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Abstract

Cyber-Physical Systems (CPS) are complex, heterogeneous systems, which combine cy-
ber (computation and communication) and physical components that interact tightly
with each other in a feedback loop. In the past decade, many high-performance but
unverified controllers, such as artificial-intelligence-based (a.k.a. AI-based) controllers,
are desired to be employed in these systems to accomplish increasingly complex control
missions, such as motion planning and autonomous driving. Nevertheless, the appli-
cation of unverified controllers makes it increasingly challenging to ensure the overall
safety of CPS. Meanwhile, ensuring safety of CPS is of vital importance due to their
safety-critical nature in the sense that any malfunctions in these systems may lead to
catastrophic consequences and even loss of life. To cope with this challenge, this thesis
proposes a correct-by-construction control architecture called Safe-visor architecture to
provide system-level safety guarantees over CPS by sandboxing unverified controllers
in the control loop. The proposed architecture contains a supervisor that checks in-
puts from the unverified controller and makes a compromise between the functionality
and safety of the system. Meanwhile, a safety advisor runs in parallel to provide fall-
back control inputs to ensure safety in case the unverified controller is rejected by the
supervisor for safety reasons.

As the main contributions, multiple novel approaches for constructing the Safe-visor
architecture using formal methods are proposed in this thesis, including history-based
and state-based approaches. In the context of history-based approaches, given complex
logical safety specifications modeled by deterministic finite automata (DFA), and a
history state-run of the system at runtime, the proposed history-based supervisors esti-
mate the risk of violating the desired safety specifications presuming that the unverified
controller is accepted. To provide formal probabilistic guarantees of satisfying these
specifications, a new abstraction-based construction scheme for synthesizing controllers
over non-cooperative stochastic games is introduced in this thesis to design the safety
advisors associated with the history-based supervisors.

As for state-based approaches, the supervisor decides whether or not to accept the
unverified controller by leveraging the current state and a controlled invariant set over
the state set of the system. A key insight is that the controlled invariant set refers to
a set of safe states from which there exist controllers that maintain the system within
this set. Accordingly, the supervisor will reject those inputs provided by the unverified
controllers which would drive the system away from this set. Meanwhile, the controller
associated with this set is used as the safety advisor. By leveraging abstraction-free
approaches, this thesis considers two new notions of invariant sets over uncertain linear
systems. In case the system model is known, this thesis proposes new set-based ap-
proaches to compute so-called hybrid control invariant sets to construct the Safe-visor
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Abstract

architecture enforcing ω-regular properties modeled by deterministic Streett automata.
If the system model is unknown, the thesis introduces a direct-data-driven approach
to synthesize so-called γ-robust safety invariant sets for constructing the Safe-visor ar-
chitecture against invariant properties. To showcase the proposed methodologies for
designing the Safe-visor architecture, they are applied to several case studies in simula-
tion, including DC motor, 3DOF-helicopter, inverted pendulum, etc., as well as a case
study of controlling a quadrotor helicopter on a physical testbed.
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Zusammenfassung

Cyber-Physische Systeme (CPS) sind komplexe, heterogene Systeme, die cyber (Berech-
nung und Kommunikation) und physische Komponenten kombinieren, die eng miteinan-
der in einer Rückkopplungsschleife interagieren. In den letzten zehn Jahren werden ver-
mehrt leistungsstarke, aber nicht verifizierte Controller wie künstliche Intelligenz (KI)-
basierte Controller in diesen Systemen eingesetzt, um zunehmend komplexe Steuer-
aufgaben wie Bewegungsplanung und autonomes Fahren zu erfüllen. Die Verwendung
nicht verifizierter Controller stellt jedoch eine wachsende Herausforderung dar, um die
Gesamtsicherheit von CPS zu gewährleisten. Gleichzeitig ist die Sicherstellung der
Sicherheit von CPS von entscheidender Bedeutung, da sie sicherheitskritisch sind und
Fehlfunktionen in diesen Systemen zu katastrophalen Folgen und sogar zum Verlust
von Menschenleben führen können. Um dieser Herausforderung gerecht zu werden,
schlägt diese Arbeit eine korrekte-durch-Konstruktion Steuerungsarchitektur namens
”Safe-visor-Architektur” vor, um auf Systemebene Sicherheitsgarantien für CPS zu bi-
eten, indem nicht verifizierte Controller in der Steuerungsschleife isoliert werden. Die
vorgeschlagene Architektur enthält einen ”Supervisor”, der die Eingaben vom nicht
verifizierten Controller überprüft und einen Kompromiss zwischen Funktionalität und
Sicherheit des Systems findet. Gleichzeitig läuft ein ”Safety Advisor” parallel, um al-
ternative Steuereingaben bereitzustellen, um die Sicherheit zu gewährleisten, falls der
nicht verifizierte Controller aus Sicherheitsgründen vom Supervisor abgelehnt wird.

Als Hauptbeiträge werden in dieser Arbeit mehrere neuartige Ansätze zur Konstruk-
tion der Safe-visor-Architektur unter Verwendung formaler Methoden vorgeschlagen,
einschließlich geschichts- und zustandsbasierter Ansätze. Im Kontext der geschichts-
basierten Ansätze schätzen die vorgeschlagenen geschichtsbasierten Supervisoren das
Risiko der Verletzung der gewünschten Sicherheitsspezifikationen unter der Annahme,
dass der nicht verifizierte Controller akzeptiert wird, basierend auf komplexen logischen
Sicherheitsspezifikationen, die durch deterministische endliche Automaten modelliert
sind und einem Laufzustandshistorie des Systems zur Laufzeit. Um formale probabilis-
tische Garantien für die Erfüllung dieser Spezifikationen bereitzustellen, wird in dieser
Arbeit ein neues abstraktionsbasiertes Konstruktionsverfahren zur Synthese von Con-
trollern über nicht-kooperative stochastische Spiele eingeführt, um die Safety Advisors,
die mit den geschichtsbasierten Supervisoren verbunden sind, zu entwerfen.

Im Hinblick auf zustandsbasierte Methoden entscheidet der Supervisor, ob der nicht
verifizierte Controller akzeptiert wird oder nicht, indem er den aktuellen Zustand und
eine kontrollierte invariante Menge über der Zustandsmenge des Systems nutzt. Ein
wichtiger Erkenntnis ist, dass die kontrollierte invariante Menge auf eine Menge sicherer
Zustände verweist, für die es Controller gibt, die das System innerhalb dieser Menge
halten. Entsprechend wird der Supervisor jene Eingaben der nicht verifizierten Con-

ix



Zusammenfassung

troller ablehnen, die das System von dieser Menge entfernen würden. Gleichzeitig
wird der Controller, der mit dieser Menge assoziiert ist, als Safety Advisor verwen-
det. Durch den Einsatz von abstraktionsfreien Methoden betrachtet diese Arbeit
zwei neue Konzepte von invarianten Mengen über unsichere lineare Systeme. Falls
das Systemmodell bekannt ist, schlägt die Arbeit neue satzbasierte Ansätze vor, um
sogenannte hybride Steuerungs-Invariantenmengen zu berechnen und die Safe-visor-
Architektur zur Durchsetzung von ω-regulären Eigenschaften, die durch determinis-
tische Streett-Automaten modelliert werden, zu konstruieren. Falls das Systemmod-
ell unbekannt ist, stellt die Arbeit einen direkt datengetriebenen Ansatz vor, um
sogenannte γ-robuste Sicherheitsinvariante Mengen zur Konstruktion der Safe-visor-
Architektur gegen invariante Eigenschaften zu synthetisieren. Um die vorgeschlagenen
Methoden zur Gestaltung der Safe-visor-Architektur zu demonstrieren, werden sie auf
mehrere Fallstudien in Simulation angewendet, darunter Gleichstrommotor, 3DOF-
Hubschrauber, umgekehrtes Pendel usw., sowie eine Fallstudie zur Steuerung eines
Quadrotor-Hubschraubers auf einem physischen Prüfstand.
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1 Introduction

1.1 Motivation

Cyber-Physical Systems (CPS) are intricate systems that combine physical and cyber
components interacting with each other in a feedback loop. In the past decades, CPS
have been widely deployed in our daily life; typical applications include autonomous
cars, smart power networks, and unmanned aerial vehicles. Nowadays, with the con-
trol tasks for CPS becoming increasingly complex, there is a growing need for using
various kinds of complex, (potentially) high-performance controllers in these systems.
In particular, inspired by those remarkable achievements of artificial-intelligence (AI)
in various domains, such as natural language processing and image recognition, there
is surging ambition of applying those state-of-the-art AI-based techniques to design
controllers for CPS (see e.g., [32, 91, 101, 133, 182, 66, 172]). Nevertheless, the com-
plex nature of these controllers make it very challenging to ensure the overall safety of
CPS and may give rise to various reliability problem [151, 146, 111]. Meanwhile, CPS
are typically safety-critical in the sense that any design faults or malfunctions in the
systems can lead to catastrophic consequences and even loss of life.
To ensure the safety of CPS using complex control software, large-scale simulation

and exhaustive testing are the main strategies. However, these strategies suffer from
many practical problems. Specifically, modern Cyber-Physical Systems contain various
uncertainties, leading to an enormous set of test cases to be covered, while testing all
scenarios in this set is expensive. For instance, it is estimated that hundreds of millions
of miles of test-driving are necessary to show that an autonomous driving software may
behave not worse than human beings [92]. Even if such a test can be performed, it
may still be incapable of ensuring safety as it is inevitable that certain scenarios in
reality may remain untested, particularly for those scenarios that are outside so-called
the operation design domain [106]. Additionally, plenty of complex control software are
iterated in rapid development processes in the sense that new versions of these software
may be released on a monthly or even weekly basis [134]. The same testing needs to
be performed on each new version of the control software, which is not achievable in
reality (for instance, the testing scenario mentioned above requires more than 12 years
with 100 test vehicles driving 24 hours a day).
Instead of conventional trial-and-error schemes through testing, rigorous method-

ologies combining formal methods and control theory could be promising solutions.
Specifically, the concept of verification and formal synthesis [13] could be applied to
generate provably correct control software and provide formal safety guarantees. How-
ever, verification of complex controllers over CPS are shown to be very challenging
as the complexities of verifying them grow quickly with the sizes of the problems of
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1 Introduction

Figure 1.1: Safety advisor-supervisor (Safe-visor architecture) for sandboxing unverified
controllers.

interest [61]. Notably, verifying those AI-based controllers, in which deep neural net-
works (DNNs) are deployed, is very challenging and is shown to be nondeterministic
polynomial-time complete (NP-complete) in general [57]. In fact, theoretical results
for verifying DNNs lag far behind the current state-of-the-art regarding those DNNs
applied in practice. More precisely, while existing results can handle the verification of
a single DNNs with only a few layers and a few hundred neurons per layer [84, 99, 186],
many complex DNNs applied nowadays have billions of parameters and complicated
architectures [39, 134].

To summarize, despite the growing demands in applying various types of complex
controllers, in particular those AI-based ones, in modern CPS, promising approaches
for applying them in safety-critical scenarios are still missing. To pave the way for
employing these controllers in safety-critical CPS, this thesis focuses on how to provide
formal safety guarantees for CPS without testing or formally verifying those complex
controllers deployed in the control loop. Hereafter, those controllers that are difficult
to be verified or tested are referred to as unverified controllers throughout this thesis.

1.2 Safe-visor Architecture

In general, the idea of sandbox [160] is leveraged to tackle the main problem of this
thesis, which is recalled as follows.

Sandbox The sandbox is a common mechanism that ensures the security of
CPSs containing untested and untrusted software components. A verified sandbox
is designed to isolate these components from the critical part of a host machine
in a sandbox control environment, including its operating system. Consequently,
an untrusted component can only actuate the plant through a tightly-monitored
interface so that the plant would not be endangered by accidental or malicious
harm caused by the untrusted component.
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1.3 Contributions and Outline of the Dissertation

Leveraging this idea, I propose a correct-by-construction architecture, namely Safe-
visor architecture, to sandbox unverified controllers at runtime and provide a system-
level [47, 203] safety guarantee over the physical systems. The proposed architecture
employs a safety advisor and a supervisor, as demonstrated in Figure 1.1. Concretely,
to provide safety guarantees for the physical system, verifiable safety rules should be
specified for the unverified controller in the Safe-visor architecture. At runtime, the
safety advisor is responsible for providing advisory inputs to ensure the overall safety
of the physical system. Meanwhile, the supervisor checks the input given by the unver-
ified controller at every time step according to the safety rules. The unverified inputs
would only be accepted when they follow these rules; otherwise, the supervisor would
accept the advisory input from the safety advisor. Note that the unverified controller
is designed to realize some tasks which are much more complex than just keeping the
system safe, while safety advisor only focuses on keeping the system safe. Therefore,
the safety advisor should only be used if the unverified controller tries to perform some
harmful actions. By deploying the proposed architecture, one can exploit the func-
tionalities offered by the unverified controller while preventing the system from being
unsafe, even though there is no safety guarantee over the unverified controller.

Considering those unverified controllers developed based on deep-neural-networks, it
is worth mentioning those existing results (e.g. [82, 100, 45, 51, 204, 82, 112, 65, 193, 194,
145, 79, 123]) in which formal guarantees are achieved by appropriately incorporating
the desired objectives in the reward functions when training DNNs-based controllers.
Compared with these results, the desired safety properties are decoupled from the
construction of the (DNNs-based) unverified controller in the proposed architecture.
Therefore, the proposed architecture can provide formal guarantees for any type of
unverified controllers regardless of their design.

1.3 Contributions and Outline of the Dissertation

This dissertation provides various methodologies to construct the Safe-visor architec-
ture, as introduced in Section 1.2, over different types of control systems against various
complex temporal logical safety properties. In general, these methodologies can be cat-
egorized into history-based approaches and state-based approaches.

In the context of the history-based approaches, the supervisor decides whether or
not to accept the unverified controllers based on a history state-run of a system at
runtime. Concretely, based on a state-run obtained at runtime, the supervisor first
estimates the risk of the system violating the desired safety properties presuming that
the unverified controller is accepted. If the violation risk is lower than the maximal
tolerable probability of violating the desired properties, then the unverified controller
can be accepted. Leveraging this idea, Chapter 3 and 4 introduce abstraction-based
construction schemes of the Safe-visor architecture over stochastic systems modeled by
general Markov decision processes (gMDP) and general discrete-time stochastic games
(gDTSG). Concretely, Chapter 3 introduces how to synthesize controllers for stochas-
tic games against those safety properties modeled by deterministic finite automata.
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1 Introduction

Such controllers are used as the safety advisor in the Safe-visor architecture, based on
which the design of history-based supervisors will be introduced in Chapter 4.

As for the state-based approaches, instead of looking into the history state-run of a
system, the supervisor makes decisions based on the current state of the system as well
as a controlled invariant set over the system’s state set. More specifically, a controlled
invariant set here refers to a set of safe states, from which there exist controllers keeping
the system staying in this set regardless of a given set of disturbances. Accordingly,
whenever the unverified controller would not drive the system leaving this set, it can
be accepted by the supervisor; otherwise, the safety advisor would be used to keep the
system safe. Following this idea, Chapter 5 provides computational approaches for
synthesizing hybrid controlled invariant sets, with which one can design the Safe-visor
architecture enforcing ω-regular properties. In Chapter 6, I focus on linear systems
with unknown dynamics affected by unknown-but-bounded disturbances. To design
the Safe-visor architecture with respect to invariance properties, a direct data-driven
approach is proposed for computing so-called γ-robust safety invariant sets over these
systems. Note that different from Chapter 3 and 4, the results in Chapter 5 and 6 do
not require constructing finite abstractions over the original systems. Therefore, these
approaches are also referred to as abstraction-free approaches.

Additionally, Chapter 2 provides some mathematical notations and preliminaries
from mathematics, control theory, and formal methods, which will be used throughout
this thesis. Chapter 7 concludes the results in this thesis and discusses potential
future directions on top of these results. The technical contributions of Chapter 3-6
are summarized as follows.

1) Abstraction-based approaches for synthesizing controllers over non-
cooperative stochastic games (Chapter 3)

In order to provide an abstraction-based computation framework for constructing
Safe-visor architecture that is robust to noises and disturbances, the main focus of
Chapter 3 is to provide abstraction-based methodologies to construct controllers
enforcing complex logical safety properties over non-cooperative stochastic games.
These controllers will be used as the safety advisor in Chapter 4. To this end,
(ϵ, δ)-approximate probabilistic relation is deployed to quantify the probabilistic
dependency between an original model and its finite abstraction, which plays a
crucial role in providing formal safety guarantees and considering model-order
reduction when constructing the controllers. Here, a systematic approach is pro-
posed to establish such a relation (if it exists) over a class of nonlinear stochastic
games with slope restrictions on the nonlinearity, while existing results in the lit-
erature focus on linear systems only and without providing a systematic approach
for building this relation. Moreover, focusing on complex logical properties mod-
eled by deterministic finite automata (DFA), new Bellman operators are proposed
for synthesizing controllers concerning two types of problems, namely the problem
of robust satisfaction and worst-case violation. Compared with existing results
for abstraction-based controller synthesis over gMDP and gDTSGs, the new Bell-
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1.3 Contributions and Outline of the Dissertation

man operators proposed in this chapter provide less conservative probabilistic
guarantees for satisfying the desired safety properties.

The materials in this chapter were published in [214].

2) Abstraction-based construction of Safe-visor architecture (Chapter 4)

On top of the abstraction-based controller synthesis approaches proposed in
Chapter 3, Chapter 4 presents the construction of history-based supervisors in
the Safe-visor architecture following the idea of the history-based approaches as
introduced above. Concretely, the history-based supervisor deploys an augmented
memory state containing the state (and input) of the original system, the finite
abstraction, and the DFA modeling the desired safety properties. Having a se-
quence of augmented memory states at runtime, efficient algorithms concerning
the problem of robust satisfaction and worst-case violation are proposed for esti-
mating the risk of violating the desired safety properties in case of accepting the
unverified controller. Additionally, rigorous results are provided for maintaining
the approximate probabilistic relation between the original system and the finite
abstraction if the unverified controllers are accepted. The proposed abstraction-
based construction scheme for Safe-visor architecture is validated through simu-
lation over several case studies and, for the first time, through experiments on a
physical test-bed of quadrotor helicopters.

The materials presented in this chapter were published in [213, 212].

3) Set-based (Abstraction-free) methodologies for synthesizing controllers
against ω-regular properties (Chapter 5)

In this chapter, new discretization-free approaches are proposed for synthesizing
controllers over uncertain linear systems enforcing ω-regular properties. Inspired
by standard set-based approaches [165] for synthesizing controllers over contin-
uous sets against invariance properties, new set-based approaches are proposed
to compute so-called hybrid controlled invariant (HCI) set by leveraging new it-
erative schemes. Following the basic idea of state-based approaches, this set is
used to construct a controller deployed as the safety advisor, and used by the
supervisor to check the validity of those control inputs provided by the unverified
controller. More precisely, considering a deterministic Streett automata (DSA),
a (systematic) approach is first provided to properly exploit the structure of the
DSA in the computation of the HCI sets. Then, a new set-based iterative scheme
is proposed for computing the HCI sets, and it is shown that the proposed iter-
ative scheme converges to the maximal HSI set. To guarantee the termination
of the iterative scheme for computing HCI sets within a finite number of iter-
ations, two alternative iterative schemes are provided. Moreover, the relation
between the worst-case space and time complexities of these methodologies and
the structure of the automata representing the desired ω-regular properties is
investigated. Finally, comparisons among the proposed approaches and existing
tools for synthesizing controllers enforcing ω-regular properties are conducted.
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The results of this chapter were published in the publications [215, 217].

4) Direct data-driven approaches for synthesizing controllers against in-
variance properties (Chapter 6)

This chapter introduces a direct data-driven approach to compute a state feed-
back controller enforcing invariance properties over linear systems with unknown
dynamics. To this end, the notion of γ-robust safety invariant (γ-RSI) sets is
first proposed. Note that the existence of γ-RSI sets indicates that there exists
a controller keeping the (unknown) system staying in the γ-RSI sets regardless
of exogenous disturbances bounded by γ. Hence, the γ-RSI set can be leveraged
to construct the Safe-visor architecture following the basic idea of state-based
approaches. Here, the γ-RSI sets are computed via solving a semi-definite pro-
gramming (SDP) problem, which can be formulated leveraging a single trajectory
collected from the underlying system without an intermediate system identifica-
tion phase. Moreover, the relation between the proposed data-driven approach
and the condition of persistency of excitation [200] is also investigated.

The covered materials in this chapter were published in [216].
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2 Preliminaries

By considering the classical results in the fields of mathematics, control theory, and
formal methods, some preliminaries and notations are introduced in this chapter, which
will be used throughout this thesis.

2.1 Notations

R and N are used to denote sets of real and natural numbers, respectively. These
symbols are annotated by subscripts to restrict the sets in a usual way, e.g., R≥0 denotes
the set of non-negative real numbers. Moreover, Rn×m with n,m ∈ N≥1 denotes the
vector space of real matrices with n rows and m columns. For a, b ∈ R (resp. a, b ∈ N)
with a ≤ b, the close, open, and half-open intervals in R (resp. N) are denoted by
[a, b], (a, b) ,[a, b), and (a, b], respectively. 0n and 1n denote, respectively, the column
vector in Rn with all elements equal to 0 and 1. Moreover, 0n×m and In denote the
zero matrix in Rn×m, and the identity matrix in Rn×n, respectively. Their indices are
omitted if the dimension is clear from the context. Given a matrix A ∈ Rn×n, im(A)
denotes the image of A, and ∥A∥ represents the operator norm of A, which is equal to
the largest singular value of A. Additionally, rank(A), det(A), A⊤, A(i), and A(i, j)
denote the rank, the determinant, the transpose, the i-th column, and the entry in i-th
row and j-th column of A, respectively.

Given a vector x ∈ Rn, ∥x∥ and |x| denote the Euclidean norm and infinity norm
of x, respectively. Additionally, Bn denotes the closed unit ball centered at the origin
in Rn with respect to the infinity norm. Given N vectors xi ∈ Rni , ni ∈ N≥1, and
i ∈ {1, . . . , N}, x = [x1; . . . ;xN ] represents the corresponding column vector of the
dimension

∑
i ni. Moreover, given a set X, XN and Xω denote the Cartesian product

of the countably and uncountable infinite number of X, respectively. Given sets Xi,
i ∈ [1, N ], and their Cartesian product M = X1 × . . . ×XN , the projection of X onto
Xi is denoted by mapping πXi : X → Xi, and give a vector m = (x1, x2, . . . , xN ) ∈ M
with xi ∈ Xi, one has mXi := xi. Given sets X and Y, a relation R ∈ X×Y is a subset
of the Cartesian product X × Y that relates x ∈ X with y ∈ Y if (x, y) ∈ R, which is
equivalently denoted by xRy.

Given sets A and B, f : A→ B denotes an ordinary map from A to B. Accordingly,
given functions f : X → Y and g : Y → Z, g ◦ f : X → Z denotes the composition
of functions f and g. Given sets A and B, B\A = {x|x ∈ B and x /∈ A} denotes the
complement of A with respect to B. The Minkowski sum of two sets A, B ⊆ Rn is
denoted by A+B = {x ∈ Rn|∃a ∈ A, ∃b ∈ B, x = a+ b}. In this thesis, x+A instead
of {x} + A is used to denote the Minkowski sum of set A and {x} where x ∈ Rn for
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2 Preliminaries

the sake of simple presentation. Moreover, A − B = {a ∈ A|a + B ⊆ A} denotes the
Pontryagin set difference between A and B.

2.2 Mathematical Preliminaries

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of
a Polish space (i.e., a separable and completely metrizable space). One of the examples
of Borel space is the Euclidean spaces Rn. Here, any Borel space S is assumed to be
endowed with a Borel σ-algebra denoted by B(S). A map f : X → Y is measurable
whenever it is Borel measurable. Moreover, a map f : X → Y is universally measurable
if the inverse image of every Borel set under f is measurable w.r.t. every complete
probability measure on X that measures all Borel subsets of X.

A probability space in this thesis is presented by (Ω̂,FΩ̂,PΩ̂), where Ω̂ is the sample

space, FΩ̂ is a sigma-algebra on Ω̂ which comprises subsets of Ω̂ as events, and PΩ̂ is
a probability measure that assigns probabilities to events. Throughout this chapter,
random variables, denoted by X, are of particular interest, which take values from
measurable spaces (S,B(S)), i.e., random variables here are measurable functions X :
(Ω̂,FΩ̂) → (S,B(S)) such that one has Prob{Q} = PΩ̂{X

−1(Q)}, ∀Q ∈ B(S). For
brevity, the probability measure on (S,B(S)) is directly presented without explicitly
mentioning the underlying probability space and the function X itself. Additionally,
P(S,B(S)) denotes a set of probability measures on (S,B(S)).

Throughout the thesis, N (·|µ,Σ) represents the normal distribution with mean µ
and covariance matrix Σ, and δd(·|c) indicates Dirac delta distribution centered at c.

2.3 Deterministic Systems

In some parts of the thesis, discrete-time linear control systems (dtLCS) are considered,
which are defined as follows.

Definition 2.3.1. (dtLCS) A discrete-time linear control system S is a tuple

S = (X,X0, U,W, f), (2.3.1)

where X ⊆ Rn is the state set, U ⊂ Rm and W ⊂ Rn are compact sets of input and
exogenous disturbances, respectively. Set X0 ⊆ X is the set of initial states. Function
f :X×U×W→X characterizes the discrete-time dynamics as:

x(k + 1) = f(x(k), u(k), w(k)) := Ax(k) +Bu(k) + w(k), (2.3.2)

with A ∈ Rn×n and B ∈ Rn×m.

With these notations, the evolution of a system S as in (2.3.1) can be described by
its paths, as defined below.
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2.4 Stochastic Systems

Definition 2.3.2. (Path) A path of a dtLCS S as in (2.3.2) is defined as

ξ := (x(0), u(0), . . . , x(k − 1), u(k − 1), x(k), . . .), k ∈ N,

where x(k + 1) = Ax(k) +Bu(k) + w(k) for some w(k) ∈W .

Moreover, ξx := (x(0), x(1), . . . , x(k), . . .) and ξu := (u(0), u(1), . . . , u(k), . . .) repre-
sent the subsequences of states and inputs in ξ, respectively.

2.4 Stochastic Systems

2.4.1 General Markov Decision Processes

In this thesis, one of the stochastic systems of interest are those which can be formulated
as a class of general Markov decision processes (gMDPs) that evolve over continuous or
uncountable state sets. This class of models generalizes the usual notion of MDPs [13]
by adding an output set over which properties of interest are defined.

Definition 2.4.1. (gMDP) A general Markov decision process is a tuple

D = (X,U, x0, T, Y, h), (2.4.1)

where,

� X ⊆ Rn is a Borel set as the state set of the system. (X,B(X)) denotes the
measurable space with B(X) being the Borel σ-algebra on the state set;

� U ⊆ Rm is a Borel set as the input set of the system;

� x0 ∈ X is the initial state;

� T : B(X)×X×U → [0, 1] is a conditional stochastic kernel that assigns to any x ∈
X and u ∈ U a probability measure T (·|x, u) on the measurable space (X,B(X)).
This stochastic kernel specifies probabilities over executions {x(k), k ∈ N} of the
gMDP such that for any set X ∈ B(X) and any k ∈ N,

P
{
x(k + 1) ∈ X |x(k), u(k)

}
=

∫
X
T (dx(k + 1)|x(k), u(k));

� Y ⊆ Rq is a Borel set as the output set of the system;

� h : X → Y is a measurable function that maps a state x ∈ X to its output
y = h(x).

Alternatively, a gMDP D as in (2.4.1) can be described by difference equations

D :

{
x(k + 1) = f(x(k), u(k), ς(k)),
y(k) = h(x(k)),

k ∈ N, (2.4.2)

9
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where x(k) ∈ X, u(k) ∈ U , y(k) ∈ Y , and ς := {ς(k) : Ω̂ → Vς , k ∈ N} is a sequence
of independent and identically distributed (i.i.d.) random variables from the sample
space Ω̂ to a set Vς . Then, the evolution of a gMDP can be described by its paths and
output sequences as defined below.

Definition 2.4.2. (Path and Output Sequence of gMDP) A path of a gMDP D = (X,
U, x0, T, Y, h) is

ω = (x(0), u(0), . . . , x(k − 1), u(k − 1), x(k), . . .), k ∈ N

where x(k) ∈ X and u(k) ∈ U . Accordingly, ωx = (x(0), x(1), . . . , x(k), . . .) and ωu =
(u(0), u(1), . . . , u(k), . . .) denote the subsequences of states and inputs in ω, respectively.
The corresponding output sequence is denoted by

yω = (y(0), y(1), . . . , y(k), . . .), k ∈ N

with y(k) = h(x(k)). Moreover, ωk denotes the path up to the time instant k; ωxk,
ωuk, and yωk denote the state, input, and output subsequences corresponding to ωk,
respectively.

The space of all infinite paths Ω = (X × U)N along with their product σ-algebra
(B(X)× B(U))N is called a canonical sample space for the gMDP.

2.4.2 General Discrete-Time Stochastic Games

In some parts of the thesis, stochastic systems modeled as general discrete-time stochas-
tic games (gDTSGs) between two non-cooperative players are considered. Following
standard conventions, control input and adversary input in gDTSGs are referred to
as Player I and Player II, respectively. This class of games, as formalized in the next
definition, evolves over continuous or uncountable state sets with an output set over
which properties of interest are defined.

Definition 2.4.3. A general discrete-time stochastic game (gDTSG) is a tuple

D = (X,U,W,X0, T, Y, h), (2.4.3)

where,

� X ⊆ Rn is a Borel set as the state set. (X,B(X)) denotes the measurable space
with B(X) being the Borel sigma-algebra on X;

� U ⊆ Rm is a compact Borel set as the input set of Player I;

� W ⊆ Rp is a compact Borel set as the input set of Player II;

� X0 ⊆ X is the set of initial states;

10
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� T : B(X) × X × U ×W → [0, 1] is a conditional stochastic kernel that assigns
to any x ∈ X, u ∈ U , and w ∈ W a probability measure T (·|x, u, w) on the
measurable space (X,B(X)). This stochastic kernel specifies probabilities over
executions {x(k), k ∈ N} of the gDTSG such that for any set Q ⊆ B(X) and for
any k ∈ N,

P
{
x(k + 1) ∈ Q

∣∣x(k), u(k), w(k)} =

∫
Q
T (dx(k + 1)|x(k), u(k), w(k));

� Y ⊆ Rq is a Borel set as the output set;

� h : X → Y is a measurable function that maps a state x ∈ X to its output
y = h(x).

Alternatively, a gDTSG D as in (2.4.3) can be described by the following difference
equations

D :

{
x(k + 1) = f(x(k), u(k), w(k), ς(k)),
y(k) = h(x(k)), k ∈ N, (2.4.4)

where x(k) ∈ X, u(k) ∈ U , w(k) ∈ W , y(k) ∈ Y , and ς := {ς(k) : Ω̂ → Vς , k ∈ N}
is a sequence of independent and identically distributed (i.i.d.) random variables from
the sample space Ω̂ to a set Vς . With this notion, the evolution of a gDTSG can be
described by its paths and output sequences as defined below.

Definition 2.4.4. (Path and output sequence of gDTSGs) A path of a gDTSG D as
in (2.4.3) is define as

ω = (x(0), u(0), w(0), . . . , x(k − 1), u(k − 1), w(k − 1), x(k), . . .),

where x(k) ∈ X, u(k) ∈ U , and w(k) ∈W with k ∈ N. Moreover, ωx = (x(0), x(1), . . . ,
x(k), . . .), ωu = (u(0), u(1), . . . , u(k), . . .), and ωw = (w(0), w(1), . . . , w(k), . . .) de-
note the subsequences of states, control inputs of Player I, and adversarial inputs of
Player II, respectively, which are associated with ω. The corresponding output sequence
is denoted by

yω = (y(0), y(1), . . . , y(k), . . .),

with y(k) = h(x(k)). In addition, ωk denotes the path up to time instant k, and yωk
denotes the output sequence corresponding to ωk.

The space for all infinite paths Ω = (X ×U ×W )N along with its product σ-algebra
(B(X)× B(U)× B(W ))N is called a canonical sample space for the gDTSG.

2.4.3 Approximate Probabilistic Relations

The stochastic models defined above will be deployed in Chapter 3 and 4 for designing
the Safe-visor architecture using abstraction-based approaches. The formal probabilis-
tic guarantees provided by these approaches rely on an approximate probabilistic rela-
tion that captures the probabilistic dependency between the executions of two gDTSGs

11
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(resp. gMDPs). Note that such relation between two gDTSGs is an extension of the
approximate probabilistic relation between two stochastic systems without rational ad-
versarial input [76]. Here, the definition of a δ-lifted relation over general state spaces is
first recalled from [76], which paves the way for defining the approximate probabilistic
relation between gDTSGs afterward.

Definition 2.4.5. (δ-lifted Relation) Let X, X̂ be two sets with associated measurable
spaces (X,B(X)) and (X̂,B(X̂)). Consider a relation R ⊆ X × X̂ that is measurable,
i.e., R ∈ B(X × X̂), probability distributions Φ ∈ P(X,B(X)), and Θ ∈ P(X̂,B(X̂)).
One has (Φ,Θ) ∈ R̄δ, denoted by ΦR̄δΘ, with R̄δ ⊆ P(X,B(X)) × P(X̂,B(X̂)) being
a δ-lifted relation, if there exists a probability measure L , referred to as a lifting, with
a probability space (X × X̂,B(X × X̂),L ) such that

� ∀X ∈ B(X), L (X × X̂) = Φ(X ),
� ∀X̂ ∈ B(X̂), L (X × X̂ ) = Θ(X̂ ),
� L (R) ≥ 1 − δ, i.e., for the probability space (X × X̂,B(X × X̂),L ), one has
xRx̂ with a probability of at least 1− δ.

Next, (ϵ, δ)-approximate probabilistic relations between two gDTSGs are defined
based on the δ-lifted relations between their probability measures.

Definition 2.4.6. ((ϵ, δ)-Approximate Probabilistic Relations) Consider gDTSGs D =
(X,U,W,X0, Y, h) and D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with the same output set. The
gDTSG D̂ is (ϵ, δ)-stochastically simulated by D, denoted by D̂ ⪯δ

ϵ D, if there ex-
ist relations R ⊆ X × X̂, Rw ⊆ W × Ŵ and a Borel measurable stochastic kernel
LT (· | x, x̂, û, w, ŵ) on X × X̂ such that

1. ∀(x, x̂)∈R, ∥y − ŷ∥≤ϵ, with y=h(x) and ŷ= ĥ(x̂);
2. ∀(x, x̂)∈R, and ∀û∈ Û , ∃u∈U such that ∀w ∈W , ∃ŵ ∈ Ŵ with (w, ŵ) ∈ Rw

such that one has T (· | x, u, w) R̄δ T̂ (·|x̂, û, ŵ) with lifting LT (·|x, x̂, û, w, ŵ);
3. ∀x0 ∈ X0, ∃x̂0 ∈ X̂0 such that x0Rx̂0.

The second condition of Definition 2.4.6 implies implicitly that there exists an inter-
face function [69]

ν : X × X̂ × Û → U, (2.4.5)

such that the state probability measures are in the δ-lifted relation after one transition,
when the control input û for D̂ is refined to u for D using this function. Intuitively,
δ-lifted relation between the state probability measures of D and D̂ indicates that the
Euclidean distance between their outputs, i.e., y and ŷ, is not larger than ϵ, with a
probability of at least 1−δ at each time step. This distance-based δ-lifted relation is the
key for providing the safety guarantee. With this relation, one can control y indirectly
by controlling ŷ while keeping y sufficiently closed to ŷ with some probability. Once
one has D̂ ⪯δ

ϵ D, a product gDTSG between D and D̂ can be constructed as in the
following definition.
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Definition 2.4.7. Consider gDTSGs D = (X,U,W,X0, T, Y, h) and D̂ = (X̂, Û , Ŵ , X̂0,
T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, interface function ν(x, x̂, û), and the corresponding lifted kernel
LT . The product gDTSG of D and D̂ is a gDTSG and defined as

D||RD̂ := (X||, U||,W||, X0||, T||, Y||, h||),

where X|| := X × X̂ is the state set; U|| := Û is the input set of Player I; W|| := W is
the input set of Player II; X0|| the initial state set, with x0|| := (x0, x̂0) ∈ X0||, x0 ∈ X0,

x̂0 ∈ X̂0, and (x0, x̂0) ∈ R; T|| := LT is the stochastic transition kernel; Y|| := Y is the
output set; and h||(x, x̂) := h(x) is the output map.

Figure 2.1: A coupling gDTSG D||RD̂ (green region) controlled by Cρ (yellow region) and
Cλ (blue region).

All ingredients of Definitions 2.4.6 and 2.4.7 are schematically depicted in Figure 2.1.
Here, LT characterizes the transition of states in D||RD̂ and specifies the relation of
stochasticities between D and D̂. Moreover, given an input w from Cλ, ŵ is selected
such that (w, ŵ) ∈ Rw and fed to D̂. In practice, a function

Πw :W → Ŵ , (2.4.6)

is defined for matching each w ∈ W to a ŵ ∈ Ŵ . With Πw, the stochastic kernel LT

as in Definition 2.4.6 can be written as LT (dx
′ × dx̂′ | x, x̂, û, w). Moreover, according

to [33, Corollary 3.1.2], one can decompose LT as

LT (dx
′|x, x̂, x̂′, ν(x, x̂, û), w)T̂ (dx̂′|x̂, û,Πw(w)), (2.4.7)

where LT (dx
′|x, x̂, x̂′, ν(x, x̂, û), w) is a conditional stochastic kernel on x′ given x, x̂, x̂′,

û, and w. Finally, the definition of an (ϵ, δ)-approximate probabilistic relation between
two gMDPs is recalled fromn [74] for the sake of completeness.

Definition 2.4.8. Consider two gMDPs D = (X,U, x0, T, Y, h) and D̂ = (X̂, Û , x̂0,
T̂ , Y, ĥ) with the same output set. System D̂ is (ϵ, δ)-stochastically simulated by D,
denoted by D̂ ⪯δ

ϵ D, if there exist a measurable relation R ⊆ X × X̂ and a Borel
measurable stochastic kernel LT (· | x, x̂, û) on X × X̂ such that:
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� ∀(x, x̂) ∈ R, ∥y − ŷ∥ ≤ ϵ, with y = h(x) and ŷ = ĥ(x̂);

� ∀(x, x̂) ∈ R and ∀û ∈ Û , there exists u ∈ U such that T (· | x, u) R̄δ T̂ (· | x̂, û)
with lifting LT (· | x, x̂, û);

� x0Rx̂0.

2.5 Automata for Modeling Complex Logical Properties

Throughout this thesis, two different automata are deployed to model the desired spec-
ifications. The first one is so-called deterministic finite automata (DFA) [13], as defined
below.

Definition 2.5.1. A deterministic finite automata (DFA) is a tuple A = (Q, q0,Π, τ, F ),
where Q is a finite set of states, q0 ∈ Q is the initial state, Π is a finite set of alphabet,
τ : Q×Π → Q is a transition function, and F ⊆ Q is a set of accepting states.

Without loss of generality [13, Section 4.1], one can focus on those DFA which are
total, i.e., given any q ∈ Q, ∀σ′ ∈ Π, ∃q′ ∈ Q such that q′ = τ(q, σ′). A finite
word σ = (σ0, σ1, . . . , σk−1) ∈ Πk is accepted by A if there exists a finite state run
q = (q0, q1, . . . , qk) ∈ Qk+1 such that qz+1 = τ(qz, σz), σz ∈ Π for all 0 ≤ z < k and
qk ∈ F . The set of words accepted by A is called the language of A and denoted by
L(A).

Note that DFA is a powerful tool for capturing those properties that can be evaluated
over finite traces [63]. In some part of the thesis, synthesizing controllers enforcing ω-
regular properties [13] will also be of interest. These properties specify behaviours of a
control system over infinite time horizons and can be modeled by deterministic Streett
automata (DSA) [178], as defined below.

Definition 2.5.2. A DSA is a tuple A = (Q, q0,Π, δ,Acc), where Q is a finite set of
states, q0 ∈ Q is an initial state, Π is a finite set of alphabet, δ ⊆ Q×Π×Q is the set of
all feasible transitions among Q, and Acc = {⟨E1, F1⟩, ⟨E2, F2⟩, . . . , ⟨Er, Fr⟩, . . . , ⟨Er, Fr⟩}
denotes the accepting condition of the DSA where ⟨Er, Fr⟩, ∀r ∈ {1, . . . , r}, are accept-
ing state set pairs, with Er, Fr ⊆ Q.

Consider an infinite word denoted by σ = (σ0, σ1, . . .) ∈ Πω. An infinite state run q =
(q0, q1, . . .) ∈ Qω on σ is an infinite sequence of states in which one has (qk, σk, qk+1) ∈ δ,
∀k ∈ N. Similarly, consider an finite word denoted by σf = (σ0, . . . , σH) ∈ ΠH+1, with
H ∈ N, q = (q0, . . . , qH) ∈ QH+1 denotes the corresponding finite state run. An infinite
state run q is an accepting run of A, if for all ⟨Er, Fr⟩ ∈ Acc, r ∈ {1, . . . , r}, one has

inf(q) ∧ Er = ∅ or inf(q) ∧ Fr ̸= ∅, (2.5.1)

where inf(q) is the set of states in Q that are visited infinitely often in q. Additionally,
an infinite word σ corresponding to an accepting run q is said to be accepted by A.
The set of words accepted by A, denoted by L(A), is called the language of A.
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3 Abstraction-based Controller Synthesis
for Non-cooperative Stochastic Games

3.1 Introduction

Formal synthesis of controllers for continuous-space stochastic systems have gained sig-
nificant attention in the past two decades due to the increasing demand for synthesiz-
ing correct-by-construction controllers in real-life safety-critical applications, including
self-driving cars, power grids, etc., to name a few. In particular, these problems are
more challenging when controllers are required to enforce high-level logic properties,
e.g., those expressed by automata [13]. Since closed-form solutions of synthesized poli-
cies for continuous-space stochastic systems are not available, a promising approach is
to approximate these models by simpler ones with finite state sets (a.k.a. finite ab-
straction). A challenging step during this approximation phase is to provide formal
guarantees such that the controller synthesized over (simpler) finite models can be re-
fined back to original complex ones. In this chapter, I focus on synthesizing controllers
over non-cooperative stochastic games leveraging abstraction-based approaches. These
controllers will then be deployed as the safety advisor in the Safe-visor architecture in
Chapter 4.

3.1.1 Related Works

There have been many results on the controller synthesis for discrete-time stochastic
systems in the past few years. Results in [12, 40] focus on enforcing invariance proper-
ties for stochastic linear systems. As for nonlinear stochastic systems with continuous
state and input sets, an abstraction-based approximation approach is initially proposed
in [2]. This result is later improved in [174] regarding the scalability issue and extended
in [184, 94, 95] for abstraction-based policy synthesis enforcing temporal logic proper-
ties characterized by deterministic finite automata. An (ϵ, δ)-approximate probabilistic
relation is introduced in [76] to characterize the probabilistic dependency between an
original model and its finite abstraction. With this type of relation, one can synthe-
size controllers enforcing the desired properties with less conservative lower bounds on
probability of satisfaction. Later, results in [75, 74] propose Bellman operators for syn-
thesizing controllers enforcing co-safe LTLF properties [63] based on this relation. In
the context of constructing finite abstractions for large-scale stochastic systems, compo-
sitional abstraction-based techniques have been introduced to alleviate the scalability
issue due to discretizing the state sets; see for example [175, 121, 116, 120, 119, 148, 118].

15



3 Abstraction-based Controller Synthesis for Non-cooperative Stochastic Games

Note that the above-mentioned works mainly focus on stochastic systems that are
only affected by control inputs and noises. In some safety-critical real-life applications,
systems are also affected by (rational) adversarial inputs, whose objectives are opposed
to that of control inputs. In these scenarios, synthesis approaches for non-cooperative
stochastic games [218] are required. Results in [179] handle synthesis problem for lin-
ear stochastic games based on iterative abstraction-refinement [97]. Results in [93, 52]
utilize a grid-based approximation framework [1] to synthesize controllers for nonlinear
stochastic games. Within the same framework, those results which are initially pro-
posed for stochastic games with a finite or countably infinite number of states (e.g.,
stochastic games with generalized mean-payoff objectives [42, 43], reachability objec-
tives [110, 44, 67, 77], multiple objectives [18, 201, 109]) can also be employed to
synthesize controllers for stochastic games with continuous state sets. However, the
guarantee provided under this framework is sometimes very conservative (this is shown
with an example in Section 3.4.3). There have also been some results to synthesize con-
trollers for non-cooperative stochastic games (see e.g. [80, 142, 144, 70, 5]), but they
are not applicable to enforce high-level temporal logic properties for nonlinear systems.

3.1.2 Contributions

In this chapter, I focus on synthesizing controllers for discrete-time nonlinear stochastic
systems with continuous state and input sets over a finite time horizon. Particularly, I
consider those systems modeled by zero-sum stochastic games [218], which are subject
to not only control inputs but also (rational) adversarial inputs whose objective is
opposed to that of control inputs. Moreover, I am interested in a class of complex
logical properties expressed by deterministic finite automata (DFA), which are powerful
in specifying behaviours that occurs within finite time [63]. Here, an abstraction-
based technique is proposed to synthesize controllers based on an (ϵ, δ)-approximate
probabilistic relation. Concretely, I first construct a finite abstraction of the original
game and then establish such a relation between the finite abstraction and the original
one. Then, by leveraging the probabilistic relation, new Bellman operators are proposed
to synthesize a controller over the finite abstraction. Finally, this controller is refined
back over the original game while providing probabilistic guarantees for the satisfaction
of desired properties. Here, the contribution of this chapter is summarized as follows:

1. Given the notion of approximate probabilistic relations for stochastic games,
new Bellman operators are proposed for synthesizing controllers over nonlinear
stochastic games with continuous state and input sets. Leveraging the proposed
operators, one can handle complex logic properties modeled by deterministic finite
automata, while providing less conservative probabilistic guarantees for satisfying
those properties compared with the results in [93, 52](cf. Section 3.4.3).

2. For a class of nonlinear stochastic games, a systematic algorithm is proposed to
establish an approximate probabilistic relation between the original game and its
abstraction. In comparison, results in [75, 74, 187] only establish such a relation
for linear stochastic systems without rational adversarial inputs. Although [121]

16



3.1 Introduction

provides the notion of approximate probabilistic relations for stochastic games,
it does not provide any constructive algorithm for establishing the relation.

3. The proposed operators in this chapter can also be applied to synthesis prob-
lems for stochastic systems without adversarial inputs. In this case, compared
with the operators in [74], the results in this chapter provide a less conservative
probabilistic guarantee for satisfying the desired properties (cf. Lemma 3.3.8,
Corollary 3.3.9, and Section 3.4.3).

3.1.3 Problem Formulation

Since the main target of this chapter is to synthesize controller over non-cooperative
stochastic games, I deploy the general discrete-time stochastic games (gDTSG) intro-
duced in Definition 2.4.3 as the modeling framework in this chapter. For robustness
concern, an asymmetric information pattern is considered here that favors Player II, i.e.,
Player II may select its action in a rational fashion based upon the choice of Player I.
This results in a zero-sum Stackelberg game [38] with Player I as the leader, which is
crucial for the existence of deterministic policies (cf. Definition 3.1.1, Remarks 3.1.2
and 3.3.7). Note that the setting here is common for robust control problems in which
control inputs are selected considering that adversarial inputs are provided in a worst-
case manner. The motivation for using such a setting is to provide formal probabilistic
guarantees regardless of how adversarial inputs are chosen by Player II. This also indi-
cates that Player II does not have to select adversarial inputs rationally in practice.

To formally formulate the main problem for this chapter, a few additional definitions
are required. First, the notion of Markov policy for controlling the gDTSG is recalled.

Definition 3.1.1. (Markov Policy) Consider a gDTSG D = (X,U, W,X0, T, Y, h).
A Markov policy ρ defined over the time horizon [0, H − 1] ⊂ N for Player I is a
sequence ρ= (ρ0, ρ1, . . . , ρH−1) of universally measurable maps ρk : X → P(U,B(U)),
with ρk(U

∣∣x(k)) = 1. Similarly, a Markov policy λ for Player II is a sequence λ =
(λ0, λ1, . . . , λH−1) of universally measurable maps λk : X × U → P(W,B(W )), with
λk(W

∣∣x(k), u(k)) = 1, for all k ∈ [0, H−1]. Here, P and Λ denote the set of all Markov
policies for Players I and II, respectively. Moreover, PH and ΛH represent the set of
all Markov policies for Players I and II within time horizon [0, H − 1], respectively.

Remark 3.1.2. In general, the Markov policy assigns a probability measure over (U,
B(U)) (resp. (W,B(W ))). From practical implementations’ point of view, nonrandom-
ized Markov policies [171, Definition 8.2] are of particular interest. In this chapter,
by Markov policies, I refer to nonrandomized ones; otherwise, I explicitly say that the
Markov policies are randomized ones.

Next, a more general set of control strategies for Players I and II is defined. The
definition here is adapted from [74] by allowing their output update map to be time
dependent.
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Definition 3.1.3. (Control Strategy) A control strategy for Player I or II of a gDTSG
D = (X,U,W,X0, T, Y, h) is a tuple

C = (M,U,Y,H,M0, πM, πY), (3.1.1)

where M is a Borel set as the memory state set; U is a Borel set as the observation
set; Y is a Borel set as the output set, which should be equal to U for Player I, and to
W for Player II; H ⊆ N is the time domain; M0 ⊆ M is the set of initial memory state;
πM :M×U×H→P(M,B(M)) is a memory update function; πY : M×H → P(Y,B(Y))
is an output update function.

Remark 3.1.4. A Markov policy ρ = (ρ0, ρ1, . . . , ρH−1) for Player I (resp. λ =
(λ0, λ1, . . . , λH−1) for Player II) can be redefined as a control strategy C = (M,U,Y,H,
M0, πM, πY) with M = {m}, where m is the sole element in M; U = X (resp. U = X×U);
Y = U (resp. Y = W ); H = [0, H − 1]; M0 = {m}; and πY := ρk (resp. πY := λk) for
all k ∈ H.

Given a gDTSG D, (ρ,λ)×D denotes the controlled gDTSG when D is controlled
by Markov policies ρ for Player I and λ for Player II. Analogously, consider a control
strategy for Player I, denoted by Cρ, and a control strategy for Player II, denoted
by Cλ. The corresponding controlled gDTSG is denoted by (Cρ,Cλ)×D. With this
notation, P(ρ,λ)×D (resp. P(Cρ,Cλ)×D) denotes the probability measure over the space
of output sequences of the controlled gDTSG (ρ,λ)×D (resp. (Cρ,Cλ)×D).

In this chapter, I focus on synthesizing controller enforcing those logical properties
modeled by deterministic finite automata (DFA), as introduced in Definition 2.5.1.
To synthesize such controllers, the following definition is required for connecting the
gDTSG D as in (2.4.3) to a DFA A using a measurable labeling function.

Definition 3.1.5. (Labelling Function) Consider a gDTSG D=(X,U,W,X0, T, Y, h),
a DFA A=(Q, q0,Π, τ, F ), and a finite output sequence yω(H−1)=(y(0), y(1), . . . , y(H−
1))∈Y H of D with some H ∈N>0. The trace of yω(H−1) over Π is σ=LH(yω(H−1))=
(σ0, σ1, . . . , σH−1) with σk = L(y(k)) for all k ∈ [0, H − 1], where L : Y → Π is a
measurable labeling function and LH : Y H → ΠH is a measurable function. Moreover,
yω(H−1) is accepted by A, denoted by yω(H−1) |= A, if LH(yω(H−1)) ∈ L(A).

Throughout this chapter, (A, H) represent the property of interest, with A being a
DFA and H being the finite time horizon over which the property should be satisfied.
Accordingly, the satisfaction of a gDTSG D with respect to this property is evaluated
in terms of PD{yω(H−1) |= A} within a bounded-time horizon, where yω(H−1) is the
output sequences generated by D. For this purpose, one needs to construct a product
gDTSG based on D and A, as defined below.

Definition 3.1.6. (Product gDTSG) Consider a gDTSG D = (X,U,W,X0, T, Y, h),
a DFA A = (Q, q0,Π, τ, F ), and a labeling function L : Y → Π as in Definition 3.1.5.
The product of D and A is a gDTSG defined as D⊗A = {X̄, Ū , W̄ , X̄0, T̄ , Ȳ , h̄}, where
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3.1 Introduction

X̄ := X×Q is the state set; Ū := U is the input set for Player I; W̄ :=W is Player II’s
input set; X̄0 is the initial state set, with x̄0 := (x0, q̄0) ∈ X̄0, x0 ∈ X0 and

q̄0 = τ(q0, L ◦ h(x0)); (3.1.2)

T̄ (dx′ × {q′}|x, q, u, w) is the stochastic kernel that assigns for any (x, q) ∈ X̄, u ∈
Ū , and w ∈ W̄ the probability T̄ (dx′ × {q′}|x, q, u, w) = T (dx′|x, u, w) when q′ =
τ(q, L◦h(x′)), and T̄ (dx′×{q′}|x, q, w, u) = 0, otherwise; Ȳ := Y is the output set and
h̄(x, q) := h(x) is the output map.

With all definitions above, I am ready to formally define the problems of interest in
this chapter. For some properties, e.g., co-safe-LTLF [63], all infinite output sequences
satisfying them have a finite good prefix [107, Section 2.2]. In this case, such properties
are modeled with DFAs that accept all good prefixes. Accordingly, the lower bound of
satisfaction probability is of interest, which yields a problem of robust satisfaction.

Problem 3.1.7. (Robust Satisfaction) Consider a gDTSG D = (X,U,W,X0,
T, Y, h) and the desired property (A, H). The problem of robust satisfaction is
to design a control strategy Cρ for Player I such that for any control strategy Cλ

for Player II, one has

P(Cρ,Cλ)×D

{
∃k ≤ H, yωk |= A

}
≥ s, (3.1.3)

where s is the robust satisfaction probability guaranteed by Cρ.

Meanwhile, for some other logical properties, e.g., safe-LTLF [166], all infinite output
sequences that violate these properties have a finite bad prefix [107, Section 2.2]. Thus,
such properties are modeled with DFAs that accept all bad prefixes, and an upper
bound of the violation probability is of interest. This results in a problem of worst-case
violation as defined below.

Problem 3.1.8. (Worst-case Violation) Consider a gDTSG D = (X,U,W,X0,
T, Y, h) and a property (A, H). The problem of worst-case violation is to design
a control strategy Cρ for Player I such that for any control strategy Cλ for
Player II, one has

P(Cρ,Cλ)×D

{
∃k ≤ H, yωk |= A

}
≤ v, (3.1.4)

with v being the worst-case violation probability ensured by Cρ.

For a better illustration of the theoretical results in this chapter, the following running
example is deployed throughout this chapter.
Running example. Consider the following gDTSG

D :

{
x(k + 1) = Ax(k)+Bu(k)+E sin(Fx(k))+Dw(k)+Rς(k),
y(k) = Cx(k), k ∈ N,
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q0 q1

q2 q3

p1 _ p3
p1 _ p2 _ p3 _ p4

p1 _ p2
p3 _ p4 _ p5

p5p2
p4 _ p5

p1 _ p2 _ p3 _ p4 _ p5

Figure 3.1: DFA for modeling ψ, with accepting state q3, alphabet Π = {p1, p2, p3, p4, p5},
and labeling function L : Y → Π, where L(y) = p1 when y ∈ [0, 1.8], L(y) = p2
when y ∈ [−1.8, 0), L(y) = p3 when y ∈ (1.8, 2], L(y) = p4 when y ∈ [−2,−1.8),
and L(y) = p5 when y ∈ (−∞,−2) ∪ (2,+∞).

with

A=
[
0.9204 0.4512 0.9491
0.7865 0.8269 1.074
0.6681 0.3393 0.5110

]
, B=

[
9.001 1.611 3.663
1.404 11.76 2.386
5.568 4.560 5.156

]
,

E = [0.6740; 0.6367; 0.7030], D = [0.6; 0.4; 0.6], R = [0.5110; 0.3347; 0.5336], F =
[0.5439; 0.9578; 0.2493]⊤, and C = [0.1; 0.1; 0.1]⊤, where x(t) = [x1(k);x2(k);x3(k)]
is the state, u(k) ∈ [−2.5, 2.5]3 denotes the control input of Player I, w(k) ∈ [−0.5,
0.5] denotes the adversarial input of Player II, ς(k) is a sequence of standard Gaussian
random variables, and y(k) is the output. Here, the following property ψ is considered:
within 20 time steps (i.e., H = 20), if the output of the system starts from [0, 2], it
should stay within [−2, 2]; if it instead starts from [−1.8, 0], it should then stay within
[−1.8, 1.8]. The DFA for modeling ψ is shown in Figure 3.1. Accordingly, the problem
of worst-case violation corresponding to this DFA is of interest.

3.2 Abstraction Synthesis for a Class of Nonlinear gDTSGs

In this section, a particular class of nonlinear gDTSG is considered, which is used to
model many physical applications, such as fixed-joint robot [62], magnetic bearing [11],
etc. This class of systems can be modeled as:

D :

{
x(k+1)=Ax(k)+Bu(k)+Eφ(Fx(k))+Dw(k)+Rς(k),

y(k) = Cx(k), k ∈ N,
(3.2.1)

with A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×1, F ∈ R1×n, D ∈ Rn×p, R ∈ Rn×d, and C ∈ Rq×n.
Here, it is assumed that the stochasticity ς : N → Rd in (3.2.1) is a sequence of inde-
pendent random vectors with multivariate standard normal distributions. Moreover,
the nonlinearity φ : R → R satisfies

b ≤ φ(c)− φ(d)

c− d
≤ b̄, (3.2.2)

for all c, d∈R, c ̸=d, with some b, b̄∈R where b≤ b̄. In the remainder of this chapter,
the tuple

D = (A,B,C,D,E, F,R, φ), (3.2.3)
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3.2 Abstraction Synthesis for a Class of Nonlinear gDTSGs

is used to denote the systems as in (3.2.1). Next, in the following part of this section,
I first discuss the construction of finite abstractions for this class of systems. Then, I
propose how to establish an (ϵ, δ)-approximate probabilistic relation between original
models and their corresponding abstractions.

Remark 3.2.1. Note that although the main focus of this section is on establishing
(ϵ, δ)-approximate probabilistic relations for a particular class of nonlinear gDTSGs as
in (3.2.1), the proposed results in 3.3 on synthesizing controllers are independent of the
form of dynamics and are applicable to the general setting of gDTSGs.

3.2.1 Construction of Finite Abstractions

Consider a gDTSG D as in (3.2.3). I first introduce the construction of a reduced-order
version of D, denoted by D̂r=(Âr, B̂r, Ĉr, D̂r, Êr, F̂r, R̂r, φ), where the index r signifies
the reduced-order version of the original game throughout this chapter. Then, I discuss
how to build a finite abstraction, denoted by D̂, for D̂r. Note that the reduced-order
gDTSG D̂r is a simplified model ofD, whose state and input sets are still continuous but
with lower dimensions [167]. As a result, synthesizing controllers over reduced-order
systems is more tractable than the original ones due to having less computational
complexity (cf. Remark 3.2.3).
To construct the reduced-order model D̂r for the gDTSG D as in (3.2.3), one first

needs to select an abstraction matrix P ∈ Rn×n̂ that maps the states of the abstraction
to the D as follows

x = Px̂. (3.2.4)

Here, n̂ denotes the dimension of the state space for D̂r, x ∈ X ⊆ Rn is the state of
D, and x̂ ∈ X̂ ⊆ Rn̂ is the state of D̂r. With abstraction matrix P , the reduced-order
game D̂r can be constructed as long as the following equations hold for some matrices
G, Q, and S with appropriate dimensions:

Ĉr = CP, (3.2.5)

F̂r = FP, (3.2.6)

E = PÊr −BG, (3.2.7)

AP = PÂr −BQ, (3.2.8)

D = PD̂r −BS. (3.2.9)

Conditions (3.2.5) to (3.2.9) are similar to [121, conditions (5.5b) to (5.5f)]. I will
discuss later (cf. (3.2.36)) how to select R̂r such that it is easier to establish an approxi-
mate probabilistic relation between the original game and its abstraction. Additionally,
there is no restriction on the choice of B̂r. For instant, one can choose B̂r = In̂ so that
D̂r is fully actuated, and, hence, solving the synthesis problem over it get easier.

Remark 3.2.2. Note that considering matrices A, E, B, and P . There exist matrices
Âr, Êr, G, Q, and S satisfying (3.2.7) to (3.2.9) if and only if [208, Lemma 5.10 and
Lemma 5.12] imAP ⊆ imP + imB, imD ⊆ imP + imB, and imE ⊆ imP + imB.
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3 Abstraction-based Controller Synthesis for Non-cooperative Stochastic Games

Next, I proceed with discussing the construction of a finite abstraction D̂ of D̂r. To
this end, one needs the notion of region of interest, denoted by X̂rs, which is a compact
subset of X̂r. Note that this is usually the case for physical systems in practice, where
variables evolve in a bounded domain. Accordingly, it is assumed that D̂r will not come
back to X̂rs once it leaves X̂rs. Instead, it will stay in a single absorbing state, denoted
by ϕ. With these notions, one first partitions X̂r with X̂r = ∪i∈NXi and correspondingly
selects representative points x̂i ∈ Xi for each cell, where Xi are bounded cells. Then,
the set X̂ = {Π′(Xi) | Xi ∩ (X̂r\X̂rs) = ∅} ∪ {ϕ} is used as the state set of D̂, with
Π′ being a function that maps Xi to its representative points, and ϕ represents the
aggregation of representative points in the set{

Π′(Xi) | Xi ∩ (X̂r\X̂rs) ̸= ∅
}
. (3.2.10)

For the sake of succinctness, I use X̂ = {x̂i}nx
i=1 ∪ {ϕ} with nx being the number of

representative points in the set {Π′(Xi) | Xi ∩ (X̂r\X̂rs) = ∅}. Additionally, Π̃x is
defined to maps any x̂r ∈ X̂r to x̂i = Π′(Xi) with x̂r ∈ Xi, based on the set

∆ :=
{
Π̃x(x̂r)− x̂r | x̂r ∈ X̂r

}
. (3.2.11)

is defined. Since the partitions of X̂r are bounded, ∆ is also bounded, namely, there
exists δ′ ∈ (−∞,+∞) such that ∀β ∈ ∆, |β| ≤ δ′.

Following the same idea for constructing the finite state set, the finite input set of
Player I and Player II are constructed by first selecting bounded partitions Ûr = ∪nuUi

and Ŵr = ∪nwWi, and then choosing representative points ûi ∈ Ui and ŵi ∈ Wi.
Accordingly, one gets Û = {ûm}nu

m=1 being the input set for Player I and Ŵ = {ŵl}nw
l=1

being the input set for Player II. Similar to Π̃x as in (3.2.11), a function Πw : Ŵr → Ŵ
is also defined to map any ŵr ∈ Ŵr to its representative point ŵ ∈ Ŵ of the partition
that contains ŵr. Accordingly, one can define a bounded set

∆w :=
{
Πw(ŵr)− ŵr | ŵr ∈ Ŵr

}
. (3.2.12)

The dynamic of D̂ is constructed according to the dynamic of D̂r and the characteristic
of ϕ, i.e., x̂r(k + 1) = f̂r(x̂r(k), ûr(k), ŵr(k), ς(k)) = Arx̂r(k)+Erφ(Frx̂r(k))+Drŵr(k) +
Brûr(k) + Rrς(k) when x̂r(k) ∈ X̂rs and x̂r(k + 1) = f̂r(x̂r(k), ûr(k), ŵr(k), ς(k)) = ϕ
when x̂r(k) = ϕ. Concretely, the dynamic of D̂ is given by

f̂(x̂(k), û(k), ŵ(k), ς(k)) :=Πx(f̂r(x̂r(k), ûr(k), ŵr(k), ς(k)), (3.2.13)

where Πx : X̂r → X̂ is the map that assigns to any x̂r ∈ X̂rs the representative point
x̂ ∈ X̂ of the corresponding partition set containing x̂r, and assigns any x̂r ∈ X̂c

rs to ϕ.
The output map is ŷ = Ĉrx̂ when x̂ ̸= ϕ, and ŷ = ϕy when x̂ = ϕ, where ϕy represents
the output when x̂ = ϕ. Then, one can rewrite (3.2.13) as

f̂(x̂(k), û(k), ŵ(k), ς(k)) := f̂r(x̂r(k), ûr(k), ŵr(k), ς(k))+β, β ∈ ∆.
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3.2 Abstraction Synthesis for a Class of Nonlinear gDTSGs

Finally, the initial state set of D̂ is defined as X̂0 := {x̂0 ∈ X̂ | x̂0 = Πx(x̂r0), x̂r0 ∈ X̂r0},
where X̂r0 is the initial state set of D̂r, and the stochastic kernel T̂ is computed as

T̂ (x̂h | x̂h′ , ûm, ŵl)=


T (Xh|x̂h′ , ûm, ŵl), if x̂h′ , x̂h ∈ {x̂i}nx

i=1,

T (X̂c
rs|x̂h′ , ûm, ŵl), if x̂h′ ∈{x̂i}nx

i=1, x̂h= ϕ,

1, if x̂h′ , x̂h = ϕ,

0, if x̂h′ = ϕ, x̂h∈{x̂i}nx
i=1,

(3.2.14)

with h, h′ ∈ [1, nx], x̂h = Π′(Xh), ûm ∈ Û , and ŵl ∈ Ŵ .

Remark 3.2.3. If the finite abstraction is directly constructed from original gDTSG,
the size of T̂ grows exponentially with the dimension of original state and input sets.
As a promising alternative, by constructing a reduced-order version of original gDTSG,
the finite abstraction can be built based on gDTSG with a lower dimension, which
alleviates the encountered computational complexity (cf. Section 3.4.1). One can also
apply compositional techniques proposed in [121] for constructing finite abstractions of
large-scale gDTSGs via abstractions of smaller subsystems, and utilize the techniques
proposed in [114, Section 4.2] to further reduce the memory usage required for storing
the stochastic kernel of finite abstractions.

3.2.2 Conditions for Establishing Approximate Probabilistic Relations

Since the formal safety guarantees provided by the abstraction-based controller syn-
thesis methodologies rely on an (ϵ, δ) approximate probabilistic relations between the
original gDTSG D and its finite abstraction D̂. In this subsection, I show under which
conditions D̂ is (ϵ, δ)-stochastically simulated by D, denoted by D̂ ⪯δ

ϵ D (cf. Defini-
tion 2.4.6), w.r.t. relations R and Rw defined as

R =
{
(x, x̂) | (x− Px̂)⊤M(x− Px̂) ≤ ϵ2

}
, (3.2.15)

Rw =
{
(w, ŵ) | (w − ŵ)⊤M̃(w − ŵ) ≤ ϵ̃2

}
, (3.2.16)

where M and M̃ are positive-definite matrices with appropriate dimensions, and ϵ,
ϵ̃ ∈ R>0. Prior to proposing the required conditions, I raise the following definition.

Definition 3.2.4. Consider a gDTSG D = (A,B,C,D,E, F,R, φ) as in (3.2.3), its
reduced-order version D̂r = (Âr, B̂r, Ĉr, D̂r, Êr, F̂r, R̂r, φ) with the same additive noise,
a finite abstraction D̂ constructed from D̂r, and relations R and Rw as in (3.2.15)
and (3.2.16), respectively. For any κ ∈ R≥0, and matrices K,L ∈ Rm×n, consider the
following conditions:

M ⪰ C⊤C, (3.2.17)

(A+BK)⊤M(A+BK) ⪯ κM, (3.2.18)

Ā⊤MĀ ⪯ κM, (3.2.19)

A⊤MA ⪯ κM, (3.2.20)
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√
κ ≤ 1− γ̃/ϵ ≤ 1, (3.2.21)

in which Ā := A+BK + b̄(BL+ EF ) and A := A+BK + b(BL+ EF ) with b and b
as appeared in (3.2.2), respectively, and γ̃ := γ0 + γ1 + γ2 + γ3 + γ4 with

γ0 := argmax
w̄, ∥w̄∥M̃≤ϵ̃

∥Dw̄∥M , (3.2.22)

γ1 := argmax
û∈Û ′

∥(BR̃− PB̂r)û∥M , (3.2.23)

γ2 := argmax
ς, ∥ς∥≤χ−1

d (1−δ)

∥(R− PR̂r)ς∥M , (3.2.24)

γ3 := argmax
β∈∆

∥Pβ∥M , (3.2.25)

γ4 := argmax
ŵ∈Ŵ

∥BSŵ∥M . (3.2.26)

In (3.2.22)-(3.2.26), χ−1
d : [0, 1] → R is the chi-square inverse cumulative distribution

function with d degrees of freedom [22], ∥x̄∥M :=
√
x̄⊤Mx̄, ∆ is as in (3.2.11), and

Û ′ ⊆ Û is the input set for D̂.

With Definition 3.2.4, the required conditions under which one has D̂ ⪯δ
ϵ D with

respect to the relations as in (3.2.15) and (3.2.16) are introduced as below.

Theorem 3.2.5. Consider a gDTSG D and its finite abstraction D̂ constructed
from D̂r. For any x0 ∈ X0 and x̂0 ∈ X̂0 with (x0, x̂0) ∈ R, D̂ is (ϵ, δ)-
stochastically simulated by D (i.e., D̂ ⪯δ

ϵ D) with respect to the relations as
in (3.2.15) and (3.2.16), if

� (Cd.1) there exist κ ∈ R≥0 and K,L ∈ Rm×n, such that conditions
in (3.2.17)-(3.2.21) holds;

� (Cd.2) the associated interface function is

ν(x, x̂, û) :=(K + b(x, x̂)L)(x−Px̂)+Qx̂+R̃û+Gφ(FPx̂), (3.2.27)

with P , Q, and G being as in (3.2.4), (3.2.8), and (3.2.7), respectively,
K and L being as in (Cd.1) above, R̃ being a matrix with an appropriate
dimension,

b(x, x̂) =
φ(Fx)− φ(FPx̂)

F (x− Px̂)
∈ [b, b],

if x ̸= Px̂, with b and b appeared in (3.2.2), and b(x, x̂) = 0 otherwise;
� (Cd.3) Û ′ in (3.2.23) is constructed such that ∀û ∈ Û ′ and ∀(x, x̂) ∈ R,
one has ν(x, x̂, û) ∈ U .

The proof of Theorem 3.2.5 is provided in Section 3.6.1.
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Remark 3.2.6. Given an initial state x0 of D, if there exists x̂0 ∈ X̂ such that
(x0, x̂0) ∈ R, one can choose x̂0 = Πx((P

⊤MP )−1P⊤Mx0), which minimizes ∥x0 −
Px̂0∥M . Moreover, there is no restriction on R̃ in (3.2.27) in general. However,
R̃ = (B⊤B)−1B⊤PB̂r is recommended to obtain a smaller γ1 as in (3.2.23). Then,
it gets easier to find γ̃ and ϵ such that an approximate probabilistic relation exists
(cf. (3.2.35)).

The next result shows that under which conditions, (3.2.17)-(3.2.21) hold.

Corollary 3.2.7. Consider a gDTSG D = (A,B,C,D,E, F,R, φ). There exist
M , K, L, ϵ, and γ̃ such that (3.2.17)-(3.2.21) hold if and only if for all b′ ∈
{b, b̄, 0}, the pair (A+ b′EF,B) is stabilizable, where b and b appeared in (3.2.2).

The proof of Corollary 3.2.7 is given in Section 3.6.1. So far, I have introduced condi-
tions under which there exists an approximate probabilistic relation between a gDTSG
and its finite abstraction. Next, an algorithmic procedure is proposed to establish such
a relation based on those conditions.

3.2.3 Algorithmic Procedure for Establishing Approximate Probabilistic
Relations

In this subsection, an algorithmic procedure is proposed to search for M , K, L, and ϵ
in Definition 3.2.4 given the following items s.t. (Cd.1)-(Cd.3) in Theorem 3.2.5 hold:

1. δ in the approximate probabilistic relation;
2. a tolerable range for ϵ, denoted by [ϵmin, ϵmax];
3. the finite abstraction constructed as in Section 3.2.1;
4. the set Û ′ as in Definition 3.2.4 for synthesizing the controller over the finite

abstraction.
Here, I first discuss how to accommodate Û ′ when searching for M , K, L, and ϵ so
that (Cd.3) holds. Then, I will investigate how to jointly compute M , K, and L given
candidates ϵ ∈ [ϵmin, ϵmax] and κ ∈ [0, 1], with κ appeared in Definition 3.2.4. Finally,
the algorithmic procedure for establishing the approximate probabilistic relations will
be formally proposed.
Accommodating Û′. Here, it is assumed that all û ∈ Û are within a polytope

defined by a matrix inequality
Auû ≤ bu, (3.2.28)

where Au ∈ Rr×m and bu ∈ Rr×1. Note that the input set of the form of (3.2.28) is
appropriate for many physical systems. Next, by substituting the interface function as
in (3.2.27) into (3.2.28), one can rewrite (3.2.28) as

Auū ≤ b̃u(x̂, û), (3.2.29)

with b̃u(x̂, û) = bu −Au(Qx̂+ R̃û+Gφ(FPx̂)) and ū = (K + bL)x̄, where x̄ = x−Px̂.
One can readily see that every pair (x̂, û) corresponds to a polytope for ū specified
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by Au and b̃u(x̂, û), with x̂ ∈ X̂ and û ∈ Û ′. Here, A denotes the set of all possible
polytopes of the form of (3.2.29) given X̂ and Û ′, and

Ãū ≤ b̃, (3.2.30)

denotes a polytope Ã := ∩a
r=1Ãr, in which Ã ∈ Rr×m, b̃ ∈ Rr×1, and a is the number

of polytopes within A. This polytope can be computed by multi-parametric toolbox
MPT [78]. Now, one can rewrite the polytope in (3.2.30) as:

αiū ≤ 1, i ∈ {1, . . . , r}, (3.2.31)

with αi =
1
b̃i
Ãi, where Ãi and b̃i are the i-th row of Ã and b̃, respectively. Now, I am

ready to introduce Theorem 3.2.8, which accommodates (3.2.31) in the search for M ,
K, L, and ϵ.

Theorem 3.2.8. Consider a series of constraints as in (3.2.31) for ū := (K +
bL)x̄, with x̄ ∈ Rn. For all x̄ ∈ Ex with Ex := {x̄ | x̄⊤Mx̄ ≤ ϵ2}, M ∈ Rn×n,
and ϵ ∈ R>0, constraints as in (3.2.31) are satisfied for all b ∈ [b, b̄] ∪ {0} iff

αiKM̄K⊤α⊤
i ≤ 1/ϵ2, (3.2.32)

αi(K + bL)M̄(K + bL)⊤α⊤
i ≤ 1/ϵ2, (3.2.33)

αi(K + b̄L)M̄(K + b̄L)⊤α⊤
i ≤ 1/ϵ2, (3.2.34)

with b and b appeared in (3.2.2), M̄ =M−1, and i ∈ {1, . . . , r}.

The proof of Theorem 3.2.8 is provided in Section 3.6.1. Next, I proceed with study-
ing how to apply Theorem 3.2.8 when searching for M , K, and L.

Jointly Computing M, K, and L. Consider (3.2.17)-(3.2.20) and (3.2.32)-(3.2.34).
When ϵ and κ are fixed,M ,K, and L can be computed (if existing) by solving a semidef-
inite (SDP) programming problem [185]. Accordingly, one can first uniformly select
samples from [ϵmin, ϵmax] and [0, 1] as candidates for ϵ and κ, respectively, and then try
to compute M , K, and L for each (ϵ, κ) sample pairs. The next corollary shows how
to compute M , K, and L jointly, given δ and a sample pair (ϵ, κ).

Corollary 3.2.9. Consider a gDTSG D = (A,B,C,D,E, F,R, φ), input constraints
as in (3.2.31), δ as in the approximate probabilistic relation, candidates ϵ ∈ [ϵmin, ϵmax],
and κ ∈ [0, 1]. Matrix M as in (3.2.15) as well as K and L as in (3.2.27) can be
computed jointly by solving the convex optimization problem:

min
M̄

− log(det(M̄))

s.t. M̄ ≻ 0;[
M̄ M̄C⊤

CM̄ Iq

]
⪰ 0;

[
M̄ Āb

Ā⊤
b κM̄

]
⪰ 0, b∈{b, b̄, 0};
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[
1/ϵ2 αi(K̄+bL̄)

(K̄+bL̄)⊤α⊤
i M̄

]
⪰ 0, with i ∈ {1, . . . , r} and b ∈ {b, b̄, 0};

where Āb = (A+ bEF )M̄ +B(K̄ + bL̄) and det(M̄) is the determinate of M̄ , with M̄ ,
K̄, and L̄ being matrices with appropriate dimensions. If there is a solution for this
optimization problem, one can compute M , K, and L as M = M̄−1, K = K̄M , and
L = L̄M , respectively, and one has D̂ ⪯δ

ϵ D, if

γ̃ ≤ ϵ(1−
√
κ), (3.2.35)

with γ̃ being computed as in Definition 3.2.4.

Corollary 3.2.9 is a direct result of Theorems 3.2.5 and 3.2.8 with Schur comple-
ment [35]. Additionally, one can design R̂r as

R̂r = (P⊤MP )−1P⊤MR, (3.2.36)

to minimize γ2 for the selected δ. Finally, Algorithm 1 summarizes the solution to
systematically establish an approximate probabilistic relation.

Algorithm 1: Establishing an approximate probabilistic relation between a
stochastic game and its abstraction

1 Select matrix P as in Remark 3.2.2, compute Ĉr, F̂r, Êr, Âr, and D̂r following

(3.2.5)-(3.2.9), and choose B̂r freely;
2 Discretize the state set as well as the input sets of Player I and Player II, and

then select M̃ and ϵ̃ in (3.2.16) according to the discretization of Ŵr;
3 Select Û ′ ⊆ Û for synthesizing controllers over the finite abstraction, compute

R̃ in (3.2.27) according to Remark 3.2.6, and compute constraints in (3.2.31);
4 Select δ and appropriate interval [ϵmin, ϵmax]. Then, uniformly select samples

of ϵ within [ϵmin, ϵmax] and κ within [0,1]. For each (ϵ, κ),
(a) Compute M , K, and L as in Corollary 3.2.9;
(b) If there are solutions in Step 4(i), compute R̂r as in (3.2.36);
(c) Compute γ̃ as in Definition 3.2.4 and check (3.2.35) accordingly;
(d) If (3.2.35) in Step 4(c) holds, solutions for M ,K,L, and ϵ are founded for

establishing the relation.

Remark 3.2.10. The number of constraints in the optimization problem in Corol-
lary 3.2.9 grows linearly with the dimension of the system and r as in (3.2.31). In prac-
tice, this problem can be solved efficiently with existing SDP solvers such as SDPT3 [185].

Running example (continued). For constructing the finite abstraction, P =
[0.6199; 0.4443; 0.6219] is chosen, and the reduced-order game is constructed with Âr =
0.55, B̂r = 1, D̂r = 1, Êr = 0.32, F̂r = 0.7957, and Ĉr = 0.1686. One there-
fore has G = [−0.0334;−0.0311;−0.0342], Q = [−0.1617;−0.1269; 0.1877], and S =
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[0.0021; 0.0038;−0.0014] as in (3.2.7) to (3.2.9). The finite abstraction for the reduced-
order game is constructed as in Table 3.2, with [−1.5, 1.5] and [−0.5, 0.5] being selected
as the input set of Player I and II respectively. Based on the discretization of the
Player II’s input set, M̃ = 1 and ϵ̃ = 0.05 are chosen. As for establishing the (ϵ,δ)-
approximate probabilistic relation, I choose Û ′ = Û , δ = 0.001, and the set for ϵ as
[0.05, 1]. Then, by applying Algorithm 1, the finite abstraction is (ϵ, δ)-stochastically
simulated by the original model with ϵ = 0.1509,

M =
[
0.0132 0.0082 0.0146
0.0082 0.0110 0.0074
0.0146 0.0074 0.0188

]
,

R̂r=0.8256, and the interface function as in (3.2.27) with

K=
[−0.1163 −0.0355 −0.0999
−0.0367 −0.0499 −0.0514
0.0222 −0.0215 0.0125

]
, L=

[−0.0450 −0.0824 −0.0200
−0.0682 −0.0761 −0.0573
0.0524 0.0666 0.0378

]
,

and R̃ = [0.0422; 0.0213; 0.0562].

3.3 Controller Synthesis Problem

In this section, I focus on elaborating the synthesis of controller C̃ρ for a gDTSG

D=(X,U,W,X0, T, Y, h) for Problems 3.1.7 and 3.1.8, given a finite abstraction D̂=
(X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) ofD with D̂⪯δ

ϵD, and a property (A, H), withA=(Q, q0,Π, τ, F ).
The general idea of the proposed methods is depicted in Figure 3.2 and summarized as

Figure 3.2: Left: Synthesizing Markov policy for D̂⊗A. Right: Construction of C̃ρ (yellow
region).

follows:

� As shown in Figure 3.2 (left), one first synthesizes a Markov policy ρ for Player I
of the gDTSG D̂ ⊗ A, assuming that Player II of the gDTSG selects its actions
in a rational fashion against the choice of Player I. The outcomes are the Markov
policy ρ and the robust satisfaction probability s for Problem 3.1.7 (resp. worst-
case violation probability v for Problem 3.1.8);
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� One then constructs C̃ρ based on ρ (cf. Definition 3.3.1) as depicted in Figure 3.2
(right). At runtime, when a state x of D is fed to C̃ρ:

1. State x̂ of D̂ is first updated according to x, the conditional stochastic kernel
LT , and the action w of C̃λ in the previous time instant. Then, the state
q of A are updated according to the output function h(x) of D and the
transition function τ of A;

2. Afterwards, a û is provided by ρ based on x̂ and q, and refined to D by
virtue of the interface function ν;

3. C̃λ selects w according to x and u, and feeds w to D.

Here, the construction of C̃ρ is formally presented as follows.

Definition 3.3.1. (Construction of C̃ρ) Consider gDTSGs D = (X,U,W,X0, T, Y, h)

and D̂= (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ
ϵ D. Given a Markov policy ρ= (ρ0, ρ1, . . . ,

ρH−1) for Player I of D̂⊗A, C̃ρ = (M̃, Ũ, Ỹ, H̃, M̃0, π̃M, π̃Y) is constructed for Player I
of D with M̃ = X × X̂ ×Q×W × Ŵ , Ũ = X ×W , Ỹ = U , H̃ = [0, H − 1],

� m̃0=
(
m̃X(0), m̃X̂(0), m̃Q(0), m̃W (0), m̃Ŵ (0)

)
∈ M̃0, with m̃X(0) = x0, where x0 ∈

X0; m̃X̂(0) = x̂0 such that (x0, x̂0) ∈ R, where R is as in (3.2.15); m̃Q(0) =
τ
(
q0, L ◦ h(m̃X(0))

)
; m̃W (0) is initialized as m̃W (0) = w(0) after Player II of D

has chosen w(0), and m̃Ŵ (0) is accordingly initialized as m̃Ŵ (0) = Πw(w(0)) with
Πw as in (2.4.6);

� π̃M updates
(
m̃X(k), m̃X̂(k), m̃Q(k), m̃W (k), m̃Ŵ (k)

)
∈ M̃ at all time instants k ∈

H\{0}, with the following steps:

1. update m̃X̂(k) according to the conditional kernel:

LT

(
dx̂|m̃X̂(k−1),m̃X(k−1), x(k), û(k−1), m̃W (k−1)

)
,

where x(k) is the state of D, û(k−1) = ρ̃k(m̃X(k−1), m̃X̂(k−1), m̃Q(k−1)),
and LT (·) as in (2.4.7);

2. update m̃X(k) with m̃X(k) = x(k);
3. update m̃Q(k) with m̃Q(k)=τ

(
m̃Q(k−1), L◦h(m̃X(k))

)
;

4. update m̃W (k) with m̃W (k) = w(k) after Player II of D has selected w(k),
and accordingly update m̃Ŵ (k) as m̃Ŵ (k) = Πw(w(k)) with Πw as in (2.4.6);

� π̃Y updates y(k) ∈ Y at the time instant k ∈ H with

y(k) = ν
(
m̃X(k), m̃X̂(k), ρk(m̃X̂(k), m̃Q(k))

)
,

where ν is the interface function associated with the (ϵ,δ)-approximate probabilis-
tic relation.

The remaining problem is how to synthesize the Markov policy ρ for D̂⊗A. In
Sections 3.3.1 and 3.3.2, new Bellman operators will be proposed to synthesize ρ for
Problems 3.1.7 and 3.1.8, respectively. Prior to introducing these operators, I would
like to point out that these operators require the following assumption.
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Assumption 3.3.2. Consider gDTSGs D = (X,U,W,X0, T, Y, h) and D̂ = (X̂, Û , Ŵ ,
X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D regarding relations R and Rw as in Definition 2.4.8. For all
ŵ ∈ Ŵ and w ∈W with (w, ŵ) ∈ Rw, it is assumed that∫

R̄x̂′

LT (dx
′|x, x̂, x̂′, ν(x, x̂, û), w, ŵ) ≥ 1− δ,

holds ∀x̂, x̂′∈ X̂, with R̄x̂′ ={x′ ∈ X|(x′, x̂′) ∈ R} and LT (dx
′|x, x̂, x̂′, ν(x, x̂, û), w, ŵ)

as the conditional probability of x′ ∈ X given x ∈ X, x̂, x̂′, w, ŵ, and the interface
function ν(x, x̂, û).

Remark 3.3.3. Assumption 3.3.2 presumes that all states of D̂ are coupled into the
δ-lifted relation, and at every time instant k, P{(x′, x̂′)∈R|(x, x̂)∈R,∀(w, ŵ)∈Rw}≥
1− δ holds for all x̂ ∈ X̂ via the interface function used in controller refinement,
with (x, x̂) and (x′, x̂′) being the state pairs at time instants k and k + 1, respectively.
Given the existing results on (ϵ,δ)-approximate probabilistic relations [74, 121, 187],
Assumption 3.3.2 does not introduce extra subtlety in practice. In fact, although the
results in [74, 121, 187] do not explicitly require such an assumption, the existence of
an (ϵ,δ) approximate probabilistic relation is guaranteed by enforcing Assumption 3.3.2
(cf. [74, Condition A3], [121, Theorem 5.5] and [187, Theorem 3]).

3.3.1 Robust Satisfaction Problem

Here, I first start with discussing how to synthesize the Markov policy ρ for the problem
of robust satisfaction as in Problem 3.1.7. Consider a gDTSGD = (X,U,W,X0, T, Y, h)
and its finite abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ), a property (A, H) with A =
(Q, q0,Π, τ, F ), and the product gDTSG D̂ ⊗ A = {X̄, Ū , W̄ , X̄0, T̄ , Ȳ , h̄} as in Def-
inition 3.1.6. Given a Markov policy ρ = (ρ0, ρ1, . . . , ρH−1) for Player I and λ =

(λ0, λ1, . . . , λH−1) for Player II of D̂ ⊗ A, a cost-to-go function V̄ ρ,λ
n : X̂ × Q → [0, 1]

is defined, which assigns a real number to states of D̂⊗A at the time instant H − n.
Then, V̄ ρ,λ

n+1(x̂, q) is initialized with V̄ ρ,λ
0 (x̂, q) = 1 when q ∈ F and V̄ ρ,λ

0 (x̂, q) = 0,
otherwise, and it can be recursively computed as

V̄ ρ,λ
n+1(x̂, q) = P(V̄ ρ,λ

n )(x̂, q). (3.3.1)

Here, P is a Bellman operator defined as

P(V̄ ρ,λ
n )(x̂, q) :=


(1− δ)

∑
x̂′∈X̂

V̄ ρ,λ
n (x̂′, q(x̂′, q))T̂ (x̂′|x̂, û, ŵ), if q /∈ F ;

1, if q ∈ F,

(3.3.2)

with û = ρH−n−1(x̂, q), ŵ = λH−n−1(x̂, q, û), and

q(x̂′, q) = argmin
q′∈Q′

ϵ(x̂
′)
V̄ ρ,λ
n (x̂′, q′), (3.3.3)
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where

Q′
ϵ(x̂

′) :=
{
q′∈Q |∃x∈X, q′=τ(q, L◦h(x)),with h(x)∈Nϵ(ĥ(x̂

′))
}
, (3.3.4)

and Nϵ(ŷ) := {y ∈ Y | ∥y − ŷ∥ ≤ ϵ}. Moreover, given a Markov policy ρ for Player I,
the corresponding worst-case adversarial policy λ∗(ρ) for Player II can be computed as

λ∗H−n−1(ρ)∈ min
λ′
H−n−1∈Λ

(1−δ)
∑
x̂′∈X̂

V̄ ρ,λ∗(ρ)
n (x̂′, q(x̂′, q))T̂ (x̂′|x̂, û, ŵ), (3.3.5)

for all n ∈ [0, H − 1], with û = ρH−n−1(x̂, q) and ŵ = λ′H−n−1(x̂, q, û). Now, I am
ready to propose one of the main results for the problem of robust satisfaction.

Theorem 3.3.4. Consider gDTSGs D=(X,U,W,X0, T, Y, h) and D̂ = (X̂, Û ,
Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a property (A, H) with A = (Q, q0,Π, τ, F ).
Given a Markov policy ρ designed for Player I of D̂ ⊗ A and a control strategy
C̃ρ for Player I of D that is constructed based on ρ as in Definition 3.3.1, for
any control strategy C̃λ for Player II of D, one has

P(C̃ρ,C̃λ)×D

{
∃k ≤ H, yωk |= A

}
≥ V̄

ρ,λ∗(ρ)
H (x̂0, q̄0), (3.3.6)

where x̂0 ∈ X̂0 and x0 ∈ X0, with (x0, x̂0) ∈ R and R as in (3.2.15),

V̄
ρ,λ∗(ρ)
H (x̂0, q̄0) is computed as in (3.3.1), with λ∗(ρ) as in (3.3.5) and q̄0 =
τ(q0, L ◦ h(x0)).

The proof of Theorem 3.3.4 is provided in Section 3.6.2.1. In practice, it is of partic-
ular interest to construct a ρ that maximizes the robust satisfaction probability, i.e.,

V̄
ρ,λ∗(ρ)
H (x̂0, q̄0) as in (3.3.6). One can leverage the following proposition to synthesize

such a policy.

Proposition 3.3.5. Consider gDTSGs D= (X,U,W,X0, T, Y, h) and D̂= (X̂,
Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a property (A, H) with A = (Q, q0,Π, τ, F ).

Considering that Player II minimizes V̄ ρ,λ
n+1(x̂, q) according to ρ, the Markov policy

ρ∗=(ρ∗0, ρ
∗
1, . . . , ρ

∗
H−1) for Player I maximizes V̄ ρ,λ

n+1(x̂, q), with

ρ∗H−n−1∈arg max
ρH−n−1∈P

min
λH−n−1∈Λ

(1−δ)
∑
x̂′∈X̂

V̄ ∗
n (x̂

′, q∗(x̂′, q))T̂ (x̂′|x̂, û, ŵ), (3.3.7)

for all n ∈ [0, H − 1], where û = ρH−n−1(x̂, q) and ŵ = λH−n−1(x̂, q, û). Here,

V̄ ∗
H(x̂, q) := max

ρ∈PH
min
λ∈ΛH

V̄ ρ,λ
H (x̂, q), (3.3.8)

denotes the cost-to-go function associated with ρ∗.
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Similar to (3.3.1), by initializing V̄ ∗
0 (x̂, q) = 1 when q ∈ F , and V̄ ∗

0 (x̂, q) = 0 other-
wise, V̄ ∗

n (x, q) in (3.3.8) can be recursively computed as

V̄ ∗
n+1(x̂, q) = P∗(V̄ ∗

n )(x̂, q), (3.3.9)

with P∗ being a Bellman operator defined as

P∗(V̄ ∗
n )(x̂, q):=


max

ρH−n−1∈P
min

λH−n−1∈Λ
(1− δ)

∑
x̂′∈X̂

V̄ ∗
n (x̂

′, q∗(x̂′, q))T̂ (x̂′|x̂, û, ŵ), if q /∈ F ;

1, if q ∈ F,

(3.3.10)

where û = ρH−n−1(x̂, q), ŵ = λH−n−1(x̂, q, û), and

q∗(x̂′, q) = argmin
q′∈Q′

ϵ(x̂
′)
V̄ ∗
n (x̂

′, q′), (3.3.11)

with Q′
ϵ(x̂

′) being the set as in (3.3.4). With these notions, the following corollary
associates ρ∗ as in (3.3.7) with its corresponding robust satisfaction probability.

Corollary 3.3.6. Consider gDTSGs D = (X,U,W,X0, T, Y, h) and D̂ = (X̂,
Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and the desired property (A, H) with A =
(Q, q0,Π, τ, F ). Given a Markov policy ρ∗ synthesized for Player I of D̂ ⊗ A
as in (3.3.7), and a control strategy C̃ρ∗ for Player I of D that is constructed
based on ρ∗ as in Definition 3.3.1, for any control strategy C̃λ for Player II of
D, one has

P(C̃ρ∗ ,C̃λ)×D

{
∃k ≤ H, yωk |= A

}
≥ V̄ ∗

H(x̂0, q̄0), (3.3.12)

where x̂0 ∈ X̂0 and x0 ∈ X0, with (x0, x̂0) ∈ R and R as in (3.2.15), V̄ ∗
H(x̂0, q̄0)

is as in (3.3.9) with q̄0 = τ(q0, L ◦ h(x0)).

Note that Corollary 3.3.6 holds since Theorem 3.3.4 is valid for any arbitrary Markov
policy ρ for Player I of D̂ ⊗A. Therefore, the probabilistic guarantee associated with
ρ∗ as in (3.3.7) can also be preserved for D.

Remark 3.3.7. Given the zero-sum Stackelberg game setting with Player I as leader,
Markovian stochastic kernel of D ⊗ A as in Definition 3.1.6, and sum-multiplicative
utility function as in (3.3.10), there always exists a deterministic [38, Section 5.1] and
Markovian [162, Section 4] policy as in (3.3.7). In particular, considering Markov
policy is sufficient here thanks to the sum-multiplicative utility function as constructed
in (3.3.10) and the Markovian stochastic kernel T of D, which results in a Markovian
stochastic kernel for the product D̂⊗A. Note that a similar deduction can also be applied
to the corresponding policy for the worst-case violation problem, which is introduced
later (cf. (3.3.23) and (3.3.20)).
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Finally, it is also worth noting that operators in (3.3.2) and (3.3.10) can readily
be applied to synthesis problems for stochastic systems without rational adversarial
inputs. In this case, thanks to Assumption 3.3.2, one can consider all states of finite
abstraction D̂ in the proposed Bellman operators (instead of only a part of these states
as the setting in [74]). Accordingly, the operator in (3.3.2) provides less conservative
probabilistic guarantees than the one proposed in [74, equation (41)], which is formally
shown with the following lemma.

Lemma 3.3.8. Consider a property (A, H) in which A = (Q, q0,Π, τ, F ),
gDTSGs D = (X,U,W,X0, T, Y, h) and D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D
and W = Ŵ = {0p}. Given a Markov policy ρ designed for Player I of D̂ ⊗ A
and a control strategy C̃ρ for Player I of D that is constructed based on ρ as in
Definition 3.3.1, one has

P(C̃ρ,C̃λ)×D

{
∃k ≤ H, yωk |= A

}
≥ V̄ ρ,λ

H (x̂0, q̄0) ≥ S(x̂0), (3.3.13)

where x̂0 ∈ X̂0 and x0 ∈ X0, with (x0, x̂0) ∈ R and R as in (3.2.15), C̃λ(m) ≡ 0p
with m as the memory state of C̃, V̄ ρ,λ

H (x̂0, q̄0) is as in (3.3.1) with λ(x̂, û) ≡ 0,
q̄0 = τ(q0, L ◦ h(x0)), and S(x̂0) is the probabilistic guarantee provided by the
operator in [74, equation (41)].

The proof of Lemma 3.3.8 is provided in in Section 3.6.2.2. Similarly, the following
corollary shows that the operator in (3.3.10) also provides less conservative probabilistic
guarantees than the one proposed in [74, equation (42)].

Corollary 3.3.9. Given a Markov policy ρ∗ synthesized for Player I of D̂ ⊗ A
as in (3.3.7), and a control strategy C̃ρ∗ for Player I of D that is constructed
based on ρ∗ as in Definition 3.3.1, one has

P(C̃ρ∗ ,C̃λ)×D

{
∃k ≤ H, yωk |= A

}
≥ V̄ ∗

H(x̂0, q̄0) ≥ S∗(x̂0), (3.3.14)

where x̂0 ∈ X̂0 and x0 ∈ X0, with (x0, x̂0) ∈ R and R as in (3.2.15), C̃λ(m) ≡ 0p
with m as the memory state of C̃, V̄ ∗

H(x̂0, q̄0) is as in (3.3.9) with λ(x̂, û) ≡ 0,
q̄0 = τ(q0, L ◦ h(x0)), and S∗(x̂0) is the probabilistic guarantee provided by the
operator in [74, equation (42)].

The proof of Corollary 3.3.9 is similar to that of Lemma 3.3.8. The results in Corol-
lary 3.3.9 will later be illustrated with an example in Section 3.4.3. Next, I proceed
with proposing the results for the problem of worst-case violation.
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3.3.2 Worst-case Violation Problem

In this subsection, the controller synthesis regarding Problem 3.1.8 is discussed. Con-
sider a gDTSGD = (X,U,W,X0, T, Y, h) and its finite abstraction D̂ = (X̂, Û, Ŵ, X̂0, T̂ ,
Y, ĥ) with D̂ ⪯δ

ϵ D, a property (A, H), and a product gDTSG D̂⊗A = {X̄, Ū , W̄ , X̄0, T̄ ,
Ȳ , h̄}. Given a Markov policy ρ = (ρ0, ρ1, . . . , ρH−1) for Player I and λ = (λ0, λ1, . . . ,
λH−1) for Player II of D̂ ⊗ A, a cost-to go function V ρ,λ

n : X̂ × Q → [0, 1] is defined,
which maps each state of D̂ ⊗ A at the time instant H − n to a real number. Then,
V ρ,λ

n+1(x̂, q) is recursively computed as

V ρ,λ
n+1(x̂, q) = T(V ρ,λ

n )(x̂, q), (3.3.15)

initialized by V ρ,λ
0 (x̂, q) = 1 when q ∈ F , and V ρ,λ

0 (x̂, q) = 0, otherwise. Here, T is a
Bellman operator defined as

T(V ρ,λ
n )(x̂, q) :=


(1− δ)

∑
x̂′∈X̂

V ρ,λ
n (x̂′, q̄(x̂′, q))T̂ (x̂′|x̂, û, ŵ) + δ, if q /∈ F ;

1, if q ∈ F,

(3.3.16)

where û = ρH−n−1(x̂, q), ŵ = λH−n−1(x̂, q, û), and

q(x̂′, q) = argmax
q′∈Q′

ϵ(x̂
′)
V ρ,λ

n (x̂′, q′), (3.3.17)

with Q′
ϵ(x̂

′) as in (3.3.4). Additionally, one can compute the worst-case adversarial
policy λ∗(ρ) for Player II with respect to the Markov policy ρ for Player I as

λ∗H−n−1(ρ)∈ max
λH−n−1∈Λ

(
(1−δ)

∑
x̂′∈X̂

V ρ,λ∗(ρ)
n (x̂′, q(x̂′, q))T̂ (x̂′|x̂, û, ŵ)+δ

)
, (3.3.18)

for all n ∈ [0, H − 1], with û = ρH−n−1(x̂, q), and ŵ = λH−n−1(x̂, q, û). Now, I am
ready to propose in the next theorem the main result corresponding to the problem of
worst-case violation.

Theorem 3.3.10. Consider gDTSGs D = (X,U,W,X0, T, Y, h) and D̂ =
(X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a property (A, H) in which A =
(Q, q0,Π, τ, F ). Given a Markov policy ρ for Player I of D̂ ⊗ A, and a control
strategy C̃ρ for Player I of D that is constructed based on ρ as in Definition 3.3.1,
for any control strategy C̃λ for Player II of D, one has

P(C̃ρ,C̃λ)×D

{
∃k ≤ H, yωk |= A

}
≤ V

ρ,λ∗(ρ)
H (x̂0, q̄0), (3.3.19)

where x̂0 ∈ X̂0 and x0 ∈ X0, with (x0, x̂0) ∈ R and R as in (3.2.15),

V
ρ,λ∗(ρ)
H (x̂0, q̄0) is computed as in (3.3.15), with λ∗(ρ) as in (3.3.18) and q̄0 =

τ(q0, L ◦ h(x0)).
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3.3 Controller Synthesis Problem

The proof of Theorem 3.3.10 is provided in Section 3.6.2.3. In practice, synthesizing a

ρ that minimizes the worst-case violation probability, i.e., V
ρ,λ∗(ρ)
H (x̂0, q̄0) as in (3.3.19),

is of particular interest. The following proposition shows how such a Markov policy
can be synthesized.

Proposition 3.3.11. Consider gDTSGs D = (X,U,W,X0, T, Y, h) and D̂ =
(X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a property (A, H) in which A =
(Q, q0,Π, τ, F ). Consider that Player II is assumed to be able to maximize

V ρ,λ
n+1(x̂, q) according to ρ. The Markov policy ρ∗ = (ρ∗0 , ρ∗1 , . . . , ρ∗H−1) for

Player I minimizes V ρ,λ
n+1(x̂, q), with

ρ∗H−n−1 ∈ arg min
ρH−n−1∈P

max
λH−n−1∈Λ

(
(1− δ)

∑
x̂′∈X̂

V ∗,n(x̂
′, q∗(x̂

′, q))T̂ (x̂′|x̂, û, ŵ) + δ
)
,

(3.3.20)

for all n ∈ [0, H − 1], where û = ρH−n−1(x̂, q) and ŵ = λH−n−1(x̂, q, û). Here,

V ∗,H(x̂, q) := min
ρ∈PH

max
λ∈ΛH

V ρ,λ
H (x̂, q), (3.3.21)

denotes the cost-to-go function associated with ρ∗.

Analogous to (3.3.15), V ∗,n(x̂, q) is initialized with V ∗,0(x̂, q) = 1 when q ∈ F , and
V ∗,0(x̂, q) = 0 when q /∈ F . Then, V ∗,n(x̂, q) can be recursively computed as

V ∗,n+1(x̂, q) = T∗(V ∗,n)(x̂, q), (3.3.22)

where T∗ is a Bellman operator defined as

T∗(V ∗,n)(x̂, q) :=
min

ρH−n−1∈P
max

λH−n−1∈Λ

(
(1− δ)

∑
x̂′∈X̂

V ∗,n(x̂
′, q∗(x̂

′, q))T̂ (x̂′|x̂, û, ŵ) + δ
)
, if q /∈F ;

1, if q ∈ F,

(3.3.23)

with û = ρH−n−1(x̂, q), ŵ = λH−n−1(x̂, q, û),

q∗(x̂
′, q) = argmax

q′∈Q′
ϵ(x̂

′)
V ∗,n(x̂

′, q′), (3.3.24)

and Q′
ϵ(x̂

′) as in (3.3.4). Note that Theorem 3.3.10 holds for any arbitrary Markov
policy ρ for Player I of D̂⊗A. Thus, the probabilistic guarantee associated with ρ∗ as
in (3.3.20) can also be preserved for D. This preservation is formally proposed in the
following corollary.
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3 Abstraction-based Controller Synthesis for Non-cooperative Stochastic Games

Corollary 3.3.12. Consider gDTSGs D = (X,U,W,X0, T, Y, h) and D̂ =
(X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a property (A, H) with A =
(Q, q0,Π, τ, F ). Given a Markov policy ρ∗ synthesized for Player I of D̂ ⊗ A
as in (3.3.20), and a control strategy C̃ρ∗ for Player I of D that is constructed
based on ρ∗ as in Definition 3.3.1, for any control strategy C̃λ for Player II of
D, one has

P(C̃ρ∗ ,C̃λ)×D

{
∃k ≤ H, yωk |= A

}
≤ V ∗,H(x̂0, q̄0), (3.3.25)

where x̂0 ∈ X̂0 and x0 ∈ X0, with (x0, x̂0) ∈ R and R as in (3.2.15), V ∗,H(x̂0, q̄0)
is as in (3.3.22) and q̄0 = τ(q0, L ◦ h(x0)).

Finally, the controller synthesis procedure is summarized as follows:

� For the problem of robust satisfaction, one first synthesize a Markov policy ρ∗ as
in (3.3.7). Then, the controller C̃ρ∗ as in Definition 3.3.1 is constructed based on
ρ∗.

� As for the problem of worst-case violation, one constructs a control strategy C̃ρ∗

as in Definition 3.3.1 based on a Markov policy ρ∗ synthesized as in (3.3.20).

Remark 3.3.13. Note that given the product gDTSG D̂⊗A = {X̄, Ū , W̄ , X̄0, T̄ , Ȳ , h̄},
both ρ∗ as in (3.3.7) and ρ∗ as in (3.3.20) are (offline) look-up tables, whose sizes grow
linearly with the time horizon H and the cardinality of X̄. Moreover, the number of
operations required for computing (3.3.7) and (3.3.20) is proportional to H and the
cardinality of X̄, Ū , and W̄ . It is also worth noting that, for all n ∈ [0, H − 1], the
computations of ρ∗n(x̂, q) and ρ∗n(x̂, q) for all (x̂, q) ∈ X̄ are independent from each
other and can be done in a parallel fashion.

3.4 Case Studies

In this section, the proposed approaches in this chapter is applied to two case studies,
including the running example and a control problem for a Quadrotor helicopter. Each
case study is simulated with 1.0× 105 different realizations of noise, in which inputs of
Player II are randomly selected from their input sets following a uniform distribution.
Here, Player II does not select adversarial inputs rationally since it is challenging to
obtain closed-form solutions for such case. Meanwhile, the probabilistic guarantees
provided by the results in this chapter are still valid regardless of how Player II chooses
inputs. To show the applicability of the proposed results, in all case studies, I summarize
the required memory1 for storing stochastic kernels and synthesized controllers, and
report the average execution time of these controllers. All experiments are performed
via MATLAB 2019b, on a machine with Ubuntu 20.04 (Intel(R) Xeon(R) Gold 6254 CPU
(3.1 GHz) and 378 GB of RAM).

1In this section, 4 bytes are allocated for each entry of matrices to be stored as a single-precision
floating-point.
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3.4 Case Studies

3.4.1 Running Example

Here, the controller of the running example is synthesized following (3.3.20)-(3.3.24).
The simulation setting and results are summarized in Table 3.1 and depicted in Fig-
ure 3.3. One can readily observe that the probabilistic guarantee of satisfaction is
respected. Additionally, I also show how the reduced-order game improves the scalabil-
ity issue (cf. Remark 3.2.3) via the running example. To do so, the finite abstraction of
the original game without performing any model order reduction is built by considering
[−12, 12]3 as the region of interest. Then, this region is uniformly partitioned with girds
whose sizes are (0.24, 0.24, 0.24) for a fair comparison with the reduced-order model set-
ting (cf. Table 3.2). For the same reason, U and W are uniformly divided with grids
whose sizes are (0.06, 0.06) and 0.1, respectively. Under this setting, when a reduced-
order game is built, only around 19 MB is required to store the stochastic kernel. On
the other hand, without constructing a reduced-order game, the finite abstraction con-
tains 106 states, 1.25× 105 inputs for Player I, and 10 inputs for Player II. As a result,
one needs 4.65× 109 GB to store the stochastic kernel, which is not practical.

Figure 3.3: Simulation of the running example with respect to ψ.

3.4.2 Quadrotor

Here, the proposed results are applied to a quadrotor tracking a moving vehicle on the
ground. Consider a quadrotor moving on a 2-dimensional planar. As discussed in [93],
the control of a quadrotor can be decoupled into the control on different dimensions.
Hence, I borrow the model from [93] which models the relative motion between the
quadrotor and the ground vehicle:

D :

{
x(k + 1) = Ax(k) +Bu(k) +Dw(k) +Rς(k),
y(k) = Cx(k), k ∈ N,

where A=
[
1 ∆t
0 1

]
, R=

[
0.4∆t 0

0 0.4∆t

]
, B=[∆t2g

2 ; ∆tg], D=[∆t2

2 ; ∆t], and C = [1; 0]⊤, with
∆t = 0.05s being the sampling time and g=9.8m/s being the gravitational constant.
Here, x(k) = [x1(k); x2(k)] with x1(k) and x2(k) being the relative position and velocity
between the quadrotor and the vehicle, respectively; u(k) ∈ [−0.25, 0.25](m/s2) denotes
the acceleration of the quadrotor as the control input; w(k) ∈ [−0.6, 0.6](m/s2) denotes
the acceleration that can be chosen by the vehicle in the worst case against the control
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3 Abstraction-based Controller Synthesis for Non-cooperative Stochastic Games

inputs; ς(k) is a standard Gaussian random variable; and y is the output of the system.
Here, the following properties would be considered:

q0 q1

p1
p2

p1 _ p2

q2

q0 q1

p1

p2

p3
p1 _ p2 _ p3

p1 _ p2 _ p3

Figure 3.4: Left: DFA for modeling ψ1, with accepting state q1, alphabet Π = {p1, p2},
and labeling function L : Y → Π with L(y) = p1 when y ∈ [−0.7, 0.7], and
L(y) = p2 when y ∈ (−∞,−0.7)∪ (0.7,+∞). Right: DFA for modeling ψ2, with
accepting state q1, alphabet Π = {p1, p2, p3}, and labeling function L : Y → Π
with L(y) = p1 when y ∈ [−1,−0.5)∪ (0.5, 1], L(y) = p2 when y ∈ [−0.5, 0.5], and
L(y) = p3 when y ∈ (−∞,−1) ∪ (1,+∞).

1. ψ1: y should stay in [−0.7, 0.7] for 1 minute (i.e., time horizon H = 1200). The
DFA for modeling ψ1 is shown in Figure 3.4 (left), and the problem of worst-case
violation concerning this DFA is of interest.

2. ψ2: starting from [−1.0, 1.0], y should reach [−0.5, 0.5] within 5 seconds (i.e.,
time horizon H = 100). Here, a DFA as in Figure 3.4 (right) is constructed for
characterizing ψ2. Accordingly, the problem of robust satisfaction regarding this
DFA should be considered.

3. ψ3: within 2 seconds (i.e., time horizon H=40), (1) y should reach [−0.45, 0.45]
and then stay within [−0.45, 0.45] for 3 time instants after it reaches [−0.45, 0.45];
(2) if it reaches [−0.1, 0.1], it only needs to stay within [−0.45, 0.45] for 1 time
instant after it reaches [−0.1, 0.1]; (3) y is not allowed to leave [−0.8, 0.8]. The
DFA for modeling ψ3 is depicted in Figure 3.5 and I focus on the problem of
robust satisfaction accordingly.

First, the finite abstraction of the model is constructed. Since model order reduction
is not applied to this model, one can select P = I2. Therefore, one gets Âr = A,
D̂r = D, R̂r = R, Ĉr = C and Q = S = 02×1. The finite abstraction is constructed
as in Table 3.2. Accordingly, one can select M̃ = 1 and ϵ̃ = 0.05. As for establishing
the relation between the constructed abstraction and the original game, I set Û ′ =
{û ∈ Û | − 0.12 ≤ û ≤ 0.12}, δ = 0, and the tolerable range of ϵ as [0.05, 0.4]. By
applying Algorithm 1, the finite abstraction is (ϵ, δ)-stochastically simulated by the
original model with δ = 0, M =

[
1.7699 0.5494
0.5494 0.3920

]
, and ϵ = 0.2911, when the interface

function in (3.2.27) is applied with R̃ = 1 and K = [−0.4294;−0.2773]. Now I am
ready to synthesize a controller enforcing ψ1 following (3.3.20)-(3.3.24), and controllers
enforcing ψ2 and ψ3 following (3.3.7)-(3.3.11). The setting and results of the simulation
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q0 q1 q2 q3

q4q5

p3 p3

p2
p2

p1
p4

p1 _ p2 _ p3 _ p4

p1 _ p2 _ p3 _ p4

p1

p3

p1_p2

p3

p1_p2

Figure 3.5: DFA for modeling ψ3 with accepting state q4, alphabet Π = {p1, p2, p3, p4}, and
labeling function L : Y → Π with L(y)=p1 when y∈ [−0.1, 0.1]; L(y) = p2 when
y∈ [−0.45,−0.1) ∪ (0.1, 0.45]; L(y) = p3 when y ∈ [−0.8,−0.45) ∪ (0.45, 0.8], and
L(y) = p4 when y ∈ (−∞,−0.8) ∪ (0.8,+∞). Transitions q5 = τ(qj , p4), with
j ∈ {1, 2, 3}, are omitted to keep the figure less crowded.

x0 Pf Pe Execution time (ms)

ψ [3.8; 4.1; 2.9] ≥ 99.90% 100% 0.0755

ψ1 [0.2; 0.2] ≥ 99.26% 100% 0.0684

ψ2 [0.6; 0.1] ≥ 94.77% 100% 0.0683

ψ3 [−0.48; 0.45] ≥ 98.75% 100% 0.0766

Table 3.1: Simulation results with respect to properties ψ, ψ1, ψ2, ψ3, with Pf denoting the
formal probabilistic guarantees, and Pe being the empirical satisfaction probability.

for ψ1, ψ2, and ψ3 are summarized in Table 3.1 and depicted in Figure 3.6. In all case
studies, the probabilistic guarantees of satisfaction are well respected.

3.4.3 Comparison with Existing Results

By virtue of the grid-based approximation framework introduced in [1], results in [93,
52] can be applied to the synthesis problem for (nonlinear) stochastic games with contin-
uous state and input sets. In this subsection, the methodologies in this chapter are com-
pared with these results in the sense of the conservativeness of probabilistic guarantees
associated with the synthesized controllers. Note that providing less conservative prob-
abilistic guarantees are crucial in correct-by-construction synthesis techniques. The
ultimate goal for employing these techniques is to obtain formal (probabilistic) guar-
antees for satisfying the desired properties, instead of performing exhaustive testing,
which is heuristic, costly, and time-consuming.
Under the grid-based approximation framework in [1], the probabilistic guarantee

for a desired property is provided in terms of a probabilistic closeness, denoted by e,
between the finite abstraction and the original system, with:

|p− p̂| ≤ e, (3.4.1)

where p̂ and p denote the probabilities of satisfaction over the finite abstraction and the
original system, respectively. Moreover, [175] shows that e is proportional to the size of
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3 Abstraction-based Controller Synthesis for Non-cooperative Stochastic Games

Figure 3.6: Simulation results for ψ1 (top), ψ2 (middle), and ψ3 (bottom). (Reference A: [93];
Reference B: [52])
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Û

Ŵ
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3 Abstraction-based Controller Synthesis for Non-cooperative Stochastic Games

discretization parameters, denoted by ηi, i = {1, . . . , s}, with s being the dimension of
the state set. Roughly speaking, the quantity ηi is the maximum diameter of partition
cells along with the ith dimension of the state set. Here, the interested readers are
referred to [175, Theorem 9] for the formal definition. By employing the results in [175,
Section 5], one has e = 3.586 × 104, e = 4.356 × 103, and e = 1.345 × 103 for ψ1,
ψ2, and ψ3

2, respectively, when grid-size parameters are (η1, η2) = (0.02, 0.02) (as the
discretization setting in Table 3.2).

In all cases, e is significantly larger than 1. Notably, the results in [175, Section 5] only
consider the effect of state set’s discretization on e. According to results in [174, 184],
the discretization of input sets would make e even larger. Since probability should be
a real number between 0 and 1, the probabilistic guarantees for the original system are
very conservative in all cases. To show this, I first synthesize controllers with the results
in [93, 52] enforcing ψ1 and ψ2

3. By deploying these controllers, one gets formally that
the probabilities of satisfying ψ1 and ψ2 will be within [−3.586× 104, 3.586× 104] and
[−4.356 × 103, 4.356 × 103], respectively, which are very conservative. Then, starting
from the same initial states as in Table 3.1, both cases are simulated with 105 different
noise realizations. In both cases, as depicted in Figure 3.6, trajectories under different
noise realizations satisfy the desired properties with probability 1 in the experiments.
Hence, the formal probabilistic guarantees associated with both controllers are very
conservative considering the empirical results. In comparison, as shown in Table 3.1,
my controllers empirically perform as good as those controllers synthesized with the
results in [93, 52]. On the other hand, the results in this chapter provide formal proba-
bilistic guarantees which are much less conservative. Note that one may select smaller
ηi such that e becomes smaller. Here, I summarize in Table 3.3 the required (η1, η2) and
the corresponding memory for storing the stochastic kernels of finite abstractions such
that one has reasonable e. In terms of required memory, it is computationally expen-
sive to provide a reasonable guarantee under the grid-based approximation framework
proposed in [1].

Properties Required (η1, η2) (×10−6) Required memory (GB)

ψ1 (0.492, 0.644) 2.184× 1019

ψ2 (4.132, 5.166) 2.207× 1016

ψ3 (12.915, 17.512) 6.768× 1013

Table 3.3: Required (η1, η2) and corresponding required memory for different properties when
applying the results in [93, 52].

2Although results in [93, 52] only solve the reachability problem over continuous sets, enforcing DFA
properties can be cast as a reachability problem over state set of the product system between the
DFA and the original system. Therefore, results in [175, Section 5] can readily be used to compute
e for ψ3.

3The results in [93, 52] cannot be used to synthesize controllers enforcing ψ3 since they do not provide
any operator that handle general DFA properties like ψ3.
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3.5 Summary

Next, I compare the proposed results with operators in [74] by showing Corollary 3.3.9
with an example. To this end, the following system is considered:

D :

{
x(k + 1) = Ax(k) +Bu(k) +Rς(k),
y(k) = Cx(k), k ∈ N,

where

A=

0.91 0.47 0.76
0.65 0.71 0.93
0.69 0.28 0.53

, B=

9.5 0.6 4.1
2.4 12.4 2.9
5.7 5.4 5.8

,
R = [0.63; 0.28; 0.48], and C = [0.1; 0.1; 0.1]⊤, in which x(t) = [x1(k);x2(k);x3(k)] and
u(k) ∈ [−3, 3]3. Here, a co-safe linear temporal logic property [63] ψ′ is considered,
which can be handled by the operators proposed in [74]: starting from [−2, 2], the
output of the system should reach [−0.3, 0.3] while avoiding (−∞,−2)∪(2,+∞) within
90 time steps (i.e., H = 90). Accordingly, the controller is synthesized by solving the
problem of robust satisfaction corresponding to the DFA in Figure 3.7.
For constructing the finite abstraction, P = [0.5; 0.4; 0.5] is chosen and a reduced-

order model is constructed accordingly with Âr = 0.62, B̂r = 1, Ĉr = 0.14, R̂r = 0.9939,
and Q = [−0.1179;−0.0694; 0.1094] as proposed in (3.2.5)-(3.2.8). The finite abstrac-
tion is then constructed by uniformly dividing the region of interest, i.e. [−15, 15], of the
reduced-order model’s state set into partitions whose lengths are 0.15, and partitioning
the input set, i.e. [−3, 3], for the reduced-order model uniformly with 48 cells. Here,
Û ′ = Û is set, and the finite abstraction is (ϵ, δ)-stochastically simulated by original
model with δ = 0.1, ϵ = 0.2466, with the associated ν(x, x̂, û) := K(x−Px̂)+Qx̂+ R̃û
with R̃ = [0.0369; 0.0172; 0.0340],

M =

0.0107 0.0106 0.0108
0.0106 0.0105 0.0106
0.0108 0.0106 0.0108

 ,K =

−0.3225 −0.1899 −0.3033
0.2199 0.2355 0.2094
−0.0441 −0.1894 −0.0532

 .
Then, I synthesize controllers with the operator in (3.3.10) and the one proposed in [74,
equation (42)]. As an example, Figure 3.8 demonstrates the lower bounds for the
probability of satisfaction associated with both controllers when the original system’s
initial state is x = [5; 5; x̃] where x̃ ∈ [−5, 5] (correspondingly, original system’s output
y ∈ [0.5, 1.5]). One can readily observe that operator proposed in this chapter provides
a less conservative lower bound than the one proposed in [74].

3.5 Summary

In this chapter, a notion of (ϵ,δ)-approximate probabilistic relations is considered to
quantify the similarity between two stochastic games. Based on this notion, new Bell-
man operators are proposed to synthesize controllers for stochastic games enforcing
complex logical properties modeled by deterministic finite automata. To do so, a
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q2

q0 q1

q3

p2

p1

p1

p2

p3

p3

p1 _ p2 _ p3

p1 _ p2 _ p3

Figure 3.7: DFA for modelling ψ′, with accepting state q1, alphabet Π = {p1, p2, p3}, and
labeling function L :Y →Π with L(y)=p1 when y∈ [−2,−0.3)∪ (0.3, 2], L(y) = p2
when y∈ [−0.3, 0.3], and L(y) = p3 when y∈(−∞,−2) ∪ (2,+∞).

Figure 3.8: Comparison of probabilistic guarantees between the operator in (3.3.23) and the
one proposed in [74] (Reference C).

controller is first synthesized based on a finite abstraction that is (ϵ, δ)-stochastically
simulated by the original game. Then, this controller is refined to the original game
based on the approximate probabilistic relation between the original game and its fi-
nite abstraction, which is the key to providing probabilistic guarantees. Moreover, a
systematic algorithm is proposed to establish such a relation for a particular class of
nonlinear stochastic games with slope restrictions on the nonlinearity. The empirical
results show that the newly proposed method is less conservative than the existing
methods in the literature.

3.6 Proof of Statements in Chapter 3

3.6.1 Proof of Statements: Section 3.2

The following proposition is required to show the results of Section 3.2.

Proposition 3.6.1. Consider a positive (semi)definite matrix M0 ∈ Rn×n.
Given a, b ∈ R with a ≤ b, and a matrixM ∈ Rn×n, ifM0+aM andM0+bM are
positive (semi)definite, then for all t ∈ [a, b], M0+ tM is positive (semi)definite.

Proof: For any t ∈ [a, b],
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� If a ≤ t < 0, one has

M0 + tM = (1− t

a
)M0 +

t

a
M0 + tM = (1− t

a
)M0 +

t

a
(M0 + aM).

Since 1 − t
a ≥ 0 and t

a ≥ 0, both (1 − t
a)M0 and t

a(M0 + aM) are positive
(semi)definite, so that M0 + tM is also positive (semi)definite.

� If 0 < t ≤ b, one has

M0 + tM = (1− t

b
)M0 +

t

b
M0 + tM = (1− t

b
)M0 +

t

b
(M0 + bM).

Since 1 − t
b ≥ 0 and t

b ≥ 0, both (1 − t
b)M0 and t

b(M0 + bM) are positive
(semi)definite, so that M0 + tM is also positive (semi)definite.

Additionally,M0+tM is positive (semi)definite when t = 0, which completes the proof.
■
Now I am ready to show the results of Section 3.2.
Proof of Theorem 3.2.5: Since D and D̂ are affected by the same additive noise

ς ∼ N (0d, Id), one can readily define an lifting LT based on ς ∼ N (0d, Id) for the
approximation probabilistic relation. Now, one needs to check the conditions in Defi-
nition 2.4.8. Note that the third condition in Definition 2.4.8 holds trivially since only
those initial states x0 ∈ X0 and x̂0 ∈ X̂0 such that (x0, x̂0) ∈ R are considered. Firstly,
with (3.2.5) and (3.2.17), one has

∥y − ŷ∥2 = ∥Cx− Ĉrx̂∥2 = (x− Px̂)⊤C⊤C(x− Px̂) ≤ (x− Px̂)⊤M(x− Px̂) ≤ ϵ2,

for any (x, x̂) ∈ R. Therefore, the first condition holds for all (x, x̂) ∈ R. The second
condition requires that ∀(x, x̂) ∈ R, ∀û ∈ Û , ∃u ∈ U s.t. ∀w ∈ W , ∃ŵ ∈ Ŵ with
(w, ŵ) ∈ Rw s.t. the next state (x′, x̂′) is also in the relation R with a probability of
at least 1− δ. According to Assumption 3.3.2, the following should hold:

P{(x′ − Px̂′)⊤M(x′ − Px̂′) ≤ ϵ2} ≥ 1− δ. (3.6.1)

From the slope restriction of φ as in (3.2.2), one gets

φ(Fx)− φ(FPx̂) = b(Fx− FPx̂) = bF (x− Px̂), (3.6.2)

with b ∈ [b, b̄] if x ̸= Px̂, and b = 0 otherwise. Then, by applying the dynamics of D as
in (3.2.1) and D̂ as in (3.2.13), one has

x′ − Px̂′ = Ax+Eφ(Fx) +Dw +Bν(x, x̂, û) +Rς

− P (Ârx̂+ Êrφ(F̂rx̂) + D̂rŵ + B̂rû+ R̂rς) + Pβ. (3.6.3)

Additionally, one can simplify (3.6.3) to(
A+BK + b(BL+ EF )

)
(x− Px̂) + (BR̃− PB̂r)û

+D(w − ŵ) + (R− PR̂r)ς + Pβ −BSŵ,
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by employing (3.2.6)-(3.2.9), (3.6.2) and (3.2.27). Note that b is used here to denote
b(x, x̂) as in (3.2.27) for succinctness, and it is clear from the context. Therefore, (3.6.1)
is fulfilled when

∥
(
A+BK + b(BL+ EF )

)
(x− Px̂) + (BR̃− PB̂r)û

+D(w − ŵ) + (R−PR̂r)ς + Pβ −BSŵ∥M ≤ ϵ (3.6.4)

holds for all b ∈ [b, b̄]∪{0}, for all β ∈ ∆ as in (3.2.11), and for all ς s.t. P{ς⊤ς ≤ c2ς} ≥
1 − δ with cς = χ−1

d (1 − δ), since ς ∼ (0d, Id) so that ς⊤ς has chi-square distribution
with d degrees of freedom. Considering the left-hand side of (3.6.4), one has

∥
(
A+BK +b(BL+EF )

)
(x−Px̂)+(BR̃− PB̂r)û+D(w−ŵ)+(R−PR̂r)ς +Pβ−BSŵ∥M

≤ ∥
(
A+BK + b(BL+EF )

)
(x− Px̂)∥M +∥D(w−ŵ)∥M+∥(BR̃−PB̂r)û∥M

+ ∥(R− PR̂r)ς∥M + ∥Pβ∥M + ∥BSŵ∥M
≤ ∥

(
A+BK + b(BL+EF )

)
(x− Px̂)∥M + γ0 + γ1 + γ2 + γ3 + γ4

= ∥
(
A+BK + b(BL+EF )

)
(x− Px̂)∥M+ γ̃, (3.6.5)

with γ̃ as in (3.2.21), γ0 as in (3.2.22), γ1 as in (3.2.23), γ2 as in (3.2.24), γ3 as
in (3.2.25), and γ4 as in (3.2.26). According to S-procedure [35], for all ∥x−Px̂∥M ≤ ϵ,
∥
(
A+BK + b(BL+EF )

)
(x− Px̂)∥M+ γ̃ ≤ ϵ holds for all b ∈ [b, b̄] ∪ {0} if and only if

there exists a κ ≥ 0 such that[
A⊤

b MAb 0n
0⊤n −(ϵ− γ̃)2

]
⪯ κ

[
M 0n
0⊤n −ϵ2

]
(3.6.6)

holds for all b ∈ [b, b̄]∪{0}, with Ab = A+BK+ b(BL+EF ). Note that (3.6.6) holds if
and only if κM −A⊤

b MAb is positive semidefinite and −κϵ2 + (ϵ− γ̃)2 ≥ 0. Therefore,
one has (3.6.6) holds for all b ∈ [b, b̄] ∪ {0} if and only if ∀b ∈ [b, b̄] ∪ {0}, there exists a
κ ∈ [0, (ϵ− γ̃)2/ϵ2] such that

A⊤
b MAb ⪯ κM. (3.6.7)

Using Schur complement [35], one can rewrite (3.6.7) as[
M̄ AM̄ +BK̄

M̄⊤A⊤ + K̄⊤B⊤ κM̄

]
︸ ︷︷ ︸

M0

+b

[
0n×n BL̄+ EFM̄

L̄⊤B⊤ + M̄⊤F⊤E⊤ 0n×n

]
︸ ︷︷ ︸ ⪰ 0,

M ′

with M̄ = M−1, K̄ = KM̄ , and L̄ = LM̄ . According to (3.2.18), M0 is positive
semidefinite. Furthermore, (3.2.19), (3.2.20), and (3.2.21) ensure that there exists a κ
with 0 ≤ κ ≤ (ϵ − γ̃)2/ϵ2 such that (3.6.7) holds for b = {b̄, b}. As a result, according
to Proposition 3.6.1, there exists a κ ∈ [0, (ϵ − γ̃)2/ϵ2] such that M0 + bM ′ is positive
semidefinite for all b ∈ [b, b̄] ∪ {0}. Therefore, the second condition also holds, which
completes the proof. ■

Next, I show the results of Corollary 3.2.7.
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Proof of Corollary 3.2.7 According to [150, Theorems 5,6], for all b′ ∈ {b, b̄, 0},
the pair (A+ b′EF,B) is stabilizable if and only if there exist positive-definite matrix
M and κ ∈ [0, 1] such that (3.2.18)-(3.2.20) hold. Next, I show that if there exist M ′

and κ′ such that (3.2.18)-(3.2.20) hold, then:

� (C1) There exist M and κ such that (3.2.17)-(3.2.20);

� (C2) There exist γ̃ and ϵ so that (3.2.21) holds.

Let’s start by showing (C1). Suppose one has M ′ and κ′ such that (A+BK)⊤M ′(A+
BK) ⪯ κ′M ′, Ā⊤M ′Ā ⪯ κ′M ′, and A⊤M ′A ⪯ κ′M ′ (i.e., (3.2.18)-(3.2.20) hold).
Then, for any C as in (3.2.17), there exists m′ ∈ R>0 such that m′M ′ ⪰ C⊤C, sinceM ′

is positive definite. Meanwhile, one can readily verify that (3.2.18)-(3.2.20) still hold
with M = m′M ′ and κ = κ′. Therefore, (C1) holds. As for (C2), suppose one has M
and κ such that (3.2.18)-(3.2.20) hold, one can verify that (3.2.18)-(3.2.20) also hold
with M and any κ′′ such that

√
κ′′ ≥ max

b∈[b,b̄]∪{0}
∥NAbN

−1∥, (3.6.8)

where Ab = A+BK+b(BL+EF ), and N ∈ Rn×n is a positive-definite matrix such that
N⊤N =M . Thus, if one has 1−γ̃/ϵ ∈ [maxb∈[b,b̄]∪{0}∥NAbN

−1∥, 1], then (3.2.21) holds.

In fact, for any ϵ ∈ R>0, one has γ̃ such that 1 − γ̃/ϵ ∈ [maxb∈[b,b̄]∪{0}∥NAbN
−1∥, 1],

when the finite abstraction is properly constructed. On one hand, one always has
γ1 = γ2 = γ4 = 0 when there is no model order reduction involving in the abstraction
since, in this case, one has P = In. Then, one can select B̂r = B and R̃ = Im in (3.2.23),
R = R̂r in (3.2.24), and S = 0m×p in (3.2.26), so that one has BR̃−PB̂r = 0n×m,
R − PR̂r = 0n×d and BS = 0n×p. On the other hand, γ0 and γ3 are proportional to
the cardinality of ∆w in (3.2.12) and ∆ in (3.2.11), respectively. Therefore, one has
(C2) also holds, which completes the proof. ■
To show the results of Theorem 3.2.8, the following proposition is required.

Proposition 3.6.2. Consider a constraint cx̄ ≤ 1 with x̄ ∈ Rn and a set Ex̄ =
{x̄ | x̄⊤Mx̄ ≤ ϵ2} with M ∈ Rn×n and ϵ ∈ R>0. Then, cx̄ ≤ 1 holds for all
x̄ ∈ Ex̄ if and only if cM−1c⊤ ≤ 1/ϵ2.

Proof: For all x̄ ∈ Ex̄, cx̄ ≤ 1 if and only if maxx̄∈Ex̄ cx̄ ≤ 1. Let x̄∗ = argmaxx̄∈Ex̄ cx̄.
Then, x̄∗ satisfies the Karush-Kuhn-Tucker conditions [35]:

λ(ϵ2 − x̄∗⊤Mx̄∗) = 0, (3.6.9)

c− 2λMx̄∗ = 0, (3.6.10)

with λ ≥ 0. Solving (3.6.9) and (3.6.10), one has

x̄∗ = ϵ
M−1c⊤√
cM−1c⊤

.
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Therefore, maxx̄∈Ex̄ cx̄ = cx̄∗ = ϵ
√
cM−1c⊤ ≤ 1 if and only if cM−1c⊤ ≤ 1/ϵ2, which

concludes the proof. ■
Now I am ready to show the results of Theorem 3.2.8.

Proof of Theorem 3.2.8: For any i ∈ {1, . . . , r}, αiū ≤ 1 implies that αi(K +
bL)x̄ ≤ 1 for all b ∈ [b, b̄]∪{0}. According to Proposition 3.6.2, ∀x̄ ∈ Ex̄, αi(K+bL)x̄ ≤
1 is fulfilled for all b ∈ [b, b̄] ∪ {0} if and only if

αi(K + bL)M−1(K + bL)⊤α⊤
i ≤ 1/ϵ2 (3.6.11)

holds for all b ∈ [b, b̄] ∪ {0}. Using Schur complement [35], (3.6.11) can be rewritten as[
1/ϵ2 αiK̄
K̄⊤α⊤

i M̄

]
︸ ︷︷ ︸

M0

+b

[
0 αiL̄

L̄⊤α⊤
i 0

]
︸ ︷︷ ︸ ⪰ 0,

M ′
(3.6.12)

with M̄ = M−1, K̄ = KM̄ , and L̄ = LM̄ . Note that M0 is positive semidefinite
according to (3.2.32). Moreover, (3.2.33) and (3.2.34) ensure that M0+ bM ′ and M0+
b̄M ′ are both positive semidefinite. Then, according to Proposition 3.6.1, (3.2.32)
to (3.2.34) guarantee that (3.6.12) holds for all b ∈ [b, b̄] ∪ {0}, which completes the
proof. ■

3.6.2 Proof of Statements: Section 3.3

To show the results of Section 3.3, some additional definitions and lemmas are required
for the product gDTSG D||RD̂ between the original gDTSG D = (X,U,W,X0, T, Y, h)
and its finite abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) as in Definition 2.4.7. Given a
DFA A = (Q, q0,Π, τ, F ) that models the desired property, the reachability over the
set F of the gDTSG (D||RD̂)⊗A within the time horizon [0, H] can be characterized
by a value function defined as

Ṽ ρ,λ
n (x, x̂, q) =E[ max

H−n≤t≤H
1F (q(t))|x(H − n) = x, x̂(H − n) = x̂, q(H − n) = q]

=P
(ρ,λ)×(D||RD̂)⊗A{∃k ∈ [H − n,H], q(k) ∈ F}, (3.6.13)

for all n ∈ [0, H], with ρ ∈ PH and λ ∈ ΛH being Markov policies for Players I
and II of (D||RD̂)⊗A, respectively. Given any Markov policy ρ = (ρ0, . . . , ρH−1) and

λ = (λ0, . . . , λH−1), one initializes (3.6.13) with Ṽ ρ,λ
0 (x, x̂, q) = 1 when q ∈ F , and

Ṽ ρ,λ
0 (x, x̂, q) = 0 when q /∈ F , and recursively calculate it as

Ṽ ρ,λ
n+1(x, x̂, q) =

∑
q+∈Q

∫
X×X̂

Ṽ ρ,λ
n (x′, x̂′, q+)T̄ (dx′×dx̂′×q+|x, x̂, q, û, w)

=

∫
X×X̂

Ṽ ρ,λ
n (x′, x̂′, q′)LT (dx

′ × dx̂′|x, x̂, û, w), (3.6.14)
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where û = ρH−n−1(x, x̂, q), w = λH−n−1(x, x̂, q, û), and q
′ = τ(q, L ◦h(x′)). In the case

that λ = λr is a randomized Markov policy over [0, H−1], (3.6.14) should be rewritten
as

Ṽ ρ,λr
n+1 (x, x̂, q) =

∫
W

∫
X×X̂

Ṽ ρ,λr
n (x′, x̂′, q′)LT (dx

′ × dx̂′|x, x̂, û, w)λr,H−n−1(dw|x, x̂, q, û).

(3.6.15)

In both (3.6.14) and (3.6.15), one has

P
(ρ,λ)×(D||RD̂)⊗A{∃k≤H, q(k)∈F}= Ṽ

ρ,λ
n+1(x0, x̂0, q̄0), (3.6.16)

with q̄0 = τ(q0, L ◦ h(x0)), x0 ∈ X0, and x̂0 ∈ X̂0 with (x0, x̂0) ∈ R.

Lemma 3.6.3. Consider a Markov policy ρ over the time horizon [0, H − 1]
for Player I of the gDTSG (D||RD̂) ⊗ A. For any randomized Markov policy
λr ∈ ΛH for Player II of (D||RD̂)⊗A, one has

Ṽ ρ,λ′
n (x0, x̂0, q̄0) ≤ Ṽ ρ,λr

n (x0, x̂0, q̄0) (3.6.17)

and
Ṽ ρ,λr
n (x0, x̂0, q̄0) ≤ Ṽ ρ,λ′′

n (x0, x̂0, q̄0) (3.6.18)

for all n ∈ [0, H], with q̄0 = τ(q0, L ◦ h(x0)), x0 ∈ X0, and x̂0 ∈ X̂0 with
(x0, x̂0) ∈ R. Here, λ′ and λ′′ are nonrandomized Markov policies that are
computed based on ρ, as

λ′H−n−1 ∈ inf
λH−n−1∈Λ

∫
X×X̂

Ṽ ρ,λ
n (x′, x̂′, q′)LT (dx

′ × dx̂′|x, x̂, û, w), (3.6.19)

and

λ′′H−n−1 ∈ sup
λH−n−1∈Λ

∫
X×X̂

Ṽ ρ,λ
n (x′, x̂′, q′)LT (dx

′ × dx̂′|x, x̂, û, w), (3.6.20)

for all n ∈ [0, H], with û = ρH−n−1(x, x̂, q), and w = λH−n−1(x, x̂, q, û).

Proof: First, (3.6.17) in Lemma 3.6.3 is shown by induction. When n = 0, ac-

cording to the initialization of Ṽ ρ,λ′

0 (x, x̂, q), one has Ṽ ρ,λ′

0 (x, x̂, q) = Ṽ ρ,λr
0 (x, x̂, q) so

that (3.6.17) holds. Suppose that (3.6.17) is met when n = k. Then, when n = k + 1,
one has

Ṽ ρ,λr

k+1 (x, x̂,q) =

∫
W

∫
X×X̂

Ṽ ρ,λr

k (x′, x̂′, q′)LT (dx
′ × dx̂′|x, x̂, û, w)λr,H−k−1(dw|x, x̂, q, û)

≥
∫
W

∫
X×X̂

Ṽ ρ,λ′

k (x′, x̂′, q′)LT (dx
′×dx̂′|x, x̂, û, w)λr,H−k−1(dw|x, x̂, q, û) (c1)

≥
∫
X×X̂

Ṽ ρ,λ′

k (x′, x̂′, q′)LT (dx
′×dx̂′|x, x̂, û, w′)

∫
W
λr,H−k−1(dw|x, x̂, q, û) (c2)
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=

∫
X×X̂

Ṽ ρ,λ′

k (x′, x̂′, q′)LT (dx
′ × dx̂′|x, x̂, û, w′) = Ṽ ρ,λ′

k+1 (x, x̂, q).

Note that (c1) holds since (3.6.17) is supposed to be met when n = k, and (c2) holds
with w′ = λ′H−k−1(x, x̂, q, û) according to (3.6.19). Thus, one has (3.6.17) also holds
for n = k + 1, which completes the proof for (3.6.17). The proof of (3.6.18) can be
proceeded similar to (3.6.17), and is omitted here for the sake of brevity. ■
So far, I am ready to prove the results in Section 3.3.

3.6.2.1 Required Lemmas and the proof for Theorem 3.3.4

To show Theorem 3.3.4, Lemma 3.6.4, Lemma 3.6.6, and some additional definitions
are needed as well.

Lemma 3.6.4. Consider a gDTSG D = (X,U,W,X0, T, Y, h) and its fi-
nite abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A =
(Q, q0,Π, τ, F ) modeling the desired property. Given a Markov policy ρ for
Player I of the gDTSG D̂ ⊗ A over time horizon [0, H − 1], a Markov pol-
icy ρ̃ for Player I of the gDTSG (D||RD̂) ⊗ A is constructed such that ∀k ∈
[0, H − 1], ρ̃k(x, x̂, q) = ρk(x̂, q). Then, for any Markov policy λ̃ for Player II of
(D||RD̂)⊗A, one has

V̄ ρ,λ∗(ρ)
n (x̂, q) ≤ Ṽ ρ̃,λ̃

n (x, x̂, q), (3.6.21)

for all n ∈ [0, H] and (x, x̂) ∈ R as in (3.2.15), with λ∗(ρ) as in (3.3.5),

V̄
ρ,λ∗(ρ)
n (x̂, q) computed as in (3.3.1), and Ṽ ρ̃,λ̃

n (x, x̂, q) as in (3.6.14).

Proof: The proof of Lemma 3.6.4 is performed by induction. Here, λ∗ is used to
denote λ∗(ρ) in the following discussion. Additionally, one only needs to focus on the
cases in which q /∈ F since (3.6.21) holds trivially for all n ∈ N when q ∈ F . According

to the initialization of V̄ ρ,λ∗
0 (x̂, q) and Ṽ ρ̃,λ̃

0 (x, x̂, q), one has V̄ ρ,λ∗
0 (x̂, q) = Ṽ ρ̃,λ̃

0 (x, x̂, q).
Therefore, (3.6.21) holds when n = 0. Suppose that (3.6.21) holds when n = k. Then,
for n = k + 1, one has

V̄ ρ,λ∗
k+1 (x̂, q)

= (1− δ)
∑
x̂′∈X̂

V̄ ρ,λ∗
k (x̂′, q(x̂′, q))T̂ (x̂′|x̂, û, ŵ)

with û = ρH−k−1(x̂, q) and ŵ = λ∗H−k−1
(x̂, q, û)

≤ (1− δ)
∑
x̂′∈X̂

V̄ ρ,λ∗
k (x̂′, q(x̂′, q))T̂ (x̂′|x̂, û, fŴ ) (c1)

≤ (1− δ)
∑
x̂′∈X̂

V̄ ρ,λ∗
k (x̂′, q(x̂′, q))

( 1

1− δ

∫
x′∈R̄x̂′

LT (dx
′|x, x̂, x̂′, û, w)

)
T̂ (x̂′|x̂, û,Πw(w)), (c2)
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=

∫
R
V̄ ρ,λ∗
k (x̂′, q(x̂′, q))LT (dx

′|x, x̂, x̂′, û, w)T̂ (x̂′|x̂, û,Πw(w))

=

∫
R
V̄ ρ,λ∗
k (x̂′, q(x̂′, q))LT (dx

′×dx̂′|x, x̂, û, w) (c3)

≤
∫

R
V̄ ρ,λ∗
k (x̂′, q′)LT (dx

′×dx̂′|x̂, x, û, w), (c4)

≤
∫

R
Ṽ ρ̃,λ̃
k (x′, x̂′, q′)LT (dx

′ × dx̂′|x, x̂, û, w)

≤
∫
X×X̂

Ṽ ρ̃,λ̃
k (x′, x̂′, q′)LT (dx

′ × dx̂′|x, x̂, û, w) = Ṽ ρ̃,λ̃
k+1(x, x̂, q),

where fŴ is a functions that assigns a probability measure over (Ŵ ,B(Ŵ )), R̄x̂′ =
{x′ ∈ X|(x′, x̂′) ∈ R}, Πw(w) is as in (2.4.6), and LT (dx

′|x, x̂, x̂′, û, w) is the con-
ditional probability of x′ as in (2.4.7). In the chain of equations above, (c1) holds
due to the computation of λ∗ as in (3.3.5), (c2) holds with w = λ̃H−k−1(x, x̂, q, û)
according to Assumption 3.3.2, (c3) holds according to (2.4.7), and (c4) holds with

q′ = τ(q, L◦h(x′)), since V̄ ρ,λ∗
k (x̂′, q′) ≥ V̄ ρ,λ∗

k (x̂′, q(x̂′, q)) according to the definition of
q as in (3.3.3). Thus, (3.6.21) also holds when n = k+ 1, which completes the proof.■

Before showing Lemma 3.6.6, I introduce how to construct a control strategy Cρ for

Player I of the gDTSG D||RD̂ given a Markov policy ρ̃ for Player I of (D||RD̂)⊗A.

Definition 3.6.5. (Construction of Cρ) Consider a gDTSG D||RD̂ = (X × X̂, Û ,W,
X0||,LT , Y, h||), a DFA A = (Q, q0,Π, τ, F ), and a Markov policy ρ̃ = (ρ̃0, ρ̃1, . . . , ρ̃H−1)

for Player I of (D||RD̂) ⊗ A = {X̄, Ū , W̄ , X̄0, T̄ , Ȳ , h̄}. A control strategy Cρ =

(M,U,Y,H,M0, πM, πY) is constructed for Player I of D||RD̂ with M = X × X̂ × Q;
U = X × X̂; Y = Û ; H = [0, H − 1]; and M0 = X̄0. Furthermore, πM updates m(k) =
(mX(k),mX̂(k),mQ(k)) ∈ M at the time instant k ∈ H\{0} with (mX(k),mX̂(k)) =

(x(k), x̂(k)), where x(k) ∈ X, x̂(k) ∈ X̂, and mQ(k) = τ
(
mQ(k− 1), L ◦h(mX(k))

)
; πY

updates y(k) ∈ Y at the time instant k ∈ H with y(k) = ρ̃k(mX(k),mX̂(k),mQ(k)).

In brief, Cρ takes the state (x(k), x̂(k)) of D||RD̂ and the state q(k) of A as its

memory state at the time instant k. At runtime, it provides input û(k) to D||RD̂
according to the Markov policy ρ̃k based on its memory state.

Lemma 3.6.6. Consider a gDTSG D||RD̂ = (X × X̂, Û ,W,X0||,LT , Y, h||),

a DFA A = (Q, q0,Π, τ, F ), and their product gDTSG (D||RD̂) ⊗ A. Given a
Markov policy ρ̃ for Player I of (D||RD̂) ⊗ A, for any control strategy Cλ for
Player II of D||RD̂, one has

P
(ρ̃,λ′)×(D||RD̂)⊗A{∃k ≤ H, q(k) ∈ F} ≤ P

(Cρ,Cλ)×D||RD̂
{∃k ≤ H, yωk |= A},

with λ′ as in (3.6.19), and Cρ being a control strategy for Player I of D||RD̂
constructed based on ρ̃ as in Definition 3.6.5.
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Proof: Given a path ωk ∈ Ω of D, the memory state of Cρ is the same as the state

of (D||RD̂)⊗A according to the construction of Cρ as in Definition 3.6.5. Therefore,
the same input u(k) ∈ U is provided by ρ̃ and Cρ given the same path ωk. Moreover,
given (ωk, u(k)), it is considered, without loss of generality, that Cλ chooses its adver-
sarial input w ∈ W according to a measurable stochastic kernel TW (W |ωk, u(k)) over
(W,B(W )). This kernel corresponds to a randomized Markov policy λr for Player II of
(D||RD̂)⊗A to select w(k) given the same ωk and u(k), such that

P
(ρ̃,λr)×(D||RD̂)⊗A

{
∃k ≤ H, q(k) ∈ F

}
= P

(Cρ,Cλ)×D||RD̂

{
∃k ≤ H, yωk |= A

}
.

(3.6.22)

According to (3.6.17) and (3.6.16), one has

P
(ρ̃,λ′)×(D||RD̂)⊗A

{
∃k ≤ H, q(k) ∈ F

}
≤ P

(ρ̃,λr)×(D||RD̂)⊗A
{
∃k ≤ H, q(k) ∈ F

}
,

(3.6.23)

with synthesized λ′ based on ρ̃ as in (3.6.19). The proof is then completed by combin-
ing (3.6.22) and (3.6.23). ■
Before showing the proof for Theorem 3.3.4, I present how to construct the control

strategy C̃ρ for Player I of D given the control strategy Cρ for Player I of D||RD̂.

Definition 3.6.7. (Construction of C̃ρ) Consider a gDTSG D = (X,U,W,X0, T, Y,

h) and its finite abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ
ϵ D. Given a control

strategy Cρ = (M,U,Y,H,M0, πM, πY) for Player I of D||RD̂ that is constructed based
on ρ̃ as proposed in Definition 3.6.5, a control strategy C̃ρ = (M̃, Ũ, Ỹ, H̃, M̃0, π̃M, π̃Y)
is constructed for Player I of D, in which

� M̃ := M×W × Ŵ = X × X̂ ×Q×W × Ŵ ;

� Ũ := UX ×W = X ×W ;

� Ỹ := U ;

� H̃ := H;

� m̃0=
(
m̃X(0), m̃X̂(0), m̃Q(0), m̃W (0), m̃Ŵ (0)

)
∈ M̃0, with m̃X(0) = x0, where x0 ∈

X0; m̃X̂(0) = x̂0 such that (x0, x̂0) ∈ R, where R is as in (3.2.15); m̃Q(0) =
τ
(
q0, L ◦ h(m̃X(0))

)
; m̃W (0) is initialized as m̃W (0) = w(0) after Player II of

D has chosen w(0), and m̃Ŵ (0) is initialized as m̃Ŵ (0) = Πw(w(0)) with Πw as
in (2.4.6);

� π̃M updates
(
m̃X(k), m̃X̂(k), m̃Q(k), m̃W (k), m̃Ŵ (k)

)
∈ M̃ at all time instant k ∈

H\{0}, with the following steps:

1. update m̃X̂(k) with the conditional kernel

LT

(
dx̂|m̃X̂(k − 1),m̃X(k − 1), x(k), û(k − 1), m̃W (k − 1)

)
as in (2.4.7), with x(k) the state of D and û(k−1) = ρ̃k−1(m̃X(k−1), m̃X̂(k−
1), m̃Q(k − 1));

52



3.6 Proof of Statements in Chapter 3

2. update m̃X(k) with m̃X(k) = x(k);

3. update m̃Q(k) with m̃Q(k) = τ
(
m̃Q(k − 1), L ◦ h(m̃X(k))

)
;

4. update m̃W (k) with m̃W (k) = w(k) after Player II of D has selected w(k)
and accordingly update m̃Ŵ (k) as m̃Ŵ (k) = Πw(w(k)) with Πw as in (2.4.6);

� π̃Y updates y(k) ∈ Y at the time instant k ∈ H with

y(k) = ν
(
m̃X(k), m̃X̂(k), ρ̃k(m̃X(k), m̃X̂(k), m̃Q(k))

)
,

with ν being the interface function associated with the approximate probabilistic
relation.

Figure 3.9: Left: Coupling gDTSG D||RD̂ (green region) controlled by Cρ (yellow region)

andCλ (blue region).Right: A gDTSGD (green region) controlled by C̃ρ (yellow

region) and C̃λ (blue region).

Employing Definition 3.6.7, one can construct a control strategy C̃ρ for Player I of

the gDTSG D given a control strategy Cρ for Player I of D||RD̂. Then, given any
control strategy C̃λ for Player II of D, the controlled gDTSG (C̃ρ, C̃λ) × D can be

written as a controlled gDTSG (Cρ,Cλ)×D||RD̂ as depicted in Figure 3.9, where Cλ

is constructed by combining C̃λ with the interface function ν(x, x̂, û). Accordingly, one
has

P(C̃ρ,C̃λ)×D{∃k ≤ H, yωk |= A} = P
(Cρ,Cλ)×D||RD̂

{∃k ≤ H, yωk |= A}. (3.6.24)

Now, I am ready to show the results of Theorem 3.3.4.
Proof of Theorem 3.3.4: Consider x0 ∈ X0 and x̂0 ∈ X̂0 with (x0, x̂0) ∈ R and

R as in (3.2.15). According to (3.6.16) and Lemma 3.6.4, for any Markov policy λ̃ for
Player II of the gDTSG (D||RD̂)⊗A, one has

V̄
ρ,λ∗(ρ)
H (x̂0, q̄0) ≤ P

(ρ̃,λ̃)×(D||RD̂)⊗A{∃k ≤ H, q(k) ∈ F}, (3.6.25)

with ρ̃ being a Markov policy for Player I of the gDTSG (D||RD̂)⊗A that is constructed
based on ρ as discussed in Lemma 3.6.4. Moreover, Lemma 3.6.6 indicates that given
a Markov policy ρ̃ for Player I of (D||RD̂)⊗A and a control strategy Cρ for Player I
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of D||RD̂ that is constructed based on ρ̃ as in Definition 3.6.5, for any control strategy
Cλ for Player II of D||RD̂, one has

P
(ρ̃,λ′)×(D||RD̂)⊗A{∃k ≤ H, q(k) ∈ F} ≤ P

(Cρ,Cλ)×D||RD̂
{∃k ≤ H, yωk |= A}, (3.6.26)

where λ′ is a Markov policy for Player II of (D||RD̂) ⊗ A computed as in (3.6.19).
Since (3.6.25) holds for any Markov policy for Player II of (D||RD̂) ⊗ A, by combin-
ing (3.6.25) and (3.6.26), one has

V̄
ρ,λ∗(ρ)
H (x̂0, q̄0) ≤ P

(Cρ,Cλ)×D||RD̂
{∃k ≤ H, yωk |= A}. (3.6.27)

Finally, considering (3.6.27) and (3.6.24), one has

V̄
ρ,λ∗(ρ)
H (x̂0, q̄0) ≤ P(C̃ρ,C̃λ)×D{∃k ≤ H, yωk |= A}, (3.6.28)

where C̃ρ is a control strategy for Player I of D that is constructed based on Cρ as
in Definition 3.6.7. Considering the construction of ρ̃ as in Lemma 3.6.4 based on ρ,
Cρ as in Definition 3.6.5 based on ρ̃, and C̃ρ as in Definition 3.6.7 based on Cρ, C̃ρ

in (3.6.28) can be constructed as in Definition 3.3.1 directly based on a Markov policy
ρ for Player I of D̂⊗A, which completes the proof. ■

3.6.2.2 Proof for Lemma 3.3.8

In this subsection, D̂ = (X̂, Û , X̂0, T̂ , Y, ĥ) denotes the finite abstraction for the stochas-
tic systems without rational adversarial input, and by A = (Q, q0,Π, τ, F ) a DFA

modeling the desired property. Additionally, V̄ ρ
n (x̂, q) is used to replace V̄ ρ,λ

n (x̂, q) as
in (3.3.1), since λ does not play a role in stochastic systems of interest here. Accord-
ingly, initializing V̄ ρ

n (x̂, q) with V̄
ρ
0 (x̂, q) = 1 when q ∈ F and V̄ ρ

0 (x̂, q) = 0, otherwise,
V̄ ρ
n+1(x̂, q) is then recursively computed as

V̄ ρ
n+1(x̂, q) := (1− δ)

∑
x̂′∈X̂

V̄ ρ
n (x̂

′, q(x̂′, q))T̂ (x̂′|x̂, û),

when q /∈ F , and V̄ ρ
n+1(x̂, q) := 1 otherwise. Furthermore, q as in (3.3.3) should

accordingly be modified as

q(x̂′, q) = argmin
q′∈Q′

ϵ(x̂
′)
V̄ ρ
n (x̂

′, q′), (3.6.29)

where Q′
ϵ(x̂

′) is the set as in (3.3.4). Before showing the results for Lemma 3.3.8,
I briefly introduce some results in [74] for the sake of completeness. Considering a
Markov policy ρ = (ρ0, ρ1, . . . , ρH−1) over time horizon [0, H − 1], a value function
V ρ
n : X̂ × Q → [0, 1] is defined in [74]. Initialized with V ρ

0 (x̂, q) = 0, V ρ
n (x̂, q) is then

recursively computed as [74, equation (41)]:

V ρ
k+1(x̂, q) := L

( ∑
x̂′∈X̂

min
q′∈τ̄(q,x̂′)

max{1F (q′), V ρ
k (x̂

′, q′)}T̂ (dx̂′|x̂, û)− δ
)
, (3.6.30)
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with L : R → [0, 1] being the truncation function L(·) := min(1,max(0, ·)); τ̄(q, x̂′) :=
{τ(q, α) with α ∈ L(Nϵ(ĥ(x̂

′)))}, where Nϵ(ŷ) := {y ∈ Y | ∥y − ŷ∥ ≤ ϵ}; 1F (·) being an
indicator function for the set F , i.e., if q′ ∈ F then 1F (q

′) = 1, otherwise 1F (q
′) = 0;

and û = ρH−k−1(x̂). With these notations, S(x̂0) as in (3.3.13) can be computed as [74,
equation (43)]:

S(x̂0) := min
q̄0∈τ̄(q0,x̂0)

max(1F (q̄0), V
ρ
H(x̂0, q̄0)). (3.6.31)

Moreover, Lemma 3.6.8 is required for proving Lemma 3.3.8.

Lemma 3.6.8. If one has

V ρ
n (x̂

′, q) ≤ V̄ ρ
n (x̂

′, q), (3.6.32)

for all x̂′ ∈ X̂ and q ∈ Q, with n ∈ N, then one has

min
q′∈τ̄(q,x̂′)

max{1F (q′), V ρ
n (x̂

′, q′)}≤ V̄ ρ
n (x̂

′, q(x̂′, q)). (3.6.33)

Proof of Lemma 3.6.8: One can prove Lemma 3.6.8 by showing two cases:

� (Case 1) If ∃x̂ ∈ Q′
ϵ(x̂

′) such that τ(q, x̂) /∈ F , then one has

min
q′∈τ̄(q,x̂′)

max{1F (q′), V ρ
n (x̂

′, q′)} = min
q′∈τ̄(q,x̂′)

V ρ
n (x̂

′, q′) = min
q′∈Q′

ϵ(x̂
′)
V ρ
n (x̂

′, q′). (3.6.34)

Meanwhile, according to the definition of q as in (3.6.29), one has

V̄ ρ
n (x̂

′, q(x̂′, q)) = min
q′∈Q′

ϵ(x̂
′)
V̄ ρ
n (x̂

′, q′) (3.6.35)

Then, with (3.6.34), (3.6.35) and (3.6.32), one can readily verify that (3.6.33)
holds in Case 1.

� (Case 2) If ∀x̂ ∈ Q′
ϵ(x̂

′) such that τ(q, x̂) ∈ F , one has V̄ ρ
n (x̂′, q(x̂′, q)) = 1.

Therefore, (3.6.33) holds trivially in Case 2.

Then, the proof for Lemma 3.6.8 is completed by combining Case 1 and Case 2. ■
Now, I am ready to show the results for Lemma 3.3.8.
Proof of Lemma 3.3.8: First, one can show

V ρ
n (x̂, q) ≤ V̄ ρ

n (x̂, q) (3.6.36)

holds for all n ∈ N by induction. Note that one only needs to focus on the cases in which
q /∈ F since V̄ ρ

n (x̂, q) = 1 when q ∈ F so that (3.6.36) holds trivially. According to the
initialization of V̄ ρ

0 (x̂, q) and V0(x̂, q), one has V̄ ρ
0 (x̂, q) ≥ V0(x̂, q). Therefore, (3.6.36)

holds when n = 0. Suppose that (3.6.36) is met when n = k. Then, when n = k + 1,
one only needs to focus on the case in which∑

x̂′∈X̂

min
q′∈τ̄(q,x̂′)

max{1F (q′), V ρ
k (x̂

′, q′)}T̂ (dx̂′|x̂, û)− δ ≥ 0. (3.6.37)
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Otherwise, V ρ
k+1(x̂, q) ≤ V̄ ρ

k+1(x̂, q) holds trivially since one has V ρ
k+1(x̂, q) = 0 according

to the definition of function L(·) as in (3.6.30). When (3.6.37) holds, one has

V ρ
k+1(x̂, q) =

∑
x̂′∈X̂

min
q′∈τ̄(q,x̂′)

max{1F (q′), V ρ
k (x̂

′, q′)}T̂ (dx̂′|x̂, û)− δ,

≤
∑
x̂′∈X̂

V̄ ρ
k (x̂

′, q(x̂′, q))T̂ (dx̂′|x̂, û)− δ (3.6.38)

≤
∑
x̂′∈X̂

V̄ ρ
k (x̂

′, q(x̂′, q))T̂ (dx̂′|x̂, û)− δ
(∑
x̂′∈X̂

V̄ ρ
k (x̂

′, q(x̂′, q))T̂ (dx̂′|x̂, û)
)

=(1− δ)
∑
x̂′∈X̂

V̄ ρ
k (x̂

′, q(x̂′, q))T̂ (x̂′|x̂, û) = V̄ ρ
k+1(x̂, q).

Note that (3.6.38) holds according to Lemma 3.6.8. Therefore, one has (3.6.36) also
hold for n = k + 1, so that (3.6.36) holds for all n ∈ N. Then, one can readily verify

V̄ ρ
H(x̂0, q̄0) ≥ S(x̂0)

by considering (3.6.29), (3.6.31), (3.6.36), and Lemma 3.6.8, which completes the proof.
■

3.6.2.3 Required Lemmas and the proof for Theorem 3.3.10

In order to show the results of Theorem 3.3.10, Lemma 3.6.9 and 3.6.10 are required.

Lemma 3.6.9. Consider a gDTSG D = (X,U,W,X0, T, Y, h) and its fi-
nite abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A =
(Q, q0,Π, τ, F ) characterizing the desired property. Given a Markov policy ρ
for Player I of the gDTSG D̂ ⊗ A over the time horizon [0, H − 1], con-
struct a Markov policy ρ̃ for Player I of the gDTSG (D||RD̂) ⊗ A such that
∀k ∈ [0, H−1], ρ̃k(x, x̂, q) = ρk(x̂, q). Then, for any Markov policy λ̃ for Player II
of (D||RD̂)⊗A, one has

V ρ,λ∗(ρ)
n (x̂, q) ≥ Ṽ ρ̃,λ̃

n (x, x̂, q), (3.6.39)

for all n ∈ [0, H], (x, x̂) ∈ R as in (3.2.15), with λ∗(ρ) computed as in (3.3.18),

V
ρ,λ∗(ρ)
n (x̂, q) as in (3.3.15) and Ṽ ρ̃,λ̃

n (x, x̂, q) as in (3.6.14).

Proof: The proof is followed by induction. Here, λ∗(ρ) is denoted by λ∗ for the sake
of clarity. Moreover, one only needs to focus on the cases in which q /∈ F since (3.6.39)
holds trivially for all n ∈ N when q ∈ F . For n = 0, one can readily verify that

V ρ,λ∗

0 (x̂, q) = Ṽ ρ̃,λ̃
0 (x, x̂, q) according to the initialization of V ρ,λ∗

0 (x̂, q) and Ṽ ρ̃,λ̃
0 (x, x̂, q).

Thus, (3.6.39) holds for n = 0. Suppose that (3.6.39) holds for n = k. Then, for
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n = k + 1, one has

1− V ρ,λ∗

k+1(x̂, q) = (1− δ)− (1− δ)
∑
x̂′∈X̂

V ρ,λ∗

k (x̂′, q̄(x̂′, q))T̂ (x̂′|x̂, û, ŵ)

with û = ρH−k−1(x̂) and ŵ = λ∗H−k−1(x̂, û)

≤ (1− δ)−(1− δ)
∑
x̂′∈X̂

V ρ,λ∗

k (x̂′, q̄(x̂′, q))T̂ (x̂′|x̂, û, fŴ )

= (1− δ)
∑
x̂′∈X̂

(
1− V ρ,λ∗

k (x̂′, q̄(x̂′, q))
)
T̂ (x̂′|x̂, û, fŴ )

≤ (1− δ)
∑
x̂′∈X̂

(
1− V ρ,λ∗

k (x̂′, q̄(x̂′, q))
)( 1

1− δ

∫
x′∈R̄x̂′

LT (dx
′|x, x̂, x̂′, û, w)

)
T̂ (x̂′|x̂, û,Πw(w)),

with w = λ̃H−k−1(x, x̂, q, û)

=

∫
R

(
1− V ρ,λ∗

k (x̂′, q̄(x̂′, q))
)
LT (dx

′|x, x̂, x̂′, û, w)T̂ (x̂′|x̂, û,Πw(w))

=

∫
R

(
1− V ρ,λ∗

k (x̂′, q̄(x̂′, q))
)
LT (dx

′×dx̂′|x, x̂, û, w)

≤
∫

R

(
1− V ρ,λ∗

k (x̂′, q′)
)
LT (dx

′×dx̂′|x̂, x, û, w), with q′ = τ(q, L ◦ h(x′))

≤
∫

R

(
1− Ṽ ρ̃,λ̃

k (x′, x̂′, q′)
)
LT (dx

′ × dx̂′|x, x̂, û, w)

≤
∫
X×X̂

(
1− Ṽ ρ̃,λ̃

k (x′, x̂′, q′)
)
LT (dx

′ × dx̂′|x, x̂, û, w) = 1− Ṽ ρ̃,λ̃
k+1(x, x̂, q),

where fŴ is a functions that assigns a probability measure over (Ŵ ,B(Ŵ )), R̄x̂′ =
{x′ ∈ X|(x′, x̂′) ∈ R}, and LT (dx

′|x, x̂, x̂′, û, w) is the conditional probability of x′ as
in (2.4.7). Note that the chain of equations above hold similarly to those in the proof

of Lemma 3.6.4. Thus, one has V ρ,λ∗

k+1(x̂, q) ≥ Ṽ ρ̃,λ̃
k+1(x, x̂, q) so that (3.6.21) also holds

for n = k + 1, which concludes the proof. ■

Lemma 3.6.10. Consider a gDTSG D||RD̂ = (X × X̂, Û ,W,X0||,LT , Y, h||),

a DFA A = (Q, q0,Π, τ, F ), and their product gDTSG (D||RD̂) ⊗ A. Given a
Markov policy ρ̃ for Player I of (D||RD̂) ⊗ A, for any control strategy Cλ for
Player II of D||RD̂, one has

P
(ρ̃,λ′′)×(D||RD̂)⊗A{∃k ≤ H, q(k) ∈ F} ≥ P

(Cρ,Cλ)×D||RD̂
{∃k ≤ H, yωk |= A},

with λ′′ as in (3.6.20), and Cρ being a control strategy for Player I of D||RD̂
constructed based on ρ̃ as in Definition 3.6.5.
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Lemma 3.6.10 can be proved similar to that of Lemma 3.6.6 with the help of (3.6.18)
and (3.6.20). Employing Lemmas 3.6.9 and 3.6.10, I show the results of Theorem 3.3.10
as follows.
Proof of Theorem 3.3.10: Consider x0 ∈ X0 and x̂0 ∈ X̂0 with (x0, x̂0) ∈ R and

R as in (3.2.15). According to (3.6.16) and Lemma 3.6.9, for any Markov policy λ̃ for
Player II of the gDTSG (D||RD̂)⊗A, one has

V
ρ,λ∗(ρ)
H (x̂0, q̄0) ≥ P

(ρ̃,λ̃)×(D||RD̂)⊗A{∃k ≤ H, q(k) ∈ F}, (3.6.40)

with ρ̃ being a Markov policy for Player I of the gDTSG (D||RD̂)⊗A that is constructed
based on ρ as in Lemma 3.6.9. Furthermore, according to Lemma 3.6.10, given a Markov
policy ρ̃ for Player I of (D||RD̂) ⊗A and a control strategy Cρ for Player I of D||RD̂
constructed as in Definition 3.6.5 based on ρ̃, for any control strategy Cλ for Player II
of D||RD̂, one has

P
(ρ̃,λ′′)×(D||RD̂)⊗A{∃k ≤ H, q(k) ∈ F} ≥ P

(Cρ,Cλ)×D||RD̂
{∃k ≤ H, yωk |= A}, (3.6.41)

where λ′′ is a Markov policy for Player II of (D||RD̂)⊗A computed as in (3.6.20). Note
that (3.6.40) holds for any arbitrary Markov policy for Player II of (D||RD̂) ⊗ A. By
combining (3.6.40) and (3.6.41), one has

V
ρ,λ∗(ρ)
H (x̂0, q̄0) ≥ P

(Cρ,Cλ)×D||RD̂
{∃k ≤ H, yωk |= A}. (3.6.42)

Then, similar to the proof of Theorem 3.3.4, one can readily verify (3.3.19) consider-
ing (3.6.42) and (3.6.24), which completes the proof. ■
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4 Abstraction-based Construction of
Safe-visor Architecture

4.1 Introduction

In this chapter, the abstraction-based construction of the Safe-visor architecture is
proposed based on those abstraction-based controller synthesis schemes proposed in
Chapter 3. First, a detailed description for the related work regarding sandboxing-
like techniques and the verification over (AI-based) unverified controllers will be given.
Then, the abstraction-based construction scheme of Safe-visor architecture over gen-
eral Markov decision processes (gMDP) and general discrete-time stochastic games
(gDTSGs) and will be elaborated in Section 4.2 and 4.3, respectively. Finally, the
construction methodologies will be applied to three case studies in Section 4.4.

4.1.1 Related Works

In the setting of discrete-space systems, e.g., reactive systems, the work in [31, 83, 24, 6]
proposed the notion of shield to enforce some safety properties at runtime. For systems
with continuous state and input sets, plenty of results are applicable to deterministic
systems concerning simple invariance properties, in which systems are expected to stay
within a fixed safety set. Concretely, reachability analysis-based techniques [65, 84]
can be leveraged to provide safety guarantees by checking the intersection between
the unsafe and reachable sets of the systems. Alternatively, a Simplex architecture
was proposed in [170, 48] that enables the application of unverified, high-performance
controllers in the control loop by using a Lyapunov-function-based elliptic recovery
region (a.k.a. safety invariant set). This region is associated with a verified, linear,
state-feedback controller, which serves as a high-assurance controller. Later, this archi-
tecture is further developed in [195, 196, 205, 3] to handle uncertainty and bounded-time
delay in the system dynamics, as well as undetectable cyber attacks.

Note that in the Simplex architecture, the Lyapunov-function-based elliptic recovery
region is usually very conservative and, therefore, unnecessarily restricts the use of
high-performance controllers [14, Figure 7]. However, high-performance controllers
are expected to be applied as often as possible. To provide more flexibility for high-
performance controllers, results in [15, 14, 4] employ reachability analysis to enlarge the
recovery region. Although some of these results are still called “Simplex design”, they
are quite different from the basic idea of Simplex architecture as in [170]. In the Simplex
architecture, high-assurance and high-performance controllers are both designed for the
same tasks and are different in terms of the performance of finishing those tasks. By
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enlarging the recoverable region as in [15, 14, 4], the high-assurance controller is no
longer able to finish the same tasks as the high-performance one but only ensures that
the system would not leave the desired safety set, which are similarly to the safety
advisor in the Safe-visor architecture. As mentioned, however, these results only work
for deterministic systems and simple invariance properties.

Here, it is also worth mentioning some works related to providing safety guarantees
over AI-based unverified controllers. Results in [101, 133, 182, 66, 172] improve the
robustness of systems concerning safety in which AI-based controllers are applied, but
they do not provide any formal safety guarantee. Meanwhile, results in [45, 51, 204, 82,
112, 65, 193, 194, 145, 79] provides formal safety guarantees for AI-based controllers
regarding simple invariance properties; a few recent results also handle complex logical
properties for systems with continuous state and input sets, e.g., [123] for deterministic
systems, and [115, 100] for stochastic systems. In these results, formal guarantees
are achieved by adequately cooperating the desired properties in the reward functions
and guiding the learning process. However, these results are only applicable when
reward functions are easy to be designed, while reward functions for some control tasks
are difficult to be obtained (e.g., [28]). For those AI-based controllers designed based
on deep-neural-networks-based (DNNs-based) techniques, various progresses has been
made for their verification. Nevertheless, verifying DNNs is very challenging and it
is an NP-complete problem [98]. Concretely, the challenges are due to the non-linear
activation functions which makes DNNs non-linear and non-convex [57, 98]. Recent
satisfiability modulo theory (SMT)-based approaches [57, 98, 99] and mixed-integer
linear program (MILP) optimizers-based approaches [55] can be applied to check if
adversarial perturbations over the inputs of the DNNs can change the decisions of the
DNNs [98]. However, these approaches are typically applied on linearized input sets for
simple DNNs with a few layers and a few hundred neurons per layer [84]. To reduce the
complexities in verifying larger DNNs, [58, 156] propose DNNs abstraction approaches,
with which one can obtain formal guarantees for the original complex DNNs by verifying
the simplified DNNs using existing verification tools [99, 186]. Unfortunately, it is still
difficult to deploy these methods to verify complex DNNs with millions of parameters
and complicated architectures.

4.1.2 Contributions

With the abstraction-based controllers synthesis approaches in Chapter 3, an abstraction-
based construction of the Safe-visor architecture as in Figure 1.1 is introduced in this
chapter. The main contributions of the chapter are summarized as follows:

1. Considering safety specifications that can be expressed by the accepting languages
of deterministic finite automata (DFA), the design of history-based supervisors
in the Safe-visor architecture is proposed.

2. By employing (ϵ,δ)-approximate probabilistic relations proposed in [76] while de-
signing the history-based supervisor, formal guarantees are provided for proba-
bilities of satisfying desired specifications.
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4.2 Design of Safe-visor Architecture for General Markov Decision Processes

3. The synthesis approaches here allow constructing a reduced-order model for the
original system when synthesizing the safety advisor and supervisor. As a result,
these methodologies could be applied to large-scale systems, which is crucial since
the complexity of synthesizing a safety advisor via a finite abstraction grows
exponentially with respect to the dimension of the system’s state set.

Additionally, compared with those results that adapt shielding approach in the learning
process to ensure safety (e.g. [6, 45, 100], as discussed above in the related works), the
proposed approaches decouple the desired safety properties from the reward functions
in the learning process so that the provided safety guarantee is valid for AI-based
controllers trained with arbitrary learning methods. Particularly, the proposed methods
are applicable when the reward functions for the control tasks are challenging to be
designed (e.g., [28]), while satisfying some safety properties are still required. Compared
with those results that also decouple the desired safety properties from the synthesis of
the unverified controllers (e.g., Simplex architecture in [196, 4], see detailed discussion
above in the related works), the proposed results are the first to deal with stochastic
CPSs with continuous state and input sets while ensuring safety properties modeled
by DFAs. Although [31, 83, 24] also enforce safety specifications that are modeled by
automata, they are only applicable to discrete-space systems.

4.2 Design of Safe-visor Architecture for General Markov
Decision Processes

In this section, the construction of Safe-visor architecture over stochastic CPSs that
can be modeled as general Markov decision processes (gMDPs), as introduced in Def-
inition 2.4.1, would be discussed. In particular, the safety specifications of interested
in this section are modeled by the accepting languages of deterministic finite automata
(DFA), as introduced in Definition 2.5.1.

4.2.1 Problem Formulation

To formulate the problem of interest in this section, one needs the following definition of
Markov policies for controlling gMDPs, which determine the input at the time instant
k only based on the state at the same time instant, i.e., x(k).

Definition 4.2.1. (Markov Policy [171]) Consider a gMDP D = (X,U, x0, T, Y, h).
A Markov policy ρ is a sequence ρ = (ρ0, ρ1, . . .) of universally measurable maps
ρk: X → U with

ρk(U
∣∣ωk) = ρk(U

∣∣ωxk(k)) = 1,

for all ωk ∈ Ω with k ∈ N. Additionally, P denotes the set of all Markov policies, and
PH denotes the set of all Markov policies within time horizon [0, H − 1].

Next, a more general set of control strategies are introduced, with which inputs
are provided based on paths of the gMDP via a memory state. The definition here
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is adapted from [74] by allowing the memory and output update map to be time
dependent.

Definition 4.2.2. (Control Strategy) A control strategy for a gMDP D = (X,U, x0,
T, Y, h) is a tuple

C = (M,U,Y,H,m0, πM, πY),

where,

� M is a Borel set as the memory state set;

� U ⊆ Rn is a Borel set as the observation set;

� Y ⊆ U is a Borel set as the output set;

� H ⊆ N is the time domain;

� m0 ∈ M is the initial memory state;

� πM :M× U× H→P(M,B(M)) is a memory update function;

� πY : M× H → P(Y,B(Y)) is an output update function.

Having Definition 4.2.2, given a gMDP D and a control strategy C, the controlled
gMDP is denoted by C × D. Additionally, PD (resp. PC×D) denotes the probability
measure over the space of output sequences of D (resp. C ×D). Next, a measurable
labeling function is introduced to show that how a gMDP D as in (2.4.3) can be
connected to a DFA A.

Definition 4.2.3. (Labeling Function) Given a gMDP D = (X,U, x0, T, Y, h) and a
DFA A = (Q, q0,Π, τ, F ), a measurable labeling function L : Y → Π and a function
LH : Y H → ΠH are defined as follows. Consider a finite output sequence yω(H−1) =(
y(0), y(1), . . . , y(H − 1)

)
∈ Y H of D with some H ∈ N≥1. The trace of yω(H−1) over

Π is σ = LH(yω(H−1)) = (σ0, σ1, . . . , σH−1), where σk = L(y(k)) for all k ∈ [0, H − 1].
Moreover, yω(H−1) is accepted by A, denoted by yω(H−1) |= A, if LH(yω(H−1)) ∈ L(A).

Since the desired safety properties are modeled with DFA A, here, the performance
of the gMDP D concerning this property is evaluated in terms of PD{yω(H−1) |= A}
within a bounded-time horizon. To this end, a product gMDP based on D and A needs
to be constructed, which is defined as follows.

Definition 4.2.4. (Product gMDP [74])Given a gMDP D = (X,U, x0, T, Y, h), a DFA
A = (Q, q0,Π, τ, F ), and a labeling function L : Y → Π, the product of D and A is a
gMDP and defined as

D⊗A = {X̄, Ū , x̄0, T̄ , Ȳ , h̄},

where

� X̄ := X ×Q is the state set;
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� Ū := U is the input set;

� x̄0 := (x0, q̄0) is the initial state with

q̄0 = τ
(
q0, L ◦ h(x0)

)
; (4.2.1)

� T̄ (dx′ × {q′} |x, q, u) is the stochastic kernel that assigns for any (x, q) ∈ X̄ and
u ∈ Ū , the probability T̄ (dx′ × {q′}|x, q, u) := 1{q+}(q

′)T (dx′|x, u), with q+ =
τ(q, L ◦ h(x′)), where 1Q′(·) is the indicator function for a set Q′ ⊆ Q, i.e., if
q′ ∈ Q′, then 1Q′(q′) = 1, otherwise 1Q′(q′) = 0;

� Ȳ := Y is the output set;

� h̄(x, q) := h(x) is the output map.

Having definitions above, I am ready to propose the main problem in Section 4.2.
Concretely, two different problems according to different types of safety specifications
are of interest. In the following discussion, η denotes the maximal tolerable probability
of violating the safety specification. For some safety specifications, e.g., those expressed
as co-safe-LTLF properties [63], all infinite output sequences that satisfy this type of
specifications have a finite good prefix. In this case, a DFA A that accepts all good
prefixes is built to model the safety specifications of this kind. Accordingly, a problem
of robust satisfaction, as defined follows, would be of interested.

Problem 4.2.5. (Robust Satisfaction) Consider a gMDP D as in (2.4.3).
The problem of robust satisfaction with respect to the parameter η is to design
a Safe-visor architecture as in Figure 1.1 for D such that

PD

{
yωH |= A

}
≥ 1− η, (4.2.2)

where A is a DFA that accepts all good prefixes of the desired safety specification.

Meanwhile, for some other safety specifications, e.g., those expressed as safe-LTLF

properties [166], all infinite output sequences that violate these specifications have a
finite bad prefix. In this case, the specifications are modeled with a DFA A that accepts
all bad prefixes. Correspondingly, a problem of worst-case violation is of interest, as
defined below.

Problem 4.2.6. (Worst-case Violation) Consider a gMDP D as in (2.4.3).
The Problem of worst-case violation with respect to the parameter η is to de-
sign a Safe-visor architecture as in Figure 1.1 for D such that

PD

{
yωH |= A

}
≤ η, (4.2.3)

where A is a DFA that accepts all bad prefixes of the desired safety specification.
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Figure 4.1: Running example: A system with two cars.

q0 q1 q2 q3

q5 q4

p1

p1p1
p1

p2 p2 p2

p2p3p3p3p3

p1 _ p2 _ p3 p1 _ p2 _ p3

Figure 4.2: DFA modeling ψ, with accepting state q4, alphabet Π = {p1, p2, p3} and labeling
function L : Y → Π, where L(y) = p1 when y ∈ (3, 10], L(y) = p2 when y ∈ [0, 3]
and L(y) = p3 when y ∈ (− inf, 0) ∪ (10,+ inf).

It is also worth noting that a running example is provided here to demonstrate the
theoretical results more intuitively.
Running example. In the running example, a system with two cars, which is

adapted from [74], is deployed. This example is depicted in Figure 4.1 and can be
modeled by the following set of stochastic difference equations:

D :

{
x(k + 1) = Ax(k) +Bu(k) +Rς(k),
y(k) = Cx(k),

k ∈ N,

with

A=
[
1 −0.15 0.15
0 0.6 0
0 0 0.6

]
, B=[−0.03 ; 1 ; 0], R=[0.006 ; 0 ; 0.1], C=[1 ; 0 ; 0]⊤.

Here, x(k) = [x1(k);x2(k);x3(k)] is the state of the system, in which x1(k), x2(k),
and x3(k) denote the distance between cars, and velocities of follower and leader cars,
respectively. Input u(k) ∈ [−8, 8] is the external actuation of the follower car. Besides,
ς(k) is a sequence of standard Gaussian random variable that models the unpredictable
changes in the leader car’s velocity and in the distance between two cars, and y(k)
represents the output of the system. Here, the safety specification ψ requires: (i)
within 8 time instances, the system output should reach [0, 3] and then stay within
[0, 3] for 3 time instances after it reaches [0, 3]; (ii) the output should not exceed [0, 10].
The DFA modeling ψ is shown in Figure 4.2. Accordingly, the problem of robust
satisfaction corresponding to this DFA should be considered.

4.2.2 Design of Safety Advisor

Consider a gMDP D that models the original stochastic systems. To build the safety
advisor, a finite abstraction of D, denoted by D̂, needs to be constructed using the
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results in Section 3.2.1. Accordingly, the (ϵ, δ)-approximate probabilistic relation in
Definition 2.4.8 is used to quantify the similarity between D and D̂, which is the key
insight for providing a formal safety guarantee. The (ϵ, δ)-approximate probabilistic re-
lation between D and D̂ is established leveraging the results in Section 3.2.2 and 3.2.3.1

Remark 4.2.7. In general, by reducing the quantization parameters (i.e. the size of the
cells for constructing the finite abstraction, as discussed in Section 3.2.1) in partitioning
the continuous state sets, a better safety guarantee can be provided by the safety advisor,
but at the cost of increasing the execution time of the supervisor. This is shown with
an example in Section 4.4.2.

Running example (continued). By deploying the results in Section 3.2.1, a
reduced-order version for the original model is first constructed with scalar state and
input sets via balance truncation as implemented in MATLAB. This results in a reduced-
order model

D̂r :

{
x̂r(k + 1) = Ârx̂r(k) + B̂rûr(k) + R̂rς(k),

ŷr(k) = Ĉrx̂r(k),
k ∈ N,

where Âr = 1, B̂r = 0.3469, and Ĉr = 1 (the index r signifies the reduced-order version of
the original model), with a reduction matrix P = [1 ; 0.76 ; 0]. Additionally, R̂r would
be selected later when establishing the approximate probabilistic relation. Then, a
finite abstraction of the reduced-order model is built by considering X̂r = [0, 10] as
the region of interest for D̂r, and uniformly dividing this region into 100 partitions.
Moreover, the input set is uniformly partitioned into cells whose lengths are 0.03. For
establishing (ϵ,δ)-approximate probabilistic relation, Û ′ = {û ∈ Û | − 0.3 ≤ û ≤ 0.3}
and δ = 0.01 are chosen, and the expected range of ϵ is set as [0.05, 1]. Then, the
finite abstraction is (ϵ, δ)-stochastically simulated by original model with the relation
R = {(x, x̂)|(x− Px̂)⊤M(x− Px̂) ≤ ϵ2} where

M =
[

2.4021 −0.2239 0.2239
−0.2239 0.03576 −0.03576
0.2239 −0.03576 0.03576

]
,

ϵ = 0.7984, and the interface function is ν(x, x̂, û) := K(x − Px̂) + Dx̂ + R̃û with
K = [7.5764 ;−1.2399 ; 1.2399]⊤, D = 0.1852, and R̃ = 0.2530. Moreover, R̂r=0.0159
is selected as in (3.2.36), and the lifting stochastic kernel for this relation is constructed
such that the noise term in the original and finite systems are the same.
Having a finite abstraction D̂, which is (ϵ, δ)-stochastically simulated by D, a robust

controller, denoted by C̃ρ, is designed by leveraging D̂ and used as the safety advisor
in the Safe-visor architecture for the original gMDP. The design procedure and the
running mechanism of the safety advisor is given in Figure 4.3. As shown in Figure 4.3
(left), a Markov policy ρ is first synthesized for the product gMDP D̂ ⊗ A. Then, a

1Note that Section 3.2 focuses on building abstraction and establishing (ϵ, δ)-approximate probabilistic
relation for stochastic systems with adversary input selected by rational agent. However, gMDP
can be treated as a game without any adversary inputs (i.e., one and a half player games) so that
the method in Section 3.2 is still applicable to the problem of interest in this section.
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Figure 4.3: Left: Synthesizing Markov policy for D̂ ⊗ A. Right: Construction of C̃ρ (the
yelow region).

control strategy C̃ρ is constructed based on ρ as depicted in Figure 4.3 (right). In
runtime, when a state x of D is fed to C̃ρ:

1. State x̂ of D̂ is first updated according to x and the conditional kernel LT .
Then, the state q of A is updated according to the output function h(x) of D and
transition function τ of A;

2. û is provided by ρ based on x̂ and q, and is refined to D via the interface function
ν as in (2.4.5).

Here, the construction of C̃ρ is formally defined as follows.

Definition 4.2.8. (Construction of C̃ρ) Given a Markov policy ρ = (ρ0, ρ1, . . . , ρH−1)

for D̂⊗A, a control strategy C̃ρ = (M̃, Ũ, Ỹ, H̃, m̃0, π̃M, π̃Y) is constructed for D, with

� M̃ = X × X̂ ×Q;
� Ũ = X;
� Ỹ = U ;
� H̃ = [0, H − 1];
� m̃0=

(
m̃X(0), m̃X̂(0), m̃Q(0)

)
∈ M̃ with m̃X(0) = x0, m̃X̂(0) = x̂0 and m̃Q(0) =

τ
(
q0, L ◦ h(m̃X(0))

)
;

� π̃M updates
(
m̃X(k), m̃X̂(k), m̃Q(k)

)
∈ M̃ at all time instant k ∈ H\{0} with the

following steps:

1. update m̃X̂(k) according to the conditional stochastic kernel

LT

(
dx̂

∣∣ m̃X̂(k − 1), m̃X(k − 1), x(k), û(k − 1)
)
, (4.2.4)

with x(k) which is the state of D at time instant k and û(k−1) = ρ̃k(m̃X(k−
1), m̃X̂(k − 1), m̃Q(k − 1));

2. update m̃X(k) as m̃X(k) = x(k);
3. update m̃Q(k) as m̃Q(k) = τ

(
m̃Q(k − 1), L ◦ h(m̃X(k))

)
;
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� π̃Y updates y(k) ∈ Y at time instant k ∈ H as y(k) = ν
(
m̃X(k), m̃X̂(k), ρk(m̃X̂(k),

m̃Q(k))
)
, where ν is the interface function associated with the (ϵ-δ)-approximate

probabilistic relation.

Remark 4.2.9. The conditional stochastic kernel (4.2.4) can be obtained by decom-
posing the lifting kernel LT (dx

′ × dx̂′ | x, x̂, û) in Definition 2.4.8 as

LT

(
dx′|x, x̂, x̂′, ν(x, x̂, û)

)
T̂ (dx̂′|x̂, û). (4.2.5)

This decomposition is feasible according to [33, Corollary 3.1.2].

Before synthesizing ρ for D̂ ⊗ A, the following assumption is required for the (ϵ,δ)-
approximate probabilistic relation.

Assumption 4.2.10. Consider gMDPs D = (X,U, x0, T, Y, h) and D̂ = (X̂, Û , x̂0,
T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D as in Definition 2.4.8. It is assumed that∫
R̄x̂′

LT

(
dx′|x, x̂, x̂′, ν(x, x̂, û)

)
≥ 1− δ

holds ∀x̂, x̂′ ∈ X̂, with R̄x̂′ = {x′ ∈ X|(x′, x̂′) ∈ R} and LT (dx
′|x, x̂, x̂′, ν(x, x̂, û))

being the conditional probability of x′ ∈ X given x, x̂, x̂′ and ν(x, x̂, û).

Similar to Assumption 3.3.2, Assumption 4.2.10 does not introduce extra subtlety in
practice for establishing an (ϵ,δ)-approximate probabilistic relation between the original
gMDP D and its finite abstraction D̂. Now, I am ready to discuss how to synthesize
a Markov policy ρ for the gMDP D̂⊗A concerning Problem 4.2.5 and 4.2.6, given an
(ϵ, δ)-approximate probabilistic relation.
Problem of Robust Satisfaction. For the problem of robust satisfaction as in

Problem 4.2.5, consider a gMDP D = (X,U, x0, T, Y, h) and its finite abstraction D̂ =
(X̂, Û , x̂0, T̂ , Y, ĥ), a DFA A that characterizes the desired safety specification and the
product gMDP D̂ ⊗ A = {X̄, Ū , x̄0, T̄ , Ȳ , h̄} as in Definition 4.2.4. Given a Markov
policy ρ = (ρ0, ρ1, . . . , ρH−1) defined over the time horizon [0, H], a cost-to-go function
V̄ ρ
n : X̂ × Q → [0, 1] is defined, which assigns a real number to states of D̂ ⊗ A at

time instant H − n. This function is initialized with V̄ ρ
0 (x̂, q) = 1 when q ∈ F , and

V̄ ρ
0 (x̂, q) = 0 when q /∈ F , and recursively compute V̄ ρ

n+1(x̂, q) as

V̄ ρ
n+1(x̂, q) :=


(1− δ)

∑
x̂′∈X̂

V̄ ρ
n

(
x̂′, q(x̂′, q)

)
T̂
(
x̂′
∣∣ x̂, ρH−n−1(x̂, q)

)
, if q /∈ F ;

1, if q ∈ F,

(4.2.6)

with
q(x̂′, q) := argmin

q′∈Q′
ϵ(x̂

′)
V̄ ρ
n (x̂

′, q′), (4.2.7)

where

Q′
ϵ(x̂

′) :=
{
q′ ∈ Q

∣∣ ∃x ∈ X s.t. q′ = τ(q, L ◦ h(x)) with h(x) ∈ Nϵ(ĥ(x̂
′))

}
, (4.2.8)
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and

Nϵ(ŷ) := {y ∈ Y | ∥y − ŷ∥ ≤ ϵ}. (4.2.9)

With this notion, the following theorem provides the safety guarantee associated with
ρ for the problem of robust satisfaction.

Theorem 4.2.11. Consider gMDPs D = (X,U, x0, T, Y, h) and D̂ = (X̂, Û , x̂0,
T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A = (Q, q0,Π, τ, F ) characterizing the desired
safety property. For any Markov policy ρ designed for D̂ × A and a control
strategy C̃ρ of D constructed based on ρ as in Definition 4.2.8, one obtains

PC̃ρ×D{∃k ≤ H, yωk |= A} ≥ V̄ ρ
H(x̂0, q̄0), (4.2.10)

with yωH being output sequences of D up to the time instant H, V̄ ρ
H(x̂0, q̄0) com-

puted as in (4.2.6), and q̄0 = τ(q0, L ◦ h(x0)).

Theorem 4.2.11 is adapted from Theorem 3.3.4 with some modification and can
therefore be proved similarly. Since the safety advisor is responsible for maximizing
the safety probability, a ρ ∈ PH that maximizes V̄ ρ

H(x̂0, q̄0) as in (4.2.10) is of particular
interest. The following proposition shows how such a Markov policy can be synthesized.

Proposition 4.2.12. Consider gMDPs D = (X,U, x0, T, Y, h) and D̂ = (X̂, Û ,
x̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A = (Q, q0,Π, τ, F ). The Markov policy
ρ∗ = (ρ∗0, ρ

∗
1, . . . , ρ

∗
H−1) maximizes V̄ ρ

H(x̂0, q̄0) as in (4.2.10), with

ρ∗H−n−1 ∈ argmax
ρH−n−1∈P

(1− δ)
∑
x̂′∈X̂

V̄ ∗
n

(
x̂′, q∗(x̂′, q)

)
T̂
(
x̂′
∣∣ x̂, ρH−n−1(x̂, q)

)
, (4.2.11)

for all n ∈ [0, H − 1].

In Proposition 4.2.12, V̄ ∗
n (x̂, q) is the cost-to-go function associated with ρ∗, and this

function can be recursively computed as

V̄ ∗
n+1(x̂, q) :=


max

ρH−n−1∈P
(1− δ)

∑
x̂′∈X̂

V̄ ∗
n

(
x̂′, q∗(x̂′, q)

)
T̂
(
x̂′
∣∣x̂, ρH−n−1(x̂, q)

)
, if q /∈F ;

1, if q∈F,
(4.2.12)

initialized by V̄ ∗
0 (x̂, q) = 1, when q ∈ F , and V̄ ∗

0 (x̂0, q) = 0 otherwise, where

q∗(x̂′, q) := argmin
q′∈Q′

ϵ(x̂
′)
V̄ ∗
n (x̂

′, q′), (4.2.13)

and Q′
ϵ(x̂

′) is the set as in (4.2.8).
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Problem of Worst-case Violation. For the problem of worst-case violation as
in Problem 4.2.6, consider a Markov policy ρ = (ρ0, ρ1, . . . , ρH−1) defined over the
time horizon [0, H]. A cost-to go function V ρ

n : X̂ ×Q → [0, 1] is defined, which maps
each state of D̂ ⊗ A at the time instant H − n to a real number. Here, V ρ

n+1(x, q) is
recursively computed as

V ρ
n+1(x̂, q) :=


(1−δ)

∑
x̂′∈X̂

V ρ
n

(
x̂′, q̄(x̂′, q)

)
T̂
(
x̂′
∣∣x̂, ρH−n−1(x̂, q)

)
+δ, if q /∈F ;

1, if q∈F,
(4.2.14)

initialized by V ρ
0(x̂, q) = 1, when q ∈ F , and V ρ

0(x̂, q) = 0 otherwise, where

q̄(x̂′, q) := argmax
q′∈Q′

ϵ(x̂
′)
V ρ

n(x̂
′, q′), (4.2.15)

and Q′
ϵ(x̂

′) is the set as in (4.2.8). Similar to Theorem 4.2.11, next theorem provides
the safety guarantee associated with ρ for the problem of worst-case violation.

Theorem 4.2.13. Consider gMDPs D = (X,U, x0, T, Y, h) and D̂ = (X̂, Û , x̂0,
T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A = (Q, q0,Π, τ, F ) characterizing the desired
safety property. For any Markov policy ρ designed for D̂ × A and a control
strategy C̃ρ of D constructed based on ρ as in Definition 4.2.8, one obtains

PC̃ρ×D{∃k ≤ H, yωk |= A} ≤ V ρ
H(x̂0, q̄0), (4.2.16)

where yωH is the output sequences of D up to the time instant H, V ρ
H(x̂0, q̄0) is

computed as in (4.2.14), and q̄0 = τ(q0, L ◦ h(x0)).

Theorem 4.2.13 is adapted from Theorem 3.3.10 with some modification and so that
it can be proved in a similar way. As for the problem of worst-case violation, the safety
advisor is responsible for minimizing the probability of violating the desired safety
specifications. Thus, a ρ ∈ PH that minimizes V ρ

H(x̂0, q̄0) in (4.2.16) is of particular
interest. The following proposition shows how to synthesize such a Markov policy.

Proposition 4.2.14. Consider gMDPs D = (X,U, x0, T, Y, h) and D̂ = (X̂, Û ,
x̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A = (Q, q0,Π, τ, F ). The Markoc policy
ρ∗ = (ρ∗0 , ρ∗1 , . . . , ρ∗H−1) minimizes V ρ

H(x̂0, q̄0) in (4.2.16), with

ρ∗H−n−1 ∈ argmin
ρH−n−1∈P

(
(1− δ)

∑
x̂′∈X̂

V ∗,n
(
x̂′, q̄∗(x̂

′, q)
)
T̂
(
x̂′
∣∣ x̂, ρH−n−1(x̂, q)

)
+ δ

)
,

(4.2.17)

for all n ∈ [0, H − 1].
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In Proposition 4.2.14, V ∗,n(x̂, q) denotes the cost-to-go function associated with ρ∗.
This function is initialized with V ∗,0(x̂, q) = 1, when q ∈ F , V ∗,0(x̂, q) = 0, when q /∈ F ,
and recursively compute it as

V ∗,n+1(x̂, q) :=
min

ρH−n−1∈P

(
(1− δ)

∑
x̂′∈X̂

V ∗,n
(
x̂′, q̄∗(x̂

′, q)
)
T̂
(
x̂′
∣∣ x̂, ρH−n−1(x̂, q)

)
+ δ

)
, if q /∈ F ;

1, if q ∈ F,

(4.2.18)

where
q̄∗(x̂

′, q) := argmax
q′∈Q′

ϵ(x̂
′)
V ∗,n(x̂

′, q′), (4.2.19)

and Q′
ϵ(x̂

′) is a set as in (4.2.8).
Finally, the construction of safety advisor is summarized as follows:

� For the problem of robust satisfaction, a Markov policy ρ∗ is synthesized as
in (4.2.11). Then, control strategy C̃ρ∗ is constructed as in Definition 4.2.8 based
on ρ∗ and apply C̃ρ∗ as the safety advisor.

� As for the problem of worst-case violation, a control strategy C̃ρ∗ is constructed
as in Definition 4.2.8 based on a Markov policy ρ∗ synthesized as in (4.2.17), and
employ C̃ρ∗ as the safety advisor.

Since both ρ∗ and ρ∗ are look-up tables that are computed offline, the safety advisor
can be applied efficiently at runtime.

4.2.3 Design of Supervisor

In general, the proposed supervisor takes two steps to decide whether to accept the
input from the unverified controller, denoted by uuc(k), at every time instant k:

� Step 1: Check whether the (ϵ,δ)-approximate probabilistic relation will still hold
between the finite abstraction and the original system presuming that uuc(k) is
accepted. If the relation will not hold, reject uuc(k) without going through Step
2 and feed input provided by the safety advisor, denoted by usafe, to the system
D.

� Step 2: Estimate the probability of violating the desired safety specification,
denoted by Epv(k), presuming that uuc(k) is accepted. Accept uuc(k) only if
Epv(k) ≤ η; otherwise, feed usafe to the system D.

Here, the Safe-visor architecture with the safety-advisor proposed in Section 4.2.2
and the Supervisor in this subsection is illustrated in Figure 4.4 (left). Different from
Figure 4.3 (right), û′ that is fed to the abstraction D̂ is decided by the Supervisor,
instead of ρ. Concretely, if uuc(k) is rejected, one has û′ = û, with û being the input
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Figure 4.4: Left: Safe-visor architecture designed based on an (ϵ,δ)-approximate probabilistic
relation. Right: Controlled gMDP C̃ρ′ ×D that is equivalent to D operating in
the Safe-visor architecture.

provided by ρ; otherwise, one need to select û′ ∈ Û ′, with Û ′ being the input set of D̂
as discussed in Section 3.2.3 (the selection of such û′ would be elaborated later). Step
1 ensures that uuc(k) would only be accepted if there exists û′ such that the safety
guarantee based on the (ϵ, δ)-approximate probabilistic relation still holds. Checking
Step 1 can be performed by virtue of the following proposition.

Proposition 4.2.15. Consider a gMDP D = (X,U, x0, T, Y, h) and its finite
abstraction D̂ = (X̂, Û , x̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D. If uuc(k) is applied to D at the
time instant k, the (ϵ,δ)-approximate probabilistic relation still holds between D
and D̂ at the time instant k + 1 if the set

Uf =
{
û ∈ Û ′ ∣∣P{(x′, x̂′) ∈ R

}
≥ 1− δ, with

x′ = f(x(k), uuc(k), ς(k)), x̂
′ = f̂(x̂(k), û, ς̂(k))

}
, (4.2.20)

is not empty, with Û ′ being the input set for D̂. Here, f and f̂ are transition
maps of D and D̂ as in (2.4.2), respectively. Moreover, x(k) ∈ X, x̂(k) ∈ X̂, ς(k)
and ς̂(k) are current states of D and D̂, noise affecting D and D̂, respectively.

Intuitively, the non-emptiness of Uf ensures that there exists at least one û ∈ Û ′

corresponding to uuc(k) such that (x(k + 1), x̂(k + 1)) ∈ R holds with the probability
of at least 1 − δ. Accordingly, if Uf is not empty, and uuc(k) is accepted after going

through Step 2, one needs to use û ∈ Uf for D̂. The selection of û is related to the
estimation Epv(k) in Step 2 which is discussed later. Prior to discussing how to obtain
Epv(k), I show how to check whether Uf is empty with the help of Proposition 4.2.15
through the running example.

Running example (continued). Consider the current state x(k) of the original
model, x̂(k) of the finite abstraction, and input uuc(k) provided by the unverified
controller. To show whether Uf for the running example is empty, one needs to show
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whether there exists û ∈ Û ′ such that

∥Ax(k) +Buuc(k) +Rς(k)−P
(
Ârx̂(k) + B̂rû+ R̂rς̂(k)

)
∥M ≤ ϵ (4.2.21)

holds for all ∥ς∥ ≤ χ−1
1 (1 − δ) with δ = 0.01, ς̂(k) = ς(k), ∥x̄∥M =

√
x̄⊤Mx̄, and

χ−1
1 (·) being the chi-square inverse cumulative distribution function with one degree of

freedom. Note that (4.2.21) holds when

∥φ− PB̂rû∥M ≤ ϵ− γ, (4.2.22)

with φ = Ax(k) +Buuc(k)− PÂrx̂r(k) and

γ = max
∥ς∥≤χ−1

1 (0.99),β∈∆
∥(R− PR̂r)ς + Pβ∥M .

Here, ∆ denotes the set of all possible quantization errors introduced by discretization
of the original state set as in (3.2.11). Note that Û ′ contains a finite number of û
(usually not too large in practice), φ can be readily computed at runtime, and γ can
be computed offline after constructing the finite abstraction. Therefore, one can find
out whether there exists û ∈ Û ′ such that (4.2.22) holds at runtime efficiently.

Next, I proceed with discussing how to obtain Epv(k) in Step 2. First, the Safe-visor
architecture as in Figure 4.4 (left) can be equivalently described by a controlled gMDP
C̃ρ′ × D as in Figure 4.4 (right) according to its running mechanism. Here, C̃ρ′ (the
yellow region) is a control strategy constructed as in Definition 4.2.8 based on a Markov
policy ρ′, which differs from ρ∗ as in (4.2.11) (for problem of robust satisfaction) or
ρ∗ as in (4.2.17) (for problem of worst-case violation) due to the acceptance of unver-
ified controllers. Consider the maximal tolerable probability of violating the desired
safety specification (i.e., η) within a time horizon [0, H]. For the problem of robust
satisfaction, if the supervisor is designed such that one has

1− V̄ ρ′

H (x̂0, q̄0) ≤ η, (4.2.23)

Then, (4.2.2) can be ensured by combining (4.2.23) and Theorem 4.2.11. Similarly, if
the supervisor is designed for the problem of worst-case violation such that

V ρ′

H(x̂0, q̄0) ≤ η, (4.2.24)

one can guarantee (4.2.3) by considering (4.2.24) and Theorem 4.2.13.2 Thus, a direct

idea is to set Epv(k) = 1−V̄ ρ′

H (x̂0, q̄0) for the problem of robust satisfaction and Epv(k) =
V ρ′

H(x̂0, q̄0) for the problem of worst-case violation. Note that when the initial state
(x̂0, q̄0) and the time horizon [0, H] are fixed, V̄ ρ

H(x̂0.q̄0) and V
ρ
H(x̂0.q̄0) can be computed

given ρ′. The remaining problem is how to determine ρ′ at runtime.
In general, determining ρ′ at runtime is very challenging. At each time instant k ∈

[0, H−2] in each individual execution, ρ′z are unknown for all time instant z ∈ (k,H−1]

2In both (4.2.23) and (4.2.24), one only needs to focus on the case in which q̄0 /∈ F , since q̄0 ∈ F
indicates that the accepting states are reached at the initial state, which is not of interest.
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since the supervisor does not know which inputs the unverified controller will provide
in the future. Moreover, the supervisor does not have complete information about ρ′z
for all z ∈ [0, k], either. In each individual execution, the system only reaches one state
at each time step. Therefore, the supervisor does not know what inputs the unverified
controller would offer if the system reached X̂ × Q\{(x̂(z), q(z))} at time instants
z ∈ [0, k], let alone whether they would be accepted and what û′ would accordingly be
fed to D̂. As a result, ρ′z(x̃, q̃) is unknown for all (x̃, q̃) ∈ X̂ × Q\{(x̂(z), q(z))}, with
x̂(z) and q(z) being the state of D̂ and A at time instant z ∈ [0, k], respectively.

To cope with this issue, instead of determining ρ′ and computing V̄ ρ′

H (x̂0, q̄0) or

V ρ′

H(x̂0, q̄0) at runtime, a history-based supervisor is proposed to provide an estimation
of Epv(k) without requiring to know ρ′ at runtime. This estimation is given with the
help of history paths ω̄k of the Safe-visor architecture as in Figure 4.4 (left), which is
defined below.

Definition 4.2.16. (History Path of Safe-visor Architecture) Consider a finite ab-
straction D̂ = (X̂, Û , x̂0, T̂ , Y, ĥ), a DFA A = (Q, q0,Π, τ, F ) characterizing the safety
property of interest and the corresponding Safe-visor architecture as in Figure 4.4 (left).
The history path of the Safe-visor architecture up to the time instant k is denoted by

ω̄k =
(
x̂(0), q(0), û(0), x̂(1), q(1), û(1), . . . , x̂(k − 1), q(k − 1), û(k − 1), x̂(k), q(k)

)
,

where x̂(k) ∈ X̂, q(k) ∈ Q, and û(k) ∈ Û are states of D̂, A, and the input fed to D̂ at
the time instant k, respectively. Moreover, ω̄x̂k, ω̄qk, and ω̄uk denote the subpath of x̂,
q, and û corresponding to ω̄k, respectively.

In general, history-based supervisor provides Epv(k) such that (4.2.23) or (4.2.24)
can be respected. Consider a gMDP D = (X,U, x0, T, Y, h) and its finite abstraction
D̂ = (X̂, Û , x̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, a DFA A = (Q, q0,Π, τ, F ), a labeling function
L : Y → Π associated with A as in Definition 4.2.3, and η to be the maximal tolerable
probability of violating the desired safety specification. I proceed with showing how to
design such a supervisor for both problems of interest.
Supervisor for the Problem of Robust Satisfaction. The design of supervisor

for the problem of robust satisfaction is formally proposed as follows.

Definition 4.2.17. (History-based Supervisor for the Problem of Robust Satisfaction)
At each time instant k ∈ [0, H−1], given the history path ω̄k as in Definition 4.2.16, the
feasibility of an input uuc(k) from the unverified controller is checked by the following
two steps:

i) Check set Uf as in (4.2.20) and reject uuc(k) if Uf is empty;

ii) If Uf is not empty, estimate Epv(k) as

Epv(k) = Ēpv(k) =
k∏

z=1

(
(1− δ)

∑
x̂∈X̂′

ϵ(q(z−1))

T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

)
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× (1− δ)
(
1−

∑
x̂∈X̂

V̄ ∗
H−k−1

(
x̂, q∗(x̂(k), q(k))

)
T̂ (x̂

∣∣ x̂(k), û∗))

+ δ +

k∑
j=1

(
δ

j∏
z=1

(
(1− δ)

∑
x̂∈X̂′

ϵ(q(z−1))

T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

))
, (4.2.25)

with V̄ ∗
H−k−1 as in (4.2.12) associated with the safety advisor, q∗ as in (4.2.13),

û∗ = argmax
û∈Uf

Ēpv(k), (4.2.26)

and

X̂ ′
ϵ(q(z−1)) :=

{
x̂∈X̂

∣∣∃x∈X,τ(q(z−1), L ◦ h(x)) /∈F, h(x)∈Nϵ(ĥ(x̂))
}
, (4.2.27)

where Nϵ(ĥ(x̂)) is as in (4.2.9). If Epv(k) ≤ η, the supervisor accepts uuc(k) and

feeds û′ = û∗ as in (4.2.26) to D̂; otherwise, it rejects uuc(k) and feeds û′ = û to
D̂, with û provided by ρ∗k as in (4.2.11) associated with the safety advisor.

By applying the history-based supervisor as in Definition 4.2.17, (4.2.23) can be
guaranteed so that the problem of robust satisfaction can be solved. This is formally
formulated in the next theorem.

Theorem 4.2.18. Consider a gMDP D = (X,U, x0, T, Y, h) and a DFA A =
(Q, q0,Π, τ, F ) that characterizes the desired safety specification. Employing the
supervisor as in Definition 4.2.17 at all time instants k ∈ [0, H − 1] in the Safe-
visor architecture, one has

PD

{
yωH |= A

}
≥ 1− η, (4.2.28)

for the problem of robust satisfaction as in Problem 4.2.5, with yωH being output
sequences of D up to the time instant H.

The proof of Theorem 4.2.18 is provided in Section 4.6. Here are some intuition
for different parts in Epv(k) as in (4.2.25) and the complexity for computing them at
runtime. Generally, the estimation of Epv(k) in (4.2.25) can be divided into three parts:

� Part 1:
∏k

z=1

(
(1− δ)

∑
x̂∈X̂′

ϵ(q(z−1)) T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

)
:

Given the history path ω̄k, Part 1 denotes the maximal probability of D not being
accepted by A within the time horizon [0, k], while x(z)Rx̂(z) holds for all z ∈
[0, k]. As defined in (4.2.27), for all x̂ ∈ X̂ ′

ϵ(q(z−1)) with q(z−1) ∈ Q, there exits
at least one x with xRx̂, such that F is not reachable with x(z) = x. In another
word, if x̂(z) ∈ X̂ ′

ϵ(q(z − 1)), D may not be accepted by A even when one has
x(z)Rx̂(z). Therefore, given x̂(z−1) and û(z−1), (1−δ)

∑
x̂∈X̂′

ϵ(q(z−1)) T̂ (x̂
∣∣ x̂(z−

1), û(z−1)) denotes the maximal probability of D not being accepted by A at the
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time instant z while x(z)Rx̂(z) still holds. As for the complexity of computing
Part 1 at runtime, one has

k∏
z=1

(
(1− δ)

∑
x̂∈X̂′

ϵ(q(z−1))

T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

)

=

k−1∏
z=1

(
(1− δ)

∑
x̂∈X̂′

ϵ(q(z−1))

T̂ (x̂
∣∣x̂(z − 1), û(z − 1))

)
︸ ︷︷ ︸

Term 1

× (1− δ)
∑

x̂∈X̂′
ϵ(q(k−1))

T̂ (x̂
∣∣x̂(k − 1), û(k − 1))

︸ ︷︷ ︸
.

Term 2

On one hand, ∀q ∈ Q, set X̂ ′
ϵ(q) can be computed offline, and T̂ is readily com-

puted when synthesizing the safety advisor. On the other hand, at the time
instant k − 1, Term 1 has already been computed at time instant k − 2. There-
fore, the number of operations required for computing Part 1 at time instant k−1
is proportional to the number of states in the set X̂ ′

ϵ(q(k − 1)).
� Part 2: (1− δ)

(
1−

∑
x̂∈X̂ V̄ ∗

H−k−1

(
x̂, q∗(x̂(k), q(k))

)
T̂ (x̂

∣∣ x̂(k), û∗)):
Part 2 quantifies the probability ofD not being accepted byA within time horizon
[k+1, H], while (i) x(k+1)Rx̂(k+1) holds, given x̂(k), q(k), and û(k) = û∗; (ii)
D is controlled by the safety advisor within [k + 1, H]. Since V̄ ∗

H−k−1 and T̂ are
readily computed when synthesizing the safety advisor, the number of operations
required for computing Part 2 is proportional to the number of elements in sets
X̂ and Uf .

� Part 3: δ +
∑k

j=1

(
δ
∏j

z=1

(
(1− δ)

∑
x̂∈X̂′

ϵ(q(z−1)) T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

))
:

Given the history path ω̄k, Part 3 quantifies the maximal probability of D not
being accepted by A within the time horizon [0, k] while ∃z ∈ [1, k+1] such that
x(z)Rx̂(z) does not hold. Concretely, the first δ in Part 3 quantifies P{(x(1), x̂(1))
/∈ R | (x(0), x̂(0)) ∈ R}. Moreover, the term

δ

j∏
z=1

(
(1− δ)

∑
x̂∈X̂′

ϵ(q(z−1))

T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

)
represents the maximal probability of D not being accepted by A within the time
horizon [0, j+1], while (i) x(z)Rx̂(z) holds for all z ∈ [0, j]; (ii) x(j+1)Rx̂(j+1)
does not hold. One may notice that (1− δ)

∑
x̂∈X̂′

ϵ(q(z−1)) T̂ (x̂
∣∣ x̂(z− 1), û(z− 1))

is the same as Term 2 in Part 1. Therefore, the number of operations needed for
computing Part 3 at the time instant k− 1 is also proportional to the number of
states in the set X̂ ′

ϵ(q(k − 1)).

In conclusion, the number of operations required for computing Epv(k) as in (4.2.25)
is proportional to the number of elements in X̂ and Uf . Consequently, Epv(k) can be
computed efficiently at runtime. The real-time applicability of the supervisor in the
experiments in Section 4.4.
Supervisor for the Problem of Worst-case Violation. Next, the design of the

supervisor for the problem of worst-case violation is discussed.
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4 Abstraction-based Construction of Safe-visor Architecture

Definition 4.2.19. (History-based Supervisor for the Problem of Worst-case Viola-
tion) At each time instant k ∈ [0, H − 1], given the history path ω̄k as in Defini-
tion 4.2.16, the validity of an input uuc(k) from the unverified controller is checked by
the following two steps:

i) Check the set Uf as in (4.2.20) and reject uuc(k) if Uf is empty;

i) If Uf is not empty, estimate Epv(k) as

Epv(k) = Epv(k) = 1−
k∏

z=1

(
(1− δ)

∑
x̂∈X̂′

−ϵ(q(z−1))

T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

)
× (1− δ)

(
1−

∑
x̂∈X̂

V ∗,H−k−1(x̂, q̄∗(x̂(k), q(k)))T̂ (x̂
∣∣ x̂(k), û∗)), (4.2.29)

where V ∗,H−k−1 is as in (4.2.18) associated with the safety advisor, q̄∗ is as in
(4.2.19),

û∗ = argmax
û∈Uf

Epv(k), (4.2.30)

and

X̂ ′
−ϵ(q(z−1)):=

{
x̂∈X̂

∣∣∀x ∈ X, τ(q(z−1), L◦h(x)) /∈F, h(x)∈Nϵ(ĥ(x̂))
}
, (4.2.31)

with Nϵ(ĥ(x̂)) as in (4.2.9). If Epv(k)≤η, the supervisor accepts uuc(k) and feeds

û′ = û∗ as in (4.2.30) to D̂; otherwise, it rejects uuc(k) and feeds û′ = û to D̂,
with û provided by ρ∗k as in (4.2.17) associated with the safety advisor.

By employing the history-based supervisor as in Definition 4.2.19, (4.2.24) is ensured,
which solves the problem of worst-case violation. This is formalized in the next theorem.

Theorem 4.2.20. Consider a gMDP D = (X,U, x0, T, Y, h) and a DFA A =
(Q, q0,Π, τ, F ) characterizing the desired safety specification. Utilizing the super-
visor as in Definition 4.2.19 at all time instants k ∈ [0, H − 1] in the Safe-visor
architecture, one has

PD

{
yωH |= A

}
≤ η, (4.2.32)

for the problem of worst-case violation as in Problem 4.2.6, where yωH are output
sequences of D up to the time instant H.

The proof of Theorem 4.2.20 is provided in Section 4.6. Note that Epv(k) in (4.2.29)
denotes the maximal probability of D not being accepted by A within the time horizon
[0, H], given the history path ω̄k. The term after the first minus sign in (4.2.29) can be
divided into two components as follows:
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Algorithm 2: Running mechanism of Safe-visor architecture for gMDP.

Input: gMDP D = (X,U, x0, T, Y, h), DFA A = (Q, q0,Π, τ, F ), safety advisor
C̃ρ∗ for the problem of robust satisfaction (resp. C̃ρ∗ for the problem of
worst-case violation) as in Section 4.2.2, and the supervisor as in
Definition 4.2.17 (resp. as in Definition 4.2.19).

Output: u(k) for controlling the system D at each time instant k.
1 k = 0, x(0) = x0
2 while k < H do
3 if k = 0 then
4 Initialize x̂(0) = x̂0 such that x0Rx̂0.
5 Update q(0) as q̄0 = τ(q0, L ◦ h(x0)).
6 else
7 Update the state x(k) of D from the measurement.
8 Update q(k) with q(k) = τ

(
q(k − 1), L ◦ h(x(k))

)
.

9 Update x̂(k) with LT (dx̂|x(k), x̂(k − 1), û(k − 1)).

10 end
11 Update uuc(k) from the unverified controller.

12 Update usafe(k) from C̃ρ∗ (resp. C̃ρ∗) according to x̂(k), x(k), and q(k).
13 Feed x̂(k), x(k), q(k), uuc(k), and usafe(k) to the supervisor.
14 Update u(k) and û(k) according to the decision of the supervisor.
15 k = k + 1.

16 end

� Component 1:
∏k

z=1

(
(1− δ)

∑
x̂∈X̂′

−ϵ(q(z−1)) T̂ (x̂
∣∣ x̂(z − 1), û(z − 1))

)
:

Given the history path ω̄k, Component 1 denotes the minimal probability of D
not being accepted by A within the time horizon [0, k], while x(z)Rx̂(z) holds for
all time instant z ∈ [0, k]. According to (4.2.31), for all x̂ ∈ X̂ ′

−ϵ(q(z − 1)) with
q(z − 1) ∈ Q, there is no x with xRx̂ such that F is reached at time step z. In
other words, if x̂(z) ∈ X̂ ′

−ϵ(q(z − 1)), one can ensure that D will not be accepted
by A at the time instant z if one can ensure x(z)Rx̂(z). Therefore, given x̂(z−1)
and û(z− 1), (1− δ)

∑
x̂∈X̂′

−ϵ(q(z−1)) T̂ (x̂
∣∣ x̂(z− 1), û(z− 1)) denotes the minimal

probability of D not being accepted by A at z while x(z)Rx̂(z) still holds.
� Component 2: (1− δ)

(
1−

∑
x̂∈X̂ V ∗,H−k−1(x̂, q̄∗(x̂(k), q(k)))T̂ (x̂

∣∣ x̂(k), û∗)):
Component 2 denotes the probability of D not being accepted by A within the
time horizon [k + 1, H], while (i) x(k + 1)Rx̂(k + 1) holds, given x̂(k), q(k), and
û(k) = û∗; (ii) D is controlled by the safety advisor within [k + 1, H].

Similar to the computation of (4.2.25), Epv(k) as in (4.2.29) can be efficiently com-
puted at runtime. In brief, the required number of operations for computing Epv(k)
in (4.2.29) is also proportional to the number of elements in X̂ and Uf . The real-time
applicability of the supervisor is shown in Section 4.4 through an example. Finally,
the running mechanism of the Safe-visor architecture equipped with the safety advisor
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proposed in Section 4.2.2 and supervisor proposed in Section 4.2.3 is summarized in
Algorithm 2.

4.3 Design of Safe-visor Architecture for General
Discrete-time Stochastic Games

4.3.1 Problem Formulation

In Section 4.3, the stochastic systems of interest are general discrete-time stochastic
games (gDTSGs), as introduced in Definition 2.4.3. Here, it is desired to design a Safe-
visor architecture over these systems while enforcing those safety specifications modeled
by the accepting languages of deterministic finite automata (DFA), as introduced in
Definition 2.5.1. To provide formal safety guarantees regardless of how Player II chooses
adversarial inputs, a Safe-visor architecture is designed over Player I considering that
Player II will select its action after Player I at each time step and in a rational fashion
against the choice of Player I. Note that such setting is common for robust control
problems. Moreover, the full state information of the gDTSGs is considered to be
available, and safety properties are defined over the output of the gDTSGs.

Throughout Section 4.3, η denotes the maximal tolerable probability of violating the
safety specification. Accordingly, similar to Section 4.2, two problems are of interest.

Problem 4.3.1. (Worst-case Violation) Consider a gDTSG D as in Defini-
tion 2.4.3. The problem of worst-case violation with respect to the parameter η
is to design a Safe-visor architecture as in Figure 1.1 (if existing) for Player I
of D such that inequality

PD

{
yωH |= A

}
≤ η, (4.3.1)

holds regardless of how Player II provides adversarial inputs, where A is a DFA
accepting all bad prefixes of the desired safety specification, and yωH are the
output sequences of D up to time step H as in Definition 2.4.4.

Problem 4.3.2. (Robust Satisfaction) Consider a gDTSG D as in Defini-
tion 2.4.3. The problem of robust satisfaction with respect to the parameter
η is to design a Safe-visor architecture as in Figure 1.1 (if existing) for Player I
of D such that inequality

PD

{
yωH |= A

}
≥ 1− η, (4.3.2)

holds regardless of how Player II provides adversarial inputs, where A is a DFA
that accepts all good prefixes of the desired safety specification, and yωH are the
output sequences of D up to time step H as in Definition 2.4.4.
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Figure 4.5: Safety advisor (yellow region), which is a controller over D (green region), with
augmented state (x, x̂, q, û, w) (red dashed rectangle).

4.3.2 Design of Safety Advisor

Given a gDTSG D modeling the stochastic systems of interest, a finite abstraction of
D, denoted by D̂, is constructed for building the safety advisor using the results in
Section 3.2.1. Then, one needs to deploy the results in Section 3.2.2 to established
an (ϵ, δ)-approximate probabilistic relation between D and D̂, which characterizes the
similarity between D and D̂.

Consider the finite abstraction D̂. To construct the safety advisor, one needs to
synthesize a discrete controller Ĉ over the finite abstraction D̂ by leveraging Proposi-
tion 3.3.11 when focusing on the problem of worst-case violation as in Problem 4.3.1,
As for the problem of robust satisfaction as stated in Problem 4.3.2, such controller
Ĉ should be constructed based on Proposition 3.3.5. Using controller Ĉ, the safety
advisor C is built as in Figure 4.5. Here, the safety advisor utilizes an augmented
state (x, x̂, q, û, w), which contains states x, x̂, and q of D, D̂, and A, respectively, the
control input û fed to D̂, and the adversary input w from Player II of D. The running
mechanism of C at each time step is summarized in Algorithm 3.

4.3.3 Design of Supervisor

Next, the design of the supervisor is elaborated. Given a gDTSG D and a safety spec-
ification modeled by DFA A, the design of the supervisor is depicted in Figure 4.6.
Here, the supervisor consists of a augmented state and a decision maker. The aug-
mented state of the supervisor, denoted by (x, x̂, q, û, w), is the same as that of the
safety advisor, and I simply say the augmented state of the Safe-visor architecture in
the rest of the discussion for the sake of brevity. At runtime, x, x̂, q, and w in the
augmented states are updated as described in Algorithm 3. Meanwhile, different from
step 8 of Algorithm 3, û here is updated as û := û′, in which û′ is determined based
on the decision of the supervisor (cf. Definition 4.3.4 and 4.3.6, either accepting or
rejecting the unverified controller). With the augmented state, the decision maker of
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Figure 4.6: Supervisor in the architecture (yellow region).

the supervisor decides whether or not to accept the input from the unverified controller
at time instant k, denoted by uuc(k), in the following way:

� Step 1: Presume that uuc(k) is accepted. If the (ϵ,δ)-approximate probabilistic
relation between D and D̂ does not hold any more, reject uuc(k) without going
through Step 2 and feed input from the safety advisor, denoted by usafe, to D;
proceed to Step 2, otherwise;

� Step 2: Estimate the probability of violating the desired safety properties, de-
noted by Epv(k), presuming that uuc(k) is accepted. Accept uuc(k) if Epv(k)≤η;
otherwise, feed usafe to D.

Concretely, step 1 aims at maintaining the (ϵ, δ)-approximate probabilistic relation
between D and D̂, which is crucial for providing safety guarantee. One can check Step
1 with the following proposition.

Proposition 4.3.3. Consider a gDTSG D=(X,U,W,X0, Y, h) and its finite
abstraction D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D with respect to the relation
R and Rw as in (3.2.15) and (3.2.16), respectively. If the set

Uf :=
{
û ∈ Û

∣∣∀(w, ŵ)∈Rw,P
{
(x′, x̂′)∈R

}
≥1−δ holds,

with x′=f(x(k), uuc(k), w, ς(k)), x̂
′= f̂(x̂(k), û, ŵ, ς̂(k))

}
, (4.3.3)

is not empty, then the (ϵ,δ)-approximate probabilistic relation can be maintained
between D and D̂ at the time instant k + 1 when uuc(k) is applied to D at the
time instant k.

For the set Uf defined in (4.3.3), f and f̂ are defined as in (2.4.4), and x(k) ∈ X,

x̂(k) ∈ X̂, ς(k) and ς̂(k) denote current states of D and D̂, noises affecting D and D̂,
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Algorithm 3: Running mechanism of the safety advisor for gDTSGs.

Input: A gDTSG D, a safety specification modeled by DFA A = (Q, q0, Π, τ, F ),
safety advisor C, with its associate augmented state (x, x̂, q, û, w), and the
current state x(k) of D.

Output: u(k) for controlling D at each time step k ∈ N.
1 if k = 0 then
2 Update x̂(k) such that (x(k), x̂(k)) ∈ R (cf. Condition 3 of

Definition 2.4.6).
3 else
4 Update x̂(k) according to x(k), the stochastic kernel LT , and w(k − 1) (cf.

Condition 2 of Definition 2.4.6 and Definition 3.3.1).
5 end
6 Update q of A as q(k) = τ(q(k − 1), L ◦ h(x(k))).
7 Compute u(k) by refining ûc, which is offered by Ĉ based on x̂(k) and q(k), to

D with the interface function ν (cf. Figure 4.5).
8 Updates û(k) as û(k) := ûc.
9 Update w(k) after Player II has made decision.

respectively. As a key insight, if Uf ̸= ∅, then, by definition of Uf , there exists at

least one û ∈ Û corresponding to uuc(k) such that (x(k + 1), x̂(k + 1)) ∈ R holds with
the probability of at least 1− δ, indicating that the approximate probabilistic relation
between D and D̂ is maintained. In general, checking the non-emptiness of Uf depends
on the concrete form of f . In Section 4.4.3, I show how to check whether Uf is empty
using Proposition 4.3.3 via a case study of a quadrotor.

Having Proposition 4.3.3, I am ready to discuss the design of the supervisor for
Problem 4.3.1 and 4.3.2.

Problem of worst-case violation To propose the design of the supervisor for
Problem 4.3.1, the following definition is required.

Definition 4.3.4. (History-based Supervisor for the Problem of Worst-case Violation
over gDTSG) Consider a gDTSG D = (X,U,W,X0, Y, h) and its finite abstraction
D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, DFA A = (Q, q0,Π, τ, F ) modeling the de-
sired safety specification, a labeling function L : Y → Π associated with A as in Defini-
tion 3.1.5, and η to be the maximal tolerable probability of violating the desired safety
property. For all k ∈ [0, H − 1], the validity of an input uuc(k) from the unverified
controller is checked as follows:

1. Reject uuc(k) if Uf as in (4.3.3) is empty;

2. If Uf is not empty, compute Epv(k) as

Epv(k) := 1− C1(k)C2(k), (4.3.4)
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with

C1(k) :=
k∏

z=1

(
(1− δ) min

ŵ∈Ŵ

∑
x̂∈X̂′

−ϵ(q(z−1))

T̂
(
x̂
∣∣ x̂(z − 1), û(z − 1), ŵ

))
, (4.3.5)

C2(k) := (1− δ)
(
1− max

ŵ∈Ŵ

∑
x̂∈X̂

V ∗,H−k−1

(
x̂, q̄∗(x̂(k), q(k))

)
T̂
(
x̂
∣∣ x̂(k), û∗, ŵ)),

(4.3.6)

V ∗,H−k−1 and q̄∗ as (3.3.22) and (3.3.24), respectively,

û∗ := argmax
û∈Uf

Epv(k), (4.3.7)

and

X̂ ′
−ϵ(q(z − 1)):=

{
x̂∈X̂

∣∣∀x ∈ X, τ(q(z − 1), L◦h(x)) /∈F, h(x)∈Nϵ(ĥ(x̂))
}
,

in which Nϵ(ĥ(x̂)) := {y ∈ Y | ∥y − ŷ∥ ≤ ϵ}. If Epv(k)≤η, the supervisor accepts
uuc(k) and update the augmented state with û′ := û∗ (cf. Figure 4.6), with û∗

being computed as in (4.3.7); otherwise, it rejects uuc(k) and set û′ as û′ := ûc,
with ûc provided by the safety advisor (cf. Algorithm 3).

By leveraging the supervisor in Definition 4.3.4, the formal guarantee can be provided
with the following result.

Theorem 4.3.5. Consider a gDTSG D = (X,U,W,X0, Y, h) and a DFA A
modeling the desired safety properties. For the problem of worst-case violation
as in Problem 4.3.1, by leveraging the supervisor in Definition 4.3.4 at all time
k ∈ [0, H − 1] in the Safe-visor architecture for Player I of D, one has

P{yωH |= A} ≤ η, (4.3.8)

regardless of how Player II provides adversarial inputs, with yωH being output
sequences of D as in Definition 2.4.4.

Detailed proof of Theorem 4.3.5 are provided in Section 4.7. As a key insight, consider
a DFA A = (Q, q0,Π, τ, F ).

� C1(k) denotes the minimal probability of F not being reached over the time hori-
zon [0, k], while one has (x(z), x̂(z)) ∈ R, ∀z ∈ [0, k]. Considering the definition

of X̂ ′
−ϵ(q(z − 1)) as in Definition 4.3.4, one can verify ∀x̂ ∈ X̂ ′

−ϵ(q(z − 1)) with
q(z − 1)∈Q, ∄x with (x, x̂) ∈ R such that F is reached at time step z. In other

words, if x̂(z) ∈ X̂ ′
−ϵ(q(z − 1)), one can ensure that F is not reached at the time

z by ensuring (x(z), x̂(z)) ∈ R. Hence, given x̂(z − 1), û(z − 1), and q(z − 1),

C′(z) := min
ŵ∈Ŵ

(1−δ)
∑

x̂∈X̂′
−ϵ(q(z−1))

T̂ (x̂
∣∣x̂(z−1), û(z−1), ŵ), (4.3.9)
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denotes the minimal probability of F not being reached at time z while (x(z), x̂(z))
∈ R still holds.

� C2(k) is the probability of F not being reached over the time horizon [k + 1, H],
while (i) (x(k + 1), x̂(k + 1)) ∈ R holds, given x̂(k), q(k), and û(k) = û∗; (ii) D
is controlled by the safety advisor within [k + 1, H].

Hence, C1(k)C2(k) denotes the lower bound on the probability of F not being reached
over [0, H]. Since (4.3.7) ensures that all û which maintains the (ϵ,δ)-approximate
probabilistic relation between D and D̂ would not result in Epv > η. By accepting
uuc(k) at each time instant k where 1−C1(k)C2(k) ≤ η holds, one can ensure that (4.3.8)
holds. Moreover, the number of operations required for computing Epv(k) in (4.3.4) is
proportional to cardinality of sets X̂, Ŵ , and Uf . Concretely,

� C1(k): One can verify that C1(k) = C1(k− 1)C′(k), with C′(k) as in (4.3.9). Since
C1(k − 1) has already been computed at time step k − 1, one only needs C′(k) to
obtain C1(k) at time k. On the other hand, ∀q ∈ Q, set X̂ ′

−ϵ(q) can be computed

offline, and T̂ is readily computed when constructing the finite abstraction of the
original gDTSG. Hence, the number of operations required for computing C1(k)
at time instant k is proportional to the cardinality of the set X̂ ′

−ϵ(q(k − 1)) and

Ŵ .

� C2(k): Since V ∗,H−k−1 and T̂ have already been computed when synthesizing
the safety advisor, the number of operations required for computing C2(k) is
proportional to the number of elements in sets X̂, Ŵ , and Uf .

Problem of robust satisfaction To propose the design of the supervisor for the
problem of robust satisfaction as in Problem 4.3.2, the following definition is needed.

Definition 4.3.6. (History-based Supervisor for the Problem of Robust Satisfaction
over gDTSG) Consider a gDTSG D = (X,U,W,X0, Y, h) and its finite abstraction
D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, DFA A = (Q, q0,Π, τ, F ) modeling the de-
sired safety specification, a labeling function L : Y → Π associated with A as in Defini-
tion 3.1.5, and η to be the maximal tolerable probability of violating the desired safety
property. At each time instant k ∈ [0, H − 1], the feasibility of an input uuc(k) from
the unverified controller is checked by the following two steps:

i) Check set Uf as in (4.3.3) and reject uuc(k) if Uf is empty;

ii) If Uf is not empty, estimate Epv(k) as

Epv(k) :=
k∏

z=1

(
(1− δ) max

ŵ∈Ŵ

∑
x̂∈X̂′

ϵ(q(z−1))

T̂ (x̂
∣∣ x̂(z − 1), û(z − 1), ŵ)

)
× (1− δ)

(
1− min

ŵ∈Ŵ

∑
x̂∈X̂

V̄ ∗
H−k−1

(
x̂, q∗(x̂(k), q(k))

)
T̂ (x̂

∣∣ x̂(k), û∗, ŵ))
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+δ+
k∑

j=1

(
δ

j∏
z=1

(
(1− δ) max

ŵ∈Ŵ

∑
x̂∈X̂′

ϵ(q(z−1))

T̂ (x̂
∣∣ x̂(z − 1), û(z − 1), ŵ)

))
, (4.3.10)

with V̄ ∗
H−k−1 as in (3.3.9) associated with the safety advisor, q∗ as in (3.3.11),

û∗ = argmax
û∈Uf

Ēpv(k), (4.3.11)

and

X̂ ′
ϵ(q(z−1)) :=

{
x̂∈X̂

∣∣∃x∈X,τ(q(z−1), L ◦ h(x)) /∈F, h(x)∈Nϵ(ĥ(x̂))
}
, (4.3.12)

where Nϵ(ĥ(x̂)) := {y ∈ Y | ∥y − ŷ∥ ≤ ϵ}. If Epv(k) ≤ η, the supervisor accepts

uuc(k) and feeds û′ = û∗ as in (4.3.11) to D̂; otherwise, it rejects uuc(k) and
feeds û′ = û to D̂, with û provided by ρ∗k as in (3.3.7) associated with the safety
advisor.

By utilizing the history-based supervisor as in Definition 4.3.6, the problem of ro-
bust satisfaction over gDTSGs can be solved. This is formally formulated in the next
theorem.

Theorem 4.3.7. Consider a gDTSG D = (X,U,W,X0, Y, h) and a DFA A =
(Q, q0,Π, τ, F ) that characterizes the desired safety specification. For the problem
of robust satisfaction as in Problem 4.3.2, by employing the supervisor as in
Definition 4.3.6 at all time instants k ∈ [0, H − 1] in the Safe-visor architecture
for Player I of D, one has

PD

{
yωH |= A

}
≥ 1− η, (4.3.13)

regardless of how Player II provides adversarial inputs, with yωH being output
sequences of D up to the time instant H.

The proof of Theorem 4.3.7 is provided in Section 4.7. Note that similar to the
computation of (4.2.29), Epv(k) as in (4.3.10) can be computed efficiently at runtime,
as the number of operations required for computing Epv(k) in (4.3.10) is proportional
to the number of elements in sets X̂, Ŵ , and Uf . Finally, the running mechanism of
the proposed Safe-visor architecture at each time step k over gDTSG is summarized in
Algorithm 4. The real-time applicability of the Safe-visor architecture will be shown
in Section 4.4.3 via a case study (cf. Table 4.3).

4.4 Case Studies

In this section, I first apply the results in Section 4.2 to the running example in Sec-
tion 4.2 and a control problem regarding a DC motor. Then, the results in Section 4.3
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Algorithm 4: Running mechanism of the Safe-visor architecture over gDTSGs.

Input: A gDTSG D, a DFA A modeling the desire specification, safety advisor C
as in Figure 4.5, supervisor as in Definition 4.3.4 (resp. Definition 4.3.6),
and uuc(k) from the unverified controller.

Output: u(k) for controlling D at each time step k ∈ N.
1 Compute Epv(k) as in (4.3.4) (resp. (4.3.10)).
2 Update x(k), x̂(k), and q(k) in the augmented state as in Algorithm 3.
3 Decide whether to accept uuc(k).
4 if uuc(k) is accepted then
5 Set u(k) = uuc(k) and update û(k) in the augmented state as û(k) = û∗

with (4.3.7) (resp. (4.3.11)).
6 else
7 Obtain usafe(k) and ûc(k) from the safety advisor, set u(k) = usafe(k), and

update û(k) in the augmented state as û(k) = ûc(k).
8 end
9 Update w(k) in the augmented state based on the decision of Player II.

will be deployed to a case studyof a quadrotor tracking a ground vehicle using a DNNs-
based agent. In the first two case studies, the desired safety guarantees are validated
through empirical Monte Carlo simulation. These simulation are performed via MATLAB
2019b, on a machine with Windows 10 operating system (Intel(R) Xeon(R) E-2186G
CPU (3.8 GHz) and 32 GB of RAM). The last case study will be used for 1) empirical
Monte Carlo simulation; 2) experiment on a physical test-bed of quadrotor helicopter.
The physical test-bed includes: 1) a quadrotor equipped with Pixhawk Mini as flight
control unit and Raspberry Pi Zero as flight companion computer; 2) Vicon motion
capture system for capturing the position and velocity of the quadrotor at runtime;
and 3) a ground control station (GCS) with Ubuntu 20.04 (Intel Core i9-10900K CPU
(3.7 GHz) and 32 GB of RAM). The simulations are performed via MATLAB 2019b on
the GCS.

4.4.1 Running Example

Figure 4.7: Simulation results for the running example.
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(a) DC Motor.

q0

q1 q2

p1

p2

p3

p4

p5

p1 _ p2 _ p3 _ p4 _ p5

(b) DFA modelling ψdc.

Figure 4.8: DC Motor and DFA describing ψdc for the DC motor, with q2 being the accepting
state, alphabet Π = {p1, p2, p3, p4, p5}, and labeling function L : Y → Π with
L(y) = p1, when y ∈

(
[1.5π, 1.875π) ∪ (2.125π, 2.5π]

)
× [0, 2.4]; L(y) = p2, when

y ∈ [1.875π, 2.125π]× [0, 2.4]; L(y) = p3, when y ∈ [1.75π, 2.25π]× [0, 2.4]; L(y) =
p4, when y ∈ R2\([1.5π, 2.5π]× [0, 2.4]); L(y) = p5, when y ∈ R2\([1.75π, 2.25π]×
[0, 2.4]).

For simulating Safe-visor architecture regarding the safety specification ψ for the
running example, the system is initialized at x0= [2.5 ; 2.4 ; 1.5], with η = 0.1. To
ensure the last condition in Definition 2.4.8, the finite abstraction is initialized with
x̂0 = 2.55. Moreover, to model the unverified controller that would endanger the
system, a controller that randomly selects input at each time instant following a uniform
distribution within the input range is deployed. The running example is simulated with
1.0×105 empirical Monte Carlo runs, and the simulation results are shown in Figure 4.7,
and summarized in Table 4.1. One can readily verify that the desired safety probability
specified by η is respected.

4.4.2 DC Motor

In the second case study, a DC motor as in Figure 4.8 (a) is of interest, which can be
described by the following difference equations:

D :

{
x(k + 1) = Ax(k) +Bu(k) + EeFx(k) +Rς(k),
y(k) = x(k),

k ∈ N, (4.4.1)

with

A =

[
0.6387 0.0080
−0.1606 −0.0020

]
, B = [0.3996 ; 0.4011], E = [−0.2 ; 0],

F =[−0.0796 ; 0]⊤, and R =

[
0.01 0
0 0.01

]
.

Here, x(k) := [x1(k) ;x2(k)] is the state of the DC motor, in which x1(k) and x2(k)
are the angular velocity and the armature current of the motor, respectively. Input
u(k) ∈ [0, 9] is the voltage source applied to the motor’s armature. Additionally,
ς(k) := [ς1(k) ; ς2(k)], where ς1(k) and ς2(k) are standard Gaussian random variables
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that affect x1(k) and x2(k), respectively. This model is adapted from a continuous-
time model of a DC-motor as in [207] by discretizing it with a sampling time τ = 0.02s
and including stochasticity in the model as an additive noise. In this case study, the
DC motor is required to satisfy a safety specification ψdc within 7 minutes: (i) the
armature current should be within [0, 2.4]; (ii) the angular velocity should stay within
[1.5π, 2.5π]; (iii) additionally, if angular velocity reaches [1.875π, 2.215π], it should stay
within [1.75π, 2.25π] afterwards, instead of [1.5π, 2.5π]. Accordingly, a DFA is used to
model such specification, which accepts all bad prefixes of output sequences that violate
ψdc, as shown in Figure 4.8 (b). Accordingly, the problem of worst-case violation as in
Problem 4.2.6 should be solved.

First, the safety advisor for the DCmotor is designed following the proposed approach
in Section 4.2.2. To construct a finite abstraction for the model of DC motor, the
input set [0, 9] are partition into 40 partitions and X = [1.5π, 2.5π]× [0, 2.4] is chosen
as the region of interest. Then, this region is uniformly partitioned into 40 cells on
both dimensions, which results in a finite gMDP with 1601 discrete states (1600 states
correspond to the representative points of partitions, and 1 sink state) and 40 inputs.
As for establishing an (ϵ,δ)-approximate probabilistic relation using the results in

Section 3.2.2 and 3.2.3, Û ′ = Û and δ = 0 are chosen, and the expected range of ϵ
is set as [0.05, 1]. Then, this finite abstraction is (ϵ, δ)-stochastically simulated by the
original model as in (4.4.1) w.r.t. the relation R = {(x, x̂) | (x− x̂)⊤(x− x̂) ≤ ϵ2} with
δ = 0 and ϵ = 0.1138, when the interface function

ν(x, x̂, û) := (K + bL)(x− x̂) + û+GeF x̂,

is employed for the controller refinement. R = {(x, x̂) | (x−x̂)⊤M(x−x̂) ≤ ϵ2}Here, x̂ is
the state of the finite abstraction, K = [−0.5948 ;−0.0110]⊤, L = [−0.0452 ; 0.0039]⊤,

G = 3.0954, and b = eFx−eFx̂

F (x−x̂) . The lifting stochastic kernel for this relation is con-
structed such that the noise terms in the original and the finite systems are the same.
Then, the safety advisor is synthesized using the results in Section 4.2.2.

(a) Evolution of the angular velocity. (b) Evolution of the armature current.

Figure 4.9: Simulation results for DC motor for safety specification ψdc.

As for the simulation, the system is initialized at x0 = [2π ; 1.256] and η = 0.001 is
chosen. To ensure the last condition in Definition 2.4.8, the finite abstraction is initial-
ized with x̂0 = [6.3225 ; 1.23]. As for the unverified controller, a controller is trained
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ψ ψdc

Percentage of satisfaction (with Safe-visor architecture) 100% 100%

Average acceptance rate of the unverified controller 27.27% 84.73%

Percentage of satisfaction (without Safe-visor architecture) 55.87% 0%

Percentage of satisfaction
(when system is fully controlled by the safety advisor)

100% 100%

Average execution time of the supervisor (ms) 0.1005 0.3782

Table 4.1: Simulation results for the running example and the DC motor, in which the average
acceptance rate of the unverified controller refers to the average percentage of inputs
from the unverified controller being accepted among these runs.

using deep reinforcement learning with deep deterministic policy gradient (DDPG)
algorithms [128] for tracking the desired angular velocity, denoted by x1d . In the sim-
ulation, it is configured that x1d = 2.1π rad/s when k ∈ [0, 10000] ∪ [12500, 21000] and
x1d = 1.78π rad/s when k ∈ [10000, 12500]. Then, the case study is simulated with
1.0 × 105 empirical Monte Carlo runs and the results are shown in Figure 4.9 and
summarized in Table 4.1. Without sandboxing the unverified controller, all output
sequences violate ψdc. Meanwhile, by sandboxing the unverified controller, 100% of
output sequences satisfy ψdc while 84.73% of inputs from the unverified controller can
be accepted. One can readily see that the safety probability specified by η is respected.
Simultaneously, the unverified controller can still be applied most of the time when it
does not endanger the system’s safety.

With the case study of the DC motor, the effects of the abstraction resolution on
the safety guarantee provided by the safety advisor and the execution speed of the
supervisor are also demonstrated. To this end, 6 different abstraction resolutions are
selected for the continuous state sets (see Table 4.2, 10×10 means uniformly partitioning
X = [1.5π, 2.5π] × [0, 2.4] into 10 cells on both dimensions, and so on). The system
is initialized at x0 = [2π ; 1.256] and each case is simulated with 1.0 × 104 empirical
Monte Carlo runs. The average execution time of the supervisor and the probabilistic
guarantee provided by the safety advisor in each case are shown in Table 4.2 and
Figure 4.10, respectively. According to Table 4.2, the average execution time of the
supervisor is increasing by reducing the quantization parameters in constructing finite
abstractions. However, as shown in Figure 4.10, the upper bound of the probability of
reaching the accepting state, which indicates a violation of the desired specification as
in Figure 4.8 (b), reduces by reducing the quantization parameters.

4.4.3 Quadrotor

The proposed construction scheme in Section 4.3 is applied here to a case study of
controlling a quadrotor using a DNNs-based agent to track a ground vehicle in 1)
simulation with 1.0 × 104 different realization of noise; 2) experiment on the physical
test-bed. In the experiment on the physical test-bed, the safety advisor, the supervisor,
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(a) Number of Partitions: 10× 10 (b) Number of Partitions: 20× 20

(c) Number of Partitions: 30× 30 (d) Number of Partitions: 40× 40

(e) Number of Partitions: 50× 50 (f) Number of Partitions: 60× 60

Figure 4.10: Contours of the safety guarantee provided by the safety advisor for the casse
study of the DC motor.

Number of partitions 10×10 20×20 30×30 40×40 50×50 60×60
Number of states 101 401 901 1601 2501 3601

ϵ of the relation 0.5021 0.2297 0.1518 0.1138 0.0911 0.0759

Average execution time (ms) 0.2388 0.2579 0.3174 0.3763 0.4431 0.5041

Table 4.2: Average execution time of the supervisor with different sizes of grids for partitioning
the continuous state set.
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Figure 4.11: Case study for controlling a quadrotor tracking a ground vehicle in Chapter 4

and the DNNs-based controller are running on the GCS. Based on the decision of the
supervisor, the GCS sends desired accelerations (i.e. the control input, cf. (4.4.2)) to
the quadrotor at runtime.

q0

q1

p1

p2p1 _ p2

q0 q1 q2 q3

q4

p1_p2_p3p1_p2p1

p2_p3_p4
p1_p2_p3_p4

p1_p2_p3_p4_p5

p5

p5

p3_p4_p5
p4_p5

Figure 4.12: Left: DFA AE , with accepting state q1, alphabet Π= {p1, p2}, and labeling
function L : Y → Π with L(y) = p1 when y ∈ [−0.5, 0.5], and L(y) = p2 when
y ∈(−∞,−0.5)∪ (0.5,+∞). Right: DFA AN , with accepting state q4, alphabet
Π = {p1, p2, p3, p4, p5}, and labeling function L : Y → Π with L(y) = p1 when
y ∈ [−0.3, 0.3], L(y) = p2 when y ∈ [−0.4,−0.3) ∪ (0.3, 0.4], L(y) = p3 when
y ∈ [−0.45,−0.4) ∪ (0.4, 0.45], L(y) = p4 when y ∈ [−0.5,−0.45) ∪ (0.45, 0.5],
and L(y) = p5 when y ∈ (−∞,−0.5) ∪ (0.5,+∞).

Modeling and safety specifications: By employing the feedback linearization
technique in [68], the relative motion between the quadrotor and the ground vehicle on
N and E axes (see Figure 4.11 (left)) can be modeled as:{

xi(k + 1)=Axi(k) +Bui(k)+Dwi(k) +Rςi(k),
yi(k) = Cxi(k), k ∈ N, i ∈ {N,E}, (4.4.2)

where A =
[
1 ∆t
0 1

]
, B = [∆t2

2 ; ∆t], D = −B, and C = [1; 0]⊤, with ∆t = 0.1s being
the sampling time, and R=

[
0.004 0
0 0.045

]
being obtained through experimental trials on

the physical test-bed. Here, for i ∈ {N,E}, xi(k) := [xir(k); vir(k)] with xir(k) and
vir(k) being the relative position and relative velocity between the quadrotor and the
vehicle on i axis, respectively; ui(k) ∈ [−2.5, 2.5] (m/s2) denotes the acceleration of
the quadrotor on i axis as the control input; wi(k) ∈ [−0.6, 0.6] (m/s2) denotes the
acceleration of the vehicle on i axis as the adversary input; ςi(k) is a standard Gaussian
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Safety specifications P ′
s Acceptance rate P ′′

s Tavg (ms) Tσ (ms)

(ϕE , H) (Simulation) 100% 92.75% 100% 3.0790 1.3873

(ϕN , H) (Simulation) 100% 92.40% 100% 3.3238 1.3415

(ϕE , H) (Test-bed) 100% 2.50% 0% 4.2301 2.1056

(ϕN , H) (Test-bed) 100% 8.00% 0% 3.3957 2.7630

Table 4.3: Results of simulation and experiment on the physical test-bed, where P ′
s and P ′′

s

denotes the percentage of the outputs satisfying the desired safety properties with
using and without using the Safe-visor architecture, respectively; acceptance rate
is the percentage of inputs from the DNNs-based controller being accepted among
different runs; Tavg and Tσ are the average and the standard deviation of the
execution time, respectively.

random variable; and yi(k) is the output. Within 1 min (time horizon H = 600), the
following safety specifications are desired: (1) ϕE : yE should be within [−0.5, 0.5] (m);
(2) ϕN : yN should be within [−0.5, 0.5] (m); additionally, if yN reaches [−0.3, 0.3] (m)
at any time instant k, then yN should be within [−0.4, 0.4] (m) at time instant k + 1
and within [−0.45, 0.45] (m) at time instant k + 2, instead of [−0.5, 0.5] (m). Their
associated DFAs AE and AN are shown in Figure 4.12. Accordingly, the Safe-visor
architecture will be designed with respect to ϕE and ϕN , denoted by svaE and svaN ,
respectively.
Construction of Safe-visor architecture: To construct the safety advisor as

introduced in Section 4.3.2, the finite abstraction of the model as in (4.4.2) are built by
selectingX = [−0.5, 0.5]×[−0.4, 0.4] and partitioningX uniformly with grid cells whose
sizes are (0.02, 0.02). Then, the input set [−2.5, 2.5] for the quadrotor and the input set
[−0.6, 0.6] for the ground vehicle are uniformly divided with 25 and 12 cells, respectively.
As a result, a finite gDTSG with 2001 states (denoted by X̂), 25 control inputs for
Player I (denoted by Û ′), and 12 adversarial inputs for Player II (denoted by Ŵ ) is
obtained. By employing the results in Section 3.2.2 and 3.2.3, the finite abstraction
is (ϵ, δ)-stochastically simulated by the original model with respect to the relation
R :=

{
(x, x̂) | (x− x̂)⊤M(x− x̂) ≤ ϵ2

}
, and Rw :=

{
(w, ŵ)|(w− ŵ)⊤(w− ŵ) ≤ ϵ̃2

}
, with

δ = 0, ϵ=0.0674, ϵ̃=0.05,M=
[
1.4632 0.1757
0.1757 0.0666

]
, and a interface function u := K(x−x̂)+û

where K = [−16.66;−4.83]
⊤
, and Û := {û ∈ Û ′|||û|| ≤ 0.12} is used to build the safety

advisor. Having the finite abstraction and the approximate probabilistic relation, the
safety advisors are synthesized for svaE and svaN as discussed in Section 4.3.2. The
total offline computation time3 for svaE and svaN are approximately 1.2 hours and 5.2
hours, respectively.
After the safety advisors are constructed offline, the supervisors is implemented lever-

aging the results in Theorem 4.3.5, for which checking the non-emptiness of the set Uf

in (4.3.3) at runtime is necessary (cf. Proposition 4.3.3). Consider the current state
x(k) of the original system, x̂(k) in the current state of the Safe-visor architecture, and

3The computation of the cost-to-go function V ∗,n+1(x̂, q) in (3.3.23) for different (x̂, q) ∈ X̂ ×Q are
independent from each other. Therefore, the computation can be done in a parallel fashion, which
is not implemented.
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Figure 4.13: DNNs-based controller deployed in the experiments on the physical test-bed.

Figure 4.14: Trajectories of the quadrotor and the ground vehicle in simulation (Left), and
real-world experiment (Right).

input udnn(k) provided by the DNNs-based controller. The set Uf is not empty if there

exists û ∈ Û such that

∥Ax(k)+Budnn(k)+Dw(k)+Rς(k)−(Ax̂(k)+Bû+Dŵ(k)+Rς̂(k))∥M ≤ϵ, (4.4.3)

holds for all ς ∈ R2, with ∥x̄∥M :=
√
x̄⊤Mx̄. By setting ς̂(k) = ς(k), (4.4.3) holds

if one has ∥φ − Bû∥M ≤ ϵ − γ, with φ := A(x(k) − x̂(k)) + Budnn(k) and γ :=
maxβ∈∆∥β∥M +max(w,ŵ)∈Rw

∥D(w− ŵ)∥M = 0.0152, where ∆ is the set of all possible
quantization errors introduced by discretization of the original state set as defined
in (3.2.11). Since φ can readily be computed at runtime, one can find out if there
exists û ∈ Û such that (4.4.3) holds efficiently.

Experiments and results In the experiments,a DNNs-based agent is used to con-
trol the quadrotor to track the vehicle. The agent is trained as a setpoints provider for
a low-level position controller, as depicted in Figure 4.13, with K = [1.4781; 1.7309]

⊤
.

The agent takes the current positions and velocities of the quadrotor and the ground
vehicle as inputs, and provides the position and velocity setpoints for the quadrotor.
Here, DDPG algorithm [128] is used to train the agent in simulation, in which the
vehicle follows random trajectories.
In both simulation and the experiment on the test-bed, the ground vehicle follows

a clover trajectory. The system is initialized with xE = xN = [0; 0] and the maximal
tolerable probability of violation for svaE and svaN as ηE = ηN = 0.01. The results of
the simulation and the experiment on the physical test-bed are summarized in Table 4.3.
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Figure 4.15: Evolution of yE and yN with and without using the Safe-visor architecture.

The simulation results show that the desired lower bound of safety probability specified
by ηE and ηN are respected, while more than 90% of the inputs from the DNNs-based
controllers are accepted. Although the quadrotor tracks the vehicle very well in the
simulation without actually violating the safety specification, as marked red in the
Figure 4.14 (Left), the architecture rejects some potential risky actions due to the
robustness settings as discussed at the beginning of Section 4.3.1. Notably, as shown
in Figure 4.14 (Right), the DNNs-based controller behaves worse on the physical test-
bed and the safety specifications are violated when the Safe-visor architecture is not
deployed (see the bottom part of Figure 4.15, in which yNr left the region [−0.5, 0.5]),
which might be attributed to the mismatch between the model that is used for training
and the physical system. For instance, the environmental noises and disturbances are
not considered in simulation training, as it requires robust training strategies, causing
difficulties in convergence. Meanwhile, by leveraging the Safe-visor architecture, the
desired safey specifications are enforced, while the DNNs-based controller can still be
employed.

4.5 Summary

In this chapter, abstraction-based approaches for constructing Safe-visor architecture
has been proposed for stochastic CPSs modeled by gDTSGs and gMDP. In particular,
the safety properties of interest here can be characterized by accepting languages of
DFA. Robust controllers regarding the desired safety specification are deployed as the
safety advisor, which can be constructed leveraging the results in Chapter 3. Con-
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cretely, given a finite abstraction that is (ϵ, δ)-stochastically simulated by the original
model, a controller based on a finite abstraction is first constructed, . The synthesized
controller is then refined over the original systems based on an (ϵ,δ)-approximate prob-
abilistic relation, which is the main key for providing the safety guarantees. To reach
a compromise between safety and functionality, history-based supervisors are designed
which check the input provided by the unverified controller based on the history paths
at runtime. The main idea for this checking is to estimate the probability of violating
the desired safety specification presuming the input from the unverified controller is
accepted, and compare this estimation with the maximal tolerable probability of vi-
olation. Finally, the proposed methodologies are applied to construct the Safe-visor
architecture for three case studies.

4.6 Proof fo Statements in Section 4.2

To show Theorem 4.2.18 and Theorem 4.2.20, the definition of the n-steps reachable
state set of DFA with respect to a gMDP is required.

Definition 4.6.1. (n-steps Reachable State Set) Given a gMDP D = (X,U, x0, T, Y, h)
and a DFA A = (Q, q0,Π, τ, F ) with a labeling function L : Y → Π, an n-step reachable
state set Q̃n(x0) of A is recursively defined as

Q̃0(x0) =
{
q ∈ Q

∣∣ q = τ(q0, L ◦ h(x0))
}
,

Q̃n(x0) =
{
q ∈ Q

∣∣∃q′ ∈ Q̃n−1(x0), σ ∈ Π s.t. q = τ(q′, σ)
}
,

with n ∈ N>0.

Additionally, the following lemma is also needed for the proof.

Lemma 4.6.2. Consider a gMDP D = (X,U, x0, T, Y, h) and its finite ab-
straction D̂ = (X̂, Û , x̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A = (Q, q0,Π,
τ, F ) that characterizes the desired safety specification. Given a Markov policy
ρ = (ρ0, ρ1, . . . , ρH−1) over the product gMDP D̂ ⊗ A within the time horizon
[0, H], one has

1− V̄ ρ
n+1(x̂, q) = (1− δ)

∑
x̃∈X̂′

ϵ(q)

(
1− V̄ ρ

n (x̃, q(x̃, q))
)
T̂ (x̃

∣∣ x̂, û) + δ, (4.6.1)

1− V ρ
n+1(x̂, q) = (1− δ)

∑
x̃∈X̂′

−ϵ(q)

(
1− V ρ

n(x̃, q̄(x̃, q))
)
T̂ (x̃

∣∣ x̂, û), (4.6.2)

with q /∈ F , û = ρH−n−1(x̂, q), V̄
ρ
n+1(x̂, q) as in (4.2.6), q as in (4.2.7), X̂ ′

ϵ(q) as

in (4.2.27), V ρ
n+1(x̂, q) as in (4.2.14), q̄ as in (4.2.15), and X̂ ′

−ϵ(q) as in (4.2.31).

94



4.6 Proof fo Statements in Section 4.2

The proof of Lemmas 4.6.2 can readily be derived based on (4.2.6), (4.2.7), (4.2.14)
and (4.2.15). Now, I am ready to show the results of Theorem 4.2.18 and 4.2.20.
Proof of Theorem 4.2.18 For the sake of clarity of the proof, let’s define

f(x̂(k), q(k)) = 1−
∑

x̂(k+1)∈X̂

V̄ ∗
H−k−1

(
x̂(k + 1), q∗

(
x̂(k + 1), q(k)

))
T̂
(
x̂(k + 1)

∣∣ x̂(k), û(k)),
for k ∈ [0, H−1] with V̄ ∗

H−k−1 as in (4.2.12), q∗ as in (4.2.13), and û(k) = ρ′k(x̂(k), q(k)),
and

g(x̂(z − 1), q(z − 1)) = T̂
(
x̂(z)

∣∣ x̂(z − 1), ρ′z−1(x̂(z − 1), q(z − 1))
)
,

for z ∈ [0, k]. First, consider an initial state (x̂0, q̄0). By expanding out V̄ ρ′

H (x̂0, q̄0) up

to the time instant k ∈ [0, H − 1] with the help of (4.6.1), one has 1 − V̄ ρ′

H (x̂0, q̄0) =
θ1(k) + θ2(k), with

θ1(k) = (1− δ)k+1
∑

x̂(1)∈X̂′
ϵ(q(0))

( ∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

( ∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

( ∑
x̂(k)∈X̂′

ϵ(q(k−1))

f
(
x̂(k), q(k)

)
×g

(
x̂(k − 1), q(k − 1)

))
g
(
x̂(k − 2), q(k − 2)

))
. . .

)
g
(
x̂(1), q(1)

))
g
(
x̂(0), q(0)

)
, and (4.6.3)

θ2(k) = δ
(
1 + (1− δ)

( ∑
x̂(1)∈X̂′

ϵ(q(0))

g
(
x̂(0), q(0)

))
+ (1− δ)2

( ∑
x̂(1)∈X̂′

ϵ(q(0))

( ∑
x̂(2)∈X̂′

ϵ(q(1))

g
(
x̂(1), q(1)

))
×g

(
x̂(0), q(0)

))
+. . .+(1− δ)k

( ∑
x̂(1)∈X̂′

ϵ(q(0))

( ∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

( ∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

( ∑
x̂(k)∈X̂′

ϵ(q(k−1))

g(x̂
(
k − 1), q(k − 1)

))
g
(
x̂(k − 2), q(k − 2)

))
. . .

)
g
(
x̂(1), q(1)

))
g
(
x̂(0), q(0)

)))
. (4.6.4)

Let us choose

x̂∗(k) := arg max
x̂(k)∈X̂′

ϵ(q(k−1))
f(x̂(k), q(k)),

with q(k − 1) ∈ Q̃k−1(x0), X̂
′
ϵ(q(k − 1)) as in (4.2.27), and q∗(k) = q(q(k − 1), x̂∗(k))

with q as in (4.2.7). Then, one has∑
x̂(k)∈X̂′

ϵ(q(k−1))

f
(
x̂(k), q(k)

)
g
(
x̂(k − 1), q(k − 1)

)
≤ f

(
x̂∗(k), q∗(k)

)∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1)

)
.

Thus, proceed from (4.6.3), one has

θ1(k) ≤ (1− δ)k+1
∑

x̂(1)∈X̂′
ϵ(q(0))

( ∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

( ∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

( ∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1),

q(k − 1)
))
g
(
x̂(k − 2), q(k − 2)

))
. . .

)
g
(
x̂(1), q(1)

))
g
(
x̂(0), q(0)

)
f
(
x̂∗(k), q∗(k)

)
. (4.6.5)

Next, let’s select

x̂∗(k − 1) = argmax
x̂(k−1)∈X̂′

ϵ(q(k−2))

∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1)

)
, (4.6.6)
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with q(k − 2) ∈ Q̃k−2(x0), and

q∗(k − 1) = q(q(k − 2), x̂∗(k − 1)), (4.6.7)

with q as in (4.2.7). With (4.6.6) and (4.6.7), one has∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

( ∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1)

))
g
(
x̂(k − 2), q(k − 2)

)
≤

( ∑
x̂(k)∈X̂′

ϵ(q
∗(k−1))

g
(
x̂∗(k − 1), q∗(k − 1)

)) ∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

g
(
x̂(k − 2), q(k − 2)

)
.

Therefore, from (4.6.5), one has

θ1(k) ≤ (1− δ)k+1
∑

x̂(1)∈X̂′
ϵ(q(0))

( ∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

( ∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

g
(
x̂(k − 2), q(k − 2)

))
. . .

)
× g

(
x̂(1), q(1)

))
g
(
x̂(0), q(0)

)
f
(
x̂∗(k), q∗(k)

)( ∑
x̂(k)∈X̂′

ϵ(q
∗(k−1))

g
(
x̂∗(k − 1), q∗(k − 1)

))
. (4.6.8)

For all z ∈ [2, k−1], one can choose x∗(z−1) similar to (4.6.6) and q∗(z−1) analogously
to (4.6.7). Then, one has∑

x̂(z−1)∈X̂′
ϵ(q(z−2))

( ∑
x̂(z)∈X̂′

ϵ(q(z−1))

g
(
x̂(z − 1), q(z − 1)

))
g
(
x̂(z − 2), q(z − 2)

)
≤

( ∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g
(
x̂∗(z − 1), q∗(z − 1)

)) ∑
x̂(z−1)∈X̂′

ϵ(q(z−2))

g
(
x̂(z − 2), q(z − 2)

)
. (4.6.9)

Therefore, continuing from (4.6.8) with (4.6.9) for all z ∈ [2, k − 1], one has

θ1(k) ≤ (1− δ)k+1
(∑

x̂(1)∈X̂′
ϵ(q(0))

g
(
x̂(0), q(0)

)) k∏
z=2

( ∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g
(
x̂∗(z − 1), q∗(z − 1)

))
f
(
x̂∗(k), q∗(k)

)
.

(4.6.10)

Similar to the idea of going from (4.6.5) to (4.6.10) with x∗(z − 1) and q∗(z − 1) for
all z ∈ [2, k − 1], starting from (4.6.4), one has

θ2(k) ≤ δ
(
1 + (1− δ)

( ∑
x̂(1)∈X̂′

ϵ(q(0))

g(x̂(0), q(0))
)
+ (1− δ)2

( ∑
x̂(1)∈X̂′

ϵ(q(0))

g(x̂(0), q(0))
)( ∑
x̂(2)∈X̂′

ϵ(q
∗(1))

g(x̂∗(1), q∗(1))
)

+ . . .+ (1− δ)k
( ∑

x̂(1)∈X̂′
ϵ(q(0))

g(x̂(0), q(0))
) k∏

z=2

( ∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g(x̂∗(z − 1), q∗(z − 1))
))
.

(4.6.11)

Finally. combining (4.6.10) and (4.6.11), one has

1− V̄ ρ′

H (x̂0, q̄0) ≤ (1− δ)k+1
( ∑

x̂(1)∈X̂′
ϵ(q(0))

g(x̂(0), q(0))
) k∏

z=2

( ∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g(x̂∗(z − 1), q∗(z − 1))
)
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× f(x̂∗(k), q∗(k)) + δ
(
1 +

k∑
j=1

(1− δ)j
∑

x̂(1)∈X̂′
ϵ(q(0))

g(x̂(0), q(0))

j∏
z=2

( ∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g(x̂∗(z − 1), q∗(z − 1))
))
.

Note that ω̄′
k=

(
x̂(0), q(0), ρ0(x̂(0), q(0)), x̂

∗(1), q∗(1), ρ1(x̂
∗(1), q∗(1)), . . . , x̂∗(k), q∗(k)

)
is one of the history paths as in Definition 4.2.16 up to the time instant k. By applying
the history-based supervisor as in Definition 4.2.17, one can ensure that for an arbitrary
path ω̄k, one has

(1− δ)k+1
k∏

z=1

( ∑
ω̄x̂k(z)∈X̂′

ϵ(ω̄qk(z−1))

g(ω̄x̂k(z − 1), ω̄qk(z − 1))
)
f(ω̄x̂k(k), ω̄qk(k))

+ δ
(
1 +

k∑
j=1

(1− δ)j
j∏

z=1

( ∑
ω̄x̂k(z)∈X̂′

ϵ(ω̄qk(z−1))

g(ω̄x̂k(z − 1), ω̄qk(z − 1))
))

≤ η.

Therefore, one gets V̄ ρ′

H (x̂0, q̄0) ≥ 1 − η with the supervisor as in Definition 4.2.17.

According to Theorem 4.2.11, one has PC̃ρ′×D{∃k ≤ H, yωk |= A} ≥ V̄ ρ′

H (x̂0, q̄0) so that

PD

{
yωH |= A

}
≥ 1− η, which completes the proof. ■

Proof of Theorem 4.2.20 For the sake of clarity of the proof, let’s define

r(x̂(k), q(k))

=1−
∑

x̂(k+1)∈X̂

V ∗,H−k−1

(
x̂(k + 1), q̄∗

(
x̂(k + 1), q(k)

))
T̂
(
x̂(k + 1)

∣∣ x̂(k), û(k)),
for k ∈ [0, H−1] with V ∗

H−k−1 as in (4.2.18), q∗ as in (4.2.19), and û(k) = ρ′k(x̂(k), q(k)),
and

g(x̂(z − 1), q(z − 1)) = T̂
(
x̂(z)

∣∣ x̂(z − 1), ρ′z−1(x̂(z − 1), q(z − 1))
)
,

for z ∈ [0, k]. Consider an initial state (x̂0, q̄0). Then, with the help of (4.6.2),

V ρ′

H(x̂0, q̄0) is expanded up to the time instant k ∈ [0, H − 1] as

1−V ρ′

H(x̂0, q̄0) = (1− δ)k+1
∑

x̂(1)∈X̂′
−ϵ(q(0))

( ∑
x̂(2)∈X̂′

−ϵ(q(1))

(
. . .

( ∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

( ∑
x̂(k)∈X̂′

−ϵ(q(k−1))

r
(
x̂(k), q(k)

)
× g

(
x̂(k − 1), q(k − 1)

))
g
(
x̂(k − 2), q(k − 2)

))
. . .

)
g
(
x̂(1), q(1)

))
g
(
x̂(0), q(0)

)
. (4.6.12)

Let us select

x̂∗(k) := argmin
x̂(k)∈X̂′

−ϵ(q(k−1))

r(x̂(k), q(k)),

with q(k − 1) ∈ Q̃k−1(x0), X̂
′
−ϵ(q(k − 1)) as in (4.2.31), and q∗(k) = q̄(q(k − 1), x̂∗(k))

with q̄ as in (4.2.15). Then, one has∑
x̂(k)∈X̂′

−ϵ(q(k−1))

r(x̂(k), q(k))g(x̂(k − 1), q(k − 1)) ≥ r(x̂∗(k), q∗(k))
∑

x̂(k)∈X̂′
−ϵ(q(k−1))

g(x̂(k − 1), q(k − 1)).
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Therefore, from (4.6.12), one has

1− V ρ′

H(x̂0, q̄0) ≥ (1− δ)k+1
∑

x̂(1)∈X̂′
−ϵ(q(0))

( ∑
x̂(2)∈X̂′

−ϵ(q(1))

(
. . .

( ∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

( ∑
x̂(k)∈X̂′

−ϵ(q(k−1))

g
(
x̂(k − 1)

, q(k − 1)
))
g
(
x̂(k − 2), q(k − 2)

))
. . .

)
g
(
x̂(1), q(1)

))
g
(
x̂(0), q(0)

)
r
(
x̂∗(k), q∗(k)

)
. (4.6.13)

Next, let us select

x̂∗(k − 1) = argmin
x̂(k−1)∈X̂′

−ϵ(q(k−2))

∑
x̂(k)∈X̂′

−ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1)

)
, (4.6.14)

with q(k − 2) ∈ Q̃k−2(x0), and

q∗(k − 1) = q̄(q(k − 2), x̂∗(k − 1)), (4.6.15)

with q̄ as in (4.2.15). Then, one has∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

( ∑
x̂(k)∈X̂′

−ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1)

))
g
(
x̂(k − 2), q(k − 2)

)
≥

( ∑
x̂(k)∈X̂′

−ϵ(q∗(k−1))

g
(
x̂∗(k − 1), q∗(k − 1)

)) ∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

g
(
x̂(k − 2), q(k − 2)

)
.

Thus, proceed from (4.6.13), one has

1− V ρ′

H(x̂0, q̄0) ≥ (1− δ)k+1
∑

x̂(1)∈X̂′
−ϵ(q(0))

( ∑
x̂(2)∈X̂′

−ϵ(q(1))

(
. . .

( ∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

g
(
x̂(k − 2), q(k − 2)

))
. . .

)
× g

(
x̂(1), q(1)

))
g
(
x̂(0), q(0)

)( ∑
x̂(k)∈X̂′

−ϵ(q∗(k−1))

g
(
x̂∗(k − 1), q∗(k − 1)

))
r
(
x̂∗(k), q∗(k)

)
. (4.6.16)

For all z ∈ [2, k − 1], one can select x∗(z − 1) similar to (4.6.14) and q∗(z − 1) similar
to (4.6.15). Accordingly, one has∑

x̂(z−1)∈X̂′
−ϵ(q(z−2))

( ∑
x̂(z)∈X̂′

−ϵ(q(z−1))

g
(
x̂(z − 1), q(z − 1)

))
g
(
x̂(z − 2), q(z − 2)

)
≥

( ∑
x̂(z)∈X̂′

−ϵ(q∗(z−1))

g
(
x̂∗(z − 1), q∗(z − 1)

)) ∑
x̂(z−1)∈X̂′

−ϵ(q(z−2))

g
(
x̂(z − 2), q(z − 2)

)
. (4.6.17)

Then, with (4.6.17) for all z ∈ [2, k − 1] and (4.6.16), one has

1− V ρ′

H(x̂0, q̄0)

≥(1− δ)k+1
(∑

x̂(1)∈X̂′
−ϵ(q(0))

g(x̂(0), q(0))
) k∏

z=2

( ∑
x̂(z)∈X̂′

−ϵ(q∗(z−1))

g(x̂∗(z − 1), q∗(z − 1))
)
r(x̂∗(k), q∗(k)).
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Note that ω̄′
k =

(
x̂(0), q(0), ρ0(x̂(0), q(0)), x̂∗(1), q∗(1), ρ1(x̂∗(1), q∗(1)) . . . x̂∗(k), q∗(k)

)
is one of history paths as in Definition 4.2.16 up to the time instant k, and the history-
based supervisor as in Definition 4.2.19 ensures that for all history paths ω̄k, one has

(1− δ)k+1
k∏

z=1

( ∑
ω̄x̂k(z)∈X̂′

−ϵ(ω̄qk(z−1))

g(ω̄x̂k(z − 1), ω̄qk(z − 1))
)
r(ω̄x̂k(k), ω̄qk(k)) ≥ 1− η.

Therefore, one has V ρ′

H(x̂0, q̄0) ≤ η when applying the supervisor as in Definition 4.2.19.

According to Theorem 4.2.13, one has PC̃ρ′×D{∃k ≤ H, yωk |= A} ≤ V ρ′

H(x̂0, q̄0) so that

PD

{
yωH |= A

}
≤ η, which completes the proof. ■

4.7 Proof fo Statements in Section 4.3

Before showing the proof for Theorem 4.3.5 and 4.3.7, some additional definitions and
lemmas are required. First, we define the n-steps reachable state set of a DFA with
respect to a gDTSG as follows.

Definition 4.7.1. (n-steps Reachable State Set) Consider a gDTSG D = (X,U,W,X0,
T, Y, h) and a DFA A = (Q, q0,Π, τ, F ) with a labeling function L : Y → Π. An n-steps
reachable state set Q̃n(x0) of A with respect to an initial state x0 ∈ X0 is recursively
defined as

Q̃0(x0) =
{
q ∈ Q

∣∣ q = τ(q0, L ◦ h(x0))
}
,

Q̃n(x0) =
{
q ∈ Q

∣∣∃q′ ∈ Q̃n−1(x0), σ ∈ Π s.t. q = τ(q′, σ)
}
,

with n ∈ N>0.

Additionally, the following lemmas are also required for showing the results of The-
orem 4.3.5 and 4.3.7.

Lemma 4.7.2. Given a gDTSG D = (X,U,W,X0, T, Y, h) and its finite abstrac-
tion D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A = (Q, q0,Π, τ, F )
modeling the desired safety property. Given a Markov policy ρ = (ρ0, ρ1, . . . ,
ρH−1) over the product gDTSG D̂⊗A within the time horizon [0, H], one has

1−V ρ,λ∗(ρ)
n+1 (x̂, q) = (1−δ) min

λH−n−1∈Λ

∑
x̃∈X̂′

−ϵ(q)

(
1−V ρ,λ∗(ρ)

n (x̃, q̄(x̃, q))
)
T̂ (x̃

∣∣ x̂, û, ŵ),
(4.7.1)

with q /∈ F , û = ρH−n−1(x̂, q), ŵ = λH−n−1(x̂, q, û), V
ρ,λ∗(ρ)
n+1 (x̂, q) as in (3.3.15),

λ∗(ρ) as in (3.3.18), q̄ as in (3.3.17), and X̂ ′
−ϵ(q) as in Definition 4.3.4.
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Lemma 4.7.3. Given a gDTSG D = (X,U,W,X0, T, Y, h) and its finite abstrac-
tion D̂ = (X̂, Û , Ŵ , X̂0, T̂ , Y, ĥ) with D̂ ⪯δ

ϵ D, and a DFA A = (Q, q0,Π, τ, F )
modeling the desired safety property.. Given a Markov policy ρ = (ρ0, ρ1, . . . ,
ρH−1) over the product gDTSG D̂⊗A within the time horizon [0, H], one has

1−V̄ ρ,λ∗(ρ)
n+1 (x̂, q) = (1−δ) max

λH−n−1∈Λ

∑
x̃∈X̂′

ϵ(q)

(
1−V̄ ρ,λ∗(ρ)

n (x̃, q(x̃, q))
)
T̂ (x̃

∣∣ x̂, û, ŵ),
(4.7.2)

with q /∈ F , û = ρH−n−1(x̂, q), ŵ = λH−n−1(x̂, q, û), V̄
ρ,λ∗(ρ)
n+1 (x̂, q) as in (3.3.1),

λ∗(ρ) as in (3.3.5), q as in (3.3.3), and X̂ ′
ϵ(q) as in Definition 4.3.6.

The proof of Lemmas 4.7.2 and 4.7.3 can readily be derived with the help of (3.3.15),
(3.3.17), (3.3.1), and (3.3.3). Now, I am ready to show the results for Theorem 4.3.5
and 4.3.7.
Proof of Theorem 4.3.5 For the sake of clarity of the proof, let’s define

r(x̂(k), q(k), ŵ(k))

=1−max
λk∈Λ

∑
x̂(k+1)∈X̂

V ∗,H−k−1

(
x̂(k + 1), q̄∗

(
x̂(k + 1), q(k)

))
T̂
(
x̂(k + 1)

∣∣ x̂(k), û(k), ŵ(k)),
for k ∈ [0, H−1] with V ∗,H−k−1 and q̄∗ as in (3.3.22) and (3.3.24), respectively, û(k) =
ρ′k(x̂(k), q(k)), and ŵ(k) = λk(x̂(k), q(k), û(k)) and

g(x̂(z − 1), q(z − 1), ŵ(z − 1)) = T̂
(
x̂(z)

∣∣ x̂(z − 1), ρ′z−1(x̂(z − 1), q(z − 1)), ŵ(z − 1)
)
,

for z ∈ [0, k]. Consider an initial state (x̂0, q̄0), with x̂0 ∈ X̂0. By leveraging (4.7.1),

we expand out V
ρ′,λ∗(ρ′)
H (x̂0, q̄0) up to the time instant k ∈ [0, H − 1] as

1− V
ρ′,λ∗(ρ′)
H (x̂0, q̄0) = (1− δ)k+1 min

λ0∈Λ

∑
x̂(1)∈X̂′

−ϵ(q(0))

(
min
λ1∈Λ

∑
x̂(2)∈X̂′

−ϵ(q(1))

(
. . .

(
min

λk−2∈Λ∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

(
min

λk−1∈Λ

∑
x̂(k)∈X̂′

−ϵ(q(k−1))

r
(
x̂(k), q(k), ŵ(k)

)
g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

))
× g

(
x̂(k − 2), q(k − 2), ŵ(k − 2)

))
. . .

)
g
(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

)
, (4.7.3)

with ŵ(m) := λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Firstly, by selecting

x̂∗(k) := argmin
x̂(k)∈X̂′

−ϵ(q(k−1))

r(x̂(k), q(k), ŵ(k)),

with q(k − 1) ∈ Q̃k−1(x0), X̂
′
−ϵ(q(k − 1)) as in Definition 4.3.4, and q∗(k) := q̄(q(k −

1), x̂∗(k)) with q̄ as in (3.3.17), one has

min
λk−1∈Λ

∑
x̂(k)∈X̂′

−ϵ(q(k−1))

r(x̂(k), q(k), ŵ(k))g(x̂(k − 1), q(k − 1), ŵ(k − 1))
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≥ r(x̂∗(k), q∗(k), ŵ(k)) min
λk−1∈Λ

∑
x̂(k)∈X̂′

−ϵ(q(k−1))

g(x̂(k − 1), q(k − 1), ŵ(k − 1)),

with ŵ(k − 1) = λk−1

(
x̂(k − 1), q(k − 1), ρ′k−1(x̂(k − 1), q(k − 1))

)
. Hence, proceed

with (4.7.3), one gets

1− V
ρ′,λ∗(ρ′)
H (x̂0, q̄0) ≥ (1− δ)k+1 min

λ0∈Λ

∑
x̂(1)∈X̂′

−ϵ(q(0))

(
min
λ1∈Λ

∑
x̂(2)∈X̂′

−ϵ(q(1))

(
. . .

(
min

λk−2∈Λ∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

(
min

λk−1∈Λ

∑
x̂(k)∈X̂′

−ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

))(
x̂(k − 2)

, q(k − 2), ŵ(k − 2)
))
. . .

)
g
(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

)
r
(
x̂∗(k), q∗(k), ŵ(k)

)
. (4.7.4)

with ŵ(m) := λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Secondly, we select

x̂∗(k−1) = argmin
x̂(k−1)∈X̂′

−ϵ(q(k−2))

min
λk−1∈Λ

∑
x̂(k)∈X̂′

−ϵ(q(k−1))

g
(
x̂(k−1), q(k−1), ŵ(k−1)

)
, (4.7.5)

with ŵ(k − 1) = λk−1

(
x̂(k − 1), ρ′k−1(x̂(k − 1), q(k − 1))

)
, q(k − 2) ∈ Q̃k−2(x0), and

q∗(k − 1) = q̄(q(k − 2), x̂∗(k − 1)), (4.7.6)

with q̄ as in (3.3.17). Then, one has

min
λz′′∈Λ

∑
x̂(z′)∈X̂′

−ϵ(q(z
′′))

(
min
λz′∈Λ

∑
x̂(k)∈X̂′

−ϵ(q(z
′))

g
(
x̂(z′), q(z′), ŵ(z′)

))
g
(
x̂(z′′), q(z′′), ŵ(z′′)

)
≥

(
min
λz′∈Λ

∑
x̂(k)∈X̂′

−ϵ(q∗(z
′))

g
(
x̂∗(z

′), q∗(z
′), ŵ(z′)

))
min

λz′′∈Λ

∑
x̂(z′)∈X̂′

−ϵ(q(z
′′))

g
(
x̂(z′′), q(z′′), ŵ(z′′)

)
.

with z′ := k − 1 and z′′ := k − 2. Thus, proceed from (4.7.4), one has

1− V
ρ′,λ∗(ρ′)
H (x̂0, q̄0) ≥ (1− δ)k+1 min

λ0∈Λ

∑
x̂(1)∈X̂′

−ϵ(q(0))

(
min
λ1∈Λ

∑
x̂(2)∈X̂′

−ϵ(q(1))

(
. . .

(
min

λk−2∈Λ∑
x̂(k−1)∈X̂′

−ϵ(q(k−2))

g
(
x̂(k − 2), q(k − 2), ŵ(k − 2)

))
. . .

)
g
(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

)
×
(

min
λk−1∈Λ

∑
x̂(k)∈X̂′

−ϵ(q∗(k−1))

g
(
x̂∗(k − 1), q∗(k − 1), ŵ(k − 1)

))
r
(
x̂∗(k), q∗(k), ŵ(k)

)
. (4.7.7)

with ŵ(m) := λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k− 1]. For all z ∈ [2, k− 1], by
choosing x∗(z − 1) similar to (4.7.5) and q∗(z − 1) similar to (4.7.6), one obtains

min
λk′′∈Λ

∑
x̂(k′)∈X̂′

−ϵ(q(k
′′))

(
min
λk′∈Λ

∑
x̂(z)∈X̂′

−ϵ(q(k
′))

g
(
x̂(k′), q(k′), ŵ(k′)

))
g
(
x̂(k′′), q(k′′), ŵ(k′′)

)
≥
(

min
λk′∈Λ

∑
x̂(z)∈X̂′

−ϵ(q∗(k
′))

g
(
x̂∗(k

′), q∗(k
′), ŵ(k′)

))
min

λk′′∈Λ

∑
x̂(k′)∈X̂′

−ϵ(q(k
′′))

g
(
x̂(k′′), q(k′′), ŵ(k′′)

)
. (4.7.8)
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with with k′ := z − 1 and k′′ := z − 2, ŵ(m) := λm

(
x̂(m), q(m), ρ′m(x̂(m), q(m))

)
,

m ∈ {z − 1, z − 2}. Then, with (4.7.8) for all z ∈ [2, k − 1] and (4.7.7), one gets

1− V
ρ′,λ∗(ρ′)
H (x̂0, q̄0) ≥ (1− δ)k+1

(
min
λ0∈Λ

∑
x̂(1)∈X̂′

−ϵ(q(0))

g(x̂(0), q(0), ŵ(0))
)

×
k∏

z=2

(
min

λz−1∈Λ

∑
x̂(z)∈X̂′

−ϵ(q∗(z−1))

g(x̂∗(z−1), q∗(z−1), ŵ(z−1))
)
r(x̂∗(k), q∗(k), ŵ(k)).

with ŵ(m) := λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Note that ω̄′
k :=(

x̂(0), q(0), ρ0(x̂(0), q(0)), x̂∗(1), q∗(1), ρ1(x̂∗(1), q∗(1)) . . . x̂∗(k), q∗(k)
)
is one of history

paths of the memory state of the Safe-visor architecture up to the time instant k, and
the supervisor as in Definition 4.3.4 ensures that for all such history paths ω̄k, one has

(1− δ)k+1
k∏

z=1

(
min

λz−1∈Λ

∑
ω̄x̂k(z)∈X̂′

−ϵ(ω̄qk(z−1))

g(ω̄x̂k(z − 1),

ω̄qk(z − 1)), ŵ(z − 1)
)
r(ω̄x̂k(k), ω̄qk(k), ŵ(k)) ≥ 1− η.

with ŵ(m) := λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Therefore, one has

V
ρ′,λ∗(ρ′)
H (x̂0, q̄0) ≤ η,

when applying the supervisor as in Definition 4.3.4. According to Theorem 3.3.10, one

has P
{
yωH |= A

}
≤ η, which completes the proof. ■

Proof of Theorem 4.3.7 For the sake of clarity of the proof, let’s define

f(x̂(k), q(k), ŵ(k)) :=

1− min
λk∈Λ

∑
x̂(k+1)∈X̂

V̄ ∗
H−k−1

(
x̂(k + 1), q∗

(
x̂(k + 1), q(k)

))
T̂
(
x̂(k + 1)

∣∣ x̂(k), û(k), ŵ(k)),
for k ∈ [0, H − 1] with V̄ ∗

H−k−1 as in (3.3.9), q∗ as in (3.3.11), û(k) = ρ′k(x̂(k), q(k)),
and ŵ(k) = λk(x̂(k), q(k), û(k)),

g(x̂(z − 1), q(z − 1), ŵ(z − 1)) := T̂
(
x̂(z)

∣∣ x̂(z − 1), ρ′z−1(x̂(z − 1), q(z − 1)), ŵ(z − 1)
)
,

for z ∈ [0, k]. First, consider an initial state (x̂0, q̄0). By expanding out V̄
ρ′,λ∗(ρ′)
H (x̂0, q̄0)

up to the time instant k ∈ [0, H−1] with the help of (4.6.1), one has 1−V̄ ρ′,λ∗(ρ′)
H (x̂0, q̄0) =

θ1(k) + θ2(k), with

θ1(k) = (1− δ)k+1 max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

(
max
λ1∈Λ

∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

(
max

λk−2∈Λ

∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

(
max

λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q(k−1))

f
(
x̂(k), q(k), ŵ(k)

)
g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

))
g
(
x̂(k − 2), q(k − 2),
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ŵ(k − 2)
))
. . .

)
g
(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

)
, (4.7.9)

and

θ2(k) = δ
(
1 + (1− δ)

(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

g
(
x̂(0), q(0), ŵ(0)

))
+ (1− δ)2

(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

(
max
λ1∈Λ

∑
x̂(2)∈X̂′

ϵ(q(1))

g
(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

))
+. . .+(1− δ)k

(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

(
max
λ1∈Λ

∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

(
max

λk−2∈Λ

∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

(
max

λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q(k−1))

g(x̂
(
k − 1), q(k − 1), ŵ(k − 1)

))
× g

(
x̂(k − 2), q(k − 2), ŵ(k − 2)

))
. . .

)
g
(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

)))
, (4.7.10)

with ŵ(m) = λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Let us choose

x̂∗(k) := arg max
x̂(k)∈X̂′

ϵ(q(k−1))
f(x̂(k), q(k), ŵ(k)),

with q(k−1) ∈ Q̃k−1(x0), X̂
′
ϵ(q(k−1)) as Definition 4.3.6, and q∗(k) = q(q(k−1), x̂∗(k))

with q as in (3.3.3). Then, one has

max
λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q(k−1))

f
(
x̂(k), q(k), ŵ(k)

)
g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

)
≤f

(
x̂∗(k), q∗(k), ŵ(k)

)
max

λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

)
.

with ŵ(k − 1) = λk−1(x̂(k − 1), q(k − 1), ρ′k−1(x̂(k − 1), q(k − 1))). Thus, proceed
from (4.7.9), one has

θ1(k) ≤ (1− δ)k+1 max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

(
max
λ1∈Λ

∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

(
max

λk−2∈Λ

∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

(
max

λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

))
g
(
x̂(k − 2), q(k − 2), ŵ(k − 2)

))
. . .

)
× g

(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

)
f
(
x̂∗(k), q∗(k), ŵ(k)

)
, (4.7.11)

with ŵ(m) = λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Next, let’s select

x̂∗(k − 1) =

argmax
x̂(k−1)∈X̂′

ϵ(q(k−2))

max
λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

)
, (4.7.12)

with ŵ(k− 1) = λk−1(x̂(k− 1), q(k− 1), ρ′k−1(x̂(k− 1), q(k− 1))), q(k− 2) ∈ Q̃k−2(x0),
and

q∗(k − 1) = q(q(k − 2), x̂∗(k − 1)), (4.7.13)
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with q as in (3.3.3). With (4.7.12) and (4.7.13), one has

max
λk−2∈Λ

∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

(
max

λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q(k−1))

g
(
x̂(k − 1), q(k − 1), ŵ(k − 1)

))
g
(
x̂(k − 2), q(k − 2), ŵ(k − 2)

)
≤

(
max

λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q
∗(k−1))

g
(
x̂∗(k−1), q∗(k−1), ŵ(k−1)

))
max

λk−2∈Λ

∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

g
(
x̂(k−2), q(k−2), ŵ(k−2)

)
,

with with ŵ(k− 1) = λk−1(x̂(k− 1), q(k− 1), ρ′k−1(x̂(k− 1), q(k− 1))), and ŵ(k− 2) =
λk−2(x̂(k − 2), q(k − 2), ρ′k−2(x̂(k − 2), q(k − 2))) Therefore, from (4.7.11), one has

θ1(k) ≤(1− δ)k+1 max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

(
max
λ1∈Λ

∑
x̂(2)∈X̂′

ϵ(q(1))

(
. . .

(
max

λk−2∈Λ

∑
x̂(k−1)∈X̂′

ϵ(q(k−2))

g
(
x̂(k − 2)

, q(k − 2), ŵ(k − 2)
))
. . .

)
g
(
x̂(1), q(1), ŵ(1)

))
g
(
x̂(0), q(0), ŵ(0)

)
f
(
x̂∗(k), q∗(k), ŵ(k)

)
(

max
λk−1∈Λ

∑
x̂(k)∈X̂′

ϵ(q
∗(k−1))

g
(
x̂∗(k − 1), q∗(k − 1), ŵ(k − 1)

))
. (4.7.14)

with ŵ(m) = λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. For all z ∈ [2, k − 1],
one can choose x∗(z−1) similar to (4.7.12) and q∗(z−1) analogously to (4.7.13). Then,
one has

max
λz−2∈Λ

∑
x̂(z−1)∈X̂′

ϵ(q(z−2))

(
max

λz−1∈Λ

∑
x̂(z)∈X̂′

ϵ(q(z−1))

g
(
x̂(z−1), q(z−1), ŵ(z−1)

))
g
(
x̂(z−2), q(z−2), ŵ(z−2)

)
≤

(
max

λz−1∈Λ

∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g
(
x̂∗(z−1), q∗(z−1), ŵ(z−1)

))
max

λz−2∈Λ

∑
x̂(z−1)∈X̂′

ϵ(q(z−2))

g
(
x̂(z−2), q(z−2), ŵ(z−2)

)
,

(4.7.15)

with ŵ(m) = λk(x̂(m), q(m), ρ′m(x̂(m), q(m))),m ∈ {z−1, z−2}. Therefore, continuing
from (4.7.14) with (4.7.15) for all z ∈ [2, k − 1], one has

θ1(k) ≤ (1− δ)k+1
(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

g
(
x̂(0), q(0), ŵ(0)

))

×
k∏

z=2

(
max

λz−1∈Λ

∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g
(
x̂∗(z − 1), q∗(z − 1), ŵ(z − 1)

))
f
(
x̂∗(k), q∗(k), ŵ(k)

)
. (4.7.16)

with ŵ(m) = λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Similar to the idea of
going from (4.7.11) to (4.7.16) with x∗(z−1) and q∗(z−1) for all z ∈ [2, k−1], starting
from (4.7.10), one has

θ2(k) ≤ δ
(
1+(1−δ)

(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

g(x̂(0), q(0), ŵ(0))
)
+(1−δ)2

(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

g(x̂(0), q(0), ŵ(0))
)

×
(
max
λ1∈Λ

∑
x̂(2)∈X̂′

ϵ(q
∗(1))

g(x̂∗(1), q∗(1), ŵ(1))
)
+ . . .+ (1− δ)k

(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

g(x̂(0), q(0), ŵ(0))
)

×
k∏

z=2

(
max

λz−1∈Λ

∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g(x̂∗(z − 1), q∗(z − 1), ŵ(z − 1))
))
. (4.7.17)
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with ŵ(m) = λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Finally. combin-
ing (4.7.16) and (4.7.17), one has

1− V̄
ρ′,λ∗(ρ

′)
H (x̂0, q̄0)

≤(1− δ)k+1
(
max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

g(x̂(0), q(0), ŵ(0))
) k∏

z=2

(
max

λz−1∈Λ

∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g(x̂∗(z − 1), q∗(z − 1),

ŵ(z − 1))
)
f(x̂∗(k), q∗(k), ŵ(k)) + δ

(
1 +

k∑
j=1

(1− δ)j max
λ0∈Λ

∑
x̂(1)∈X̂′

ϵ(q(0))

g(x̂(0), q(0), ŵ(0))

×
j∏

z=2

(
max

λz−1∈Λ

∑
x̂(z)∈X̂′

ϵ(q
∗(z−1))

g(x̂∗(z − 1), q∗(z − 1), ŵ(z − 1))
))
.

Note that ω̄′
k=

(
x̂(0), q(0), ρ0(x̂(0), q(0)), x̂

∗(1), q∗(1), ρ1(x̂
∗(1), q∗(1)), . . . , x̂∗(k),

q∗(k)
)
is one of the history paths of the memory state of the Safe-visor architecture up

to the time instant k. By applying the history-based supervisor as in Definition 4.3.6,
one can ensure that for an arbitrary path ω̄k, one has

(1− δ)k+1
k∏

z=1

(
max

λz−1∈Λ

∑
ω̄x̂k(z)∈X̂′

ϵ(ω̄qk(z−1))

g(ω̄x̂k(z−1), ω̄qk(z−1)), ŵ(z−1)
)
f(ω̄x̂k(k), ω̄qk(k), ŵ(k))

+ δ
(
1 +

k∑
j=1

(1− δ)j
j∏

z=1

(
max

λz−1∈Λ

∑
ω̄x̂k(z)∈X̂′

ϵ(ω̄qk(z−1))

g(ω̄x̂k(z − 1), ω̄qk(z − 1), ŵ(z − 1))
))

≤ η,

with ŵ(m) := λm(x̂(m), q(m), ρ′m(x̂(m), q(m))), m ∈ [0, k − 1]. Therefore, one gets

V̄
ρ′,λ∗(ρ′)
H (x̂0, q̄0) ≥ 1− η,

with the supervisor as in Definition 4.3.6. According to Theorem 3.3.4, one has

PD

{
yωH |= A

}
≥ 1− η, which completes the proof.

■
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5 Abstraction-free Controller Synthesis
against ω-Regular Properties

5.1 Introduction

In Chapter 3 and 4, abstraction-based approaches for constructing the Safe-visor archi-
tecture are proposed. These approaches require building finite abstractions of the orig-
inal systems, which sometimes encounters so-called the curse of dimensionality, leading
to exponential growth in computational complexity with the dimension of the systems.
In this chapter, abstraction-free methodologies are proposed for designing controllers
enforcing ω-regular properties [183] over discrete-time linear control systems affected
by bounded disturbances. As a key insight, these controllers are constructed based on
so-called hybrid controlled invariant (HCI) sets over the state set of a hybrid system.
These controllers and sets are used for constructing the Safe-visor architecture following
the basic idea of state-based approaches, which is described as in Section 1.3.

5.1.1 Related Works

In the computer science community, reactive synthesis [153] was introduced to synthe-
size controllers enforcing high-level logical properties, see e.g. [153, 139, 60]. However,
these results are only applicable to systems with finite state and input sets. As for
systems with continuous state and input sets, Hamilton-Jacobi-based (HJ-based) meth-
ods [16, 140] are applicable to synthesize controllers against invariance and reachability
properties. However, it is challenging to apply these methods to enforce high-level logic
properties, in general. To cope with high-level logic properties, discretization-based
approaches have been proposed in the past two decades. Among them, symbolic tech-
niques (see e.g. [209, 154, 161]) are widely applied for various types of properties, such
as (safe-)LTL (see e.g. [164, 181]) and ω-regular properties (see e.g. [54, 104]). These
techniques require the construction of symbolic models (a.k.a. finite abstractions) with
finite state and input sets for the original systems. Since the finite state and input sets
are constructed by gridding the original sets, the number of discrete states and inputs
grow exponentially with respect to the dimensions of state and input sets, respectively.
This issue is known as the curse of dimensionality, which is one of the main challenges
of discretization-based approaches. Some recent results alleviate this issue partially by
constructing abstractions in a compositional manner (see e.g. [180, 208, 155]), by lever-
aging a counterexample-guided abstraction refinement framework [202], or by applying
a specification-guided framework (see e.g. [219, 53, 138]). However, these results require
either specific properties of the systems (e.g. dissipativity, mixed-monotonicity, etc.),

107



5 Abstraction-free Controller Synthesis against ω-Regular Properties

or additional assumptions regarding the properties (e.g. properties can be decomposed
into several simpler ones).
Recently, other discretization-based approaches, which are developed based on in-

terval analysis (referred to as interval-analysis-based approaches), have been proposed
to enforce invariance properties [124], reach-and-stay properties [126], and properties
modeled by deterministic Büchi automaton [127], which are subsets of ω-regular prop-
erties. Despite improvements in terms of space complexity compared with the symbolic
techniques, interval-analysis-based approaches also suffer from the curse of dimension-
ality, since discretization of the state sets is still needed. Additionally, they are only
applicable to systems without exogenous disturbances.
To avoid the curse of dimensionality introduced by discretizing the state and input

sets, some discretization-free approaches have been proposed. Results in [23] propose
a set-based approach to enforce invariance properties (i.e. the systems are expected
to stay within a set). This result is further extended in [158, 30, 165, 129] in terms
of termination and compositionality. Control barrier functions (CBF) [199] are also
used to enforce invariance properties (e.g. [87, 147, 88, 8]), properties described by
deterministic finite automata [85, 10], deterministic Büchi automata [86], LTL [176],
and ω-regular properties [9]. Unfortunately, constructing valid CBFs is an NP-hard
problem in general [46].

5.1.2 Contributions

In this chapter, new discretization-free approaches are proposed for synthesizing con-
trollers against ω-regular properties over discrete-time linear control systems affected
by bounded disturbances. Specifically, new set-based approaches are developed, which
leverage new iterative schemes to construct these controllers by computing so-called
hybrid controlled invariant (HCI) sets. Compared with existing set-based approaches
(e.g., [165]) for computing control invariant sets over continuous sets against invariance
properties, the technical contributions of this chapter are threefold:

� Here, ω-regular properties are considered instead of invariance properties. In
particular, I elaborate on how to exploit the structure of the automata modeling
the desired ω-regular properties to compute the HCI sets;

� I show the convergence of the new iterative schemes over hybrid sets. Moreover,
rigorous results are provided for ensuring the termination of the iterative schemes
over hybrid sets within a finite number of steps;

� A worst-case space and time complexities analysis is provided for the proposed
set-based methods over hybrid sets. In particular, I show the relation between
the complexities of these methodologies and the structure of the automata rep-
resenting the desired ω-regular properties.

Moreover, in comparison with those discretization-based approaches, discretization
over the state and input sets is not needed so that the proposed approaches can be
efficient in some cases in terms of computation time (c.f. Section 5.5.4). Compared
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with the discretization-free approaches based on CBFs, the proposed methods are more
systematic in the sense that given any linear control systems and desired ω-regular
properties, one can readily compute the HCI sets and construct their corresponding
controllers by leveraging the results in this chapter. Meanwhile, the results in [9] tackle
the synthesis problems by first decomposing the synthesis task for the original property
into several simpler ones and then computing CBFs for each simpler task by solving
a series of sum-of-square (SOS) optimization problems. For each SOS optimization
problem, one needs to choose the forms of the potential CBFs to be polynomials of
fixed degrees and fix the forms of their corresponding controllers heuristically, which
requires much manual effort.

5.1.3 Problem Formulation

In this chapter, I focus on synthesizing controllers enforcing ω-regular properties over
dtLCS as in Definition 2.3.1. Here, ω-regular properties is modeled by deterministic
Streett automata (DSA), as introduced in Definition 2.5.2. To synthesize such con-
trollers, a labeling function is needed, which is used to connect a system S as in (2.3.1)
to a DSA A.

Definition 5.1.1. (Labeling function) Consider a dtLCS S = (X,X0, U,W, f) and a
DSA A = (Q, q0,Π, δ,Acc). A measurable labeling function L : X → Π is defined as
follows: given an infinite state sequence ξx = (x(0), x(1), . . .) ∈ Xω of system S, the
word of ξx over Π is L(ξx) = (σ0, σ1, . . . , σk, . . .), where σk = L(x(k)) for all k ∈ N.
Accordingly, one has L(ξx) |= A if L(ξx) ∈ L(A), and S |= A, if L(ξx) |= A holds for
all possible ξx of S.

Note that in Definition 5.1.1, I slightly abuse the notation by applying the map L(·)
over the domain Xω, i.e. L((x(0), x(1), . . .)) = (L(x(0)), L(x(1)), . . . ). However, the
distinction is clear from the context. It is also worth noting that the set of alphabet
Π = {σ1, σ2, . . . , σM} along with the labeling function L : X → Π provide a partition
of the state set X = ∪M

j=1Xj , where Xj := L−1(σj). Finally, two additional definitions
related to the strongly connected components [13] in a DSA are introduced.

Definition 5.1.2. Consider a DSA A = (Q, q0,Π, δ,Acc). A set Q1 ⊆ Q is strongly
connected if any arbitrary pair of states qa, qb ∈ Q1 are mutually reachable, i.e. ∃(qa, . . . ,
qb) ∈ Qd1 , (qb, . . . , qa) ∈ Qd2 with d1, d2 ∈ N. A set Q1 ⊆ Q is a strongly connected
component in A if Q1 is strongly connected, and ∄Q2 ⊆ Q, with Q1 ⊂ Q2, such that
Q2 is strongly connected. Additionally, SCC(A) ⊂ 2Q denotes the set of all strongly
connected components in A.

Definition 5.1.3. ( reduced DSA) Consider a DSA A = (Q, q0,Π, δ,Acc). A reduced
DSA of A with respect to a set Q̄ ⊂ Q is defined as Ard(Q̄) := (Q′, q0,Π

′, δ′,Acc′), with
Q′ ⊆ Q, Π′ ⊆ Π, δ′ ⊆ δ, and Acc′ ⊆ Acc such that ∀Qscc ∈ SCC(Ard(Q̄)), ∄q ∈ Q̄ such
that q ∈ Qscc.
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

Intuitively, the reduced DSA Ard(Q̄) is constructed such that it does not have any
strongly connected component containing the state within the set Q̄. To formulate the
main problem, the following definitions are also needed, which are borrowed from [71].

Definition 5.1.4. (Hyperplane) A hyperplane in Rn is a set

{x ∈ Rn|a⊤x = b}, (5.1.1)

where a ∈ Rn is non-zero and b ∈ R.

Definition 5.1.5. A Polytope is a bounded set in the form of

P = {x ∈ Rn|Px ≤ p}, (5.1.2)

with P ∈Rnp×n, p∈Rnp, and np∈N, where the inequality in (5.1.2) is component-wise.
Accordingly,

numh(P) := np, (5.1.3)

denotes the number of hyperplanes defining P, and denoted by P(n) the set of all
polytopes in Rn.

Definition 5.1.6. (P-collection) A P-collection U is a finite collection of polytopes in
Rn, i.e.

U = ∪Nc
a=1Pa,

where Nc ∈ N, and Pa = {x ∈ Rn|Pax ≤ pa} are polytopes, with a ∈ [1,Nc], Pa ∈
Rnp,a×n, and pa ∈ Rnp,a. Additionally, for a P-collection U , one has

larg(U) := max
a∈[1,Nc]

numh(Pa), (5.1.4)

and
num(U) := Nc, (5.1.5)

with numh(·) as in (5.1.3).

With all notions above, the main problem in this chapter is formulated as below.

Problem 5.1.7. Consider a dtLCS S = (X,X0, U,W, f) as in (2.3.1), a DSA
A = (Q, q0,Π, δ,Acc), and a labeling function L : X → Π as in Definition 5.1.1.
Synthesize a controller (if existing) to enforce the property modeled by A over S.

For a better illustration of the theoretical results, the following running example is
deployed throughout this chapter.

Example 5.1.8. (Running example) Consider a dtLCS as in (2.3.1), in which A =[
0.9990 0.1846
−0.0074 0.5265

]
; B=

[
1.0209;7.3830

]
; x(k)= [x1(k);x2(k)] is the state; X0 = [105, 110]×

[−10, 10] is the initial state set; u(k) ∈ [−0.32, 0.68] denotes the input; and w(k) ∈
[−0.18, 0.18]2 denotes the disturbances affecting the system. Here, an ω-regular property
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ψ, which is modeled by a DSA A as in Figure 5.1, is considered. The temporal logic
formula1 for A is given by G((p2 ⇒ FGp2) ∧ (¬p3)), which, in English, requires that:
1) if the system enters the region X2 := L−1(p2), it must eventually stay within X2;
and 2) the system should not reach the region X3 := L−1(p3).

q0 q1 q2 q3

p1

p2

p1
p2

p1

p2

p3

p3

p3

p1 _ p2 _ p3

Figure 5.1: DSA A modeling ψ, with alphabet Π = {p1, p2, p3}; labeling function L : X → Π
with L(x) = p1 when x ∈ [105, 110]× [−10, 10], L(x) = p2 when x ∈ (110, 115]×
[−10, 10], and L(x) = p3 when x ∈ R2\([105, 115] × [−10, 10]); and accepting
condition Acc = {⟨E1, F1⟩, ⟨E2, F2⟩, ⟨E3, F3⟩}, in which E1 = {q3}, F1 = ∅,
E2 = {q1}, F2 = {q2}, E3 = ∅, and F3 = {q0}. ■ and  indicate the states that
can be visited finitely and infinitely many times, respectively.

5.2 Controller Synthesis via Hybrid Controlled Invariant Sets

5.2.1 Product System

Consider a dtLCS S and a DSA A = (Q, q0,Π, δ,Acc). To solve Problem 5.1.7, a
product between a dtLCS S and a DSA A is required, which is formally defined as
follows.

Definition 5.2.1. (Product of S and A) Consider a dtLCS S = (X,X0, U,W, f), a
DSA A = (Q, q0,Π, δ,Acc), and a labeling function L : X → Π. The product system
between S and A is defined as

S ⊗A = (X,X0, U,W, f), (5.2.1)

with state set X := {(q, q′, x) ∈ Q×Q×X|∃σ ∈ Π, (q, σ, q′) ∈ δ, and x ∈ L−1(σ)}; the
set of initial states X0 := {(q0, q, x) ∈ {q0}×Q × X0|∃σ ∈ Π, (q0, σ, q) ∈ δ, with x ∈
L−1(σ)} ⊆ X; the input set U := U ; and the disturbance set W := W . The transition
f : X × U ×W → X is defined as x′ := f(x, u, w) with x = (q, q′, x), x′ = (q′, q′′, x′),
u ∈ U , and w ∈W in which x′ = Ax+Bu+ w and (q′, L(x′), q′′) ∈ δ.

Consider the hybrid setX as in (5.2.1), and any setX ′ ⊂ X. The following definitions
are also required in this chapter:

� (Projection) The projection of X ′ on X w.r.t. some q, q′∈Q is denoted by

X ′(q, q′) := {x ∈ X|(q, q′, x) ∈ X ′}. (5.2.2)

Accordingly,
(
q, q′, X ′(q, q′)

)
:= {(q1, q2, x) ∈ X ′ | q1 = q, q2 = q′}.

1see [13, Section 5.1] for syntax and semantics of the formula.
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

� (Hybrid Minkowski sum) Consider a set X ⊆ X. X ′ ⊕ X denotes the hybrid
Minkowski sum between X ′ and X, which is defined as

X ′ ⊕ X := {(q, q′, x)∈X | X ′(q, q′) ̸= ∅, x ∈ X ′(q, q′) + X}; (5.2.3)

� (ε-expansion set) Consider an ε ∈ R≥0. The set X ′
ε denotes the ε-expansion of

X ′, which is defined as

X ′
ε := X ′ ⊕ εBn; (5.2.4)

� (ε-contraction set) Consider an ε ∈ R≥0. The set X ′
−ε denotes the ε-contraction

of X ′, which is defined as

X ′
−ε := {(q, q′, x) ∈ X | X ′(q, q′) ̸= ∅, x ∈ X ′(q, q′)− εBn}. (5.2.5)

� (ρ-contraction product) Consider ρ ∈ R≥0.

(S ⊗A)−ρ := (X−ρ, (X0)−ρ, U − ρBm,W , f), (5.2.6)

denotes the ρ-contraction of S ⊗A as in (5.2.1).

� (Distance) Consider any x1, x2 ∈ X, with x1 = (q1, q
′
1, x1) and x2 = (q2, q

′
2, x2).

The distance between x1 and x2 is defined as

d(x1, x2) :=

{
+∞ , if q1 ̸=q2 or q′1 ̸=q′2;
∥x1 − x2∥, if q1=q2 and q′1=q

′
2.

(5.2.7)

Additionally, Hausdorf distance between any two hybrid sets X ′, X ′′ ⊂ X is defined as
follows.

Definition 5.2.2. Consider two hybrid sets X ′, X ′′ ⊂ X. The Hausdorf distance
between X ′ and X ′′ is defined as

dH(X ′, X ′′) := inf{ε ∈ R≥0|X ′⊆X ′′
ε ∧X ′′⊆X ′

ε}. (5.2.8)

Remark 5.2.3. Note that the ε-contraction set in (5.2.5) can be empty when ε is too
large. Hence, the ρ-contraction products as in (5.2.6) are only meaningful for those ρ
with which the sets X−ρ, (X0)−ρ, and U − ρBm are not empty.

5.2.2 Synthesis via Hybrid Controlled Invariant Sets

This subsection shows that Problem 5.1.7 can be solved by computing HCI sets (cf.
Definition 5.2.5) for the product system as in Definition 5.2.1. To this end, the next
result is required.
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Theorem 5.2.4. Consider a dtLCS S = (X,X0, U,W, f), a DSA A = (Q, q0,
Π, δ,Acc), a labeling function L : X → Π, the product system S ⊗ A as in
Definition 5.2.1, and a set E⊂X such that X\E is the state set of the product
system S ⊗Ard(E

′), with Ard(E
′) := (Qrd, q0,Πrd, δrd,Accrd), and

E′ := {q ∈ Q|∃r ∈ {1, . . . , r}, q ∈ Er}. (5.2.9)

One has S |= A if for any infinite state sequence ξ
x
= (x(0), x(1), . . . , x(k), . . .)

of S ⊗A, x(k) /∈ E, ∀k ∈ N.

One can show Theorem 5.2.4 by considering the accepting condition ofA as in (2.5.1).
As a key insight, if one can find a controller that keeps all infinite state sequences of
S ⊗ A evolving within the set X\E, then any state q ∈ E′ would be visited at most
once considering the definition of the reduced DSA Ard(E

′). One can build such a
controller by leveraging HCI sets for S ⊗A, as defined next.

Definition 5.2.5. (HCI Set) A set I ⊆ X\E is an HCI set for S ⊗ A, if ∀x ∈ I,
∃u ∈ U such that ∀w ∈ W , one has x′ := f(x, u, w) ∈ I, with E being the set as in
Definition 5.2.4. Additionally, I∗ denotes the maximal HCI set in the sense that for
any other HCI set I ′ ⊂ X\E, one has I ′ ⊂ I∗.

Note that the HCI set defined here is similar to the strongly reachable set in [23,
Definition 2], but defined on the hybrid set X instead of Rn. Based on the definition
for the HCI set, the definition of an HCI-based controller is provided as follows.

Definition 5.2.6. (HCI-based controller) Consider a dtLCS S = (X,X0, U,W, f), a
DSA A = (Q, q0,Π, δ,Acc), a labeling function L : X → Π, the product system S ⊗ A
as in Definition 5.2.1, and a non-empty HCI set I for S⊗A. An HCI-based controller
µ : X → U is constructed as follows: given x(k) = (q, q′, x), input u(k) = µ(x(k))
should be chosen such that ∀x′ ∈ Ax(k) + Bu(k) +W , one gets (q′, q′′, x′) ∈ I, with
(q′, σ, q′′) ∈ δ and σ = L(x′).

With Definition 5.2.6 in hand, the next result shows that once there exists a non-
empty HCI set I, the construction of an HCI-based controller is always feasible.

Proposition 5.2.7. Consider a dtLCS S, a DSA A modeling the desired ω-
regular property, and the product system S ⊗A as in Definition 5.2.1. For any
non-empty HCI set I of S ⊗ A, there exists an HCI-based controller µ as in
Definition 5.2.6.

The proof of Proposition 5.2.7 is shown in Section 5.7.1. By virtue of Definition 5.2.6
and Proposition 5.2.7, one can reduce Problem 5.1.7 to the computation of (maximal)
HCI sets for S ⊗A. In Section 5.2.3, the computation of such sets will be discussed in
details.
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Running example (continued). For computing HCI set as in Definition 5.2.5,

E :=
⋃

∀q′∈{q1,q2}

(
q′, q1, X(q′, q1)

)
∪
⋃

∀q′∈Q

(
q′, q3, X(q′, q3)

)
, (5.2.10)

is chosen, for which the corresponding reduced DSA Ard(E
′) is depicted in Figure 5.2

(left). Note that the selection of the set E is not unique. One can also choose E

q0 q1 q2

p1

p2 p2

p2
q0

p1

Figure 5.2: Reduced DSA Ard(E
′) for different choices of E.

such that X\E =
(
q0, q0, X(q0, q0)

)
, with the underlying reduced DSA as in Figure 5.2

(right). However, such a choice essentially prevents all the states in the set E′ as
in (5.2.9) from being reached, which is more conservative than the choice in (5.2.10).

q0 q1 q2

q3

p1
p2

p1
p2

p1

p2

p3 p3
p3

p1 _ p2 _ p3

p3

q
0
1
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0
2

p2

p2

p1

p1

q0

q1

q2p1

p2
p2 p2

q
0

1

q
0

2
p2

p2

p1

p1

Figure 5.3: Left: DSA A′ modeling ψ, with the same alphabet and labeling function as A
in Figure 5.1, and accepting condition Acc = {⟨E1, F1⟩, ⟨E2, F2⟩, ⟨E3, F3⟩}, with
E1 = {q3}, F1 = ∅, E2 = {q1, q′1}, F2 = {q2, q′2}, E3 = ∅, and F3 = {q0}. Transition
(q′2, p3, q3) is omitted to keep the figure less crowded. Right: The reduced DSA
of A′ with E selected as in (5.2.10).

Remark 5.2.8. It is also worth mentioning that the results in Theorem 5.2.4 can
readily be applied to synthesize controllers that allow some states in E′ being visited at
most N ′ times, where N ′ ∈ N≥1 is chosen by the users. For instance, to synthesize a
controller that allows E2 of A being visited at most twice (i.e. N ′ = 2), one can first
reformulate A in Figure 5.1 to another DSA A′ as in Figure 5.3 (Left). Then, one
can apply Theorem 5.2.4 to A′ by selecting E as in (5.2.10), which corresponds to a
reduced DSA as in Figure 5.3 (Right), and design an HCI-based controller accordingly
(if existing).

5.2.3 Computation of the Maximal HCI Sets

Inspired by the method proposed in [23] for computing maximal strongly reachable set,
the following approach is proposed to compute the maximal HCI set.
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Definition 5.2.9. Consider a dtLCS S as in (2.3.1), a DSA A modeling the desired
ω-regular property, the product system S ⊗ A = (X,X0, U,W, f), and set E ⊂ X
selected as in Theorem 5.2.4. The maximal HCI set for S ⊗ A can be computed with
iteration (5.2.11) and stopping criterion (5.2.12) as:

I0 = X\E, Ii+1 = I0 ∩P(Ii), (5.2.11)

Ii = Ii+1, (5.2.12)

where

P(I) = {x ∈ X | ∃u ∈ U,∀w ∈W, such that f(x, u, w) ∈ I}, (5.2.13)

denotes the set of states that reach I in one step. Once the iteration in (5.2.11) is
terminated by the stopping criterion in (5.2.12), Ii is the maximal HCI set.

To ensure the convergence of the iteration scheme in Definition 5.2.9, the following
assumption is needed.

Assumption 5.2.10. Consider a dtLCS S, a DSA A representing the desired ω-regular
property, a labeling function L : X → Π as in Definition 5.1.1, and the corresponding
product system S ⊗A = (X,X0, U,W, f) as in (5.2.1). It is assumed that:

1. Input set U and disturbance set W are of the form of polytopes in Rm and Rn,
respectively;

2. The set (X\E)(q, q′), as defined in (5.2.2), is compact and of the form of a P-
collection in Rn, ∀q, q′∈Q.

With Definition 5.2.9 and Assumption 5.2.10, the following results show that Ii
converges to maximal HCI set I∗ as i goes to infinity.

Theorem 5.2.11. Consider a dtLCS S as in Definition 2.3.1, and a DSA
A modeling the desired ω-regular property such that Assumption 5.2.10 holds.
Then, considering the iteration in (5.2.11), one has I∗ = lim

i→∞
Ii, where the limit

is in terms of the Hausdorff distance as in Definition 5.2.2.

The proof of Theorem 5.2.11 is inspired by [23] and can be found in Section 5.7.1.
Next, the implementation of (5.2.11) and (5.2.12) is discussed. Considering the dy-
namics as in (2.3.2), by the definition of f , P(I) as in (5.2.13) can be rewritten as

P(I) = {(q, q′, x) ∈ X |x ∈ pre(I(q′, q′′)), with q, q′, q′′ ∈ Q s.t. ∃σ ∈ Π, (q, σ, q′) ∈ δ},
(5.2.14)

with

pre(X ′) = {x ∈ X|∃u ∈ U, ∀w ∈W,Ax+Bu+ w ∈ X ′}, (5.2.15)
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Algorithm 5: Computing maximal HCI Set I∗

Input: X\E, S ⊗A
Output: Maximal HCI set I∗

1 i = 0, I0 = X\E
2 while 1 do
3 Ii+1 = ∅, Pr = ∅;
4 foreach every (q′, q′′) s.t. ∃x, (q′, q′′, x) ∈ Ii do
5 Proj = pre(Ii(q

′, q′′));
6 foreach every q ∈ Q s.t. ∃σ ∈ Π, (q, σ, q′) ∈ δ do
7 Pr = Pr ∪ {(q, q′, x)|x ∈ Proj};
8 end

9 end
10 foreach every (q, q′) s.t. ∃x, (q, q′, x) ∈ Pr do
11 Ic = I0(q, q

′) ∩ Pr(q, q′);
12 Ii+1 = Ii+1 ∪ {(q, q′, x)|x ∈ Ic};
13 end
14 if Ii = Ii+1 then
15 I∗ = Ii;
16 Stop successfully;

17 else
18 if Ii+1 is empty then
19 Stop unsuccessfully;

20 else
21 i = i+ 1;
22 end

23 end

24 end

and I(q′, q′′) ̸= ∅ as defined in (5.2.2).

Roughly speaking, pre(X ′) computes the one-step-backward projection of the set X ′

considering the linear dynamics as in (2.3.2). Based on (5.2.14), the implementation of
Theorem 5.2.11 is provided in Algorithm 5. In each iteration, P(Ii) is computed as in
line 3-7, where line 7 and 5 correspond to (5.2.14) and (5.2.15), respectively; I0∩P(Ii)
is computed as in line 10-12. Note that one can readily employ existing toolboxes (e.g.,
multi-parametric toolbox MPT [78] and BENSOLVE [132]) to perform these polyhedral
operations. The iteration proceeds until either: 1) Ii = Ii+1 (line 14-16); or 2) Ii+1 = ∅
(line 18-19), meaning a non-empty HCI set does not exist.

Remark 5.2.12. If the set X\E is not compact, one can reselect the set E to ensure
(if possible) the compactness of X\E. Additionally, one can also (slightly) deflate the
original set X\E such that one can start Algorithm 5 with a compact X\E. Such
deflation is shown using the running example.
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5.2 Controller Synthesis via Hybrid Controlled Invariant Sets

Running example (continued). With E selected as in (5.2.10), the set X\E is

Figure 5.4: Computation of I1 based on I0 for the running example according to Algorithm 5.

not compact. Nevertheless, following the idea of Remark 5.2.12, one can ensure the
compactness of X\E by slightly deflating it such that X\E(q0, q1) = X\E(q1, q2) =
[110+ ϵ, 115]× [−10, 10], with ϵ ∈ R>0 being any arbitrary positive real number. Here,
ϵ = 0.01 is selected for the computation as in Algorithm 5. To provide more intuition
on how Algorithm 5 works, the computation of I1 based on I0 for the running example
is demonstrated in Figure 5.4. Concretely, the iteration starts from I0 as depicted in
Figure 5.4(a), (d), (g), and (j) (cf. line 1 in Algorithm 5). Then, by leveraging (5.2.15),
the one-step-backward projection of I0(q0, q0), I0(q0, q1), I0(q1, q2), and I0(q2, q2) are
computed, as shown in Figure 5.4(b), (e), (h), and (k), respectively (cf. line 5 in
Algorithm 5). Based on these projections, P(I0) as in (5.2.14) are computed (cf. line 7
in Algorithm 5), in which

P(I0)(q0, q0) =
(
q0, q0, pre(I0(q0, q0)

)
;

P(I0)(q0, q1) =
(
q0, q0, pre(I0(q0, q1)

)
;

P(I0)(q1, q2) =
(
q0, q1, pre(I0(q1, q2)

)
;

P(I0)(q2, q2) =
(
q1, q2, pre(I0(q2, q2)

)
∪
(
q2, q2, pre(I0(q2, q2)

)
.
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

Finally, I1 is computed as in (5.2.11) based on P(I0) (cf. line 11 to 12 in Algorithm 5).
Accordingly, one obtains

I1 =
(
q0, q0, I1(q0, q0)

)
∪
(
q0, q1, I1(q0, q1)

)
∪
(
q1, q2, I1(q1, q2)

)
∪
(
q2, q2, I1(q2, q2)

)
,

in which I1(q0, q0) = I0(q0, q0)∩
(
pre(I0(q0, q0))∪pre(I0(q0, q1))

)
; I1(q0, q1) = I0(q0, q1)∩

pre(I0(q1, q2)); I1(q1, q2) = I0(q1, q2) ∩ pre(I0(q2, q2)); and I1(q2, q2) = I0(q2, q2) ∩
pre(I0(q2, q2)), as illustrated in Figure 5.4 (c), (f), (i), and (l), respectively.

It is worth mentioning that when invariance properties are of interest, the iteration
in (5.2.11) terminates within a finite number of steps if there are additional assumptions
on the system dynamics (see e.g. [191, Proposition 4]), or if X, U , and W have special
shapes (see e.g. [73, Theorem 3.1], [191, Theorem 5], [30, Proposition 5.9],[158, Theorem
1 and Corollary 1]). However, there is no guarantee that (5.2.11) can be terminated
within a finite number of iterations, in general. To cope with this issue, two alternative
iterative schemes are proposed to compute approximations of I∗ (if existing) within a
finite number of iterations, which are introduced in Section 5.3.

5.3 Approximation of Maximal HCI Sets

In this section, two methods are proposed for computing approximations of I∗ for S⊗A
within a finite number of iterations. For both methods, the following assumption for
the dtLCS is required.

Assumption 5.3.1. Consider a dtLCS S as in Definition 2.3.1. It is assumed that
(A,B) in (2.3.2) is controllable.

5.3.1 (εx,εu)-Contraction-based Approximation

In this subsection, I show how to compute an (εx,εu)-contraction-based approximation
of I∗ for S ⊗ A. This approximation is computed based on a sequence of (εx, εu)-
constraint i-step null-controllable sets, as defined below.

Definition 5.3.2. Consider a dtLCS S as in Definition 2.3.1 in which W = {0n},
and some εx, εu ∈ R>0. A sequence of (εx, εu)-constraint i-step null-controllable sets,
denoted by (Ni(εx, εu))i∈N, is recursively defined as

N0(εx, εu) ={0n},
Ni+1(εx, εu) ={x ∈ Rn|∃u ∈ εuBm, Ax+Bu ∈ Ni(εx, εu)} ∩ εxBn. (5.3.1)

Moreover, the following lemma for (Ni(εx, εu))i∈N is needed for computing the (εx,εu)-
contraction-based approximation.
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5.3 Approximation of Maximal HCI Sets

Lemma 5.3.3. Consider a dtLCS S as in (2.3.2) in which W = {0n} and
(A,B) is controllable, and a sequence (Ni(εx, εu))i∈N as defined in (5.3.1). Then,
∃cx, cu ∈ R>0 and n′ ∈ N with n′ ≤ n such that ∀γ ∈ R>0, one has

γBn ⊆ Nn′(εx, εu), (5.3.2)

with εx = cxγ and εu = cuγ.

The proof of Lemma 5.3.3 is inspired by [165, Lemma 2] and given in Section 5.7.2.
Note that cx, cu, and n

′ in Lemma 5.3.3 can be obtained by leveraging the next result.

Corollary 5.3.4. Consider the vertices zi ∈ Rn of Bn, with i ∈ [1, 2n]. One can
select any cx, cu ∈ Rn, and n′ ∈ N for Lemma 5.3.3 such that (5.3.2) holds, if
the following constraints are respected for all zi:

An′
zi +

n′−1∑
j=0

An′−j−1Buj = 0n; (5.3.3)

|uj | ≤ cu, ∀j ∈ [0, n′ − 1]; (5.3.4)

|Adzi +
d−1∑
j=0

Ad−j−1Buj | ≤ cx,∀d ∈ [1, n′ − 1], (5.3.5)

with uj ∈ Rm, j ∈ [0, n′ − 1].

The proof of Section 5.3.4 is provided in Appendix 5.7.2. Next, the computation of
(εx,εu)-contraction-based approximation is illustrated in Definition 5.3.5.

Definition 5.3.5. ((εx,εu)-contraction-based approximation) Consider a dtLCS S as
in Definition 2.3.1 such that Assumption 5.3.1 holds, a DSA A modeling the desired
property, and the product system S ⊗ A = (X,X0, U,W, f). Given cx, cu ∈ R>0 as
in Corollary 5.3.4, and any γ ∈ R, the (εx,εu)-contraction-based approximation can be
computed with iteration as in (5.3.6) and stopping criterion as in (5.3.7):

I0 = (X\E)−εx , Ii+1 = I0 ∩P(εx,εu)(Ii), (5.3.6)

Ii ⊆ (Ii+n′)γ , (5.3.7)

where εx, εu, and n′ are as in Lemma 5.3.3 s.t. (5.3.2) holds, P(εx,εu)(I) is defined
similarly to P(I) as in (5.2.14), with

pre(X ′) = {x ∈ X|∃u ∈U − εuBm, ∀w ∈W,Ax+Bu+ w ∈ X ′}. (5.3.8)

By leveraging the iteration and stopping criterion as in Definition 5.3.5, one can
construct the (εx,εu)-contraction-based approximation using the following result.
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

Theorem 5.3.6. For any γ ∈ R>0 and the corresponding εx, εu ∈ R>0, n
′ ∈ N as

in Lemma 5.3.3, there exists i ∈ N with which (5.3.7) holds. Moreover, consider
(Ii)i∈N that is obtained through the iteration as in (5.3.6), and the sequence
(Ni(εx, εu))i∈N as in Definition 5.3.2. The set

I(εx, εu) =
⋃

i′∈[1,n′]

(Ii∗+i′ ⊕Ni′(εx, εu)), (5.3.9)

is an HCI set for the product system S⊗A, with i∗ ∈ N being the smallest index
i for the given γ such that (5.3.7) holds.

The proof of Theorem 5.3.6 can be found in Section 5.7.2. Note that the existence of
i ∈ N such that (5.3.7) holds indicates that the iteration in (5.3.6) can be terminated
within finite number of iterations. Since I(εx, εu) in (5.3.9) is an HCI set for S ⊗ A,
it is, by definition, an under-approximation of the maximal HCI set I∗ according to
Definition 5.2.5. The next result shows how close this approximation is. In brief, it is
shown that given a ρ ∈ R>0 and a product system (S ⊗A)−ρ as defined in (5.2.6), one
can construct an (εx,εu)-contraction-based approximation that contains the maximal
HCI set for (S ⊗A)−ρ by selecting εx and εu properly.

Figure 5.5: Sequences of (εx, εu)-constraint 2-step null-controllable sets.

Theorem 5.3.7. Consider a dtLCS S as in Definition 2.3.1 such that Assump-
tion 5.3.1 holds, a DSA A modeling the desired property, and the product system
S ⊗A = (X,X0, U,W, f). For any ρ ∈ R>0, there exists γ ∈ R>0, such that

I∗ρ ⊆ I(εx, εu), (5.3.10)

where I∗ρ is the maximal HCI set for (S ⊗ A)−ρ as defined in (5.2.6), I(εx, εu)
is as in (5.3.9) with εx and εu being computed as in Lemma 5.3.3 based on γ.

The proof of Theorem 5.3.7 is provided in Section 5.7.2.

Remark 5.3.8. Note that in (5.3.6) and (5.3.8), one deploys a deflate version of U
and X\E to compute the one-step-backward projection of the hybrid set Ii in (5.3.6).
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Figure 5.6: Result for (εx,εu)-contraction-based approximation (orange region), with εx =
2.8636 and εu = 0.67251, and the actual maximal HCI set I∗ (red dashed lines).

Therefore, one should at least consider those εx and εu such that U − εuBm ̸= ∅ and
I0 ∩ P(εx,εu)(I0) ̸= ∅, so that the HCI set I(εx, εu) in (5.3.9) would not trivially be
empty. Note that both εx and εu are hyperparameters for the iterative scheme in (5.3.6)
and (5.3.7). In general, there is no guarantee that there exists εx, εu ∈ R>0 such that
one can obtain non-empty I(εx, εu) as in (5.3.9) for any arbitrary system as in (2.3.2).
Therefore, in practice, one can first select εx = εu = 0 to compute the maximal HCI set
I∗. If one does not obtain I∗ within a desirable number of steps (which may be the case;
see discussion at the end of Section 5.2), one can select new εu ∈ (0, ε′u] and εx ∈ (0, ε′x]
in a bisection manner, in which ε′x, ε

′
u ∈ R>0 are selected such that U − ε′uBm = ∅ and

I0 ∩P(ε′x,ε
′
u)
(I0) = ∅.

Running example (continued). To compute the (εx,εu)-contrac-tion-based ap-
proximation, n=2 and γ=0.01 are chosen. and get εx=2.86 and εu=0.67 considering
Lemma 5.3.3 and Corollary 5.3.4. The corresponding sequences of (εx, εu)-constraint
n-step null-controllable sets are depicted in Figure 5.5. Then, the approximation is
computed by applying Definition 5.3.5 and Theorem 5.3.6. The computation ends
within 1.36 seconds with 4 iterations. The approximation contains 49 hyperplanes, and
it is depicted in Figure 5.6. For comparison purposes, the actual maximal HCI set I∗

is also shown.

5.3.2 ε-Expansion-based Approximation

Then main topic of this subsection is the computation of an ε-expansion-based approx-
imation of the maximal HCI set for S ⊗A. Such approximations can be computed as
in Definition 5.3.9.

Definition 5.3.9. (ε-expansion-based approximation) Consider a dtLCS S as in (2.3.2)
such that Assumption 5.3.1 holds, a DSA A modeling the desired property, and the
product system S ⊗ A = (X,X0, U,W, f). Given ε ∈ R>0, one can compute the ε-
expansion-based approximation with iteration as in (5.3.11) and stopping criterion as
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in (5.3.12):

I0 = X\E, Ii+1 = I0 ∩Pε(Ii), (5.3.11)

Ii ⊆ (Ii+1)ε, (5.3.12)

in which Pε(I) is defined similarly to P(I) as in (5.2.14), with

pre(X ′) = {x ∈ X|∃u ∈ U,∀w ∈W ′, Ax+Bu+ w ∈ X ′}, (5.3.13)

and W ′ :=W + εBn.

Unlike (5.2.15), pre(X ′) as in (5.3.13) is defined based on an ε-expansion of the set
W , i.e. W + εBn. With Definition 5.3.9, the next theorem shows the termination
of (5.3.11) and the construction of the ε-expansion-based approximation.

Theorem 5.3.10. Consider any ε ∈ R>0. There exists i ∈ N with which (5.3.12)
holds. Additionally, the set

I(ε) := Ii∗+1, (5.3.14)

is an HCI set for the product system S⊗A, with i∗ ∈ N being the smallest index
i for the given ε such that (5.3.12) holds.

The proof of Theorem 5.3.10 can be found in Section 5.7.2. Note that I(ε) in (5.3.14)
is an HCI set for S⊗A, it is therefore also an under-approximation of the maximal HCI
set I∗ according to Definition 5.2.5. Then, similar to Theorem 5.3.7, the next result
illustrates how close this approximation is.

Theorem 5.3.11. Consider a dtLCS S as in (2.3.2) such that Assumption 5.3.1
holds, a DSA A modeling the desired property, and the product system S ⊗A =
(X,X0, U,W, f). For any ρ ∈ R>0, there exists ε ∈ R>0, such that

I∗ρ ⊆ I(ε), (5.3.15)

where I∗ρ is the maximal HCI set for (S ⊗ A)−ρ as defined in (5.2.6), and I(ε)
is as in (5.3.14).

The proof of Theorem 5.3.11 can be found in Section 5.7.1.

Remark 5.3.12. Note that an inflated version of the disturbance set W , i.e., W+εBn,
is considered in (5.3.13) for computing the one-step-backward projection of the hybrid
set Ii in (5.3.11). To avoid obtaining an empty HCI set I(ε) in (5.3.14), one should at
least select those ε ∈ R>0 such that I0 ∩ Pε(I0) ̸= ∅. Note that ε is a hyperparameter
for computing the HCI set in (5.3.14). In practice, one can tune ε in a similar way as
εx, εu for computing the (εx,εu)-contraction-based approximation (c.f. Remark 5.3.8).
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Running example (continued). (Running example) Here, ε = 0.1 is selected to
compute the ε-expansion-based approximation by applying Definition 5.3.9 and The-
orem 5.3.10. The computation terminates within 1.26 seconds with 3 iterations. The
approximation contains 36 hyperplanes and it is illustrated in Figure 5.7. Additionally,
the actual maximal HCI set I∗ is also depicted for comparison purposes.

Figure 5.7: Result for ε-expansion-based approximation (yellow region), with ε = 0.1, and the
actual maximal HCI set I∗ (red dashed lines).

5.4 Complexity

In this section, the space and time complexities of the proposed approaches in this
chapter are discussed. Note that the space and time complexities for the cases in which
W has a non-empty interior is still open. As a key insight, considering a P-collection,
denoted by X ′ := ∪Nc

a=1X
′
a, one can verify that

larg
(
pre(X ′)

)
= larg

(
(X ′ −W ) + (−BU)

)
, (5.4.1)

holds by employing the results in [102, Section 3.3.3, pp. 44], in which larg(·) is defined
in (5.1.4), and BU denotes the linear mapping of the input set U regarding matrix
B [102, Section 3.4.2]. However, if ∃j, k ∈ [1,Nc] such that X ′

j ∩ X ′
k ̸= ∅, i.e. X ′

a are
not pairwise disjoint, it is still an open problem as to what is the upper bound of the
number of polytopes within X ′ −W , and what is the maximal number of hyperplanes
defining each polytope within X ′ −W . Thus, in the remaining discussion, I only focus
on the case in which W = {0n}. To derive the space and time complexities for this
case, the following definitions are required.

Definition 5.4.1. Consider a dtLCS S=(X,X0, U,W, f) with W = {0n}, and p ∈ N.
Function g̃S : N → N is defined as

g̃S(p) := max
X′∈P(n), with numh(X′)=p

numh(pre(X ′)), (5.4.2)
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with numh(·) defined as in (5.1.3), pre(·) defined as in (5.2.15), n being the dimension
of X, and X ′ ⊆ X.

Definition 5.4.2. Consider a dtLCS S=(X,X0, U,W, f) and a DSA A = (Q, q0,Π, δ,
Acc) modeling the desired ω-regular property. The following set is defined:

Qrd := {q ∈ Q|∃q′ ∈ Q, such that X\E(q′, q) ̸= ∅ or X\E(q, q′) ̸= ∅}, (5.4.3)

with the set E being defined in Theorem 5.2.4.

Intuitively, g̃S(p) denotes the maximal number of hyperplanes defining pre(X ′), with
X ′ being any arbitrary polytope defined by p hyperplanes. The set Qrd is the finite
state set of the reduced DSA corresponding to the set E. With these definitions, the
next result is proposed to pave the way for deriving the worst-case space and time
complexities.

Theorem 5.4.3. Consider a dtLCS S = (X,X0, U,W, f) with W = {0n}, a
DSA A = (Q, q0,Π, δ,Acc) modeling the desired ω-regular property, and the se-
quence of Ii with i ∈ N as defined in (5.2.11) and (5.2.12). One has

num(Ii(q, q
′)) ≤ αiMi+1, (5.4.4)

larg(Ii(q, q
′)) ≤ gi(p′), (5.4.5)

for any q, q′ ∈ Qrd, with Qrd being defined as in (5.4.3), where

α := max
q∈Qrd

|out(q)| (5.4.6)

M := max
q,q′∈Qrd

num(I0(q, q
′)), (5.4.7)

p′ := max
P,P⊂I0(q,q

′) with q,q′∈Qrd

numh(P), (5.4.8)

in which |out(q)| is the cardinality of the set

out(q) := {q′ ∈ Q | ∃σ ∈ Π, (q, σ, q′) ∈ δ};

I0 is as in (5.2.11); num(·), larg(·), and numh(·) are defined in (5.1.5), (5.1.4)
and (5.1.3), respectively; P is any arbitrary polytope within I0(q, q

′); and gi :
N → N, with i ∈ N, is recursively defined as

gi(p′) = p′, when i = 0;

gi(p′) = p′ + g̃S(g
i−1(p′)), when i ≥ 1, (5.4.9)

where g̃S(·) is defined in (5.4.2).

Remark 5.4.4. As a key insight, Theorem 5.4.3 provides upper bounds on: 1) the
number of polytopes within Ii(q, q

′); 2) the number of hyperplanes defining each poly-
tope within Ii(q, q

′). These upper bounds are conservative since they are derived without
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5.4 Complexity

Functions Tasks

c1(a1, b1)
Compute pre(X ′), with X ′ beinga P-collection in Rn for which
num(X ′) = a1, larg(X

′) = b1
c2(a2, b2) Concatenate matrices P1 ∈ Ra2×(n+1) with P2 ∈ Rb2×(n+1)

c3(a3, b3, a
′
3, b

′
3)

Check whether X ′
i−1 ⊆ X ′

i holds, with X
′
i, X

′
i−1 ⊂ Rn being

P-collections, where num(X ′
i) = a3, larg(X

′
i) = b3,

num(X ′
i−1) = a′3, larg(X

′
i−1) = b′3

Table 5.1: Definition of c1, c2, and c3.

considering the possibility of eliminating redundant hyperplanes and polytopes in prac-
tice. Concretely, intersections among polytopes in each iteration may contain some
redundant hyperplanes, which can be eliminated by computing the minimal represen-
tations of these intersections [17]. Additionally, one can also reduce num(Ii(q, q

′)) by
computing unions among some of the polytopes within Ii(q, q

′), in case these unions
are in the form of polytopes.

The proof of Theorem 5.4.3 is provided in Section 5.7.3. Based on Theorem 5.4.3,
the worst-case space and time complexities of Algorithm 5 is proposed in the following
corollary.

Corollary 5.4.5. Consider a dtLCS S = (X,X0, U,W, f) with W = {0n}, a
DSA A = (Q, q0,Π, δ,Acc) modeling the desired ω-regular property, and i ∈
N>0 the number of iterations. The worst-case space and time complexities of
Algorithm 5 are

O
(
|δ|αiMi+1gi(p′)n

)
, (5.4.10)

O
(
|δ|c1

(
αi−1Mi, gi−1(p′)

)
+|δ|αi−1Mi+1c2

(
p′, g̃S(g

i−1(p′))
)

+ |δ|c3
(
αiMi+1, gi(p′), αi−1Mi, gi−1(p′)

))
, (5.4.11)

respectively, in which |δ| is the number of transitions among q, q′ ∈ Qrd, with
Qrd as defined in (5.4.3); α, M, p′ and gi(p′) are defined in (5.4.6)-(5.4.9),
respectively; g̃S(·) is defined in (5.4.2); c1, c2, and c3 represent the computation
costs for accomplishing different tasks as defined in Table 5.1.

Remark 5.4.6. For each i∈N>0, the tasks for the iteration in (5.2.11) and (5.2.12)
include: 1) computing the one-step-backward projection P(Ii−1) of Ii−1; 2) computing
the intersection I0∩P(Ii−1); 3) checking whether Ii−1 ⊆ Ii holds

2. Their computation
costs correspond to the first, second, and third term in (5.4.11), respectively. Here,
the closed-form expressions of c1, c2, and c3 depend on the concrete methods that are
deployed for their associated tasks. For instance, given a polytope X ′⊂Rn, computing

2One can verify that Ii ⊆ Ii−1 always holds based on the way of computing Ii.
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

pre(X ′) includes the computation of inverse image of a polytope and polyhedral pro-
jection [159]. For linear systems as in (2.3.2), the inverse image of a polytope can be
obtained via simple matrix multiplications as in [165, Section 4], while different ap-
proaches can be used to compute the projection of a polytope [90, 96, 206]. Similarly,
various results can be applied to check whether Ii−1⊆Ii holds, e.g. [19, 17].

Remark 5.4.7. With slight modifications, Definition 5.4.1, Theorem 5.4.3, and Corol-
lary 5.4.5 can also be leveraged to analyze the space and time complexities of the compu-
tation of (εx,εu)-contraction-based approximation. Concretely, pre(·) in (5.4.2) should
be defined as in (5.3.8) (instead of (5.2.15)), and I0 in (5.4.7) and (5.4.8) should be
defined as in (5.3.6) (instead of (5.2.11)).

The proof of Corollary 5.4.5 is provided in Section 5.7.3. Then, the following results
can be leveraged to obtain the closed-form expressions of g̃S(p) in (5.4.2) and gi(p′)
in (5.4.10) and (5.4.11).

Proposition 5.4.8. Consider a dtLCS S = (X,X0, U,W, f) as in Defini-
tion 2.3.1, where n is the dimension of X, W = {0n}, and pU := numh(BU).
Given p′ as in (5.4.8), and i ∈ N the number of iterations, one has

g̃S(p
′) ≤


2, when n = 1;

pU + p′, when n = 2;

(4pU − 9)p′ + 26− 9pU, when n = 3.

(5.4.12)

Accordingly, one gets

gi(p′) ≤


2(i+ 1), when n = 1;

p′ + i(p′ + pU), when n = 2;

1− ãi+1

1− ã
p′ +

1− ãi

1− ã
b̃, when n = 3.

(5.4.13)

with ã = 4pU − 9, and b̃ = 26− 9pU.

Note that one can verify pU ≤ numh(U)+2(n−rank(B)) according to [102, Corollary
3.5]. Considering (5.4.1), solving the closed-form expressions of g̃S(p

′) is equivalent
to answering the following question: given polytopes P1 and P2 defined by p′ and pU
hyperplanes, respectively, what is the upper bound of the number of hyperplanes defining
P1 + P2? Trivially, 2 is the upper bound for the case n = 1. Additionally, one has
pU + p′ being the upper bound for the case n = 2 according to [188, Theorem 13.5],
and (4pU− 9)p′+26− 9pU being the upper bound for the case n = 3 according to [198,
Theorem 5.2.1]. Then, (5.4.13) can accordingly be derived. As for the cases n ≥ 4, to
the best of my knowledge, there is no result providing the upper bounds of the number
of hyperplanes defining P1+P2 based on p′ and pU. However, once the results for these
upper bounds are available, the space complexities for the cases n ≥ 4 can readily be
derived based on Corollary 5.4.5.
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5.5 Case Studies

Finally, I also want to point out the difficulties in having a fair comparison between
those discretization-based approaches and ours in terms of worst-case space complexity.
It is well-known that the space complexities of discretization-based approaches grow
exponentially with respect to the dimension of the state (and input) sets (see [127,
Section 5-A] for detailed discussion) since they require the discretization of the original
state and input sets in order to construct the finite state and input sets. On the
one hand, the space complexity of the proposed approaches does not have exponential
growth regarding the dimensions since such discretization is not required. On the
other hand, the complexity of proposed approaches grows exponentially with respect
to the number of iterations in the worst case. It is worth noting that, however, such
exponential growth is not observed in the case studies (see Figure 5.12). As a key
insight, at each iteration step i ∈ N, for all q, q′ ∈ Qrd, one can reduce num(Ii(q, q

′))
and larg(Ii(q, q

′)) in (5.4.4) and (5.4.5) by computing the minimal representations [17]
and the union of (some of) the polytopes in Ii(q, q

′).

5.5 Case Studies

To show the effectiveness of proposed results, the running example is first simulated
with the HCI-based controllers, which have already been computed in Section 5.3.
Then, the results in this chapter are applied to a cruise control example and a quadro-
tor helicopter. Finally, the proposed approaches are compared with some existing tools
in terms of computational time. The synthesis and simulation are performed on a
computer equipped with Quad-Core Intel Core i7 (2.7 GHz) and 16 GB of RAM run-
ning macOS Big Sur (Version 11.5.2), using MATLAB2019b along with multi-parametric
toolbox MPT [78] and optimization software MOSEK (version 9.3.6) [143]. It is also worth
noting that controllers in all cases can be applied over an infinite time horizon. The
numbers of time steps for the simulation are selected only for demonstration purposes.

5.5.1 Running Example

Here, 10 different initial states are randomly selected from I∗(q0, q0), I(εx, εu)(q0, q0),
and I(ε)(q0, q0) (cf. Figure 5.6 and Figure 5.7), respectively, and simulate the running
example for 30 time steps. In the simulation, the disturbances affecting the system
are randomly generated at each time instant following a uniform distribution within
the disturbance set. The simulation results for the maximal HCI set, the (εx,εu)-
contraction-based and ε-expansion-based approximation are shown in Figure 5.8. One
can verify that the desired property is respected.

5.5.2 Cruise Control

Here, a cruise control problem for a truck with a trailer as in Figure 5.9, with dynamics
as in (2.3.2), where

A :=
[
0.8855 −0.3628 0.3628
0.4081 0.4683 0.5317

0 0 1.0000

]
, B :=

[
0.1018
0.1372
0.5000

]
, (5.5.1)
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

Figure 5.8: Simulation of the running example with the controllers associated with the max-
imal HCI set, the (εx,εu)-contraction-based approximation and the ε-expansion-
based approximation.

x(k) = [x1(k);x2(k);x3(k)] is the state of the system, in which x1(k), x2(k), and x3(k)

Figure 5.9: Cruise control problem for a truck with a trailer, with mtrailer = 4000kg the mass
of the trailer, ks = 4500N/kg and kd = 4600Ns/m the constants for the spring-
damper system, and d the distance between the truck and the trailer, where
d = 0m is the position at which there is no deformation on the spring.

are the distance between the truck and the trailer, the velocity of the trailer, and the ve-
locity of the truck, respectively. Moreover, u(k) ∈ [−5, 5]m/s2 denotes the acceleration
of the truck that is used as the control input; and w(k) ∈ [−0.04, 0.04]× [−0.02, 0.02]2

denotes the exogenous disturbances encompassing the model uncertainty and unex-
pected interferences. The model as in (5.5.1) is adapted from [164] by discretizing
it with a sampling time ∆t = 0.5s and including exogenous disturbances. In this
case study, the distance between the truck and the trailer should be within [−1, 1]m
to protect the spring-damper system, and the velocity of the truck and the trailer
should be within [5, 35]m/s due to the traffic rules. Additionally, to increase the
throughput of the road traffic, the truck is not allowed to move slower than 15m/s
unless it has moved faster than 25m/s. Such a property, denoted by ψq, can be mod-
eled by a DSA Aq as depicted in Figure 5.10. To synthesize controllers enforcing ψq,
E := ∪∀q′∈Q

(
q′, q2, X(q′, q2)

)
is selected. Additionally, to ensure the compactness of

X\E, X\E is slightly deflated such that X\E(q0, q1) := [−1, 1]× [5, 35]× [20 + ϵ, 35],

128



5.5 Case Studies

q0 q1 q2

p1

p2

p3

p4

p5

p1 _ p2 _ p3 _ p4 _ p5

Figure 5.10: DSA Aq modeling ψq, with alphabet Π = {p1, p2, p3, p4, p5}; labeling function
L : X → Π with L(x) = p1 when x ∈ [−1, 1]× [5, 35]× [15, 25], L(x) = p2 when
x ∈ [−1, 1]× [5, 35]×(25, 35], L(x) = p3 when x ∈ [−1, 1]×[5, 35]×[5, 35], L(x) =
p4 when x ∈ R3\L−1(p3), and L(x) = p5 when x ∈ R3\(L−1(p1)∪L−1(p2)); and
accepting condition Acc = {⟨E1, F1⟩}, with E1 = {q3}, F1 = ∅. The temporal
logics formula for ψq is given by G((p1Up2) ∧ (¬p3)).

I∗ I(εx, εu) I(ε)

Number of iterations 5 6 4

Computation time (s) 21.34 19.59 16.12

Number of hyperplanes 120 259 149

Table 5.2: Synthesizing controllers for the cruise control problem by computing: 1) maximal
HCI set I∗; 2) contraction-based approximation I(εx,εu) with n=3 and εx = εu=
0.036; 3) expansion-based approximation I(ε) with ε = 0.002.

with ϵ = 0.001. The results of controller synthesis are summarized in Table 5.2. Then,
10 initial states are randomly selected from I∗(q0, q0), I(εx, εu)(q0, q0), and I(ε)(q0, q0),
respectively, and simulate the systems for 60 seconds (i.e. 120 time steps). Moreover,
the disturbances are randomly generated at each time step following a uniform distri-
bution within the disturbance set. The simulation results are shown in Figure 5.11,
indicating that the desired property is enforced (note that trajectories of x3 become
red after x3 has been larger than 25m/s). Additionally, Figure 5.12 shows that there
is no exponential growth as in (5.4.4) and (5.4.5) in this case study.

5.5.3 Quadrotor Helicopter

In this subsection, a controller synthesis problem of a quadrotor moving in a 2-dimen-
sional plane (x-y plane) with different regions (definition of these regions comes later) is
considered. The model applied here is adapted from [68] by discretizing it with a sam-
pling time ∆t=0.1s and including disturbances that encompass the model uncertainty
and unexpected interference on the position and velocity of the quadrotor. Concretely,
the dynamics of the quadrotor helicopter is as in (2.3.2), in which

A =

[
1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

]
, and B =

[
∆t2/2 0
∆t 0
0 ∆t2/2
0 ∆t

]
.

Here, x(k) = [x1(k);x2(k);x3(k);x4(k)] is the state of the system, where x1(k), x2(k),
x3(k) and x4(k) are the position on the x axis, the velocity on the x axis, the position
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

Figure 5.11: Simulation of the cruise control problem

Figure 5.12: Evolution of the number of hyperplanes required to characterize Ii, denoted by
numhc(Ii), as i increases.

Figure 5.13: Different regions for the quadrotor on an x-y plane.
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5.5 Case Studies

on the y axis, and the velocity on the y axis, respectively. Moreover, u(k) ∈ [−0.9, 0.9]2

denotes the acceleration of the quadrotor on both axes and is used as the control input;
and w(k) ∈ [−0.02, 0.02]4 denotes the exogenous disturbances affecting the positions
and velocities of the quadrotor helicopter.

q0 q1

q2 q3

p0

p3 _ p5

p1 _ p2 _ p4

p0 _ p1 _ p2 _ p3 _ p4 p0 _ p1 _ p2 _ p3 _ p4 _ p5

p5

p2 _ p4 _ p5

p0 _ p1 _ p3

Figure 5.14: DSA A modeling ψq for the quadrotor helicopter, with ■ and  indicate the
states that can be visited finitely many and infinitely many times, respectively.

In this case study, a property ψq that is modeled by the DSA A depicted in Fig-
ure (5.14) is considered, with E = {q3}, F = {q1, q2}, alphabet Π = {p0, p1, p2, p3, p4, p5},
and a labelling function L : X → Π with L(x) = pi when x ∈ Ri ⊂ X for all i ∈ [0, 5],
where

R0 :=



x1 ≥ 0

x3 ≥ 0

x1 + x3 ≤ 1.5

−1 ≤ x2 ≤ 1

−1 ≤ x4 ≤ 1

, R1 :=



0 ≤ x1 ≤ 3.499

0 ≤ x3 ≤ 5

x1 + x3 ≥ 1.501

−1 ≤ x2 ≤ 1

−1 ≤ x4 ≤ 1

, R3 :=


x1, x3 ≥ 0

1.5 < x1 + x3 < 1.501

−1 ≤ x2 ≤ 1

−1 ≤ x4 ≤ 1

,

R2 := [3.5, 5]× [−1, 1]× [0, 5]× [−1, 1], R4 := (3.499, 3.5)× [−1, 1]× [0, 5]× [−1, 1], and
R5 := R4\(∪4

i=0Xi). To provide more intuition, the projection of Ri on the x-y plane,
with i ∈ [0, 5], are depict in Figure 5.13 . In English, property ψq requires that i) the
helicopter should avoid R2 ∪ R4 if it starts from R0; ii) the helicopter should always
stay away from R5; iii) the velocity of the helicopter should be within [−1, 1] m/s
on both axes. Accordingly, a controller that enforces ψq is synthesized by computing
the ε-expansion-based approximation of the maximal HCI set, denoted by I(ε), with
ε = 0.01. The computation terminates within 840.81 seconds with 18 iterations, which
results in an HCI-set containing 284 hyperplanes.

As for the simulation, 5 initial states are randomly selected from I(ε)(q0, q1) and
I(ε)(q0, q2), respectively, and set the time horizon as 60 seconds (i.e. 600 time steps).
Moreover, the disturbances affecting the positions and velocities of the quadrotor are
randomly generated at each time step following a uniform distribution within the dis-
turbance set. The simulation results are shown in Figure 5.15, which indicate that the
desired property is enforced.
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

Figure 5.15: (Left): Trajectories of the quadrotor on the x-y plane; (Right): Evolutions of
the quadrotor helicopter’s velocity.

5.5.4 Comparison with Existing Results

In this subsection, the proposed set-based approaches are compared with existing results
in terms of computation time for synthesizing controllers, including symbolic techniques
(OmegaThreads [104] and TuLiP [64]), interval-analysis-based approaches (ROCS [125]),
CBF-based approaches [87], and HJ-based approaches (helperOC [16] equipped with
toolboxLS [141]). Moreover, since interval-based approaches do not handle systems
with exogenous disturbances [127, Section 2.D], and HJ-based approaches do not handle
ω-regular properties, for a fair comparison among these approaches, three different cases
are considered: 1) enforcing ψq in Session 5.5.2 over the system in (5.5.1); 2) enforcing
ψq over the system in (5.5.1), but without exogenous disturbance; 3) ensuring the system
in (5.5.1) reaches the region [−1, 1]× [5, 35]× [25, 35] from the region [−1, 1]× [5, 35]×
[5, 25] within 3 time steps.

Following the same settings as in Table 5.2, n = 3 and εx = εu = 0.036 are chosen
to compute the (εx, εu)-contraction-based approximation of the maximal HCI-set, and
ε = 0.002 is selected to compute the ε-expansion-based approximation. For applying
ROCS, ε = 0.001 and µ = 0.001 are chosen as the lower bounds of discretization param-
eters for state and input sets, respectively, (see [127, Section 4-A] for their definitions)
for a fair comparison with the setting of ε-expansion-based approach [127, Lemma 1
and Theorem 1]. Moreover, considering the limitation of the computer used for the
computation here, 0.2 is used as the discritization parameter for discretizing the state
and input sets when deploying OmegaThreads, TuLiP, and helperOC. The computation
time for synthesizing controllers with different approaches is summarized in Table 5.3,
which indicates that approaches proposed in this chapter require less computation time
than other ones. Concretely, >6 h means that the corresponding synthesis procedures
did not terminate within 6h, and that the actual computation time is undecided. Ad-
ditionally, when applying OmegaThreads, no controller was found in all cases with the
current discretization parameters. Therefore, smaller discretization parameters for the
state and input sets are needed to potentially obtain controllers, which would, however,
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5 Abstraction-free Controller Synthesis against ω-Regular Properties

result in longer computation time. As for using CBF-based methods in [9], although
the potential control barrier function, the multipliers, and the controller are set as
polynomials of up to degree eight, no controller was found in any cases.

5.6 Summary

In this chapter, I proposed for the first time a notion of so-called hybrid controlled in-
variant set (HCI set), based on which one can synthesize controllers to enforce ω-regular
properties over linear control systems affected by bounded disturbances. Given a lin-
ear control system and a deterministic Streett automata (DSA) modeling the desired
ω-regular property, a product system is first constructed between the linear control
system and the DSA. Then, the maximal HCI set is computed by utilizing a set-based
approach over the hybrid state set of the product system. Additionally, two approaches
are provided to compute approximations of the maximal HCI sets within a finite number
of iterations: one by deflating the original state and input sets, the other by expanding
the disturbance set. The effectiveness of the proposed methods is shown by three case
studies, and by comparison with existing tools.

5.7 Proof of Statements in Chapter 5

5.7.1 Proof of Statements: Section 5.2

Proof of Proposition 5.2.7 Consider any controller sequence µ′ = {µ′0, µ′1, . . . , µ′i, . . .},
with i ∈ N, associated with I such that for any initial state x(0) ∈ I, and infinite state
sequence ξ = {x(0), x(1), . . . , x(i), . . .}, one has x(i) ∈ I,∀i ∈ N, when µ′ is applied.
Note that such controller sequence exists according to the definition of the HCI set
as in Definition 5.2.5. Hence, at time instant i = 0, ∀x ∈ I, ∀w ∈ W , one gets
x′ := f(x, u, w) ∈ I with u = µ′0(x). Since one has x

′ ∈ I, then ∀w′ ∈W , one again has
x′′ := f(x′, u, w′) ∈ I with u = µ′0(x) at time instant i = 1. Therefore, one can verify
that with the sequence of controller µ′′ := {µ′′0, µ′′1, . . . , µ′′i , . . .} with µ′′i = µ′0, ∀i ∈ N,
one also has x(i)∈I,∀i∈N, when µ′′ is utilized. Note that µ′′ is a stationary controller
as in Definition 5.2.6, which completes the proof. ■
Next, I proceed with showing Theorem 5.2.11, which requires additional definitions

and lemmas. First, the following set is defined

G(X ′) :={(x, u)∈X × U | ∀w ∈W, f(x, u, w)∈X ′}, (5.7.1)

where X ′ ⊆ X. Accordingly, consider I0 along with the iteration of Ii as in (5.2.11),
Gi with i ∈ N>0 are defined as:

G1(I0) := G(I0); (5.7.2)

Gi(I0) := G(Ii−1), i ≥ 2. (5.7.3)

Now, based on theses definitions, Lemma 5.7.1 and Lemma 5.7.2 are proposed for
proving Theorem 5.2.11.
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Lemma 5.7.1. Consider a dtLCS S as in (2.3.2), a DSA A modeling the desired
ω-regular property, and the product system S ⊗A = (X,X0, U,W, f) such that
Assumption 5.2.10 holds. Then, Gi(I0) are compact for all i ∈ N>0, with Gi as
defined in (5.7.2) and (5.7.3), and I0 as in (5.2.11).

Proof of Lemma 5.7.1 In case that Gi(I0) = ∅, the assertion of Lemma 5.7.1
holds trivially. Therefore, it is assumed that Gi(I0) ̸= ∅, for all i ∈ N>0. To this
end, Ii are shown to be compact for all i ∈ N. Then, Gi(I) is shown to be compact
when I is compact, and the compactness of (Gi(I0))i∈N>0 follows by the compactness
of (Ii)i∈N. Firstly, I0 as in (5.2.11) is compact according to Assumption 5.2.10. Since
intersection of two compact sets are still compact, the compactness of (Ii)i∈N can be
verified by showing P(I) as in (5.2.13) is compact if I is compact. For this purpose,
P(I) is rewritten as P(I) = {x ∈ X | ∃u ∈ U, s.t. f(x, u,0n) ∈ I ′}, with I ′ a bounded
set being defined as I ′ = {x′ | {x′} ⊕W ⊆ I}. Consider any x′′ := (q, q′, x′) /∈ I ′. By
definition of I ′, there exists at least one w ∈W such that one gets z := (q, q′, x′+w) /∈ I.
Since I is compact (and therefore closed), then there exists an open ball B in the sense of
the distance as defined in (5.2.7) centered at (q, q′, 0) such that (z+B)∩I = ∅, with z+B
denotes the Minkowski sum between z and B. Accordingly, for any x′′ := (q, q′, x′) /∈ I ′,
one gets (x′′+B)∩I ′ = ∅, which implies that I ′ is closed. Therefore, ∀q, q′ ∈ Q such that
I ′(q, q′) ̸= ∅, I ′(q, q′) is closed and bounded (and therefore compact). Note that Q is a
finite set, and finite union of compact sets is still compact. Hence, it is straightforward
that I ′ = ∪q,q′∈QI

′(q, q′) is also compact. Since the dynamics of dtLCS S as in (2.3.2)
is continuous, mapping f is also continuous. Then, the compactness of P(I) follows by
the compactness of U , I, and I ′.

As for the compactness of Gi(I) given I is compact, Gi(I) as in (5.7.1) is rewritten
as G(I) = {(x, u)∈X × U | f(x, u,0n) ∈ I ′}. Then, the compactness of G(I) can be
proved similarly to that of the compactness of P(I). ■

Lemma 5.7.2. Consider Gi as defined in (5.7.2) and (5.7.3), and I0 as
in (5.2.11). One has

πX

( ∞⋂
i=1

Gi(I0)
)
= lim

i→∞
Ii, (5.7.4)

with πX(Gi(I0)) the projection of Gi(I0) on to X.

Proof of Lemma 5.7.2 To show Lemma 5.7.2, I show that

1) (Cond 1) πX

(⋂∞
i=1Gi(I0)

)
⊆ lim

i→∞
Ii;

2) (Cond 2) lim
i→∞

Ii ⊆ πX

(⋂∞
i=1Gi(I0)

)
hold.
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First, I show that (Cond 1) holds. Let’s denote by ξ = {x(0), x(1), . . . , x(i), . . .} an
infinite state sequence of S ⊗ A. On one hand, according to the definition of Gi(I0),

πX

(⋂∞
i=1Gi(I0)

)
denotes the set of x ∈ I0, from which there exists a stationary

controller µ̄ = {µ, µ, . . .} such that x(i) ∈ I0, for all i ∈ N. On the other hand,
according to the iteration in (5.2.11), lim

i→∞
Ii denotes the set of all x ∈ I0, from which

there exists a controller (either stationary or non-stationary) µ̄′ = {µ′1, µ′2, . . .} such
that x(i) ∈ I0 for all i ∈ N. Therefore, (Cond 1) holds.
Next, I show that (Cond 2) holds. According to the definition of Gi(I0) and Ii, one

gets

lim
i→∞

Ii =

∞⋂
i=1

πX(Gi(I0)). (5.7.5)

Therefore, I proceed with proving

∞⋂
i=1

πX(Gi(I0)) ⊆ πX

( ∞⋂
i=1

Gi(I0)
)
. (5.7.6)

Consider an x ∈
⋂∞

i=1 πX(Gi(I0)). Then, there exists a sequence {ui}i∈N, such that
(x, ui) ∈ Gi(I0), ∀i ∈ N. On one hand, according to the computation of Ii, i ∈ N
as in (5.2.11), it is straightforward that I0 ⊇ I1 ⊇ . . . ⊇ Ii ⊇ . . .. Then, considering
the definition of Gi((I0)) as in (5.7.2) and (5.7.3), for all i ∈ N>0, one has G1(I0) ⊇
G2(I0) ⊇ . . . ⊇ Gi(I0) ⊇ . . .. Hence, ∀i′ ≥ i > 0, if one has (x, ui′) ∈ Gi′(I0), then
one gets (x, ui′) ∈ Gi(I0). On the other hand, since Gi(I0) are compact according
to Lemma 5.7.1, any sequences of elements within Gi(I) has at least one limit point
(x, u) ∈ Gi(I). This indicate that ∃(x, u) ∈ Gi(I0), ∀i ∈ N>0, i.e. one has (x, u) ∈⋂∞

i=1Gi(I0). This indicates that x ∈ πX

(⋂∞
i=1Gi(I0)

)
, which implies that (5.7.6)

holds, and as a result (Cond 1) holds. Then, the proof is completed by combining
(Cond 1) and (Cond 2). ■

With Lemma 5.7.1, Lemma 5.7.2, and Proposition 5.2.7, I am ready to prove Theo-
rem 5.2.11.
Proof of Theorem 5.2.11 In case that I∗ = ∅, then there exists i ∈ N such that for

all i′ ≥ i, Ii′ = ∅ according the iteration as in (5.2.11). Therefore, I∗ = lim
i→∞

Ii holds

trivially. This assertion can be proved by contradiction. Suppose I ′ := lim
i→∞

Ii ̸= ∅.
Then, ∀x ∈ I ′, there exists an infinite sequence of inputs ξu(u(0), u(1), . . .) such that
the corresponding infinite state sequence ξx(x(0), x(1), . . .) can be enforced within I0,
i.e. I ′ is an HCI set for S ⊗ A. However, this is contradictory to the fact that the
maximal HCI set I∗ is empty.
Next, the case in which I∗ ̸= ∅ is considered. Considering (5.7.5),

⋂∞
i=1 πX(Gi(I0))

is first shown to be an HCI set for S ⊗A, which implies that

∞⋂
i=1

πX(Gi(I0)) ⊆ I∗, (5.7.7)
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holds. Consider a controller µ : X → U such that for all x ∈
⋂∞

i=1 πX(Gi(I0)),
(x, µ(x)) ∈

⋂∞
i=1Gi(I0) (such controller exists according to Lemma 5.7.2 by consid-

ering (5.7.4) and (5.7.5)). Then, by definition of Gi(I0), ∀x ∈
⋂∞

i=1 πX(Gi(I0)), and
∀w ∈ W , one gets f(x, µ(x), w) ∈

⋂∞
i=1 πX(Gi(I0)). Therefore,

⋂∞
i=1 πX(Gi(I0)) is an

HCI set for S ⊗A so that (5.7.7) holds according to Definition 5.2.5.
Next, I proceed with showing that

I∗ ⊆
∞⋂
i=1

πX(Gi(I0)), (5.7.8)

also holds. On one hand, according to Proposition 5.2.7, there exists a HCI-based
controller µ, s.t. for all x ∈ I∗, and for all w ∈ W , one gets f(x, µ(x), w) ∈ I∗.
On the other hand, by definition of Gi(I0) and the HCI-based controller, one has

(x, µ(x)) ∈
⋂∞

i=1Gi(I0), indicating that x ∈ πX

(⋂∞
i=1Gi(I0)

)
. Meanwhile, by (5.7.4)

and (5.7.5), one has x ∈
⋂∞

i=1 πX(Gi(I0)), and hence (5.7.8) also holds. Then, the proof
is completed by combining (5.7.5), (5.7.7), and (5.7.8). ■

5.7.2 Proof of Statements: Section 5.3

First, Proposition 5.7.3 is proposed, which facilitates the proof of Lemma 5.3.3 and
Corollary 5.3.4.

Proposition 5.7.3. If ∃cx, cu ∈ R>0 and n′ ∈ N such that for all x ∈ Rn, there
exists ν : [0, n′] → Rm with which the following conditions hold:

� (Cd.1) ξx(0) = x and ξx(n
′) = 0n with ξx(k+1) = Aξx(k)+Bν(k) for all

k ∈ [0, n′];

� (Cd.2) ν(k) ≤ cu|x| holds for all k ∈ [0, n′];

� (Cd.3) ξx(k) ≤ cx|x| holds for all k ∈ [0, n′];

then, for all γ ∈ R>0, one has γBn ⊆ Nn′(εx, εu), with εx = cxγ and εu = cuγ.

Proof of Proposition 5.7.3 According to Definition 5.3.2, (Cd.1) in Proposi-
tion 5.7.3 indicates that there exists some ε′x, ε

′
u ∈ R>0 such that ξx(t) ∈ Nn′−t(ε

′
x, ε

′
u),

and then (Cd.2) as well as (Cd.3) guarantee that ξx(t) ∈ Nn′−t(εx, εu) with εx = cx|x|
and εu = cu|u|. Therefore, one has x ∈ |x|Bn ⊆ Nn′(εx, εu), which completes the
proof. ■

Now, I am ready to show the proof of Lemma 5.3.3.
Proof of Lemma 5.3.3 The proof of Lemma 5.3.3 is given by leveraging Proposi-

tion 5.7.3. Concretely, existence of cx and cu is shown when n′ = n such that (Cd.1),
(Cd.2) and (Cd.3) are fulfilled. Considering any x ∈ Rn, (Cd.1) requires that there
exists a control sequence

ν = [ν(n− 1)⊤; ν(n− 2)⊤; . . . ; ν(0)⊤], (5.7.9)
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with ν(k) ∈ Rm for all k ∈ [0, n − 1], such that ξx(n) = Anx + Cν = 0n, with C =
[B;AB; . . . ;An−1B]⊤ the controllability matrix. Since (A,B) is controllable, one has
rank(C) = n, indicating the existence of such control sequence. Therefore, (Cd.1)
holds. Let C′ ∈ Rn×n be a matrix that contains n linearly independent columns of C.
Here, ν is selected as in (5.7.9) by setting the entries ν of ν associated with C′ of C as
ν = −(C′)−1Anx, and the remaining entries of ν as zero. Accordingly, one can verify
that ξx(n) = Anx+ Cν = 0n holds with such ν. In this case, since |ν| ≤ |(C′)−1An||x|
holds, (Cd.2) also holds with

cu = |(C′)−1An|. (5.7.10)

Meanwhile, by applying the same ν, one obtains

ξx(k) = Akx+

k−1∑
t′=0

Ak−t′−1Bν(t′).

Accordingly, one has

|ξx(k)| = |Akx+
k−1∑
t′=0

Ak−t′−1Bν(t′)| ≤ |Ak||x|+ |
k−1∑
t′=0

Ak−t′−1B||ν(t′)|

≤ (|Ak|+ |
k−1∑
t′=0

Ak−t′−1B|cu)|x|,

with cu as in (5.7.10) and |Ak| the infinity norm of matrix Ak. Hence, (Cd.3) holds
with

cx = max
k∈[0,n]

(|Ak|+ |
k−1∑
t′=0

Ak−t′−1B|cu),

which completes the proof. ■
Proof of Corollary 5.3.4 Consider cx, cu, n

′, and uj with j ∈ [0, n′ − 1] such
that (5.3.3) to (5.3.5) holds. Corollary 5.3.4 is proved by showing that (Cd.1), (Cd.2)
and (Cd.3) in Proposition 5.7.3 also hold for all x ∈ Rn with the same cx, cu, and n

′.
For any x′ ∈ Rn with |x′| = β and β ∈ R≥0, u

′
j ≤ βuj is considered with |uj | ≤ cu

for all j ∈ [0, n′ − 1], and z′i ∈ Rn, with i ∈ [1, 2n], which are the vertices of the βBn.
Firstly, one has

An′
z′i +

n′−1∑
j=0

An′−j−1Bu′j = β(An′
zi +

n′−1∑
j=0

An′−j−1Buj) = 0n. (5.7.11)

As a result, (Cd.1) holds for all z′i, with i ∈ [1, 2n]. Secondly, one also has

|u′j | = |βuj | ≤ cuβ,∀j ∈ [0, n′ − 1], (5.7.12)
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which implies that condition (Cd.2) holds. Finally, for all d ∈ [1, n′− 1], one can verify
that

|Adz′i+

d−1∑
j=0

Ad−j−1Bu′j |≤|Adzi+

d−1∑
j=0

Ad−j−1Buj ||β|≤cxβ, (5.7.13)

hold. Hence, (Cd.3) also holds for all z′i, with i ∈ [1, 2n]. Note that due to the convexity
of βBn and the linearity of (2.3.2), it is sufficient to show that (Cd.1) and (Cd.3) hold
for all x′ ∈ Rn with |x′| = β by showing (5.7.11) and (5.7.13) hold for all z′i with
i ∈ [1, 2n]. Therefore, the proof can be completed by combining (5.7.11), (5.7.12),
and (5.7.13). ■
Proof of Theorem 5.3.6 First, the existence of i ∈ N such that (5.3.7) holds is

shown. To this end, two cases are considered:

1. In case that Ii = ∅ for some i ∈ N, then ∀i′ ≥ i, one gets Ii′ = ∅, since (∅)γ = ∅
for any γ ∈ R>0 such that (5.3.7) holds.

2. In case that Ii ̸= ∅ for all i ∈ N, one can verify from Theorem 5.2.11 that
for any γ ∈ R>0, there exists i ∈ N such that for all i′ ≥ i, dH(I∗, Ii′) < γ.
Additionally, considering the computation of Ii, i ∈ N as in (5.2.11), one can
verify that I0 ⊇ I1 ⊇ . . . ⊇ Ii ⊇ . . .. Therefore, one has Ii ⊆ (Ii′)γ .

Thus, the proof of the existence of i is concluded by combining both cases above. Next,
I proceed with showing that I(εx, εu) as in (5.3.9) is an HCI set for S ⊗A. Here, only
the case in which I(εx, εu) ̸= ∅ is discussed since ∅ is a trivial solution of an HCI set
for S ⊗ A. Consider any x = (q, q′, x) ∈ I(εx, εu). Then, by definition of I(εx, εu) as
in (5.3.9), there exists an i′ ∈ [1, n′] such that x ∈ Ii∗+i′ ⊕Ni′(εx, εu). Without loss of
generality, it is assumed that x = x1 + x2, with x1 = Ii∗+i′(q, q

′) and x2 ∈ Ni′(εx, εu).
On one hand, there exists u2 ∈ εuBm such that x′2 := Ax2 + Bu2 ∈ Ni′−1(εx, εu). On
the other hand, let x1 = (q, q′, x1). Considering the iteration in (5.3.6), there exists
u1 ∈ U − εuBm such that for all w ∈ W , x′1 := (q′, q′′, x′1) ∈ Ii∗+i′−1(q

′, q′′) hold, with
x′1 = Ax1 + Bu1 + w and (q′, L(x′1), q

′′) ∈ δ. Then, one can readily verify that for all
w ∈ W , there exists u = u1 + u2 ∈ U such that x′ ∈ Ii∗+i′−1 ⊕ Ni′−1(εx, εu) for all
x′ = f(x, u, w). Now, one has the following two cases regarding different i′:

1. (Case 1) If i′ ≥ 2, one has x′ ∈ I(εx, εu) by definition of I(εx, εu);

2. (Case 2) If i′ = 1, then according to (5.3.7), one gets x′ ∈ Ii∗ ⊆ (Ii∗+n)γ .
Additionally, considering (5.2.3) and Lemma 5.3.3, γBn ⊆ Nn(εx, εu) implies
that (Ii∗+n)γ ⊆ Ii∗+n ⊕Nn(εx, εu). Therefore, x

′ ∈ I(εx, εu) holds.

Combining Case 1 and Case 2, one can verify that I(εx, εu) is an HCI set for S ⊗ A
according to Definition 5.2.5 . ■
Proof of Theorem 5.3.7 Consider any ρ ∈ R>0. Here, it is assumed that I∗ρ ̸= ∅,

since (5.3.10) holds trivially when I∗ρ = ∅. For the following discussion, I define

(S ⊗A)(−εx,−εu) :=(X−εx , (X0)−εx , U − εuBm,W , f).
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Then, I show that the assertion of Theorem 5.3.7 holds if γ = min(ρ/cx, ρ/cu). If
γ = ρ/cx, this implies that cu ≤ cx. Consider the maximal HCI set I∗(εx,εu) for the

product system (S ⊗A)(−εx,−εu). On one hand, one has

I∗ρ ⊆ I∗(εx,εu), (5.7.14)

according to the definition of (S ⊗A)−ρ, since εx = ρ and εu ≤ ρ. On the other hand,
in the view of the definition of an HCI set and the iteration as in (5.3.6), one has

I∗(εx,εu) ⊆ Ii, (5.7.15)

for all i ∈ N, with Ii being obtained through the iteration as in (5.3.6). Then, one can
readily see that (5.3.10) holds according to the definition of I(εx, εu) as in (5.3.9).

If γ = ρ/cu, one can similarly show that (5.3.10) holds. As a key insight, γ = ρ/cu
implies cx ≤ cu, and hence one has εx ≤ ρ and εu = ρ for (S⊗A)(−εx,−εu). Then, one
also has (5.7.14) and (5.7.15), which completes the proof. ■
Proof of Theorem 5.3.10 The existence of i ∈ N such that (5.3.12) holds can

be proved similarly to the existence of i in Theorem 5.3.6. Therefore, I proceed with
showing that I(ε) in (5.3.14) is an HCI set for S ⊗ A. Here, only the case in which
I(ε) ̸= ∅ is discussed since ∅ is a trivial solution of an HCI set for S ⊗ A. On one
hand, (5.3.12) implies that ∀q, q′ ∈ Q with Ii∗(q, q

′) ̸= ∅, Ii∗(q, q′) ⊆ Ii∗+1(q, q
′)⊕ εBn

hold. Hence, one has (Ii∗)−ε ⊆ Ii∗+1. On the other hand, (5.3.11) shows that ∀x :=
(q, q′, x′) ∈ Ii∗+1, ∀w ∈W + εBn, ∃u ∈ U such that x′ ∈ Ii∗ holds, with x′ = f(x, u, w).
This indicates that ∀x := (q, q′, x′) ∈ Ii∗+1 and ∀w′ ∈ W , ∃u ∈ U such that one has
x′′ ∈ (Ii∗)−ε ⊆ Ii∗+1, with x′′ = f(x, u, w′). Therefore, Ii∗+1 is an HCI set for the
product system S ⊗A according to Definition 5.2.5, which completes the proof. ■

Proof of Theorem 5.3.11 Consider any ρ ∈ R>0. If I
∗
ρ = ∅, (5.3.15) holds trivially.

Therefore, I focus on the case in which I∗ρ ̸= ∅. In the rest of this proof, I show that
the assertion of Theorem 5.3.11 holds with

ε = min(
ρ

n′cx
,
ρ

n′cu
), (5.7.16)

in which cx, cu, and n
′ are those in Corollary 5.3.4 such that (5.3.3)-(5.3.5) hold. To

this end, the following set is defined

X ′ :=
⋃

i′∈[1,n′]

(I∗ρ ⊕Ni′(εx, εu)), (5.7.17)

in which εx and εu are computed based on γ = ε as in Lemma 5.3.3, with ε as in (5.7.16).
Accordingly, one can verify

εBn ⊆ Nn′(εx, εu), (5.7.18)

by leveraging Lemma 5.3.3. Moreover, one gets Ni′(εx, εu) ⊆ εxBn according to (5.3.1),
εxBn ⊆ ρ

n′Bn for all i′ ∈ [1, n′] according to (5.7.16), and I∗ρ ⊆ (I0)−ρ according to the
definition of HCI sets as in Definition 5.2.5. Therefore, one has

X ′ ⊆ (I0)−ρ ⊕ (n′ × ρ

n′
Bn) = I0, (5.7.19)

140



5.7 Proof of Statements in Chapter 5

with I0 as in (5.3.11). Now, I start proving Theorem 5.3.11.
Consider any x := (q, q′, x) ∈ X ′. Without loss of generality, it is assumed that

x = x̃ +
∑n′

i=1 xi, with x̃ ∈ I∗ρ(q, q
′), and xi ∈ Ni(εx, εu) for all i ∈ [1, n′]. Since

x̃ := (q, q′, x̃) ∈ I∗ρ, then ∃ũ ∈ U − ρBm such that for all w ∈W , one gets (q′, q′′, x̃′) :=

f(x̃, u, w) ∈ I∗ρ, with x̃
′ = Ax̃ + Bũ + w and (q′, L(x̃′), q′′) ∈ δ. Accordingly, consider-

ing (5.7.18), there also exists ũ ∈ U − ρBm such that for all w′ ∈W + εBn,

(q′, q̃′′, x̃′′) := f(x̃, u, w′) ∈ I∗ρ ⊕Nn′(εx, εu), (5.7.20)

hold, with x̃′′ = Ax̃ + Bũ + w′ and (q′, L(x̃′′), q̃′′) ∈ δ. Moreover, according to Def-
inition 5.3.2, for any xi ∈ Ni(εx, εu) with i ∈ [1, n′], there exists ui ∈ εuBm such
that

Axi +Bui ∈ Ni−1(εx, εu). (5.7.21)

Combining (5.7.20) and (5.7.21), one can readily see that for any x := (q, q′, x) ∈ X ′, for
all w′ ∈W+εBn, one gets x′ := (q′, q′′, x′) ∈ X ′, with x′ = Ax+Bu+w′, (q′, L(x′), q′′) ∈
δ, and u = ũ +

∑n′

i=1 ui. Additionally, since γ ≤ ρ
n′cu

according to (5.7.16), one
obtains εu ≤ ρ

n′ and as a result u ∈ U . Hence, considering (5.7.19), one can readily
conclude that the set X ′ is an HCI set for a product system S′ ⊗ A as defined in
Definition 5.2.1, with S′ = (X,X0, U,W + εBn, f), and hence, one gets X ′ ⊆ I∗(ε),
with I∗(ε) being the maximal HCI set of S′ ⊗ A. Moreover, according to (5.7.17),
one can see that I∗ρ ⊆ X ′ ⊆ I∗(ε), which completes the proof, since I∗(ε) ⊆ I(ε)
considering (5.2.11), (5.2.12), and (5.3.11). ■

5.7.3 Proof of Statements: Section 5.4

To prove Theorem 5.4.3, the following proposition is required.

Proposition 5.7.4. Given P-collections U1 and U2, one has

larg(U1 ∩ U2) ≤ larg(U1) + larg(U2), (5.7.22)

num(U1 ∩ U2) ≤ num(U1)num(U2), (5.7.23)

larg(pre(U1)) ≤ g̃S(p), (5.7.24)

num(pre(U1)) ≤ num(U1), (5.7.25)

in which larg(·) and num(·) are defined in (5.1.4) and (5.1.5), respectively; pre(·)
is as in (5.2.15), with exogenous disturbance set W = {0n}; g̃S(·) is as in (5.4.2),
and p = maxa∈[1,Nc] numh(Pa), with U1 = ∪Nc

a=1(Pa).

Proof of Proposition 5.7.4 (5.7.22) and (5.7.23) hold trivially according to how
the intersection between two P-collection is computed, and (5.7.24) holds according to
the definition for g̃S(·). As for (5.7.25), one can verify that

num(pre(U1))=num(∪Nc
a=1pre(Pa))≤∪Nc

a=1num(pre(Pa))≤Nc.
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Note that the last inequality holds since pre(Pa) is still a polytope given Pa is poly-
tope [102, Section 3.3.3]. ■

Proof of Theorem 5.4.3 Here, (5.4.4) and (5.4.5) are shown by induction. When
i = 1, for any q, q′, q′′ ∈ Qrd for which ∃σ1, σ2 ∈ Π s.t. (q, σ1, q

′) ∈ δ and (q′, σ2, q
′′) ∈ δ,

one has

num(I1(q, q
′)) =

∑
q′′∈Qrd

num
(
I0(q, q

′) ∩ pre(I0(q′, q′′))
)

≤
∑

q′′∈Qrd

num(I0(q, q
′))num(pre(I0(q

′, q′′)) (c1)

≤
∑

q′′∈Qrd

M2 ≤ αM2; (c2)

larg(I1(q, q
′)) = larg

(
I0(q, q

′) ∩ pre(I0(q′, q′′))
)

≤ larg(I0(q, q
′)) + larg(pre(I0(q

′, q′′)) (c3)

≤ p′ + g̃S(p
′) ≤ g1(p′). (c4)

Hence, (5.4.4) and (5.4.5) hold for i = 1. Note that (c1)-(c4) hold according to Propo-
sition 5.7.4. Suppose that (5.4.4) and (5.4.5) hold for i = k. Then, for i = k + 1, one
has

larg(Ii+1(q, q
′)) = larg

(
I0(q, q

′) ∩ pre(Ii(q′, q′′))
)

≤ larg(I0(q, q
′)) + larg(pre(Ii(q

′, q′′)) ≤ p′ + g̃S(g
i(p′)) ≤ gi+1(p′).

num(Ii+1(q, q
′)) =

∑
q′′∈Qrd

num
(
I0(q, q

′) ∩ pre(Ii(q′, q′′))
)

≤
∑

q′′∈Qrd

num(I0(q, q
′))num(pre(Ii(q

′, q′′)) ≤
∑

q′′∈Qrd

MαiMi+1 ≤ αi+1Mi+2;

Therefore, (5.4.4) and (5.4.5) also hold for i = k + 1, which completes the proof. ■
Proof of Corollary 5.4.5 In the following discussion, considering a P-collection

U = ∪Nc
a=1Pa, numhc(U) :=

∑Nc
a=1 numh(Pa) denotes the total number of hyperplanes

defining the polytopes within U . Then, based on (5.4.4) and (5.4.5), one has

numhc(Ii(q, q
′)) ≤ num(Ii(q, q

′))larg(Ii(q, q
′)) ≤ αiMi+1gi(p′).

Therefore, Ii contains at most |δ|αiMi+1gi(p′) hyperplanes. Meanwhile, the parameters
of these hyperplanes can be stored in a |δ|αiMi+1gi(p′)-by-(n + 1) matrix. Hence,
(5.4.10) is a valid upper bound for the space complexities of Algorithm 5. Next, (5.4.11)
is shown to be a valid upper bound for the time complexity of Algorithm 5. First,
considering (5.4.4), (5.4.7), (5.7.24), and (5.7.25), one has

num(pre(Ii−1(q, q
′))) ≤ num(Ii−1(q, q

′)) ≤ αi−1Mi,

larg(pre(Ii−1(q, q
′))) ≤ g̃S(g

i−1(p′)).
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5.7 Proof of Statements in Chapter 5

Accordingly, in the worst case, one needs to compute the intersection of two P-collections,
which contains M and αi−1Mi polytopes, respectively, to obtain I0 ∩P(Ii). Therefore,
the worst-case computation time for computing I0 ∩P(Ii) is

|δ|αi−1Mi+1c2
(
p′, g̃S(g

i−1(p′))
)

considering the definition of c2 and |δ|. Then, one can readily verify that (5.4.11) is a
valid upper bound for the time complexity of Algorithm 5 by considering the definitions
of c1 and c3. ■
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6 Data-driven Controller Synthesis against
Invariance Properties

6.1 Introduction

The results proposed in the previous chapters require knowing the model for the system
of interest. Nevertheless, in some cases, obtaining an accurate model requires a signifi-
cant amount of effort [81], or even if a model is available, it may be too complex to be
of any use. Such difficulties motivate researchers to enter the realm of data-driven con-
trol methods. In this chapter, I propose a data-driven method for constructing safety
controllers along with their associated γ-robust safety invariant sets to enforce invari-
ance properties over control systems (i.e., systems are expected to stay within a safe
set). These controllers and sets can be used for constructing the Safe-visor architecture
following the basic idea of state-based approaches, as discussed in Section 1.3.

6.1.1 Related Works

In general, data-driven control methods can be classified into indirect and direct ap-
proaches. Indirect data-driven approaches consist of a system identification phase fol-
lowed by a model-based controller synthesis scheme. To achieve a rigorous safety guar-
antee, it is crucial to provide an upper bound for the error between the identified model
and the real but unknown model (a.k.a. identification error). Among different system
identification approaches, least-squares methods (see e.g. [130]) are frequently used for
identifying linear models. In this case, sharp error bounds [173] relate the identifica-
tion error to the cardinality of the finite data set which is used for the identification
task. Computation of such bounds requires knowledge about the distributions of the
disturbances (typically i.i.d. Gaussian or sub-Gaussian, see e.g. [136, 135], and ref-
erences herein). Therefore, computation of these bounds is challenging when dealing
with unknown-but-bounded disturbances [26], i.e., the disturbances are only assumed
to be contained within a given bounded set, but their distributions are fully unknown.
Note that set-membership identification approaches (see e.g. [113, 41]) can be applied to
identify linear control systems with unknown-but-bounded disturbances. Nevertheless,
it is still an open problem to provide an upper bound for the identification error when
unknown-but-bounded disturbances are involved.

Different from indirect data-driven approaches, direct data-driven approaches directly
map data into the controller parameters without any intermediate identification phase.
Considering systems without being affected by exogenous disturbances, results in [49]
propose a data-driven framework to solve linear quadratic regulation (LQR) problems

145



6 Data-driven Controller Synthesis against Invariance Properties

for linear systems. Later on, similar ideas were utilized to design model-reference
controllers (see [37, Section 2]) for linear systems [37], and to stabilize polynomial
systems [72], switched linear systems [163], and linear time-varying systems [149].
When exogenous disturbances are also involved in the system dynamics, recent re-
sults, e.g., [50, 20, 21, 189], can be applied to LQR problems and robust controller
design. However, none of these results considers state and input constraints. Hence,
they cannot be leveraged to enforce invariance properties. When input constraints are
considered, results in [25, 27] provide data-driven approaches for constructing state-
feedback controllers to make a given C-polytope (i.e., compact polyhedral set contain-
ing the origin [30, Definition 3.10]) robustly invariant (see [27, Problem 1]). However,
when such controllers do not exist for the given C-polytope, one may still be able to find
controllers making a subset of this polytope robustly invariant, which is not considered
in [25, 27]. Additionally, the approaches in [25, 27] require an individual constraint for
each vertex of the polytope (see [25, Section 4] and [27, Theorem 1 and 2]). Unfor-
tunately, given any arbitrary polytope, the number of its vertices grows exponentially
with respect to its dimension and the number of hyperplanes defining it in the worst
case [56, Section 1].

6.1.2 Contributions

In this chapter, I focus on enforcing invariance properties over unknown linear systems
affected by unknown-but-bounded disturbances. Particularly, a direct data-driven ap-
proach is proposed for designing safety controllers against these properties. To this
end, I first propose so-called γ-robust safety invariant (γ-RSI) sets and their associ-
ated state-feedback controllers enforcing invariance properties modeled by (possibly
unbounded) polyhedral safety sets. Then, a data-driven approach is introduced for
computing such sets, in which the numbers of constraints and optimization variables
grow linearly with respect to the numbers of hyperplanes defining the safety set and the
cardinality of the finite data set. Moreover, the relation between the proposed data-
driven approach and the condition of persistency of excitation [200] is also elaborated,
which is a crucial concept in most literature about direct data-driven approaches.

6.1.3 Problem Formulation

In this chapter, discrete-time linear control systems (dtLCS) as in Definition (2.3.1)
are of interest, with A ∈ Rn×n and B ∈ Rn×m being some unknown constant matrices;
x(k) ∈ X and u(k) ∈ U , ∀k ∈ N, being the state and the input vectors, respectively, in
which X ⊆ Rn is the state set,

U = {u ∈ Rm|bju ≤ 1, j = 1, . . . , j} ⊂ Rm, (6.1.1)

is the input set of the system, with bj ∈ Rm being some known vectors; w(k) denotes
the exogenous disturbances, where w(k) ∈ ∆(γ), ∀k ∈ N, with

∆(γ) = {w ∈ Rn|w⊤w ≤ γ, γ ∈ R≥0}. (6.1.2)
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6.2 γ-Robust Safety Invariant Sets

Note that disturbances being in the form of (6.1.2) are also known as unknown-but-
bounded disturbance with instantaneous constraint [26], with γ being the disturbance
bound that is assumed to be a priori. Finally,

X1,N :=
[
x(1) x(2) . . . x(N)

]
, (6.1.3)

X0,N :=
[
x(0) x(1) . . . x(N − 1)

]
, (6.1.4)

U0,N :=
[
u(0) u(1) . . . u(N − 1)

]
, (6.1.5)

denote the data collected offline, with N ∈ N, in which x(0) and U0,N are chosen by
the users, while the rest are obtained by observing the state sequence generated by the
system in Definition 2.3.1.

In this chapter, invariance properties is considered as the safety properties of interest,
which can be modeled by (possibly unbounded) safety sets defined as

S := {x ∈ Rn|aix ≤ 1, i = 1, . . . , i} ⊂ X, (6.1.6)

where ai ∈ Rn are some known vectors. With these notions, the main problem of this
chapter is formulated as follows.

Problem 6.1.1. Consider a dtLCS as in Definition 2.3.1, where matrices A
and B are unknown, with input set as in (6.1.1), and safety set as in (6.1.6).
Using data in (6.1.3)- (6.1.5), design a safety envelope S̄ ⊆ S along with a safety
controller u = Kx (if existing) such that x(k) ∈ S̄, ∀k ∈ N>0, if x(0) ∈ S̄.

6.2 γ-Robust Safety Invariant Sets

In this section, the computation of γ-robust safety invariant (γ-RSI) sets is proposed
assuming matrices A and B in Definition 2.3.1 are known. These sets would be later
employed as safety envelopes as defined in Problem 6.1.1. Then, these results would be
used in the next subsection to provide the main direct data-driven approach to solve
Problem 6.1.1. First, the definition of γ-RSI sets is present as follows.

Definition 6.2.1. (γ-RSI set) Consider a linear control system as in Definition 2.3.1.
A γ-RSI set S with respect to a safety set S as in (6.1.6) is defined as

S := {x ∈ Rn|x⊤Px ≤ 1} ⊂ S, (6.2.1)

such that ∀x ∈ S, one has Ax+Bu+w ∈ S, ∀w ∈ ∆(γ), when the RSI-based controller

u = Kx, (6.2.2)

associated with S is applied in the closed-loop, where P ∈ Rn×n is a positive-definite
matrix, and K ∈ Rm×n.
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6 Data-driven Controller Synthesis against Invariance Properties

With this definition, the next straightforward result is proposed for Problem 6.1.1,
which can readily been verified according to Definition 6.2.1.

Theorem 6.2.2. Consider a dtLCS as in Definition 2.3.1. If there exists a γ-
RSI set S as in (6.2.1), then one has x(k) ∈ S, ∀k ∈N>0, when the RSI-based
controller as in (6.2.2) associated with S is applied, and x(0) ∈ S.

Remark 6.2.3. In this chapter, elliptical-type γ-RSI sets are computed to solve Prob-
lem 6.1.1, while computing γ-RSI sets of more general forms, e.g., polyhedral-type sets,
is still open. One of the difficulties of computing polyhedral-type γ-RSI sets is to cast
the volume of a polyhedral set as a convex objective function [103, Section 2], which
is done easily in the elliptical case (cf. Remark 6.2.7). Additionally, consider an n-
dimensional polytope P ⊆ Rn, which is defined by m hyperplanes. The model-based
approaches (see e.g. [29]) require an individual constraint for each vertex of P for syn-
thesizing controllers that make P a γ-RSI set. Therefore, the exponential growth in the
number of vertices with respect to n and m [56, Section 1] may also be a burden for
extending the proposed data-driven approach to polyhedral-type γ-RSI sets.

Using Theorem 6.2.2, the other question is how to compute γ-RSI sets. To do so,
the following result is required.

Theorem 6.2.4. Consider a system as in Definition 2.3.1. For any matrix
K ∈ Rm×n, positive-definite matrix P ∈ Rn×n, and γ ∈ R≥0, one has(

(A+BK)x+ w
)⊤
P
(
(A+BK)x+ w

)
≤ 1, (6.2.3)

∀w ∈ ∆(γ), and ∀x ∈ Rn satisfying x⊤Px ≤ 1, iff ∃κ ∈ (0, 1], such that

1. (Cond.1) x⊤(A + BK)⊤P (A + BK)x ≤ κ holds ∀x ∈ Rn satisfying
x⊤Px ≤ 1;

2. (Cond.2) (y + d̃)⊤P (y + d̃) ≤ 1 holds ∀y ∈ Rn satisfying y⊤Py ≤ κ, and
∀d̃ ∈ ∆(γ).

The proof of Theorem 6.2.4 is provided in Section 6.6. Some intuitions for Theo-
rem 6.2.4 is provided in Figure 6.1. With this notion, an optimization problem is pro-
posed in the next definition for computing a γ-RSI set for dtLCS as in Definition 2.3.1,
assuming that matrices A and B are known.

Definition 6.2.5. Consider a dtLCS as in Definition 2.3.1 with input constraints
in (6.1.1), a safety set S in (6.1.6), κ ∈ (0, 1], and γ ≥ 0. An optimization prob-
lem, denoted by OPm, is defined as:

OPm : min
Q,K̄

− log(det(Q)) (6.2.4)
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6.2 γ-Robust Safety Invariant Sets

Figure 6.1: An envelope E := {x ∈ Rn|x⊤Px ≤ 1} is a γ-RSI set, when there exists a
controller u = Kx that can steer any x ∈ E into a smaller envelope E′ := {x+ ∈
Rn|(x+)⊤Px+ ≤ κ} in which it is assumed that d = 0, i.e., ∀x ∈ E, one gets
x+ ∈ E′, with x+ = (A+BK)x.

s.t.

[
κQ Q⊤A⊤ + K̄⊤B⊤

AQ+BK̄ Q

]
⪰ 0, (6.2.5)

Q ⪰ cI, (6.2.6)

aiQa
⊤
i ≤ 1, i = 1, . . . , i, (6.2.7)[
1 bjK̄

K̄⊤b⊤j Q

]
⪰ 0, j = 1, . . . , j, (6.2.8)

where c = γ
(1−

√
κ)2

if κ ̸= 1, and c = 0 otherwise; Q ∈ Rn×n is a positive-definite

matrix, and K̄ ∈ Rm×n.

Based on Definition 6.2.5, one can construct an RSI-based controller enforcing in-
variance properties as in the next result.

Theorem 6.2.6. Consider the optimization problem OPm in Definition 6.2.5.
For any κ ∈ (0, 1] and γ ≥ 0, the set S ′ := {x ∈ X|x⊤Q−1x ≤ 1} is a γ-RSI set
with u = K̄Q−1x being the associated RSI-based controller, if and only if OPm

is feasible for the given γ and κ.

The proof for Theorem 6.2.6 can be found in Section 6.6. Note that the existence of
κ ∈ (0, 1] is a necessary and sufficient condition for the existence of a γ-RSI set with
respect to the safety set S as in (6.1.6) according to Theorem 6.2.4. In practice, one
can apply bisection to come up with the largest value of κ while solving OPm.

Remark 6.2.7. The objective function in (6.2.4) maximizes the volume of the γ-RSI
set in Theorem 6.2.6, since its volume is proportional to det(Q) [36, p. 42].

So far, an approach for computing γ-RSI sets is proposed by assuming matrices A
and B are known. Before proposing the direct data-driven approach with the help of
the results in this subsection, it is worthwhile to point out the challenge in solving
Problem 6.1.1 using indirect data-driven approaches. Following the idea of indirect
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6 Data-driven Controller Synthesis against Invariance Properties

data-driven approaches, one needs to identify unknown matrices A and B based on
data, and then applies Theorem 6.2.6 to the identified model

x(k + 1) = Âx(k) + B̂u(k) + d̂(k),

where Â and B̂ are the estimation of A and B, respectively, and d̂(k) := (A− Â)x(k)+
(B − B̂)u(k) + w(k), with w(k) ∈ ∆(γ). Accordingly, one has ∥d̂(k)∥ ≤ ∆A∥x(k)∥ +
∆B∥u(k)∥+ γ, with ∆A :=∥A− Â∥ and ∆B :=∥B − B̂∥. Here, ∆A and ∆B are known
as sharp error bounds [173], which relate the identification error to the cardinality of
the finite data set used for system identification. Note that the computation of these
bounds requires some assumptions on the distribution of the disturbances (typically
disturbances with symmetric density functions around the origin such as Gaussian
and sub-Gaussian, see discussion in e.g. [136, 135] and references herein). To the
best of my knowledge, it is still an open problem how to compute such bounds when
considering unknown-but-bounded disturbances (also see the discussion in Section 6.1).
Such challenges in leveraging indirect data-driven approaches motivated me to propose
a direct data-driven approach for computing γ-RSI sets, in which the intermediate
system identification step is not required.

6.3 Direct Data-driven Computation of γ-RSI Sets

In this subsection, a direct data-driven approach is proposed for computing γ-RSI sets.
To this end, the following definition is required.

Definition 6.3.1. Consider a dtLCS as in Definition 2.3.1 with input constraints as
in (6.1.1), a safety set S as in (6.1.6), X1,N , X0,N , and U0,N , as in (6.1.3)-(6.1.5),
respectively. Given κ ∈ (0, 1] and γ ≥ 0, an optimization problem, denoted by OPd, is
defined as:

OPd : min
Q,Z̄,ϵ1,...,ϵN

− log(det(Q)) (6.3.1)

s.t. Q ⪰ cI, (6.3.2)

N1−
N∑
p=1

ϵpNp

[
γIn 0
0 −I

]
N⊤

p ⪰0; (6.3.3)

aiQa
⊤
i ≤ 1, i = 1, . . . , i, (6.3.4)[
1 bjZ̄

Z̄⊤b⊤j Q

]
⪰ 0, j = 1, . . . , j, (6.3.5)

where ϵi > 0, ∀i ∈ [1, N ],

N1 =


κQ 0 0 0
0 −Q −Z̄⊤ 0
0 −Z̄ 0 Z̄
0 0 Z̄⊤ Q

 ;Np =


In X1,N (p)
0 −X0,N (p)
0 −U0,N (p)
0 0

 ,
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∀p ∈ [1, N ]; c = γ
(1−

√
κ)2

if κ ̸= 1, and c = 0, otherwise; Q ∈ Rn×n is a positive-definite

matrix, and Z̄ ∈ Rm×n.

With the help of Definition 6.3.1, the following result can be proposed for building
an RSI-based controller with respect to invariance properties.

Theorem 6.3.2. Consider an optimization problem OPd as in Definition 6.3.1
and the disturbance set ∆(γ) as in (6.1.2). For any κ ∈ (0, 1], if OPd is feasible,
then the set S ′

d := {x ∈ X|x⊤Q−1x ≤ 1} is a γ-RSI set, with u = Z̄Q−1x being
the RSI-based controller associated with S ′

d.

The proof of Theorem 6.3.2 is provided in Section 6.6. It is also worth mentioning
that the number of LMI constraints in OPd grows linearly with respect to the number
of inequalities defining the safety set in (6.1.6) and input set in (6.1.1). Meanwhile, the
sizes of the (unknown) matrices on the left-hand sides of (6.3.2)-(6.3.5) are independent
of the number of data, i.e., N , and grow linear with respect to the dimensions of the
state and input sets. Additionally, the number of slack variables, i.e., ϵi, grows linearly
with respect to N . As a result, the optimization problem OPd in Definition 6.3.1 can
be solved efficiently.

In the remainder of this section, the proposed direct data-driven approach is further
discussed in terms of the condition of persistency of excitation [200] regarding the
offline-collected data X0,N and U0,N . To this end, the condition of persistency of
excitation is recalled as below, which is adapted from [200, Corollary 2].

Lemma 6.3.3. Consider the dtLCS as in Definition 2.3.1 with (A,B) being
controllable, X0,N as in (6.1.4), and U0,N as in (6.1.5). One has

rank
([
X0,N

U0,N

])
= n+m, (6.3.6)

with n and m being the dimensions of state and input sets, respectively, if U0,N

is a persistently exciting input sequence of order n + 1, i.e., rank(U0,n+1,N ) =
m(n+ 1), where

U0,n+1,N :=


U0,N (1) U0,N (2) . . . U0,N (N − n)
U0,N (2) U0,N (3) . . . U0,N (N − n+ 1)

...
...

. . .
...

U0,N (n+ 1) U0,N (n+ 2) . . . U0,N (N)

 .

The condition of persistency of excitation in Lemma 6.3.3 is common among direct
data-driven approaches, since it ensures that the data in hand encode all information
which is necessary for synthesizing controllers directly based on data [200]. Although
Definition 6.3.1 and Theorem 6.3.2 do not require this condition, the next result points
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out the difficulties in obtaining a feasible solution for OPd, whenever condition (6.3.6)
does not hold.

Corollary 6.3.4. Consider the optimization problem OPd in Definition 6.3.1,
and the set

F :=

N⋂
p=1

Fp, (6.3.7)

where Fp :=
{
(Ã, B̃) ∈ Rn×n×Rn×m

∣∣∣ X1,N (p) = ÃX0,N (p)+ B̃U0,N (p)+d, d ∈

∆(γ)
}
, in which p ∈ [1, N ]. The set F is unbounded if and only if

rank
([
X0,N

U0,N

])
< n+m. (6.3.8)

The proof of Corollary 6.3.4 can be found in Section 6.6. As a key insight, given
data of the form of (6.1.3) to (6.1.5), the failure in fulfilling condition (6.3.6) indicates
that these data do not contain enough information about the underlying unknown
system dynamics for solving the optimization problem OPd, since the set of systems
of the form of (2.3.2) that can generate the same data is unbounded. Concretely, the
optimization problem OPd aims at finding a common γ-RSI set for any linear system
as in Definition 2.3.1 such that (A,B)∈F , with F as in (6.3.7). The unboundedness
of the set F makes it very challenging to find a common γ-RSI set which works for all
(A,B)∈F . In practice, to avoid the unboundedness of F and ensure that (6.3.6) holds,
one can increase the duration of the single input-state trajectory till the condition of
persistency of excitation is fulfilled. Before proceeding with introducing the case study
of this paper, a flowchart for applying the proposed direct data-driven approach is given
in Figure 6.2.

6.4 Case Studies

To demonstrate the effectiveness of the proposed results, they are applied to two case
studies. Although the direct data-driven approach proposed in Section 6.3 does not
require any knowledge about matrices A and B of the model, model with known A
and B are considered in both case studies mainly for collecting data, simulation, and
computing the model-based gamma-RSI sets in Theorem 6.2.6 as baselines to evaluate
the effectiveness of the proposed direct data-driven approaches (cf. Figure 6.6, 6.7, 6.10,
and 6.11). When leveraging the direct data-driven method, it is assumed that A and
B are fully unknown and the systems are treated as black-box ones. The experiments
are performed via MATLAB 2019b, on a machine with Windows 10 operating system
(Intel(R) Xeon(R) E-2186G CPU (3.8 GHz)) and 32 GB of RAM. The optimization
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6.4 Case Studies

Figure 6.2: Flowchart of the proposed direct data-driven approach, with OPd and κ as in
Definition 6.3.1, κint ∈ (0, 1], e ∈ R>0, and imax ∈ N>0 being parameters which
are manually selected by users, and PE condition referring to the condition of
persistency of excitation as in Lemma 6.3.3.

problems in Section 6.2 and 6.3 are solved by using optimization toolboxes YALMIP [131]
and MOSEK [143].

6.4.1 Inverted Pendulum

In the first case study, a four dimensional linearized model of the inverted pendulum
as in Figure 6.3 is considered. The model of the inverted pendulum can be described
by the difference equation as in (2.3.2), in which

A=

1 0.02 0 0
0 1 0 0
0 0 1.0042 0.0194
0 0 0.4208 0.9466

 , B=


0.0002
0.0200
−0.0004

−0.0429

 , (6.4.1)

where x(k) = [x1(k);x2(k);x3(k);x4(k)] is the state of the system, with x1(k) being
position of the cart, x2(k) being the velocity of the cart, x3(k) being the angular position
of the pendulum with respect to the upward vertical axis, and x4(k) being the angular
velocity of the pendulum; u(k) ∈ [−5, 5] m/s2 is the acceleration of the cart that is
used as the input to the system. The safety objective for the inverted pendulum case
study is to keep the position of the cart within [−1, 1] m, and the angular position
of the pendulum within [−π/12, π/12] rad. This model is obtained by discretizing a
continuous-time linearized model of the inverted pendulum as in Figure 6.3 with a
sampling time τ = 0.02s, and including disturbances w(k) that encompass unexpected
interferences and model uncertainties. The disturbances w(k) belong to the set ∆(γ) as
in (6.1.2), with γ = (0.05τ)2, which are generated based on a non-symmetric probability
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Figure 6.3: Inverted pendulum, where m = 0.1314 kg is the mass of the pendulum, l = 0.68m
is the length of the pendulum, g = 9.81m/s is the gravitational constant, and
Bθ = 0.06Nm/s is the damping coefficient of the connection between the cart
(the blue part) and the pendulum (the green part).

Figure 6.4: Projections of 1000 closed-loop trajectories on x1 − x3 plane when applying the
controller obtained by leveraging indirect data-driven approach.

density function:

f(d) :=


5

π2γ2
, for d ∈ D1;

9

5π2γ2
, for d ∈ ∆(γ)\D1,

(6.4.2)

with D1 := {[d1; d2; d3; d4] ∈ ∆(γ)|di ∈ R≥0, i ∈ [1, 4]}. Here, the distribution is
selected as in (6.4.2) to mainly illustrate the difficulties in identifying the underlying
unknown system dynamics when the exogenous disturbances are subject to a non-
symmetric distribution, even though they are bounded. Meanwhile, the proposed direct
data-driven approaches in this chapter can handle such disturbances since there is
no assumption on the disturbance distribution, e.g., being Gaussian or sub-Gaussian.
Moreover, this distribution is only used for collecting data and simulation, while the
computation of data-driven γ-RSI sets does not require any knowledge of it.

First, the difficulties in applying indirect data driven approaches to solve Prob-
lem 6.1.1 is demonstrated, when the bounded disturbances are generated based on
a non-symmetric probability density function as in (6.4.2). Here, least-squares ap-
proach as in [89] is deployed to identify matrices A and B. Data as in (6.1.3)- (6.1.5)
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Figure 6.5: Evolution of the entry Â(3, 3) as number of data used for the system identification
increases.

is collected, with N=500, and the following estimation of A and B is obtained as

Â =


1 0.02 0 0
0 1 0 0

0.0764 −0.0888 2.3439 −0.3745
0.0687 −0.0798 1.6255 0.5924

 , B̂ =


0.0002
0.0200
−0.0003
−0.0422

 ,
respectively. Based on the estimated model, one obtains a controller u = Kix by

applying Theorem 6.2.6, with Ki =
[
− 9.8089;−3.3176; −112.7033; 25.7470

]⊤
. With

this controller, the system is initialized at x =
[
0; 0; 0; 0

]⊤
and simulated within time

horizon H = 70. The projections of closed-loop state trajectories on the x1 − x3 plane
are shown in Figure 6.4, which indicate that the desired safety constraints are violated.
Additionally, the evolution of the entry Â(3, 3) is also depicted in Figure 6.5 as an
example to show that some of the entries in Â keep fluctuating as the number of data
used for system identification increases. In other words, Â does not seem to converge to
the real value in (6.4.1) by increasing the number of data used for system identification.

Next, the direct data-driven approach proposed in this chapter is demonstrated.
To compute the data-driven γ-RSI set using Theorem 6.3.2, data as in (6.1.3)-(6.1.5)
is collected, with N = 107, such that condition (6.3.6) holds. Then, a data-driven
γ-RSI set is obtained within 4.165s. Here, the data-driven γ-RSI set is denoted by
Sd := {x ∈ R4|x⊤Pdx ≤ 1}, with

Pd = Q−1 =


3.3950 2.8786 12.1264 1.9861
2.8786 3.8224 15.6826 2.7404
12.1264 15.6826 81.9169 12.4079
1.9861 2.7404 12.4079 2.4531

 ,
in which Q is the solution of OPd with κ = 0.9813. The RSI-based controller associated

with Sd is u = Kdx, where Kd =
[
3.2672; 4.9635; 38.1223; 4.9989

]⊤
.

As for the simulation, 100 initial states are randomly selected from Sd following a
uniform distribution. Then, the RSI-based controller associated with Sd is applied in
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Figure 6.6: Projections of the data-driven γ-RSI set Sd, the model-based γ-RSI set Sm, initial
states, and state trajectories on x1 − x2 plane.

Figure 6.7: Projections of the data-driven γ-RSI set Sd, the model-based γ-RSI set Sm, initial
states, and state trajectories on x3 − x4 plane.

Figure 6.8: Input sequences for the inverted pendulum example.
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the closed-loop and the system is simulated within the time horizon H = 200. In
the simulation, disturbance at each time instant is injected following the distribution
in (6.4.2). The projections1 of the data-driven γ-RSI sets, and closed-loop state trajec-
tories on the x1 − x2 and x3 − x4 planes are shown in Figure 6.6 and 6.7, respectively.
For comparison, the model-based γ-RSI set is also computed with Theorem 6.2.6, de-
noted by Sm, and project it onto relevant coordinates. One can readily verify that all
trajectories are within the desired safety set, and input constraints are also respected,
as displayed in Figure 6.8. It is also worth noting that, as shown in Figure 6.7, the
data-driven γ-RSI set does not necessarily need to be inside the model-based one, since
the γ-RSI set with the maximal volume (cf. Remark 6.2.7) do not necessarily contain
all other possible γ-RSI sets with smaller volume.

6.4.2 3-DOF Helicopter

In the second case study, a case study of a 3-DOF helicopter, as depicted in Figure 6.9
(Left), is considered. Here, the 3-DOF helicopter is a simplified helicopter model
equipped with two motors that generate upward or downward force according to the
actuation voltage.

Figure 6.9: (Left): 3 Degree of freedom (3-DOF) helicopter; (Right): Region between two
red lines in which the helicopter fans should stay.

The model of the 3-DOF helicopter can be described by (2.3.2), in which

A =



1 0 0 0.02 0 0
0 1 0 0 0.02 0
0 −0.0002 1 0 −1.64e−6 0.02
0 0 0 1 0 0
0 0 0 0 1 0
0 −0.0246 0 0 −0.002 1

 , B =



1.72e−5 1.72e−5

1.16e−4 −1.16e−4

0 0
0.0017 0.0017
0.0116 −0.0116

0 0

 ,

where x(k) = [x1(k);x2(k);x3(k);x4(k);x5(k);x6(k)] is the state of the system, with
x1(k), x2(k), and x3(k), being the elevation, pitch, and travel angles, respectively,

1Here, the projections of the γ-RSI sets are computed by leveraging Ellipsoidal Toolbox [108].
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while x4(k), x5(k), and x6(k), being the elevation, pitch, and travel angular velocities,
respectively; u(k) = [u1(k);u2(k)] ∈ [−24, 24]×[−24 24] is the input to the system, with
u1(k) and u2(k) being the actuation voltage of the motors. This model is obtained by
discretizing a continuous-time linear model of a 3-DOF helicopter (see the manufacturer
manual [157]) with a sampling time τ = 0.02s, and including disturbances w(k) that
encompass unexpected interferences and model uncertainties. Moreover, disturbances
w(k) belong to the set ∆(γ) as in (6.1.2), with γ = (0.005τ)2, which are generated
based on a non-symmetric probability density function:

f(d) :=


219

5π3γ3
, for d ∈ D2;

27

5π3γ3
, for d ∈ ∆(γ)\D2,

(6.4.3)

with D2 := {[d1; d2; d3; d4; d5; d6] ∈ ∆(γ)|di ∈ R≥0, i ∈ [1, 6]}. The safety set is denoted
by Sheli = {x ∈ R6|Ahx ≤ bh}, in which

Ah =



−1 −0.33 0 0 0 0
−1 0.33 0 0 0 0
1 0.33 0 0 0 0
1 −0.33 0 0 0 0
0 0 0 −1 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 1 0


, and bh =



0.3
0.3
0.3
0.3
0.4
0.4
1.5
1.5


.

In English, the safety set Sheli requires that: 1) the helicopter fans should not exceed
the region as illustrated in Figure 6.9 (Right); 2) the elevation angular velocity should
not exceed 0.4 rad/s; 3) the pitch angular velocity should not exceed 1.5 rad/s.

As for the computation of the data-driven γ-RSI set using Theorem 6.3.2, data as
in (6.1.3) - (6.1.5) with N = 298 are collected, and a data-driven γ-RSI set is obtained
within 6.481s. Note that N = 298 is selected here such that condition (6.3.6) holds.
Here, the data-driven γ-RSI set and the RSI-based controller associated with Sh is
denoted by Sh := {x ∈ R6|xTPhx ≤ 1} and u = Khx, respectively, where

Ph = Q−1 =



42.271 −0.280 −0.070 10.489 −0.033 0.045
−0.280 4.649 −0.291 −0.034 0.347 −1.544
−0.070 −0.291 0.056 −0.018 −0.022 0.184
10.489 −0.034 −0.018 8.862 −2.73e−5 −0.037
−0.033 0.347 −0.022 −2.73e−5 0.472 −0.134
0.045 −1.544 0.184 −0.037 −0.134 0.899

 ,

Kh =

[
−58.318 −11.075 0.7984 −28.364 −5.208 3.897
−59.858 11.741 −0.605 −28.381 5.246 −3.879

]
,

in which Q is a solution of OPd, with κ = 0.9938. In the simulation, 100 initial states
are randomly selected from Sh following a uniform distribution. Then, the RSI-based
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Figure 6.10: Projections of the safety set Sheli, the data-driven γ-RSI set Sh, the model-based
γ-RSI set Sm, initial states, and state trajectories on x1 − x2 plane.

Figure 6.11: Projections of the safety set Sheli, the data-driven γ-RSI set Sh, the model-based
γ-RSI set Sm, initial states, and state trajectories on x4 − x5 plane.

controller associated with Sh is applied in the closed-loop within the time horizon
H = 200. The projections of the safety set, closed-loop state trajectories, the model-
based, and data-driven γ-RSI sets on the x1 − x2 and x4 − x5 planes are depicted in
Figure 6.10 and 6.11, respectively. Moreover, input sequences are shown in Figure 6.12.
One can readily verify that the desired safety set and input constraints are respected.

6.5 Summary

In this chapter, a direct data-driven approach is proposed to synthesize safety con-
trollers, which enforce invariance properties over unknown linear systems affected by
unknown-but-bounded disturbances. To do so, a direct data-driven framework is in-
troduced to compute γ-robust safety invariant (γ-RSI) sets. Moreover, the relation
between the proposed data-driven approach and the condition of persistency of exci-
tation is discussed, explaining the difficulties in finding a suitable solution when the
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Figure 6.12: Input sequences for the 3DF helicopter example.

collected data do not fulfill such a condition. To show the effectiveness of the proposed
results, the proposed results are applied to two case studies.

6.6 Proof of Statements in Chapter 6

Proof of Theorem 6.2.4: First, the statement regarding if is proved. If ∃κ ∈ (0, 1]
such that (y + d̃)⊤P (y + d̃) ≤ 1 holds ∀y ∈ Rn with y⊤Py ≤ κ, and ∀d̃ with d̃⊤d̃ ≤ γ,
one can let y = (A+BK)x with x⊤Px ≤ 1 without loss of generality. This immediately
implies that (6.2.3) holds ∀x ∈ Rn and ∀w ∈ Rn with w⊤w ≤ γ.

Next, the statement regarding only if is shown by contradiction. Suppose that
∄κ ∈ (0, 1] such that (Cond.1 ) holds. Then, ∃x ∈ Rn, with x⊤Px ≤ 1, such that
x⊤(A+BK)⊤P (A+BK)x > 1. Accordingly, one has

(
(A+BK)x+ w

)⊤
P
(
(A+BK)x+ w

)
> 1,

with w = 0n, which results in a contradiction to the fact that (6.2.3) holds for ∀w ∈
∆(γ). Therefore, one can see that there exists κ ∈ (0, 1] such that (Cond.1 ) holds
if (6.2.3) holds ∀w ∈ ∆(γ), and ∀x ∈ Rn, with x⊤Px ≤ 1. In the following discussion,
such κ is denoted by κ′. Similarly, assuming that ∄κ ∈ (0, 1] such that (Cond.2 )
holds. This indicates that ∀κ ∈ (0, 1], ∃y ∈ Rn, with y⊤Py ≤ κ, or ∃d̃ ∈ ∆(γ) such
that (y+ d̃)⊤P (y+ d̃) > 1. Let’s consider κ = κ′ and one can let y = (A+BK)x with
x⊤Px ≤ 1 without loss of generality. Then, ∃x ∈ Rn, with x⊤Px ≤ 1, or ∃w ∈ ∆(γ),

such that
(
(A + BK)x + w

)⊤
P
(
(A + BK)x + w

)
> 1, which is contradictory to

the fact that (6.2.3) holds ∀w ∈ ∆(γ), and ∀x ∈ Rn with x⊤Px ≤ 1. Hence, there
exists κ ∈ (0, 1] s.t. (Cond.2 ) holds, if (6.2.3) holds ∀w ∈ ∆(γ), and ∀x ∈ Rn, with
x⊤Px ≤ 1, which completes the proof. ■

Proof of Theorem 6.2.6: First, it is shown that given a κ ∈ (0, 1], (Cond.1 ) in
Theorem 6.2.4 holds if and only if (6.2.5) holds. By applying S-procedure [35, Section
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B.2], (Cond.1 ) in Theorem 6.2.4 holds if and only if there exists λ ∈ R≥0 s.t.[
(A+BK)⊤P (A+BK) 0

0 −κ

]
⪯ λ

[
P 0
0 −1

]
, (6.6.1)

holds. Accordingly, (6.6.1) holds if and only if (A + BK)⊤P (A + BK) ⪯ λP with
λ ≤ κ. Hence, (6.6.1) holds if and only if (6.2.5) holds according to [211, Theorem
1.12], with Q = P−1.

Next, it is proved that (Cond.2 ) in Theorem 6.2.4 holds if and only if (6.2.6) holds.
First, considering the geometric properties of ellipsoids x⊤Px ≤ 1 and x⊤Px ≤ κ, the
shortest distance between both ellipsoids is

√
λmin −

√
κλmin, with λmin the minimal

eigenvalue of P−1. Hence, to ensure (Cond.2 ), one needs to guarantee that√
λmin −

√
κλmin ≥ √

γ. (6.6.2)

Accordingly,

� If κ ̸= 1, (6.6.2) requires that λmin ≥ γ
(1−

√
κ)2

, which holds if and only if P−1 ⪰
γ

(1−
√
κ)2

I;

� If κ = 1, (6.6.2) holds if and only if γ = 0, for any λmin ≥ 0. Hence, (6.6.2) holds
if and only if P−1 ⪰ 0.

Therefore, (Cond.2 ) in Theorem 6.2.4 holds if and only if (6.2.6) holds.
Finally, it is shown that (6.2.7) and (6.2.8) are respecting the safety set as in (6.1.6),

and input constraints as in (6.1.1), respectively. According to [169, Lemma 4.1], (6.2.1)
holds for S as in (6.1.6) if and only if (6.2.7) holds. Similarly, considering the RSI-based
controller as in (6.2.2), (6.1.1) requires that bjKx ≤ 1 should hold for all j = 1, . . . , j.
This can be enforced by (6.2.8) according to [169, Lemma 4.1] and [211, Theorem 1.12],
which completes the proof. ■
Proof of Theorem 6.3.2: One can verify that (6.3.2), (6.3.4), and (6.3.5), are

the same as (6.2.6), (6.2.7), and (6.2.8), respectively. Therefore, the proof can be
completed by showing that (6.3.3), with ϵi> 0, ∀i∈ [1, N ], implies (6.2.5). According
to [211, Theorem 1.12], (6.2.5) holds if and only if (A+BK)Q(A+BK)⊤ ⪯ κQ, when
considering the Schur complement of κQ of the matrix on the left hand side of (6.2.5),
with K = K̄Q−1. Therefore, (6.2.5) holds if and only if

[
I A B

] κQ 0 0
0 −Q −Z̄⊤

0 −Z̄ −KQK⊤

 I
A⊤

B⊤

 ⪰ 0, (6.6.3)

holds, with Z̄ = KQ. Next, it is shown that (6.3.3), with ϵi > 0, ∀i ∈ [1, N ], im-
plies (6.6.3) holds for any A∈Rn×n and B∈Rn×m such as X1,N = AX0,N +BU0,N +D
holds with D = [w(0) . . . w(k) . . . w(N − 1)] and w(k)⊤w(k) ≤ γ, ∀k ∈ [0, N − 1], indi-
cating that (6.6.3) holds for the unknown A and B as in (2.3.2). Considering (2.3.2),
since w(k)w(k)⊤⪯ γI, ∀w(k) ∈ ∆(γ), one has[

I A B
]
N̄p

[
γI 0
0 −I

]
N̄⊤

p

[
I A B

]⊤ ⪰ 0, (6.6.4)
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∀p ∈ [1, N ], with

N̄p :=

I X1,N (p)
0 −X0,N (p)
0 −U0,N (p)

 . (6.6.5)

Considering [211, Theorem 1.12], if ∃ϵi > 0, ∀i ∈ [1, N ] such that (6.3.3) holds, then
one gets κQ 0 0

0 −Q −Z̄⊤

0 −Z̄ 0

−
0
0
Z̄

Q−1

0
0
Z̄

⊤

−
N∑

p=1

ϵpN̄p

[
γI 0
0 −1

]
N̄⊤

p ⪰0, (6.6.6)

with N̄p as in (6.6.5). According to [26, Lemma 2], (6.6.6) implies that (6.6.3) holds
for all (6.6.4) with p ∈ [1, N ], which completes the proof. ■
Proof of Corollary 6.3.4: Consider the system as in (2.3.2), X1,N and X0,N ,

and U0,N as in (6.1.3) to (6.1.5), respectively. Given any disturbance sequence D :=
[d1 d2 . . . dN ] ∈ (∆(γ))N , with (∆(γ))N being the Cartesian product of N times of
the set ∆(γ), it is defined X̃D := (X1,N − D)⊤, and Y0,N :=

[
X⊤

0,N U⊤
0,N

]
. Then, by

definition of the set F as in (6.3.7), one has

F =
⋃

D∈(∆(γ))N

W(D)⊤, (6.6.7)

with W(D) := {W ∈ R(n+m)×n|X̃D = Y0,NW,D ∈ (∆(γ))N}.
Firstly, the statement regarding if is proved. To this end, one should first show that

the set W(D) is either unbounded or empty, when (6.3.8) holds. Consider the equation
X̃D = Y0,NW , in which W ∈ R(n+m)×n is an unknown matrix to be determined (note
that there may not be suitable W , the discussion comes later). According to [177,
Section 3.3], for any column W (i), i ∈ [1, n], if there exists

iα :=
[
iα1

iα2 . . . iαn+m

]
∈ Rn+m, (6.6.8)

such that

X̃D(i) =
n+m∑
a=1

iαaY0,N (a) (6.6.9)

holds, then one has W (i) ∈ {iα+w | w ∈ ker(Y0,N )}, with ker(Y0,N ) the kernel of Y0,N ;
otherwise, one has W (i) ∈ ∅. Therefore, one has

W(D) =
n∏

i=1

{iα+ w | w ∈ ker(Y0,N )} ≠ ∅, (6.6.10)

when for all i ∈ [1, n], there exists iα as in (6.6.8) such that (6.6.9) holds; and W(D) = ∅
otherwise. Note that ker(Y0,N ) is an r-dimension subspace of Rn+m, with r = n+m−
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rank(Y0,N ) according to [177, Section 3.5]. If (6.3.8) holds, then one has r > 0. In this
case, the set {iα + w | w ∈ ker(Y0,N )} is unbounded for any iα ∈ Rn+m due to the
unboundedness of ker(Y0,N ). As a result, the set W(D) is either unbounded or empty
when (6.3.8) holds. Moreover, since X0,N , X1,N , and U0,N are data collected from the
system as in (2.3.2), one always has [A B] ∈ W(D) for some D ∈ ∆(γ))N , with A and B
the unknown matrices in (2.3.2). In other words, there always exists D ∈ ∆(γ))N such
that W(D) is not empty (and is therefore unbounded). Hence, it is then straightforward
that the right-hand side of (6.6.7) is unbounded, so that statement regarding if holds.
Next, the statement regarding only if is also proved by showing F is bounded when

rank
([
X0,N

U0,N

])
= n+m. (6.6.11)

When (6.6.11) holds, then ker(Y0,N ) only contains the origin. As a result, the set
{iα + w | w ∈ ker(Y0,N )} is either a singleton set that only contains iα, or an empty
set, so that the set W(D) is either a singleton set or an empty empty set, when (6.6.11)
holds. Then, the boundedness the right-hand side of (6.6.7) follows by the boundedness
of the set ∆(γ))N , which completes the proof. ■
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7.1 Conclusions

In the past decades, many high-performance, but unverified controllers, particularly
those developed using artificial intelligence (AI) techniques, are expected to be deployed
in modern Cyber-Physical Systems (CPS) for complex control missions. Nevertheless,
applying unverified controllers in CPS makes it very challenging to ensure the overall
safety of the systems. Meanwhile, it is of vital importance to provide safety guarantees
for CPS since any malfunctions in these systems may lead to catastrophic consequences.
The main contribution of this thesis is the design of a correct-by-construction controller
architecture, namely Safe-visor architecture, for sandboxing those unverified controllers
deployed in CPS so that a system-level safety guarantee can be provided. In particular,
several methodologies based on formal methods have been developed and deployed for
designing such an architecture, including abstraction-based approaches, abstraction-
free approaches, and data-driven approaches. The results proposed in previous chapters
of this thesis are reviewed here.
Chapters 3 and 4 provide abstraction-based methodologies to design the Safe-visor

architecture, which enable the use of unverified controllers while enforcing complex
logical safety properties expressed by deterministic finite automata (DFA). Concretely,
in Chapter 3, new abstraction-based controller synthesis schemes were proposed for
discrete-time non-cooperative stochastic games with continuous state and input sets. In
this context, a finite abstraction should first be constructed over the original stochastic
game by discretizing the original state and input sets. Then, an approximate probabilis-
tic relation should be established between the original game and the finite abstraction
to quantify their similarity. Here, I proposed an algorithmic procedure for establishing
such a relation over a class of nonlinear stochastic games with slope restrictions on their
nonlinearity. Then, new Bellman operators were proposed for synthesizing controllers
over the finite abstractions obtained in the previous step with respect to the problems
of robust satisfaction and worst-case violation. These controllers are finally refined
back over the original stochastic games by leveraging an interface function associated
with the approximate probabilistic relation so that formal probabilistic guarantees for
satisfying the desired properties can be provided.
In Chapter 4, the abstraction-based controller synthesis techniques proposed in Chap-

ter 3 were used for designing the safety advisor. On top of the abstraction-based design
of the safety advisor, the design of a history-based supervisor was proposed over general
Markov decision processes (gMDP) and non-cooperative stochastic games (gDTSGs).
More precisely, by leveraging a history state-run of the system at runtime, the history-
based supervisor estimates the risk of violating the desired safety properties presuming
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that the unverified controllers are accepted. Then, given the maximal tolerable proba-
bility of violating the desired safety specifications, the history-based supervisor would
reject the unverified controller when: 1) the approximate probabilistic relation be-
tween the original system and its finite abstraction can not be maintained; 2) the risk
for violating the safety specifications is higher than the maximal tolerable violation
probability. The abstraction-based methodologies for constructing the Safe-visor ar-
chitecture were validated through simulation over several case studies and experiments
on a physical test-bed for quadrotor helicopters. Both simulation and experimental
results showed that the formal probabilistic guarantees for satisfying the desired safety
properties were well respected.

While abstraction-based approaches proposed in Chapters 3 and 4 can be applied
to nonlinear systems, such methodologies require constructing finite abstractions over
the original systems by discretizing the original continuous state and input sets. Such
a discretization process often encounters so-called the curse of dimensionality, leading
to exponential growth in computational complexity with the dimension of the system.
In Chapter 5, an abstraction-free construction scheme was proposed for designing the
Safe-visor architecture over uncertain linear systems, which does not require building
finite abstractions. Specifically, ω-regular properties were deployed to model the desired
specifications. Having deterministic Streett automata (DSA) representing the desired
ω-regular properties, a hybrid system between the dynamical system and the DSA
should first be constructed. Then, the notion of so-called hybrid controlled invariant
(HCI) sets over the hybrid system was proposed to construct the Safe-visor architecture.
Here, set-based approaches over hybrid sets were proposed to compute the maximal HCI
sets leveraging a new iterative scheme. To ensure getting valid HCI sets within a finite
number of iterations, two alternative iterative schemes were introduced to compute
under-approximations of the maximal HCI sets. Additionally, the worst-case time and
space complexities of the proposed abstraction-free set-based approaches were analyzed.
To show the effectiveness of the proposed set-based approaches, they were applied to
several case studies and compared with various existing tools for synthesizing controllers
enforcing ω-regular properties.

Note that both abstraction-based (Chapters 3 and 4) and abstraction-free (Chap-
ter 5) approaches require knowledge of the system models. However, in some cases,
system models may be difficult to obtain, or the obtained models are too complex to
be of any use. In Chapter 6, focusing on safety invariance properties, a direct data-
driven approach was proposed for synthesizing safety controllers over uncertain linear
systems with unknown system dynamics. These controllers can be used as safety advi-
sors in the Safe-visor architecture. Using the direct data-driven scheme, the controllers
can directly be constructed based on a single trajectory collected from the underlying
unknown system without an intermediate phase for identifying the system model. Con-
cretely, the notion of γ-robust safety invariant sets was first proposed for synthesizing
safety controllers of interest. Then, a semi-definite programming (SDP) problem was
provided to compute the γ-robust control invariant set and its associated safety con-
troller directly based on offline collected data. Here, the SDP contains several linear
matrix inequalities constraints, and the number of constraints grows linearly with the
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dimension of the state and input sets so that it can be solved efficiently using existing
SDP solvers. Finally, the relations between the conditions of persistency of excitation
and the proposed direct data-driven approaches were also investigated.

7.2 Future Directions

In the last part of this thesis, I propose several potential directions for extending the
technical materials in this thesis. Exploring these directions are beneficial for improving
the current construction schemes of the Safe-visor architecture, making it possible to
construct such an architecture for large-scale, multi-agent autonomous systems with
more complex dynamics. I believe that this architecture will be particularly meaningful
in the golden age of AI in which AI techniques have made remarkable achievments in
many domains, while safety concerns are still a stumbling block for their applications
in safety-critical scenarios.

Construction scheme for systems with more general dynamics. In this thesis, several
approaches have been proposed to construct the Safe-visor architecture for 1) nonlinear
systems with slope restriction on the nonlinearity, and 2) uncertain linear systems.
It is meaningful to further consider systems being in a more general form so that
the Safe-visor architecture can be constructed for CPS with more complex system
dynamics. Regarding different approaches proposed in this thesis, their corresponding
open problems for such extensions are concluded here.

Abstraction-based approach. The Bellman operators proposed in Section 3.3
for synthesizing controllers do not have any restriction on the form of the system
dynamics so that they can readily be applied to the general setting of gDTSGs (cf.
Remark 3.2.1). Nevertheless, formal safety guarantees are provided on top of an (ϵ,δ)-
approximate probabilistic relation between the original game and its finite abstraction.
Meanwhile, the results proposed in Section 3.2 for systematically establishing such
a relation require the gDTSGs to be in the form of (3.2.1). Therefore, the lack of a
systematic framework for establishing (ϵ,δ)-approximate probabilistic relations for more
general gDTSGs restricts the application of the current abstraction-based construction
scheme to those gDTSGs with more complex dynamics.

Set-based approach. To guarantee the convergence of the set-based iterative
scheme proposed in this thesis, one only needs to assume the discrete-time dynam-
ics f to be continuous (cf. proof of Lemma 5.7.1). In this thesis, the reasons for
restricting f to be in linear form as in (2.3.2) are twofold:

1. The proposed methodologies for computing the approximations of the maximal
HCI sets require the uncertain system to be linear and controllable, as stated in
Assumption 5.3.1.

2. For the iterative schemes proposed in Definitions 5.2.9, 5.3.5, and 5.3.9, one
needs to compute the exact one-step-backward projection for a given continuous
set. These computations can be done by leveraging existing toolboxes including
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MPT [78] and BENSOLVE [132], if the system of interest is linear, and the set is a
P-collection (cf. Definition 5.1.6). For nonlinear systems, one can only compute
approximations of these projections with existing results; see [7] and reference
herein. In fact, computing the exact one-step-backward projection with respect
to arbitrary continuous nonlinear dynamics may not even be feasible in general.

Accordingly, to extend the current set-based approaches to nonlinear systems, one may
consider: 1) exploiting the notion of controllability for nonlinear systems (e.g. [34]) to
compute the approximations of the maximal HCI set; 2) extending the current iterative
schemes by considering the case where only approximations of the one-step-backward
projection are available.

Data-driven approach. As a key insight, by leveraging the direct data-driven
approaches proposed in this thesis, a common γ-RSI set is computed for the set of linear
systems as in Corollary 6.3.4 that could have generated the data in hand. Therefore,
the obtained γ-RSI set and its associated controller can be applied to the underlying
unknown system. Similarly, to further develop the current results to cope with more
general dynamics, one needs to find a proper way to describe the set of nonlinear
systems that can explain the collected data. Additionally, one also needs to derive
new conditions for computing a common controlled invariant set for nonlinear systems
based on data.

It is also worthwhile to deviate from the idea mentioned above and raise a question:
do we have to compute a common controlled invariant set for all systems that explain
the given data while we only need a controller that works for one of these systems?
In some recent results, e.g., [190], direct data-driven approaches have been proposed
while computing a common invariant set for a set of systems is not required. Although
additional assumptions over the system dynamics are the prices, the idea proposed in
these works may be helpful for deriving less restrictive computation methodologies for
constructing the Safe-visor architecture using data.

Compositional synthesis of Safe-visor architecture. When using the methodologies
proposed in this thesis to construct the Safe-visor architecture, the computational cost
would rise as the dimension of the systems increases, particularly for those abstraction-
based approaches proposed in Chapter 3 and 4. In practice, some CPS, such as smart
power grids, are essentially interconnected systems containing several subsystems with
independent control inputs in each subsystem. Accordingly, controllers for these CPS
are typically implemented in a decentralized or distributed manner (instead of a central-
ized manner) to reduce the implementation cost and increase the robustness of the whole
system with respect to failure in subsystems. In the context of formal synthesis over in-
terconnected systems, several compositional synthesis approaches have been proposed,
including abstraction-based approaches leveraging dissipativity theory [208, 122, 117]
and small gain theory [180, 210], as well as abstraction-free approaches using set-based
approaches [129, 59] and controller barrier functions [10, 9, 86]. Similar ideas may also
be applied to the compositional construction of the Safe-visor architecture. Concretely,
it would be worthwhile to investigate how to achieve a formal safety guarantee for the
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whole system by constructing the Safe-visor architecture locally for each subsystem
instead of building a Safe-visor architecture for the whole system monolithically.

Computational-aware and hardware-aware construction scheme. In this thesis, math-
ematically rigorous results are proposed to construct the Safe-visor architecture and
formal safety guarantees are provided accordingly. In practice, however, computational
issues and hardware constraints also need to be handled carefully to maintain these
guarantees. Here, several aspects in this context that are worth further investigation
are discussed here.

Delay and deadline missing. The thesis implicitly assumes that all the control
inputs can be computed and executed in time. However, implementing control software
on a digital computer may suffer from digital implementation delay [168, Section 3.3]
and deadline missing [137]. To cope with these timing issues, some recent results [152,
105, 192] also take those timing failures and deadline missing into consideration when
synthesizing controllers. These results may be leveraged for improving the current
construction scheme of Safe-visor architecture so that formal safety guarantees that
are robust to timing failures can be provided.

Hardware constraints. When implementing controllers on a hardware, in particu-
lar on an embedded system, there would only be limited memory that can be allocated
to the control software. This limitation may restrict the use of abstraction-based Safe-
visor architecture proposed in Chapter 3 and 4. Concretely, the history-based supervi-
sors require having access to T̂ as in (3.2.14) and V ∗,H−k−1 as (3.3.22) (resp. V̄ ∗

H−k−1

as in (3.3.9)) at runtime, which are essentially look-up tables obtained offline when
synthesizing the safety advisors. In case that these look-up tables are too large for the
given hardware, one of the possible solutions could be approximating these tables using
DNNs. This idea has been applied to compress a large numerical table that is used in
Airbone Collision Avoidance System X [91], and a significant size reduction of these
tables was achieved. A similar idea could be applied here while new challenges need to
be addressed in the context of correct-by-construction synthesis, for example,

1. How to provide a provable error bound for the approximation of these tables?
2. How to systematically improve the DNNs if the approximation error is too large?

Numerical error in computation. The safety guarantees provided in this thesis
are valid given the computations of all components in the architecture (for instance, the
HCI sets as in Chapter 5 and the γ-RSI sets as in Chapter 6) are mathematically cor-
rect. However, their computations require several numerical optimization algorithms,
with which numerical errors may occur. Moreover, even if accurate parameters for these
components can be obtained, numerical and rounding errors may still appear at either
compile- or runtime due to the limitation of the hardware. In fact, these issues have
started receiving attention in a few recent works in the communities of formal methods
and Cyber-Physical Systems, see, e.g., [197]. To maintain the formal safety guaran-
tees provided by the Safe-visor architecture over physical systems, it is worthwhile to
investigate how those possible numerical errors affect the guarantees provided by the
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Safe-visor architecture and how to mitigate those negative effects. Moreover, having a
deeper understanding about these effects would also be helpful for investigating how to
make a proper compromise between the amount of allocated computational resources
and the level of safety guarantee that can be achieved.
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