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Abstract

Traditionally, robots are regarded as universal mo-
tion generation machines. They are designed mainly
by kinematics considerations while the desired dynam-
ics is imposed by strong actuators and high-rate con-
trol loops. As an alternative, one can first consider the
robot’s intrinsic dynamics and optimize it in accordance
with the desired tasks. Therefore, one needs to better
understand intrinsic, uncontrolled dynamics of robotic
systems. In this paper we focus on periodic orbits, as
fundamental dynamic properties with many practical ap-
plications. Algebraic topology and differential geometry
provide some fundamental statements about existence
of periodic orbits. As an example, we present periodic
orbits of the simplest multi-body system: the double-
pendulum in gravity. This simple system already dis-
plays a rich variety of periodic orbits. We classify these
into three classes: toroidal orbits, disk orbits and non-
linear normal modes. Some of these we found by geo-
metrical insights and some by numerical simulation and
sampling.

1 Introduction

The traditional approach to robot motion generation
is to first plan trajectories on a kinematic level and then
develop controllers for tracking the planned trajectories.
The robot hardware, and therefore its dynamics, are
considered to be given a priori. As the robot is un-
derstood as a universal motion generation machine, the
ideal controller must track any trajectory to the best ex-
tent possible, leading to the ideal of a fully decoupling
controller. This compensates the intrinsic dynamics and
leads to simple error dynamics; for example, fully decou-
pled, second-order linear differential equations in com-
puted torque and operational space control [1], [2]. The-
oretically, one could control an elephant to jump like a
flea this way. Despite the huge success of this approach in
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robotics, the limitations are also obvious and well known:
actuator saturation, model errors, and unmodelled dy-
namics lead, in the extreme case, to severe performance
limitations, robustness problems up to instability, and
high energy consumption.

An alternative perspective has been taken in robotics
for a long time as well, leading to minimalistic and
passivity-based control [3], [4], bio-inspired design, em-
bodied intelligence, passive walkers [5], [6], and locomo-
tion template anchoring [7]. When operating a robot
on trajectories matching its natural dynamics, one only
needs very small control action. Such trajectories cor-
respond to geodesics with respect to the Jacobi metric.
Also research in neuroscience suggests that humans oper-
ate their arms on geodesics [8], [9]. Especially, for robots
that are supposed to perform quite specific, periodic, or
quasi-periodic motions most of the time, such as in legged
locomotion, linking the design of the robot and its in-
trinsic dynamics to its desired task promises benefits in
terms of performance and energy efficiency. Paraphras-
ing Rodney Brooks [10], we would say Elephants don’t
play hopscotch either. Also industrial robots, when used
in large production lines, perform mostly very repetitive
motions. Energy efficiency becomes relevant here as well,
in the context of CO2 neutrality, while maximizing speed
and/or force is always the central concern.

In this paper we contribute some insights into under-
standing intrinsic robot dynamics as methodologies to
generate highly efficient motions. To this end, we go
back to the roots of mechanics, taking a closer look at
the principles of least action and interpreting them ge-
ometrically. Although these principles are dating back
to Maupertuis, Euler, Lagrange, Jacobi, and Hamilton,
almost three centuries of developments in differential ge-
ometry, algebraic topology, and of numerical methods,
make it worth taking a fresh look at their meaning and
implications. We address motions that can be performed
at constant total energy, in particular periodic motions.
Although our intuition of frictionless, constant energy
behavior of robot dynamics is that of chaotic or at least
very complicated motions, it turns out that there are
even more periodic, regular motions than in general lin-
ear systems. As an example, we will present the zoo of
intrinsic periodic motions of the double pendulum, i.e.,
of the most basic, 2 DoF robot dynamics.
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1.1 A Very Short Primer on Robot Dynamics

The classical way of deriving the equations of motion
of mechanical systems is based on the Lagrange formal-
ism [11]–[14]. One defines a Lagrangian

L(q, q̇) = T (q, q̇)− U(q) (1)

as the difference of kinetic energy T (q, q̇) and poten-
tial energy U(q), with q ∈ Q being configuration vari-
ables and Q the configuration space. We integrate the
Lagrangian over candidate trajectories q(t) using the
Hamiltonian action integral

SH(q) =

∫ t2

t1

L(q, q̇)dt. (2)

The action integral is a functional: it takes an input func-
tion of a single variable and outputs a real number. For
the Hamiltonian action integral, this input is a function
q : R → Q of time and the output is the total action
of the mechanical system on q(t) from t1 to t2. Then
we take Hamilton’s Principle of Least Action to select a
true system trajectory q̂(t) out of the canditates:

The system takes a trajectory q̂(t) between
q1 = q(t1) and q2 = q(t2), that extremizes
SH(q̂) over all possible smooth paths satisfying
the given boundary conditions.

Using variational calculus, the extremizer for (2) locally
satisfies the Euler-Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (3)

The resulting equations of motion can be, in absence
of external generalized forces, written in the well-known
standard form

M(q)q̈ +C(q, q̇)q̇ + g(q) = 0 (4)

with mass matrix M(q), potential forces g(q) and Cori-
olis and centrifugal forces C(q, q̇)q̇. From this step on,
one classically only uses (4) for analyzing the dynamics
of the multi-body system. The power and large variety
of applications make us not spend too many thoughts on
the meaning of the initial action integral (2), which is
merely considered a creative intermediate step needed to
arrive at the Euler-Lagrange equations.

We would like to go one step back and introduce some
classical results directly derived from an alternative ver-
sion of the principle of least action: we look at the
Maupertuis-Euler-Lagrange-Jacobi formulation. We will
take advantage of this in gaining new insights into the
intrinsic dynamics of conservative mechanical systems,
especially regarding the existence and numerical compu-
tation of periodic trajectories of various types. Although
this body of work, leading to some remarkable insights,
is still today a topic of active research in mathematical
physics and theoretical mechanics, it seems to be largely
unknown to the robotics community. We believe that the
theoretical results of the last decades as well as the pow-
erful numerical tools and the computation power avail-
able today might lead to many applications in robotics.

1.2 Mauptertuis’ Principle of Least Action

If the Hamiltonian H(q, q̇), which in robotics is iden-
tical to the total energy, stays constant during motion,
time can be completely eliminated from Hamilton’s prin-
ciple of least action, leading to Maupertuis’ principle

SM (q) =

∫ q2

q1

pdq, (5)

where p = ∂L/∂q̇ is the generalized momentum, expressed
as a function of position along the trajectory of con-
stant energy [13]. These two principles of least action
can be derived from each other in the case of constant
energy [15]. The elimination of time, and thus of veloci-
ties, has two major implications:

1. the search for trajectories of the systems can be per-
formed in the n-dimensional configuration space in-
stead of the 2n-dimensional phase space; and

2. one can access a huge body of results from Rieman-
nian geometry and algebraic topology.

If parametrizing the curve by time, (5) will take the form

SM =

∫ t2

t1

2T (q, q̇)dt. (6)

Let’s compare: in Hamilton’s principle of least action we
fix the endpoints q1, q2 and the corresponding times t1,
t2, but we do not fix the total energy. We find trajecto-
ries of the system using this principle. In Maupertuis’
principle we fix the endpoints q1, q2 and the total energy,
but do not care about times. We find configuration paths
only, without velocity information. We can, however, re-
construct time and velocity from the configuration path
considering the fixed total energy. For a purely geomet-
ric formulation of conservative motions, geodesics play a
central role. We introduce them now.

1.3 Geodesics on Riemannian Manifolds

The notion of geodesics is one of the most basic
concepts in differential geometry [16]. Let (M, g) be
a Riemannian manifold1 with metric gij . A geodesic
is the straightest curve between two points [16]. Let
γ : [s1, s2] → M be a parametric curve. It will be called
geodesic if it extremizes the arc-length integral2

L(γ) =

∫ s2

s1

√
gijγ′iγ′jds, (7)

with γ′ = dγ/ds. In general the extremum does not need
to be a minimum. For example, on a sphere, geodesics
are both segments of the great circle passing through two
given points, which is unique if the points are not antipo-
dal. Fig. 1 illustrates the principle in the Euclidean space
(R2, δij). For this example, the blue straight line is the
globally shortest path and the only geodesic. Geodesics,

1We cannot introduce manifolds here. Great starting points are
the books by T. Needham on differential geometry [16], and by F.
Morgan on Riemannian geometry [17].

2We use Einstein notation in this paper: whenever one up-down
pair of indices match, we implicitly sum over them. Example:
gija

ibj :=
∑

i

∑
j gija

ibj
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Figure 1: Geodesic on Euclidean space. Blue shows a
geodesic and orange non-geodesics.

and thus extremizers of (7), satisfy the geodesic equa-
tion [18], [19]

∂2γa

∂s2
+ Γa

bc

∂γb

∂s

∂γc

∂s
= 0, (8)

where Γa
bc are Christoffel symbols of the second kind de-

rived solely from the metric

Γa
bc =

1

2
gai

(
∂

∂xc
gib +

∂

∂xb
gic −

∂

∂xi
gbc

)
, (9)

where gai is the inverse of gai, i.e., g
iαgαj = δij .

1.4 A Purely Geometric Perspective on Lagrangian
Mechanics

Starting fromMaupertuis’ principle of least action (5),
(6), it can be shown that trajectories of constant energy
between two points are geodesics with respect to the Ja-
cobi metric [13], [20], [21]

Jgij = 2(E − U(q))mij , (10)

where mij is the inertia tensor. The derivation of the Ja-
cobi metric is based on this insight: if energy is constant
(T (q, q̇) + U(q) = E), then velocity can be expressed
as a function of position on any trajectory. So let us
parametrize a motion along the curve γ instead of time
t by arc length s, which is in bijective relation s(t) to
time. With the notation q′ = dq/ds we have:

2T (q, q̇) = mij q̇
iq̇j = mijq

′iq′j
(
ds

dt

)2

= 2(E − U(q)).

(11)
This relates the differentials dt and ds

dt =

√
mijq′iq′j

2(E − U(q))
ds. (12)

Using 2T = 2(E − U) allows to remove T from (6). We
also substitute t with the curve parameter s and get

SM =

∫ t2

t1

2T (q, q̇)dt

=

∫ s2

s1

2(E − U(q))

√
mijq′iq′j

2(E − U(q))
ds

=

∫ s2

s1

√
2(E − U(q))mijq′iq′jds

=

∫ s2

s1

√
Jgijq

′iq′jds, (13)

which is indeed exactly the arc length with respect to
the Jacobi metric (10). This is remarkable! Isoenergetic
trajectories of the multi-body system in a potential field
are geodesics on the manifold (Q, Jg), where Q is the
configuration space. This eliminates velocities from the
problem - it is purely about curves on the configuration
space. The solutions describe only the path itself, not
the timing along it. Velocities are obtained by scaling
the tangent according to q̇ = q′ds/dt: we need to scale
the tangent to satisfy the constant energy condition. We
can also reconstruct time by integrating (12).

For potential-free systems the metric is proportional
to the inertia tensor Jgij = 2Emij and the constant fac-
tor can be ignored when searching for geodesics. Thus,
for potential-free rigid body systems, trajectories are
geodesics w.r.t. the inertia tensor. In this case, the paths
are independent of the energy, varying the energy only
changes the speed used to trace out the geodesics in con-
figuration space. In contrast, for systems in potential
fields, the geodesics generally vary with the total energy
E, as the Jacobi metric is energy-dependent. The nec-
essary and sufficient conditions for the paths to be in-
dependent of energy also in presence of potential energy
have been derived in [22].

1.5 Algorithms: Shooting versus Extremizing Arc
Length

How can we use the insights presented so far to find
intrinsic paths of dynamic systems? The basic example
is still the path of constant energy between two points
(Fig. 1), which can be, however, easily extended to pe-
riodic paths of line topology and to closed paths. The
approach mostly used in robotics for finding a path be-
tween the points qA and qB in Fig. 1 is to choose an
initial guess for the velocity q̇A and ”shoot” from the
initial state (qA, q̇A), i.e. simulate the robot dynamics
under additional constraints of time, energy, etc. A mea-
sure of the amount by which the point qB is missed by
the path is fed to the optimization algorithm, which will
adapt the initial velocity q̇A until it will hopefully hit
the point qB . Obviously, for long paths, the problem is
not very well conditioned and there exist many improve-
ments, for example by multiple shooting algorithms. For
periodic trajectories, the Poincaré map gives a similar
procedure for optimization, based on simulating the sys-
tem dynamics. As a basic principle, one optimizes in
the space of curves which are feasible solutions of the
differential equation, trying to satisfy the boundary con-
ditions.

In contrast, by using the principle of least action, one
optimizes in the space of curves satisfying the boundary
conditions, i.e. passing through the points qA and qB ,
but which are not necessarily solutions of the system’s
differential equations (yet). The algorithms then make
these curves system trajectories by zeroing the amount
by which the curves fail to satisfy the geodesic equation.
Equivalently, the algorithm extremizes the arc length in
the corresponding Jacobi metric, which can be intuitively
thought of as contracting rubber strings on the manifold.
We look in more detail at this algorithm in the following.
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γt(k − 1)

γt(k)

γt(k + 1)
γt+1(k − 1)

γt+1(k)

γt+1(k + 1)

t+∆T

Figure 2: Discrete string in Euclidean space

2 String Relaxation

Imagine you take a string and fix the two ends to
two distinct points. Now think of the string as a rubber
band: it will naturally contract to the (locally) shortest
possible path between the two endpoints.

Suppose we have a not (yet) geodesic curve γ(s, t),
which we would like to converge to a geodesic as t → ∞.
We take the geodesic equation and make γ(s, t) satisfy
it more and more over time by the PDE

∂γa

∂t
=

∂2γa

∂s2
+ Γa

bc

∂γb

∂s

∂γc

∂s
. (14)

Let’s discretize γ(s, t) in space and time and write it as
γt(k) = γ(k∆s, t∆T ) (Fig. 2). We use central differences
for the first derivatives and also discretize the second
derivative. This results in the update rule

γa
t+1(k) = γa

t (k) + ∆T
γa
t (k + 1)− 2γa

t (k) + γa
t (k − 1)

(∆s)2

+∆T Γa
bc

γb
t (k + 1)− γb

t (k − 1)

2∆s

γc
t (k + 1)− γc

t (k − 1)

2∆s
.

Note that we show here an explicit Euler scheme for
discretizing (14). This is not what one would implement
in practice, but serves to illustrate the idea. Convergence
is rather slow for the explicit scheme as small time steps
must be chosen. For this kind of relaxation dynamics
much faster convergence can be obtained by switching
to implicit solvers allowing to crank up ∆T a lot [23].

2.1 Example: Dynamical System

Let us next try string relaxation on a dynamical sys-
tem. We consider the configuration space of a double
pendulum and choose a total energy E. Assume we want
a trajectory from a configuration qA to qB . For constant
energy, we can fully capture its dynamics in the Jacobi
metric and make the problem purely geometric. We fix
a simulated string at the two configurations qA and qB

and let it contract under the Jacobi metric. Fig. 3 shows
one such example. The dashed blue line in Fig. 3 shows
the initial string. Over the iterations the string converges
to the orange curve. At the same time, the Riemannian
length of the string decreases (blue in Fig. 3b). In or-
ange we show the convergence velocity of the relaxation
measured by v(t) =

∑
k ||γt−1(k)− γt(k)||.

Once the string has converged to a geodesic γ(s) we
compare it to a forward simulated system. One last step
is to determine the initial velocity q̇A. We scale the
tangent of γ(s) to match the physical energy using the
inverse of (12). We scale the tangent of γ(s) such that
the total energy is preserved

q̇A =

√
2(E − U(qA))

mijγ′i
Aγ

′j
A

∂γ

∂s
. (15)

Starting from the state (qA, q̇A) we simulate the dou-
ble pendulum using a Runge-Kutta integration scheme
for some time and obtain the curve shown in orange in
Fig. 3c. We observe that the simulated trajectory follows
the relaxed string in configuration space. As we still have
energy at qB we pass by it and continue.

In the example we have fixed the string at two fixed
end-points qA and qB . This allows us to find geodesics
connecting two configurations. But nobody stops us from
closing the string by connecting the first and the last ver-
tex on the string. Then, the string has no boundary con-
ditions that would hold it in place. Often it will collapse
to a point, but sometimes the topology of the space pre-
vents this collapse - we will look into this phenomenon
in the next section. In that case we can use the string
relaxation to find periodic orbits.

3 Topological Insights into Periodic Or-
bits

Besides providing algorithms to find intrinsic trajec-
tories, the principle of least action leads to the possibil-
ity of making general theoretical predictions about the
types and numbers of special trajectories, such as pe-
riodic orbits. To get a flavor of the approaches, one
needs some topology, in particular algebraic topology.
We will only show a brief summary of the most essential
concepts here. The main interest of algebraic topology
is to classify manifolds into certain equivalence classes
and find invariant quantities which uniquely character-
ize them [24]. Manifolds are homotopy-equivalent if they
can be smoothly deformed into each other by a homo-
topy [25], [26]. In Fig. 4, the doughnut and the mug
are homotopy-equivalent and this is, intuitively speaking
because they are both 2-dimensional, closed, unbounded
surfaces with one hole.

An effective way to classify n-dimensional manifolds
is to count their number of holes of dimensions 0, ..., n,
which are described by the Betti numbers b0, ..., bn. For
2-dimensional surfaces, a zero-dimensional hole is a gap
between two path-connected components. So, for exam-
ple, b0(S2) = 1 for a sphere S2 and b0 = k for a manifold
composed of k disjoint spheres.

One-dimensional holes are found and counted by
classes of closed curves (1-cycles) on the manifold, which
cannot be shrunk to a point. For example, on a sphere
S2 all closed curves can be shrunk to a point (Fig. 5), so
b1(S2) = 0. On a torus T2, there are two distinct classes
of curves that cannot be shrunk to a point, as shown in
Fig. 5 in orange. Therefore, on the torus b1(T2) = 2.
In each of the two classes, there are infinitely many
curves, which can be continuously deformed into each
other. However, note that the curves from class a can-
not be continuously deformed into curves of class b, the
two sets are disjoint. Finally, both the sphere and the
torus have one 2-dimensional hole (whose boundary is a
closed surface), and therefore, b2(S2) = b2(T2) = 1.

For the analysis of periodic, closed paths of a robot,
the first Betti number, related to families of closed
curves, is of particular interest. Consider a double pen-
dulum (2 DoF vertical manipulator with gravity). Its
configuration space is the 2-torus T2. The two distinct
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Figure 3: String relaxation to find trajectories of dynamical systems

Figure 4: The mug can be continuously deformed into a
doughnut; they have the same topology. Image rendered
from the 3D model provided by [27].

a b

Figure 5: Classes of closed curves: cycles on the sphere
and the torus. Blue curves can be continuously collapsed
to a point; orange curves cannot.

types of cycles a and b form a basis (independent gener-
ators) for the group of all possible cycles. The neutral
element of the group is the zero cycle, i.e., the set of all
curves which can be shrunk to a point. The composi-
tion a + b of two elements of the group means that the
cycles are just followed one after the other, and, e.g.,
2a+ 3b means that a curve winds two times around the
first joint and three times around the second joint. The
order does not matter, the group is considered abelian
(commutative). This group is called the homology group
H1(T2) and its rank is indicated by the Betti number b1.
Any closed curve on the torus can be generated starting
from αa + βb with α, β ∈ Z and through a homotopy
(continuous deformation). Note, again, that for different
α, β, the curves cannot be continuously deformed into
each other, the classes are disjoint.

This will be used in Section 4.1 to directly show that
there are infinitely many periodic closed orbits for the
double pendulum, at least one for each element of the
homology group H1(T2).

4 A Case Study: Periodic Orbits of the
Double Pendulum

In this section we will discuss the large variety of pe-
riodic trajectories of conservative robot models based on

q1

q2

g

(a) Double Pendu-
lum

Toroidal Orbits

Disk Orbit

Brake Orbits

arg minU(q)

arg maxU(q)

(b) Some Periodic Trajectories

Figure 6: A double pendulum and some of its periodic
trajectories of various classes shown on its toroidal con-
figuration space.

one of the most simple examples, the 2-dof vertical robot,
i.e. the double pendulum, see Fig. 6. We will classify the
type of periodic orbits into three classes: toroidal orbits,
disk orbits, and brake orbits. Toroidal orbits are the ones
directly predicted by algebraic topology; they are due to
the toroidal structure of the configuration space. These
orbits turn at least one joint in full cycles. Disk orbits
happen completely within a chart of disk topology, i.e.,
we do not need the wrapping of angles for them. Finally,
brake orbits are extensions of normal modes of linear sys-
tems. Most types of trajectories discussed in this section
will be present also for robots with arbitrary degrees of
freedom. Toroidal orbits are only possible as soon as one
of the joints allows full turns.

4.1 Toroidal Orbits

The dynamics of the conservative double pendulum
in a gravity field is known to display chaotic behavior
[28]. This is due to the inertial couplings and the upper
bounded potential, having unstable equilibria at the up-
right configurations. If the total energy is high enough
to permit full turns of the joints, i.e. E > Umax(q), the
system has, however, also infinitely many periodic orbits.
This is a direct consequence of the topology of the torus
and its homology class H1(T2). As shown in Sec. 3, there
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Figure 7: Toroidal orbits of the double pendulum for some fixed energies of types. (0, 1), (1, 0), and (1, 2). On the left
we show the Cartesian trajectories of the first (blue) and second (orange) points mass. In the middle: time evolutions
of the joints. Right: configuration paths on the torus.

are infinitely many disjoint classes of closed curves, ob-
tained by integer linear combination and homotopic de-
formation of the two base cycles on the torus. According
to their definition, these curves cannot be shortened to
a point, so there is a minimal length in each of these
classes, and therefore the curve having that length will
be a geodesic.

We take the numerical string relaxation algorithm of
Sec. 2 to find such geodesics. First, we fix the desired
energy E needed to determine the Jacobi metric (10).
Then we start by creating a string of the correct topol-
ogy, i.e., we create an initial string in the class (α1, α2)
for α1, α2 ∈ Z. Iteratively updating the nodes of the
string by the update rule will let the string converge to
a geodesic - and thus to a periodic orbit of the double
pendulum. This result holds in any dimension, as the
Betti number for an n-dof pendulum is b1(Tn) = n. It is
indeed a classical result [13] that

Proposition 1. For any n integers α1, ...αn, of which
at least one is nonzero, there exists at least one periodic
trajectory of the n-dof pendulum performing αi rotations
around joint i, for i = 1, ..., n.

Fig. 7 shows the trajectories of the double pendulum
in the gravity field for the combinations (0, 1), (1, 0),
(1, 2), and (2, 1) for some fixed energies. It is important
to note that each orbit is only valid for the energy it was
computed for; the geodesics are not invariant w.r.t. the
energy in the Jacobi metric. We observe, however, that
they continuously deform with variations in energy. For
the double pendulum, we find sometimes more than one

geodesic, also for fixed energies. Only one of them will
be a global minimum, others only local ones.

4.2 Disk Orbits

The algebraic topology results do not say anything
about the existence of periodic orbits of the type (0, 0),
i.e., of closed trajectories that oscillate in an interval less
than 2π. Indeed, such trajectories do not need to exist
in general (for arbitrary metrics), because all the zero
cycles can be shrunk to a point; there is no hole to pre-
vent their collapse. Nevertheless, it is not excluded that
the metric encodes bumps or other local geometrical fea-
tures such that closed curves make the arc length sta-
tionary: this makes them geodesics and, simultaneously,
periodic orbits. Indeed, studies on chaotic systems show
that they often display a rich variety of unstable periodic
orbits [29], [30]. This has also been shown for mechanical
systems [31], [32]. We employ a scheme similar to [29]:
we take a boundary value solver [33] to find solutions q(t)
to the differential equation (3) such that q(0) = q(T ),
q̇(0) = q̇(T ) and H(q, q̇) = Edes for some desired energy
Edes. The estimated period time T is updated as well
during the optimization. Once we found a solution we
perform numerical continuation [34] over the energy to
generate families of solutions.

We have found a large variety of periodic orbits and
show two particularly simple families in Fig. 8, which
continuously vary with energy. Each row in Fig. 8 shows
one family. On the left we show the orbits in configu-
ration space and observe that they continuously deform
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with energy. On the middle we show the highest energy
orbits in Cartesian space; and on the right the same or-
bit in configuration space. It looks like, for low energies,
they collapse into brake orbits (more to those later in
Sec. 4.3), although this observation has no theoretical
backup yet. It will be certainly interesting to further
investigate these types of trajectories in the future, be-
cause they are well suited for robots and also for biologi-
cal limbs, which cannot perform full turns. For example,
the swinging motion of a leg could be performed in such
a mode.

4.3 Brake Orbits aka Nonlinear Normal Modes

Brake orbits were the primary focus of our initial re-
search interest and were presented in detail in [22], [35].
We understand this type of orbits as generalization of
normal modes of linear systems. For linear dynamics,
periodic motions will take place in configuration space
in the directions given by the eigenvectors. A line of
research [36], [37] dating back to Rosenberg [38] noted
that there is a straightforward generalization to nonlin-
ear systems and therefore called these oscillations nonlin-
ear normal modes. These modes were studied, however,
only for systems composed of point masses and nonlinear
potentials, thus not being applicable to robotic systems.
In order to extend the results to robotics and to empha-
size the connection to the linear modes, we coined the
concept of eigenmanifolds in [35]. Each trajectory has
the property that it oscillates back and forth between
two points, where the system stops and reverses motion.

It turns out that trajectories of this kind have also
been studied in a quite general setup with tools of differ-
ential geometry and algebraic topology since Seifert [39].
He has proven the existance of one brake orbit and con-
jectured there should be even more, both in his seminal
work [39]:

Proposition 2. For any conservative mechanical sys-
tems with closed equipotential surfaces, there exists at
least one brake orbit for each energy level.

Conjecture 1 (Seifert). For any conservative mechan-
ical systems with n degrees of freedom and with closed
equipotential surfaces, there exist at least n brake orbits
for each energy level.

This is an idea certainly inspired by the n modes of n
DoF linear systems. Some authors have provided proofs
of the conjecture for particular cases [40] and Giambó et
al. claim in a recent preprint to have proven it [41] under
conditions which apply to general Hamiltonian systems.
However, the additional conditions of the theorems are
generally not satisfied by robot dynamics equations, leav-
ing this as a still open theoretical question.

Based on the insights of the theory, we developed nu-
merical algorithms for searching the nonlinear modes
(brake orbits) starting from the linearized solutions.
Fig. 9 presents brake orbits of the double pendulum. On
the left we show brake orbits growing our of the two
linear eigenvectors. The dots show two configurations,
which are used for initial conditions for the simulations
on the right. In the middle, we display the brake orbits
as a surface parameterized by energy as additional co-
ordinate. This is a representation of the eigenmanifolds,
which is alternative to the one from [35]. As predicted
by the theorem, at least two nonlinear modes exist for
every energy level. We report that for all robot systems
analyzed so far, including legged robots and a 7 DoF
robot arm [42], the Seifert conjecture holds.

4.4 Classification and Overview on Periodic Orbits

Fig. 10 summarizes the types of periodic orbits pre-
sented in this paper. One orbit for each type of our
example system are also shown on the torus in Fig. 6b.
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Figure 10: Overview of types of periodic orbits.

For very low energies, the linearization around the equi-
librium holds as an approximation, and one will have
linear modes. As energy increases, one observes that
the modes begin to bend and we recognize that the lin-
ear modes were a particular case of the nonlinear nor-
mal modes (brake orbits). Indeed, with the continuation
method, at least two nonlinear modes can be found for
the 2-DoF system. Our experience so far was that in gen-
eral, at least n nonlinear modes can be found for n-DoF
systems. Nonlinear normal modes will cease to exist as
soon as the total energy exceeds the maximal possible
potential energy, i.e. if E > Umax(q). In that case, there
is no point where all the energy is purely potential and
there cannot be points with zero velocity.

Although not predicted so far by the algebraic topol-
ogy arguments, we have numerically shown that also
closed orbits without full rotations exist, which we call
disk orbits. These might be of particular interest to
robotics because these trajectories can be executed also
by robots that do not permit endless rotation, which is
mostly the case in today’s robots. Finally, starting at
some minimal energy E > Umin(q), allowing at least on
joint to do full turns, closed multi-turn orbits appear.
For E > Umax(q), i.e., energies exceeding the maximal
potential energy, these toroidal orbits are the dominant
periodic behavior. There are infinitely many such closed
orbits for any robot.

5 Conclusion

We hope to have triggered some interest of the
robotics community in better understanding the poten-
tial benefits of geometric and topological approaches to
study the behavior of robot dynamics from a global per-
spective. Classical robotics control takes a rather local
view so far, while global solutions are traditionally the

field of motion planning. The presented tools might pro-
vide a methodical bridge between the two areas.

Regarding the practical relevance, consider the large
variety of periodic orbits we found even in our simplest
example. Complex robots will display even richer behav-
iors! Imagine we can assemble our tasks out of pieces of
these orbits - or even better: a task might coincide with a
periodic orbit if we design the system properly. All one
needs then is to compensate for friction, stabilize the
natural orbits [42] and possibly develop approaches to
shape them to a certain extent, by posture or by control.
By designing and exploiting the intrinsic dynamics of a
robotic properly, tasks can be achieved more naturally,
more efficiently, and more performantly. If we would like
a robot to jump like a flea, we should probably not build
an elephant but rather something close to a flea.
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