either focused on exploring the processing time of
various CP messages [Han]; [She+09]; [Al-+14]; [DKR13]; [Nur+19]; [Jin+19]; [ZA20]; [Ble+19];
[BBK15] or on measuring the CPU utilization of NHs in various different settings [She+09]; [Ble+19];
[Sie+16]; [SOK17]; [Ðer+18]. In contrast to our benchmarks, evaluating how to predict NH CPU
requirements based on different parameters, e.g., number of VNs, has been ignored so far.

Furthermore, some of the aforementioned studies suggest that the CPU utilization of NH and
the processing time is only correlated with a subset of VN parameters, e.g., the number of ten-
ants [Sie+16]; [SOK17] or the number of virtual and physical switches [Ble+19]. However, these
studies consider only very basic combinations of virtual and physical network parameters and set-
tings, e.g., a single-switch topology [Sie+16]; [SOK17], only a line topology [Nur+19]; [Ðer+18] or
two-port switches [Ble+19]. Therefore, the impact of arbitrary topologies (in terms of the number
of switches and the interconnecting links) is not considered. In this section, comprehensive NH per-
formance benchmarks (including latency and CPU) are performed on various different and realistic
physical and virtual network topologies. In particular, a multitude of impactful factors are investi-
gated. Furthermore, the benchmarks are also tailored with the goal of detecting and learning the
impact of various physical and VN parameters in a fast and efficient manner.
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(a) (b)

Figure 3.11: (a) Measurement setup consisting of 2 interconnected PCs, and (b) illustrations of the physical
data plane grid topology of dimension 𝑘 = 3 (black solid lines), with example grid VN of dimension 𝑘𝑣 = 2 (red
dashed lines), and a possible flow request spanning over two virtual and physical switches (blue dotted line).

3.2.3 Network Hypervisor Benchmarking

In this section we firstly introduce the used measurement setup (Sec. 3.2.3.1) and present the consid-
ered VN parameters (Sec. 3.2.3.2). The parameters are selected based on the insights presented in the
background section (Sec. 2.2.3). Further, Sec. 3.2.3.3 we presents the used benchmarking procedure,
while the results of performed measurement campaign are presented in Sec. 3.2.3.4.

3.2.3.1 Measurement Setup

In order to better understand how different VN configurations (e.g., VNs with different amount of
virtual switches) influence NH resource utilization, initially we conducted the measurements on
a smaller setup. Having such a setup provides a more controlled environment, thus, the impact
of various parameters is easier to investigate. The measurement setup is depicted in Fig. 3.11a. It
consists of two PCs equipped with Intel quad-core i7-7700 CPUs, 16GB of RAM, and running Ubuntu
14.04 LTS.

The first PC (PC1) (i) runs mininet [LHM10] to emulate a physical DP network, and (ii) runs the
tenants SDN controllers as multiple Ryu [Com17] instances. The controllers generate CP messages
with the goal of embedding a certain number of flows per second (described in Sec. 3.2.3.3).

The second PC (PC2) runs FlowVisor (FV) as the network hypervisor. The logging and state
keeping features, which are not necessary for the normal operation of the NH, are disabled. The
CPU utilization of PC2 is sampled every 0.1 second (lower values are not recommended) by a CPU
monitor implemented with the Python psutil [Rod] library. CPU utilization is measured in percents
of a single-threaded core: since the PC has four cores with hyper-threading, CPU utilization ranges
from 0% to 800%. The messages sent by the controllers are received, translated, and forwarded by
FV towards the corresponding DP switches emulated by mininet.
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Table 3.3: Evaluation parameters.

Parameter Notation Values

number of tenants 𝑡 2, 3, 4, 5
physical topology size 𝑘 4, 9, 16, 25

per-tenant flow request rate 𝑟𝑖 90, 180, 280, 400
per-tenant flow length 𝑙𝑖 2, 3, 4, 5, 6, 7

per-tenant virtual topology size 𝑣𝑖 4, 9, 16, 25
Per-tenant number of virtual ports 𝑝𝑖 1, 2, 3, 4, 5

The amount of available resources allocated to an NH is controlled with cpulimit tool. The
cpulimit tool is process-based, meaning that if a specified process exceeds the allowed CPU resource
consumption, it uses SIGSTOP and SIGCONT POSIX signals in order to throttle the process accord-
ingly.

The physical DP and tenants controllers run on the same PC. To ensure that this does not affect
the measurements, we make sure that the PC is always underutilized during the measurements.

3.2.3.2 Evaluated Parameters and Scenario

We focus on evaluating the impact of flow embedding tasks on the required NH CPU resources; our
CP traffic between tenant controllers and their virtual networks consists of OF_FlowModAdd mes-
sages only (the traffic exchanged during the initial OF handshake procedure and the necessary peri-
odic traffic is excluded). This is a standard choice as flow embedding is (i) a paramount functionality
of the remote control of networks, and (ii) many applications, e.g., industrial applications with strict
QoS requirements messages [Van+19b], can be implemented solely with OF_FlowModAdd messages.
In order to establish one flow between two hosts, tenant’s controller generates one OF_FlowModAdd
message towards each switch on the chosen shortest virtual path. It is considered that tenants add
rules matching on the physical input port and unique destination IP addresses. While the action is
to forward (output) the matching packets to a certain port. Input and output ports are determined
by the shortest path calculation. The NH receives the corresponding messages and processes them
as described in Sec. 2.2.3.

Based on the insights presented in the background section (see Sec. 2.2.3), the following evalua-
tion parameters are considered (see Tab. 3.3):

• Number of tenants 𝑡 : For each tenant, the NH has to maintain additional TCP/OF connections
from the virtual switches, i.e., from the hypervisor, to the tenant controllers. Additionally, it
also has to store the isolation and abstraction policies, and potential state variables.

• Physical topology size 𝑘 : The NH appears as a controller to all physical switches. Hence, an
NH must keep one TCP/OF connection towards each physical switch. Thus, the number of
switches 𝑘 in the physical topology can potentially affect the required CPU resources.
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• Per-tenant flow request rate 𝑟𝑖 : Each tenant adds flows to its VN with a pre-defined rate 𝑟𝑖

(with uniform arrival distribution). Increasing the rate linearly increases the number of
OF_FlowModAdd messages on both interfaces of the hypervisor (i.e., on SBI and NBI interface).
Since the message have to be received from the tenant controllers and forwarded towards the
physical switches. As a consequence, the rates might conceivably increase CPU utilization of
an NH [Sie+16]; [SOK17]; [Ðer+18].

• Per-tenant path-flow length 𝑙𝑖 : The longer the path of a flow is, the more messages have to
be processed and translated by the NH (one message per physical switch). The path-flow
length is defined as the number of physical switches between the end hosts of the flow. FV
does not provide any topological abstraction: even if the tenants only request to manage
two physical switches, they might have to also control all the switches connecting the two
requested physical switches.

• Per-tenant virtual topology size 𝑣𝑖 (𝑣𝑖 ≤ 𝑘): FV guarantees that the tenants can only modify
their own VNs. Hence, every OF_FlowModAdd message received by FV has to be inspected in
order to ensure that the tenants are only modifying the switches in their VNs. Thus, with more
virtual switches, the larger the virtual switch list is, which could affect the workload.

• Per-tenant number of virtual ports 𝑝𝑖 : Before forwarding OF_FlowModAdd messages to the
physical switches, the hypervisor translates virtual port numbers to physical port numbers
and makes sure that a tenant is using only physical ports attached to its VN. Having a larger
number of virtual ports can hence increase the lookup time, in turn affecting the workload of
the NH.

In our scenario, we assume that each tenant has one host attached to each switch which is mapped
to one virtual port. Furthermore, each tenant also requests the additional virtual ports in order to
interconnect its virtual grid network. Note: In order to vary the number of virtual ports 𝑝𝑖 , we use a
different method, we allow tenants to also attach the virtual ports (hosts) dedicated to other tenants,
thus increasing the amount of virtual ports.

Chosen Parameter Values (Tab. I). Current state-of-the-art SDN-enabled carrier grade switches
are being shipped with small flow table size and they cannot handle high CP traffic rates [KPK14a];
[KPK15]. For instance, the 10G forwarding device PICA P-3290 can only handle up to around 1000
rule/flow updates per second [KPK15]. Therefore, in this section we consider similar parameter
values as the goal is to demonstrate that the proposed solution is capable of supporting carrier grade
SDN-enabled hardware. For example, if we consider 5 tenants, where each tenant has a flow request
rate of 400 per second, in the worst case, one physical switch could experience up to 2000 update
messages per second. This value is around 2x higher compared to the supported rate of PICA P-3290.
Furthermore, the maximal considered sizes the physical (grid) topology and VNs is consistent with
common topologies such as Internet2 [Hoc+13] and Nobel EU [Orl+07].

3.2.3.3 Measurement Procedure

Fig. 3.12 depicts the general measurement procedure. A measurement scenario is defined by the
set of evaluation parameters values defined in the previous subsection (see Sec. 3.2.3.2). For one
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Figure 3.12: Benchmarking procedure. PC1 emulates the data plane and the tenants SDN controllers, while
PC2 is running the virtualization layer and CPU monitoring script.

measurement configuration, the measurement runtime is 60 seconds and it is repeated 10 times
for statistical significance (unless stated otherwise). Furthermore, we discard the observed samples
during the first 10 seconds of the run, in order to avoid any potential transient phase due to initial
switch connections or transport connection stabilization. Exploring all possible combinations of
our six evaluation dimensions is time-wise infeasible. For instance, if we vary every parameter
five times, the total measurement time would amount to a few months. Therefore, we perform the
measurements only for certain scenarios with manually chosen parameter values, selected with the
goal of inferring parameter scaling dependencies.

Running the measurements one after each other during the considered measurement campaign
could lead to software aging effects [Hua+95]; [Gar+98], i.e., the CPU utilization of FV could increase
over successive runs of the same scenario. Hence, before each run, FV is completely reinstalled. That
is, all configuration files, logs, and the database are deleted, and FV is rebuilt. Finally, all remaining
processes from previous runs are killed and the memory cache is cleared.

Firstly, the DP topology is started based on the measurement scenario. FV is then booted and the
tenants VNs are embedded with the corresponding requirements based on the chosen configuration
of the measurement scenario. The flowspace of tenants corresponds to different /16 subnets and
all the requested virtual switches with their virtual ports. We consider grid topologies for both
the physical and VNs because they are easy to scale up or down with non-random parameters.
Occasionally, embedding large VN can overload the NH, resulting in a software crash. Such runs
are repeated.

After all VNs are embedded, the CPU monitor is initialized and the tenants controllers are started.
Before starting the measurement, it is ensured that all controllers finished the initial OF handshake
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procedures with all of the requested virtual switches (i.e., with FV). Furthermore, it is also ensured
that all tenants SDN controllers finished generating their corresponding path request list. That is,
each tenant initially generates randomly 100 paths, where each path is generated with Dijkstra’s
shortest path algorithm [Dij59] between two randomly selected end hosts. The path is defined as a
set of switches on the path, with the corresponding ports. In certain measurement cases, all paths are
supposed to have the same length. Thus, before adding a path to the corresponding path request list,
we simply repeat the path generation procedure until we obtain a path with desired length. During
the runtime, a flow request is then defined by generating (i) a unique destination IP address within
the tenant’s flowspace and by (ii) randomly selecting a path from the path request list. This is done
in order to avoid heavy path computations during the measurement runtime, as it could influence
the precision.

After the initialization procedure, the controllers (each tenant has one) start adding flows with
rate 𝑟𝑖

3. The generation of flows is uniformly spaced, and the flows are generated based on the
aforementioned path request list and unique IP address. In this section, we assume that all tenants
have the same rate, virtual topology size and number of virtual ports.

If the controller sends multiple OF messages as one TCP segment, this reduces the total workload
of the NH, in contrast to sending one OF message per TCP segment [Ble+19]. However, as the flow
generation is uniformly spaced in the time, merging of multiple TCP segments almost never occurs
on the controllers side.

3.2.3.4 Measurement Results

This part reports the results of presented measurement campaign. Firstly, the stability and repeata-
bility of the measurements is studied, i.e., it is evaluated if OF_FlowModAdd generation rates are sta-
ble and if repeating one measurement scenario produces the same results (as the already observed
run). Afterwards, the impact of the considered VN parameters on the observed CPU utilization is
evaluated.

Measurements Stability. Fig. 3.13 shows the measured CPU utilization time series for the com-
plete duration of one run, alongside with the total flow request rate

∑𝑛
𝑖=1 𝑟𝑖 generated by the con-

trollers. All flows have the same length, thus the amount of OF_FlowModAdd messages per second
received by FV is constant and directly correlated with the flow request rate. However, even though
the flow generation is uniformly spaced and stable (the maximum variance is in range of a few per-
cents), it can be observed that CPU utilization exhibits high variability, with multiple extreme peaks.
For instance, the minimum observed CPU utilization is close to 0 %, the maximal is around 198 %,
while the mean is 45 %. During run-time, in order to avoid blocking the TCP socket/connection, FV
places the received messages in a queue, which is then periodically cleared. Hence, the workload os-
cillates with time, suggesting that predicting the exact CPU utilization in one specific time instance
of one run is hardly possible.

3The rate of flow addition is configured in Ryu through simple sleep commands. This is quite imprecise but, as shown
in Fig. 3.13, is stable enough. Hence, we define the 𝑟𝑖 as the mean rate actually generated by Ryu and obtained through post-
processing of the traces.
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Figure 3.13: Observed time series of CPU utilization (red line with left y-axis) during one measurement run
with the following parameters: 𝑡 = 5, 𝑟𝑖 ∼ 184, 𝑘 = 4 × 4, 𝑣𝑖 = 4 × 4, 𝑙𝑖 = 4 and 𝑝𝑖 = 1. Furthermore, the
green scattered line with the right axis represents time series of the total observed flow request rate per second
during the aforementioned run.
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Figure 3.14: Distributions of measured CPU utilization for five measurement runs with identical evaluation
parameters, i.e., 𝑟𝑖 ∼ 300, 𝑘 = 5 × 5, 𝑣𝑖 = 4 × 4, 𝑙𝑖 = 4 and one host per virtual switch. The boxplots whiskers
correspond to the 5% and 95% percentiles. The green line shows the mean total OF_FlowModAdd rate and its
standard deviation.

Although the observed CPU utilization within one run varies, repeating the same measurement
run multiple times with the same parameters produces almost identical CPU utilization distributions.
For instance, in Fig. 3.14, the mean observed CPU utilization of all five measurement runs falls within
the range of 39%–45%. This indicates that modeling and predicting the statistical properties (e.g.,
median) of an NH CPU utilization profile is indeed feasible.

Allocating a Sufficient Amount of Resources. Precisely allocating hypervisor resources is only
needed in case a CPU limitation truly affects the network performance, e.g., NH forwarding latency.
Accordingly, for precise performance modeling, it is important to find a point, i.e., statistical value,
which is used for allocating hypervisor resources. Ideally, such point would minimize the amount of
allocated CPU resources while avoiding performance degradation. In order to determine it, we evalu-
ate two randomly generated scenarios, first scenario has higher CPU requirements while the second
one has lower. Fig. 3.15 shows the impact of limiting the available CPU resources of the NH on the
CP processing time for the two aforementioned scenarios. Furthermore, statistical properties (mean,
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(a) Mid CPU Scenario
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(b) High CPU Scenario

Figure 3.15: Impact of limiting the CPU resources allocated to NH on the observed CP processing time latency
(median, mean and maximal) for two different measurement cases. Every run with different CPU allocation
limit is repeated 5 times, and the mean values of these 5 runs are shown with their corresponding confidence
intervals.

85th percentile and 90th percentile) of the measured CPU utilization profile of an unconstrained run
(i.e., run when all of the resources are allocated to the NH, that is CPU limit is set to 800%) are shown
as dashed vertical lines. Firstly, provisioning the CPU resources based on the observed mean (state-
of-the-art approach) or 85th percentile incurs a significant increase of both mean and max latency.
On the other hand, provisioning with 90th percentile does not produce the same impact, i.e., the
latencies stay the same as in unconstrained or baseline scenario (i.e., CPU limit is 800%). There-
fore, we advocate to use the 90th percentile as a profound match: the 90th percentile offers a good
trade off between performance predictability and resource allocation overhead. Note: Different use
cases might have different performance requirements, thus using any other percentile value could
also pose as a valid solution – the chosen value only defines a trade off between performance and
resource consumption.

From now on, the aforementioned evaluation parameters (see Sec. 3.2.3.2) are evaluated while
considering only the 90th percentile CPU utilization (with CPU utilization we refer to 90th percentile
CPU utilization). In the following, we strive to learn the scaling dependencies in order to generate
a prediction model capable of supporting arbitrary topologies and randomly generated VN requests.
Fig. 3.16 shows the observed CPU utilization values of an NH for all the considered parameters.
Each value is a mean of 10 runs (for each run we observe 90th percentile CPU utilization) and the
corresponding confidence intervals.

Flow Length. Fig. 3.16a shows the impact of the flow length on the NH 90th percentile CPU
utilization. Since we disabled the state keeping feature, the messages are processed independently.
Thus, the total number of OF_FlowModAdd messages increases linearly with the flow length; in turn
the CPU utilization increases linearly with the OF_FlowModAdd message rate. For example, for 5
tenants adding 184 flows per second, the measured CPU utilization increases with the path length
from around 50 % to around 100 % linearly.
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Figure 3.16: (a)–(f) Impact of different evaluation parameters on the NH 90th percentile CPU utilization on a
physical grid topology for 2 to 5 tenants. Plots show mean observed CPU utilization values of 10 runs along
with the 95% confidence intervals assuming uniform distributions. The following parameters are presented:
(a) path length with 𝑟𝑖 = 184, 𝑘 = 4 × 4, 𝑣𝑖 = 4 × 4 and 𝑝𝑖 = 1, (b) flow request rate with 𝑘 = 5 × 5, 𝑣𝑖 = 4 × 4,
𝑙𝑖 = 5 and 𝑝𝑖 = 1, (c) virtual topology size with 𝑟 = 430, 𝑘 = 5 × 5, 𝑙𝑖 = 3 and 𝑝𝑖 = 1, (d) physical topology
size with 𝑟 = 430, 𝑣𝑖 = 3 × 3, 𝑙𝑖 = 3 and 𝑝𝑖 = 1, (e) number of virtual ports dedicated for connecting the hosts
per switch with 𝑟 = 184, 𝑘 = 4 × 4, 𝑣𝑖 = 4 × 4, 𝑙 = 4. (f) shows the data of (a)–(f) as box plots for the different
number of tenants (5% and 95% percentile whiskers are used).

Flow Rate. Similarly, the OF_FlowModAdd message rate and the CPU utilization increases linearly
with the flow request rate (see Fig. 3.16b). For instance, on average, for 5 tenants with path lengths of
6, embedding 5×90 flows per second requires only around 56 % CPU resources, while embedding 5×
434 flows per second requires around 146 %. As both of these parameters impact the OF_FlowModAdd
message rate per tenant in the same manner, the impact of the flow rate and flow length is almost
the same. Since all other parameters are the same (e.g., VN size), the slopes of both curves are indeed
approximately equal: 0.0109 %/(FlowMod/s) for flow length and 0.0113 %/(FlowMod/s) for the flow
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rate. Moreover, the flow request rate and the corresponding flow lengths can be used to determine
the total number of translated OF_FlowModAdd messages by the hypervisor.

Physical and VN Size. As suspected, increasing the VN size does indeed affect the CPU utilization
(see Fig. 3.16c). For instance, embedding 5 × 434 flows per second (5 tenants) with a length of 3 in
a 2 × 2 virtual grid network generated CPU utilization of around 78 %, while repeating the same
measurement in 5 × 5 grid lead to 136 % CPU utilization. Interestingly, the CPU utilization does not
scale linearly with the total number of virtual switches but with its square root. Although this might
sound counter-intuitive (as typically lookup scalings are O(𝑛) for a list or O(log(𝑛)),O(𝑛 log(𝑛))
for tree-like data structures), increasing the virtual grid dimension also increases the average node
degree (i.e., number of virtual ports), which also has an impact of CPU utilization. Contrary to
our expectations from Sec. 3.2.3.2, the size of the underlying physical topology does not produce a
significant impact on the CPU utilization (see Fig. 3.16d). For instance, with 3 tenants, the observed
CPU utilization increased only from ∼ 54 % (for 3 × 3 physical grid) to around ∼ 56 % (for 5 × 5
physical grid).

Number of Virtual Ports The previous measurements are based on the assumption that each
tenant has one host connected to each virtual switch (requires one virtual port). Thus, coupled
with topology knowledge, the total number of virtual ports per each tenant’s switch is fully defined.
However, other physical topologies and VN configurations can have a different number of virtual
ports per switch. To incorporate the topology impact in our measurements, we investigate the impact
of the number of virtual hosts/ports per switch. To this end, we increase the total number of hosts
per tenant on each switch from 1 to 5, in turn increasing the number of virtual ports. We observe a
non-negligible linear impact (see Fig. 3.16e). For instance, the observed mean CPU utilization for 5
tenants is increased from around 74 % (for 1 host per virtual switch) to around 93 % (for 5 hosts per
virtual switch). This occurs since the NH inspects every OF_FlowModAdd in order to investigate if
the tenants are indeed using only their corresponding flowspaces.

Number of Tenants. Fig. 3.16f presents all of the data from Figs. 3.16a–3.16e merged and sorted
based on the total number of tenants. Furthermore, the plot shows the linear regression of the 90th
percentile values for each number of tenants. We observe that the intercept of the regression line
is around 0 %. Although the number of tenants in some cases could have a non-linear impact (see
𝑝𝑖 = 2 on Fig. 3.16e), we also highlight that the deviation is not drastic. Overall (see Fig. 3.16f), for
small number of tenants, the impact can be simplified and assumed additive. That means that the
increase in CPU utilization observed for each additional tenant is always the same. In particular, that
means that, for predicting the CPU utilization for a multi-tenant scenario, we can simply compute
the impact of each tenant independently and add the resulting CPU values.

Summary. While CPU utilization is by nature a highly variable metric, it can be seen that the pre-
sented measurement procedure always obtains stable results. Moreover, it is shown that the impact
of considered evaluation parameters on the 90th percentile CPU utilization can be approximated by
simple functions (models). This suggests that a precise modeling of the 90th percentile of CPU uti-
lization is indeed possible. Further, the size of the physical topology seems to have no major effect
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on the resource consumption, hence, suggesting that the model can be physical-topology-agnostic
for smaller sized networks. In the following part (see Sec. 3.2.4), the presented measurements and
the observed scaling dependency are used in order to generate a CPU performance model capable of
supporting arbitrary physical networks and a wide variety of VN requests.

3.2.4 Hypervisor CPU Prediction Model

In this part, based on the results of considered measurement campaign, NH CPU utilization pre-
diction model is developed and presented. Again, the 90th percentile CPU utilization is used as it
provides a good trade off between performance and resource consumption (see Sec. 3.2.3.4). Firstly,
the comprehensive grid measurements are fitted with a linear model. Then, the model is extended
with a port scaling factor in order to generalize its applicability to arbitrary physical topologies and
randomly generated VNs.

3.2.4.1 Model for Grid Topologies

The results of Sec. 3.2.3.4 show that the CPU utilization of a FV scales with (i) the OF_FlowModAdd

message rate (as witnessed by the impact of flow length and flow request rate), (ii) the total number
of virtual switches, and (iii) the number of virtual ports per switch. Furthermore, for a small number
of tenants, (iv) the impact of this parameter can be assumed to be additive (see Sec. 3.2.3.4): the
contribution of each additional tenant to the CPU utilization is equal to its contribution as a single
tenant. As the number of virtual ports is used to represent the topology impact (e.g., edge density), it
is only considered when extending the model for arbitrary topologies (Sec. 3.2.4.2). The initial CPU
prediction model is defined as:

𝑓1(𝑟, 𝑣, 𝑛) =
𝑛∑︁
𝑖=1

(
𝑐0 + 𝑐1 𝑟

𝐹𝑀
𝑖

√
𝑣𝑖
)
, (3.11)

where 𝑛 is the number of tenants, 𝑟 𝐹𝑀𝑖 is the total CP OF_FlowModAdd rate, which is fully defined
with the flow request rate and the corresponding path lengths, (i.e., if we assume that the total
number of different paths of a tenant 𝑖 is 𝑋𝑖 , then 𝑟 𝐹𝑀𝑖 =

∑𝑋𝑖

𝑗=1 𝑟
𝑖
𝑗 · 𝑙 𝑗 ). The variable 𝑣𝑖 gives the

total number of virtual switches of a tenant 𝑖 , and 𝑐0 and 𝑐1 are fitting coefficients. We multiply the
parameters (𝑟 𝐹𝑀𝑖 and √𝑣𝑖 ) since the required resources for processing each OF_FlowModAdd message
depend on the configuration of a VN (see Sec. 2.2.3 and Sec. 3.2.3.4). To illustrate, if no messages are
sent (𝑟𝑖 = 0 or 𝑙𝑖 = 0), the size of a VN (i.e., parameter √𝑣𝑖 ) should not have a significant impact on
the CPU utilization.

Using a regression model minimizing the mean square error and the measurement data presented
in Figs. 3.16a–3.16c, the coefficients 𝑐0 = 6.46 and 𝑐1 = 2.84 × 10−3 are obtained. The cumulative
distribution of the absolute fitting error and the corresponding median are shown in Fig. 3.17. The
median of the absolute error is around 3.41 % and the maximum error is 12.4 % (for scenario: num.
tenants = 5, 𝑟 = 430, 𝑘 = 5 × 5, 𝑣𝑖 = 3 × 3, 𝑙𝑖 = 3 and 𝑝𝑖 = 1), witnessing the fitting accuracy.
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Figure 3.17: Cumulative distribution function (CDF) of the absolute fitting error of the grid measurement
data with a linear based model (Eg. 3.11).

3.2.4.2 Model Extension for Arbitrary Topologies

The initial model 𝑓1 (Eq. 3.11) assumes a physical grid topology as well as virtual grid networks.
However, in practice, other topologies are possible. For instance, tree-like topologies used in data
center networks, ring-like topologies used in industrial networks and wide-area network topologies
such as those from the Topology Zoo [Kni11] have less dense structures. The average node degree
of a ring topology is always 2, while the average node degree of a grid with 9 nodes is 2.67 4.

We have seen that the number of virtual ports affects the NH CPU utilization (see Fig. 3.16e). As
the average number of virtual ports of a VN directly corresponds to the average node degree of its
topology, this notion is used to extend our model to arbitrary topologies. To do so, the grid-based
CPU prediction model is linearly scaled with a per-tenant port scaling factor 𝜙𝑖 . A linear scaling
factor 𝜙𝑖 is used because of the linear dependency observed in Fig. 3.16e.

The extended model can then be formulated as:

𝑓2(𝑟, 𝑣, 𝑛) =
𝑛∑︁
𝑖=1

𝜙𝑖
(
𝑐0 + 𝑐1 𝑟𝑖

√
𝑣𝑖
)
. (3.12)

The intuition for defining the per-tenant port scaling factor 𝜙𝑖 is similar to the cross-
multiplication rule in elementary arithmetic. We first divide the per-tenant grid-based prediction
(based on Eq. 3.11) with a parameter representing the average node degree of a grid topology
(i.e., with 𝑝𝑒𝑖 ). This division “removes” the grid aspect in the prediction (details are in the next
paragraph). Afterwards, again on a per-tenant basis, we multiply the newly obtained predictions
with the average node degree of each tenant’s virtual topology (i.e., with 𝑝𝑖 ). Mathematically, using
a tuning parameter 𝛼 , the per-tenant port scaling factor 𝜙𝑖 can be represented as:

𝜙𝑖 =

( 𝑝𝑖
𝑝𝑒
𝑖

)𝛼
, (3.13)

where 𝑝𝑖 is the average node degree of tenant’s 𝑖 VN:

𝑝𝑖 =

∑𝑣𝑖
𝑗=1 𝑎

𝑖
𝑗

𝑣𝑖
, (3.14)

where 𝑎𝑖𝑗 is the number of virtual ports of virtual switch 𝑗 .
4Excluding additional ports for connecting hosts to the virtual switches.
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Figure 3.18: Computation of 𝑝𝑒𝑖 based on 𝑣𝑖 . Values are interpolated (green dashed line) from the average
number of virtual ports per switch for grid topologies (red crosses) and converge to 5 (thick dashed gray
asymptote) as internal nodes in a grid topology connect to 4 other nodes and one host.

Calculating 𝑝𝑒𝑖 . The parameter 𝑝𝑒𝑖 removes the grid aspect from the prediction. It tries to compute
the average node degree of a grid topology with similar properties as the requested VN topology by
a tenant. If a tenant requested a VN where the total number of nodes is a square number, i.e., the
root of the total number of virtual switches is an integer, i.e., 𝑦𝑖 =

√
𝑣𝑖 , 𝑦𝑖 ∈ Z+ (e.g.,

√
4 = 2), an

equivalent grid VN is simply 𝑦𝑖 ×𝑦𝑖 grid. Thus, it is easy to calculate the average node degree of the
corresponding grid VN equivalent. For instance, if a tenant requested a VN with 𝑣𝑖 = 4 nodes, the
grid-like equivalent is a 2 × 2 grid, which has 12 virtual ports, thus 𝑝𝑒𝑖 = 12/4 = 3.

If the total number of nodes of a requested VN is not a square number, we determine 𝑝𝑒𝑖 based on
the linear fitting of the average node degree of various VN sizes which were used in the measurements
(i.e., 2× 2, 3× 3, 4× 4, 5× 5). The fitting is shown in Fig. 3.18. The red crosses correspond to the grid
topologies used in the measurements. In this case, 𝑝𝑒𝑖 simply corresponds to the average number
of virtual ports per virtual switch for a grid topology of dimension √𝑣𝑖 . For intermediate values,
since there is no direct grid-like VN equivalent, we simply fit the total number of virtual ports in
the network piece-wise linearly and divide it by the number of nodes. This is shown by the green
dashed line. Note that the values used for linear fitting are based on our measurement scenarios,
which means that each virtual node also has an additional virtual port for connecting one virtual
host to it. That is why the 𝑝𝑒𝑖 values converge to 5, as shown by the thick gray dashed line.

Calculating 𝛼 . As observed in Sec. 3.2.3.4, increasing the number of virtual ports also increases the
observed CPU utilization linearly. However, the increase is not directly proportional, i.e., doubling
the average number of virtual ports does not double the observed CPU utilization. Therefore, we
introduce an exponential tuning parameter 𝛼 , and we use it to improve the fitting of our scaling
parameter 𝜙𝑖 to our measurements. To calculate 𝛼 , the measurement data from Fig. 3.16e is used
and 𝛼 is derived while minimizing the mean square error. We obtain 𝛼 = 0.281. Hence, replacing
parameters in Eq. 3.12 with their real values, we obtain the final model.
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Table 3.4: Physical topologies considered and their number of nodes and edges and their density. As a
comparison, 5 × 5 and 6 × 6 grids have densities of 1.6 and 1.67 respectively.

Topology # Nodes # Edges Density

Ring30 30 30 1
Internet2 34 42 1.23
NobelEU 28 41 1.46

Watts-Strogatz 30 60 2
Erdos-Reny15 30 63 2.1
Erdos-Reny30 30 136 4.53

Table 3.5: Distribution of parameters for the final evaluation. 𝑈 (𝑥,𝑦) denotes a uniform distribution between
𝑥 and 𝑦.

Scenarios VN size [#nodes] Flow rate [1/s]

1 – 20 𝑈 (2, 25) – Full 𝑈 (200, 600) – Full

21 – 40 𝑈 (13, 25) – Big 𝑈 (400, 600) – High

41 – 60 𝑈 (2, 13) – Small 𝑈 (400, 600) – High

61 – 80 𝑈 (2, 13) – Small 𝑈 (200, 400) – Low

81 – 100 𝑈 (13, 25) – Big 𝑈 (200, 400) – Low

3.2.5 Model Evaluation

Having established the model, we now evaluate its accuracy using topologies and VNs that were
not used during the measurements. This evaluations should quantify how the model can adapt
to arbitrary physical topologies and randomly generated VNs. First, we introduce the evaluation
scenario and explain how to generate a wide variety of different VN requests (Sec. 3.2.5.1). Second,
the baseline models (used for comparison) are introduced in Sec. 3.2.5.2. Finally, in Sec. 3.2.5.3,
the precision of the CPU prediction model is evaluated. Afterwards, the effect of provisioning the
resources with the proposed model on the NH processing latency is studied.

3.2.5.1 Scenario

Topologies. Six different physical topologies (Tab. 3.4) are considered in the evaluations: two
existing wide-area network topologies (Internet2 [Hoc+13] and Nobel EU [Orl+07]), a typical in-
dustrial network topology (a 30 node ring) and three randomly generated network topologies: two
Erdos-Reny [ER59] models with 30 nodes and an edge probability of 15 % and 30 %, and a Watts-
Strogatz [WS98] model with 30 nodes with an average degree of 4. The selected topologies have
a wide range of different edge densities (defined as the number of edges divided by the number of
nodes), supporting the choice of these topologies as a representative set.
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VN Requests. The total number of tenants during one run is static, and it ranges from 2 to 5. For
each topology, and for each number of tenants, 100 different measurement scenarios are defined.
One measurement scenario is generated based on the (i) per-tenant VN size distribution and, (ii) a
per-tenant flow request rate distribution. Depending on the scenario number, different parameter
values are used, as listed in Tab. 3.5 (as in Sec. 3.2.3). This is done since using the full ranges as in the
measurement section will lead to VN requests with different requirements. However, in multi-tenant
cases, the average of all requirements of all tenants converges to expected mean values. Therefore,
in order to evaluate more extreme cases, we consider cases for which all tenants may request only
big or small networks, and only high or low flow request rates (as in Tab. 3.5). As a consequence,
four different combinations are built, making a total of 5 different cases, with 20 scenarios each.
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(c) NobelEU
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(d) Watts-Strogatz
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(e) Erdos-Reny15
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(f) Erdos-Reny30

Figure 3.19: (a)–(f) Estimated and measured 90th percentile CPU utilization for 100 randomly generated
scenarios with 2-5 tenants using the considered topologies (i.e., Internet2, NobelEU, Ring, Erdos-Reny and
Watts-Strogatz). The scenarios are sorted based on the measured CPU utilization in the ascending order. The
absolute error is shown as red starred line, while the mean observed error is shown as horizontal red dashed
line.
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VN Connectivity. Based on a given VN size, edges in the VN are generated as follows. One node
is randomly selected. Out of all its neighbors, a new node is randomly selected and connected. Out
of all the neighbors of existing nodes, a node is randomly selected and connected. The procedure
stops as soon as enough nodes are connected. Finally, the per-tenant flow request rate is generated
based on the values in Tab. 3.5. The same flow generation procedure is used as presented in the
measurement section.

3.2.5.2 Model Variations & Baseline

State-of-the-art VNF CPU resource prediction models generate their estimate while considering dif-
ferent input parameters [JKE17]; [MAC18]. However, apart from the message rate, these parameters
(e.g., IP source address, TCP destination port) often do not have an impact on the CPU utilization of
an NH. Thus, if we directly apply these approaches for provisioning the CPU resources of an NH,
they would generate their estimate solely based on the CP message rate. Similarly, state-of-the-art
NH CPU performance models [Sie+16]; [SOK17]; [Ðer+18] only consider the total CP message rate
as their input parameter for estimating the CPU utilization of an NH. Therefore, as the baseline, a
linear model based on the total CP message rate [Sie+16] is used. This model does not take into
account the properties of the VNs. The baseline model is defined as follows:

𝑓3(𝑟, 𝑛) = 𝑐𝐵𝑜 + 𝑐𝐵1
𝑛∑︁
𝑖=1

𝑟𝑖 . (3.15)

The coefficients 𝑐𝐵0 and 𝑐𝐵0 are obtained by a least mean square error fitting using the same
measurement data set presented in Fig. 3.16; the coefficients are 𝑐𝐵0 = 11.96 and 𝑐𝐵0 = 13.86 × 10−3.

Furthermore, in order to evaluate separately the effect of the number of virtual switches and
ports, we also consider our original 𝑓1 model, which does not include the effect of virtual ports.

3.2.5.3 Evaluation Results

First, the accuracy of the proposed model is evaluated. It is shown that, even for arbitrary topologies
and randomly generated VNs, the prediction error remains low (8–9 % on average). Finally, the pro-
visioning performance of the proposed prediction model, and the impact on the processing latency
is studied. Furthermore, we also compare the achieved accuracy and provisioning performance to
the two baseline models.

Prediction Accuracy. Fig. 3.19 shows, for each physical topology, the measured and predicted
CPU utilization for 100 randomly generated scenarios. It can be observed that the proposed model
accurately predicts CPU utilization, even for randomly generated virtual topologies and unknown
physical topologies. For instance, the mean absolute prediction errors per topology falls between
2.4–9.6 %, while the highest observed error is over 30 %. The maximal absolute error is observed
for the ring topology, as it exhibits the most different characteristics compared to the grid (e.g.,
significantly lower edge density). Due to this difference, the maximal measured CPU values for the
ring topology exceeded the maximal grid-based values, which were used for model fitting (more
detailed explanation is in the next paragraph). For example, for the ring topology, we observed CPU
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Figure 3.20: Box plots of the prediction accuracy of the three models 𝑓2 (Eq. 3.12, proposed model), 𝑓1 (Eq. 3.11,
proposed model without port scaling factor) and 𝑓3 (Eq. 3.15, only rate based model - SotA). The dashed gray line
indicates the average fitting error of the grid measurements, thus, applying the model on different topologies
with randomly generated requests on average introduces a slight penalty, i.e., the average error increases by
a few percents.

values reaching up to 200%, while in the case of a grid topology the maximal values were around
150%. Thus, the predicted values were outside of the modeled range, thus the performance suffered
the most in this case.

Topology Analysis. We observe that different topologies require different amount of CPU re-
sources. For instance, Ring30 requires the highest amount of CPU resources (up to ∼ 180 %) while
Erdos-Reny30 requires the least (up to ∼ 110 %). This can be explained in the following way: ran-
domly generated VNs on physical topologies with a lower edge density (e.g., ring) typically have
longer paths compared to the ones generated on more dense topologies. For instance, a VN with 4
virtual switches on a ring topology is always a line with a maximal path length of 4. On the other
hand, a grid VN with the same amount of nodes (i.e., 2×2) on a physical grid topology has a maximum
path length of 3. Therefore, for less dense topologies, a larger number of OF_FlowModAdd messages
are needed, in turn leading to higher CPU utilization. Thus, the observed and predicted mean CPU
utilization values in Figs. 3.19b–3.19d are highly correlated with the density of the corresponding
topologies (see Tab. 3.4).

3.2.5.4 Mean Error and Baseline Comparison

Fig. 3.20 shows the prediction error of the proposed model 𝑓2 (Eq. 3.12) and of the two baseline mod-
els 𝑓1 (Eq. 3.11, proposed model without port scaling factor) and 𝑓3 (Eq. 3.15, only rate based), all
models predict 90th percentile CPU utilization. The highest absolute errors are observed for the ring
topologies as it differs the most from the measurement grid topology. For instance, the mean predic-
tion error achieved for the ring topology is slightly higher compared to other topologies, i.e., around
9.5 % compared to 2.4 % − 4.1 % for other topologies. Furthermore, the baseline prediction models
(i.e., Eq. 3.11, and Eq. 3.15) produce considerably higher prediction errors, as the mean prediction per
topology varies between 3 % and 25 %. This confirms our original motivation: certain NH functions
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(a) Proposed model 𝑓2.
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(b) Prop. model w/o port scaling factor 𝑓1.
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(c) Only rate based model 𝑓3 (SotA).

Figure 3.21: Impact of the number of virtual switches per tenant and topology type on the mean observed
relative error for (a) proposed model and (b) the baseline. The date is separated in 6 uniformly created bins,
and the mean values of each bin are shown.

depend on configurations of the tenant VNs — processing the same message in different network
settings requires a different amount of resources.

Sources of Error. Fig. 3.21 shows heatmaps of the measured absolute error for the proposed model
and the baseline models for all topologies and for different VN sizes. The proposed model performs
quite constantly, having an overall mean absolute prediction error of around 4 %. As the baseline
models do not include all affecting parameters (i.e., total number of virtual switch and ports), they fail
to perform in extreme cases. For instance, the rate baseline model (Eq. 3.15, only rate based) reaches
a mean absolute error of 40 % for small networks, which can lead to significant unpredictability of
the performance perceived by tenants.

As the baseline (Eq. 3.15, only rate based) was fitted based on the grid measurement data where
VN sizes vary from 4 to 25 virtual switches, we would expect that it performs the best for middle
sized VNs (e.g., with around 12-13 nodes). However, as it can be seen in Fig. 3.21c, this is not the case,
as the baseline performed the best for virtual topologies with a higher number of nodes. This stems
from the fact that (on average) our tree-like VN generation procedure produces VN requests with
a lower amount of virtual ports compared to the grid VNs used in the measurement section. This
makes CPU prediction of the baseline higher for all VN sizes, hence, the precision becomes worse
for middle-sized VNs, and the best for larger VNs (see Fig. 3.21c). The proposed model includes a
per-tenant port scaling factor, hence, it can in general mitigate this effect among all VN sizes.
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Figure 3.22: Absolute error dependency on (a) the average number of virtual switches per VN, (b) the total
OF_FlowModAdd rate, (c) the measured CPU utilization, and (d) the total number of tenants. The observed data
on figures (a)–(c) is pre-processed by binning it into 10 equally sized bins. For each bin, mean and standard
deviation are shown as error bars, while green stars indicate the corresponding maximum.

Overall, the rate-based solutions can perform decently in static and fixed environments, i.e., with
fixed number of static tenants (and fixed VN configurations) generating constant CP load. However,
novel communication networks are envisioned to be dynamic and flexible, i.e., a tenant should be able
to request arbitrary VNs (with a desired configuration) at any time for a certain duration. In contrast
to the proposed solution, state-of-the-art approaches do not include all the crucial parameters (e.g.,
the error can reach over 60% depending on VN sizes), therefore, these solutions do not seem suitable
for flexible and dynamic networks.

Effect of Evaluation Parameters The proposed CPU prediction model depends on several input
parameters: number of tenants, total number of virtual switches, the flow request rate, and the
number of ports per virtual switch for each tenant. In order to evaluate whether the performance
deviates with some of the considered parameters, the data is uniformly binned, and the mean absolute
prediction error along with standard deviation and maximum value is shown in Fig. 3.22. Overall, it
can observe that the mean and maximal absolute error is higher when the measured CPU utilization
is higher. There are two reasons behind this. Firstly, the absolute errors are shown, thus an absolute
error of 10% at 100% is more highlighted on the figure compared to an absolute error of 5% at 50%
(while relative errors are the same). Secondly, in case of a higher CPU utilization, the ring topology
exhibits significantly higher absolute error compared to the other topologies (e.g., see Fig. 3.19a
and Figs. 3.19b-3.19f). Thus, this significant error increase caused by extrapolating skews a bit data
on Fig. 3.22. Further, since all these parameters are correlated (e.g., higher rates produces higher CPU
utilization), the same trend can be observed for all parameters except the number of tenants.
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3.2.5.5 Impact on Latency
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Figure 3.23: (a)–(f) Impact of 4 different NH CPU provisioning strategies on the observed message processing
time of an NH. For each run, four different statistical properties are considered: median, mean, 90th percentile,
and maximal latency. As we have 400 different scenarios, each box plot represents 400 observed values of a
certain statistical property.

To evaluate the impact of CPU provisioning on the processing latency of the NH, 100 scenarios
are generated per total number of tenants for Internet2 and Erdos-Reny15 topologies in the same
manner as explained in Sec. 3.2.5.1. Each measurement scenario is then run 4 times with 4 different
provisioning strategies while tracking the processing latency profiles. The following 4 provisioning
strategies are considered.

1. Over-provisioning. All physical resources are dedicated to the NH. This strategy is very re-
source inefficient but is expected to provide the best overall message processing and forward-
ing performance.
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2. Mean CPU Estimate. The resources are provisioned based on the observed mean CPU utiliza-
tion during the over-provisioned run. This corresponds to the state-of-the-art CPU perfor-
mance models [Sie+16]; [SOK17].

3. Proposed Model. The resources are provisioned with the proposed improved model, i.e., with
𝑓2 (Eq. 3.12).

4. Proposed Model with Additional Margin. As the proposed model is not perfect (average fitting
error is around 4%), it occasionally underestimates the CPU utilization, in turn, potentially
increasing the processing time of an NH. In order to compensate for underestimation and
non-perfect cpulimit precision, we also consider provisioning strategy based on the proposed
model with an additional margin. For an additional margin we use the maximal fitting error,
which is 12.4 % (see Fig. 3.17). Thus, the resources are provisioned with 𝑓2 + 12.4 %. This
approach ensures that the resources are always provisioned with a slightly higher value, thus,
the impact on latency should always be negligible.

For each measurement run, the mean, median, maximal, and 90th percentile latencies are
recorded. Fig. 3.23 shows the latency profiles achieved by the strategies for the two topologies and
the four aforementioned statistical properties. As already shown in the introduction, provisioning
with the mean CPU estimate (2𝑛𝑑 set of box plots) is not sufficient as it incurs a big overall latency
increase. Provisioning with the proposed model (3𝑟𝑑 set of box plots) does not increase the median
latency, however, the mean is increased as the maximal latencies are increased significantly. For
instance, the maximal latency increases around 3 times, reaching values of around 100 ms. This is
happening when the model underestimates the required CPU resources for a given measurement
scenario. Thus, in certain time instances, the NH exceeds the allocated CPU resources, in turn
triggering cpulimit to throttle the corresponding process.

Provisioning the CPU resources with an additional margin (4𝑡ℎ set of box plots) achieved almost
the same processing performance as the over-provisioned case. For instance, the mean maximal
latencies increased only from 24-29ms to 38-44ms. The mean and median latencies stayed the same.
We can conclude that provisioning with an additional margin provides huge resource savings (in the
most naive case 710 % less CPU capacity) while having an acceptable and still predictable impact on
the processing performance for virtual network tenants.

3.2.6 Insights and Discussion

Correctly provisioning the resources available to an NH is crucial for ensuring stable and predictable
network performance for tenants. Yet, the state-of-the-art does not offer adequate solutions as they
neglect bursty NH workloads or the impact of dynamic VN changes. Thus, in this section, with the
goal of provisioning NH resources for flow embedding scenario, an accurate CPU prediction model
is presented. It is based on the comprehensive measurements and it can be generalized to different
substrate topologies and virtual network requests. The proposed model exhibits high prediction
accuracy as the mean average prediction error is overall around 4 %. Provisioning the resources with
the corresponding model produces only a slight increase of tail latencies. For instance, on average,
the maximal processing time increased from around 25ms to around 44ms. With the presented model,
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it becomes possible to minimize the resource consumption or improve the overall utilization through
accurate prediction of the required CPU resources of an NH.

3.3 Demonstration of Application-Aware NH Reconfiguration

In the previous sections, the impact on various CP policies (e.g., topology abstraction) or DP con-
figuration parameters (e.g., topology size) on the CP performance is presented (e.g., NH processing
time). However, in the following, we take a look from the other side. That is, in this section (i.e.,
in Section 3.3), the impact of different VN embedding and VM placement strategies (i.e., CP deci-
sions) on the DP performance (i.e., end-to-end latency) of a remote control application is demon-
strated. Optimizing the DP performance is especially important in telesurgery scenarios [Mun21]
(i.e., remote surgery). To demonstrate it, one state-of-the-art VL [BBK15] is extended to support
VN reconfiguration during the runtime based on the tenants requirements [Ðer+19]. Furthermore,
the corresponding VL is then deployed in the physical testbed in order to virtualize the emulated
DP network. Additionally, one humanoid robot and a remote controller are connected to different
end-points in the emulated network. In this demo, it is shown that by optimizing the network (e.g.,
VN embedding and/or VM placement strategy) it is possible to improve the experienced quality of
remote control.

This section is organized as follows. Sec. 3.3.1 presents the demonstration setup and the con-
sidered scenario. Sec. 3.3.2 presents the demonstration story line. Sec. 3.3.3 provides a discussion
regarding the presented demonstration.

3.3.1 Demo Setup and Scenario

The architecture of the demonstration is presented in Figure 3.24, where the CP and DP separation
is illustrated. Starting from top to bottom, two virtually isolated software instances of the Ryu SDN
controller software [Com17] are used to emulate SDN controllers belonging to two tenants.

It is considered that HyperFLEX [BBK15] management layer virtualizes the deployed SDN-based
DP network. HyperFLEX provides CP and DP isolation, QoS monitoring, and automated manage-
ment of VNs. In this demo, it is extended to further support the dynamic reconfiguration of VNs.
That is, if a tenant requests an additional virtual path or reconfiguration of the already existing one,
HyperFLEX firstly checks the available link (e.g., bandwidth) and node resources (e.g., CPU) along
the whole physical path. If there are enough resources, it establishes new virtualization (embedding)
policies accordingly. If there are no available paths that satisfy the required QoS demands, Hyper-
FLEX checks whether reconfigurations of the other VNs could free the demanded resources. Further-
more, all the isolation and abstraction policies are updated in order to meet the new VN requirements
and in order to prevent performance interference among tenants. The VN reconfiguration process is
completely abstracted (i.e., hidden) from the tenants.

As illustrated in the lower part of Fig. 3.24, European-based DP network is used. It spans four
countries (i.e., Finland, France, Sweden, and Germany). Most of the major cities are interconnected
and the network is emulated using mininet [De +14].
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Figure 3.24: The demonstration architecture and scenario show i) a European-based data plane topology with
a centralized server located in the proximity of Helsinki, Finland, while the edge servers are positioned in the
proximity of big cities and ii) the virtualization provided by the virtualization layer, i.e., HyperFLEX, and iii)
two tenants that share the physical architecture, highlighted in blue and orange colours.

We consider that two tenants are sharing the physical network. Tenant 1 is assumed to be a small
private data center operator which owns one centralized server for the consolidation of services
located in Helsinki, Finland (the remote location), and multiple edge servers located in the proximity
of the most major cities: e.g., Paris, Munich. Tenant 1 initially requests a VN spanning multiple links
and nodes as depicted in Fig. 3.24. It uses this VN to control his humanoid NAO robot [Zac+18]
located in Paris from a remote controller located in Munich (with the controller application running
on Apple iPad). Two Linksys WRT1900AC WiFi access points are installed to provide the access to the
virtual network, connecting the robot and the remote controller to the backbone network. In order
to control the robot, two streams need to be established. The NAO robot generates the first traffic
stream in order to provide a live video feed of the exact robot position to the remote controller. Based
on the received information, the remote controller issues control instructions to the robot using the
second traffic stream. However, before reaching the destinations, both traffic streams have to pass
through the firewall VNF, which is initially located in Helsinki. For this demonstration, an internally
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developed virtual firewall is used as a VNF in order to prevent malicious traffic entering the network.
Tenant 2 is generating dummy cross traffic.

3.3.2 Demo Presentation
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Figure 3.25: Networking delay between the robot and the remote controller based on the given demonstration
topology. During the first 46 seconds (left side of the red dashed line), the firewall VNF is located on the
centralized server. The right side of the red line shows the network latency after the migration.

This demonstration focuses on presenting two main features: VNF Orchestration and Dynamic
VN Reconfiguration.

VNF orchestration. Controlling the robot remotely based on the real-time video streaming is a
highly sensitive application. Moreover, the additional delay coming from consolidation of services
in a centralized server can potentially harm the performance of the application. In case the QoS
requirements of the remote control application are not met, a firewall migration is triggered by the
tenant. The firewall is then migrated to the edge server in Paris. The migration of the firewall VNF
should reduce the end-to-end delay and improve the experienced QoS. Fig. 3.25 shows the reduction
of the network delay between the NAO robot and the remote controller before and after the VNF
migration over time.

Dynamic VN Reconfiguration. After the VNF migration is triggered, HyperFLEX reconfigures
the VN in order to meet the new requirements. The virtual links towards the centralized location
in Helsinki are now redundant and can be removed, while the route connecting the edge servers in
Paris and Munich is established. Additionally, isolation (e.g., bandwidth) policies spanning the used
physical links between Munich and Paris are updated. The reconfiguration also ensures that the new
VN requirements generated by the firewall migration do not affect other VNs.

3.3.3 Insights and Discussion

The benefits of softwarization and consolidation of services are numerous. However, there are some
parameters that should be considered: (1) locations far away from users can increase the networking
delay, and (2) the processing time of software realizations of the networking functions is inherently
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higher compared to the hardware ones. Thus, VNF placement and management algorithms have
to take service QoS requirements into the account. In this demonstration, we showed the possible
performance gains by migrating a softwarized VNF (i.e., a Linux-based firewall) from a centralized
server to an edge server (closer to the user). In order to demonstrate the performance improvements,
we supposed an application with a high QoS requirements: the remote control of a NAO robot
over a secure network. We showed how the reduced latency is able to improve application quality
greatly. Furthermore, we presented and discussed how the VNF orchestration should be realized in a
virtualized SDN environment. In the considered use case of this demonstration, the locations of the
robot and the controller were static, since they were always connected to the same access points. As
a future work, we plan to evaluate dynamic use cases like commercial aviation. Here, the positions
of airplanes and the corresponding communication access points are well known in advance. Thus,
including more granular and mobility-aware VNF migrations within the network could improve the
performance and reduce the total operational cost. Moreover, a vehicular use case represents an
even more challenging problem, as the movement of vehicles might not be predictable. Hence, more
dynamic reconfigurations of VNs might become necessary for an efficient resource utilization.

3.4 Conclusion

In the first part of this chapter, the impact of the topology abstraction function on the NH CPU uti-
lization is studied and measured in various scenarios (e.g., different topology sizes). The observed
results reveal that the impact of such function is not negligible. That is, the maximal observed dif-
ference in CPU utilization was almost 400% for two vastly different topology abstraction policies
(i.e., transparent and big-switch abstraction). This motivated us to study and present the impact of
topology abstraction on the performance of offline VNE problems. Two important conclusions can
be drawn from this study. Firstly, NH functions cannot be neglected neither when i) provisioning
the CPU resources of an NH or when ii) designing the VN admission control algorithms. Secondly,
the CPU utilization of an NH can vary significantly based on the considered DP scenario (e.g., topol-
ogy size). Therefore, it became evident that determining how much resources (e.g., CPU) should be
allocated (i.e., provisioning problem) to an NH while ensuring that there is no performance degra-
dation is not a trivial task. For instance, under-provisioning the resources may lead to performance
degradation, while over-provisioning is wasteful.

These observations motivated the development of the main contribution presented in this chap-
ter, i.e., the QoS-aware network hypervisor provisioning procedure. To do so, initially, a compre-
hensive measurement study in various scenarios is performed to 1) determine how much resources
should be allocated to an NH (in a specific scenario) while ensuring that there is no performance
degradation, and 2) to develop an accurate CPU estimation model. The model can be generalized
to different substrate topologies and virtual network requests. Additionally, it exhibits high pre-
diction accuracy, as the mean prediction error is around 4%. Provisioning the resources of an NH
with the presented model produces only a slight increase of tail latencies. For example, the maximal
processing latency is increased from 25ms to 44ms, while the average values remained the same.
Therefore, by using the presented provisioning procedure, network operators can maximize their
overall resource utilization while keeping the performance degradation to a minimum.
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From a more general point of view, the major contribution of this section sheds light on potential
other applications where similar predictions are necessary. For example, softwarization of network-
ing functions (e.g., firewall, Network Address Translation (NAT)) and new networking architectures
(e.g., SDN) increase the total number of deployed VNFs running in software on commodity hardware.
Applying the same procedure to learn the performance profiles of various VNFs could potentially
produce enormous savings while provisioning the resources in a centralized cloud where these func-
tions run.

3.5 Future Work

The presented topology abstraction aware CPU estimation models and the formulated VNE opti-
mization problem are based on the measurement results of OVX NH. However, different NHs could
implement topology abstraction differently, which could produce different measurement results and
in turn different observations. Therefore, developing automated benchmarking programs and solu-
tions are needed to investigate all the different NH implementations. Additionally, the considered
proposed estimation models are either linear, quadratic, or polynomial. One potential research di-
rection is to investigate if the other models (e.g., Machine Learning (ML)- or Artificial Intelligence
(AI)-based models) could achieve better results.

As presented in the main contribution of this chapter, it is possible to provision the resources of a
VNF (i.e., in this case NH) based on the comprehensive measurements. However, manually learning
what parameters have an effect, and which are the most affecting ones is tedious work, and it is time-
consuming. Since the amount of required resources for a normal operation of VNF may be affected
by many different parameters (e.g., number of clients within a firewall-protected network, number
of flows a NAT has to process, etc..), this approach does not scale well to a large scale environment.
Therefore, new solutions are needed that are capable of learning the most affecting parameters in an
automated and online manner. To achieve so, novel AI-based systems and algorithms could pose as
an attractive solution.
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Traffic Policing

In order to provide end-to-end deterministic Data Plane (DP) guarantees, most of the state-of-the-art
(SotA) systems [VK16]; [Van+19b]; [Van+20] utilize mathematical frameworks (e.g, Deterministic
Network Calculus (DNC) [LT01]) which rely on precise and accurate network state models. For
instance, the network state model used in Chameleon [Van+20] keeps track of all the embedded flows
(and their characteristics such as rate and burst) in the network along with the network utilization
(which contains the statistics such as link utilization and switch buffer usage). In the interest of
ensuring that the decisions derived by mathematical frameworks are valid, it is crucial that the
network state models precisely matches the real traffic in the physical network. If that is not the
case, unexpected and unaccounted for traffic bursts entering the network could use the available
bandwidth, build up queues, and potentially cause unexpected packet losses and hence degraded
performance. To avoid that, network operators usually rely on traffic policing or shaping at the edge
of the network, typically performed directly on the edge switches or end-hosts [Van+20]; [Van+19b];
[Gro+15]; [Sae+17]. Furthermore, traffic limiting is even more important in virtualized networks,
because of the two following reasons. Firstly, the users (sources of traffic) are not controlled, thus,
they can try to generate more traffic than expected or agreed. Secondly, the unexpected degraded
performance can lead to the violation of Service-Level Agreement (SLA) of the other network users,
which can cause revenue loss to network operators.

Hence, this chapter aims to investigate and answer the following questions. i) How can traffic
policing be realized or utilized on both, edge switches and end-hosts? ii) How can we measure and
model the accuracy of the considered traffic policing solution? iii) And, what is the offered accuracy
and precision of the considered solutions, and can we use them in deterministic networks?

Even though traffic policing is a well-known feature of network switches, the extent to which
SotA programmable switches perform this task accurately and predictably has not been investigated
in the literature. Motivated by this observation, this chapter presents traffic policing measurement
procedure followed by an extensive measurement study of the policing performance of five Open
Flow (OF) switches from three different vendors. We investigate the processing time overhead in-
duced by configuring policing on the switches and quantify the policing accuracy and predictability
in terms of the burst and rate parameters typically used for modeling traffic patterns.

Our observations are rather negative: none of the investigated switches perform policing accu-
rately. While policing seemingly does not impact the processing time of switches, we find that the

75



76 Chapter 4. Traffic Policing

policed traffic deviates by up to 100% in terms of allowed burst and 60% in terms of rate for some
configurations. Even more concerning, we observe that switches do not support the configuration of
arbitrary burst values. Some of the considered switches require a minimum burst size (e.g., 13 kbits
for Pica8 switches), while the others do not support the configuration of a burst and only perform
rate-based policing.

With the assumption that these inaccuracies can be perfectly modeled, we investigate how these
would impact the performance of SotA solutions for providing predictable latency in programmable
networks. Using the open-sourced code of the Chameleon system [Van21]; [Van+20] for cloud net-
works, we quantify how much these inaccuracies impact the number of flows the system can accom-
modate while still providing its predictability guarantees. Astonishingly, we observe that Chameleon
reduces the number of tenants it accepts by around 50% compared to a situation where switches
are deemed perfect. This means that the sole limitations of the policing feature of switches force
operators to see their revenue halved. The potential solutions and alternatives to circumvent the
aforementioned limitations are also discussed and presented.

To evaluate end-host based traffic policing, we initially present an overview of one Data Plane
Development Kit (DPDK) application which includes traffic policing functionality. Afterwards, we
discuss and present the implementation of this traffic policing function in details. The performance
observations regarding the considered software traffic policing function are rather positive. Even
though the function was running on a general computing platform, the observed performance was
mostly constant, and predictable in the considered scenarios. Thus, proving that in certain use cases
software traffic policing approaches can pose as a valid alternative approach.

The contributions of this chapter are partly presented in the two following peer-reviewed scien-
tific papers.

• N. Ðerić et al. “Towards Understanding the Performance of Traffic Policing in Programmable
Hardware Switches.” In: IEEE International Conference on Network Softwarization (NetSoft).
2021

• A. Van Bemten et al. “Chameleon: Predictable Latency and High Utilization with Queue-Aware
and Adaptive Source Routing.” In: Proceedings of the ACM International Conference on emerging
Networking EXperiments and Technologies (CoNEXT). 2020, pp. 451–465

All the content from the first peer-reviewed paper is presented in this chapter (i.e., in Sec-
tions 4.3,4.4, and 4.6) and it is one of the major contributions of this thesis. The second peer-reviewed
paper introduces Chameleon system which is able to provide deterministic guarantees in cloud net-
works. As already explained in Sec. 2.3.3, to realize this system, we have developed one end-host
DPDK application which includes traffic policing function. The main concepts of Chameleon system
(e.g., architecture, admission control) and an overview of DPDK application are already presented
in one dissertation [Bem+20]. However, the comprehensive implementation details (including the
implemented algorithm and discussion) of this traffic policing function and the performance com-
parison of it with one carrier-grade switch were not presented and discussed before. Therefore, these
two parts represent the main novel contributions of Sec. 4.5, and they are presented in Sec. 4.5.1.1
and 4.5.3.
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The rest of this chapter is organized as follows. Section 4.1 presents the background on network
predictability and justifies the need for accurate traffic policing. The related work is summarized
in Section 4.2. Section 4.3 introduces the measurement methodology and procedure which enables
modeling the traffic policing accuracy. After that, in Section 4.4, the accuracy of traffic policing
in carrier-grade switches is discussed. Section 4.5 presents the details of one end-host based traffic
policing implementation and the corresponding measurement results. Section 4.6 presents a study
showing the impact of inaccurate traffic policing on maximal network utilization. Finally, Section 4.7
concludes this chapter, while Section 4.8 lists potential future works.

4.1 Background

In this section, initially, the importance of limiting the rate and burst of traffic flows in predictable
networks (see Sec. 4.1.1) is discussed. Thereafter, the theoretical background behind traffic policing
is presented (see Sec. 4.1.2).

4.1.1 The Need for Traffic Policing

Providing predictable latency in programmable networks requires the computation of performance
bounds, in particular delay and throughput, in the network. DNC [LT01]; [VK16] is the main frame-
work used by SotA solutions for predictable latency [Jan+15]; [Van+19b]; [Van+20] to compute per-
formance bounds.

DNC is a system theory for communication networks based on the min-plus algebra. Based
on traffic and node models, DNC allows to derive (i) the maximum per-packet delay traffic can
experience at a node, (ii) the maximum backlog (e.g., amount of data) traffic will generate at a
node, and (iii) the updated traffic model at the output of the node. Altogether, these bounds enable
operators to provide guarantees to their tenants.

Inevitably, a key requirement for the bounds computed by DNC to be valid is for the traffic and
node models to be correct worst-case models. In DNC terminology, the traffic model is referred to
as the arrival curve and the node model is referred to as the service curve. Many works have focused
on determining the service curve of network nodes, e.g., the recent Loko system [Van+19b]. Given a
service curve, it is crucial to ensure that the traffic entering the node is not exceeding its arrival curve.
Indeed, if the traffic violates the arrival curve used to compute delay and performance bounds, all the
guarantees provided to the applications would vanish. For example, slightly exceeding the expected
traffic envelope can increase buffer occupancy at some nodes, thereby potentially reaching the buffer
capacity of a node, and hence generating packet loss, retransmission, and degraded performance.

Tenants requesting predictable performance from the network are expected to provide the arrival
curve of the traffic they wish to send into the network. Because tenants cannot be trusted, operators
must ensure that the traffic sent by the different tenants does not exceed the agreed arrival curve.
This can be achieved by adding a DNC processing element before the traffic enters the network and
that ensures that its output traffic respects the agreed arrival curve (see (iii) above). This can be done
by either delaying or dropping packets that would lead to the arrival curve being violated. This is
called shaping and policing, respectively. In this chapter, we focus on traffic policing.
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Figure 4.1: Diagram representing a leaky token bucket algorithm. The maximal token bucket size is 𝑏, while
the rate of token generation rate is 𝑟 .

4.1.2 Leaky Token Bucket Algorithm

The main type of arrival curve used in the literature is a token bucket arrival curve. In the token
bucket arrival curve, traffic is modeled with two parameters: allowed burst and allowed rate. This
corresponds to the famous leaky token bucket algorithm (see illustration on Fig. 4.1) [Lee94]. Initially,
the token bucket contains 𝑏 tokens (e.g., bits or packets) which determines the maximum burst size
of a flow. The bucket is continuously filled with 𝑟 tokens per second, which defines the rate of a
flow. The token bucket can never be filled with more than 𝑏 tokens. When an 𝑁 -bit packet arrives,
the number of available tokens in the bucket is checked. If this value is higher than 𝑁 , the packet
is marked as green (conformant) and forwarded, and 𝑁 tokens are removed from the bucket. If
there are not enough tokens available (i.e., the value is lower than 𝑁 ), the packet is marked as red
or non-conformant/violated. The procedure of determining if there are enough tokens in a bucket
and marking a given packet accordingly is called traffic metering. Packets marked as red are either
dropped (this is called traffic policing), sent at a later time (called traffic shaping), or are remarked
and forwarded. Packet (priority) remarking usually refers to lowering the drop precedence of the
Differentiated Services Code Point (DSCP) field in the Internet Protocol (IP) header. In case when
the flow should be metered according to the packet rate, the procedure remains the same, while the
number of tokens needed for sending one packet is 1.

In DNC, the token bucket algorithm constrains the burst 𝑏 and rate 𝑟 of a flow with the token
bucket arrival curve [LT01]; [VK16], defined as 𝛾𝑟,𝑏 :

𝛾𝑟,𝑏 =


𝑏 + 𝑟 × 𝑡 ,∀𝑡 > 0
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4.1)

where 𝑡 is time. Graphical representation of how one token bucket algorithm constrains the data or
traffic is represented in Fig. 4.2.



4.1. Background 79

time

data Constraining token bucket curve (b,r)
Policed Data

b

r

Figure 4.2: Example of discrete data being policed (or constrained) by a policer based on the token bucket
algorithm. The red line represents a token bucket arrival curve.
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Figure 4.3: Diagram representing two-rate-two-bucket token bucket algorithm (as defined in RFC 2698). 𝑟𝑃𝐼𝑅
is peak information rate, 𝑏𝑃𝐵𝑆 is peak burst size, 𝑟𝐶𝐼𝑅 committed information rate, 𝑏𝐶𝐵𝑆 commited burst size.

One of the main limitations of a standard leaky token bucket algorithm is that it only meters
the packets into two colours. This means that a network operator can only choose to either drop
all of the excess traffic (non-conformant) or to remark it and forward it into the network. Naturally,
dropping all of the excess traffic is bad for the user (flow owner). While remarking and forwarding
all of the packets can be very risky for a network operator as it introduces excess traffic. Thus, there
are a few extensions of a standard leaky token bucket algorithm that aim to resolve this issue. For
instance, leaky two-rate-two-bucket token algorithm as defined in RFC 2698 [HG99] can color the
packets into three colors. To achieve this, the algorithm uses two sequential stages where each stage
contains one leaky token bucket (see Fig. 4.3). Each token bucket is independent and it utilizes the
standard leaky token bucket algorithm. The parameters of the first bucket are peak information rate
(i.e., 𝑟𝑃𝐼𝑅) and peak burst size (i.e., 𝑏𝑃𝐵𝑆 ). While the parameters of the second bucket are committed
information rate (𝑟𝐶𝐼𝑅) and committed burst size (i.e., 𝑏𝐶𝐵𝑆 ). Typically, peak values (i.e, rate and
burst) are higher compared to the committed ones. One common setting is to: (1) drop all the packets
(extreme violations) exceeding the parameters of the first bucket, (2) forward the packets without
remarking if they are conformant according to the both buckets, and (3) forward the packet with
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remarking if they are conformant according to the first bucket and non-conformant according to the
second one (i.e., exceeded).

Available carrier-grade hardware devices (switches) can offer vastly different traffic metering
support. For instance, some hardware switches may support only configuring the rate of a single
leaky token bucket (see Sec. 4.4.3). However, most of the newer devices support configurable two-
rate-two-bucket token algorithm or similar variation of it (see Chapter 5).

Since the main type of arrival curve used in the literature and mathematical frameworks pro-
viding deterministic guarantees (e.g., DNC) is a standard token bucket arrival curve, this chapter
focuses only on it. That is, two-rate-two-bucket token algorithm and similar variations are excluded
from further analysis.

The main challenge here is to investigate if the traffic metering and policing functionality of mod-
ern carrier-grade switches and end-hosts (general purpose servers) matches the theoretical proper-
ties of the leaky token bucket algorithm. In particular, this chapter focuses on the following research
questions:

1. How can the performance of a traffic policer be properly measured?

2. How accurate is the traffic policing feature of carrier-grade switches and end-hosts?

3. What is the impact of potential traffic policing inaccuracies on the performance of systems
providing predictable latency?

4.2 Related Work

The responsible unit to perform the in-network policing is the network switches. Generally, the
measurement and investigation of different performance metrics of the OF switches have been
receiving a lot of attention in the literature [Van+19a]; [KPK14a]; [KPK15]; [Kuź+18]; [He+15a];
[BR13]; [DBK15]; [Laz+14]; [HYS13]; [Rot+12]; [He+15b]; [Bau+18]; [PMK13]; [Bia+10]; [Emm+14];
[Van+19b]; [HYS13]; [Jar+11]; [Nao+08]; [GYG13]; [Lin+17].

On the one hand, some works have studied the mismatch between the Control Plane (CP) and DP
states of a device [Van+19a]; [KPK14a]; [KPK15]; [Kuź+18]; [He+15a]; [BR13]; [Laz+14]; [HYS13];
[Rot+12]; [He+15b]. As an interesting finding, authors in [Van+19a] have shown that inserting a
new OF rule into the flow table of a carrier-grade OF hardware switch can take a significant amount
of time (can be over a second). Worse than that, sometimes the CP state claims that a forwarding
rule is inserted in the switch, while it has never been inserted [Van+19a]; [KPK15]; [Kuź+18]. As
we know, to police a traffic flow, the switch has to use a forwarding rule to match the traffic and
forwards it to the corresponding meter. Therefore, these mismatching issues can affect the policing
function as well and need to be accounted.

On the other hand, some works have focused on measuring the DP performance of carrier-grade
OF switches [Bau+18]; [PMK13]; [Bia+10]; [Emm+14]; [Van+19b]; [HYS13]; [Jar+11]; [Nao+08];
[GYG13]; [Lin+17]. For instance, [Van+19a]; [Van+19b]; [Bau+18] have measured the available hard-
ware flow table size of various Software-Defined Networking (SDN)-enabled switches and compared
their performance. Durner. et al. [DBK15] have measured and evaluated different Quality of Service



4.3. Procedure for Measuring Traffic Policing Accuracy 81

Entity with 

Policing Function Sink

1

2

3

Source 1 1

Source 2 1

Source 3 1

4

5

6

1

1

2

Config.

Figure 4.4: Generic testbed.

(QoS) metrics in OF switches such as the priority queuing. However, to the best of our knowledge, we
are the first work that investigates the performance of policing feature of the OF switches. Although
the packet processing time of the switches has been studied in other works [Van+19a]; [Bau+18];
[HYS13]; [Lin+17], none of them have considered the impact of traffic policing. In addition to the
processing time, we study the accuracy of the rate and burst policing on a set of carrier-grade OF
switches.

Recent works in the literature have focused on improving the host-based traffic policing ap-
proaches [Sae+17]; [Jan+15]. Although these solutions can achieve high accuracy [Sae+17], they
often cannot support high rates, especially if the packet size is small.

4.3 Procedure for Measuring Traffic Policing Accuracy

This section discusses how the accuracy of rate and burst size policing can be obtained from the de-
vice measurements. Two approaches are presented. The first one (presented in Sec. 4.3.2) is a standard
approach based on the deriving average rate and burst, and this approach is the mostly used one in
the litereature which focuses on evaluating the accuracy of policing or shaping [Sae+17]; [Jan+15].
The second approach (presented in Sec. 4.3.3) is novel and is one of the contributions presented in
this chapter. It is based on the concepts developed in the DNC framework (see Sec. 4.3.4) and it aims
to resolve some issues of the previously mentioned standard approach. Since both approaches aim
to explain how policing accuracy can be derived from device measurements, we firstly present (in
Sec. 4.3.1) one generic measurement setup which can be used to obtain suitable traces. Afterwards,
the two aforementioned approaches are presented along with their advantages and disadvantages.

4.3.1 Generic Measurement Setup

Most of the works in the literature [DBK15]; [Ðer+21]; [Van+20] which evaluate the traffic policing
accuracy of a hardware device or a software program use the logical measurement setup, or a slight
variation of it, illustrated in Fig. 4.4. Additionally, the measurement results presented later in this
chapter are also based on the illustrated setup.

To begin with, there is usually one or more traffic sources which are represented in the left part of
the figure. The traffic sources are either dedicated physical machines/servers (with traffic generation
software) or Virtual Machine (VM)s running locally on the same location as the entity with policing
function. Each traffic source is connected over an interface (either physical or virtual) to the entity



82 Chapter 4. Traffic Policing

which contains traffic policing functionality. The traffic sources generate traffic, usually with a high
rate and burst size, and send it to the policing entity. In this thesis, we often refer to the traffic
being sent to the policing entity as pre-policed traffic. The entity with policing function receives the
generated traffic (i.e., pre-policed packets), and polices them according to the external configuration
parameters. The traffic forwarded from the entity to the sink is often called policed traffic. The
policing entity can be either a hardware switch fitted with traffic meters, or a software application
running on a server. The policed traffic is then forwarded to the sink, which time-stamps all the
packets and saves them as traffic traces for further processing. The sink is most commonly realized
as a dedicated hardware component, usually fitted with a high precision measurement card. Based
on the timestamped packet and saved traffic traces, it is possible to derive some crucial properties
(e.g., average rate) of post-policed traffic. These properties can then be later compared with the
configuration parameters to derive what was the achieved policing accuracy.

4.3.2 Standard Measurement Procedure

Many works [DBK15] in the literature simply focus on measuring and evaluating the average policing
rate and the initial burst size. To do so, they simply configure the traffic sources to generate traffic at
a line rate, or a rate much higher compared to the configured policing rate. Therefore, the average
rate of the post-policed traffic arriving (after the initial burst) at the sink is expected to be similar to
the configured rate of the policer. For instance, if one source generates the traffic with the rate of
1𝐺𝑏𝑝𝑠 , and the policer is configured to police the traffic with the rate of 500𝑀𝑏𝑝𝑠 , the average traffic
rate at the sink (after the initial burst) is expected to be close to the configured policing rate, i.e.,
500𝑀𝑏𝑝𝑠 . The accuracy of rate policing can then be expressed by comparing the configured value
and the measured ones. For instance, in this case, the relative rate policing error 𝑒𝑟 in a time interval
(𝑡𝑖−1, 𝑡𝑖) can be derived with the following equation:

𝑒𝑖𝑟 =
𝑟 𝑖𝑚 − 𝑟𝑐

𝑟𝑐
(4.2)

where 𝑟 𝑖𝑚 is the measured traffic rate in the time interval and 𝑟𝑐 is the configured policing rate. Note:
selecting a short time interval may lead to a high error which does not depict the real situation. The
measured traffic rate in time interval (𝑡𝑖−1, 𝑡𝑖) can be calculated with the following equation:

𝑟 𝑖𝑚 =

∑
∀𝑝∈ (𝑡𝑖−1,𝑡𝑖 ) 𝑠 (𝑝)
𝑡𝑖 − 𝑡𝑖−1

(4.3)

where 𝑝 represents the time when a packet was observed on the sink, and 𝑠 (𝑝) is the size of a packet.
Regarding the burst size, the most simplistic way to derive it is to simply observe when the first

packet was dropped at the start of a measurement scenario. This time represents the time when the
token bucket of a meter was empty or it didn’t have a sufficient amount of tokens for forwarding
a packet. If the pre-policed packets were generated at a much higher rate compared to the policing
rate, the burst size or token bucket size is approximately equal to the sum of the packet sizes of all
the forwarded packets before the first drop.

However, this procedure has a couple of drawbacks. Firstly, since the traffic is generated at a
constant rate, different states of a meter (or a token bucket) are not extensively tested. That is, if the
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Figure 4.5: An illustration of one time-wise sequence of pre-policed and policed packets with the correspond-
ing token bucket state. The scenario depicts two packet groups, where each one contains at least 3 packets
that are not part of the initial burst.

generation rate is higher compared to the configured policing rate, the token bucket will be quickly
almost fully emptied. Therefore, the state of a token bucket (i.e., the range of the number of tokens
in a bucket) will be the same during the whole measurement procedure. Secondly, the DNC based
systems [Van+20] which provide deterministic guarantees require an upper bound of the rate, and
not an average rate. To be more precise, according to Eq. 4.3, the average rate is calculated over a
certain time period. Therefore, the packet distribution in the corresponding time period cannot be
derived from the average rate (e.g., are the packets uniformly spaced or grouped in bursts) and this
is insufficient for the aforementioned systems. Therefore, the average rate is not sufficient. These
observations motivated us to create a novel and more suitable measurement procedure which utilizes
certain properties of DNC mathematical framework. This procedure is presented in the following
section.

4.3.3 DNC-Based Measurement Procedure

In order to test all the different states of a meter, we proposed to use the following traffic generation
procedure. Fig. 4.5 illustrates an exemplary time series of the generated pre-policed traffic during
one measurement run. Source generates multiple randomly-spaced groups of packets at line rate.
The idea behind sending a group of packets at a line rate is two-fold. Firstly, we aim to empty the
token bucket of the corresponding meter to observe the accuracy of burst policing. Secondly, we
strive to observe the accuracy of the token generation rate after the bucket is emptied. To achieve
these goals, considering the token bucket rate and burst, the length of the generated packet group
has to be big enough to observe a burst and a few packets (10 packets in our case) policed at line rate.

Further, to explore how the policing behaves with different initial states of the token bucket
(i.e., number of tokens), we vary the time between packet groups 𝑡𝑖 with the following uniform
distribution:

𝑡𝑖 (𝑟, 𝑏) = U(0, 1.5 × 𝑏

𝑟
), (4.4)
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where 𝑏

𝑟
is the time needed to completely fill the token bucket of a meter. We multiply it by 1.5 to

make sure that the token bucket can be filled fully again during one measurement run.1

4.3.4 Deriving Rate and Burst

In this subsection, we explain how the rate and burst size of a policed flow are derived from a
measurement trace. Deriving a valid (constraining) and accurate token bucket curves (defined with
rate 𝑟 and burst 𝑏) is crucial for ensuring the correct operation of DNC-based systems (as explained
in Sec. 4.1.1). To do so, we rely on token bucket properties and the methodologies provided in the
DNC framework.

Initially, we start with applying min-plus self-deconvolution [LT01]; [VK16] on the measured
policed traffic flow to produce its minimum arrival curve [LT01]; [VK16]. In particular, the minimum
arrival curve represents a valid flow model that can be used as an input parameter (flow description)
for providing guarantees with DNC. For a detailed explanation of the DNC framework, we refer the
readers to [LT01].

There are many ways of deriving a valid (constraining) token bucket arrival curve from the
minimum arrival curve. Any curve which is above the minimum one represents a valid solution. In
this chapter, firstly the rate of a flow is derived from a minimal arrival curve. Afterward, the burst
size is calculated based on the determined rate.

Rate. To derive the rate, the timestamp of the first (𝑡𝑎) packet which is not part of the initial part
(𝑡 < 𝑡𝑎) of the minimum arrival curve (see Fig. 4.6)2 is taken. In our scenario, we can find the first
packet based on the packet inter-arrival times. We define rate 𝑟 as the maximal slope of the minimum
arrival curve 𝑦 between 𝑡𝑎 and any other time instance 𝑡 ≥ 𝑡𝑎 (e.g., 𝑡𝑏 in Fig. 4.6):

𝑟 = max
∀𝑡,𝑡>𝑡𝑎

(𝑦 (𝑡) − 𝑦 (𝑡𝑎)
𝑡 − 𝑡𝑎

)
. (4.5)

Burst. To calculate the burst size, we simply find the minimal 𝑏 which satisfies the following
equation:

𝑏 + 𝑟 × 𝑡 ≥ 𝑦 (𝑡) . (4.6)

Using the previously explained procedure, it is ensured that the derived token bucket arrival
curve 𝛾𝑟,𝑏 is always above the self-deconvoluted minimum arrival curve. Hence, it is constraining
the flow with rate 𝑟 and burst 𝑏.

4.4 Switch Measurements

The main goal of this section is to understand the traffic policing capabilities and accuracy of carrier-
grade OF switches. Therefore, in the beginning, it is discussed how traffic policing is realized in
OF (see Sec. 4.4.1). Afterwards, the measurement setup is presented (see Sec. 4.4.2). While the
measurement results are presented in Sec. 4.4.3.
1If multiple meters are used during the same run, the corresponding generated packet groups (one group belongs to one

meter) are interleaved. In these cases, 𝑡𝑖 (Eq. 4.4) separates interleaved packet groups.
2At higher policing rates, switches forward the packets in microbursts (at a line rate). In such cases, we take the timestamp

of the last packet of the first microburst. This effect is presented in Sec. 4.4.3.6.
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Figure 4.6: An illustration of one time-wise sequence of policed packets (measured traffic trace) with the
corresponding self-deconvoluted function and the constraining token bucket arrival curve.

4.4.1 OpenFlow Meters

In OF, traffic policing can be realized with the metering feature [McK+08]. Metering is introduced in
OF 1.3 [McK+08] and it is supported by most of the carrier-grade switches. This feature is typically
realized as a hardware meter. In OF, meters and flow rules are disjoint. Hence, to police a traffic flow,
a meter has to be configured and assigned to the corresponding flow rule as part of the instructions
of the flow rule.

Various metering configurations are supported [McK+08], such as: i) rate policing (either kbps or
packets per second (pps)), ii) burst size policing (either kbps or pps), iii) different band types (excess
traffic is either dropped or remarked and forwarded), iv) collecting metering statistics.

4.4.2 Setup

In this part, the measurement setup, parameters, and procedure are introduced. The setup is based on
the generic measurement setup presented in Sec. 4.3.1. Table 4.1 shows the considered OF switches
for benchmarking. To measure the performance of the traffic policing feature of these switches, the
following measurement setup presented in Fig. 4.7 is constructed. It consists of two servers, one
networking tap, and a Device Under Test (DUT), i.e., one of the switches from Table 4.1. On the first
server (i.e., Host 1 in Fig. 4.7), a Ryu SDN controller [Ryu15] is deployed, running a custom application
that configures the DUT with a certain number of flow rules, and police the traffic based on the
parameters listed in Table 4.2. We note that the parameter values are chosen based on the related
SotA approaches [Jan+15]; [Van+20]. Configuring a DUT (i.e., modifying flow rules and meters) is
done through OF 1.3 (green dashed line in Fig. 4.7). Each inserted flow rule matches the incoming
traffic with a certain unique IP address on port 1. The matched traffic then passes through exactly
one unique meter, and it is forwarded further on port 2 (packets can be dropped depending on the
policing outcome). Additionally, Host 1 runs Moongen traffic generator [Emm+15] to send the DP
pre-policed traffic (blue line in Fig. 4.7). This generated traffic is mirrored by the networking tap
device, and it is forwarded to both, the DUT and the second server which contains Endace DAG
7.5G4 measurement card [Lim16]. Finally, based on the configured rules, the DUT forwards the
traffic to the Host 2 server (equipped with a measurement card). Thus, on the second server, it is
possible to obtain traffic traces of both, pre-policed and post-policed traffic. The cases when the total
pre-policed rate is lower or equal to the total configured policing rate are not considered.
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Figure 4.7: The measurement setup.

Table 4.1: Specifications of the evaluated switches: names, ASIC, CPU, and ports.

Switch ASIC CPU Ports

HP E3800 HPE ProVision Freescale P2020 48×1G-RJ45 + 4×10G-SFP+
DELL S3048-ON Broadcom StrataXGS undisclosed 48×1G-RJ45 + 4×10G-SFP+
DELL S4048-ON undisclosed undisclosed 48×10G-SFP+ + 6×40G-QSFP+
Pica8 P3290 Broadcom Firebolt 3 Freescale MPC8541CDS 48×1G-RJ45 + 4×10G-SFP+
Pica8 P3297 Broadcom Triumph 2 Freescale P2020 48×1G-RJ45 + 4×10G-SFP+

Table 4.2: Considered Parameters

Parameter Abbreviation Configured on Values

Number of flows 𝑛 Ryu, MoonGen 1, 10
Policing rate [kbps] 𝑟 Ryu, MoonGen 10, 102, 103, 104, 105

Burst size [kbits] 𝑏 Ryu, MoonGen 13, 15, 30, 50, 75, 100, 200, 300, 500, 1000
Packet size [byte] 𝑠 MoonGen 100, 500, 1000, 1500

4.4.3 Results

4.4.3.1 Policing Flags Support

Table 4.3 lists the supported policing flags and the total number of available meters within each
switch. Furthermore, for easier comparison, the table lists their corresponding flow table size (val-
ues are taken from [Van+19a]). To begin with, we observe that all the switches do support a traffic
policing feature, except the ones manufactured by Dell (i.e., 1G S3048-ON and 10G S4048-ON). There-
fore, we only consider Pica8 and HP switches for the measurements. Moreover, considered HP device
only supports rate policing, while Pica8 switches support also burst policing in addition to rate. As a
result, this limitation significantly constrains the usage of HP switches in predictable networks. This
is discussed in more detail in Sec. 4.6.
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Table 4.3: Supported Policing Flags, and Number of Meters

Switch- Policing Flags Band Type Number of

Type rate pps burst stats drop dscp_remark meters flows

HP E3800 ✓ ✓ × ✓ ✓ ✓ 2047 ca. 4085

Pica8 P3290 ✓ ✓ ✓ ✓ ✓ ✓ 4096 2046

Pica8 P3297 ✓ ✓ ✓ ✓ ✓ ✓ 8192 4094

DELL S3048-ON × × × × × × -/0 1000

DELL S4048-ON × × × × × × -/0 1000

As it can be seen in Table 4.3, Pica8 switches support significantly more meters compared to HP.
Since SotA approaches rely on a fine-grained flow control [GVK17], the total number of flows on
each switch in the network can easily grow up to several thousands [Van+20] (e.g., over 2000 flow
rules). Thus, having around 2000 meters may be insufficient for some use-cases. Furthermore, Pica8
switches are equipped with more meters than the flow table size. This can facilitate the deployment
of hierarchical traffic policing approaches [Doc21].

Finally, regarding the band types (see Sec. 4.4.1), it is observed that HP and Pica8 switches support
both drop and packet remarking.

4.4.3.2 Processing Time

To measure the impact of traffic policing on the packet processing time of each switch, two sets of
measurements are performed, with and without policing. To disable policing, we do not configure
the flow rules to forward the matched traffic to each corresponding meter. The processing time of
each packet is the difference of a packet’s timestamp before and after (policing and) forwarding it.
In order to identify each packet, each packet has a unique Media Access Control (MAC) address.

Outcome. The minimal, maximal, and average packet processing time of switches are presented
in Fig. 4.8 (the data is consolidated and based on all the measurement runs). Overall, there is no statis-
tically significant impact of policing on the processing time. For instance, the minimal (and maximal)
packet processing time of HP 3800 is the same in both cases, i.e., 𝑡𝑚𝑖𝑛 ≈ 3 𝜇𝑠 (and 𝑡𝑚𝑎𝑥 ≈ 4 𝜇𝑠). To be
more clear, we also illustrate five specific scenarios in an isolated manner in Fig. 4.9. These scenarios
have the same packet size of 1000 bytes, but different configured policing rate and burst size (see
Fig. 4.9). Accordingly, Fig. 4.9 shows that first, the processing time of the Pica8 switch is higher than
HP. More importantly, it can be seen that the packet processing time with and without policing is
almost the same, even for different policing rates. Thus, it can be concluded that the policing is im-
plemented in hardware (processing time usually varies a lot in software implementations [Van+19a]).
Furthermore, it can be assumed that all the results presented in comprehensive SotA hardware mea-
surement studies [Van+19a]; [Kuź+18]; [Bau+18] can be valid in cases with policing enabled.
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Figure 4.8: Impact of metering on the processing time. All the measurement data is aggregated.
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Figure 4.9: Impact of metering on the processing time for five different measurement scenarios.

4.4.3.3 Verifying the Derived Token Bucket Curves

Fig. 4.10 depicts the initial part of the policed traffic trace, its min-plus self-deconvolution (i.e., mini-
mum arrival curve), and the derived token bucket arrival curve for three different measurement runs.
Since the switches police the traffic according to the token bucket algorithm, the initial parts of the
self-deconvoluted function and policed traffic trace are very similar (see Fig. 4.10). Furthermore, the
derived rate and burst of each token bucket arrival curve indeed fit well to the corresponding min-
imum arrival curve. We note that relying on the configuration values for generating a valid arrival
curve has never been sufficient in our experiments. This means that the evaluated switches have
always forwarded more traffic than expected.

4.4.3.4 Rate Deviation

Fig. 4.11 illustrates the relative deviation of the derived policing rate from the configured one for Pica8
P3290, Pica8 P3297, and HP E3800. Overall, the derived rate often exceeds the configured one (average
deviation is around ∼+1%), hence, the switches forward excess traffic into the network. This can lead
to delay violations and even packet loss. Furthermore, in the case of lower rates, both Pica8 switches
significantly deviate from the expected flow rate. For instance, if we configure a meter to police the
traffic with the rate of 10 kbps, the forwarded policed rate is around 60% higher than expected, i.e.,
∼ 16 kbps. This unexpected inaccuracy can have a significant impact on deploying SotA solutions,
which is further investigated in the discussion section. Nevertheless, these deviations appear to be



4.4. Switch Measurements 89

0 10 20 30 40
time [ms]

0

20

40

da
ta

 [p
ac

ke
ts

]
self-deconvoluted flow
policed flow
derived TB curve

(a) Pica8 P3290

0 25 50 75 100
time [ms]

0

20

40

da
ta

 [p
ac

ke
ts

]

self-deconvoluted flow
policed flow
derived TB curve

(b) Pica8 P3297

20 40
time [ms]

0

20

40
da

ta
 [p

ac
ke

ts
]

self-deconvoluted flow
policed flow
derived TB curve

(c) HP E3800

Figure 4.10: An initial part of the policed traffic trace, its min-plus self-deconvolution, and the derived token
bucket arrival curve for the considered switches. In all three scenarios, policing rate is 1 Mbps, and the packet
size is 500 bytes. The configured burst size for Pica8 P-3290 is 100 kbits (or 25 500 byte packets) and for Pica8
P-3297 is 50 kbps (approx 12.5 500 byte packets).

predictable, since, in different scenarios with the same configured/expected rate, the switches police
the traffic with similar accuracy. It indicates that these switches can be used in predictable networks
(if the error is accounted for).

4.4.3.5 Burst Deviation

To study the burst deviation, we start with Fig. 4.12a which presents the relative deviation of the
derived burst size from the configured one for Pica8 P3297 switch. In this case, we consider four
different scenarios with the same parameters except for the packet size (i.e., the number of flows is
1 and the configured rate is 1 Mbit). Firstly, it can be observed that the derived burst size is always
higher than the configured/expected one, which can be detrimental in predictable networks. Also,
the relative burst deviation depends on the configured one. For the higher values, the inaccuracy is
usually below 5%. For example, the relative error is always lower than 3% for the configured burst
size of 500 kbits. Surprisingly, for configurations with smaller burst sizes, the relative error can even
exceed 100%. Moreover, even for the same configured burst sizes, the relative burst deviation varies
with the packet size. This indicates that it is not possible to fully compensate for these inaccuracies
with precise modeling. Even if we perfectly model the error of a device, users might generate flows
with dynamically varying packet sizes. This is very common behaviour when transport protocol
such as Transmission Control Protocol (TCP) are used.

Further, we note that the absolute burst deviation from the configured value of Pica8 P3297 does
not depend significantly on the configured one (see Fig. 4.12b). The absolute burst deviation is always
between 0 and 16 kbits. This suggests that each meter introduces a similar amount of excess traffic
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(a) Pica8 P3297.
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(b) Pica8 P3290.
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(c) HP E3800.

Figure 4.11: Achieved accuracy (in terms of relative deviation) of rate policing depending on the configured
policing rate. We consider four different measurement configurations with the following parameters, 𝑐1 →
(𝑏 = 30 kbps, 𝑠 = 100 bytes, 𝑛 = 1); 𝑐2 → (𝑏 = 100 kbps, 𝑠 = 500 bytes, 𝑛 = 1); 𝑐3 → (𝑏 = 200 kbps,
𝑠 = 1500 bytes, 𝑛 = 1); 𝑐4→ (𝑏 = 75 kbps, 𝑠 = 1000 bytes, 𝑛 = 1). Since it is not possible to configure the burst
size on HP E3800, the corresponding parameters is ignored.

in the network, regardless of the configuration. Additionally, it is not possible to configure a meter
of Pica8 P3297 with a burst value lower than 13 kbits.

The results for Pica8 P3290 follow the same trend, thus we omit to show them.
Regarding the HP E3800 switch, since it does not support the configuration of the burst size,

we present the results without varying this parameter. Fig. 4.12c presents the derived burst size
for four different scenarios with varying policing rate. Even though we cannot configure the burst
size of HP, it can be observed that the burst size is predictable (see Fig. 4.12c). That is, runs with
different measurement parameters produce almost identical results. Furthermore, the results show
that the burst size is correlated with the configured policing rate (see Fig. 4.12c). For instance, if
the configured/expected rate is lower than 100 kbps, the measured burst size is slightly bigger (i.e.,
∼ 12.5 kbits) than the maximal size of an ethernet packet (i.e., 1500 × 8 bits = 12 kbits)3. For the
higher rates, the burst size corresponds to ∼ 12.5% of the configured rate.

4.4.3.6 Microbursts at High Policing Rate

Fig. 4.13 illustrates three very short time snippets taken from different (high-rate) measurement runs
for Pica8 P3297, Pica8 P3290, and HP E3800. The time snippets show the relative timestamps of pre-
policed and policed traffic (i.e., packets) shortly after the token bucket is emptied (with an initial

3This is probably done in order to accommodate adding multiple Virtual Local Area Network (VLAN) tags (one tag is
4 bytes).
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Figure 4.12: Derived burst size from the measurements (with different packet sizes 𝑠) for Pica8 P3297 and HP
E3800. The derived rate for Pica8 P3297 in all presented scenarios deviates at most 0.5% from the configured
value.

burst). In theory, the token bucket algorithm generates tokens continuously. Therefore, since the
pre-policed traffic is sent at a line rate, the outgoing policed traffic in the depicted scenarios should
be uniformly spaced. For example, in the case of Pica8 P3297 (see Fig. 4.13a), the time to generate
enough tokens for one packet is 8 𝜇𝑠 (policing rate is 100 Mbps and packet size is 100 bytes). Hence, an
ideal token bucket algorithm should forward six uniformly separated packets every 8 𝜇𝑠 . However,
in practice, we observe that this is not the case. The packets are actually forwarded in small (micro)
bursts (e.g., two packets for Pica8 P3297, see Fig. 4.13a). In fact, all the considered switches exhibit
the same behavior (see Fig. 4.13). However, this effect is only observable at high policing rates (e.g.,
𝑟 ≥ 50 Mbps) with small packet sizes (e.g., 𝑠 ≤ 500 bytes). Therefore, we can suppose that the token
bucket is discretely filled with a time interval that can be greater than the time needed to generate
enough tokens for a packet. This effect can be accounted for by increasing the derived burst size
accordingly.

4.5 End-Host Policing

In order to evaluate the possibility and accuracy of traffic policing on end-hosts, in this section, we
initially present how traffic policing can be realized on end-hosts. To do so, we present the imple-
mentation details (e.g., algorithm) of one traffic policing function integrated into one DPDK-based
application. This application was used to deploy Chameleon system, which provides deterministic
DP guarantees in data center networks. Additionally, we also discuss the potential sources which can
cause inaccuracies in a such realization. The implementation details and the inaccuracy discussion
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(a) Pica8 P3297.

(b) Pica8 P3290.

(c) HP E3800.

Figure 4.13: Microbursts generated by Pica8 and HP devices at higher policing rates (i.e., 𝑟 = 100 Mbps) with
smaller packet sizes (e.g., 𝑠 ≤ 500 bytes).

represent first contribution of Sec. 4.5. Afterward, the accuracy of this end-host based approach is
compared with the traffic policing results of one carrier-grade switch (second contribution of Sec. 4.5).

Additionally, Chameleon system is already part of one dissertation [Bem+20], however, the
comprehensive implementation details (including the discussion) of traffic policing function (in
Sec. 4.5.1.1) and the performance comparison with one carrier-grade switch (see Sec. 4.5.3) were not
discussed. These two parts represent the main contributions of Sec. 4.5.

4.5.1 DPDK Application

In this part, initially, an overview of the DPDK application which was developed to realize
Chameleon [Van+20] system is provided. More details about Chameleon system can be found in the
background chapter (i.e., Chapter 2). Afterward, the details regarding traffic policing are presented
in detail.

The overall architecture of the DPDK application is presented in Fig. 4.14. The main objective of
the developed application is to connect VMs of users with the physical network in a deterministic
manner, i.e., the application acts as an enhanced virtual switch. The VMs belonging to users run in
QEMU 2.11.1 with KVM and they are connected to the developed DPDK application via virtio using a
vhost-net/virtio-net para-virtualization [Ada+15]. Additionally, each VM is assigned one Rx/Tx queue
pair. The DPDK application (based on 19.08 version) runs in a container with privileged access rights,
hence, it has full access to the Network Card Interface (NIC). The DPDK application utilizes three
separate cores: one for receiving packets (i.e., Rx part), one for sending packets (i.e., Tx part), and
one for the control of the DPDK application.

Rx Part. In the receiving part, the DPDK application uses Virtual Machine Device Queues
(VMDQ) technology available on Intel’s NIC to sort the incoming packets into the physical Rx queue
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Figure 4.14: Architecture of DPDK application running on end-host.

dedicated to the corresponding VMs. The (software) Rx part of the DPDK application (running in an
infinite loop) then pulls a batch of packets and forwards them to the corresponding VMs based on
the MAC destination address and VLAN tag. Additionally, in the receiving part, there is no need for
policing or any other additional functionality.

Tx Part. In the sending part, the DPDK application runs an infinite loop. In it, it pulls packets
(in a batch) from queues connecting the VMs in a round-robin manner. After pulling the packets, the
DPDK application adds the corresponding VLAN tags and it polices the traffic with traffic policing
functions based on the configured parameters. More information regarding tagging can be found
in [Van+20], while the implementation details of traffic policing will be presented in the next sub-
section.

To ensure that the DPDK application processes packets in a predictable manner, the following
configurations were applied on each server before running the application.

• Hyperthreading and Turbo-Boost were disabled. Additionally, all power-saving features were
disabled, and the running frequency of each Central Processing Unit (CPU) was set to the
(maximal) base value. For example, on Intel Xeon E5-2650 v4 CPU, the running frequency was
set to 2.2 GHz for each of the 24 cores.

• Three parts of the DPDK application (e.g., Rx, Tx, and control part) were running on isolated
cores. The isolation was achieved by setting kernel isolcpus parameter for certain 3 cores and
by pinning the DPDK application to those three cores.

• To isolate the available cache to the DPDK application, Intel’s Cache Allocation Technology
(CAT) was leveraged on each server.

4.5.1.1 Traffic Policing Function

The developed traffic policing functionality presented in Alg. 1 is integrated as a functional module
in the previously introduced DPDK application. The traffic policing function processes the packets
sequentially and it follows the leaky token bucket algorithm presented in Sec. 4.1.

In general, upon packet reception, the traffic policing function firstly updates the number of
tokens available in a bucket. Afterwards, it checks if the updated number of tokens is sufficient for
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Algorithm 1 Traffic Policing Pseudocode
Input: Packet Descriptor 𝑝 .
Output: Boolean decision if a packet should be dropped or forwarded.

1: 𝑓 𝑐 = get_flow_config(𝑝) ⊲ Get flow configuration parameters.
2: curr_tsc = rte_rdtsc() ⊲ Get current timer.
3: cycles = (curr_tsc - 𝑓 𝑐 .last_tsc)
4: gen_tokens = cycles * 𝑓 𝑐 .rate_bps ⊲ Calculate number of generated tokens.
5: if (cycles != 0 && gen_tokens/cycles != 𝑓 𝑐 .rate_bps) then ⊲ Check for overflow.
6: gen_tokens = cpu_freq * 𝑓 𝑐 .burst_bits
7: 𝑓 𝑐 .last_tsc = curr_tsc ⊲ Update timer.
8: if ((𝑓 𝑐 .n_tokens + gen_tokens) > cpu_freq * 𝑓 𝑐 .burst_bits) then ⊲ Add generated tokens.
9: 𝑓 𝑐 .n_tokens = cpu_freq * 𝑓 𝑐 .burst_bits;

10: else
11: 𝑓 𝑐 .n_tokens = 𝑓 𝑐 .n_tokens + gen_tokens;
12: packet_size = get_packet_size(𝑝) ⊲ Get packet size in bits.
13: if (𝑓 𝑐 .n_tokens > packet_size * cpu_freq) then ⊲ Check if there are enough tokens.
14: 𝑓 𝑐 .n_tokens -= packet_size * cpu_freq
15: return 1
16: else
17: return 0

sending the corresponding packet. To achieve that, the following procedure presented in Alg. 1 is
used.

After a packet is received, the initial step is to determine to which flow the packet belongs
(determined by destination MAC and VLAN tag) and what are the configuration parameters (i.e.,
𝑓 𝑐) of that flow (see Line 1). The flow configuration parameters include both static and dynamic
variables. Static variables are 𝑓 𝑙𝑜𝑤_𝑟𝑎𝑡𝑒 (in bits per second) and 𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 (in bits), while dynamic
variables are the current number of available tokens (initialized as𝑛_𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞∗𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒)
and the Time Stamp Counter (TSC) of the last processed packet (i.e., 𝑙𝑎𝑠𝑡_𝑡𝑠𝑐). The unit of the total
number of available tokens is 𝑏𝑖𝑡 ∗ 𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞. We use the previously mentioned unit to avoid the
potential inaccuracy caused by rounding up from division (later in the algorithm). TSC is a 64-
bit register which counts the number of CPU cycle since reset. Afterwards, the flow configuration
parameters are loaded, and the current TSC is read and saved into a variable (see Line 2). Since
hyperthreading, turbo-boost, and all power-saving features were disabled on each server, the CPU is
running at a constant frequency. This means that the TSC counter increases in a predictable manner
(e.g, the value of TSC for Intel Xeon E5-2650 v4 CPU, increases for 2.2 ∗ 109 cycles in one second),
and it is not influenced by the total number of performed instructions.

The relative time (expressed as the number of CPU cycles) elapsed between two consecutive
received packets can be calculated from the values of TSC counter of the current and previously
processed packet (see Line 3). Hence, the total number of generated tokens during this time can be
calculated by multiplying the number of elapsed cycles with the configured flow rate (see Line 4).

If the time elapsed between two consecutive packets is high, variable 𝑔𝑒𝑛_𝑡𝑜𝑘𝑒𝑛𝑠 could overflow.
This situation is handled by setting the value of𝑔𝑒𝑛_𝑡𝑜𝑘𝑒𝑛 to 𝑐𝑝𝑢_𝑓 𝑟𝑒𝑞∗ 𝑓 𝑐 .𝑏𝑢𝑟𝑠𝑡_𝑠𝑖𝑧𝑒 , if an overflow
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indeed happens (see Lines 5-6). Afterwards, the current TSC time is saved (see Line 7) and the total
number of generated tokens is added to the total number of available tokens (see Lines 8-11).

Finally, the total packet size including all headers is determined (see Line 12) and if the number
of available tokens is sufficient, the packet is marked for forwarding (see Line 15). If there are an
insufficient amount of tokens, the packet is marked for dropping (see Line 17).

Potential Sources of Error. Since this solution is software-based, there are multiple potential
sources of error and they are discussed in the following.

• Sending time of a NIC is not controlled. After the traffic policing function determines if a
certain packet should be dropped or forwarded, the corresponding packet is simply forwarded
to the NIC which sends it into the network. However, the developed application does not con-
trol the sending time, thus, the corresponding packet can be delayed for an arbitrary amount
of time (based on NIC), which could lead to decreased accuracy of rate and burst policing. This
problem can potentially be solved by utilizing the planned sending time feature (e.g., Earliest
TxTime First (ETF)) which is available on many newly developed NICs.

• Variable code running time. Firstly, obtaining the timestamp of a packet in the DPDK
application occurs at the start of the traffic policing code (i.e., see Line 2). Secondly, the time
to run the presented traffic policing code and the other code in the DPDK application can vary
from packet to packet. Therefore, if two consecutive packets are processed at a significantly
different rate, this could introduce inaccuracies.

• Overloading the app. In an extreme scenario, there could be 20 VMs connected to the devel-
oped traffic policing Tx part of the DPDK application running on one core. If all VMs generate
a huge amount of traffic, the memory and the DPDK application could be overloaded, thus,
introducing inaccuracies.

4.5.2 Measurement Setup

To measure the accuracy of the previously introduced software realization of traffic policing function,
we simply run the DPDK application on one Dell R530 server and connect it via a 1 Gbps physical
link to an Endace DAG 7.5G4 measurement card. The standard measurement procedure is used,
as introduced in Sec. 4.3.2. This means that one VM generates the traffic at a maximal rate (e.g.,
equal to the virtual link rate of 1Gbps), and the accuracy of traffic policing is determined from the
observed average values on the measurement card. The server runs Ubuntu 18.04 (4.15.0-66-generic
kernel) and it has the following hardware specifications: 1) Intel Xeon E5-2650 v4 @ 2.2 GHz CPU
with 24 cores, 2) 128 GB of Random Access Memory (RAM), 3) X540 NIC. The DPDK application
is configured to pull packets one by one (i.e., there is no batching) and to add 6 VLAN tags to each
packet belonging to any of the configured flows.

Tab. 4.4 shows the considered parameters and their values used for collecting the measurement
data.
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Paremeter Values

Num. VMs 1

Num. Flows per VM 1

Packet Size [byte] 100, 700, 1300

Rate size [kbps] 5 × 104, 105, 5 × 105, 106, 5 × 106, 107, 5 × 107, 108, 2 × 108, 5 × 109

Burst size [bits] 3 × 104, 105

Table 4.4: Considered parameter and their values in the second measurement campaign.
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Figure 4.15: Comparison of DPDK-based traffic policing and Pica8 P3297 for different configured policing
rates. (a) Figure with full y-axis range, and (b) zoomed figure with shorter y-axis range.

4.5.3 Results

Fig. 4.15 illustrates the achieved rate policing accuracy of both, the presented DPDK application
which includes traffic policing function and Pica8 P3297 switch. Initially, it can be observed that for
low policing rates, Pica8 switch exhibits much higher inaccuracy (e.g., max. relative error is around
12%) compared to the DPDK application (e.g., the relative error is below 1%). This excessive deviation
of rate (and burst) policing accuracy is common for many carrier-grade switching hardware devices,
as demonstrated in Sec. 4.4.3. On the other hand, when the policing rate increases, the accuracy of
Pica8 device also significantly increases. That is, for policing rates higher or equal to 1𝑀𝑏𝑝𝑠 , Pica8
device achieves higher accuracy compared to the DPDK-based solution.

The results for burst policing follow the same trend, thus, they are not shown.

4.6 Discussion

In the previous sections (i.e., in Sec. 4.5 and Sec. 4.5.3), it is shown that the carrier-grade switches
suffer from some hardware limitations. Therefore, they exhibit inaccurate traffic policing when the
configured traffic rate and burst values are low (e.g., rate policing is lower than 1𝑀𝑏𝑝𝑠). Depending
on the brand and model of the switch, these inaccuracies can occur for rate and/or burst policing. Two
approaches can be followed to resolve these policing issues. Firstly, the hardware implementation
of the switches can be further improved or better and potentially more expensive devices could
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be used. Secondly, the policing inaccuracies could be modeled and accounted for in the network
management frameworks. In the second case, accounting for these policing inaccuracies can lead to
lower performance of such networks (e.g., lower network utilization).

To discover the impact of these policing limitations on the network performance (i.e., second
case), the simulation tool presented as part of Chameleon [Van+20] system is used. Chameleon
is a cloud provider system that delivers strict end-to-end delay guarantees to network flows. In
Chameleon, a flow is characterized by a source-destination node pair, data rate, burst size, and the
required delay. Chameleon relies on DNC theory, priority queuing, and a simple greedy algorithm to
provide the delay-constrained path allocation to the incoming traffic flows, with no packet loss (more
details are provided in the background section). In particular, given a network and a set of flows, we
are interested to find out how the policing limitation of the switches can affect the utilization of the
network. To do so, we use a 4-fat-tree network with 10 servers per rack, each hosting 10 virtual ma-
chines. The network switches are considered with four priority queues (each with different assigned
delays), and 1 Gbps of the link bandwidth. The network flows are generated randomly according
to service types used in our previous work [Van+20], normally distributed. The considered flows
also include flows with low rate and burst requirements, thus, policing them might cause waste of
resources. To show the impact of the hardware limitation, we compare four cases:

1. Chameleon: The policing is set to be 100% accurate (the perfect case).

2. PICA-hw: Pica8 P3297 switches are deployed in the whole network. In this case, we consider
the hardware limitation by setting the minimum burst size to 17 kbits (based on the results in
Section 4.4.3.5). However, we assume that policing inaccuracies are resolved.

3. PICA-hw-inacc.: Pica8 P3297 switches are considered similar to the previous scenario. In ad-
dition to the hardware limitations (i.e., setting the minimum allowed burst size to 17 kbits),
according to Fig. 4.12b, the effect of burst policing inaccuracy is included.

4. HP : The network switches are considered to be HP E3800, which does not support burst polic-
ing. In this case, we generate a model based on Fig. 4.12c which translates the expected burst
size and rate to the deployed policed configurations of the HP switches.

Considering these four cases, we compare the total number of accepted flows and the achieved
network utilization in Fig. 4.16. Surprisingly, Fig. 4.16a shows that the cost of hardware limitation and
policing inaccuracy can be very high if there are a lot of flows with low rate and burst requirements.
In particular, compared to the perfect policed case (i.e., Chameleon), it can be seen that the network
consisting of Pica8 switches accepts around 50% fewer flows. Since the OF metering feature in
Pica8 switches cannot be configured with a lower burst size than 17 kbits, the flows with lower
burst requirements are being policed with a higher burst. This leads to the waste of resources in
the network, i.e., a lower number of accepted flows for PICA-hw case. Also, it can be seen that
considering the burst policing inaccuracy (PICA-hw-inacc.) causes the network to accept even fewer
flows than the PICA-hw case (overall around 35% of the perfect case). For the HP case, since it does
not support configuring burst policing, the number of accepted flows is very low, around 2% of the
perfect scenario. Similarly, the considered traffic policing limitations also decreased the network
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Figure 4.16: The role of accurate traffic policing in (a) number of accepted flows, and (b) network utilization.

utilization significantly (see Fig. 4.16b). These shocking values indicate that traffic policing plays an
important role in the performance of the networks.

4.7 Conclusion

The contributions presented in this chapter represent one of the first steps towards measuring and
modeling the performance of both, in-network and end-host based traffic policing. Initially, we have
presented a generalizable DNC-based measurement methodology which can be used to determine
and model the accuracy and precision of hardware- or software-based policing functions.

Afterwards, considering a set of modern carrier-grade OF switches, the impact of the policing
on the packet processing time is measured. It was demonstrated that not all the evaluated switches
(e.g., Dell S4048-ON) support OF traffic policing feature. For those who support, the policing feature
has almost no impact on the packet processing time, which is interesting from the predictability
point of view. However, we have observed these switches have some policing limitations, e.g., it is
not possible to have a burst lower than a certain value in HP and Pica8 brands. As a result, these
switches may not be suitable for certain use-cases such as industrial networks, where usually the
burst is small [GVK17]. Additionally, our measurements have shown that these switches do not
perform the policing accurately, especially for traffic flows with low rate and burst size.

In addition, the implementation details of one end-host DPDK-based traffic policing function
are presented and discussed. It was demonstrated that the aforementioned end-host traffic policing
function offers higher policing accuracy for lower rates (e.g., < 1𝑀𝑏𝑝𝑠) compared to one carrier-grade
switch. However, for higher rates the performance is reversed.

The study (in Section 4.6) was performed to find out what is the impact of traffic policing limi-
tations and inaccuracies of carrier-grade switches in a realistic cloud network settings. To do so, the
simulation tool presented in [Van+20] was used. The simulation results indicated that these limi-
tations can actually have a significant impact on the network, especially in terms of the number of
accepted flows and network utilization.

The contributions of this chapter represent one of the crucial building blocks for realizing QoS in
virtualized programmable networks. That is, understanding how to model and measure the perfor-
mance of traffic policing enables in virtualized programmable networks: (1) isolating the DP traffic
belonging to different tenants, and (2) providing end-to-end DP guarantees to tenants.
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4.8 Future Work

The contributions presented in this chapter represent one of the first steps towards understanding
traffic policing and they open up several interesting avenues for future research. In particular, the
burst and rate policing inaccuracies can be modeled and accounted for in the predictable network
modeling frameworks, such as DNC. Moreover, it would be interesting to investigate if more accurate
traffic policing can be realized with other programmable networking technologies, such as P4.

Moreover, a simulation study presented in the discussion section (see Sec. 4.6) indicates that
the inaccuracies of traffic policing can have a significant impact on network utilization. Therefore,
novel network management solutions which include and model these inaccuracies are needed. For
example, including these inaccuracies in an admission control algorithm might increase the overall
utilization of the network.





Chapter 5

Providing Control and Data Plane
Guarantees in Programmable Networks

New technological frameworks and architectures such as Industry 4.0 [BAP17], 5G [PSS16], and even
now 6G networks [Dan+20], let new applications appear on the horizon, such as remote vehicle
control [FN12] or flexible factories. These applications often have very high Quality of Service
(QoS) requirements. Firstly, they require the end-to-end per-packet Data Plane (DP) deterministic
guarantees (e.g., bounded maximal packet delay, and no packet loss). Secondly, they also require
consistent and timed network update guarantees from the Control Plane (CP). That is, a network
should be updated in a consistent manner, without violating the guarantees of the already embedded
DP flows. In addition, the time when a network is updated should be known. This is crucial in
factories, where Automated Guided Vehicle (AGV)s typically have a predefined path which crosses
many different wireless cells. Hence, they have to be often handovered, and during each handover
procedure, it is crucial to ensure that the network is updated in a consistent and predictable manner.
That is, all the rules that enable the connectivity should be established before an AGV is actually
handovered. Failing to do so might result in connection interruption, and loss of control of AGV.

Naturally, to increase their revenue, virtualized programmable network should be able to support
all kinds of services and applications. That is, they should also support traffic types which might
require deterministic DP and CP guarantees. However, most of programmable network virtualization
systems simply do not support such traffic types [She+09]; [Al-+14]; [Ble+16a]. In addition, the other
state-of-the-art (SotA) systems that provide either deterministic DP guarantees or consistent network
updates also do not offer adequate solutions. To the best of our knowledge, no system provides
deterministic DP and consistent timed network update guarantees yet.

Therefore, in this chapter, we propose NAGA, a generic network architecture that integrates pre-
dictable (i.e., consistent and timed) CP operation into DP networks providing end-to-end latency
and throughput guarantees. NAGA combines a centralized network logic with in-band network con-
trol; without the need for dedicated CP channels being physically isolated, NAGA revolves the need
for dedicated control channels of many centralized concepts. Furthermore, to not limit itself to a
close network area, such as data center networks, NAGA relies only on traffic control mechanisms
as available in current programmable SotA switches. The measurement methodology presented in
Chapter 4 enabled us to accurately measure the switches and to model them within the control logic
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of NAGA. Therefore, in contrast to SotA, NAGA integrates the available features of programmable de-
vices and puts them on the network edge; hence, it does not require full end-host control. Thus, NAGA
can be integrated and deployed in virtualized programmable networks. This chapter documents the
needed steps to realize a system with predictable DP and CP. It first reports on the system model fol-
lowed by measurement results of existing programmable networking hardware. The measurement
results show that existing hardware provides both predictable DP and CP operation nowadays, in
contrast to existing Software-Defined Networking (SDN) devices which mostly rely on Open Flow
(OF) [Van+19a]; [Bau+18]; [Kuź+18]. In addition, it uses network calculus to model and integrates
predictable network control into programmable networks. Whereas simulation results provide a
sensitivity analysis of NAGA for large-scale settings, a prototype implementation reveals that recon-
figuring programmable networks in a timely and predictable way is indeed possible.

The content presented in this chapter is currently under submission:

• N. Ðerić et al. “NAGA: A Deterministic Programmable Network with Update Timing Guaran-
tees.” Under Subimssion.

The structure of this chapter is as follows. Sec. 5.1 motivates NAGA in more detail. Sec. 5.2
introduces the system model and scheduling algorithm of NAGA . Sec. 5.3 reports on the predictability
analysis of a carrier-grade programmable switch. Sec. 5.4 reports on the prototype implementation,
evaluation and simulation results. Sec. 5.5 summarizes related work and Sec. 5.6 concludes the
chapter and it outlines the possible future research directions.

5.1 Motivation and Contribution

SotA approaches [Van+19b]; [Van+20]; [Jan+15]; [Gro+15] which focus on achieving predictable
latency suffer from two main issues: end-host-based control and lack of CP guarantees. While
SotA consistent network update systems and solutions do not provide deterministic network update
timing guarantees, hence, they are also not able to satisfy the stringent CP requirements. In the
following, we explain these shortcomings in more detail, and in the end, we explain how NAGA

resolves them.
1. End-host Control Assumption. SotA assumes that network operators can fully control end-

hosts, which is, actually, a valid assumption in private Data Center (DC) networks. This consideration
is made since SotA solutions [Van+20]; [Jan+15]; [Gro+15]; [Van+19b] meter the traffic at end-hosts
(e.g., using Data Plane Development Kit (DPDK) or Linux TC). It ensures that the generated traffic
follows the predefined characteristics (maximum flow rate and burst). Hence, it can be modeled by
mathematical frameworks such as network calculus to provide deterministic end-to-end performance
guarantees. However, full end-host control is not possible in non-data center scenarios. For example,
in virtual networks [She+09]; [Al-+14] or Wide Area Network (WAN)s [Hon+13], it is not possible
to control end-hosts, but only the forwarding devices in the network [She+09]; [Al-+14].

2. The Lack of Control Plane Guarantees. The second main issue with the SotA deterministic
systems [Van+20]; [Jan+15]; [Gro+15]; [Van+19b] is that they do not consider CP at all. That is, they
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(a) Step 1 (b) Step 2 (c) Step 3

Figure 5.1: An example of consistent reconfiguration procedure. Before embedding Flow 2, Flow 1 has to be
rerouted consistently. 𝐶1 is a centralized network controller running NAGA.

assume that there is an out-of-band CP network which distributes, inserts, and updates the forward-
ing rules reliably. In addition, some of the SotA systems (e.g., [Van+20]) use reconfiguration algo-
rithms in order to achieve higher network utilization. In such systems, the already embedded flows
might block the insertion of new arriving flows. Thus, reconfiguration algorithms (e.g., [Van+20])
aim to re-route already-embedded flows in order to make space for new flows. For example, in Fig 5.1,
it is crucial to ensure that Flow 1 is re-routed before adding Flow 2. Hence, either the end-hosts or the
forwarding devices must be reconfigured consistently, which is impossible without considering the
CP at all. Any inconsistencies can lead to performance violations in the DP, which is not acceptable
in deterministic networks.

3. Network Update Timing Guarantees. Most of the SotA consistent network update sys-
tems and solutions [Zho+21]; [NCC17]; [Jin+14] focus only on providing consistent updates, hence,
they do not provide any network update timing guarantees. While some solutions [MSM15] provide
stochastic update timing guarantees (e.g., 99.9𝑡ℎ percentile), they are designed for non-deterministic
(control) networks. Thus, this group of SotA works simply cannot satisfy the aforementioned strin-
gent CP requirements.

Proposed solutions in NAGA. To avoid utilizing end-hosts, in contrast to SotA, NAGA places all
important functionalities (e.g., traffic metering) on the edge switches of a network. In Sec. 5.3, we
demonstrate that indeed SotA programmable switches exist that provide the needed functionalities
in a predictable (deterministic) way. Therefore, NAGA is a system that provides predictable end-to-end
guarantees (both in DP and CP) without needing to control the end-hosts.

To provide deterministic network update time guarantees, NAGA relies on an in-band CP with per-
formance guarantees, using the network calculus framework [Cru91a] to ensure that the CP rules are
never lost and delivered predictably (see Sec. 5.2). Secondly, we present a scheduling algorithm that
considers the processing time of adding/reconfiguring rules of the forwarding devices (see Sec. 5.2.2)
in order to guarantee the predictability (with respect to timing) and consistency of the network up-
dates (see Sec. 5.2).

5.2 System Model

This section outlines the NAGA’s model. We consider a label-based network (based on Virtual Local
Area Network (VLAN) tags) with two types of switches: edge and transit. Edge switches meter
and tag all (added tags determine the path of a flow) packets coming from the connected hosts and
forward them to the next hop in the network (according to the routing decision, determined by a
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Figure 5.2: NAGA system model. Example: The controller configures 𝑆3 to embed a flow (2) between 𝐻2 and
𝐻3 by sending a rule via in-band CP flow.

controller). Moreover, they also perform label-based forwarding for the traffic flows coming from
the other network switches. The transit switches perform only the label-based forwarding. In fact,
upon receiving a packet, they pop the outer tag and forward them accordingly. Further, transit
switches are configured only once when bootstrapping the network. For example, in Fig. 5.2, 𝑆1, 𝑆3,
and 𝑆4 are edge switches, while 𝑆2 is a transit switch (no directly attached host). The tagging rules
are distributed on-demand by the centralized controller (or controller) to each edge switch via an
in-band CP.

Multiple SotA deterministic [Van+20] and network update [Jin+14] systems consider similar net-
work types as it simplifies network management. To be precise, in such networks (including label-
based), reconfiguring a single flow requires only changing or modifying a single rule on one edge
switch. Therefore, performing network updates (or sequence of flow reconfigurations) becomes less
challenging compared to a classical SDN network. Moreover, such networks are more easily man-
aged by a distributed SDN CP (needed for scalability), as network partition can be done based on
edge switches.

Bootstrapping the in-band CP. To distribute (on-demand) flow updates to the edge switches,
we use an in-band CP. Additionally, we propose to use flow embedding solutions that provide deter-
ministic per-packet guarantees (i.e., bounded delay, no packet loss) for provisioning the in-band CP.
To be precise, in this paper we re-use one SotA solution presented in the next subsection. Having
deterministic guarantees on CP packets enable us to develop a novel network scheduling algorithm
(presented in the two following sections) which ensures a predictable (guaranteed timing) and con-
sistent update of forwarding rules.

Architecture & online flow Admission Control (AC). During the runtime, a controller man-
ages the network. It listens to end-to-end flow requests and tries to embed them (Fig. 5.2). The
controller uses the AC algorithm proposed in Chameleon [Van+20] (implementation is available on
github [Van20]). This algorithm embeds flows in the network in an online manner by considering
a queue-level topology [GVK17], and LARAC [Jut+01] algorithm for the routing. Further, it em-
ploys the Deterministic Network Calculus (DNC) framework [LT01]; [Cru91a]; [Cru91b] to provide
deterministic guarantees. Moreover, by utilizing flow reconfigurations, it achieves higher network
utilization compared to other similar SotA solutions [Gro+15]; [Jan+15].
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Each flow request has the following parameters: 1) a source host id, 2) a destination host id, 3) a
maximal allowed delay, 4) rate and burst requirements, and 5) a unique 5-tuple as the flow identifier
(src. Internet Protocol (IP), dst. IP, network protocol, src. port, dst. port). After processing each
flow request, the considered AC algorithm outputs the decision if the corresponding flow can be
embedded into the network. If the flow can be embedded, the algorithm outputs a sequence of the
required flow updates to embed the corresponding flow (see Fig. 5.2). We consider this sequence of
flow updates as a single network update. The output flow update sequence can be of two types: (1)
without required reconfigurations and (2) with required reconfigurations.

In the first case, the algorithm’s output is a sequence of flow updates (with size one) that contains
only one flow insertion (no needed reconfigurations). In this case, the controller has to insert only
one tagging and metering rule on the corresponding edge switch, e.g., the edge switch 𝑆3 for flow 2
in Fig. 5.2.

In the second case, the algorithm outputs a sequence of flow reconfigurations (i.e., rerouting),
followed by a single flow insertion. Thus, before embedding the flow request (i.e., inserting the
forwarding rule), the controller reroutes the corresponding sequence of flows in the network to free
up the occupied resources. For example (see Fig. 5.2), before embedding Flow 2, it is necessary to
reroute Flow 1. To do so, the controller has to first modify the already inserted tagging and metering
rule of Flow 1 on the edge switch 𝑆3. After that, it inserts the rule of Flow 2 on the edge switch 𝑆3. To
know when to add Flow 2, the reconfiguration time of Flow 1 must be predictable.

To solve this problem, we propose a novel scheduling algorithm in Sec. 5.2.2 which provides
timing guarantees and consistent network updates by utilizing deterministic in-band CP. Briefly, the
algorithm processes the output of AC and schedules the sending time of each flow update from the
controller to the corresponding edge switch.

5.2.1 Achieving CP Consistency

To achieve predictable network updates, we use a similar approach as presented in Qjump [Gro+15].
We send CP packets in a uniform manner that matches the rule insertion or reconfiguration time
of the edge switches (the behavior of the edge switch is measured in Sec. 5.3). Thus, the CP queues
of edge switches are never filled up with more than one control packet. In addition, we also always
send exactly one flow update per CP packet.

The scheduling algorithm presented in the next section relies on the two constraints that are
presented in the following. The first constraint ensures that a single edge switch is never overloaded
with more than one CP packet at any time. While the goal of the second constraint is to ensure that
the dependent flow updates involving multiple switches are processed consistently.
Constraint 1: We first derive how often (i.e., separated uniformly with time interval 𝛿) the CP
packets should be sent from the controller towards an edge switch without filling up its CP queue.
Before elaborating on the example, we define the format of the CP packets. The payload of each
CP packet contains a single flow update message. These update messages are denoted by 𝑢𝑚 =

(𝑎𝑚, 𝑆𝑚), where 𝑢𝑚 is the 𝑚𝑡ℎ flow update, 𝑎𝑚 is its match and action configuration, and 𝑆𝑚 is the
corresponding edge switch that should process the flow update. We explain our approach using
an example and a message sequence diagram respectively depicted in Fig. 5.3. Given an empty
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Figure 5.3: (a) Network example and (b) the respective CP message sequence chart. Two flow updates (e.g.,
𝑢𝑚 and 𝑢𝑚+1) are sent from the controller to the edge switch 𝑆𝑘 . 𝑠′, 𝑗 ′, 𝑝′, 𝑞′ represent the total propagation,
sending, processing, and queuing time update 𝑢𝑚 experienced while traversing 𝑆𝑘−1.

network, let us assume that the controller aims to send two flow updates 𝑢𝑚 = (𝑎𝑚, 𝑆𝑚) and 𝑢𝑚+1 =

(𝑎𝑚+1, 𝑆𝑚+1) to the same edge switches (i.e., 𝑆𝑚 = 𝑆𝑚+1 = 𝑆𝑘 ). For example, 𝑢𝑚 (𝑢𝑚+1) could enable
a flow between 𝐻3 and 𝐻1 (𝐻4 and 𝐻2). Each flow update is encoded into payload of on CP packet.
During the transmission of a CP packet from the controller to an edge switch, the packet can be
delayed at various points in the network. For instance, the packet has to be received, processed, and
en-queued at each transit switch on the path. Therefore, the update packet 𝑢𝑚 will be received by
edge switch 𝑆𝑚 at time 𝑡𝑟 (𝑢𝑚, 𝑆𝑚):

𝑡𝑟 (𝑢𝑚, 𝑆𝑚) = 𝑡𝑠 (𝑢𝑚) + 𝑠 (𝑢𝑚) + 𝑘 (𝑢𝑚) + 𝑝 (𝑢𝑚) + 𝑞(𝑢𝑚), (5.1)

where 𝑡𝑠 (𝑢𝑚) is the time when the controller sent the update packet 𝑢𝑚 , and 𝑠 (𝑢𝑚), 𝑘 (𝑢𝑚), 𝑝 (𝑢𝑚),
and 𝑞(𝑢𝑚) are the total duration of sending time, propagation time, switch DP processing time (for
packet forwarding), and queuing time that update packet 𝑢𝑚 experienced in the network while
going from the controller to the edge switch 𝑆𝑚 . The sending time of each packet at each switch
is calculated by dividing the packet size by the link rate. The total propagation time is derived
based on the total path length between the controller and the corresponding edge switch. Moreover,
the total DP packet processing time is calculated by summing up the value for each switch on the
path between the controller and the corresponding edge switch. Different hardware switches usually
exhibit different DP packet forwarding processing times [Van+19a]. For shortness, instead of writing
(low-variable parameters) 𝑠 (𝑢𝑚) + 𝑘 (𝑢𝑚) + 𝑝 (𝑢𝑚), in the following we will use simply write 𝑧 (𝑢𝑚),
where 𝑧 (𝑢𝑚) = 𝑠 (𝑢𝑚) + 𝑘 (𝑢𝑚) + 𝑝 (𝑢𝑚). Eq. 5.1 can be re-written to:

𝑡𝑟 (𝑢𝑚, 𝑆𝑚) ∈
[
𝑡𝑠 (𝑢𝑚) +𝑚𝑖𝑛

(
𝑧 (𝑢𝑚)

)
, 𝑡𝑠 (𝑢𝑚) +𝑚𝑎𝑥

(
𝑧 (𝑢𝑚) + 𝑞(𝑢𝑚)

)]
. (5.2)

Note: The highest priority queues in the network are governed by DNC, thus, the queues of the
switches will never be overloaded. That is, there will be no packet drops caused by traffic bursts and
insufficient buffer space.
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Further, after an edge switch receives the CP packet (containing one flow update), inserting (or
reconfiguring) the corresponding rule takes some time. As Section 5.3.5 shows, for an edge switch
𝑆𝑚 , this value is predictable and can be upper-bounded with a function 𝑟 (𝑆𝑚). Henceforth, using the
Eq. 5.2, the time when the edge switch 𝑆𝑚 completes receiving and processing the flow update 𝑢𝑚
can be bounded, and is denoted by 𝑡𝑐 (𝑢𝑚, 𝑆𝑚):

𝑡𝑐 (𝑢𝑚, 𝑆𝑚) ∈
[
𝑡𝑠 (𝑢𝑚) +𝑚𝑖𝑛

(
𝑧 (𝑢𝑚)

)
, 𝑡𝑠 (𝑢1) +𝑚𝑎𝑥

(
𝑧 (𝑢𝑚) + 𝑞(𝑆𝑚)

)
+ 𝑟 (𝑆𝑚)

]
. (5.3)

To avoid overloading the CP queue of the edge switch with more than one packet, the next
subsequently sent CP packet (𝑢𝑚+1 in our example) by the controller should arrive right after
the edge switch finished processing the previous one (𝑢𝑚 in our example). This is satisfied when
𝑡𝑟 (𝑢𝑚+1, 𝑆𝑚+1) − 𝑡𝑐 (𝑢𝑚, 𝑆𝑚) ≥ 0 (note that 𝑆𝑚 = 𝑆𝑚+1 = 𝑆𝑘 ). The worst-case is obtained when
the first CP packet experiences the maximum amount of queuing, and the second one none, i.e.,
𝑚𝑖𝑛(𝑡𝑟 (𝑢𝑚+1, 𝑆𝑘 )) −𝑚𝑎𝑥 (𝑡𝑐 (𝑢𝑚, 𝑆𝑘 )) ≥ 0. By using Eq. 5.2 and Eq. 5.3, the first constraint can be
written as:

𝑡𝑠 (𝑢𝑚+1) +𝑚𝑖𝑛

(
𝑧 (𝑢𝑚+1)

)
− 𝑡𝑠 (𝑢𝑚) −𝑚𝑎𝑥

(
𝑧 (𝑢𝑚) + 𝑞(𝑆𝑚)

)
− 𝑟 (𝑆𝑚) ≥ 0. (5.4)

To ensure that the edge switch 𝑆𝑚 = 𝑆𝑚+1 = 𝑆𝑘 always has enough time to receive and process the
previous CP packet containing the update (i.e., 𝑢𝑚), the controller should wait at least 𝛿 (𝑆𝑚, 𝑆𝑚+1)
before sending the following CP packet (i.e., 𝑢𝑚+1) as in the following.

𝑡𝑠 (𝑢𝑚+1) − 𝑡𝑠 (𝑢𝑚) ≥ 𝑚𝑎𝑥

(
𝑧 (𝑢𝑚) + 𝑞(𝑆𝑚)

)
+ 𝑟 (𝑆𝑚) −𝑚𝑖𝑛

(
𝑧 (𝑢𝑚+1)

)
= 𝛿 (𝑆𝑚, 𝑆𝑚+1) . (5.5)

The first constraint can also be written as:

𝑡𝑠 (𝑢𝑚+1) ≥ 𝑡𝑠 (𝑢𝑚) + 𝛿 (𝑆𝑚, 𝑆𝑚+1). (5.6)

Therefore, if the controller already sent flow update 𝑢𝑚 at 𝑡𝑠 (𝑢𝑚), the sending time of the following
update 𝑡𝑠 (𝑢𝑚+1) should satisfy Eq. 5.6 to ensure that the CP queue of the edge switch is never utilized
with more than one packet.

First, most of the variables (e.g., sending time) contained in 𝑧 exhibit very low variance (e.g, prop-
agation time can be assumed to be constant). Second, the two flow updates are sent to the same edge
switch, i.e., 𝑆𝑚 = 𝑆𝑚+1 = 𝑆𝑘 . Therefore, it can be assumed that𝑚𝑎𝑥 (𝑧 (𝑢𝑚)) −𝑚𝑖𝑛(𝑧 (𝑢𝑚+1)) ≈ 0 (e.g.,
propagation times to the same switch cancel out). Hence, making 𝛿 (𝑆𝑘 , 𝑆𝑘 ) ≈ 𝑚𝑎𝑥

(
𝑞(𝑆𝑘 )

)
+ 𝑟 (𝑆𝑘 ).

The maximal total queuing time can be obtained from the considered DNC-based AC algorithm. E.g.,
since the flows are mapped to the highest priority queue, the total maximal queuing time is simply
the number of hops multiplied by the maximum delay of the highest priority queue (i.e., in our case
0.1𝑚𝑠). Hence, if there are 5 hops on the path to the corresponding switch, and the maximal edge
switch reconfiguration time is 𝑟 (𝑆𝑘 ) = 2𝑚𝑠 , 𝛿 (𝑆𝑘 , 𝑆𝑘 ) ≈ 5 × 0.1𝑚𝑠 + 2.0𝑚𝑠 = 2.5𝑚𝑠 .
Constraint 2: The second constraint ensures consistent network updates in scenarios when a con-
troller wants to send two flow updates to two different edge switches, and the second update is
dependent on the first one. That is, in such scenarios, the first update must be received and applied
before the second one. To achieve this, we determine how much two CP packets (destinations are two
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Figure 5.4: (a) Network example and (b) the respective CP message sequence chart.

different edge switches) have to be spaced in time to guarantee that the network update consistency
is achieved.

Let us assume that there is one flow in a network, i.e., Flow 1 between hosts 𝐻3 and 𝐻1 (see
Fig. 5.4). The controller aims to schedule sending time of two flow updates 𝑢𝑚 = (𝑎𝑚, 𝑆𝑚) and
𝑢𝑚+1 = (𝑎𝑚+1, 𝑆𝑚+1) to two different edge switches (i.e., 𝑆𝑚 = 𝑆𝑘 and 𝑆𝑚+1 = 𝑆𝑘-1). In our example,
the first update (i.e., 𝑢𝑚) aims to reroute Flow 1 from path 𝑆𝑘 , 𝑆𝑘−1, 𝑆1 to 𝑆𝑘 , 𝑆𝑘−2, 𝑆1, in order to make
space for Flow 2 (contained in 𝑢𝑚+1). Hence, flow update 𝑢𝑚+1 is dependant on 𝑢𝑚 .

From timing perspective, if we want to ensure that flow update 𝑢𝑚+1 is applied after 𝑢𝑚 , we can
reuse Eq. 5.5. However, in this case, it is not possible to assume that 𝑚𝑎𝑥 (𝑧 (𝑢𝑚)) ≈ 𝑚𝑎𝑥 (𝑧 (𝑢𝑚+1))
(as e.g., propagation times are different). In addition, since Flow 1 (before reconfiguration) and Flow 2
share the same link (i.e., link 𝑆𝑘−1, 𝑆1), it also necessary to ensure that the packets which were on the
previous path of Flow 1 completed the transmission. That is, the previous path should not contain
residual packets (e.g., path 𝑆𝑘 , 𝑆𝑘−1, 𝑆1 in our example). This can be ensured by simply adding the
maximal guaranteed end-to-end delay 𝑑 (𝑢𝑚) of Flow 1 to Eq. 5.5. Therefore, the second constraint
can be formulated as follows:

𝑡𝑠 (𝑢𝑚+1) ≥ 𝑡𝑠 (𝑢𝑚) + 𝛿 (𝑆𝑚, 𝑆𝑚+1) + 𝑑 (𝑢𝑚) . (5.7)

The value of 𝑑 (𝑢𝑚) is provided by AC algorithms. This is also valid for other SotA deterministic
systems.

5.2.2 Scheduling Algorithm

This section presents our network update scheduling algorithm (i.e., Alg. 2) that provides consistent
and timed updates.
Parameters. We denote the number of edge switches in the network with 𝑘 . Parameter
𝛿 (𝑆𝑥 , 𝑆𝑦);∀𝑥,𝑦 ∈ {1, .., 𝑘} is calculated based on Eq. 5.5, the properties of the network (e.g., distances
between switches), and the type of deployed switch (e.g., the processing time is switch-dependent).
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Algorithm 2 Scheduling Algorithm
1: Parameters: 𝛿 (𝑆𝑥 , 𝑆𝑦), 𝑑𝑐 (𝑆𝑥 ), 𝑟 (𝑆𝑥 );∀𝑥,𝑦 ∈ {1, .., 𝑘}
2: States: F , 𝑇 (𝑆𝑥 );∀𝑥 ∈ {1, .., 𝑘}
3: Routine:
4: while 𝑡𝑟𝑢𝑒 do
5: R ← getFlowUpdates()
6: for 𝑖 in [1, .., |R |] do
7: 𝑆𝑥 ← getDst(R[𝑖])
8: 𝑡1 ← 𝑇 (𝑆𝑥 ) + 𝛿 (𝑆𝑥 , 𝑆𝑥 ) ⊲ Constraint 1

9: 𝑡𝑚𝑎𝑥
2 ← 0

10: 𝑓 ← getReconfigurations(F , 𝑡1 − 𝑡𝑚𝑎𝑥
𝑓
)

11: for 𝑗 in [1, .., |𝑓 |] do
12: if Dependent(R[𝑖], 𝑓 [ 𝑗]) then
13: 𝑆𝑦 ← getDst(𝑓 [ 𝑗])
14: 𝑡𝑠 ← getSchedTime(𝑓 [ 𝑗])
15: 𝑑𝑑 ← calcFlowDrain(𝑓 [ 𝑗])
16: 𝑡2 ← 𝑡𝑠 + 𝛿 (𝑆𝑦, 𝑆𝑥 ) + 𝑑𝑑 ⊲ Constraint 2

17: if 𝑡2 > 𝑡𝑚𝑎𝑥
2 then

18: 𝑡𝑚𝑎𝑥
2 ← 𝑡2

19: 𝑡𝑠𝑒𝑛𝑑 ← max(𝑡𝑛𝑜𝑤 , 𝑡1, 𝑡𝑚𝑎𝑥
2 )

20: schedule(R[𝑖], 𝑡𝑠𝑒𝑛𝑑 ) ⊲ Schedule Flow Update

21: 𝑇 (𝑆𝑥 ) ← 𝑡𝑠𝑒𝑛𝑑
22: 𝑡𝑔 ← 𝑡𝑠𝑒𝑛𝑑 + 𝑑𝑐 + 𝑟 (𝑆𝑥 ) ⊲ Calculate Time Guarantee

23: if isReconfiguration(R[𝑖]) then
24: F .insert(𝑡𝑠𝑒𝑛𝑑 ,R[𝑖])

The next input is 𝑟 (𝑆𝑥 ) which shows the maximal reconfiguration time for edge switch 𝑆𝑥 . Moreover,
𝑑𝑐 (𝑆𝑥 ) is the maximal guaranteed delay for each in-band CP flow between the controller and each
edge switch 𝑆𝑥 ∈ {1, .., 𝑘}. These values are obtained from the performance measurements of
network switches and the admission control algorithm.
States. We use dictionary𝑇 with edge switch IDs as keys and values being the time that the last CP
message was sent towards that edge switch (Lns. 1-2). Additionally, F is a set of already-scheduled
reconfigurations.
Routine. The scheduling algorithm runs an infinite loop (Ln. 4) and listens for the output of the
AC algorithm, which is a sequence of flow updates (Ln. 5). In our case, a sequence of 𝑛 flow updates
contains 𝑛 − 1 flow reconfigurations followed by 1 flow insertion. After receiving a sequence of
updates, the scheduling algorithm processes them sequentially in the same manner (Ln. 6).

For each update R[𝑖], 𝑖 ∈ {1, .., 𝑛}, the algorithm detects which edge switch it should send the
update to (i.e., 𝑆𝑥 ) (Ln. 7). Afterwards, it checks when was the last CP message sent 𝑇 (𝑆𝑥 ) to the
corresponding edge switch 𝑆𝑥 and adds the value of parameter 𝛿 (𝑆𝑥 , 𝑆𝑥 ) to it (Ln. 8). This time
(i.e., 𝑡1) represents the earliest possible sending time of a CP message containing the update while
ensuring that the CP queue on the corresponding edge switch is not over-utilized (see Constraint
1 in Sec. 5.2.1).

In the following part of the algorithm (Lns. 10-18), it is investigated if the currently processed
update (i.e., R[𝑖]) depends on some of the previous ones. The flow updates can only be dependent
on the previous flow reconfigurations (not insertions). That is, we need to ensure that the dependent
rerouted flows are fully drained from the network before the flow in hand is updated (for the sake
of consistency). To capture all the relevant reconfigurations 𝑓 , we first load all the scheduled recon-
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figurations from set F which occurred after time 𝑀𝑖𝑛(𝑡1, 𝑡𝑛𝑜𝑤) − 𝑡𝑚𝑎𝑥
𝑓

(Ln. 10). 𝑡𝑚𝑎𝑥
𝑓

represents the
maximum time duration that ensures Constraint 2 is satisfied for all scenarios. Its value is calculated
as 𝑡𝑚𝑎𝑥

𝑓
= 𝑀𝑎𝑥 (𝛿 (𝑆𝑥 , 𝑆𝑦) + 𝑑𝑑 ),∀𝑥,𝑦 ∈ {1, .., 𝑘}, where 𝑑𝑑 is maximum end-to-end delay between

two nodes in the network. The value of 𝑑𝑑 can be calculated with well-known algorithms which can
compute the longest path in a graph with no loops. Afterward, all the selected reconfigurations 𝑓

are processed sequentially in a for-loop in the same manner. For each 𝑓 [ 𝑗], initially, it is checked if
the current flow update R[𝑖] is dependent on it (Ln. 12). We consider them dependent if they share
at least one edge in queue-level topology.

If they are dependent, the scheduling algorithm ensures that also the second constraint for flow
update R[𝑖] and the already scheduled reconfiguration 𝑓 [ 𝑗] is met (Lns. 13-16). To do so, first, the
edge switch (i.e., 𝑆𝑦) and the already scheduled time (i.e., 𝑡𝑠 ) of 𝑓 [ 𝑗] are determined (Lns. 13-14).
Secondly, the flow draining time which corresponds to the max DP delay of 𝑓 [ 𝑗] is read (Ln. 14).
Thereafter, the earliest possible sending time (i.e., 𝑡2) based on the second constraint for the two
updates (R[𝑖] and 𝑓 [ 𝑗]) can be calculated with Eq. 5.7 (Ln. 16). The maximal 𝑡2 earliest possible
sending time is saved (Lns. 17-18), to ensure that the second constraint is met between all the
dependent reconfiguration 𝑓 and the currently processed flow update R[𝑖].

The CP packet containing flow update R[𝑖] is scheduled based on the maximal value of 𝑡𝑛𝑜𝑤 , 𝑡1,
and 𝑡𝑚𝑎𝑥

2 (where 𝑡𝑛𝑜𝑤 is the current time). This ensures that all of the constraints are met. Addition-
ally, the dictionary 𝑇 is updated accordingly (Ln. 21).

After the scheduling time of a flow update is determined, the algorithm can derive the upper
bound of flow update completion time. This is done by adding the maximal time needed to deliver
the CP message (containing the update) to an edge switch (i.e., 𝑑𝑐 ) and maximal reconfiguration
time (i.e., 𝑟 (𝑆𝑥 )) of the corresponding switch to the scheduled sending time. Finally, if the scheduled
update is a reconfiguration, it is inserted into the list of potential dependent updates F (Lns. 23-24).

Remarks. In some use cases, many flows might not require such strict guarantees, and provi-
sioning them as such might lead to a waste of networking resources. To cope with this situation,
NAGA can be adapted to support non-deterministic DP traffic. To do so, a deterministic AC can be
used to manage only the highest strict priority queues of all networking devices for the initial boot-
strapping of the in-band CP. All the other flows could be embedded with any other non-deterministic
AC solution considering all the other strict priority queues (except the highest one). The only re-
quirement here is the switches need to support priority queuing (at least 2 of them), and label-based
forwarding (at least for CP traffic).

Further, in practice, packets can be lost due to the low occurring external factors (e.g., noise
caused by electromagnetic radiation). Some sources [Err] estimate that the probability of losing a
1.5𝑘𝐵 packet is around 10−9. Hence, to minimize these effects and to protect the in-band CP, two
following approaches can be taken (apart from using better error correction mechanisms). Firstly,
instead of having one in-band CP flow towards each edge device, we could have 𝑘 (disjoint) paths
which carry the same CP rules (helps also with failures). Secondly, instead of sending one CP packet
per rule, it could be possible to send 𝑁 copies. Doing so would reduce the probability of such events
drastically as both of these approaches represent parallel redundancy (if we consider that external
factors cause independent packet loss). However, since during our experiments we never observed
a packet loss caused by such factors, we did not include such protection mechanisms in NAGA.
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5.3 Edge Switch Predictability Measurement

To realize NAGA, firstly, the transit switches have to perform deterministic label-based forwarding
at line rate. According to a recent study [Van+19a], most carrier-grade programmable switches can
satisfy this requirement. Secondly, in addition to deterministic forwarding, the edge switches must
be able to tag and meter the network traffic. Moreover, they must exhibit predictable in-band CP
operations, such as adding and reconfiguring the forwarding rules during the runtime. To fill this
gap, we perform a comprehensive measurement study in this section.

In this part, we introduce the chosen edge device and our implementation in Sec. 5.3.1. We start
with studying the predictability of the DP, which includes measuring the behavior of processing time
(see Sec. 5.3.2), traffic metering (see Sec. 5.3.3), and buffer management (see Sec. 5.3.4). After that,
we assess the measurement of CP predictability in Sec. 5.3.5.

5.3.1 Edge Switch Deployment

In this work, we propose to use Programming Protocol-independent Packet Processors (P4)-enabled
Edgecore Wedge 100BF-32X System [Net21] as the edge switch (or shortly EdgeCore Wedge), pow-
ered by P4-programmable Intel TofinoTM Intelligent Fabric Processor (IFP) ASIC (or shortly Intel
TofinoTM). We develop a network application, consisting of a P4 program (with just three tables in
the ingress pipeline) and a local controller, written in Python. The logical representation is shown in
Fig. 5.5. We first explain each of the tables and their roles and then introduce the developed Python
application.

(1) VLAN-forwarding-tbl. All the packets received by the edge switch are processed by this
table first. The main goal of this table is to implement label-based forwarding for all packets which are
already tagged by the other edge switches. This table matches the packets based on the 𝑣𝑙𝑎𝑛_𝑖𝑑 field
of each packet’s outer VLAN tag. Additionally, each rule has the same action type, i.e., to forward
the packets on a certain port and priority queue (based on the 𝑣𝑙𝑎𝑛_𝑖𝑑 field). We use the following
notation to map 𝑣𝑙𝑎𝑛_𝑖𝑑 field to the port and priority queue – 𝑣𝑙𝑎𝑛_𝑖𝑑 = 10 × 𝑝𝑜𝑟𝑡_𝑖𝑑 + 𝑞𝑢𝑒𝑢𝑒_𝑖𝑑 .
For example, if a received packet has an outer VLAN tag with 𝑣𝑙𝑎𝑛_𝑖𝑑 = 1405, it will be forwarded
to port 140 and priority queue 5. If a packet matches a rule in this table, it will not be processed by
the other tables. Otherwise, it will be processed by the next table.

(2) tagging-tbl. The main goal of this table is to tag all the packets which did not match the
first table. It means that these packets are coming from the directly connected hosts to the edge
switch. This table matches the packets based on the five different header fields: ip_src, ip_dst,

l3_network_proto, l3_src_port, l3_dst_port. Each matched packet is then tagged with up
to 10 VLAN tags and forwarded to a certain port and queue (based on the corresponding rule). More-
over, each rule also meters the traffic, meaning that it colors the packets with either green, yellow,
or red color according to the configured metering parameters and the token bucket state. Based on
the colors assigned to each packet, the flows can be later on rate and burst limited. Additionally,
this table contains exactly one special rule used to forward the in-band CP packets to the Central
Processing Unit (CPU) port of a switch. If a packet misses the table, it will be dropped, while the
metering table processes the matching packets (excluding control).
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Figure 5.5: Logical representation of the developed P4 application and a local python application.

(3) metering-tbl. The main purpose of this table is to decide if the packet should be forwarded
or dropped according to its color (determined by tagging-tbl). The packets colored in red are dropped,
while the other ones are forwarded.

Local Control Plane Application.

We deploy an Ubuntu 18.04 and Intel P4 StudioTM SDE locally on the device. The in-band CP
rules are forwarded during the runtime from the DP to the local CP on the switch (running Ubuntu)
and then inserted into the tagging-tbl. To do so, the developed P4 application forwards the matching
in-band CP packets from the DP to the CPU port of a switch. This CPU port appears as a network
interface in the local CP. Hence, listening on the network interface representing the CPU port makes
it possible to receive the in-band CP messages in the local CP (running Ubuntu). To listen (and react)
to the in-band rules, we develop a Python application with a generic socket library and Intel’s BFRT
Python library. After decoding the CP rules, we utilize the developed application and bfshell program
(provided by Intel as part of P4 StudioTM SDE) to insert or reconfigure the rules to the tagging-tbl
table. Each flow rule consists of five fields: (1) 5-tuple match, (2) forwarding port and priority queue
number, (3) vlan_ids to be added, (4) metering parameters (in kbps for rate, and kb for burst), and (5)
a flag indicating if the rule is new (i.e., it does not exist in the tagging-tbl), or a reconfiguration of
the already existing rule. To list all the values of these fields with simple ASCII encoding, we need
in total 42B. Therefore, in a 1500B CP packet, the controller can fit up to 34 different rules. In our
scenario, the controller sequentially writes the rules represented as plain text in the User Datagram
Protocol (UDP) payload of each CP packet.

5.3.2 Data Plane Processing Time

Setup and Procedure. The testbed (Fig. 5.6) consists of: (1) a Device Under Test (DUT), i.e.,
EdgeCore Wedge, (2) a 10G optical tap, and (3) two servers: first one as the traffic generator with
DPDK-based Moongen [Emm+15] running Ubuntu 18.04 and equipped with Intel Xeon E5-2650 v4
@2.2 GHz CPU and an Intel X520 Network Card Interface (NIC), and second one for capturing the
traffic using a 4-port 10G nanosecond-precise Endace DAG 10X4-S measurement card. EdgeCore
Wedge has 32 QSFP cages, where each connector can be used in 100G/40G mode, or it can be split
into four 10/25G ports. Since the measurement card has only 10G ports, we split each QSFP port
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Figure 5.6: Processing time measurement setup.
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Figure 5.7: The total forwarding and processing time of the tagging and metering application on EdgeCore
Wedge.

either with optical (blue lines connected to Quad 1 on Fig. 5.6) or copper (black lines) breakout
cables. The generated traffic is firstly split (or replicated) by an optical tap into two different fibers
(each fiber operates with 50% of power of the original signal). Since we use single-mode optical
fibers (in this case, a pair of fibers is needed for one link), we split the traffic only on the sending
fiber (i.e., on the fiber carrying the traffic generated by the traffic generator). The fiber from the
Tap device port 3 is then connected to the measurement card port 1. By doing so, it is possible to
obtain the timestamps of the sending traffic. Meanwhile, a fiber from port 2 of the measurement
card is connected to the DUT through an optical breakout cable and one optical coupler. The
generated traffic is then tagged, metered, and forwarded by EdgeCore Wedge accordingly (e.g.,
from Quad 1a to Quad 3a). Finally, Quad 3a is connected with a copper breakout cable to the
measurement card, obtaining post-processing timestamps. By subtracting the sending timestamp
from the post-processing timestamp, we can derive the total forwarding time of a packet. After that,
the processing time is calculated by subtracting the packet sending time (i.e., packet size divided by
link rate) from the total forwarding time.

To evaluate the DP processing time, we generate 30k packets with a variable size, at either a
high rate (10G) or at a low rate (0.5-12Mbps). In case of a low rate, the packets are uniformly spaced
with 1ms. We consider both high and low rates as the performance of some switches can depend on
the rate. We generate 16 different scenarios, where the packet size is varied from 64 to 1500B, the
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number of flow entries from 1 to 15k, and the number of added VLAN tags from 0 to 6. The exact
parameter values of each scenario are presented as labels of the x-axis in Fig. 5.7. Each scenario label
consists of three numbers (e.g., 1k-750B-0), i) the number of flows in the forwarding table (e.g., 1k),
ii) the packet size (e.g., 750B), and iii) the number of added tags (e.g., 0).

Results. Fig. 5.7 illustrates both total forwarding time and processing time of EdgeCore Wedge
running our P4 application (see Sec. 5.3.1). Overall, the forwarding time depends on the packet size.
The derived processing time is very predictable (i.e., bound) and always between 600 and 690ns.
This observation is expected, as the DP predictability of programmable hardware has been recently
confirmed by a comprehensive measurement study [Bau+18].

5.3.3 Traffic Metering

Setup and Procedure. The NAGA architecture performs traffic policing at the edge of the network.
The goal of traffic policing is to limit the flow to the maximal rate 𝑟 and burst 𝑏. We use the na-
tive hardware meters of the EdgeCore Wedge powered by Intel TofinoTM which utilize a dual token
bucket algorithm and three-color packet marking. For evaluating their accuracy, we use the mea-
surement setup presented in Fig. 5.6, and a traffic generation procedure similar to a recent SotA
work [Ðer+21]. In this experiment, the various states of a hardware meter (e.g., number of to-
kens in a bucket) are tested by sending randomly-spaced packet bursts to the DUT. We consider
the combination of the following parameters: number of meters as {1,10,100,1000}, configured rate as
{1,10,50,100,150,200}(Mbps), burst {100,200,300,400,500,600,700,800,900,1000}(kb), and the packet size
as {100, 600, 1100, 1500}(B). Also, the action is considered as forward_to_port. To derive the maximum
rate and burst of a metered flow from the measurements, we utilize a similar methodology presented
in [Ðer+21], which is based on network calculus framework [LT01].

Results. Fig. 5.8 and 5.9 illustrate the mean accuracy of traffic policing while varying the con-
figured rate and burst size. In the case of rate policing, it can be seen that the accuracy of the meter
is very high and constant as the observed relative error is at most 0.4% (see Fig. 5.8). Moreover, all
the considered parameters did not significantly impact the accuracy of rate policing. Regarding the
burst metering, Fig. 5.9 shows that the accuracy is indeed very high. For higher configuration values
(𝑏 ≥ 200kb), the error is less than 1%, while for the smaller burst values 𝑏 = 100kb, the worst-case
relative error is around 10%. To account for this error in NAGA, for each end-to-end Northbound In-
terface (NBI) request, we reserve 10% higher metering values. Overall, EdgeCore Wedge powered by
Intel TofinoTM offers a sufficient amount of hardware meters with a high accuracy, which makes it a
suitable candidate for policing the traffic at the edge1.

5.3.4 Buffer Management and Priority Queuing

As another requirement for deterministic guarantees for data and CP, we need to ensure that all
forwarding devices buffer and enqueue network traffic in a predictable manner [LT01] (e.g., packets
are correctly enqueued and not dropped). In NAGA , we utilize a DNC-based framework (see Sec. 5.2),

1Recently, many shaping-based approaches are developed which can offer even greater precision while avoiding packet
drops [Shi20]. It is crucial to note that our focus in this paper is not to find the most accurate traffic limiting approach; hence,
we consider this as an orthogonal problem.
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Figure 5.9: Burst metering accuracy.

which assumes that each forwarding device can be configured to have multiple priority queues (with
a statically allocated amount of buffer space) per output port. Also, the considered framework relies
on the strict priority queuing feature of the devices. Therefore, we evaluate whether the EdgeCore
Wedge supports these features and if it can allocate a static (or predictable) amount of buffer space
to each priority queue.

The traffic manager entity employed in Intel TofinoTM supports many queuing and buffer man-
agement strategies. For instance, it supports priority queuing, weighted fair queuing, static and
dynamic buffer allocation. All these feature are fully supported by the APIs, provided as a part of
Intel P4 StudioTM SDE. For example, in the static case, it is possible to allocate an arbitrary amount of
buffer space to each priority queue (i.e., number of buffer cells). Hence, the traffic manager employed
in Intel TofinoTM can definitely satisfy the requirements of DNC-based frameworks. Additionally, in
the deployed network (see Sec. 5.4.1) we use Pica8 P3297 devices with lower amount of buffer space
compared to the novel forwarding devices (the results are presented in a recent study [Van+19a]).
Thus, for simplicity reasons, we do not measure the maximal amount of buffer space offered by In-
tel TofinoTM. In fact, we simply assume that it offers at least the same amount of buffer space per
priority queue as Pica8 P3297.

5.3.5 Control Plane Predictability

The proposed scheduling algorithm assumes that the edge switches can insert or reconfigure the
rules predictably (i.e., bounded update time) from the DP (i.e., in-band CP). Thus, by conducting
extensive measurements, we investigate if the presented P4 program and a local Python app (running
on EdgeCore Wedge) achieve such performance in various scenarios.
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(a) Procedure one.

(b) Procedure two.

Figure 5.10: Different CP traffic generation procedures. In this scenario, the CP packet (green packet) contains
a batch of 3 rule insertions (i.e., 1, 2, 3). (b) Example of the second CP traffic generation procedure. In this
scenario, each CP packet contains a batch of 2 rule insertions (e.g., batch a contains rules 1 and 2). Ports 1 and
2 of the measurement card correspond to the QSFP Ports 1(a) and 3(a) of DUT.

In general, Intel P4 StudioTM SDE offers three Python interfaces to insert or reconfigure the
rules. Additionally, it provides C and C++ based APIs which can be used for the same purpose. All
these interfaces/APIs provide different performance characteristics, and in this part, we do not aim
to discover which one is the fastest. That is, we only confirm that one of them (i.e., the one used in
our implementation/setup, see Sec. 5.3.1) achieves the required performance.

Setup and Procedure. We use the same measurement setup as presented in Fig. 5.6 with a
different traffic generation procedure. At the beginning of each measurement run, we pre-populate
the tagging and forwarding table with between 0 and 15000 rules. Afterward, the traffic generator
sends an in-band CP packet (with the size of 1500B) containing a batch of insertion/reconfiguration
rules (up to 34 rules can be encoded in the payload, see Sec. 5.3.1) to the DUT (see green packet on
Fig. 5.10a). Each rule in the batch contains an action that instructs DUT to tag (with a variable number
of tags), meter, and forward the matching DP traffic from QSFP Port 1(a) to QSFP Port 3(a). After
the CP packet is sent, to check if the rule is successfully processed, the traffic generator sends DP
packets at line rate which are sequentially matching the previously sent rules (depicted with dark
blue color in Fig. 5.10a). The time to add or reconfigure a rule corresponds to the time difference
between the reception of the in-band CP packet at DUT and the first matching DP packet forwarded
on QSFP Port 3(a) of DUT. Based on Fig. 5.10a, the time to add rule 𝑛 can be calculated as 𝑡𝑛 − 𝑡𝑐𝑝 . If
we use 1520B packets (including preamble and inter-packet gap) at 10G, the maximal measurement
inaccuracy is 34 × 1520 × 8/1010 ≈ 41𝜇𝑠 (max. number of rules per control packet is 34). This value
is significantly lower than the measured rule insertion and reconfiguration times.

Results. Fig. 5.11a shows insertion times of each rule for 3 different runs with the same con-
figuration parameters. In total, it takes around 20ms for EdgeCore Wedge and the custom Python
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Figure 5.11: Control plane predictability.

application to process and insert 34 rules. The rules are inserted in a sequential order (i.e., 𝑛𝑡ℎ rule
is always inserted just after the (𝑛-1)𝑡ℎ one). Additionally, inserting first 10-15 rules is slower (i.e.,
≈ 1ms) compared to the later ones (e.g., ≈ 0.5ms). It can be seen that the runs produce almost iden-
tical results, meaning that inserting a batch of 34 rules is very predictable. Fig. 5.11b presents the
results when the total number of rules in a CP packet is varied from 1 to 33 with increments of 2
(with 10 repetitions). The total time needed to insert all the rules belonging to the same batch is
shown. The observed measurement results exhibit low variability and high predictability, similar to
the previous scenario. For example, inserting a batch of 31 rules always takes around 20ms. Addi-
tionally, the presented results are almost identical as in Fig. 5.11a. For example, inserting the first 11
rules of a batch with 34 rules (see Fig. 5.11a) takes the same amount of time as inserting a batch of
exactly 11 rules (see Fig. 5.11b), i.e., it takes approximately 10ms for both cases. It indicates that each
rule in a batch is processed independently and that it is possible to generalize the results based on
the biggest batch size (i.e., 34 rules is the maximum).

Fig. 5.12a illustrates the total time needed to add or reconfigure 34 rules in different configuration
scenarios. We perform 10 measurement runs for each scenario and show the box plots. To denote
each configuration, the following notation is used: number of pre-populated rules-rule type-number
of tags. For example, in the case of label 1k-0-5, 1k indicates that there are 1000 pre-populated rules
in the table, 0 means that rule type is an insertion, while 5 means that each rule adds 5 VLAN tags to
matching packets. Firstly, the insertion time is propositional with the number of tags in the CP rules.
For example, inserting 34 rules with 10 tags takes around 24ms, while with 5 it takes around 22ms (see
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Figure 5.12: (a) Total time needed to insert or reconfigure a batch of 34 rules in different configuration
scenario. (b) Worst-case reconfiguration time of each rule (in a batch) for 4 measurement scenarios with
different amount of pre-populated rules (with 10 repetitions).

scenarios 1k-0-5 and 1k-0-10). Secondly, the number of existing rules in the table has a non-negligible
impact on the total reconfiguration time. For instance, reconfiguring 34 rules in a table with 1000
existing rules takes around 25ms (see label 1k-1-10), while reconfiguring the same amount of rules in
a table with 15000 rules takes almost 50ms (see label 15k-1-10). Therefore, the worst-case processing
time of one batch of rules can be bounded based on the results observed when the number of existing
rules in the table and the required tags are high. Fig. 5.12b shows the worst-case reconfiguration
times of each rule for 4 scenarios with different amount of pre-populated rules (repeated 10 times).
Similar to the results presented for insertion, the rules are reconfigured sequentially and exhibit low
variance and high predictability. Later on, in Sec. 5.2, we use the data presented in this figure to
estimate the worst-case processing time of a CP packet.

The previous results indicate that regardless of the number of existing rules in the table, it is
possible to add or reconfigure a batch of rules delivered in one CP packet predictably.

Additionally, an edge switch should be able to insert multiple CP packets at runtime in a pre-
dictable manner. To show that it is possible, we create another measurement procedure as depicted
in Fig. 5.10b. We send CP packets from the traffic generator to the edge switch uniformly spaced
until we reach 15000 rules in the forwarding table. Every two consecutive packets are separated by
the time interval of 𝛿 . To ensure the previous packet is completely processed before the arrival of
the next one, we set the 𝛿 to be 10% higher than the observed worst-case time in Fig. 5.12b. We
repeat this measurement 10 times for different batch sizes per packet (1, 10, and 30). Our observation
confirms that not even a single rule is dropped or lost; in fact, all of them are processed successfully
within the expected time based on Fig. 5.12b. We note that the processing time of these packets is
decreased with time, similar to the effect presented in Fig. 5.11a.

5.4 Performance Evaluation

5.4.1 System Deployment

We implement NAGA in a real network and evaluate its performance, especially end-to-end DP and
in-band CP update timing and consistency guarantees. To do so, we consider the topology presented
in Fig. 5.13, taken from [Hon+13], with five logical switches, and six hosts. There are two transit (𝑆2

and 𝑆5) and three edge switches (𝑆1, 𝑆3 and 𝑆4) in the network. We use SDN-enabled Pica P-3297 as
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Tapped links

Figure 5.13: The logical test-bed network.

Flow Type Rate[Mbps] Burst[kb] Delay[ms]

Class 1 (Low Delay) U(8,40) 80 U(5,10)
Class 2 (High Rate/Burst) U(40,120) U(80,120) U(10,100)
Class 3 (High Rate/Burst) U(80,160) U(120,160) U(10,100)

Class 4 (Low Rate, High Burst) U(5,8) U(80,120) U(5,50)
Class 5 (Low Rate, High Burst) U(2,4) U(80,120) U(5,50)

Table 5.1: Considered flow types and their characteristics.

transit and EdgeCore Wedge as the edge switches. The first EdgeCore Wedge device corresponds to
𝑆1, while the second one is split into two logical switches to emulate 𝑆3 and 𝑆4. To generate the DP
traffic, each end-host uses a DPDK-based MoonGen traffic generator [Emm+15] with Intel x710-bm2
NIC. Moreover, the controller running the admission control and the proposed scheduling algorithm
is connected to edge switch 𝑆1. To measure the packet latency, we use a 10G Endace measurement
card, and we set the speed of all the links in the network to 10G.

Traffic Classes & Flow Requests. We consider multiple flow types with different rate, burst,
and end-to-end delay requirements (see Tab. 5.1). The considered flows types are based on the QoS
requirements commonly found in different networking scenarios, e.g., industrial scenarios [C519];
[Cas21], remote network control [SK18], and even data-center networks [Rou05]; [WMZ19];
[Van+20]. Based on the considered flow types, end-to-end flow requests are generated on the
NBI of the controller. Each flow request is generated between two randomly selected hosts with
equal probabilities. The flow type, the values of rate, burst, and end-to-end delay parameters
are generated randomly with a uniform distribution. Flow requests are generated sequentially
online and are embedded into the network after being processed by the admission control and
scheduling algorithm. The flow request generation procedure is continued until the admission
control algorithm rejects a flow request.

Switch Configurations. The admission control algorithm relies on precise switch performance
models (e.g., processing time, buffer space) of all the forwarding devices in the network. For EdgeCore
Wedge devices, we rely on the results presented in Sec. 5.3, while for Pica P-3297, we take the data
from [Van+19a]. We configure each device to have 4 priority queues per port. Even though EdgeCore
Wedge has a larger buffer space (see Sec. 5.3.4), for the sake of simplicity, we model them in the same
manner as Pica P-3297 devices. Since edge switch 𝑆1 uses effectively 5 ports with 4 queues (controller
does not receive packets), we configure each queue with 155kB of buffer space. 𝑆3 and 𝑆4 switches



120 Chapter 5. Providing Control and Data Plane Guarantees in Programmable Networks

1 2 3 4 5 6 7 8
flow num.

0

10

de
la

y 
[m

ic
ro

s]

run 1 run 2
delay req. [ms] delay req. [ms]

31 22 9 44 29 83 14 22

0

5

10

pa
ck

et
 lo

ss
 [%

]

Figure 5.14: The measured end-to-end packet delay in the system.
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Figure 5.15: The measured update time (black line) vs. deadline (red line).

are realized by one EdgeCore Wedge device; hence, we configure and assign 77.5kB of buffer space
per priority queue per port. For the transit switches 𝑆2 and 𝑆5, we consider the same values as 𝑆1.

Scheduling Algorithm Input Parameters. We deploy the scheduling algorithm (alongside
the admission control) on a controller as demonstrated in Fig. 5.13. The scheduling algorithm needs
three input parameters which are network dependent: 𝛿 (𝑆𝑥 , 𝑆𝑦), 𝑑𝑐 (𝑆𝑥 ), and 𝑟 (𝑆𝑥 ).

These parameters depend on the following terms (see Sec. 5.2.1):
(1) Propagation delay: The deployed network is local, and the maximal cable length is 10 meters;
hence, we assume this parameter is negligible.
(2) Maximal insertion and reconfiguration time of an edge switch, (i.e., 𝑟 (𝑆𝑥 )). Since the deployed
network is small, it cannot be filled with many flows (expected max ∼ 1000 flows). Thus, according
to Fig. 5.12b, the worst-case insertion or reconfiguration time is around 1.96ms (table size is 1000,
and batch size is 1).
(3) Total processing & sending time: The values of these parameters are in 𝑛𝑠 or 𝜇𝑠 [Van+19a] (see
Sec. 5.3). Thus, we assume that they are negligible.
(4) Total queuing time: The in-band CP packets use the highest priority queues, with a buffer capacity
of 155kB. Thus, the maximal queuing time of CP packets per hop is 0.1𝜇𝑠 .

Therefore, 𝛿 (𝑆𝑥 , 𝑆𝑦) = 1.96 + 𝑛𝑢𝑚_ℎ𝑜𝑝𝑠 × 0.1ms;∀𝑥,𝑦 ∈ {1, .., 𝑘}. Nevertheless, since we have at
most 2 hops in our deployment, we consider a static value for 𝛿 (𝑆𝑥 , 𝑆𝑦);∀𝑥,𝑦 ∈ {1, .., 𝑘} and set it to
2.5ms (including a 10% safety margin for the upper-bound calculations). Thus, in our deployment, we
guarantee that every scheduled flow update is applied in the network within in maximum of 2.5ms.

Based on the calculated 𝛿 values, the rate 𝑟 and burst 𝑏 requirements of each in-band CP flow
(with packet size 1500B) is calculated as: 𝑟 = 1500 × 8/𝛿 = 4.8Mbps and 𝑏 = 8 × 1500 = 12kb.

Deployment Scenarios. With the aforementioned parameters, we run two random scenarios
in our network, in which 134, and 145 flow requests are embedded, respectively.
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What Is Measured? Two measurement configurations are considered: DP and CP configura-
tion. In the first one, the end-to-end latency of DP flows is measured to show that NAGA provides
deterministic guarantees (i.e., no loss, bounded delay), even during network updates. To do so, we
use optical taps to duplicate the traffic on the directional links between 𝐻11 → 𝑆1 and 𝑆3 → 𝐻31. The
duplicated traffic is forwarded to the measurement card. This setup allows us to observe the latency
of each packet belonging to the flows between 𝐻11 and 𝐻31.

In the second configuration, the goal is to show that the scheduling algorithm guarantees the
predictability of rule updates. We show that after sending a flow update command from the controller
(sending time is determined by the scheduler), the network is updated within a certain amount of
time (i.e., in a maximum of 2.5ms as explained above). We use again optical taps on the links between
the controller and the edge switches (i.e.,𝐶𝑡𝑟𝑙 � 𝑆1) and link 𝑆1 − 𝑆3. We observe the time needed to
update the network (or edge switches 𝑆1 and 𝑆3).

DP Results. Fig. 5.14 illustrates the observed end-to-end delay and packet loss of 8 randomly
selected flows between hosts 𝐻11 and 𝐻31 for the three deployment scenarios. The end-to-end delay
requirement of each flow is shown in the upper part of the figure. The results indicate there is no
packet loss during the measurements and all the packets are delivered within the required delay
bound. In most cases, the packets experienced a low queuing; thus, the box plots are very compact
and look constant. In such cases, the only source of delay is the switch processing time and priority
queuing overhead. The outliers correspond to the packets which experienced queuing. However, the
buffer space available to the priority queues is never exceeded; thus, NAGA does not lose packets.

CP Results. Fig. 5.15 depicts the time between sending a scheduled rule update (on link𝐶𝑡𝑟𝑙 .→
𝑆1) and the time when the update is successfully applied. Each scenario is repeated 5 times. NAGA
ensures that the CP queue on each edge switch always have at most 1 CP message. Hence, the update
times are very small (i.e., always less than 1.25𝜇s), and they match the values observed in Sec. 5.3.5.
However, compared to Sec. 5.3.5, we observe slightly higher values due to queuing, which is caused
by the other high-priority traffic. Additionally, when the table size is small (e.g., ≤ 1000 entries),
reconfiguring a flow is faster than adding; thus, the lower update values in Fig. 5.15 indicate flow
reconfigurations. Finally, we never observe a dropped CP message or non-inserted/reconfigured
flow.

5.4.2 Verifying Network Update Consistency

This part verifies the network update consistency of NAGA deployed in our testbed. The exper-
iment uses the same network topology as in Fig. 5.13 with 10G links. We consider two flows:
𝑓 1 = (𝐻30, 𝐻10, 8Gbps, 200kb, 10ms) and 𝑓 2 = (𝐻41, 𝐻11, 5Gbps, 150kb, 5ms). Flows 𝑓 1 and 𝑓 2 are
initially routed as 𝐻30 � 𝑆3 � 𝑆2 � 𝑆1 � 𝐻10 and 𝐻41 � 𝑆4 � 𝑆2 � 𝑆1 � 𝐻11, respectively. We
measure the latency of 𝑓 1 and 𝑓 2 in four different test cases (see Fig. 5.16):
Test Case 1: In an empty network, at 𝑡 = 0s, 𝑓 1 is embedded. Then, at 𝑡 = 0.5s, it is rerouted (by
reconfiguring 𝑆3) to a new path 𝐻30 � 𝑆3 � 𝑆1 � 𝐻10 with a lower delay. According to Fig. 5.16a,
during the reconfiguration phase (around 𝑡 = 0.5s), there is no increase or spike in the end-to-end
delay. Moreover, we never observed a packet loss.
Test Case 2: Again, having an empty network, 𝑓 2 is embedded in it at 𝑡 = 0.5s (see Fig. 5.16b). After
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Figure 5.16: Verifying the consistency of the flow updates with NAGA.
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Figure 5.17: The cost of in-band CP.

the embedding, it is evident that 𝑓 2 has a stable delay, with no packet loss.
Test Case 3: Having 𝑓 1 in the network, we add 𝑓 2 and reroute 𝑓 1 at 𝑡 = 0.5s without considering
the consistency (see Fig. 5.16c). Since the rules are updated inconsistently, the two flows overload
the capacity of 𝑆2 − 𝑆4 link for a short period. Thus, the end-to-end delay measurements show that
both flows experience a spike in the measured delay at around 𝑡 = 0.5s. Further, at this time, we
observed packet loss for both flows.
Test Case 4: Similar to test case 3, 𝑓 1 is already embedded in the network. At around 𝑡 = 0.5s, we
add 𝑓 2 and reroute 𝑓 1 in a consistent way using NAGA (see Fig. 5.16d). Before adding 𝑓 2, NAGA’s
scheduler ensures that 𝑓 1 is successfully rerouted (reconfiguring 𝑆3). After that, 𝑓 2 is added to the
network by inserting a rule in 𝑆4. The measurements show that NAGA can perform these flow updates
without an increase in the delay of 𝑓 1 during the update phase.
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5.4.3 Cost of In-Band Control Plane

In this section, we evaluate the achieved number of accepted flows of NAGA, and compare it with
two SotA systems that provide DP guarantees and use an out-of-band CP: Chameleon [Van+20] and
Silo [Jan+15]. To do so, we use a network simulation tool that is available online [Van20], and it
provides implementation of Chameleon and Silo. We further extend it by implementing the in-band
CP bootstrapping logic of NAGA. In scenarios considering NAGA, we bootstrap the in-band CP flows at
the start of the network and keep them active during the network lifetime, i.e., we keep the required
resources reserved. Between each edge switch and the controller, we establish one in-band CP flow
with the same flow requirements as in Sec. 5.4.1.

We perform the simulations on a large-scale network topology [Hoc+14], with 34 nodes and 42
links. We consider two simulation scenarios. In Scenario 1, we assume 10G links and switches with
155kB of buffer space per priority queue, while in the 2nd scenario, these values are considered as
100G and 3000kB, respectively. We use the same flow requirements (see Tab. 5.1) and generation
procedure as presented in Sec. 5.4.1. However, to account for the propagation delay of the long-
distance links, we added 30ms to each flow deadline (based on the network diameter length). To
maximize the number of CP flows and generate the worst-case scenario, each node in the network is
considered as an edge switch. Moreover, to maximize the network resource consumption of CP flows,
we place the controller at the node with a minimum value of closeness centrality. The simulations
are performed on a Windows 11 machine equipped with an Intel 12600k CPU, and 32GB of Random
Access Memory (RAM). Each scenario is repeated 100 times with a randomized set of flow requests.

Fig. 5.17 shows the comparison of the number of accepted flows (i.e., network utilization) for the
three considered systems. First, in comparison to Silo, Chameleon and NAGA accept on average around
3 and 4 times more flows depending on the scenario. The results indicate that the overhead of the
bootstrapped in-band CP is overall very low, lying around 3% and 0.25%, for scenario 1 (Fig. 5.17a)
and scenario 2 (Fig. 5.17b), respectively. The reason is, in NAGA, the in-band CP flows are low-rate
and not bursty. Therefore, NAGA can provide consistent and predictable (in time) flow updates with
negligible overhead.

5.4.4 Scalability Analysis

This section evaluates the NAGA’s CP in terms of maximal flow update rate and update time guar-
antees. The investigated network is the same as the previous subsection, but with 100G links. The
buffer space of the switches is set to 3000kB per priority queue. Again, the controller is placed on
the node with the minimum closeness centrality.

We vary the percentage of the edge switches from 25% to 100% in the network. That is the number
of hosts (hosts are connected only to edge switches), the number of flows in the network, and conse-
quently, the number of flow updates. In this way, we can put pressure on the flow update scheduling
task. Two scenarios are considered: (1) online and (2) offline. In the online case, the network updates
arrive sequentially over time to the scheduler, similar to SotA approaches [NCC17]; [Zho+21]. In
this case, each set of updates arrives after the scheduler processes and sends the previous one. In the
case of offline, all network updates (i.e., the output of the admission control algorithm) are available
at the beginning to the scheduler. Flow requests are generated in the same manner as in Sec. 5.4.3.
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Figure 5.18: Comparison of network update rate.

The results for the online case (Fig. 5.18a) indicate that the network update rate increases with the
percentage of edge switches (25% to 100%), reaching values of around 1.5k per second. In the offline
case (Fig. 5.18b), the results follow the same trend. That is, the maximal update rate per scenario
increased to 3.5k. The achieved rates show that NAGA can deal with a wide range of network updates,
depending on the distribution of the flow requests, and the admission control complexity.

Fig. 5.19a-5.19b show the average guaranteed deadline per 10 sequential flow requests, for offline
and online scenarios, respectively. Only 3 selected runs per scenario are shown (100% of network
nodes are edge switches), the other runs follow the same trend. The deadline values are calculated
from the arrival time of the network update set (to the scheduler) until the time guarantee of the last
flow update in the set.

In the online case, the average deadlines stay mostly around 20ms (Fig. 5.19a). Since network
update sets arrive sequentially, this value is mostly influenced by propagation delay and queuing
time in the network, as explained in Sec. 5.2. Towards the end of each run, the average deadlines start
increasing since the network becomes highly utilized, and the dependent reconfigurations become
necessary.

In the offline case (Fig. 5.19b), the derived deadlines increases with the number of processed flow
update sets. This deadline is mostly influenced by the waiting time of the updates since the edge
switches are overloaded with too many updates. In the beginning, the network is empty, thus, most
of the network update sets do not contain dependent reconfigurations. Hence, the update rate is
high and the deadlines increase linearly. However, as the network fills up, reconfigurations become
necessary, which significantly slows down the network update rate. Thus, the deadlines start to
increase significantly.

Remarks. Since NAGA provides deterministic network update timing guarantees, most of the
network update solutions do not solve the same problem. Therefore, comparing them directly is not
fair. For reference, many SotA consistent network update solutions can take between 500-1300ms
to update a single flow in the network [Zho+21]. Therefore, such solutions could be potentially
improved by considering the concepts presented and deployed in NAGA.



5.5. Related Work 125

0 2000 4000
request num.

0

20

40

de
ad

lin
e 

[m
s] run 1 run 2 run 3

(a) Online.

0 2000 4000
request num.

0

1

2

de
ad

lin
e 

[s
] run 1 run 2 run 3

(b) Offline.

Figure 5.19: Comparison of network update deadlines.

5.5 Related Work

Deterministic Guarantees: The SotA contains systems that provide deterministic guarantees
in the DP: Qjump [Gro+15], Silo [Jan+15], Loko [Van+19b], Chameleon [Van+20], and [DKW18].
Qjump [Gro+15] provides deterministic guarantees in the DP only. For instance, the guarantees
are provided, by ensuring that at any given time, at most one packet per flow is transmitted in the
network [Gro+15], or by utilizing network calculus [Jan+15]; [Van+19b]; [Van+20]. Additionally,
in order to achieve higher utilization, Chameleon [Van+20] extends network calculus based
solutions [Jan+15]; [Van+19b] by using a so called queue-level topology and reconfigurations.

However, most of the works [Van+20]; [Jan+15]; [Gro+15]; [Van+19b] assume that the end-hosts
are controllable by the network provider. Moreover, they assume that the end hosts generate traf-
fic according to agreed policies, while some [Gro+15] cannot even handle packet bursts. Further,
[Gro+15]; [Jan+15]; [Van+19b] do not employ network reconfigurations, which can lead to a low
network utilization. Finally, all of them [Gro+15]; [Jan+15]; [Van+20]; [Van+19b]; [DKW18], con-
sider an out-of-band CP and network update consistency. In addition, some proprietary solutions
can provide deterministic guarantees such as Profibus and Ethernet extensions [Dec05]; [GJF12];
[VHV12], and Time-Sensitive Networking (TSN) [Nas+18]. However, they are generally use-case-
specific and not reconfigurable. In addition, they mostly use proprietary devices and drivers, while
NAGA can be deployed on COTS equipment.
Consistent Network Updates: Another set of SotA [Rei+12]; [MW13]; [Zho+21]; [NCC17];
[Jin+14]; [GC12] belongs to the topic of consistent updates for programmable networks (see [FSV18]
survey paper for a comprehensive overview on this topic). Usually, they focus on providing proce-
dures to ensure the network keeps forwarding the packets towards their destinations, throughout
the update process [FSV18]. To do this, the network provider must ensure that the update packets
are ordered, delivered, and processed successfully by the forwarding device. Determining the
order of the updates can be done with analytical models and algorithms, such as using dependency
graphs [Jin+14]. Regarding the delivery of the packet, some works rely on acknowledge-based
methods [MSM16]; [KPK14b], TCP retransmissions [DKW18], and network verification [Shu+21] to
ensure the network update is received and processed by the device. However, these solutions suffer
from two serious drawbacks; First, they cannot guarantee timely delivery of CP packets from the
controller to the forwarding device; thus, cannot be used in deterministic networks. Second, they
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are generally slow [Zho+21], while NAGA can perform significant number of network updates per
second (see Fig. 5.18b).

5.6 Conclusion

This chapter takes an integral step toward predictable network operation: it investigates and con-
tributes to a system with deterministic in-band CP operation of programmable networks. We devel-
oped NAGA, a system that provides both predictable DP and CP and achieves consistent and timely
guaranteed network updates using a novel scheduling algorithm. We demonstrate the practicality
of NAGA using a real-world prototype. Our evaluations confirmed our claims about determinism of
NAGA regarding the strict QoS requirements in dynamic environments. Moreover, extensive simu-
lations indicated that while NAGA has low in-band CP overhead, it is highly scalable, i.e., more than
3.5k flow updates per second in a realistic scenario. Finally, we showed that the in-band CP of NAGA
introduces a low overhead in the system compared to SotA works.

Instead of relying on end-hosts (as other SotA works), NAGA uses only widely-available pro-
grammable network capabilities such as priority queuing and label-based forwarding. In addition, it
also uses softwarized and centralized network logic. Therefore, NAGA can be deployed in virtualized
programmable networks with minimal effort.
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Conclusion and Future Work

The rapid development in the technological sphere of Industry 4.0, Internet of Things (IoT), Cyber-
physical System (CPS), and cloud computing introduced many novel applications such as automated
manufacturing, autonomous driving, and remote surgery. Most of these applications have very high
Quality of Service (QoS) requirements which legacy best-effort communication networks are not
capable of providing. For example, in the case of remote surgery, the network between a robot oper-
ating on a human and a remote surgeon should guarantee low end-to-end latency, bounded packet
loss, and high reliability. Similar examples occur in CPS systems where the control data exchanged
between controllers and actuators should be delivered with certain QoS guarantees. Failing to pro-
vide these guarantees might have catastrophic consequences. For example, in CPS systems, if the
end-to-end latency between a controller and a balancing robot reaches exceeds certain values, the
robot might become out of sync, and the control could be lost. This can be especially dangerous
if people are working besides it. Therefore, novel technologies and concepts are needed which can
provide such high QoS requirements.

On the other hand, the recent cloud computing revolution demonstrated that the benefits of shar-
ing physical resources are enormous and outweigh the drawbacks. For example, the cost reduction
and ability to dynamically scale applications are much more valuable compared to the additional
complexity of virtualizing the hardware and managing it. Therefore, to attain the same benefits,
network operators could virtualize their programmable networks. However, doing both at the same
time, providing high and guaranteed QoS in virtualized programmable networks is still challenging.
In the literature, both of these problems are already studied separately, i.e., providing high QoS and
virtualizing programmable networks. For instance, Deterministic Network Calculus (DNC)-based
systems [Van+20]; [Jan+15] such as Chameleon are capable of providing deterministic Data Plane
(DP) guarantees in Data Center (DC) networks. However, since they rely on end-host control (com-
mon in DCs), they are not usable in virtualized networks where hosts do not belong to the network
operator. While virtualization solutions [Al-+14]; [She+09] on the contrary do not provide high QoS
guarantees such as deterministic guarantees, which might be needed for CPS and similar systems.
This thesis aims to overcome these challenges by developing concepts that enable QoS-aware virtu-
alization of programmable networks. To be precise, firstly, one of the main objectives is to design
and develop novel methodologies for ensuring that the Control Plane (CP) performance of virtual-
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ized networks meets certain QoS requirements. Secondly, in this thesis, also general networking
concepts (e.g., traffic policing) related to network virtualization are studied and enhanced further.

The contributions with the corresponding derived conclusion are presented in next section (i.e.,
Section 6.1). While the future work is presented in Section 6.2.

6.1 Summary

To begin with, the initially presented concepts in this thesis resolved a couple of management and
orchestration issues that are coming from the CP of virtualized programmable networks. In Chap-
ter 3, firstly it was demonstrated through measurements that different Network Hypervisor (NH)
functions can have a significant impact on the Central Processing Unit (CPU) utilization of a NH.
That is, enabling topology abstraction can reduce the CPU utilization of a NH up to 4× in certain
scenarios. This observation motivated us to study the impact of topology abstraction on the optimal-
ity of Virtual Network Embedding (VNE) algorithms. To do so, an algorithm based on Integer Linear
Programming (ILP) model that includes CP aspects was developed and presented. The evaluation
showed that including NH functions (i.e., topology abstraction) is crucial for designing performant
VNE algorithms. That is, the model including the topology abstraction in certain cases outperformed
the baseline algorithm for around 50%, and can be used to optimize the resource usage in virtualized
programmable networks.

Secondly, Chapter 3 presented a QoS-aware measurement-based methodology for provisioning
the resources of a NH. To design it, initially, a comprehensive measurement study of one of the
most well-known NHs, i.e., FlowVisor, was performed. The main objective of this study was to
understand what parameters influence the CPU utilization of a FlowVisor and to design an accurate
CPU estimation model. Even though many parameters (e.g., virtual network size) have an impact,
it was possible to design a very accurate model. The developed model exhibited a mean average
relative error of 4%. Subsequently, by utilizing the presented model, an algorithm for provisioning
the resources of a NH was presented. The algorithm aims to allocate a minimal amount of CPU
resources to a NH while ensuring that there is no performance degradation. By deploying it on a
real test bed, it was possible to demonstrate its effectiveness. To be precise, even with randomly
generated network topologies, it was possible to provision the resources of a NH with a negligible
impact on its processing performance. The presented methodology enables network operators to
utilize their resources more optimally while still ensuring that their NH operates with certain QoS.
Additionally, even though this methodology focused on provisioning NHs, it can be utilized in other
networking areas. That is, it can be applied to other softwarized networking functions (such as
Network Function Virtualization (NFV)) to achieve the same benefits.

Afterward, Chapter 4 studied how to measure and model the performance of in-network and
end-host based traffic policing and it presented two measurement studies. Traffic policing plays an
important role in virtualized programmable networks as it enables the realization of DP isolation.
Initially, a measurement methodology that can be used to extract the traffic policing parameters (i.e.,
rate and burst size) from the measurement data was presented. It is based on DNC mathematical
framework, and the extracted parameter can be used as input parameters when designing (deter-
ministic) systems. The presented methodology was then used to evaluate the performance of both,
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in-network (five Open Flow (OF)-enabled switches) and end-host (an Data Plane Development Kit
(DPDK) application) traffic policing. The traffic policing accuracy of the considered switches was
very high (e.g., the relative error was under 0.1%) in cases when the configured rate and burst size
was high (e.g., the rate was higher than 10𝑀𝑏𝑝𝑠). However, in scenarios with low policing rate and
burst, some switches exhibited very high inaccuracy (relative error exceeded values of 60%). In con-
trast, the performance of end-host traffic policing was constant and the relative error was usually
below 1%. In the end, a simulation study was presented to demonstrate that the impact of traffic
policing inaccuracies on the performance of one state-of-the-art (SotA) deterministic system is sig-
nificant (e.g., the number of accepted flows was halved). The main takeaway is that the inaccuracy
exhibited by in-network hardware devices is not negligible, and has to be taken into consideration
when designing DP (isolation) concepts capable of providing QoS guarantees.

The final contribution of this thesis is NAGA system which provides deterministic data and CP
guarantees. Firstly, to realize the DP guarantees, NAGA uses the DNC-based admission control algo-
rithm and it offloads certain functionalities (i.e., traffic policing and tagging) to edge switches. The
contributions presented in Chapter 4 were crucial for enabling the offloading. That is, by using the
traffic policing measurement procedure, it was possible to measure the traffic policing performance
of hardware devices, and to model it in the control logic of NAGA. Therefore, in contrast to the other
approaches in the literature, NAGA does not rely on the control of end-hosts, thus, it can be used in
virtualized programmable networks for either isolating the DP traffic or providing QoS guarantees to
the tenants. Secondly, to realize the deterministic guarantees in the CP, NAGA relies on an in-band CP
network and a carefully designed network scheduling algorithm. By utilizing the in-band CP over a
deterministic DP network, it becomes possible to guarantee that the CP messages will be delivered
reliably and within a certain time (i.e., no packet loss and bounded delay). Moreover, the proposed
scheduling algorithm aims to avoid overloading the CP of networking devices and it ensures that the
network is updated consistently. To verify the performance of NAGA system, we have deployed it on
a real test-bed with Programming Protocol-independent Packet Processors (P4)-enabled hardware
devices. The measurements showed that NAGA system does indeed provide DP guarantees and con-
sistent network updates without end-host control while supporting high scheduling rate (i.e., over
3k network updates per second).

Having such guarantees is particularly interesting for high-mobility use cases. For instance, in
an autonomous driving scenario, the vehicles are always moving and changing their network access
points connecting them to a cloud system. Therefore, in such scenarios, network operators could
significantly benefit from utilizing consistent and timed network updates to ensure that connectivity
is always available.

The QoS-aware resources provisioning methodology presented in Chapter 3 and the CP part
of NAGA presented in Chapter 5 take an important step towards enabling the realization of end-to-
end CP guarantees in virtualized programmable networks. That is, the provisioning methodology
ensures that the processing time of an NH always achieves certain QoS, even in dynamically changing
scenarios. While the CP aspects of NAGA can be used for the realization of control network with
update timing guarantees between an NH and networking switches.
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6.2 Future Work

In the following, potentially interesting future research directions are presented and discussed.
Automated & smart measurements.

Certain concepts in this thesis rely on the values extracted from the presented comprehensive
measurements. For instance, in Chapter 3.2, the resources of a NH are provisioned based on the
developed estimation model that was generated from the measurement data. Similarly, the DNC
theory used in Chapter 5 (see background in Sec. 2.3.2) relies on the service curves which are in fact
performance models of networking switches (e.g., collected and presented in Chapter 5). However,
in this thesis, the measurement data was collected only for certain scenarios while considering the
fixed set of parameters. For example, in Chapter 3.2, to obtain the performance measurement data
for two NHs the same physical machine was used to run them. Therefore, the derived estimation
models are only valid for the considered physical machine. Changing it (e.g., using a different CPU)
might influence the scaling dependencies of the model, thus, the model could require refitting with
additional measurements. Likewise, the input values (i.e., maximal switch processing time) for DNC
admission control algorithm in Chapter 5 are only valid for certain measured hardware switches.

Therefore, novel measurement tools are needed which should support automated (1) benchmark-
ing and data collection, and (2) data analysis. First, novel tools should in an automatic way (if needed)
install and configure a Device Under Test (DUT) (e.g., a NH or switch) and run the measurement test
cases. Secondly, they should also incorporate smart data analysis. That is, the measurement data
could be analyzed on the fly with either Machine Learning (ML) or Artificial Intelligence (AI) solu-
tions, and the test cases can be adapted based on the learned observations. This could potentially
save the measurement time and resources and enable faster extracting of influential parameters.

Traffic policing with programmable hardware.

The development of programmable DP hardware devices (i.e., based on P4 programming
language) made it possible to realize novel custom traffic metering algorithms directly on hard-
ware [He+21]; [Tha+21]. For example, in [He+21], the authors developed and deployed a token
bucket algorithm directly on P4-based hardware switch which supports link speed up to 100𝐺 .
Firstly, this solution might offer better performance (e.g., higher traffic policing accuracy) compared
to the carrier-grade OF-enabled hardware switches which exhibit extreme performance deviations
in certain scenarios (as presented in Chapter 4). However, the evaluations of the already devel-
oped custom algorithms in the literature were mostly focused on average values, and not on the
worst-case ones. Therefore, novel measurement studies based on the measurement methodology
presented in Chapter 4 are needed. In addition to measuring the already existing ones, novel traffic
policing algorithms could be developed focused on achieving the best worst-case performance.

Secondly, with programmable DP devices, it might become possible to develop traffic shaping
solutions1, which are typically not available on carrier-grade switches. However, since traffic shaping
solutions typically require a lot of memory for packet queuing (or buffering), it is still unclear how
to design traffic shaping solutions that can optimally utilize the available hardware resources (e.g.,
available memory).

1In traffic shaping, the packets are not dropped as in traffic policing, but rather delayed and sent later.
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Scalability of deterministic systems.

One of the major drawbacks of systems that provide deterministic DP guarantees (e.g., NAGA
or Chameleon) in Software-Defined Networking (SDN) networks is scalability. For example, in
Chameleon [Van+20], the total time needed for an admission control algorithm (deployed in
a centralized controller) time to determine if a certain flow request can be embedded without
violating the guarantees of other already embedded flows take at least a couple of milliseconds and
it sometimes exceeds 1 second. Therefore, if we assume that the average needed time is 10𝑚𝑠 , the
Chameleon controller can only support adding around 100 flow requests per second. This value is
insufficient for certain dynamically changing networks (e.g., DC networks with many micro flows).
This issue can be resolved by utilizing horizontal scaling. That is, instead of one controller we
could have multiple controllers which control the partitioned network. However, how to optimally
partition a deterministic network, and enabled multiple distributed controllers to operate it while
avoiding inconsistencies is an interesting research problem.

Providing stochastic and deterministic guarantees at the same time.

To provide deterministic guarantees, mathematical frameworks such as DNC [LT01] often base
their calculations on the worst-case scenarios. This means that by default, DNC and DNC-based
systems (and similar) are conservative and often sacrifice network utilization to provide the guaran-
tees. However, many applications do not even require deterministic or even high QoS guarantees.
For instance, since videos can be buffered on personal computers, streaming them from YouTube
can be done over best-effort networks. Hence, providing deterministic guarantees to such applica-
tions might lead to a waste of resources. However, most of the systems including NAGA (presented
in Chapter 5) that provide deterministic DP guarantees are not capable of providing different types
of QoS guarantees (e.g., stochastic). Hence, new systems are needed which can support at the same
time best-effort traffic in addition to the traffic with deterministic and stochastic requirements.
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