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ABSTRACT Accurate velocity information is often essential to the control of robot manipulators,
especially for precise tracking of fast trajectories. However, joint velocities are rarely directly measured
and instead estimated to save costs. While many approaches have been proposed for the velocity estimation
of robot joints, no comprehensive experimental evaluation exists, making it difficult to choose the
appropriate method. This paper compares multiple estimation methods running on a six degrees-of-freedom
manipulator. We evaluate: 1) the estimation error using a ground-truth signal, 2) the closed-loop tracking
error, 3) convergence behavior, 4) sensor fault tolerance, 5) implementation and tuning effort. To ensure a
fair comparison, we optimally tune the estimators using a genetic algorithm. All estimation methods have
a similar estimation error and similar closed-loop tracking performance, except for the nonlinear high-gain
observer, which is not accurate enough. Sliding-mode observers can provide a precise velocity estimation
despite sensor faults.

INDEX TERMS Velocity estimation, robots, manipulators, genetic algorithms, tuning.

I. INTRODUCTION
Accurate joint velocity signals of robot manipulators are
needed for many fundamental control purposes, e.g., tra-
jectory tracking, collision detection, and force control [1].
Sensors for measuring joint positions, e.g., encoders, have
become inexpensive, reliable, and have a high resolution.
The same cannot be said for velocity measurements. Direct
measurements, e.g., through magnetic tachometers are af-
fected by discontinuities of the magnetic field, ripple torques,
and other high-frequency noise [2], while encoders are much
more robust. Compactness and economic reasons often lead
to not integrating joint velocity sensors at all.

Starting with the works of Nicosia and Tomei [3] in the
1990s, velocity estimation for robots has been discussed
widely in the literature, and many different methods have
been proposed since then. From a practitioner’s point of
view, however, it is still hard to select a proper estimation
method, because 1) it is hard to infer differences between

estimation methods from previous papers, 2) many tech-
niques have only been evaluated in simulation, and 3) the
evaluations have been carried out on different robots.

Our paper addresses this issue by systematically compar-
ing popular velocity estimation concepts and evaluating them
using criteria which are important to practitioners, such as
tuning and robustness to faults. Together with this paper,
we also publish a MATLAB tool package, that includes an
implementation of all discussed methods ready-to-use.

Previous studies that involve comparing velocity estima-
tion methods can be found in [4]–[14]. Simulative compar-
isons of derivative filters for discrete position measurements
showed that no approach works best for all velocity profiles
[4]–[6]. In the simulative comparison in [7], an extended
Kalman filter, a nonlinear high-gain observer, and a linear
observer have been compared considering their position
estimation error and tracking error on a two degrees-of-
freedom (DOF) robot. The authors in [8], [9] experimentally
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compare the tracking error of different tracking controllers
using linear high-gain observers. The study in [10] experi-
mentally analyzes the tracking error of a 2-DOF planar robot
using five different observers. However, each observer uses
a different tracking controller and only trapezoidal trajec-
tories were tested. An experimental comparison between a
nonlinear high-gain observer, a Kalman filter, and a lead-lag
based filter has been conducted on a parallel kinematics robot
in [11], where the authors use a dual-mode controller and
a proportional-derivative (PD) controller. The comparisons
in [10] and [11] have two main drawbacks: 1) the gains
of the proposed methods were chosen without apparent
justification, although the performance of velocity estimation
mainly depends on such gains, and 2) these comparisons did
not evaluate the performance in terms of velocity estimation
error. Our paper addresses these issues by including a gain
tuning approach that allows a comparison of optimally tuned
estimators, while the velocity estimation error is measured
through an actual ground-truth signal. Further works that
compare model-free and model-based observers, used in
conjunction with different controller structures, can be found
in [12]–[14].

In contrast to previous works, our paper presents for the
first time an experimental comparison of a wide variety of
estimation methods, including multiple filters and multiple
observers. We use the same 6-DOF robot manipulator, the
same tracking controller, and the same test trajectory for all
estimators.

This paper is organized as follows: in Sec. I, we state
the problem at hand and survey the literature for popular
existing velocity estimators. In Sec. II, we provide an in-
depth review of selected estimators, which we consider to
be among the most suitable for practical applications. The
automatic parameter tuning is explained in Sec. III. The
evaluated estimators are compared experimentally in Sec. IV
and we conclude the paper in Sec. V.

A. PROBLEM STATEMENT
Let us consider the rigid dynamics of robot manipulators
with n revolute joints written in state-space form as

ẋ1 = x2,

ẋ2 = f(x1, x2, u) = M−1(x1)(u− n(x1, x2)),
(1)

where x1 ∈ Rn is the vector of joint positions, x2 ∈ Rn

is the vector of joint velocities, u ∈ Rn is the vector of
motor torques, M(x1) ∈ Rn×n is the inertia matrix, and
n(x1, x2) ∈ Rn is the vector-valued function including
Coriolis and centripetal forces, gravity, and friction. The joint
positions are measured at a finite resolution using rotational
encoders.

The robot tracks a desired trajectory of positions, ve-
locities, and accelerations xd1(t), xd2(t), xd3(t) ∈ Rn via an
inverse dynamics controller [15, Sec. 8.5.2]

u = M(x̂1)ν + n(x̂1, x̂2), (2)

ν = xd3 +Kp(x̂1 − xd1) +Kd(x̂2 − xd2), (3)

where x̂1, x̂2 are the vectors of estimated joint positions and
velocities. Some of the discussed methods do not estimate
x̂1; but since x1 is measured directly, x̂1 can be replaced by
x1 in (2) and (3), when applicable.

The objective of this paper is to compare different methods
to obtain x̂2 and to tune the parameters of all estimators, such
that the error x2− x̂2 between the estimated and the ground-
truth velocity is minimized. To obtain a ground-truth signal,
any method can be used that returns a significantly more
accurate velocity than the evaluated estimations, e.g., using
external encoders with a higher resolution and sampling
rate. In our paper, we simulate external measurement by
artificially decreasing the sensor resolution and sampling rate
of the internal sensors for closed-loop control, while the
ground truth is obtained using the actual sensor resolution
at a higher sampling rate.

The estimation methods are subject to disturbances in our
robot system. Amongst others, there can be

• quantization errors due to the finite resolution of the
encoders;

• high-frequency noises due to manufacturing errors of
the encoders [16];

• modeling errors due to an inaccurate parametrization
of f(x1, x2, u);

• sensor faults due to communication errors.

In the subsequent literature survey we group the ap-
proaches we identified for velocity estimation into model-
based approaches, that require the computation of the non-
linear dynamical model in (1), and model-free approaches,
which do not need this model. Model-free methods can be
implemented decentrally at each individual joint, if the meth-
ods do not have dependencies between joints. Model-based
methods, however, must be implemented in a centralized
manner. The considered approaches are collected in Table
1, which also sorts them according to the fact that they are
validated in the literature using simulations or experiments.

B. MODEL-BASED METHODS
We first survey model-based schemes. The popular and
pioneering model-based method of Nicosia and Tomei in [3]
presents an asymptotically stable observer whose region of
attraction can be enlarged via the observer gain. In contrast to
previous work, the authors design the model-based observer
in conjunction with a controller; many subsequent works fol-
lowed this idea. The authors in [17] propose a model-based
observer which provides semi-global exponentially stable
error dynamics of the velocity tracking error, considering a
dedicated controller structure. Effectiveness of this approach
is shown by experiments on a 2-DOF manipulator. Another
model-based extension of the approach from Nicosia and
Tomei can be found in [18], in which the authors show
semi-global exponential stability of their proposed combined
observer and controller. The authors in [19] and [20] discuss
nonlinear high-gain observers for the velocity estimation
problem, including how to avoid the peaking phenomenon
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in the transient behavior, i.e., the initial estimation error may
exhibit an impulse that could destabilize the controller. An
adaptive approach providing locally asymptotically stable
estimation error dynamics has been proposed in [21] in
which the authors show that their proposed approach is
superior to simple numerical differentiation; the authors per-
form experiments on a 6-DOF PUMA-560 robot. The work
in [22] introduces a combined observer/controller structure
providing global exponential convergence of the estimation
error. However, that paper only shows practical effective-
ness by means of simulations. More recently, the author
in [23] showed theoretically that a proposed Luenberger-like
observer with a simple proportional-derivative control with
gravity compensation achieves uniformly ultimately bounded
stability, which is confirmed by experiments on a 2-DOF
robot. Model-based approaches using sliding mode observers
have been proposed for robots in [2], [24], [25], whose
effectiveness was only demonstrated by simulations.

C. MODEL-FREE METHODS
In this subsection, we survey model-free approaches. In the
works of Nicosia et. al. [8], a simple high-gain observer
is introduced, which supports distributed implementations;
this approach also provides uniformly ultimate boundedness
of the velocity estimate and is presented and tested using
both simulations and experiments on a 6-DOF robot. The
work in [26] introduces a model-free observer providing
uniformly ultimate boundedness of the velocity estimation
error. This scheme accounts for model uncertainties in its
design and its effectiveness have been verified by means of
experiments with a 2-DOF robot. Both [8] and [26] consider
inverse dynamics control and proportional-derivative control
for tracking, provide a closed-loop stability analysis for
both cases, and suggest parameters to ease gain tuning of
the observer. Subsequently, the authors in [27] also pro-
posed a model-free observer that provides uniformly ultimate
boundedness of both tracking and observer errors when used
in conjunction with their proposed robust controller. The
authors in [28], [29] introduce a model-free observer which
provides asymptotic stability of the velocity estimation error
dynamics. To achieve this, [28] uses passivity arguments,
while more general Lyapunov arguments are used in [29],
where also external disturbance is taken into account and
the performance is shown using simulations on a 2-DOF
robot. Similarly, the works in [30], [31] present model-free
observers that provide asymptotic stability demonstrated in
simulation [30] and experiments [31]. A model-free sliding-
mode observer has been proposed in [32]; its practical effec-
tiveness has been presented by simulations. As an extension,
some estimators incorporate neural networks [33], [34].

Furthermore, there exist popular estimators without ex-
plicit closed-loop stability proofs. Kalman filters [35] are
such an example, which assume white noise to approximate
the robot dynamics. Also, the derivative filtering methods,
such as the ones in [5], are not yet proven to be stable
in closed-loop. However, the author of [36] introduces a

TABLE 1. Velocity estimation methods identified in this survey
(references with * are evaluated in our comparison).

Validated Validated
in simulation in experiments

model-free [5]*, [12]–[14], [28]–[30], [8]*, [26], [27], [31]
[32]–[34], [37]*

model-based [2], [12]–[14], [18], [19], [17], [21], [23]
[20]*, [22], [24], [25]*

possible theoretical framework to foster the use of derivative
filtering in place of state observers for a stable output-
feedback control of robots.

From the available literature, we select several estimation
methods, of which we conduct an in-depth review, which
can be divided into four model-free methods from the works
in [5], [8], [37], and two model-based methods from the
works in [20], [25]. The selected methods have an asterisk in
Tab. 1. These have been mainly selected for their popularity,
ease of implementation, ease of tuning, and their robustness
with respect to the chosen controller.

II. REVIEW OF SELECTED ESTIMATORS
In this section, we discuss the estimators that we exper-
imentally compare, namely moving average filtering [5],
derivative filtering [5], Kalman filtering [37], linear high-gain
observer [8], nonlinear high-gain observer [19], and sliding-
mode observer [25]. We review their respective properties
as studied in the literature. Furthermore, we discuss the
implementation aspects.

A. FINITE DIFFERENCE AND MOVING AVERAGE
FILTERING
This basic technique numerically approximates the derivative
by dividing the difference between successively obtained
position measurements by a time window p∆t, where ∆t
is the sampling time of the controller and p is an integer
that determines the size of the window for which we take
the average. We denote a position measurement as x1,k−1 =
x1((k − 1)∆t). The estimated velocity is given by

x̂2,k =
x1,k − x1,k−p

p∆t
. (4)

With large p, the averaging effect attenuates quantization
noise in the measurements, but introduces a delay in the
estimated velocity, while small p values amplify the noise
[37]. For our comparison, we use p = 1, which we also
call the finite difference (FinDiff ) method, and an optimally
chosen p > 1, which we call the moving average (MovAv)
method.

B. DERIVATIVE FILTERING
Here, we describe a class of methods that compute the
derivative through filtering the position signal. Various pre-
dictive strategies have been proposed in the literature based
on a polynomial fitting of previous measurements, such
as Taylor series expansion (TSE), and backward difference
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expansion (BDE), which are characterized by the number
of samples nTSE and nBDE. To counter the problem of
overfitting and the resulting noise amplification, the least-
squares fit (LSF) has been proposed in [5], that uses regres-
sion to find a polynomial of the order pLSF with the smallest
error among nLSF measurements, where pLSF < nLSF. In-
depth comparisons of these methods and a description of
their implementation can be found in [4], [5], [38]. The
findings of Brown et al. [5] are that TSE and BDE are
good for transient responses and LSF filters are more suited
for constant velocities. For velocity profiles that vary a lot,
such as for robot manipulators, no single filtering method is
best [38]. In our comparison, we will first evaluate the TSE,
BDE, and LSF filters amongst each other, and choose the
best one for the overall comparison with other methods.

C. KALMAN FILTER
The Kalman filter is a linear observer, that has been used
in many engineering fields, such as for state and parameter
estimation, data merging, or signal processing [39]. Bélanger
proposes such an observer for rotary encoders [37], and
instead of using the dynamical model in (1), assumes a triple
integrator model for each individual axis i, consisting of
the state zi = [x1,i, x2,i, x3,i] ∈ R3 (position, velocity, and
acceleration of each axis), the output yi, and the Gaussian
white noises vi (sensor noise) and wi (process noise) [37,
Eq. 14]:

żi = Azi + Γwi

yi = Czi + vi,

A =

0 1 0
0 0 1
0 0 0

 ,Γ =

0
0
1

 ,
C =

[
1 0 0

]
.

According to [37], vi can be chosen to be zero-mean with
variance

∆q2m,i

3 , where ∆qm,i is the quantization error of
each axis. The noise wi is also assumed to be zero-mean and
has a variance Qi, which has to be tuned for each axis. In the
same work, a second-order system is additionally proposed
for velocity estimation which, however, does not perform
as well as the third-order one. The analysis in [37] showed
an improvement compared to the finite difference method,
especially at low speeds up to one tenth of an encoder
increment per time step.

To further improve the acceleration estimation [7] or
to provide estimations for flexible robots [40], one could
estimate the state of the full model of the robot consider-
ing the nonlinear dependencies between joints. For those
systems, extended Kalman filters are required due to the
nonlinearity of the system. Since both cases are not relevant
in our application, we deliberately exclude this method in
our comparison.

D. LINEAR HIGH-GAIN OBSERVER
High-gain observers are theoretically well understood (see,
e.g., the works of Khalil [20]) and have been experimentally

examined, e.g., in [7]–[11]. In this work, we discuss both
the linear and the nonlinear versions. The linear observer
(linHG) uses a scalar gain εl and two matrix gains H1, H2 ∈
Rn×n [8, Eq. 9]:

˙̂x1 = x̂2 +
1

εl
H1(x1 − x̂1),

˙̂x2 =
1

ε2l
H2(x1 − x̂1).

This observer is asymptotically stable if the eigenvalues

of
[
−H1 I
−H2 0

]
have negative real parts [20]. It has been

shown in [8], that there exists an ε∗l so that the closed-
loop dynamics is asymptotically stable for εl ∈ [0, ε∗l ],
for any uniformly asymptotically stable controller. In other
words, high-gain observers can be flexibly combined with
any tracking controller, while overall stability is guaranteed.

In practice, however, the observer gains are limited, i.e.,
εl is lower-bounded by measurement noise and the sampling
time of the controller [20]. Therefore, a trade-off between the
noise suppression and estimation accuracy has to be found.
To partially overcome this compromise, one can filter mea-
surements and implement time-varying gains, as discussed
in [20]; this extension is excluded in our comparison since
we limit ourselves to easily implementable approaches. Also,
a peaking phenomenon occurs (not examined by [8]). For
these cases, an input saturation is sufficient for stability [20].

E. NONLINEAR HIGH-GAIN OBSERVER
Considering the full robot model (1) as an additional source
of information, there exists a potential for better results
using nonlinear observers. The nonlinear high-gain observer
(nnlHG) is such a model-based approach, that is similar to its
above-discussed linear version. For robots, this observer has
first been introduced by Lee and Khalil in [19]. The observer
uses the scalar gain εn and two matrix gains L1, L2 ∈ Rn×n

[20, Eq. 9.4]:

˙̂x1 = x̂2 +
1

εn
L1(x1 − x̂1),

˙̂x2 = f(x1, x̂2, u) +
1

ε2n
L2(x1 − x̂1).

Similar to the linear version, asymptotic stability is given if

the real part of the eigenvalues of
[
−L1 I
−L2 0

]
are negative

and a nonlinear separation principle can be established for
the stability of the closed-loop system [41], meaning that
also this observer can be flexibly combined with any stable
tracking controller. A simulation study in [20] has shown
that, indeed, a better velocity estimation compared to the
linear version can be achieved, if the model is precise.
However, this advantage becomes less and less significant,
when the gains εl and εn decrease [20].

F. SLIDING MODE OBSERVER
Robustness, finite-time convergence, and the ability to handle
discontinuous systems are major reasons for the application
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of sliding mode observers (SliMod) [42]. Real implemen-
tations of sliding mode observers, however, suffer from
chattering while sliding along the switching surfaces. This
effect can be alleviated by second or [42] or third-order [43]
sliding-mode observers. Third-order versions experience a
slower convergence than second-order observers, as shown
by Fraguela Cuesta et al. in [43]. The version we consider in
our comparison is the third-order version proposed in [25],
which adds a linear term to improve convergence. It consists
of the gain vectors α1, α2, α3 ∈ Rn×1, the linear gain
matrices K1,K2 ∈ Rn×n, the signum function sgn(·), the
element-wise absolute norm | · |, and element-wise powers,
such that [25, Eq. 28]:

˙̂x1 = x̂2 + α3|x1 − x̂1|2/3sgn(x1 − x̂1) +K1(x1 − x̂1),

˙̂x2 = f̂(x1, x̂2, u) + α2| ˙̂x1 − x̂2|1/2sgn( ˙̂x1 − x̂2),

+K2(x1 − x̂1) + ẑeq,

˙̂zeq = α1sgn( ˙̂x1 − x̂2),

where ẑeq is the observed input disturbance, which could also
be used to improve the tracking performance, as described
in [25]. For continuous-time systems, this observer has finite-
time convergence, and can thus be trivially combined with
stable tracking controllers, since the observer only has to
reach the exact velocity before the controlled system would
leave the stability bounds [42].

G. IMPLEMENTATION
Except for derivative filtering, the above estimation methods
and their properties have been developed and presented in
the literature assuming continuous-time control. Real imple-
mentations, however, are usually in discrete time, which is
why we briefly review their implementation here.

Discrete-time versions of Kalman filters can be obtained
by transforming the system model to discrete time and
solving the discrete Riccati equation. As an example, the
MATLAB functions c2d, dlqe, and destim provide
the respective functionality. Discrete-time implementation of
both linear and nonlinear high-gain observers are reviewed in
[20, Ch. 9], and boundedness of the estimation error has been
shown. For the linear version, the bilinear transformation per-
forms best, as shown in [20], and can also be formulated as
an FIR filter [44]. For both nonlinear high-gain and sliding-
mode observers, the forward difference transformation can
be used, for which boundedness of the estimation error has
been shown in [20] and [42].

III. GAIN TUNING USING A GENETIC ALGORITHM
Control gain tuning is one of the main concerns in industrial
applications [45]. For a fair comparison, one has to find the
optimal gains for each estimator—some of them feature up
to 90 gains, when every matrix element is considered (see
Tab. 2). Manually tuning the gains is a time-consuming task
for some estimation methods. Instead, we propose to use an
automatic approach to find the optimal gains, which can be
applied to all estimators.

TABLE 2. Number of gains of velocity estimators for 6-DOF robots

Method Gains Total # Reduced #
Moving Average n 6 6

BDE, TSE nBDE,TSE 6 6
LSF nLSF, pLSF 12 12

Kalman filter Q 6 6
Linear high-gain εl, H1, H2 73 12

Nonlinear high-gain εn, L1, L2 73 12
Sliding Mode α1, α2, α3,K1,K2 90 8

Possible automatic tuning techniques for PID controllers
are reviewed in [46]; however, these are not applicable to
multi-input multi-output systems. Instead, genetic algorithms
(GA) have shown promising results for the gain tuning of
nonlinear controllers, as demonstrated by simulations in [47]
for flight controllers and in [48]–[50] for robot controllers.
Genetic algorithms are bio-inspired techniques, for which
existing tools can be used, e.g., the Global Optimization
Toolbox in MATLAB.

To accelerate the tuning process, we reduce the number of
gains. For high-gain observers, the original authors propose
to choose H1, H2, L1, L2 a priori and subsequently decrease
εl, εn as far as possible. As can be seen in the equations of
Sec. II-D and Sec. II-E, the ε gains are, however, redundant,
since one can equally choose large values for the matrices.
This is why we arbitrarily set εl = εn = 0.03 a priori and
tune H1, H2, L1, L2 instead. Additionally, we only consider
to tune their diagonals to reduce the number of gains. For
the sliding-mode observer, we choose α1 = 1.1f+, α2 =
1.5(f+)1/2, and α3 = 1.9(f+)1/3, as proposed in [42], [43],
where f+ ∈ R6 represents the upper bound of the model
perturbation. Furthermore, we replace K1 and K2 by the
scalars k1 and k2, respectively. We found these choices to be
suitable as a compromise between optimality and decreased
tuning effort.

The cost function we use in this paper for tuning, as well
as for evaluating the performance of the estimators is the
integral squared error (ISE) of the velocity estimation

ISE(t) =

∫ t

0

(x2(τ)− x̂2(τ))2dτ. (5)

This cost function depends on a measurement of the ground
truth of x2, which must be more accurate than the estima-
tion from the reviewed methods. In our case, we run the
estimation methods online at a lower sampling rate with a
lower encoder resolution, while the ground truth position is
measured by the same encoders at a higher sampling rate
and resolution. The ground truth velocity is then obtained
offline by computing the finite difference and downsampling
it with an anti-aliasing filter [51] to match the sampling rate
of the online estimation methods. If measuring at a higher
sampling rate and resolution is not feasible, we propose to
use offline zero-phase filtering [51] to obtain a ground truth,
so that we can minimize the phase delay of the estimated
velocity.
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TABLE 3. Hyperparameters of GA for gain tuning.

Parameter Value
Population size 60

Number of elites 6
Selection Tournament

Crossover Uniform crossover at 87.5%
Mutation Random mutation at 0.38%

Maximum generation 20

FIGURE 1. The testbed consists of a 6-DOF robot manipulator and a
controller running on Simulink Real-Time.

The hyperparameters of the genetic algorithm are chosen
to be almost the same as in [49] (see Tab. 3), except for the
number of generations. Although our tuning is carried out
on a real robot instead of simulations, we determined that
20 generations are sufficient for the gains to converge to an
optimal value.

IV. EXPERIMENTAL COMPARISON
In this section, we experimentally compare the velocity
estimation methods reviewed in Sec. II. Our testbed consists
of a 6-DOF Schunk LWA-4P robot, whose model has been
identified in [52]. The controller and estimators are imple-
mented in Simulink Real-Time on a target machine with an
i7-3770K 3.5 GHz processor (see Fig. 1). For the computed-
torque controller, we choose Kp = 100 and Kd = 13.
To measure the ground-truth velocity, we run the position
encoder at 1 millidegree per increment at a sampling rate of
250 Hz. The actual velocity estimation is done at a resolution
of 10 millidegrees per increment and at a sampling rate of
125 Hz.

We structure the experimental comparison as follows:
in Sec. IV-A, we compare the tuning process using our
proposed genetic algorithm. In Sec. IV-B, we show the
main performance results, including the estimation error, the
tracking error, and the convergence behavior of each estima-
tor. Afterwards in Sec. IV-C, we compare the performance,
when sensor faults are introduced. In Sec. IV-D, we compare
the performance when using different encoder resolutions or
sampling rates. The experimental comparison is concluded
with a discussion of the results in Sec. IV-E. For simplicity
in some of the plots, we only show the behavior of one
axis because the behavior of the other axes are similar. The

FIGURE 2. Desired trajectory for gain tuning.

TABLE 4. Optimal gains of velocity estimation methods (10 mil-
lidegrees, 125 Hz).

Method Par. Optimal values (diag. elements of matrices)
MovAv n 2

LSF n 4
p 1

Kalman Q 18.55 17.93 0.010 14.62 0.037 11.48
linHG εl 0.03

H1 47.01 25.98 59.80 54.96 35.83 34.25
H2 233.1 97.74 243.9 192.3 93.03 206.9

nonHG εn 0.03
L1 1.090 0.818 1.155 1.172 1.196 1.191
L2 1.812 0.999 2.205 2.428 2.006 2.552

SliMod f+ 17.19 12.20 30.38 32.24 28.38 34.77
k1 84.46
k2 41.03

implemented velocity estimation methods, the experimental
results, trajectories, and the robot model are provided as
supplementary data1 to this paper.

A. TUNING BEHAVIOR
We apply our automatic tuning procedure described in
Sec. III to the four observers: Kalman filter, linear high-gain
observer, nonlinear high-gain observer, and the sliding-mode
observer. The remaining estimation methods only involve
integer gains, which is why a grid search for each robot
axis was sufficient. For tuning, we execute the trajectory
displayed in Fig. 2 for each genome. With 20 generations,
each with a population of 60 genomes, this translates to
roughly 12 hours of tuning per estimation method, including
the computation time.

In Fig. 3, we show how fast our genetic algorithm con-
verges. The model-free observers (Kalman filter and linear
high-gain observer) converge fast, while the model-based
observers converge more slowly. According to our intuition,
this may be because the gains of the model-based observers
are more dependent on each other, where varying one gain
affects the estimation performance of multiple joints. For the
model-free observers, the gains are decoupled for each joint,
which makes the search easier. The resulting optimal gains
are shown in Tab. 4.

1https://dx.doi.org/10.21227/tse3-h285
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FIGURE 3. Gain tuning using our proposed genetic algorithm. After each generation the mean cost (5) slowly approaches the best achieved cost per
generation.

FIGURE 4. Estimation performance: desired trajectory. The velocity
signal q̇d consists of a sine part, a polynomial part, and a trapezoidal part.

B. ESTIMATION PERFORMANCE
We compare the performance of the velocity estimation
methods using a more varied trajectory than the tuning
trajectory. As shown in Fig. 4, it consists of a sine wave,
a point-to-point trajectory in joint space using 5th-order
polynomials, and a trapezoidal point-to-point trajectory in
both joint and task space with inverse kinematics included.
The experiments are performed in closed-loop control, mean-
ing that the estimated velocities are directly applied to the
computed-torque controller.

At first, we choose the best derivative filter out of the TSE,
BDE, and LSF filters. Tab. 5 shows the ISE metric for the
test trajectory for all considered filters. These are the same
ones that have been analyzed in the previous comparisons
in [4] and [5]. For this experiment (and all subsequent ones)
we have determined that the LSF1/4-filter (i.e., nBDE = 2)
has the smallest velocity estimation error. Mathematically,
the LSF1/3-filter (i.e., pBDE = 1 and nLSF = 3) equals the
moving average filter for n = 2, and LSF1/2, BDE1, and
TSE1 equal the finite difference method, which is why we
exclude them in this comparison.

TABLE 5. Integral squared error of the derivative filters (10 mil-
lidegrees, 125 Hz).

Filter ISE Filter ISE
MovAv 0.035 LSF3/8 0.434
LSF1/4 0.046 BDE2 0.092
LSF1/8 0.114 BDE3 0.184
LSF2/8 1.197 TSE3 0.128

Next, we compare the LSF1/4-filter with all other opti-
mally tuned estimation methods. To reflect the fact that the
estimation performance can vary over time when used in
closed-loop, we run the test trajectory four times for each
estimator. In Fig. 5B we show the mean cumulative ISE over
the course of the test trajectory, as well as their maxima and
minima (shaded areas).

Except for the nonlinear high-gain observer, all other
methods have a very similar estimation error. By small
margins we can see that the Kalman filter and the linear high-
gain observer perform slightly better than the rest. Although
the finite difference method performs well in terms of ISE,
we can also see in Fig. 5A that it is a noisy estimation due
to the quantization error of the position encoder. On the one
hand, the moving average filter improves the smoothness, but
on the other hand, the error is larger due to the increased
delay. Except for nnlHG, the other estimation signals are
less noisy than the finDiff, while having a smaller delay
than MovAv, which results in smaller estimation errors.
The sliding-mode observer behaves interestingly: for the
smooth sine and polynomial trajectories, it is an accurate
estimation method. However, in the trapezoidal section, the
error increases faster than for other methods, especially at
the sections with sudden high acceleration.

In terms of the performance of the tracking control,
the estimation methods do not differ significantly. As the
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FIGURE 5. Estimation performance: velocity error. The left side (A) shows an excerpt of the estimated velocity x̂2 (colored) versus the ground truth x2

(black) for axis 6. The right side (B) shows the cumulative mean integral squared error (ISE) for each method (four experiments each).

FIGURE 6. Estimation performance: tracking error. Cumulative ISE of the
tracking performance xd

1 − x1.

overlapping shaded areas in Fig. 6 show for the ISE of
the tracking error, the variation between multiple tests is
far larger than the influence of the estimation method. Only
nnlHG has a worse tracking error, resulting from its poor
velocity estimation performance.

To explain the different behaviors of the methods, we
analyse how fast they converge by analyzing their step re-
sponses. To do that, with reference to the result in Fig. 7, we
execute a trapezoidal trajectory and activate the estimators
simultaneously when the reference velocity is constant (t=8
seconds) to observe their response. We can see that the
nonlinear high-gain observer never really converges, since
it is not fast enough. The sliding-mode observer has the
smallest overshoot, but requires much longer than the rest
of the estimators to converge to the actual velocity. This
is why in cases such as high accelerations in trapezoidal
trajectories, the sliding-mode observer deviates, and the
slow re-convergence accumulates to a large estimation error,
although otherwise it is an accurate observer. The other
methods converge significantly faster, which explains their
good closed-loop performance.

FIGURE 7. Estimation performance: convergence of each method. Both
plots show at different time scales the step response and the time of
convergence (squares) of each estimator compared to the ground truth x2

for axis 2 of the robot manipulator.

C. FAULT TOLERANCE
We analyze how the estimation methods react to errors in
the position measurement. To do that, we randomly simulate
a loss of communication for 10% of the measurements of
axis 6 of our robot. The resulting velocity estimation can be
seen in Fig. 8A. The estimated velocities experience severe
chattering, except for the sliding mode observer, which
responds more robustly by remaining smoother.

However, the robustness of the estimators can be im-
proved. To demonstrate that, we repeat the tuning process,
in which the sensor stays faulty. As Fig. 8B shows, the
estimation improves. As Tab. 6 shows, the retuned estima-
tors significantly sacrifice accuracy during normal operation,
except for the Kalman filter and the sliding-mode observer,
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FIGURE 8. Sensor fault tolerance: the left side (A) shows an excerpt of the estimated velocity of axis 6 given sensor errors, using the parameters from
Tab. 4. The right side (B) shows the estimated velocity with new gains, that mitigate the noise.

TABLE 6. Estimation error (ISE) with faulty sensors.

retuned retuned
normal normal faulty faulty

FinDiff 0.041 0.041 2.737 2.737
MovAv 0.033 0.097 0.763 0.160

LSF 0.041 0.088 0.526 0.207
Kalman 0.032 0.036 1.162 0.177

linHG 0.033 0.060 1.831 0.145
nonHG 0.508 2.011 1.312 2.017
SliMod 0.047 0.049 0.067 0.074

TABLE 7. Optimal gains of velocity estimation methods (2 millide-
grees, 125 Hz).

Method Par. Optimal values (diag. elements of matrices)
MovAv n 2

LSF n 4
p 1

Kalman Q 9.650 5.479 15.34 9.382 7.265 1.453
linHG εl 0.03

H1 36.81 30.77 45.18 27.40 55.17 34.04
H2 284.6 501.7 475.1 330.8 219.4 289.2

nonHG εn 0.03
L1 1.011 0.768 1.153 1.180 1.193 1.057
L2 1.689 0.997 2.175 2.216 2.399 1.835

SliMod f+ 19.04 25.38 19.93 29.86 29.27 48.02
k1 119.5
k2 41.13

which is why we conclude that these two are the most fault
tolerant methods regarding our error model.

D. HIGHER SENSOR RESOLUTION AND SAMPLING
RATE
At last, we compare the estimation methods when operating
the robot at a higher sensor resolution and higher sampling
rate. We repeat the tuning process for two configurations: 1)
2 millidegrees per increment and sampling at 125 Hz, and 2)
1 millidegrees per increment and sampling at 250 Hz. For the
latter configuration we compute the ground truth using the
filtfilt zero-phase filter from MATLAB with a cut-off
frequency at 28 Hz.

TABLE 8. Optimal gains of velocity estimation methods (1 millide-
gree, 250 Hz).

Method Par. Optimal values (diag. elements of matrices)
MovAv n 2

LSF n 4
p 1

Kalman Q 1.07 16.71 26.07 7.87 0.88 1.28
linHG εl 0.01

H1 15.63 19.54 17.09 9.43 15.75 19.02
H2 32.11 50.34 34.72 25.92 19.05 38.35

nonHG εn 0.01
L1 1.637 2.433 2.079 1.671 2.144 1.753
L2 3.061 3.359 3.463 3.343 3.046 3.404

SliMod f+ 26.84 21.19 37.39 26.75 32.29 44.83
k1 37.47
k2 88.84

The resulting optimal gains are shown in Tab. 7 and
Tab. 8, and the cumulative ISEs are shown in Fig. 9. The
estimation errors decrease due to the improved measurement
and the higher gains for the observer methods. What is
immediately noticeable from the ISE graphs is that the
relative difference between the filtering methods (FinDiff,
MovAv, LSF1/4) depends much on the sampling rate and
the encoder resolution. In the first case, FinDiff and LSF1/4
perform better than MovAv; in the second case, MovAv is the
best of the filters. In contrast, the relative difference between
the observer methods (Kalman, linHG, nnlHG, SliMod) stays
similar in all considered cases. The linear high-gain observer
is consistently amongst the best in terms of accuracy in all
experiments.

E. DISCUSSION
We have thoroughly investigated the performance of velocity
estimation methods, considering multiple aspects that are
important for applying them to real robots. The moving
average and the derivative filters are easy to implement and
to tune, but their accuracy varies between different sensor
resolutions and sampling rates. In our experiments, the
derivative filters (LSF, BDE, TSE) did not perform very well
and can lead to large errors, as can be seen by comparing
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FIGURE 9. Higher sensor resolution and sampling rate: comparison of
the velocity estimation methods.

Tab. 5 to the ISE. The linear high-gain observer consistently
has the best accuracy when the gains are properly tuned.
The nonlinear high-gain observer has not proven to be a
suitable option in our experiments, although we tried our
best to identify the robot model as accurately as possible. The
sliding-mode observer, which is also model-based, performs
well and has the added benefit of being robust against
erroneous sensor measurements, but often experienced a
loss of accuracy at high accelerations. From our comparison
we cannot conclude that model-based observers, which are
harder to implement due to the dynamical model of the
robot, perform better than model-free estimation methods.
Finally, our experiments have shown that most of the chosen
estimators do not noticeably influence the tracking error,
when they are optimally tuned. However, an inaccurate
velocity estimation, such as the nonlinear high-gain observer
in Fig. 6, will significantly degrade the tracking performance
of the controller. This emphasizes the practical relevance
of having accurate estimates and the importance of tuning
to reach the best performance. In Tab. 9, we qualitatively
summarize our discussed observations.

V. CONCLUSION
This work experimentally compares multiple velocity estima-
tion methods for robot manipulators, namely the finite differ-
ence algorithm, moving average filtering, derivative filtering,
Kalman filtering, linear high-gain observer, nonlinear high-

TABLE 9. Qualitative comparison of each estimation method.
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Implementation   G# G# # #
Tuning   G# G# G# G#

Estimation accuracy G# G# G#  # G#
Fault tolerance G# G#  G# G#  
Tracking error     G#  

 = best, # = worst, and G# = in between

gain observer and the sliding mode observer. Additionally,
we propose an automatic tuning procedure based on a genetic
algorithm. The linear high-gain observer is consistently
amongst the best in terms of accuracy, independent of the
sampling rate and sensor resolution, while the sliding-mode
observer is robust against sensor faults. Simple-to-implement
schemes, such as the moving average filter, can perform well
enough, when optimally tuned, without affecting the tracking
error of the closed-loop robot system. The nonlinear high-
gain observer was not suitable for our robot. Overall, when
the other estimators are tuned using our genetic algorithm,
their optimal performance is similar.
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