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Abstract
The sample paths of white noise are proved to be elements of certain Besov spaces 
with dominating mixed smoothness. Unlike in isotropic spaces, here the regularity 
does not get worse with increasing space dimension. Consequently, white noise is 
actually much smoother than the known sharp regularity results in isotropic spaces 
suggest. An application of our techniques yields new results for the regularity of 
solutions of Poisson and heat equation on the half space with boundary noise. The 
main novelty is the flexible treatment of the interplay between the singularity at the 
boundary and the smoothness in tangential, normal and time direction.

Keywords  White noise · Besov spaces · Dominating mixed smoothness · 
Regularity · Boundary noise

Mathematics Subject Classification  60G17 · 60G15 · 60G51 · 42B35 · 60H30

1  Introduction

There are many works studying the regularity of different kinds of stochastic noise. 
Oftentimes, regularity results are formulated in terms of Besov spaces. Classical 
results on the Hölder regularity of sample paths of a Brownian motion have been 
improved using Besov spaces and Besov–Orlicz spaces in [8, 9]. Similar results have 
been obtained for Feller processes in [31–33], for a summary see [6, Section 5.5], 
and for Brownian motions with values in Banach spaces in [21]. Closely related 
to these works are characterizations of the Besov regularity of white noise. For a 
Gaussian white noise on the torus, such characterizations are given in [45]. Lévy 
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white noise on the torus was studied in [15]. Global regularity results for Gaussian 
and Lévy white noise are given in [4, 14].

Most of these works have in common that the regularity results are shown to be 
sharp up to possibly some minor improvements in some of the references. For an 
n-dimensional Gaussian white noise, it is shown for example, that it has a smooth-
ness of exactly or almost − n

2
 but not more than − n

2
 , depending on the scale of iso-

tropic function spaces. In particular, regularity seems to get worse with increasing 
dimension. The aim of this paper is to show that these results can be improved for 
Gaussian as well as Lévy white noise if one works with spaces of dominating mixed 
smoothness. Roughly speaking, the following results states that an n-dimensional 
Gaussian white noise has local smoothness − 1

2
− � separately in each direction, 

while previous results state that it has regularity − n

2
 simultaneously in all directions.

Theorem 1.1  Let 1 < p < ∞ and 𝜀, T > 0 . Then the restriction of an n-dimensional 
Gaussian white noise on ℝn to [0, T]n has a modification � such that

In this theorem, S
(−

1

2
−�,…,−

1

2
−�)

p,p B([0, T]n) denotes a Besov space with dominating 
mixed smoothness. It can be identified with the iterated Besov space

and with the tensor product

which is defined as the closure of the algebraic tensor product with respect to the 
so-called p-nuclear tensor norm. We will explain these identifications later in this 
paper.

If one component is viewed as time, then a white noise is also sometimes called 
space-time white noise. In this case, it can also be insightful the split space and time 
in the description of the smoothness. This way, we obtain that a Gaussian space-
time white noise has smoothness − 1

2
 in time and − n−1

2
− � in (the n − 1-dimensional) 

space. More precisely, we have the following result:

Theorem  1.2  Let 1 < p,�p < ∞ and 𝜀 > 0 . Then an n-dimensional Gaussian white 
noise on ℝn has a modification � such that

ℙ

⎛
⎜⎜⎝
� ∈ S

�
−
1

2
−�,…,−

1

2
−�

�

p,p B([0, T]n)

⎞
⎟⎟⎠
= 1.

B
−
1

2
−�

p,p

(
[0, T]; B

−
1

2
−�

p,p

(
[0, T];…B

−
1

2
−�

p,p ([0, T])…
))

B
−
1

2
−𝜀

p,p ([0, T])⊗𝛼p
⋯⊗𝛼p

B
−
1

2
−𝜀

p,p ([0, T]),

ℙ

�
� ∈ B

−1∕2

p̃,∞

�
[0, T];B

−
n−1

2
−�

p,p (ℝn−1, ⟨⋅⟩1−n−�)�
�

= 1.
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Here, ⟨�⟩1−n−� ∶= (1 + ���2) 1−n−�

2  is a weight function. The interval [0,  T] corre-
sponds to the time direction, while ℝn−1 corresponds to the space direction.

Note that compared to Theorem 1.1 we can include growth bounds in space this 
time. Theorem 1.2 can be useful if one studies parabolic partial differential equations 
driven by noise. We will illustrate this by deriving regularity results for the heat equa-
tion with Dirichlet and Neumann boundary noise. The main tool in previous works 
such as [1, 7, 10, 36] for analyzing solutions of equations with boundary noise were 
power weights. These weights measure the distance to the boundary and are well suited 
to describe the singularities of solutions at the boundary. Our approach, however, adds 
more flexibility to the description of these singularities, as it allows one to treat regular-
ity in time, tangential and normal directions separately. It will also enable us to analyze 
the behavior of solutions at the boundary in spaces of higher regularity.

This paper is structured as follows:

•	 In Sect. 2, we introduce weighted Besov spaces with dominating mixed smooth-
ness, Lévy white noise and vector-valued Lévy processes and cite the most 
important results we need throughout the paper. While most of the results are 
well-known, it seems like the description of the dual spaces of Besov spaces 
with dominating mixed smoothness on the domain [0, T]n given in Proposition 
2.15 has not been available in the literature before.

•	 Section 3 is the main part of this paper. Therein, we derive regularity results for 
Lévy white noise in spaces with dominating mixed smoothness.

•	 As an application of some of our results, we derive new regularity properties of 
the solutions of Poisson and heat equation with Dirichlet and Neumann boundary 
noise in Sect. 4.

1.1 � Notations and assumptions

We write ℕ = {1, 2,…} for the natural numbers starting from 1 and ℕ0 = {0, 1, 2,…} 
for the natural numbers starting from 0. Throughout the paper, we take n ∈ ℕ and 
write

If n = 1 , we also just write ℝ+ ∶= ℝ1
+
 . Given a real number x ∈ ℝ , we write

The Bessel potential will be denoted by

Given a Banach space E, we will write E′ for its topological dual. By D(ℝn;E) , 
S(ℝn;E) and S �(ℝn;E) , we denote the spaces of E-valued test functions, E-val-
ued Schwartz functions and E-valued tempered distributions, respectively. If 

ℝ
n
+
∶= {x = (x1,… , xn) ∈ ℝ

n ∶ xn > 0}.

x+ ∶= [x]+ ∶= max{0, x}.

⟨x⟩ ∶= (1 + �x�2)1∕2 (x ∈ ℝ
n).
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E ∈ {ℝ,ℂ} , then we will omit it in the notation. On S(ℝn;E) , we define the Fourier 
transform

As usual, we extend it to S �(ℝn; E) by [Fu](f ) ∶= u(Ff ) for u ∈ S
�(ℝn; E) and 

f ∈ S(ℝn) . Given two topological spaces X, Y, we write X ↪ Y  if there is a canoni-
cal continuous embedding. We write X

d

↪Y  if the range of this embedding is dense 
in Y. If E0 and E1 are two locally convex spaces, then the spaces of continuous linear 
operators from E0 to E1 will be denoted by B(E0,E1) . If E0 = E1 , then we also write 
B(E0).

Throughout the paper, we will assume that (Ω,F,ℙ) is a complete probability 
space.

2 � Preliminaries

2.1 � Weights

A weight w on ℝn is a measurable function w ∶ ℝn
→ [0,∞] which takes values in 

(0,∞) almost everywhere with respect to the Lebesgue measure. There are several 
interesting classes of weights one can consider.

Definition 2.1  Let w ∶ ℝn
→ [0,∞] be a weight. 

(a)	 We say that w is an admissible weight if w ∈ C∞(ℝn;(0,∞)) with the following 
properties: 

	 (i)	 For all � ∈ ℕ
n
0
 , there is a constant C� such that 

	 (ii)	 There are two constants C > 0 and s ≥ 0 such that 

	    We write W(ℝn) for the set of all admissible weights on ℝn.
(b)	 Let 1 < p < ∞ . Then, w is called Ap weight if 

(Ff )(�) ∶=
1

(2�)n∕2 ∫ℝn

e−ix� f (x) dx (f ∈ S(ℝn; E)).

(1)|D�w(x)| ≤ C�w(x) for all x ∈ ℝ
n.

(2)0 < w(x) ≤ Cw(y)⟨x − y⟩s for all x, y ∈ ℝ
n.

[w]Ap
= sup

Q cube in ℝn

(
1

Lebn(Q) ∫Q

w(x) dx

)(
1

Lebn(Q) ∫Q

w(x)
−

1

p−1 dx

)p−1

< ∞.
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 The set of all Ap weights on ℝn will be denoted by Ap(ℝ
n) . Moreover, we 

write A∞(ℝ
n) ∶=

⋃
1<p<∞ Ap(ℝ

n) . Such weights are also called Muckenhoupt 
weights.

(c)	 Let 1 < p < ∞ . Then, w is called Aloc
p

 weight if 

 The set of all Aloc
p

 weights on ℝn will be denoted by Aloc
p
(ℝn) . Moreover, we 

write Aloc
∞
(ℝn) ∶=

⋃
1<p<∞ Aloc

p
(ℝn) . Such weights are also called local Muck-

enhoupt weights.

Remark 2.2  The class of local Muckenhoupt weights Aloc
∞
(ℝn) was introduced 

in [30] with the aim of unifying Littlewood–Paley theories for function spaces 
with admissible weights and Muckenhoupt weights. Accordingly, we have that 
W(ℝn) ∪ A∞(ℝ

n) ⊂ Aloc
∞
(ℝn).

Example  In this paper, we will mainly work with weights of the form

for some � ∈ ℝ . It will be important for us to which class of weights this function 
belongs for different choices of � ∈ ℝ . 

(a)	 For all � ∈ ℝ , we have that ⟨ ⋅ ⟩� ∈ W(ℝn) , i.e. ⟨ ⋅ ⟩� is an admissible weight. This 
can either be computed directly or one can use the following abstract arguments 
which in turn are based on simple direct computations: 

	   For (1) one can recall that ⟨ ⋅ ⟩� is the standard example of a so-called Hörman-
der symbol of order � , see for example [23, Chapter 2, §1, Example 2]. Thus, we 
even have 

 which trivially implies (1). In (2) one can take C = 2|�| and s = |�| by Peetre’s 
inequality, see for example [29, Proposition 3.3.31].

(b)	 It holds that ⟨ ⋅ ⟩� ∈ Ap(ℝ
n) if and only if −n < 𝜌 < (p − 1)n . Again, one can 

directly verify this for example by a similar computation as in [17, Example 
9.1.7]. We also refer to [18, Example 1.3] where this has been observed for the 
equivalent weight 

(c)	 It follows directly from part (b) that ⟨ ⋅ ⟩� ∈ A∞(ℝ
n) if and only if −n < 𝜌.

Aloc
p
= sup

Q cube in ℝn, Lebn(Q)≤1

(
1

Lebn(Q) �Q

w(x) dx

)(
1

Lebn(Q) �Q

w(x)
−

1

p−1 dx

)p−1

< ∞.

⟨ ⋅ ⟩� ∶ ℝ
n
→ ℝ, � ↦ (1 + ���2)�∕2

�D�⟨�⟩�� ≤ C�,�⟨�⟩�−���

w0,�(�) ∶=

{
1 if |�| ≤ 1,

|�|� if |�| ≥ 1.
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Definition 2.3  Let E be a Banach space, w ∶ ℝn
→ [0,∞] a weight and 1 ≤ p < ∞ . 

Then, the weighted Lebesgue–Bochner space Lp(ℝn,w; E) is defined as the space of 
all strongly measurable functions f ∶ ℝn

→ E such that

with the usual modification for p = ∞ . As usual, functions which coincide on sets of 
measure 0 are considered as equal.

Remark 2.4  For this work, it is important to note that there are different conventions 
in the literature concerning the definition of weighted Lebesgue–Bochner spaces. 
Oftentimes, the expression ‖f‖Lp(ℝn,w; E) is defined by ‖wf‖Lp(ℝn; E) , whereas in our 
case, it is defined by ‖w1∕pf‖Lp(ℝn; E) . Unfortunately, we will have to refer to some 
articles which use the one and to other articles which use the other convention. 
Thus, we will explicitly mention if a certain reference does not use the convention of 
Definition 2.3.

2.2 � Weighted function spaces with dominating mixed smoothness

As general references for the theory of spaces with dominating mixed smooth-
ness, we would like to mention [34, 43, 46]. These spaces are mainly used in 
approximation theory. They can also be used to study boundary value problems 
with rough boundary data, see [20]. Our aim here is to derive sharper regularity 
results for the sample paths of white noise.

In this section, let l ∈ ℕ and d = (d1,… , dl) ∈ ℕl with d1 +⋯ + dl = n . We 
write ℝn

d
 if we split ℝn according to d , i.e.

Moreover, if we have such a splitting then for x ∈ ℝ
n
d
 we write x = (x1,d,… , xl,d) 

with xj,d ∈ ℝ
dj , j = 1,… , l.

Definition 2.5 

(a)	 Let �0 ∈ D(ℝn) be a smooth function with compact support such that 0 ≤ �0 ≤ 1 , 

 For � ∈ ℝn and k ∈ ℕ let further 

‖f‖Lp(ℝn,w; E) ∶=

�
∫
ℝn

‖f (x)‖p
E
w(x) dx

�1∕p

< ∞

ℝ
n
d
∶= ℝ

d1 ×⋯ ×ℝ
dl .

�0(�) = 1 if |�| ≤ 1, �0(�) = 0 if |�| ≥ 3∕2.

�(�) ∶= �0(�) − �0(2�),

�k(�) ∶= �(2−k�).
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 We call such a sequence (�k)k∈ℕ0
 smooth dyadic resolution of unity and write 

Φ(ℝn) for the space of all such sequences.
(b)	 Let E be a Banach space. To a smooth dyadic resolution of unity 

(�k)k∈ℕ0
∈ Φ(ℝn) , we associate the sequence of operators (Sk)k∈ℕ0

 on the space 
of tempered distributions S �(ℝn; E) by means of 

 The sequence (Skf )k∈ℕ0
 is called dyadic decomposition of f.

(c)	 For j ∈ {1,… , l} let (�(j)

kj
)kj∈ℕ0

∈ Φ(ℝdj ) be a smooth dyadic resolution of unity 
on ℝdj . Then we define 

 We write Φ(ℝn
d
) for all such (�

k
)
k∈ℕl

0

.

Definition 2.6  Let w ∶ ℝn
→ [0,∞] be a weight, E a Banach space, 

(�
k
)
k∈ℕl

0

∈ Φ(ℝn
d
) , s = (s1,… , sl) ∈ ℝl and p, q ∈ [1,∞] . 

(a)	 The Besov space with dominating mixed smoothness Ss
p,q
B(ℝn

d
,w; E) is defined 

as the space of all tempered distributions f ∈ S
�(ℝn

d
; E) such that 

 with the usual modification for q = ∞.
(b)	 The respective space on some domain Od ⊂ ℝ

n
d
 is defined by restriction: 

 and 

(c)	 The space Ss
p,q,0

B(Od,w; E) is defined as the closure of the space S0(O) of 
Schwartz functions with support in Od  in the space Ss

p,q
B(ℝn

d
,w; E).

Remark 2.7 

(a)	 If l = 1 , then we obtain the usual definition of isotropic weighted vector-valued 
Besov spaces. In this case, following the usual convention we write Bs

p,q
 and Bs

p,q,0
 

instead of Ss
p,q
B and Ss

p,q,0
B , respectively.

(b)	 It is intentional that in the definition of Ss
p,q,0

B(Od,w; E) we take the closure in 
the space Ss

p,q
B(ℝn

d
,w; E) and not in Ss

p,q
B(Od,w; E) . Even in the isotropic case, 

Skf ∶= F
−1�kFf (f ∈ S

�(ℝn; E)).

�
k
∶=

l⨂
j=1

�
(j)

kj
, S

k
= F

−1�
k
F (k = (k1,… , kl) ∈ ℕ

l
0
).

‖f‖Ss
p,q
B(ℝn

d
,w; E) ∶=

� �
k∈ℕl

0

2qs⋅k‖S
k
f‖q

Lp(ℝ
n
d
,w; E)

�1∕q

< ∞

Ss
p,q
B(Od,w; E) ∶= {f |Od

∶ f ∈ Ss
p,q
B(ℝn

d
,w; E)}

‖f‖Ss
p,q
B(Od ,w; E)

∶= inf
g∈Ss

p,q
B(ℝn

d
,w; E), g�Od

=f
‖g‖Ss

p,q
B(ℝn

d
,w; E).
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there is a subtle difference between the two definitions for s − 1

p
∈ ℕ0 . We refer 

for example to [39, Section 4.3.2], where this is carefully discussed for isotropic 
spaces. Therein, the spaces B̃s

p,q
 correspond to the definition with the closure in 

Bs
p,q
(ℝn,w; E) , while B̊s

p,q
 corresponds to the definition with the closure in 

Bs
p,q
(O,w; E).

(c)	 There are special representations if p = q < ∞ . For example, it was shown in 
[37] that for l = n , we have the tensor product representation 

 where the tensor product is the closure of the unique tensor product on tem-
pered distributions in the sense of [37, Lemma B.3] with respect to the 
p-nuclear tensor norm �p , see [37, Appendix B]. For two Banach spaces E1,E2 
the p-nuclear tensor norm is defined by 

 where p′ denotes the conjugated Hölder index and where the infimum is 
taken over all representations h =

∑N

j=1
xj ⊗ yj for N ∈ ℕ , x1,… , xN ∈ E1 and 

y1,… , yN ∈ E2.
(d)	 In a certain parameter range, one can also view a Besov space with dominating 

mixed smoothness as a Besov space with values in another Besov space. Since 
it seems like this has not been formulated in the literature so far, we make this 
more precise in the following.

Theorem 2.8  Let E be a reflexive Banach space and l = 2 . Then there are unique 
isomorphisms

such that for all u ∈ S(ℝn; E) and all �1 ∈ S(ℝ
d1
x1,d

),�2 ∈ S(ℝ
d1
x2,d

) it holds that

Proof  This is one of the kernel theorems from [3, Appendix, Theorem 1.8.9]. 	�  ◻

Proposition 2.9  Let E be a Banach space, s = (s1, s2) ∈ ℝ2 and let wj ∶ ℝ
dj → [0,∞] 

(j = 1, 2) be weights. Suppose that w = w1 ⊗ w2 and that 1 < p < ∞ . The mappings 
I1, I2 from Theorem 2.8 yield the following isomorphies:

Ss
p,p
B(ℝn

d
) ≅ Bs1

p,p
(ℝ)⊗𝛼p

S(s2,…,sn)
p,p

B(ℝn−1
(d2,…,dn)

) ≅ Bs1
p,p
(ℝ)⊗𝛼p

⋯⊗𝛼p
Bsn
p,p
(ℝ),

�p(h,E1,E2)

∶= inf

⎧
⎪⎨⎪⎩

�
N�
j=1

‖xj‖pE1

�1∕p

⋅ sup

��
N�
j=1

��j(yj)�p�
�1∕p�

∶ �j ∈ E�
2
, ‖�j‖E�

2
= 1

�⎫⎪⎬⎪⎭
,

I1 ∶ S
�(ℝn; E) → B(S(ℝd1

x1,d
),S �(ℝd2

x2,d
; E)),

I2 ∶ S
�(ℝn; E) → B(S(ℝd2

x2,d
),S �(ℝd1

x1,d
; E)),

[[I1(u)](𝜑1)](𝜑2) = u(𝜑1 ⊗𝜑2) = [[I2(u)](𝜑2)](𝜑1).
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Proof  The assertion follows from Theorem 2.8 and

	�  ◻

Remark 2.10 

(a)	 In Theorem 2.8 and Proposition 2.9, we took l = 2 only for notational conveni-
ence. The same arguments also work for l ∈ {3,… , n}.

(b)	 In this work, we frequently use the representation in Proposition 2.9 of Besov 
spaces with dominating mixed smoothness. In the following, we omit the iso-
morphisms I1 and I2 in the notation and consider the spaces in Proposition 2.9 
as equal.

Corollary 2.11  Let T > 0 , l = n , s = (s1,… , sn) ∈ ℝn and p ∈ [1,∞) . Then we have 
the isomorphisms

Proof  For [0, T] being replaced by ℝ these are the statements of Proposition 2.9 and 
Remark 2.7  (c). Thus, the assertion follows by composing the isomorphisms with a 
suitable extension operator and the restriction to [0, T]n . 	�  ◻

Proposition 2.12  Let 1 < p, q < ∞ , s ∈ ℝ and let w ∶ ℝn
→ (0,∞) be an admissi-

ble weight. Let further p�, q� ∈ (1,∞) be the conjugated Hölder indices of p and q, 
respectively. Then, we have

Proof  This result is taken from [35, Chapter  5.1.2]. Note, however, that therein a 
different convention concerning the notation of weighted spaces is used. The space 

Bs1
pp

(
ℝ

d1
x1,d

,w1; B
s2
pp
(ℝd2

x2,d
,w2; E)

) I1
≅Ss

p,p
B(ℝn

d
,w,E)

I2
≅Bs2

pp

(
ℝ

d2
x2,d

,w2; B
s1
pp
(ℝd1

x1,d
,w1; E)

)
.

‖f‖p
Ss
p,p
B(ℝn

d
,w; E)

=
�
k⃗∈ℕ2

0

2ps⋅k⃗ ∫
ℝd1

∫
ℝd2

‖S
k⃗
f (x)‖p

E
w2(x2,d) dx2,d w1(x1,d) dx1,d

=
�
k1∈ℕ0

2ps1k1 ∫
ℝd1

�
k2∈ℕ0

2ps2k2 ∫
ℝd2

‖Sk2Sk1 f (x)‖pEw2(x2,d) dx2,d w1(x2,d) dx1,d

=
�
k1∈ℕ0

2ps1k1 ∫
ℝd1

‖Sk1 f (x1,d, ⋅ )‖pBs2
pp(ℝ

d2 ,w2; E)
w1(x1,d) dx1,d

= ‖f‖p
B
s1
pp(ℝ

d1
x1,d

,w1; B
s2
pp(ℝ

d2
x2,d

,w2; E))
.

Bs1
p,p
([0, T]; Bs2

p,p
([0, T];…Bsl

p,p
([0, T])…)) ≅ Ss

p,p
B([0, T]n)

≅ Bs1
p,p
([0, T])⊗𝛼p

⋯⊗𝛼p
Bsn
p,p
([0, T]).

(Bs
p,q
(ℝn,w))� = B−s

p�,q�
(ℝn,w1−p� ).
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Bs
p,q
(ℝn,w) in the notation of [35] corresponds to Bs

p,q
(ℝn,wp) in our notation. Note 

also that the weights being considered in [35] are even much more general than the 
admissible weights we consider here. 	�  ◻

Lemma 2.13  Let 1 < p < ∞ , l = n and s = (s1,… , sn) ∈ ℝn . Then we have that 
S0([0, T]

n) is dense in Bs1
p,p,0

([0, T]; B
s2
p,p,0

([0, T];…B
sn
p,p,0

([0, T])…)).

Proof  It holds that the algebraic tensor product S0([0, T]
n−1)⊗ B

sn
p,p,0

([0, T]; E) is 
dense in S0([0, T]

n−1; B
sn
p,p,0

([0, T]; E)) for a given Banach space E, see for example 
[2, Theorem  1.3.6]. On the other hand, S0([0, T]; E) is by definition dense in 
B
sn
p,p,0

([0, T]; E) . Thus, we have the dense embeddings

Since

we obtain that

Repeating the same argument for the space S0([0, T]
n−1; B

sn
p,p,0

([0, T]; E)) instead of 
S0([0, T]

n; E) and iterating it, we obtain the assertion. 	�  ◻

Corollary 2.14  Let 1 < p < ∞ , l = n and s = (s1,… , sn) ∈ ℝn . Then we have that

where the isomorphism is the same as in Corollary  2.11.

Proof  By iteration, we define Rn ∶= S0([0, T]) and

for (j = 2,… , n) . Then, we have S0([0, T]
n) ⊂ R1 so that it follows together with 

Lemma 2.13 that

where the closures are taken with respect to the topology of the iterated Besov space 
B
s1
p,p,0

([0, T];…B
sn
p,p,0

([0, T]; E)…) . Hence, we have that

S0([0, T]
n−1)⊗S0([0, T]; E)

d

↪S0([0, T]
n−1)⊗ B

sn
p,p,0

([0, T]; E)

d

↪S0([0, T]
n−1; B

sn
p,p,0

([0, T]; E)).

S0([0, T]
n−1)⊗S0([0, T]; E) ⊂ S0([0, T]

n; E) ⊂ S0([0, T]
n−1; B

sn
p,p,0

([0, T]; E))

S0([0, T]
n; E)

d

↪S0([0, T]
n−1; B

sn
p,p,0

([0, T]; E)).

B
s1
p,p,0

([0, T]; B
s2
p,p,0

([0, T];…B
sn
p,p,0

([0, T])…)) ≅ Ss
p,p,0

B([0, T]n)

Rj−1 ∶= {u ∈ S0([0, T]; S
(sj,…,sn)

p,p B([0, T]n+1−j)) | ∀t ∈ [0, T] ∶ u(t) ∈ Rj}

B
s1
p,p,0

([0, T];…B
sn
p,p,0

([0, T]; E)…) ⊂ S0([0, T]
n) ⊂ R1

⊂ B
s1
p,p,0

([0, T];…B
sn
p,p,0

([0, T]; E)…),
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On the other hand, Ss
p,p,0

B([0, T]n) is defined as the closure of S0([0, T]
n) and thus, 

the assertion follows. 	�  ◻

Proposition 2.15  Let 1 < p < ∞ , p′ the conjugated Hölder index, l = n and 
s = (s1,… , sn) ∈ ℝn . Then we have that

Proof  It follows from Corollary 2.11 together with Corollary 2.14 that we may show 
the assertion on the level of iterated Besov spaces. Since they are defined by itera-
tion, it suffices to show the assertion for the usual isotropic but vector-valued Besov 
spaces on [0, T], i.e. it suffices to show that

where E is a reflexive Banach space. For these relations, we refer to [3, Chapter VII, 
Theorem 2.8.4] or [25, Theorem 11]. Even though the former reference considers 
different domains and the latter treats the scalar-valued situation, their extension-
restriction methods also work in our setting. 	� ◻

Proposition 2.16  Let s, � ∈ ℝ and 1 ≤ p, q < ∞ . Then the mapping

is an isomorphism

Proof  Recall that ⟨ ⋅ ⟩�∕p is an admissible weight. This proposition actually holds for 
all admissible weights, see for example [42, Theorem 6.5]. Note that in this refer-
ence a different convention concerning the notation of weighted spaces is used. 	�  ◻

Theorem 2.17  Let p0, p1, q0, q1 ∈ [1,∞) , s0, s1 ∈ ℝ and w0,w1 ∈ Aloc
∞
(ℝn) . Let fur-

ther � ∈ (0, 1) and

Then, we have that

where [⋅, ⋅]� denotes the complex interpolation functor. In particular, it holds that

Proof  This is part of the statement of [38, Theorem 4.5]. 	�  ◻

B
s1
p,p,0

([0, T];…B
sn
p,p,0

([0, T]; E)…) = S0([0, T]
n)

(Ss
p,p
B([0, T]n))� ≅ S−s

p�,p�,0
B([0, T]n), Ss

p,p,0
B([0, T]n))� ≅ S−s

p�,p�
B([0, T]n).

(Bs
p,p
([0, T]; E))� = B−s

p�,p�,0
([0, T]; E�), (Bs

p,p,0
([0, T]; E))� = B−s

p�,p�
([0, T]; E�),

Bs
p,q
(ℝn, ⟨ ⋅ ⟩�) → Bs

p,q
(ℝn), f ↦ ⟨ ⋅ ⟩�∕pf

s = (1 − �)s0 + �s1,
1

p
=

1 − �

p0
+

�

p1
,

1

q
=

1 − �

q0
+

�

q1
, w = w

(1−�)p

p0

0
w

�p

p1

1
.

[B
s0
p0,q0

(ℝn,w0),B
s1
p1,q1

(ℝn,w1)]� = Bs
p,q
(ℝn,w),

B
s0
p0,q0

(ℝn,w0) ∩ Bs1
p1,q1

(ℝn,w1) ⊂ Bs
p,q
(ℝn,w)
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In one proof, we also need Bessel potential spaces as a technical tool.

Definition 2.18  Let s = (s1,… , sl) ∈ ℝl and p ∈ (1,∞) . Then we define Ss
p
H(ℝn

d
) by

and endow it with the norm

If l = 1 , then we obtain the standard isotropic Bessel potential spaces and write 
Hs

p
(ℝn) instead.

For Bessel potential spaces, we have to following embeddings: For some s ∈ ℝ let 
s = (s,… , s) ∈ ℝn . Then, we have

This can for example be found in [34, (1.7)] and [43, (1.554)]. If p ∈ (1, 2] , then we 
have

for which we refer to [5, Theorem 6.4.4]. Moreover, for all 𝜀 > 0 , we have that

which can be obtained as a combination of [40, Section 2.3.2, Proposition 2] and [5, 
Theorem 6.4.4]. As for Besov spaces, we have the tensor product representation

where s
�
= (s,… , s) ∈ ℝn−1 , s = (s,… , s) ∈ ℝn , d� = (1,… , 1) ∈ ℕn−1 and 

d = (1,… , 1) ∈ ℕn . This has also been derived in [37].

2.3 � Lévy white noise

Now, we briefly introduce Lévy white noise as a generalized random process and 
collect some of the known properties. In the following � will be a Lévy measure, i.e. 
a measure on ℝ⧵{0} such that ∫

ℝ⧵{0}
min{1, x2} d𝜈(x) < ∞ . Moreover, we take 

� ∈ ℝ and 𝜎2 > 0 . We call the triplet (� , �2, �) Lévy triplet and the function

Ss
p
H(ℝn

d
) ∶=

�
f ∈ S

�(ℝn) ∶ F
−1

l�
j=1

⟨�j,d⟩sjFf ∈ Lp(ℝ
n)

�

‖f‖Ss
p
H(ℝn

d
) ∶=

����F
−1

l�
j=1

⟨�j,d⟩sjFf
����Lp(ℝn)

.

(3)Hsn
p
(ℝn) ↪ Ss

p
H(ℝn) ↪ Hs

p
(ℝn).

(4)Bs
p,p
(ℝn) ↪ Hs

p
(ℝn)

(5)Hs
p
(ℝn) ↪ Bs−�

p,p
(ℝn),

(6)Ss
�

p
H(ℝn−1

d�
)⊗𝛼p

Hs
p
(ℝ) ≅ Ss

p
H(ℝn

d
),
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is called Lévy exponent corresponding to the Lévy triplet (� , �2, �) . Functions of 
the form exp ◦Ψ for some Lévy exponent Ψ are exactly the characteristic functions 
of infinitely divisible random variables. An important special case is the one with 
Lévy triplet (0, 1, 0), as in this case exp ◦Ψ is the characteristic function of a Gauss-
ian random variable with mean 0 and variance 1. This case will lead to a standard 
Gaussian white noise later in Definition 2.23.

We endow the space of tempered distributions S �(ℝn) with the cylindrical �-field 
Bc(S

�(ℝn)) generated by the cylindrical sets, i.e. sets of the form

for some N ∈ ℕ , �1,… ,�N ∈ S(ℝn) and some Borel set B ∈ B(ℝN) . We will also 
consider (S �(O),Bc(S

�(O))) for certain domains O ⊂ ℝn . We define this by restric-
tion. More precisely, we write S0(O) for the closed subspace of S(ℝn) which con-
sists of functions with support in O . S �(O) is defined by

and Bc(S
�(O)) is the �-field generated by sets of the form

for some N ∈ ℕ , �1,… ,�N ∈ S0(O) and some Borel set B ∈ B(ℝN) . We also just 
write

This way, the mapping u ↦ u|O is a measurable mapping

Definition 2.19  Let (Ω,F,ℙ) be a probability space. A generalized random process s 
is a measurable function

The pushforward measure ℙs defined by

is called probability law of s. Moreover, the characteristic functional ℙ̂s of s is 
defined by

Ψ(�) ∶= i�� −
�2�2

2
+ �

ℝ⧵{0}

(eix� − 1 − i�x𝟙|x|≤1) d�(x)

{u ∈ S
�(ℝn) ∶ (⟨u,�1⟩,… , ⟨u,�N⟩) ∈ B}

S
�(O) ∶= {u|S0(O) ∶ u ∈ S

�(ℝn)},

{u ∈ S
�(O) ∶ (⟨u,�1⟩,… , ⟨u,�N⟩) ∈ B}

u|O ∶= u|S0(O) u ∈ S
�(ℝn).

(S �(ℝn),Bc(S
�(ℝn))) → (S �(O),Bc(S

�(O))).

s ∶ (Ω,F) → (S �(ℝn),Bc(S
�(ℝn))).

ℙs(B) ∶= ℙ(s−1(B)) (B ∈ Bc(S
�(ℝn)))

ℙ̂s(�) ∶= ∫
S

�(ℝn)

exp(i⟨u,�⟩) dℙs(u).
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We will write s(�) for the tempered distribution at � ∈ Ω and ⟨s,�⟩ for the random 
variable which one obtains by testing s against the Schwartz function � ∈ S(ℝn).

In certain situations, we also speak of a generalized random process if there only 
is a null set N ⊂ Ω such that the range of s|Ω⧵N is a subset of S �(ℝn) . But since 
we assume our probability space to be complete, we may change every measurable 
mapping f ∶ (Ω,F) → (M,A) for a measurable space (M,A) on arbitrary null sets 
without affecting the measurability. Thus, for our purposes, we can neglect the dif-
ference between a generalized random process and a mapping which is a generalized 
random process only after some change on a null set. This also applies to the follow-
ing definition:

Definition 2.20  Let

be two generalized random processes. We say that s2 is a modification of s1 , if

for all � ∈ S(ℝn).

Similar to Bochner’s theorem for random variables, the Bochner–Minlos theorem 
gives a necessary and sufficient condition for a mapping C ∶ S(ℝn) → ℂ to be the 
characteristic functional of a generalized random process.

Theorem  2.21  (Bochner–Minlos) A mapping C ∶ S(ℝn) → ℂ is the character-
istic functional of a generalized random process if and only if C is continuous, 
C(0) = 1 and C is positive definite, i.e. for all N ∈ ℕ , all z1,… , zN ∈ ℂ , and all 
�1,… ,�N ∈ S(ℝn) it holds that

Remark 2.22 

(a)	 The Bochner–Minlos also holds if S(ℝn) is replaced by a nuclear space as for 
example the space of test functions d(ℝn) . It seems like the Bochner–Minlos 
theorem was first formulated and proved in [24].

(b)	 An important example of a characteristic functional is given by 

 for a Lévy exponent Ψ . This is always a characteristic functional on the 
space of test functions D(ℝn) , see for example [16, Chapter III, Theorem 5]. 
However, this is not always true for the Schwartz space S(ℝn) . In fact, C is 

s1, s2 ∶ (Ω,F) → (S �(ℝn),Bc(S
�(ℝn)))

ℙ(⟨s1,�⟩ = ⟨s2,�⟩) = 1

N∑
j,k=1

zjzkC(�j − �k) ≥ 0.

C(�) ∶= exp

(
∫
ℝn

Ψ(�(x)) dx

)
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a characteristic functional on S(ℝn) if and only if it has positive absolute 
moments, i.e. if there is an 𝜀 > 0 such that �[|X|𝜀] < ∞ , where X is an infi-
nitely divisible random variable corresponding to the Lévy triplet Ψ . We refer 
the reader to [13, Theorem 3] for the sufficiency and to [11] for the necessity.

Definition 2.23  Let (� , �2, �) be a Lévy triplet such that the corresponding infi-
nitely divisible random variable has positive absolute moments. A Lévy white noise 
� ∶ Ω → S

�(ℝn) with Lévy triplet (� , �2, �) is the generalized random process with 
characteristic functional

If we speak of a Lévy white noise on a domain O ⊂ ℝn , then we mean that it is 
given by �|O for a Levy white noise � on ℝn.

Remark 2.24  From a modeling point of view, there are some minimum requirements 
one has on a random process to call it a white noise. For example, a white noise 
should and indeed our white noise from Definition 2.23 does satisfy the following: 

(a)	 A white noise is invariant under Euclidean motions in the sense that for 
f ∈ D(ℝn) and for an Euclidean motion A the random variables ⟨�, f ⟩ and 
⟨�, f◦A⟩ have the same distribution. This can for example be seen by comparing 
their characteristic functions: 

 For the representation of the characteristic function, see for example [27, The-
orem 2.7 (iv)].

(b)	 The random variables ⟨�, f ⟩ and ⟨�, g⟩ are independent if f , g ∈ D(ℝn) have dis-
joint supports. Indeed, if f, g have disjoint supports then Ψ(f + g) = Ψ(f ) + Ψ(g) 
and, therefore, 

(c)	 If second moments exist, then we have the relation 

ℙ�(�) = exp

(
∫
ℝn

Ψ(�(x)) dx

)
(� ∈ S(ℝn)).

𝔼[ei�⟨�,f ⟩] = exp

�
∫
ℝn

Ψ(�f (x)) dx

�

= exp

�
∫
ℝn

Ψ(�f (Ax)) dx

�
= 𝔼[ei�⟨�,f◦A⟩] (� ∈ ℝ).

𝔼[ei(�1⟨�,f ⟩+�2⟨�,g⟩)] = exp

�
∫
ℝn

Ψ(�1f (x) + �2g(x)) dx

�

= exp

�
∫
ℝn

Ψ(�1f (x)) + Ψ(�2g(x)) dx

�
= 𝔼[ei�1⟨�,f ⟩]𝔼[ei�2⟨�,g⟩]

cov(⟨�, f ⟩, ⟨�, g⟩) =
�
�2 + ∫

ℝ⧵{0}

z2 d�(z)

�
⟨f , g⟩L2(ℝn) (f , g ∈ D(ℝn)).
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 It seems like this has not been stated in this form for Lévy white noise in the 
literature before. We, therefore, refer the reader to the author’s Ph.D. thesis, 
[19, Proposition 3.33].

Remark 2.25  By an approximation procedure, it is possible to plug many more func-
tions into a white noise than just test functions or Schwartz functions. For example, 
it is always possible to apply a Lévy white noise to elements of L2(ℝn) with com-
pact support. In particular, this includes indicator functions �A for bounded Borel sets 
A ∈ B(ℝn) which is useful for the construction of a stochastic integral. The idea for the 
construction of such an integral goes back to [44] and was further refined in [27]. We 
also refer the reader to [12] in which the extension of the domain of definition is carried 
out in full detail. We will now briefly summarize the results we need in this work.

Definition 2.26  Let � be a Lévy white noise with triplet (� , �2, �) and let p ≥ 0 . 

(a)	 The pth order Rajput–Rosiński exponent Ψp of � is defined by 

 for � ∈ ℝ.
(b)	 We define the space Lp(�) by 

 and endow it with the metric 

 The elements of L0(�) will be called �-integrable.

Proposition 2.27  Let � be a Lévy white noise with triplet (� , �2, �) and p ≥ 0 . 

(a)	 The space Lp(�) is a complete linear metric space.
(b)	 The space of test functions D(ℝn) is dense in L0(�).
(c)	 The Lévy white noise � extends to a continuous linear mapping

(d)	 Let f ∈ L0(�) . Then the characteristic function of ⟨�, f ⟩ is again given by

Ψp(𝜉) ∶=
||||𝛾𝜉 + �

ℝ⧵{0}

x𝜉(𝟙|x𝜉|≤1 − 𝟙|x|≤1) d𝜈(x)
|||| + 𝜎2𝜉2

+ �
ℝ⧵{0}

|x𝜉|p𝟙|x𝜉|>1 + |x𝜉|2𝟙|x𝜉|≤1 d𝜈(x)

Lp(𝜂) ∶=

{
f ∈ L0(ℝ

n) ∶ ∫
ℝn

Ψp(f (x)) dx < ∞

}

dΨp
(f , g) ∶= inf

{
𝜆 > 0 ∶ ∫

ℝn

Ψp

( f (x)−g(x)

𝜆

)
< 𝜆

}
.

� ∶ Lp(�) → Lp(Ω), f ↦ ⟨�, f ⟩.
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Proof  This is a collection of the statements given in [12, Proposition 3.5], [28, 
Chapter X, Theorem 2, Proposition 5 & Corollary 6] and [27, Theorem 2.7, Lemma 
3.1 & Theorem 3.3]. 	�  ◻

Remark 2.28 

(a)	 In the general case, it can be difficult to give a nice characterization of the space 
L0(�) . However, as already mentioned in Remark 2.25, elements of L2(ℝn) with 
compact support are always contained in L0(�) . Moreover, S(ℝn) is contained in 
L0(�) if the white noise � admits positive absolute moments, see Remark 2.22. 
We also refer the reader to [12, Table 1] which contains a list of examples. For 
instance, in the Gaussian case we have L0(�) = L2(ℝ

n) . The same holds if the Lévy 
triplet is given by (0, �2, �) with � being symmetric and having finite variance, see 
[12, Proposition 4.10]. If the Lévy triplet is given by (� , 0, 0) ( � ≠ 0 ) then we have 
L0(�) = L1(ℝ

n) and for (� , �2, 0) ( � ≠ 0 , 𝜎2 > 0 ) by L1(ℝn) ∩ L2(ℝ
n).

(b)	 If one wants to work with paths of a Lévy white noise, then a characterization of 
the Besov regularity of these paths might be more useful than Proposition 2.27 in 
certain situations. Fortunately, a lot of nice work has already been done in this direc-
tion. For example, local regularity of Gaussian white noise has been studied in [45]. 
In [15], similar results have been obtained for Lévy white noise. Global smoothness 
properties of Lévy white noise in weighted spaces have been established in [4, 14]. 
Results as in the latter, two references will be important for the derivation of mixed 
smoothness properties. But before we can formulate them, we first need to introduce 
the Blumenthal-Getoor indices and the moment index of a Lévy white noise.

Definition 2.29  Let � be a Lévy white noise with Lévy exponent Ψ . Then, the Blu-
menthal-Getoor indices are defined by

In addition, the moment index is defined by

In general, it holds that 0 ≤ �∞ ≤ �∞ ≤ 2.

Theorem 2.30  Let � be a Lévy white noise with Lévy triplet (� , �2, �) , Blumenthal–
Getoor indices �∞, �∞ and moment indexpmax . Let further p ∈ (0,∞) . 

𝔼[ei�⟨�,f ⟩] = exp

�
∫
ℝn

Ψ(�f (x)) dx

�
.

𝛽∞ ∶= inf

{
p > 0 ∶ lim|𝜉|→∞

|Ψ(𝜉)|
|𝜉|p = 0

}
,

𝛽∞ ∶= inf

{
p > 0 ∶ lim inf|𝜉|→∞

|Ψ(𝜉)|
|𝜉|p = 0

}
.

pmax ∶= sup{p > 0 ∶ �[�⟨𝜂, �[0,1]n⟩�p] < ∞}.
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(a)	 Gaussian case: Suppose that � = 0 . Then it holds that

(b)	 Compound Poisson case: Suppose that � is a finite measure on B(ℝn⧵{0}) and 
that �2 = 0 . Then it holds that

(c)	 General non-Gaussian case: Suppose that � ≠ 0 and that p ≤ 2 or p ∈ 2ℕ . Then 
it holds that

Proof  This is a collection of Proposition 6, 9 and 12 from [4]. Note that the authors 
of [4] use a different convention concerning the notation of weighted Besov spaces 
so that the weight parameters in our formulation are multiplied by p compared to the 
formulation in [4]. 	�  ◻

Remark 2.31 

(a)	 In Theorem 2.30 (2.31) one can weaken the restriction on p using Theo-
rem 2.17 as follows: If there is N ∈ 2ℕ such that pmax ∈ (N,N + 2) and if 
p ∈ (1,∞)⧵(N,N + 2) , then it holds that 

 If p ∈ (N,N + 2) , then let � ∈ (0, 1) such that 1∕p = (1 − �)∕N + �∕(N + 2) . 
In this case, it holds that 

 If there is no such N, i.e. if pmax ∈ 2ℕ , then 

ℙ(𝜂 ∈ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s <

n

2
and 𝜌 < −n,

ℙ(𝜂 ∉ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s ≥ n

2
or 𝜌 ≥ −n.

ℙ(𝜂 ∈ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s < n

�
1

p
− 1

�
and 𝜌 < −

np

min{p,pmax}
,

ℙ(𝜂 ∉ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s ≥ n

�
1

p
− 1

�
or 𝜌 > −

np

min{p,pmax}
.

ℙ(𝜂 ∈ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s < n

�
1

max{p,𝛽∞}
− 1

�
and 𝜌 < −

np

min{p,pmax}
,

ℙ(𝜂 ∉ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s > n

�
1

max{p,𝛽∞}
− 1

�
or 𝜌 > −

np

min{p,pmax}
.

ℙ(𝜂 ∈ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s <

n

max{p,𝛽∞}
− n and 𝜌 < −

np

min{p,pmax}
.

ℙ(𝜂 ∈ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s <

n

max{p,𝛽∞}
− n and 𝜌 < −n

�
(1−𝜃)pmax+𝜃p

pmax

�
.
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 without restriction on p.
(b)	 If one restricts the white noise � to a bounded set, for example [0, T]n for some 

T > 0 , then one can also drop the conditions on � . More precisely, we have the 
following: In the Gaussian case, it holds that 

 In the compound Poisson case it holds that 

 In the general con-Gaussian case with p ∈ (1,∞) it holds that 

2.4 � Lévy processes with values in a Banach space

We briefly derive some results on the regularity of sample paths of Lévy processes 
with values in Banach spaces. While they are most probably far from being optimal, 
they allow us to also apply our methods to Lévy white noise instead of just Gaussian 
white noise. Although our regularity results for Lévy white noises will not be sharp, 
we develop our methods in a way such that the result can directly be improved once 
properties like the ones in [6, Section 5.5] have been derived for Lévy processes in 
Banach spaces.

Definition 2.32  Let T > 0 . As in the scalar-valued case, a stochastic process 
(Lt)t∈[0,T] with values in a Banach space E is called Lévy process if the following 
holds: 

	 (i)	 L0 = 0,
	 (ii)	 (Lt)t∈[0,T] has independent increments, i.e. for all N ∈ ℕ and all 

0 ≤ t1 < ⋯ < tN ≤ T  it holds that Lt2 − Lt1 ,… , LtN − LtN−1 are independent.
	 (iii)	 (Lt)t∈[0,T] has stationary increments, i.e. the law of Lt − Ls only depends on 

t − s.
	 (iv)	 (Lt)t∈[0,T] is continuous in probability.

ℙ(𝜂 ∈ Bs
p,p
(ℝn, ⟨⋅⟩𝜌)) = 1, if s <

n

max{p,𝛽∞}
− n and 𝜌 < −

np

min{p,pmax}
.

ℙ(𝜂 ∈ Bs
p,p
([0, T]n)) = 1, if s <

n

2
,

ℙ(𝜂 ∉ Bs
p,p
([0, T]n)) = 1, if s ≥ n

2
.

ℙ(𝜂 ∈ Bs
p,p
([0, T]n)) = 1, if s < n

(
1

p
− 1

)
,

ℙ(𝜂 ∉ Bs
p,p
([0, T]n)) = 1, if s ≥ n

(
1

p
− 1

)
.

ℙ(𝜂 ∈ Bs
p,p
([0, T]n)) = 1, if s < n

(
1

max{p,𝛽∞}
− 1

)
,

ℙ(𝜂 ∉ Bs
p,p
([0, T]n)) = 1, if s ≥ n

(
1

max{p,𝛽∞}
− 1

)
.
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Proposition 2.33  Let 𝜀 > 0 , p ∈ (1,∞) and let (Lt)t∈[0,T] a Lévy process with val-
ues in a Banach space E. Then (Lt)t∈[0,T] has a modification with sample paths in 
B0
p,p
([0, T]; E) if p ≥ 2 and in B−�

p,p
([0, T]; E) if p < 2.

Proof  As a Lévy process, (Lt)t∈[0,T] has a modification such that the sample paths 
are càdlàg, see [26, Theorem 4.3]. In particular, the sample paths are jump continu-
ous, i.e. they are contained in the closure of simple functions from [0, T] to E with 
respect to the ‖ ⋅ ‖L∞([0,T])-norm. Therefore, the sample paths are elements of

where the latter embedding only holds for p ≥ 2 and can for example be found in [5, 
Theorem 6.4.4]. If p ∈ (1, 2) , then the embedding Lp([0, T]) ↪ B−�

p,p
([0, T]) holds. 	

� ◻

Proposition 2.33 is surely not sharp, but simple and good enough for our purposes. 
Nonetheless, there are already much sharper results for E-valued Brownian motions.

Theorem 2.34  Let p, q ∈ [1,∞) and let (Wt)t∈[0,T] be a Brownian motion with val-
ues in the Banach space E, i.e. (Wt)t∈[0,T] is an E-valued Lévy process such that 
(�(Wt))t≥0 is a Brownian motion for all � ∈ E� . Then the sample paths of (Wt)t∈[0,T] 

are contained in B
1

2

p,∞([0, T]; E) almost surely. Moreover, almost surely they are not 

contained in B
1

2

p,q([0, T]; E).

Proof  This is one of the statements of [21, Theorem 4.1]. 	�  ◻

3 � Regularity properties in spaces of mixed smoothness

Lemma 3.1  Let n = n1 + n2 with n1, n2 ∈ ℕ and let s, t ∈ ℝn1 , s ≤ t . Let �n be a Lévy 
white noise in ℝn with Lévy triplet (� , �2, �) and let �n2 be a Lévy white noise in ℝn2 
with the same Lévy triplet. Then, the mapping

is well-defined and continuous.

Proof  Note that for all 𝜆 > 0 and all � ∈ L(�n2 ) , we have

Thus, � ∈ L0(�n2 ) implies �(s,t] ⊗𝜑 ∈ L0(𝜂n) . Moreover, if (𝜑k)k∈ℕ ⊂ L0(𝜂n2 ) con-
verges to � , then for all 𝜀 > 0 we have

L∞([0, T]) ↪ Lp([0, T]) ↪ B0
p,p
([0, T])

L0(𝜂n2 ) → L0(𝜂n), 𝜑 ↦ �(s,t] ⊗𝜑

∫
ℝn1×ℝn2

Ψ0

(
𝟙(s,t](r1)�(r2)

�

)
d(r1, r2) = Lebn1((s, t])∫

ℝn2

Ψ0

(
�(r2)

�

)
dr2.
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for k ∈ ℕ large enough. If Lebn1((s, t]) ≤ 1 this implies

so that the continuity follows. If Lebn1((s, t]) > 1 , then we write �̃ = Lebn1 ((s, t])� 
and obtain

for k large enough. Again, the continuity follows. 	�  ◻

Lemma 3.2  Let s, t ∈ ℝ with s < t . Let � be a Lévy white noise in ℝn with Lévy tri-
plet (� , �2, �) . Then the mapping

is an element of S �(ℝn−1) for almost all � ∈ Ω.

Proof  First, we note that 𝟙(s,t] ∈ Br
p,p
(ℝ) for all p ∈ (1,∞) , r ∈ (−∞,

1

p
) . One way to 

see this is to use the equivalent norm

where r ∈ (0, 1) . For this equivalence, we refer to [40, Section  2.2.2 and Sec-
tion 2.5.12]. Since

for |h| ≤ t − s , we only have to check for which parameters we have

This is the case if and only if r < 1

p
 . If we now take p = 1 + � for 𝜀 > 0 small, then 

we have that

∫
ℝn2

Ψ0

(
𝜑(r2) − 𝜑k(r2)

𝜀

)
dr2 < 𝜀

∫
ℝn1×ℝn2

Ψ0

(
𝟙(s,t](r1)(𝜑(r2) − 𝜑k(r2))

𝜀

)
d(r1, r2) < 𝜀

�
ℝn1×ℝn2

Ψ0

(
𝟙(s,t](r1)(𝜑(r2) − 𝜑k(r2))

�𝜀

)
d(r1, r2)

≤ �
ℝn1×ℝn2

Ψ0

(
𝟙(s,t](r1)(𝜑(r2) − 𝜑k(r2))

𝜀

)
d(r1, r2)

< Lebn1 ((s, t])𝜀 = �𝜀

𝜑 ↦ ⟨𝜂(𝜔), �(s,t] ⊗𝜑⟩

‖𝟙(s,t]‖Br
p,p
(ℝ) ≃ ‖𝟙(s,t]‖Lp(ℝ) +

�
��h�≤1 �ℝ

�h�−1−rp�𝟙(s,t](x + h) − 𝟙(s,t](x)�p dx dh
�1∕p

,

∫
ℝ

|𝟙(s,t](x + h) − 𝟙(s,t](x)|p dx = ∫
ℝ

|𝟙(s,t](x + h) − 𝟙(s,t](x)| dx = 2|h|,

�|h|≤1
|h|−rp dh < ∞.
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so that the mapping

is continuous for arbitrary N > 0 , where ⟨�⟩N∕p is taken for � ∈ ℝn . We take the 
detour via the Bessel potential scale since the embedding (3) seems to be not avail-
able in the literature for Besov spaces. For the Bessel potential scale this holds as 
S0,…,0
p

H(ℝn) = Lp(ℝ
n) so that Fourier multiplier techniques are directly available, 

see the references given for (3).
Combining (7) with Proposition 2.16 shows that also

is continuous. Now, we combine (8) with Theorem  2.30. Since the Blumenthal–
Getoor indices are not larger than 2, it holds that

for � ∈ (0, 1) and � negative enough. Therefore, taking r − 𝜀 > 3∕4 and N large 
enough in (8) shows that

for almost all � ∈ Ω and all (𝜑n)n∈ℕ ⊂ S(ℝn) such that limn→∞ �n = 0 . Hence, the 
mapping 𝜑 ↦ ⟨𝜂(𝜔), �(s,t] ⊗𝜑⟩ is indeed a tempered distribution. 	�  ◻

Proposition 3.3  Let n = n1 + n2 with n1, n2 ∈ ℕ and s, t ∈ ℝn1 , s ≤ t . Let further � 
be a Lévy white noise on ℝn with Lévy triplet (� , �2, �) on the complete probability 
space (Ω,F,ℙ) . Then the mapping

is a modification of a Lévy white noise with Lévy triplet Lebn1((s, t])(� , �
2, �).

Proof  It suffices to show the assertion for n1 = 1 . The general assertion then follows 
by iteration. Therefore, let n1 = 1 . Then, Lemma 3.2 shows that, �(s,t](�) is indeed a 
tempered distribution almost surely. Thus, after changing it on a set of measure 0, 
we can assume that it is a S �(ℝn−1)-valued mapping. For the measurability, it suf-
fices to show that the preimages of cylindrical sets of the form

Br
p,p
(ℝ)⊗𝛼p

S(r,…,r)
p

Hp(ℝ
n−1)

(2.4)

↪Hr
p
(ℝ)⊗𝛼p

S(r,…,r)
p

Hp(ℝ
n−1)

(2.6)
≅ S(r,…,r)

p
H(ℝn)

(2.3)

↪Hr
p
(ℝn)

(2.5)

↪ Br−𝜀
p,p

(ℝn),

(7)S(ℝn−1) → Br−𝜀
1+𝜀,1+𝜀

(ℝn), 𝜑 ↦ (𝟙(s,t] ⊗𝜑)⟨ ⋅ ⟩N∕p

(8)S(ℝn−1) → Br−𝜀
1+𝜀,1+𝜀

(ℝn, ⟨⋅⟩N), 𝜑 → 𝟙(s,t] ⊗𝜑

ℙ(� ∈ B
−3∕4

1+�,1+�
(ℝn, ⟨⋅⟩�)) = 1

lim
n→∞

⟨𝜂(𝜔), �(s,t] ⊗𝜑n⟩ = 0

𝜂(s,t] ∶ (Ω,F,ℙ) → (S �(ℝn2 ),Bc(S
�(ℝn2 ))), 𝜔 ↦ [𝜑 ↦ ⟨𝜂(𝜔), 𝟙(s,t] ⊗𝜑⟩]

C ∶= {u ∈ S
�(ℝn−1) ∶ (⟨u,�1⟩,… , ⟨u,�N⟩) ∈ B}
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for some N ∈ ℕ , some �1,… ,�N ∈ S(ℝn−1) and some open set B ⊂ ℝN under �(s,t] 
are elements of F  . So let C be such a set. By Proposition 2.27 and Lemma 3.1, 
we can take sequences (𝜓j,k)k∈ℕ ⊂ D(ℝn) , j = 1,… ,N such that 𝜓j,k → �(s,t] ⊗𝜑j in 
L0(�) as k → ∞ . Hence, we have that

By taking subsequences, we may without loss of generality assume that the con-
vergence is also almost surely. Let K̃ ∈ F  be the set on which there is no pointwise 
convergence and

Since the probability space is complete, it follows that K ∈ F  . Now, we define

for l ∈ ℕ . Note that we have

Let further

Note that Ak,l ∈ F  for all k, l ∈ ℕ since � is a a generalized random process. By con-
struction, we have that lim infk→∞ Ak,l ∈ F  and that it consists of all � ∈ Ω such that

as k → ∞ and such that (⟨�(�),�1,k⟩,… , ⟨�(�),�N,k⟩) ∈ Bl for k ∈ ℕ 
large enough. In particular, for � ∈ lim infk→∞ Ak,l it holds that 
(⟨𝜂(𝜔), �(s,t] ⊗𝜑1⟩,… , ⟨𝜂(𝜔), �(s,t] ⊗𝜑N⟩) ∈ Bl and thus

Together with (9), this yields

For the converse inclusion, let � ∈ �−1
(s,t]

(C) so that

⟨𝜂,𝜓j,k⟩ → ⟨𝜂, �(s,t] ⊗𝜑j⟩ in probability as k → ∞.

K ∶= K̃ ∩ �−1
(s,t]

(C).

Bl ∶=

�
x ∈ B ∶ dist(x,ℝn⧵B) >

1

l

�
,

Cl ∶= {u ∈ S
�(ℝn−1) ∶ (⟨u,𝜑1⟩,… , ⟨u,𝜑N⟩) ∈ Bl},

�Cl ∶= {u ∈ S
�(ℝn−1) ∶ (⟨u,𝜑1⟩,… , ⟨u,𝜑N⟩) ∈ Bl}

(9)K ⊂ 𝜂−1
(s,t]

(C) =
⋃
l∈ℕ

𝜂−1
(s,t]

(Cl) =
⋃
l∈ℕ

𝜂−1
(s,t]

(�Cl).

Ak,l ∶= (⟨𝜂,𝜓1,k⟩,… , ⟨𝜂,𝜓N,k⟩)−1(Bl)⧵
�K ⊂ Ω.

(⟨𝜂(𝜔),𝜓1,k⟩,… , ⟨𝜂(𝜔),𝜓N,k⟩) → (⟨𝜂(𝜔), �(s,t] ⊗𝜑1⟩,… , ⟨𝜂(𝜔), �(s,t] ⊗𝜑N⟩)

lim inf
k→∞

Ak,l ⊂ (⟨𝜂(s,t],𝜑1⟩,… , ⟨𝜂(s,t],𝜑N⟩)−1(Bl) = 𝜂−1
(s,t]

(�Cl).

(10)
⋃
l∈ℕ

lim inf
k→∞

Ak,l ∪ K ⊂ 𝜂−1
(s,t]

(C).

(⟨𝜂(𝜔), �(s,t] ⊗𝜑1⟩,… , ⟨𝜂(𝜔), �(s,t] ⊗𝜑N⟩) ∈ B.
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Since B is open, there is an l ∈ ℕ such that

If � ∉ K̃ , then

as k → ∞ and since Bl is open, it holds that

for k large enough. Hence, it follows that � ∈ Ak,l for k large enough and therefore 
� ∈ lim infk→∞ Ak,l . If in turn � ∈ K̃ , then � ∈ K̃ ∩ �−1

(s,t]
(C) = K . Hence, it follows 

that

Together with (10) it now follows that

so that �(s,t] is indeed a generalized random process. Finally, we show that �(s,t] is 
even a Lévy white noise with Lévy triplet Lebn1((s, t])(� , �

2, �) by simply computing 
its characteristic functional: Let Ψ be the Lévy exponent of � . Then, we obtain

Altogether, we obtain the assertion. 	�  ◻

Lemma 3.4  Let T > 0 , s = (s1,… , sn) ∈ ℝn , s, � ∈ ℝ , p, q ∈ (1,∞) and let 
p�, q� ∈ (1,∞) be the conjugated Hölder indices. 

(⟨𝜂(𝜔), �(s,t] ⊗𝜑1⟩,… , ⟨𝜂(𝜔), �(s,t] ⊗𝜑N⟩) ∈ Bl.

(⟨𝜂(𝜔),𝜓1,k⟩,… , ⟨𝜂(𝜔),𝜓N,k⟩) → (⟨𝜂(𝜔), �(s,t] ⊗𝜑1⟩,… , ⟨𝜂(𝜔), �(s,t] ⊗𝜑N⟩)

(⟨�(�),�1,k⟩,… , ⟨�(�),�N,k⟩) ∈ Bl

(11)𝜂−1
(s,t]

(C) ⊂
⋃
l∈ℕ

lim inf
k→∞

Ak,l ∪ K

�−1
(s,t]

(C) =
⋃
l∈ℕ

lim inf
k→∞

Ak,l ∪ K ∈ F

�ℙ⟨𝜂,𝟙(s,t]⊗( ⋅ )⟩(𝜑)

= 𝔼[ei⟨𝜂,𝟙(s,t]⊗𝜑⟩] = exp

�
�
ℝn

Ψ([𝟙(s,t] ⊗𝜑](r)) dr

�

= exp

�
�
ℝn

i𝛾[𝟙(s,t] ⊗𝜑](r) −
𝜎2[𝟙2

(s,t]
⊗𝜑2](r)

2

+ �
ℝ⧵{0}

eix[𝟙(s,t]⊗𝜑](r) − 1 + ix[𝟙(s,t] ⊗𝜑](r)𝟙�x�≤1 d𝜈(x) dr
�

= exp

�
Leb1((s, t])�

ℝn−1

i𝛾𝜑(r) −
𝜎2𝜑2(r)

2

+ �
ℝ⧵{0}

eix𝜑(r) − 1 + ix𝜑(r)𝟙�x�≤1 d𝜈(x) dr
�

= exp

�
Leb1((s, t])�

ℝn−1

Ψ(𝜑(r)) dr

�
.
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(a)	 There is a sequence (𝜓k)k∈ℕ ⊂ S(ℝn) with ‖�‖B−s

p� ,q�
(ℝn,⟨ ⋅ ⟩�(1−p�)) = 1 such that

for all u ∈ Bs
p,q
(ℝn, ⟨ ⋅ ⟩�).

(b)	 There is a sequence (𝜓k)k∈ℕ ⊂ S0([0, T]
n) with ‖�‖S−s

p� ,p�
B([0,T]n) = 1 such that

for all u ∈ Ss
p,p
B([0, T]n).

(c)	 The Borel �-field of Bs
p,q
(ℝn, ⟨ ⋅ ⟩�) is contained in Bc(S

�(ℝn)).
(d)	 The Borel �-field of Ss

p,p
B([0, T]n) is contained in Bc(S

�([0,T]n)).

Proof 

(a)	 Since Bs
p,q
(ℝn) is separable (see for example [40, Section 2.5.5, Remark 1]) and 

since the spaces Bs
p,q
(ℝn, ⟨ ⋅ ⟩�) and Bs

p,q
(ℝn) are isomorphic by Proposition 2.16, 

it follows that also Bs
p,q
(ℝn, ⟨ ⋅ ⟩�) is separable. Hence, it follows from [22, Prop-

osition B.1.10] together with Proposition 2.12 that there is a sequence 
(𝜑k)k∈ℕ ⊂ B−s

p�,q�
(ℝn, ⟨ ⋅ ⟩𝜌(1−p�)) with ‖�k‖B−s

p� ,q�
(ℝn,⟨ ⋅ ⟩�(1−p�)) = 1 such that 

 Since f ↦ ⟨ ⋅ ⟩−�∕pf  leaves S(ℝn) invariant and since it is an isomorphism 
between Bs�

p�,q�
(ℝn, ⟨ ⋅ ⟩�(1−p�)) and B−s

p�,q�
(ℝn) , it follows from the density of 

S(ℝn) in B−s
p�,q�

(ℝn) (see for example [40, Section 2.3.3]) that we have the dense 
embedding 

 Therefore, there are sequences (𝜑k,l)l∈ℕ ⊂ S(ℝn) with ‖�k,l‖B−s

p� ,q�
(ℝn,⟨ ⋅ ⟩�(1−p�)) = 1 

such that �k,l → �k as l → ∞ . Thus, we obtain 

 Since ℕ2 is countable, we can rename the functions and obtain the asserted 
sequence (�k)k∈ℕ.

(b)	 The proof is almost the same as the one of Part (a). One just has to use Proposi-
tion 2.15 instead of Proposition 2.12.

(c)	 Since Bs
p,q
(ℝn, ⟨ ⋅ ⟩�) is separable, its Borel �-field is generated by the open balls. 

Hence, it suffices to show that for all f ∈ Bs
p,q
(ℝn, ⟨ ⋅ ⟩�) and all r > 0 , we have 

B(f , r) ∈ Bc(S
�(ℝn)) . Now, we use part (a). Then, we obtain that 

‖u‖Bs
p,q
(ℝn,⟨ ⋅ ⟩�) = sup

k∈ℕ

�⟨u,�k⟩�

‖u‖Ss
p,p
B([0,T]n) = sup

k∈ℕ

�⟨u,�k⟩�

‖u‖Bs
p,q
(ℝn,⟨ ⋅ ⟩�) = sup

k∈ℕ

�⟨u,�k⟩�.

S(ℝn)
d

↪Bs�

p�,q�
(ℝn, ⟨ ⋅ ⟩�(1−p�)).

‖u‖Bs
p,q
(ℝn,⟨ ⋅ ⟩�) = sup

k,l∈ℕ

�⟨u,�k,l⟩�.
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 In the last step, we used that a tempered distribution u0 is an element of the 
weighted Besov space Bs

p,q
(ℝn, ⟨ ⋅ ⟩�) if ‖u0‖Bs

p,q
(ℝn,⟨ ⋅ ⟩𝜌) < ∞ . By part (a) this is 

satisfied if 

 This yields the assertion.
(d)	 The proof is almost the same as the one of part (c).

	�  ◻

Lemma 3.5  Let � be a Lévy white noise. For t2 ≥ t1 ≥ 0 let again

Suppose that for all t ≥ 0 the mapping �(0,t] takes values in Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) for 

fixed parameters s, � ∈ ℝ and 1 < p, q < ∞ . Let Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) be endowed 

with its Borel �-field. Then (�(0,t])t≥0 is a Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�)-valued stochastic pro-

cess with stationary and independent increments. The same assertion holds if � is 
restricted to [0, T]n and if Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�) is replaced by Ss

�

p,p
B([0, T]n−1) for some 

s
�
= (s2,… , sn) ∈ ℝn−1.

Proof  We show the assertion for Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) . The proof for Ss

p,p
B([0, T]n−1) can 

be carried out the same way.
It follows from Proposition 3.3 that the mappings

are measurable. Thus, Lemma 3.4 shows that the mappings �(0,t] for t ≥ 0 are 
Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�)-valued random variables, where Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�) is endowed with 

the Borel �-field. Proposition 3.3 also shows that the increments are stationary. 
Hence, it only remains to prove that the increments are independent.

Since the sets 
∏N

j=1
(−∞, �j] with �j ∈ ℝ generate the Borel �-field in ℝN , we also 

have that sets of the form

B(f , r) =
�
m∈ℕ

B(f , r −
1

m
) =

�
m∈ℕ

�
k∈ℕ

�
u ∈ Bs

p,q
(ℝn, ⟨ ⋅ ⟩�) ∶ �⟨f − u,�k⟩� ≤ r −

1

m

�

= Bs
p,q
(ℝn, ⟨ ⋅ ⟩�) ∩ �

m∈ℕ

�
k∈ℕ

�
u ∈ S

�(ℝn) ∶ �⟨f − u,�k⟩� ≤ r −
1

m

�

=
�
m∈ℕ

�
k∈ℕ

�
u ∈ S

�(ℝn) ∶ �⟨f − u,�k⟩� ≤ r −
1

m

�
∈ Bc(S

�(ℝn))

u0 ∈
�
k∈ℕ

�
u ∈ S

�(ℝn) ∶ �⟨f − u,�k⟩� ≤ r −
1

m

�
.

𝜂(t1,t2] ∶ Ω → S
�(ℝn−1),𝜔 ↦ ⟨𝜂(𝜔), 𝟙(t1,t2] ⊗ ( ⋅ )⟩.

�(0,t] ∶ (Ω,F) → (S �(ℝn−1),Bc(S
�(ℝn−1)))

{u ∈ S
�(ℝn−1)�∀j ∈ {1,… ,N} ∶ ⟨u,�j⟩ ≤ �j}
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for some N ∈ ℕ , �1,… ,�N ∈ S(ℝn−1) and �1,… , �N ∈ ℝ generate Bc(S(ℝn−1)) . 
But together with Lemma 3.4 this implies that the Borel �-field of Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�) 

is generated by sets of the form

This collection of sets is stable under finite intersections and thus, it suffices 
to verify the independece for preimages of such sets. As in Remark 2.24, one 
can use the characteristic function from Proposition 2.27 to show that the ran-
dom variables ⟨�(t1,t0],�1⟩,… , ⟨�(tN ,tN−1],�N⟩ are independent for all choices 
of N ∈ ℕ , 0 ≤ t0 < t1 ⋯ < tN , �1,… ,�N ∈ S(ℝn−1) . Thus, for all choices of 
M,N1,… ,NM ∈ ℕ , 0 ≤ t0 < t1 ⋯ < tM , �j,k ∈ ℝ and �j,k ∈ S(ℝn−1) ( 1 ≤ j ≤ M , 
1 ≤ k ≤ Nj ), we have that

This shows that (�(0,t])t≥0 has independent increments. 	�  ◻

Theorem  3.6  Consider the situation of Lemma 3.5 with s < 0 . Let �, r ∈ ℝ and 
1 ≤ p1 ≤ p� ≤ p2 < ∞ where p′ denotes the conjugated Hölder index of p ∈ (1,∞) . 

(a)	 Suppose that we have the embedding Lp1([0, T] ×ℝn−1) ↪ L0(�) for all T > 0 
and that 𝛼 < min{𝜌, p(n − 1)(

1

p�
−

1

p1
)} . Then (�(0,t])t≥0 is a Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�)-val-

ued Lévy process.
(b)	 Suppose that we have the embedding Lp2([0, T] ×ℝn−1) ↪ L0(�) for all T > 0 

and r < min{s, (n − 1)(
1

p2
−

1

p�
)} . Then (�(0,t])t≥0 is a Br

p,q
(ℝn−1, ⟨ ⋅ ⟩�)-valued Lévy 

process.
(c)	 S u p p o s e  t h a t  w e  h a v e  t h e  e m b e d d i n g 

Lp1([0, T] ×ℝn−1) ∩ Lp2 ([0, T] ×ℝn−1) ↪ L0(�) for all T > 0 as well as the esti-
mates 𝛼 < min{𝜌, p(n − 1)(

1

p�
−

1

p1
)} and r < min{s, (n − 1)(

1

p2
−

1

p�
)} . Then 

(�(0,t])t≥0 is a Br
p,q
(ℝn−1, ⟨ ⋅ ⟩�)-valued Lévy process.

{u ∈ Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�)�∀j ∈ {1,… ,N} ∶ ⟨u,�j⟩ ≤ �j}.

ℙ

� M�
j=1

�
�(tj−1,tj] ∈ {u ∈ Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�)) ∶ ∀k ∈ {1,… ,Nj} ∶ ⟨u,�j,k⟩ ≤ �j,k}

��

= ℙ

� M�
j=1

Nj�
k=1

�
�(tj−1,tj] ∈ {u ∈ Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�)) ∶ ⟨u,�j,k⟩ ≤ �j,k}

��

= ℙ

� M�
j=1

Nj�
k=1

�⟨�(tj−1,tj],�j,k⟩ ≤ �j,k
��

=

M�
j=1

ℙ

� Nj�
k=1

�⟨�(tj−1,tj],�j,k⟩ ≤ �j,k
��

=

M�
j=1

ℙ

��
�(tj−1,tj] ∈ {u ∈ Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�)) ∶ ∀k ∈ {1,… ,Nj} ∶ ⟨u,�j,k⟩ ≤ �j,k}

��
.
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Proof 

(a)	 Let � be chosen as in the assertion. Then, we have the embedding 

 so that �(0,t] takes values in Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) for t ≥ 0 . By Proposition 2.12, the 

dual space of Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) is given by B−s

p�,q�
(ℝn−1, ⟨ ⋅ ⟩�(1−p�)) . It follows 

from Lemma 3.4 that there is a sequence (𝜓k)k∈ℕ ⊂ S(ℝn−1) of Schwartz func-
tions with ‖u‖Bs

p,q
(ℝn−1,⟨ ⋅ ⟩� ) = supk∈ℕ �⟨u,�k⟩� and ‖�k‖B−s

p� ,q�
(ℝn−1,⟨ ⋅ ⟩�(1−p� )) = 1 . 

Using [14, Proposition 3] and the elementary embedding 
Bs̃
p1,q

(ℝn−1) ↪ Lp1 (ℝ
n−1) for �s > 0 , we also obtain that 

 In this case, we have that (�k)k∈ℕ is bounded in Lp1(ℝ
n−1) . Therefore, 

if t, t0 ∈ [0, T] then (�(0,t0] − �(0,t])⊗𝜓k goes uniformly in k ∈ ℕ to 0 in 
Lp1([0, T] ×ℝn−1) as t → t0 . But since we have the continuous embeddings 

 it follows that ⟨𝜂, (�(0,t0] − �(0,t])⊗𝜓k⟩ goes uniformly in k ∈ ℕ to 0 in probabil-
ity as t → t0 . Now Lemma 3.4 shows that ⟨𝜂, (�(0,t0] − �(0,t])⊗ ⋅ ⟩ goes to 0 in 
probability with respect to the space Bs

p,q
(ℝn−1, ⟨ ⋅ ⟩�) as t → t0 . Together with 

Lemma 3.5 proves the assertion.
(b)	 This can be shown with the same proof as part (a). One just has to replace 

Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) by Br

p,q
(ℝn−1, ⟨ ⋅ ⟩�) and Lp1([0, T] ×ℝn−1) by Lp2([0, T] ×ℝn−1) . 

In this case, we have 

 Except for these changes, the proof can be carried out in the same way.
(c)	 This case can again be carried out as part (a). This time, one has to replace 

Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) by Br

p,q
(ℝn−1, ⟨ ⋅ ⟩�) and Lp1([0, T] ×ℝn−1) by the intersection 

Lp1([0, T] ×ℝn−1) ∩ Lp2 ([0, T] ×ℝn−1) . Of course, in this case, both estimates 
on r and � have to be satisfied.

	�  ◻

Theorem  3.7  Consider the situation of Lemma3.5 with 1 < p < ∞ and 
s
�
= (s2,… , sn) ∈ (−∞, 0)n−1 . Let p′ be the conjugated Hölder index and 1 ≤ p1 < ∞ 

such that Lp1([0, T]
n) ↪ L0(�) . If max{s2,… , sn} <

1

p1
−

1

p�
 , then the restriction of 

(�(0,t])t≥0 to [0, T]n−1 is a Ss
�

p,p
B([0, T]n−1)-valued Lévy process.

Proof  The proof is similar as the one of Theorem 3.6. This time we use that

Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�) d

↪Bs
p,q
(ℝn−1, ⟨ ⋅ ⟩�)

B−s
p�,q�

(ℝn−1, ⟨ ⋅ ⟩𝛼(1−p�)) ↪ Lp1 (ℝ
n−1) if 𝛼 < p(n − 1)

�
1

p�
−

1

p1

�
.

Lp1([0, T] ×ℝ
n−1)

id

↪L(�)
�

↪L0(Ω,F,ℙ),

B−r
p�,q�

(ℝn−1, ⟨ ⋅ ⟩𝜌(1−p�)) ↪ Lp2(ℝ
n−1) if r < (n − 1)

�
1

p2
−

1

p�

�
.
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where ⊗𝛼p
 denotes the tensor product with respect to the p-nuclear tensor norm and 

where we used that

if −max{s2,… , sn} −
1

p�
> 𝜀 −

1

p1
 and 𝜀 > 0 . Here, the first embedding follows 

directly from the definitions. For the second embedding, we refer to [40, Sec-
tion  3.3.1]. The last embedding can for example be found in [41, Section  2.3.2, 
Remark 3]. With the embedding

at hand, the proof is analogous to the one of Theorem 3.6. 	�  ◻

Remark 3.8  Embeddings of the form

are satisfied for many different kinds of Lévy white noise, see [14, Table 1]. Accord-
ingly, Theorems 3.6 and 3.7 can be applied to them. As an example, we carry out the 
Gaussian case:

Corollary 3.9  Consider the situation of Theorem3.6 and suppose that the Lévy triplet 
is given by (0, 1, 0) so that we have the Gaussian case. Then (�(0,t])t≥0 has a modifi-
cation that is a Brownian motion with values in Bs

p,p
(ℝn−1, ⟨ ⋅ ⟩�) if

Proof  It follows from Proposition 3.3 and Theorem 2.30 that �(0,t] takes almost surely 
values in the weighted Besov space Bs̃

p,p
(ℝn−1, ⟨ ⋅ ⟩�̃) if

By Remark 2.28 we know that L0(�) = L2(ℝ
n) . Hence, if 1 < p ≤ 2 we can consider 

case (a) in Theorem 3.6 with p1 = 2 . In this case, � has to satisfy

(Ss
p,p
B([0, T]n−1))� = S−s

p�,p�,0
B([0, T]n−1)

= B
−s2
p�,p�,0

([0, T])⊗𝛼p
⋯⊗𝛼p

B
−sn
p�,p�,0

([0, T])…)

↪ Lp1([0, T])⊗𝛼p
⋯⊗𝛼p

Lp1 ([0, T])

≅ Lp1([0, T]
n−1),

B
−max{s2,…,sn}

p�,p�,0
([0, T]) ↪ B

−max{s2,…,sn}

p�,p�
([0, T]) ↪ B�

p1,p1
([0, T]; E) ↪ Lp1([0, T]; E)

(Ss
p,p
B([0, T]n−1))� ↪ Lp1 ([0, T]

n−1)

Lp1(ℝ
n) ↪ L0(�), Lp2 (ℝ

n) ↪ L0(�) or Lp1(ℝ
n) ∩ Lp2 (ℝ

n) ↪ L0(�)

s < −
n − 1

2
, 𝜌 < −n + 1.

�s < −
n − 1

2
, �𝜌 < −n + 1.

𝜌 < min

{
�𝜌, p(n − 1)

(
1

p�
−

1

p1

)}
= min

{
�𝜌, (n − 1)

( p

2
− 1

)}
< −n + 1.
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If in turn 2 ≤ p < ∞ , then we can use Theorem 3.6 (b) with p2 = 2 so that we obtain 
the condition

Altogether, we obtain the assertion. 	�  ◻

Proposition 3.10  Let n1, n2 ∈ ℕ with n1 + n2 = n , T > 0 and 
O ∈ {[0,T]n2 ,ℝn2} . Suppose that there are p, p1, p2 ∈ [1,∞) such that 
Lp1([0, T]

n1 ×O) ∩ Lp2 ([0, T]
n1 ×O) ↪ Lp(�) (for example p = 2 in the symmetric 

case, see Remark 2.28). Then the mapping

extends again to the white noise � . Here, [�1 … , �n1⟨�(0,t],�⟩](�) means that we 
apply the distributional derivatives of the trajectories of (⟨�(0,t],�⟩)t≥0 to the test 
function �.

Proof  By Proposition 3.3, it suffices to prove the result for n1 = 1 . Higher dimen-
sions then follow by iteration. Therefore, let � ∈ S0([0, T]) and � ∈ S0(O) . First, 
we define the function

This function is continuous and therefore Bochner integrable. Indeed, let 
(tk)k∈ℕ ⊂ [0,∞) such that t0 = limk→∞ tk . Then, for all s ≠ t0 , we have that

so that the continuity follows by dominated convergence. Moreover, we note that 
f ↦ ⟨�, f ⟩ defines a bounded linear operator from Lp1([0, T] ×O) ∩ Lp2([0, T] ×O) 
to Lp(Ω,F,ℙ) by Proposition 2.27. Using these two facts, we may interchange the 
order of � and the integration in the following computation:

s < min

{
�s, (n − 1)

(
1

p2
−

1

p�

)}
< −

n − 1

2
.

𝜕t𝜂(0,t] ∶ S0([0,T]
n1)⊗S0(O) → Lp(Ω,F,ℙ), 𝜓 ⊗ 𝜑 ↦ [𝜕1 … , 𝜕n1⟨𝜂(0,t],𝜑⟩](𝜓)

K ∶ [0,∞) → Lp1 ([0, T]) ∩ Lp2 ([0, T]), t ↦ [s ↦ �[0,s)(t)�
�(t)].

�[0,s)(tk)�
�(tk) → �[0,s)(t0)�

�(t0) (k → ∞)

[𝜕t⟨𝜂(0,t],𝜑⟩](𝜓) = [𝜕t⟨𝜂, �(0,t] ⊗𝜑⟩](𝜓)

= (𝜓(T) − 𝜓(0))⟨𝜂, �[0,T] ⊗𝜑⟩ − ∫
T

0

⟨𝜂, �(0,t] ⊗𝜑⟩𝜓 �(t) dt

= ∫
T

0

⟨𝜂, (�[0,T] − �(0,t])⊗𝜑⟩𝜓 �(t) dt = ∫
T

0

⟨𝜂, �[0, ⋅ )(t)⊗𝜑⟩𝜓 �(t) dt

= ∫
T

0

⟨𝜂,K(t)⊗𝜑⟩ dt =
�
𝜂,∫

T

0

K(t) dt⊗𝜑

�

=

�
𝜂,∫

T

0

�[0, ⋅ )(t)𝜓
�(t) dt⊗𝜑

�
=

�
𝜂,∫

⋅

0

𝜓 �(t) dt⊗𝜑

�

= ⟨𝜂,𝜓 ⊗ 𝜑⟩.
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 As the tensor product S0([0, T])⊗S0(O) is sequentially dense in S0([0, T] ×O) 
(see for example [2, Theorem  1.8.1]), it follows from the continuity of 
� ∶ S0([0, T] ×O) → Lp(Ω,F,ℙ) that �t�(0,t] extends to � . 	�  ◻

Theorem  3.11  Let 0 < T < ∞ and let �̃  be a Lévy white noise restricted 
to [0, T] ×ℝn−1 with Lévy triplet (� , �2, �) , Blumenthal–Getoor indices 
0 ≤ �∞ ≤ �∞ ≤ 2 and moment index 0 < pmax ≤ ∞ . Let further p ∈ (1,∞) and 
p̃ ∈ (1,∞) be fixed. 

(a)	 The Gaussian case: Suppose that � = 0 and � = 0 . If t ≤ −
1

2
 , s < −

n−1

2
 and 

𝜌 < −n + 1 , then �̃  has a modification � such that

If t > −
1

2
 , s ≥ −

n−1

2
 or � ≥ −

n−1

p
 , then we have

(b)	 The compound Poisson case: Let p ∈ (1,∞) and 1 ≤ p1 < p� < p2 < ∞ such that

Let further t ≤ −1 and t < −1 if �p < 2 , s < (n − 1)(
1

p
− 1) and 𝜌 < −

(n−1)p

min{p,pmax}
 . 

Then �̃  has a modification � such that

(c)	 The general non-Gaussian case: Let p ∈ (1, 2] ∪ 2ℕ and 1 ≤ p1 < p� < p2 < ∞ 
such that

Let further t ≤ −1 and t < −1 if �p < 2 , s < (n − 1)(
1

max{p,𝛽∞}
− 1) and 

𝜌 < −
(n−1)p

min{p,pmax}
 . Then �̃  has a modification � such that

Proof  Proposition 3.3 yields that for all t0 ∈ [0, T] we have that ⟨𝜂, �(0,t0] ⊗ ⋅ ⟩ is a 
white noise with the Lévy triplet (t0� , t0�2, t0�) . Hence, for fixed t0 ∈ [0, T] we can 
use Theorem  2.30 in order to obtain that t0 ↦ ⟨𝜂, �(0,t0] ⊗ ⋅ ⟩ almost surely takes 
values in Bs

p,p
(ℝn−1, ⟨ ⋅ ⟩�)) with certain s and � , depending on the respective case. 

Moreover, it follows from Proposition 3.10 that we can write 𝜂 = 𝜕t⟨𝜂, �(0,t] ⊗ ⋅ ⟩ . 
Hence, the Gaussian case follows from Corollary 3.9 together with the regularity 
results on Brownian motions, Theorem 2.34. The compound Poisson and the general 

ℙ
�
� ∈ Bt

p̃,∞
([0, T],Bs

p,p
(ℝn−1, ⟨ ⋅ ⟩�))� = 1.

ℙ
�
� ∉ Bt

p̃,∞
([0, T],Bs

p,p
(ℝn−1, ⟨ ⋅ ⟩�))� = 1.

Lp1([0, T] ×ℝ
n−1) ∩ Lp2([0, T] ×ℝ

n−1) ↪ L1(�).

ℙ
�
� ∈ Bt

p̃,p̃
([0, T],Bs

p,p
(ℝn−1, ⟨ ⋅ ⟩�))� = 1.

Lp1([0, T] ×ℝ
n−1) ∩ Lp2([0, T] ×ℝ

n−1) ↪ L1(�).

ℙ
�
� ∈ Bt

p̃,p̃
([0, T],Bs

p,p
(ℝn−1, ⟨ ⋅ ⟩�))� = 1.
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non-Gaussian case follow from Theorem  3.6 together with Proposition 2.33. In 
order to see this, we note that

Hence, the estimates from Theorem 3.6 do not give additional restrictions. 	�  ◻

Remark 3.12  As in Remark 2.31, one can weaken the conditions on p in the non-
Gaussian case of Theorem 3.11. More precisely, the assertion of the non-Gaussian 
case of Theorem 3.11 also holds if pmax ∈ 2ℕ and p ∈ (1,∞) or if pmax ∈ (N,N + 2) 
and p ∈ (1,∞)⧵(N,N + 2) for some N ∈ 2ℕ.

Theorem 3.13  Let 𝜀, T > 0 and let �̃  be a Lévy white noise restricted to [0, T]n and 
let p ∈ (1,∞) . Let further l = n , i.e. the smoothness parameters of spaces with dom-
inating mixed smoothness are elements of ℝn . 

(a)	 The Gaussian case: There is a modification � of �̃  such that for any

Moreover, it holds that

(b)	 The compound Poisson case: Let p ∈ (1,∞) and 1 ≤ p1 < p2 < ∞ such that

Let further t ≤ −1 and t < −1 if p < 2 and s < 1

p
− 1 . Then �̃  has a modification 

� such that

(c)	 The general non-Gaussian case: Let p ∈ (1,∞) and 1 ≤ p1 < p2 < ∞ such that

Let further t ≤ −1 and t < −1 if p < 2 and s < 1

max{p,𝛽∞}
− 1 . Then there is a 

modification � of �̃  such that

(n − 1)

(
1

p
− 1

)
≤ (n − 1)

(
1

p2
−

1

p�

)
, −

(n−1)p

min{p,pmax}
≤ p(n − 1)

(
1

p�
−

1

p1

)
.

ℙ(� ∈ S
(−

1

2
−�,…,−

1

2
−�)

p,p B([0, T]n)) = 1.

ℙ(� ∈ S
(−

1

2
,…,−

1

2
)

p,p B([0, T]n)) = 0.

Lp1 ([0, T]
n) ∩ Lp2([0, T]

n) ↪ L1(�).

ℙ
(
� ∈ S(t,…,t,s)

p,p
B([0, T]n)

)
= 1.

Lp1([0, T] ×ℝ
n−1) ∩ Lp2([0, T] ×ℝ

n−1) ↪ L1(�).

ℙ(� ∈ S(t,…,t,s)
p,p

B([0, T]n)) = 1.



Sample paths of white noise in spaces with dominating mixed… Page 33 of 38  54

Proof  First, we apply Proposition 3.3 with n1 = n − 1 . Thus, for every fixed 
t ∈ [0, T]n−1 , we have that �̃(0,t] is a one-dimensional Lévy white noise on [0,  T] 
which almost surely takes values in B1∕2−�

p,p ([0, T]) in the Gaussian case or if p < 2 
and in B1∕p−1−�

p,p ([0, T]) in the non-Gaussian case with p > 2 by Theorem  2.30. 
Now, it follows from Theorem 3.7 that for fixed (t1,… , tn−2) ∈ [0, T]n−2 the family 
(�̃(0,(t1,…,tn−1)]

)tn−1∈[0,T] is a B1∕2−�
p,p ([0, T])-valued Brownian motion in the Gaussian case 

and a Bs
p,p
([0, T])-valued Lévy process in the other two cases. By Theorem 2.34, it 

has a modification which almost surely has paths in B1∕2
p,∞([0, T]; B

1∕2−�
p,p ([0, T])) but 

not better in the Gaussian case and in Bt
p,p
([0, T]; Bs

p,p
([0, T])) in the non-Gaussian 

cases. Together with

and Proposition 2.11 we obtain the assertion for n = 2 . For general n ∈ ℕ , we iterate 
the same argument using Theorem 3.7. 	�  ◻

Remark 3.14 

(a)	 Since composition of a white noise with an Euclidean motion as in Remark 
2.24 again gives a white noise, we can even further improve Theorem 3.13. Let 
for example B(x0, r) ⊂ [0, T]n be a ball in [0, T]n and consider the restriction of 
�̃  to this ball. By Theorem 3.13 there is a modification � which takes values in 
S
(−1∕2−�,…,−1∕2−�)
p,p B(B(x0, r))) in the Gaussian case. Now we take a rotation A 

around x0 , which is a bijection on B(x0, r) and an Euclidean motion on ℝn . Thus, 
�̃◦A is again a white noise so that there is a modification �1 which also takes val-
ues in S(−1∕2−�,…,−1∕2−�)

p,p B(B(x0, r))) . Therefore, for any countable family (An)n∈ℕ 
of such rotations, there is a modification � such that for all n ∈ ℕ the rotated 
noise �◦An also takes values in S(−1∕2−�,…,−1∕2−�)

p,p B(B(x0, r))) almost surely. The 
same argument can also be applied in the non-Gaussian cases.

(b)	 Theorems 3.11 and 3.13 are probably not optimal for the general Lévy case. 
Looking for example at Theorem 3.13, it seems natural to guess that actually 

 holds.

4 � Equations with boundary noise

Now we combine our considerations with the ones on elliptic and parabolic bound-
ary value problems with rough boundary data in [20]. While our results might look 
quite involved, we would like to point out that there is actually a simple idea behind 
them: The solutions of the boundary value problems we consider here are arbitrar-
ily smooth. However, as white noise is very rough, there will be singularities at the 
boundary if one looks at the solution in spaces with higher regularity. The higher 
the smoothness in time, tangential and normal direction is, the stronger will the 

B
1

2

p,∞([0, T]; B
1

2
−�

p,p ([0, T])) ↪ B
1

2
−�

p,p ([0, T]; B
1

2
−�

p,p ([0, T]))

ℙ(� ∈ S(s,…,s)
p,p

B([0, T]n)) = 1



	 F. Hummel 54  Page 34 of 38

singularity be. One can avoid stronger singularities by trading smoothness in the dif-
ferent directions against each other to some extend. The question on how far one can 
push this will be answered by some technical conditions on the parameters involved. 
These conditions will make our results look more complicated than they actually 
are.

We should note that Proposition 4.1 on the Poisson equation already follows from 
the known results, Theorem 2.30 and [20, Theorem 6.1]. Proposition 4.3 on the heat 
equation in turn uses our new result, Theorem 3.11, and [20, Theorem 6.4]. For this 
section, it is important to keep Example 2.1 in mind. Since ⟨ ⋅ ⟩� is an admissible 
weight for any � ∈ ℝ , the Besov scale and its dual scale coincide, cf. Proposition 
2.12. Thus, we may apply the results from [20].

There are already several papers in which the singularities at the boundary of 
solutions of Poisson and heat equation with Dirichlet boundary noise are studied. 
We refer the reader to [1, 7, 10]. This is mainly done by introducing power weights 
which measure the distance to the boundary of the domain, i.e. weights of the form 
dist(x, �O)r for some r ∈ ℝ . Such weights are also useful in our approach. But in 
contrast to [1, 7, 10], we work in spaces with mixed smoothness. This allows us to 
trade smoothness in normal direction for smoothness in tangential direction. Thus, 
we can interpret the boundary conditions in a classical sense without having to rely 
on a mild solution concept.

Since we work in ℝn
+
 in this section, the power weight is given by

In this section, we sometimes add subscripts to the domains of function spaces to 
indicate with respect to which variables the spaces should understood. For exam-
ple, we write Bs1

p1,q1
(ℝt; B

s2
p2,q2

(ℝ+,xn
; B

s3
p3,q3

(ℝn−1
x�

))) where ℝt corresponds to the time 
direction, ℝ+,xn

 to the normal direction and ℝn−1
x�

 to the tangential directions. ℝn
+,x

 
will refer to the space directions.

Proposition 4.1  Let � be a Lévy white noise on ℝn−1 with values in Bs
p,p
(ℝn−1

x�
, ⟨⋅⟩�) 

for some parameters p ∈ (1,∞) , s, � ∈ ℝ , see Theorem2.30. Let j ∈ {0, 1} . Then 
for all � ∈ ℂ⧵(−∞, 0] , there is almost surely a unique solution u ∈ S

�(ℝn
+,x

) of the 
equation

which satisfies

prn|r ∶ ℝ
n
+
→ ℝ+, (x1,… , xn) ↦ |xn|r.

�u − Δu = 0 in ℝ
n
+,x

,

�j
n
u = � on ℝ

n−1
x�

,

u ∈
�

r, t ∈ ℝ, k ∈ ℕ0, q ∈ [1,∞),

r − q[t + k − j − s]+ > −1

Wk
q
(ℝ+,xn

, �prn�r; Bt
p,p
(ℝn−1

x�
, ⟨⋅⟩𝜌)).
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Moreover, for all 𝜎 > 0 , r, t ∈ ℝ , k ∈ ℕ0 and q ∈ [1,∞) such that 
r − q[t + k − j − s]+ > −1 there is a constant C > 0 such that for all 
𝜆 ∈ {z ∈ ℂ ∶ |z| > 𝜎, |argz| < 𝜋 − 𝜎} it holds almost surely that

Proof  This follows directly from combining Theorem 2.30 and [20, Theorem 6.1]. 	
� ◻

Remark 4.2  Note that Proposition  4.1 yields that u ∈ C∞(ℝn
+
) with certain singu-

larities which are measured by the weight |prn|r at the boundary. It is instructive to 
give up some generality to see how strong these singularities are in classical func-
tion spaces such as L2 . Note that the Lévy noises � on ℝn−1 which we consider here 
always satisfy � ∈ B1+�−n

2,2
(ℝn−1, ⟨⋅⟩�) for some 𝜀 > 0 . Consider for example the 

Dirichlet case, i.e. j = 0 . If we take p = q = 2 and k = t = 0 , then the restriction 
r − p[t + k − j − s]+ > −1 shows that we have to take r > 2n − 3 − 𝜀 so that our 
solution satisfies u ∈ L2,loc(ℝ

n
+, |prn|2n−3).

Proposition 4.3  Let � be a Lévy white noise on ℝt ×ℝ
n−1
x�

 with values in the space 
B
s2
p2,∞,loc

(ℝt; B
s1
p1,p1

(ℝn−1
x�

, ⟨⋅⟩�)) for some parameters p1, p2 ∈ (1,∞) , s1, s2, � ∈ ℝ , 
see Theorem 3.11. Let �̃ ∈ D(ℝ) , 𝜑 = �𝜑 ⊗ 𝟙

ℝn−1 ∈ C∞(ℝt ×ℝ
n−1
x�

) , j ∈ {0, 1} and

Then, there is almost surely a unique solution u ∈ S
�(ℝt ×ℝn

+,x
) of the equation

which satisfies

Moreover, for all (r, t0, l, k, q) ∈ P there is a constant C > 0 such that almost surely 
we have the estimate

‖u‖Wk
q
(ℝ+,xn

,�prn�r ; Bt
p,p
(ℝn−1

x�
;⟨⋅⟩�)) ≤ C��� −1−r+q(k−j)+q[t−s]+

2q ‖�‖Bs
p,p
(ℝn−1

x�
,⟨⋅⟩�).

P ∶=

{
(r, t0, l, k, q) ∶ t0, l ∈ ℝ, r ∈ (−1,∞), k ∈ ℕ0, q ∈ [1,∞),

r − q[t0 + k − j − s]+ > −1,

r − 2q(l − s2) − q(k − j) − q[t0 − s1]+ > −1

}
.

�tu + u − Δu = 0 in ℝt ×ℝ
n
+,x�

,

�j
n
u = � ⋅ � on ℝt ×ℝ

n−1
x

,

u ∈
�

(r,t0,l,k,q)∈P

Bl
p2,∞

(ℝt;W
k
q
(ℝ+,xn

, �prn�r; Bt0
p1,p1

(ℝn−1
x�

, ⟨⋅⟩�))).

‖u‖
Bl
p2,∞

(ℝt ;W
k
q
(ℝ+,xn

,�prn�r ; Bt0
p1,p1

(ℝn−1

x�
,⟨⋅⟩�))) ≤ C‖� ⋅ �‖Bs2

p2,∞
(ℝt ; B

s1
p1,p1

(ℝn−1

x�
,⟨⋅⟩�)).
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Proof  This follows directly from combining Theorem 3.11 and [20, Theorem 6.4]. 	
� ◻

Remark 4.4 

(a)	 The reason why we have to multiply � with a cutoff function in time is that we 
only have local results for the regularity in time of a space-time white noise. If 
there were global results with some weight in time, then we would be able to 
remove the cutoff function.

(b)	 As in the elliptic case, we have u ∈ C∞(ℝ ×ℝn
+
) with certain singularities at 

the boundary. This time we have s2 ≥ −1 and s1 ≥ 1 − n . Thus, if we want to 
determine a possible weight for the solution of the Dirichlet problem (i.e. j = 0 ) 
to be in a weighted L2-space, we can take k = t0 = 0 , l > 0 and p2 = q = p1 = 2 . 
The restriction (r, t0, l, k, q) ∈ P yields that if we take r > 2n + 1 , then 
u ∈ L2,loc(ℝ ×ℝ

n
+, |prn|r).
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