
Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2022) 13:85–96 
https://doi.org/10.1007/s13272-021-00551-5

ORIGINAL PAPER

Semi‑empiric noise modeling of a Cargo eVTOL UAV by means 
of system identification from flight noise measurement data

Michael Schmähl1   · Christian Rieger1 · Sebastian Speck1 · Mirko Hornung1

Received: 22 March 2021 / Revised: 27 August 2021 / Accepted: 22 September 2021 / Published online: 2 December 2021 
© The Author(s) 2021

Abstract
This publication shows the semi-empiric noise modeling of an electric-powered vertical takeoff and landing (eVTOL) 
unmanned aerial vehicle (UAV) by means of system identification from flight noise measurement data. This work aims to 
provide noise models with a compact analytical ansatz for horizontal and vertical flight which are suited for integration into a 
geographical information system. Therefore, flight noise measurement campaigns were conducted and evaluated. An existing 
noise model ansatz is adapted to the eVTOL UAV under consideration and noise models are computed from the measure-
ment data using the output error method. The resulting models are checked for plausibility by comparing them to technical 
literature. The horizontal flight noise model is subjected to a correlation analysis and the influence of meteorological effects 
are examined. To achieve a higher level of accuracy in future noise modelings, an optimization of the microphone positions 
as well as the flight trajectory is carried out.

Keywords  Noise modeling · Flight noise measurement · UAV · eVTOL · Urban air mobility · Output error method

1  Introduction

The use of aerial vehicles necessarily leads to a certain 
amount of noise emissions. Noise models are required to 
quantify this noise impact and therefore they are a precon-
dition to consider noise in planning processes. Urban air 
mobility (UAM) challenges political decision-makers and 
public authorities, as it will, in addition to road traffic, lead 
to further traffic noise emissions in the urban area. For this 
reason, flight noise models are required to represent the 
noise impact of UAM aircraft movements.

For conventional air traffic noise in the vicinity around 
airports, multiple software tools exist. The AEDT is a well-
known example which is qualified for legislation processes 
with the focus on noise-protection zones, land-use planning, 
and consulting [1]. Cargo eVTOL (electric powered verti-
cal takeoff and landing) UAVs (unmanned aerial vehicle) 
operate in much closer distances to urban areas. Established 
tools that are suitable for computing noise contours of such 
aircraft on geodata of urban areas do not yet exist, but due 

to the progress of UAM applications there is a need for such 
tools in the near future.

A possible approach to meet this need is to integrate UAV 
noise models into existing geo information system (GIS) 
software. As existing GIS software is not primarily suited 
for noise computations, the complexity of the noise mod-
els should be kept as low as possible. In many cases cargo 
eVTOL UAVs operate at flight Mach numbers smaller than 
0.1 and their range of audibility is significantly smaller than 
1 km and, thus, the Doppler effect, meteorological effects on 
sound propagation and sound wave run times are negligible.

Traditional rotorcraft noise models might generally be 
eligible for reproducing eVTOL UAV noise. A prominent 
example of such a tool is NASA’s Rotorcraft Noise Model 
(RNM) [2] which is based on sound hemispheres that can, 
e.g., be based on ground noise measurement data. Meteoro-
logical effects on the sound propagation are considered in 
this approach which simulates the sound propagation from 
the source to terrain data in a time-based manner. Another 
example is FRAME [3] which is a parametric semi-empir-
ical helicopter noise model capable of resolving transient 
maneuver noise. The noise model identification in this 
approach is based on de-Dopplerized noise data, and propa-
gation effects are neglected. A simple but yet robust semi-
empiric method for noise footprint modeling of UAVs can 
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be found in [4]. Like in FRAME the model identification 
is based on de-Dopplerized noise data and meteorological 
effects on sound propagation are neglected. Additionally, 
this approach is neglecting sound wave run times and, thus, 
can be characterized as an emission noise model. Due to the 
fact that this model is parametric is adjustable to arbitrary 
UAVs if noise data for model identification exists.

This paper presents an adaption and extension of the noise 
modeling approach first published in [4] to an eVTOL UAV 
which considers vertical and horizontal flight phases. The 
model aims to predict the A-weighted instantaneous over all 
sound pressure level (OASPL). Due to the simplifications 
this approach involves, it is well suited for integration into 
a GIS software.

The paper starts with a description of the mathematical 
modeling approach, explaining the basic model ansatz and 
the mathematical background of the system identification 
procedure. Furthermore, the acquisition and processing of 
noise and flight measurement data are described. In a next 
step, the adaption of the model to the eVTOL UAV under 
consideration in this work and the corresponding noise 
model results is presented. An error analysis is conducted 
and based on a correlation analysis of the synchronized noise 
and flight measurement data, an optimization of the micro-
phone positions and the flight trajectory is presented.

2 � Modeling approach

The intended application of the noise model demands a com-
pact analytical modeling approach. The UAV states need to 
be considered as parameters in this approach. This ensures 
that noise emissions are predictable in each flight state. For 
these reasons a semi-empiric noise model, which is deter-
mined from flight noise measurement data by means of sys-
tem identification, is well suited, as suggested in [4]. The 
mentioned approach is a point source emission model which 
is capable of predicting the maneuver-specific emitted noise.

2.1 � Semi‑empiric noise model by means of system 
identification of flight noise measurement data

The modeling approach according to [4] consists of an ana-
lytical equation which has the structure of the formula for 
sound pressure level (SPL) addition:

The result of (1) corresponds to the sound pressure level 
Li at observer position i which is emitted depending on the 
distance between observer and UAV d , azimuth � and polar 

(1)

Li
�
d,𝜑, 𝜗, z⃗, p⃗

�
= 10 ⋅ log10

⎛⎜⎜⎝
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�
ldirectivity+lthrust+lspreading

�1∕10
+ 10

�
Lbackground

�1∕10 ⎞⎟⎟⎠

angle � of the UAV noise emission, the UAV states z⃗ and the 
free parameter vector �⃗p (Fig. 1). The following holds for the 
different sound pressure level contributions:

The sound pressure level of the UAV LUAV consists of 
three contributions:

The model approach combines formula describing the 
physical relationships of sound generation and sound propa-
gation with UAV states and free parameters which are to 
be determined by system identification. Thus, the modeling 
approach is a gray box approach.

Furthermore, [4] suggests computing the parameters with 
the output error method (OEM) making use of a maximum 
likelihood estimator (MLE) which shows high robustness 
against normally distributed measurement noise.

To preserve compactness and efficiency of the model, its 
noise predictions underlie the following restrictions:

•	 Meteorological influence on sound propagation is 
neglected.

•	 Free field noise is predicted, and sound reflection and 
scattering are neglected,

•	 The Doppler effect on sound propagation is neglected.
•	 The run time difference of sound signals between UAV 

and observer is neglected.

(2)ldirectivity = f
(
𝜑, 𝜗, p⃗

)

(3)lthrust = f
(
z⃗, p⃗

)

(4)lspreading = f
(
d, p⃗

)

(5)Lbackground = f
(
p⃗
)

(6)LUAV = ldirectivity + lthrust + lspreading

Fig. 1   Schematic representation, picture taken from [15] and edited
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2.2 � Mathematic foundations of OEM and MLE

The foundations of OEM and MLE can be found in [6]. 
The OEM determines the parameter vector �⃗p such that the 
residuum between noise measurement data at microphone 
position i and noise model prediction Li tends to a minimum. 
For this reason, it is also called ‘response curve fitting’.

The MLE estimates the parameter vector in such a way 
that a vanishing noise model deviation

shows the highest probability for all points of time t  . The 
MLE possesses several desirable properties of an estima-
tor. It is asymptotically unbiased, consistent, normally dis-
tributed and efficient. In case of statistically independent 
flight noise measurement data, it can be expected that, with 
increasing number of measurement data points, the estima-
tion of �⃗p converges to the true value [6, p. 83]. As a precon-
dition the measurement noise is required to be statistically 
independent as well [6, p. 84]. Furthermore, the input data, 
which is d , � , � and z⃗ in the case of a noise model, needs to 
be sufficiently and adequately distributed and statistically 
independent to excite the full spectrum of system behavior 
regarding noise emission [6, p. 83f.].

In this context, two requirements for a model postulate 
can be deduced: ideally, it needs enough degrees of freedom 
to be able to reproduce all physical effects that the measure-
ment data contains to avoid process noise [6, p. 124].

Furthermore, the parameters are to be chosen in such a 
way that they are linearly independent and that they suffi-
ciently determine the model [6, p. 377]. The statistic accu-
racy of how well the model matches the measurement data 
is determined by the parameter error covariance matrix [6, 
p. 111]. The matrices’ diagonal elements are a measure of 
the parameter estimation’s accuracy, and its other elements 
are a measure of the degree of linear dependency among the 
parameter estimates.

3 � Noise data acquisition

Obtaining reliable MLE estimations presumes high-qual-
ity data acquisition. During project “Demueb Phase 3”, to 
meet these requirements, a noise measurement system was 
deployed at the IAD. The three measuring stations recorded 
the noise immissions with capacitive microphones of type 
‘Microtech Gefell MK221/MV203’ and digitalized it in a 
sound card. In parallel GPS receivers measured the micro-
phone positions and recorded the GPS-exact time. Hereby, 
an exact spatial and time-wise characterization of the noise 
immissions was made possible. The measurement micro-
phone was directly located above a steel measurement plate 

(7)Li,model

(
p⃗, t

)
− Li,measurement data(t) = 0

to exclude the influence of uncontrolled reflections (Fig. 2). 
Free field sound was calculated according to [7]. The meas-
urement microphone was calibrated with a class 1 calibrator 
before the measurements. To exclude the influence of the 
measuring system temperature on the data, all components 
of the system were sufficiently warmed up. Regular recali-
brations between the measurements did not manifest signifi-
cant deviations.

Within this work, noise data of the cargo eVTOL UAV 
“Manta Ray” by Phoenix-Wings was acquired. This aircraft 
had an average cruise speed of 23.6 m/s during the measure-
ment campaign. It has a wing span of 3.53 m and a maxi-
mum takeoff mass of 35 kg [8].

The positioning of the measuring stations was improved 
manually during first measurement flights to acquire as many 
relevant flight states as possible.

Additionally, one of the measuring stations recorded air 
temperature, humidity as well as wind direction and wind 
speed.

Within this work several measurement campaigns were 
conducted together with a project partner during which two 
eVTOL UAVs in different sizes, configurations and modi-
fications were investigated. Figure 3 shows the Manta Ray 
UAV. Its noise model is the subject of this publication.

While horizontally flying by the measuring stations, 
acoustic data of various emission angles of the eVTOL UAV 
are recorded. For an increased number of measuring points, 
the fly-bys were conducted for various distances, flight alti-
tudes and flight directions. During these flights, speed was 
varied in the range of 22–30 m/s resulting in a nondimen-
sional power consumption range of 0.9–1.4.

During hover flight, the same was achieved through hov-
ering at various positions. Yawing slowly at one position did 
allow to acquire the noise emissions for all azimuth angles at 
this position. In case the position is held during flight, this is 
referred to as hover flight in the following. In case of climb-
ing and sinking, it is referred to as vertical flight.

Fig. 2   All three measuring stations (meteorology measuring equip-
ment not displayed)
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The pre-processing of the noise measurement data for 
the noise model calculation through system identification 
comprises the following steps: synchronization with flight 
data, third octave band decomposition, A-weighting of the 
noise data, computation of A-weighted overall sound pres-
sure level as well as translation of the time vector from 
microphone immission time to UAV emission time. All in 
all, two complete Manta Ray flights were used for the noise 
modeling work. Figure 4 displays the waterfall diagram of 
the second flight. During horizontal flight, the blade pass-
ing frequency and its parallelly shifted harmonics can be 
recognized as ‘parallel lines’ upward of 160 Hz. The nature 
of the noise is predominantly tonal. While vertically climb-
ing and sinking, these ‘tonal lines’ are still present while 
the noise exhibits an all in all stronger broadband nature. 
In the middle of the flight, a jet aircraft takeoff took place 
at a nearby airport, and this event is clearly visible in the 
waterfall diagram.

4 � Modeling

4.1 � Model approach determination

The first step of the model determination is to adjust Eq. (1) 
to the UAV under consideration. lthrust is based on the loga-
rithmic correlation between shaft power and sound pressure 
level [9, p. 32], [4, p. 3]. ldirectivity is mainly influenced by 
installation effects. This term was formulated as a polyno-
mial that models the characteristic of the UAV noise direc-
tivity with a minimum number of parameters (Eq. 3). This 
directivity is characterized by a sound pressure level which 
increases for decreasing polar angles and by the existence 
of a sound pressure level maximum for one distinct azimuth 
value, see (Fig. 5).

Equation (1) was adjusted to give it a more favorable 
shape with regard to OEM mathematics:

Merging the directivity and the thrust term avoids that 
one of them is set to zero by the OEM. The single model 
approach terms are formulated as follows:

(8)Li
�
d,𝜑,𝜗, z⃗, p⃗

�
= 10 ⋅ log10

⎛⎜⎜⎜⎝

10(ldirectivity+thrust+lspreading)
1
∕10

+10(Lbackground)
1
∕10

⎞⎟⎟⎟⎠

(9)
ldirectivity+thrust

(
𝜑,𝜗,Pel, p⃗

)
= p1 ⋅ log

(
Pel

)
⋅

(
1 + p2

⋅ sin
(
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)
⋅

(
𝜗 +

𝜋

2

))
⋅

(
1 + p4 ⋅ sin

(
𝜗 − p5

))

Fig. 3   Phoenix-wings eVTOL UAV, Manta Ray”

Fig. 4   Waterfall diagram [SPL in dB(A)] of one complete flight last-
ing 14 min

Fig. 5   Blue points: all horizontal flight noise measurement points 
corrected to a reference distance of 30 m; surface: best fit polynomial 
surface of fifth order
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z⃗ reduces to the scalar quantity Pel . This quantity corre-
sponds to the nondimensional electric power consumption 
of the UAV which is dominated by the power consumption 
of the propeller. A parameter error covariance analysis did 
reveal that a further increase in the number of parameters in 
term ldirectivity + thrust leads to a higher level of linear depend-
ence among the parameters. This is undesirable with regards 
to the model quality.

4.2 � Result analysis

The model approach was applied to the horizontal flight as 
well as to the climbing and the sinking vertical flight. During 
large parts of the flight time horizontal flight is taking place, 
thus, a sufficient database for OEM based parameter estima-
tion exists for this flight phase. The vertical flight models are 
mainly based on the vertical takeoffs and landings that were 
flown by the autopilot at the beginning and the end of each 
flight. As this data does not sufficiently cover the emission 
angle space, further measurement data segments of manu-
ally flown vertical flights had to be included. During these 
manual flights high propeller speed variations occurred. It 
happened frequently that the pilot had to counter steer wind 
gusts in order to hold the position of the UAV during hover 
flight which lead variations in the propeller speed. Because 
of the contamination with these variations, the manual meas-
urement data was to large parts not usable for the modeling 
process.

The parameter values of the three flight noise models are 
listed in the table below. The magnitude of the background 
noise is concordantly estimated to a value of 40 dB (A). 
Thus, this value is consistent and agrees with the observation 
made in the noise measurement data.

(10)lspreading
�
d, p⃗

�
= −p6 ⋅ 20 ⋅ log

⎛
⎜⎜⎜⎝

����
�������⃗rNED
i

����
40m

⎞
⎟⎟⎟⎠

(11)Lbackground
(
p⃗
)
= p7∕dB

Figure 6 shows that the horizontal flight model well 
resolves the trend of the noise measurement data. Model 
deviations occur regularly and reach orders of magnitude 
of circa 5 dB which is to be expected as the measured SPLs 
are relatively close to the SPL of the background noise (see 
p7 in Table 1). 

Figure 7 shows a two-dimensional representation of the 
sound pressure level which covers the entire noise emission 
angle space. Thereby, it represents the directivity of the UAV 
noise emission.

Comparison with Fig. 5 points out that this directivity 
is in good agreement with that which can be observed in 
the noise measurement data. According to theory the sound 
pressure level that a propeller emits in an undisturbed air 
stream is negligible in axis directions and reaches its maxi-
mum under an angle of 120° relative to the propeller axis [9, 
p. 6] and it is axially symmetric.

The value of p3 has a negative sign. Inserting this value 
in formula (3) exhibits that the sound emission reaches its 
maximum under an angle of 74° relative to the propeller 
axis. This finding contradicts the theory of a propeller in an 
undisturbed air stream, but agrees with [10]. The mentioned 
source shows a pusher propeller whose inflow is disturbed 
by a pylon. Only from emission angles smaller than 90° 
relative to the propeller axis on there is a significant sound 
pressure level increase compared to the undisturbed inflow at 
medium thrust. This observation confirms the plausibility of 
the horizontal flight noise model and suggests that interac-
tion noise from the disturbed propeller inflow is causal for 
the sound pressure level maxima which point by 16° into 
the flight direction.

From 0 down to −�∕2 , decreasing polar angle values lead 
to decreasing sound pressure values which also contradicts 
the theory of a rotationally symmetric propeller noise emis-
sion. However, an aeroacoustic study of a pusher propeller 
configuration in [11] demonstrates how a disturbed propel-
ler inflow, as it is observed for the Manta Ray UAV, leads 
to a significant loss of axis symmetry in propeller noise 
emission.

Fig. 6   Noise measurement data vs. noise model (horizontal flight 
model)

Table 1   Parameter values of noise models

Parameter Horizontal flight Vertical flight 
(climb)

Verti-
cal flight 
(sink)

p1 13.409 16.726 12.722
p2 0.176 0.090 0.146
p3 −0.280 0.137 0.085
p4 −0.365 −0.151 −0.513
p5 1.049 0.293 0.411
p6 0.939 1.000 0.800
p7 40.393 40.162 40.278
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Compared to the horizontal flight models, the vertical 
flight models reproduce the trend of the noise measurement 
data less accurately. Figure 8 shows a vertical takeoff phase 
until that point of time when the pusher propeller fan speed 
is not negligible anymore. This marks the beginning of the 
transition. Long lasting deviations of 3–10 dB occur and 
the sound maximum at 7 s is not reproduced by the model.

From Fig. 9 is can be seen that the climbing vertical flight 
model has no distinct directionality. The before mentioned 
strongly directional theoretic propeller noise emission is 
valid for conventional propellers with moderate blade tip 
Mach numbers and flight speeds [9, p. 6]. Under these oper-
ating conditions, mainly tonal noise is generated. In vertical 
and hover flight this model is less valid, as effects like blade 
vortex interaction appear in a more turbulent flow regime 
that leads to additional noise which has a rather broadband 
nature [12].

5 � Error analysis

5.1 � Potential sources of error

High deviations of noise models can be caused by the noise 
measurement data. If measurement noise, disturbances or the 
measurement data are not statistically independent, the prop-
erties of an estimator, as summarized in chapter 2.2, do not 
hold. In this case an estimation cannot be assumed to be bias 
free, a wrong estimate is the consequence. The same is true 
for a sufficient and adequate variation of the control inputs in 
the measurement data. In the sense of a noise model distance 
d , azimuth � and polar angle � of the UAV noise emission 
and Pel are referred to as control inputs. Within the modeling 
process only noise measurement data sequences that are free 
from disturbing noise events were used.

Further reasons for high deviations can be traced back 
to the model approach and its parametrization. If the model 
approach fails to resolve physical effects which are present 
in the measurement data then this will lead to process noise. 
An over- or underdetermined parametrization can be a rea-
son for that as well.

5.2 � Vertical flight models

Process noise is the main cause for the high deviations of 
the vertical flight models. The complexity of noise emission 
in vertical and hover flight is high due to the high propel-
ler speed variations and due to the fact that four propellers 
contribute to the emissions. Phase offsets of the propel-
lers can, e.g., lead to interference patterns; thus, a model 
approach which does not account for propeller speed and 

Fig. 7   Sound pressure level at a reference distance of 30 m and a non-
dimensionalized electric power consumption of 1.1 (horizontal flight 
model)

Fig. 8   Noise measurement data vs. noise model (climbing vertical 
flight model)

Fig. 9   Sound pressure level at a reference distance of 30 m and a non-
dimensionalized electric power consumption of 6.5 (climbing vertical 
flight model))
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phase-dependent noise interference patterns necessar-
ily leads to process noise. The method of iterative model 
approach postulation, model parameter determination via 
OEM and assessment of the model quality did not lead to 
any accuracy increase in the vertical flight models anymore. 
For this reason, a fundamental investigation is necessary to 
clarify the effects that dominate the sound emission in verti-
cal and hover flight of eVTOL UAVs. Requirements for a 
future model approach are to be derived from these findings.

5.3 � Horizontal flight model

The horizontal flight model is in much better agreement with 
the noise measurement data than the vertical flight models. 
The existing deviations were analyzed and presented in the 
following.

5.3.1 � Analysis of an exemplary flight segment

The trajectory of the horizontal flight is a recurring loop pat-
tern. To identify flight segments with significant noise model 
deviations, one such segment is examined in the following 
(Fig. 10). The measured wind speed averages 13.0 km/h and 
the nondimensional electric power consumption is above 1.3 
during large parts of the flight. At the beginning of the seg-
ment, the UAV flies in the easterly direction away from the 
microphones. The course of the bank angle curve (Fig. 11) 
shows that the UAV is in turning flight during t = 5—27 s 
und t = 46 – 63 s. The sound pressure level curve (Fig. 12) 
exhibits straight flight noise model residuals being signifi-
cantly smaller than the turning flight noise model residuals, 
e.g., during the second turn a deviation of more than 5 dB 
occurs which is more than 8 s long. From the offset trajec-
tory at decreasing electric power consumption (Fig. 13) and 

Fig. 10   Overall flight trajectory (blue), examined segment (black) and 
microphone positions (in ENU coordinates)

Fig. 11   Bank angle

Fig. 12   SPL curve

Fig. 13   Electric power consumption and propeller speed (nondimen-
sional)

Fig. 14   Ground speed and altitude
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still increasing velocity (Fig. 14), it can be seen that the UAV 
was driven away by wind in this second turn. A comparison 
of the noise model deviations with an identical trajectory 
segment at a wind speed of 7.6 km/h shows no wind drift 
but, the noise model residuals increase during turning flight 
in a similar way. Consequently, wind is not the cause for the 
noise model residuals in turning flight in (Fig. 12). All in 
all, the noise model follows the measurement data trend in 
turning flight as well, but in comparison to straight flight it 
cannot follow the higher sound pressure level fluctuations.

During turning flight, a non-axial propeller inflow which 
also deviates from the straight flight situation due to rud-
der deflections is to be assumed. In combination with the 
higher sound pressure level fluctuations, these findings 
plead for increased interaction noise during turning flight. 
As the noise model approach does not account for this addi-
tional kind of noise, the resulting noise model deviations 
are to be interpreted as process noise in the sense of system 
identification.

5.3.2 � Correlation analysis

In “Analysis of an exemplary flight segment” turns are iden-
tified as flight segments with increased noise model devia-
tions; hence, the question is in how far there are systematic 
relationships between noise measurement data, noise model 
deviations, UAV-states, distance and noise emission angles.

A correlation analysis of the measurement data underly-
ing the noise modeling is conducted to clarify this ques-
tion. The vector of the statistic variable �⃗X consists of eight 
components: UAV speed, propeller speed, electric power 
consumption, band angle, distance UAV to microphone, 
polar angle and azimuth of noise emission and noise model 
deviation. The correlation matrix

with sample covariance

and sample variance

calculates from the number of discrete data samples Nt . 
The nondiagonal entries Corr

(
Xi,Xj

)
 with i ≠ j exhibit val-

ues between −1 and 1. At a value of −1 and 1 a negative, 
respectively, positive linear relationship between the statistic 
variables under consideration exists and at a value of 0 there 

(12)Corr
(
X⃗
)
=

Cov
(
Xi,Xj

)
√

Var
(
Xi

)
⋅ Var

(
Xj

) s

(13)Cov
(
Xi,Xj

)
=

1

Nt

⋅

Nt∑
t=1

(
Xi(t) − Xi

)
⋅

(
Xj(t) − Xj

)

(14)Var
(
Xi

)
=

1

Nt

⋅

Nt∑
t=1

(
Xi(t) − Xi

)2

is no relationship. The result of the analysis is displayed in 
Fig. 15. The correlation matrix shows the obvious relation-
ship between UAV speed, propeller speed and electric power 
consumption. 

Furthermore, a strong correlation between bank angle, 
distance and polar angle of sound emission exists which can 
be explained by the fact that the microphones are located in 
the middle of the overall trajectory. During turning flight, 
there is in most cases an average distance of 400 m between 
the UAV and the microphones; thus, the bank angle is cou-
pled to the polar angle of noise emission in these cases. In 
agreement with Sect. 5.3.1 these three quantities are weakly 
correlated with the noise model deviation and thereby statis-
tically prove that it increases in turning flight.

Both, distance and polar angle of noise emission are con-
sidered in the noise model and consequently the flight noise 
measurement data is not statistically independent. As this is 
a precondition of the MLE, a loss of accuracy in the noise 
modeling is to be expected.

The statistical dependency of the measurement data 
reduces the number of linearly independent parameters 
which the MLE can determine in a noise model. This limi-
tation of the model approach in its ability to reproduce the 
actual system behavior necessarily promotes process noise.

5.3.3 � Atmospheric damping

Meteorological factors can influence the noise measurement 
data. To keep the influence of wind at a minimum, measure-
ments were only conducted on low-wind days. Maximum 
wind speeds of 10 km/h were targeted.

When sound waves propagate in air, molecular absorp-
tion leads to a sound pressure level decrease that depends on 
run length, frequency and humidity. This effect is referred 
to as atmospheric damping in the following. The frequency 
dependent damping values are calculated according [13, p. 
197f] for the meteorological conditions of the second flight 
(Fig. 16). For the blade passing frequency of 160 Hz and 
its first harmonic, the influence of atmospheric damping 
is significantly lower than 1 dB at distances of 400 m. In 
contrast to that, atmospheric damping gains importance for 
higher harmonics and broadband noise. The noise measure-
ment data of the second flight is corrected with the curve 
displayed in Fig. 17 and a noise model is determined. Com-
pared to the noise model based on not corrected noise data, 
no significant change in the model prediction is observed. 
In the time interval from 50 to 60 s the model deviation 
decreases to values of 1–2 dB. To exclude possible process 
noise through atmospheric damping in future modelings, a 
noise measurement correction should be considered, espe-
cially if run lengths of several hundreds of meters occur.  
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6 � Optimization

The existing dependency between distance and polar emis-
sion angle in the flight noise measurement data leads to 
the question, in how far optimal microphone positions and 
flight trajectories can be obtained in future flight noise 
measurements.

In the optimization study, the maximum absolute cor-
relation coefficient Corr

(
Xi,Xj

)
 between the quantities elec-

tric power consumption, emission angle, distance and bank 
angle is minimized. The minimization of correlations is 
interpreted as maximization of the statistical independence 
of the resulting measurement data. Thus, minimization of 
the correlations provides the mathematical requirements for 
an exact parameter estimation of the MLE (chapter 2.2) and 
can be understood as a maximization of the possible model 
quality. The bank angle is currently not part of the noise 
model but must be included in future modelings because 
of its meaning in turning flight. Thus, it is included in the 
optimization.

The microphone displacements yield six optimization 
variables (OV). Each microphone can be displaced in two 
spatial directions until a maximum value in either positive 
or negative direction. The overall trajectory consists of three 
repetitions of a horizontal flight pattern, the altitudes of these 
three trajectory segments correspond to three more OV. The 
optimization is conducted using a genetic algorithm.

The base solution corresponds to an altitude of 60 m and 
a microphone positioning that is equivalent to the one that 
was chosen for the Manta Ray measurement during this 
work project.

The maximum correlation coefficient is 0.89 which 
agrees with the value of the horizontal flight model pre-
sented in chapter 4.1.

Fig. 18 displays the optimization results in dependence 
of the maximum possible microphone displacement. Dur-
ing the first study, the altitudes are fixed to a value of 60 m 
and during the following two studies altitudes of 50–150 m, 
respectively, 35–200 m are allowed. In each optimization 
result, at least one microphone is placed at the optimiza-
tion variable border and the three flight altitudes are always 
distributed to the maximum and minimum possible values. 
The target function value decreases with increasing micro-
phone displacement as well as with increasing spread of the 
altitudes.

Fig. 15   Correlation matrix

Fig. 16   Atmospheric damping per 100  m run length at 11  °C and 
45% rel. humidity

Fig. 17   SPL curve of corrected and not corrected measurement data 
and noise model (from corrected data)

Fig. 18   Result of the optimization study
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A comparison of the optimization results marked in 
Fig. 18 shows that the correlation between bank angle and 
distance decreases with increasing microphone displacement 
as the microphones are not located in the center of the over-
all trajectory anymore (Fig. 19, 20, 21, 22).

These results point out that in future flight noise mod-
elings high statistical independence of the measurement data 
should mainly be reached through high spreads of altitudes. 
High microphone displacements are to be looked at criti-
cally. On the one hand, high displacements lead to disad-
vantages in handling during measurement campaigns. On 
the other hand, the signal to noise ratio limits the maxi-
mum distance between UAV and microphones depending 
on the sound pressure levels of the UAV specific noise and 
the background noise. For this reason, measuring arrange-
ments for future modelings should be optimized considering 

a distance restriction which accounts for the signal to noise 
ratio and practical aspects of microphone positioning.

7 � Summary

Semi-empiric noise models were determined for horizontal 
flight as well as for climbing and decreasing vertical flight of 
an eVTOL UAV making use of a maximum likelihood esti-
mator. As a compact analytical model approach was used, 
these models are suited for the integration into a geographi-
cal information system.

The horizontal flight model exhibits a significant direc-
tionality in noise emission and is capable of following the 
trend of the noise measurement data. A correlation analysis 

Fig. 19   Maximum microphone displacement 50 m, altitude 35–200 m

Fig. 20   Maximum microphone displacement 50 m, altitude 35–200 m

Fig. 21   Maximum microphone displacement 200  m, altitude 
50–150 m

Fig. 22   Maximum microphone displacement 200  m, altitude 
50–150 m



95Semi‑empiric noise modeling of a Cargo eVTOL UAV by means of system identification from flight…

1 3

shows that the deviations mainly occur in turning flight. 
Interaction noise can explain these deviations.

The vertical flight models show a less pronounced direc-
tionality in noise emission. They reproduce the measurement 
data trend in a lesser extent than the horizontal flight mod-
els. As a reason for this, the more complex physics of noise 
generation and propagation of four propellers is identified.

Statistical independence in the measurement data’s 
control inputs are a precondition for the applicability of a 
maximum likelihood estimator. To provide this condition 
for future modelings, an optimization of microphone posi-
tions and altitudes of the single trajectory segments was con-
ducted. The target was to minimize the maximum covariance 
in the control inputs. The results show that flying at different 
altitudes without changing the microphone positions reduces 
the maximum covariance already significantly.

8 � Outlook

By achieving optimal microphone positions and flight trajec-
tories regarding statistical independence of the noise meas-
urement data, higher dimensional and, thus, more accurate 
flight modelings obtained by system identification are to be 
expected in future.

Furthermore, it is planned to conduct numerical aeroa-
coustic computations making use of a hybrid computational 
fluid dynamics (CFD)/Ffowcs-Williams–Hawkings(FW–H) 
approach. In this methodology, aeroacoustic sound sources 
are resolved by high-fidelity 3D Navier–Stokes CFD. A 
FW–H formulation of Lighthill’s Acoustic Analogy [14] 
enables computation of the sound pressure in the acoustic 
far field. This approach promises to clarify the sound genera-
tion and propagation in vertical as well as hover flight which 
enables the development of suitable noise models.
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