
Calc. Var. (2021) 60:149
https://doi.org/10.1007/s00526-021-02016-3 Calculus of Variations

The antiferromagnetic XY model on the triangular lattice:
chirality transitions at the surface scaling

Annika Bach1 ·Marco Cicalese2 · Leonard Kreutz3 · Gianluca Orlando4

Received: 23 November 2020 / Accepted: 13 May 2021 / Published online: 2 July 2021
© The Author(s) 2021

Abstract
We study the discrete-to-continuum variational limit of the antiferromagnetic XY model on
the two-dimensional triangular lattice. The system is fully frustrated and displays two families
of ground states distinguished by the chirality of the spin field.We compute the�-limit of the
energy in a regime which detects chirality transitions on one-dimensional interfaces between
the two admissible chirality phases.

Mathematics Subject Classification 49J45 · 49M25 · 82B20 · 82D40

1 Introduction

Ordering problems in magnetism have been extensively studied by both the physics and
the mathematics communities. Researchers have been attracted by the rich phase diagrams
and critical behaviors of magnetic models which are often the result of difficult-to-detect
optimization effects taking place at several energy and length scales. The reason for such a
complex behavior can be traced back to the presence of many competing mechanisms which
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give rise to frustration. Frustration in the context of spin systems (here, as it is customary in
the statistical mechanics literature, we will often refer to magnets as to spins) refers to the
situationwhere spins cannot find anorientation that simultaneouslyminimizes all the pairwise
exchange interactions. Such interactions are said to be ferromagnetic or antiferromagnetic
if they favour alignment or antialignment, respectively. Often frustration occurs in those
systems where spins are subject to conflicting short range ferromagnetic and long range
antiferromagnetic interactions, as when modulated phases appear (see, e.g. the expository
paper [37]). For antiferromagnetic lattice systems, that is systems of lattice spins subject
to only antiferromagnetic interactions, frustration can also stem from the relative spatial
arrangement of spins induced by the geometry of the lattice. In this case frustration is often
referred to as geometric frustration. As a consequence of geometric frustration magnetic
compounds show complex geometric patterns that induce often unexpected effects whose
understanding is one of the primary subjects in statistical and condensed matter physics as
it can help to better explain the nature of phase transitions in magnetic materials [30,32,
33]. From a mathematical perspective, several interesting questions can be addressed. In
this paper we are interested in the variational coarse graining of the system, in the line of
what is by now addressed to as the “discrete-to-continuum variational analysis of discrete
systems”.Within this line of investigation the analysis of spin systems turns out to be a difficult
nonlinear optimization problem requiring the combination of several methods ranging from
simple discrete optimization procedures to sophisticated techniques in geometric measure
theory and the calculus of variations. While models where frustration is induced by the
competition of ferromagnetic/antiferromagnetic interactions have been already studied from
a variational perspective (see, e.g. [1,12,20,24,28,36]), what we present here is the first
discrete-to-continuum result for a geometrically frustrated system.

We carry out the discrete-to-continuum variational analysis (at zero temperature) of a
geometrically frustrated spin model in a specific energetic regime and we characterize the
effective behavior of its low-energy states, that is states that can deviate from the global
minimizers (ground states) by a certain small amount of energy. More precisely we consider
a 2-dimensional nearest-neighbors antiferromagnetic planar spin model on the triangular
lattice, cf. [30, Chapter 1]. Despite being considered one of themost elementary geometrically
frustrated spin models, its variational analysis turns out to be quite a delicate task. More in
detail, we let ε > 0 be a small parameter and we consider the triangular lattice Lε with
spacing ε (see Subsection 2.2 for the precise definition). To every spin field u : Lε → S

1 we
associate the energy ∑

εσ,εσ ′∈Lε

|σ−σ ′|=1

〈u(εσ ), u(εσ ′)〉 , (1.1)

where 〈·, ·〉 denotes the scalar product. (Below, the energy will be restricted to bounded
regions in the plane.) This model is antiferromagnetic since the interaction energy between
two neighboring spins is minimized by two opposite vectors. Such an order in the magnetic
alignment, also known as antiferromagnetic order, is frustrated by the geometry of the trian-
gular lattice, which inhibits a configuration where each pair of neighboring spins are opposite
or, equivalently,where each interaction isminimized. This suggests that the antiferromagnetic
XY model depends substantially on the geometry of the lattice, which affects the structure
of the ground states, the choice of the relevant variables and of the energy scalings. Notice,
for example, that on a square lattice the system would not be frustrated, as opposite vectors
distributed in a checkerboard structureminimize each interaction. In fact, on the square lattice
a straightforward change of variable allows one to recast the antiferromagnetic XY model
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into the ferromagnetic XY model [2, Remark 3], which is driven by an energy with neigh-
boring interactions −〈u(εσ ), u(εσ ′)〉. The latter model has been thoroughly investigated in
the last decade both on the square lattice [2,3,5,21,22] and on the triangular lattice [18,29].
Independently of the geometry of the lattice, it has been proved that spin fields that deviate
from the ground states by an amount of energy which diverges logarithmically as ε vanishes
form of topological charges (vortex-like singularities of the spin field as those arising in the
Ginzburg-Landau model [10,35]), when subject to boundary conditions or external magnetic
fields. In [9] we show how such a phenomenon also occurs in the antiferromagnetic XY
model on the triangular lattice.

We now come back to our model (1.1). In order to identify the relevant variable of the
system, we first need to characterize the ground states of the antiferromagnetic XY system
in (1.1). To this end it is convenient to rearrange the indices of the sum in (1.1) and to recast
the energy as a sum over all triangular plaquettes T with vertices εi, ε j, εk ∈ Lε

∑

T

(〈u(εi), u(ε j)〉 + 〈u(ε j), u(εk)〉 + 〈u(εk), u(εi)〉)

= 1

2

∑

T

(|u(εi) + u(ε j) + u(εk)|2 − 3
)

. (1.2)

In each triangle T the energy is minimized (and is equal to − 3
2 ) if and only if u(εi) +

u(ε j) + u(εk) = 0, namely, when the vectors of a triple (u(εi), u(ε j), u(εk)) point at the
vertices of an equilateral triangle. By the S1-symmetry, every rotation of a minimizing triple
(u(εi), u(ε j), u(εk)) isminimizing, too. The ground states in thismodel feature an additional
symmetry, usually referred to asZ2-symmetry: triple obtained by from aminimizing triple via
a permutation of negative sign as (u(εi), u(εk), u(ε j)) is also minimizing. This determines
two families of ground states, i.e., spin fields for which the energy is minimized in each
plaquette, see Fig. 1. These two families can be distinguished through the chirality, a scalar
which quantifies the handedness of a certain spin structure. To define the chirality of a spin
field u in a triangle T , we need a consistent ordering of its vertices εi , ε j , εk. We assume
that εi ∈ L1

ε , ε j ∈ L2
ε , εk ∈ L3

ε , where L1
ε , L2

ε , L3
ε are the sublattices as in Fig. 1, and we set

(see (2.1) for the precise definition)

χ(u, T ) = 2

3
√
3

(u(εi)×u(ε j) + u(ε j)×u(εk) + u(εk)×u(εi)) ∈ [−1, 1] ,

where the symbol× stands for the cross product. We denote by χ(u) ∈ L∞(R2) the function
equal to χ(u, T ) on the interior of each plaquette T . The ground states are exactly those
configurations u that satisfy either χ(u) ≡ 1 or χ(u) ≡ −1, cf. Remark 2.2.

In this paper we analyze the energy regime at which the two families of ground states
coexist and at the same time the energy of the system concentrates at the interface between
the two chiral phases {χ = 1} and {χ = −1}. We fix � ⊂ R

2 open, bounded, and with
Lipschitz boundary and we consider the energy (1.2) restricted to �, i.e., computed only on
plaquettes of Lε contained in �. We refer the energy to its minimum by removing the energy
of the ground states (− 3

2 for each plaquette) and we divide it by the number of lattice points
in� (of order 1/ε2). We obtain (up to a multiplicative constant) the energy per particle given
by

Eε(u) =
∑

T⊂�

ε2|u(εi) + u(ε j) + u(εk)|2.
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upos
ε uneg

ε

ε

L1
ε L2

ε

L3
ε

Fig. 1 A ground state uposε with positive chirality and a ground state unegε with negative chirality. Any other
ground state of the system is obtained by composing one of these two configurations with a constant rotation.
In the center: three points of the sublattices L1

ε , L2
ε , and L3

ε in black, gray, and white, respectively

We are interested to the asymptotic behavior of the energy above as ε → 0 on sequences
of spin fields uε : Lε → S

1 that can deviate from ground states yet satisfying a bound
Eε(uε) ≤ Cε. To this end we define the energy Fε(u) := 1

ε
Eε(u) and study sequences of

spin fields with equibounded Fε energy. Due to the S1-symmetry, the energy at this regime
cannot distinguish ground states with the same chirality, so that the relevant order parameter
of the model is, in fact, not the spin field but its chirality: in Proposition 3.1 we prove
that a sequence (uε) satisfying Fε(uε) ≤ C admits a subsequence (not relabeled) such that
χ(uε) → χ strongly in L1(�) for some χ ∈ BV (�; {−1, 1}), i.e., the admissible chiralities
in the continuum limit are −1 and 1 and the chirality phases {χ = −1} and {χ = 1} have
finite perimeter in �. This suggests that the model shares similarities with systems having
finitely many phases, such as Ising models [1,17,34] or Potts models [23]. However, a crucial
difference consists in the fact that in our case the variable that shows a phase transition is not
the spin variable itself, but the chirality, which depends on the spin field in a nonlinear way.
This is a source of difficulties that will be explained below.

To describe the asymptotic behavior of the system it is convenient to introduce the func-
tionals depending only on functions χ ∈ L1(�) defined byFε(χ) := inf{Fε(u) : u : Lε →
S
1 such that χ = χ(u, T ) on every T ⊂ �} (equal to +∞ if χ is not the chirality of a spin

field). The main result in this paper is Theorem 2.5, where we prove that the �-limit of Fε

with respect to the L1-convergence is an anisotropic surface energy given by

F (χ) =
∫

Jχ

ϕ(νχ ) dH1 for χ ∈ BV (�; {−1, 1}) ,

extended to +∞ otherwise in L1(�), where Jχ is the interface between {χ = −1} and
{χ = 1} and νχ is the normal to Jχ . The density ϕ is given by the following asymptotic
formula

ϕ(ν) = lim
ε→0

min
{
Fε(u, Qν) : u = uposε on ∂+

ε Qν , u = unegε on ∂−
ε Qν

}
, (1.3)

where Qν is the square with one side orthogonal to ν, uposε and unegε are the ground states
depicted in Fig. 1, and ∂±

ε Qν are a discrete version of the top/bottom parts of ∂Qν . Asymp-
totic formulas like (1.3) are common in discrete-to-continuum variational analyses and are
often used to represent �-limits of discrete energies [6,8,12,14,15,31]. However, proving an
asymptotic lower bound with the density (1.3) for this model requires additional care and is
the technically most demanding contribution of this paper. We conclude this introduction by
describing the main difficulties that arise in the proof.
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Via a classical blow-up argument (see Proposition 4.1) we obtain an asymptotic lower
bound with the surface density

ψ(ν) = inf

{
lim inf

ε→0
Fε(uε, Q

ν) : χ(uε) → χν in L1(Qν)

}
, (1.4)

where χν is the pure-jump function which takes the values χν(x) = ±1 for ±〈x, ν〉 > 0.
Hence, the proof of the asymptotic lower bound boils down to the proof of the inequality
ψ(ν) ≥ ϕ(ν). To obtain the latter inequality,we need tomodify sequences (uε)withχ(uε) →
χν in L1(Qν) without increasing their energy in such a way that they attain the boundary
conditions required in (1.3). A common approach to deal with this modification consists in
selecting (via awell-known slicing/averaging argument due toDeGiorgi) a low-energy frame
contained in Qν and close to ∂Qν where the sequence can bemodified using a cut-off function
that interpolates to the boundary values. In our problem, instead, a cut-off modification of
χ(uε) may generate a sequence of functions that are not chiralities of spin fields (and thus
have infinite energyFε). Consequently, we have to operate directly on the sequence (uε), on
whose convergence we have no information due to the invariance of the system under rotation
of the spin field (the S1-symmetry discussed above). We turn however the S1-symmetry to
our advantage to define the needed modification. Inside a one-dimensional slice of Lε , a
spin field close to a ground state in one triangle can be slowly rotated to reach any other
ground state with the same chirality by paying an amount of energy proportional to the
energy in the starting triangle (see Lemma 4.5). This one-dimensional construction can then
be reproduced in the whole Qν starting from triangles in a low-energy frame close to ∂Qν

in such a way that the modified spin field attains the fixed ground states uposε and unegε at the
(discrete) boundary. However, for this procedure to be successful, the usual slicing/averaging
method to find a low-energy frame close to ∂Qν is not enough. We need to improve it and
to find a frame with a better (smaller) energy bound. To this end, we proceed as follows.
In Lemma 4.3 we show that ψ(ν) can be equivalently defined using in place of Qν any
rectangle coinciding with Qν along the interface, but with arbitrarily small height (similar
results appeared in different contexts, e.g. [16,17,19,25–27,31]). Hence the energy of any
sequence (uε) admissible for (1.4) concentrates arbitrarily close to the jump set of χν , i.e.,
the interface {〈x, ν〉 = 0}. (This is, in general, not true for discrete systems, as observed
in [11].) With this result at hand, in Lemma 4.4 we can apply the averaging method with
the advantage of knowing that in most of the space the total energy is going to vanish, thus
finally deducing the existence of a frame close to ∂Qν with the wished (small enough) energy
bound. Even at this point, to reproduce the one-dimensional interpolation along this frame
requires additional care. In fact, to conclude the argument one still needs to prove that the
winding number of the spin field in the low-energy frame can be properly controlled (Step 3
of Proposition 4.2).

2 Setting of the problem and statement of themain result

2.1 General notation

Throughout this paper � ⊂ R
2 is an open, bounded set with Lipschitz boundary. For every

A ⊂ R
2 measurable we denote by |A| its 2-dimensional Lebesgue measure. With H1 we

indicate the 1-dimensional Hausdorff measure in R
2. Given two points x, y ∈ R

2 we use
the notation [x; y] := {λx + (1 − λ)y : λ ∈ [0, 1]} for the segment joining x and y. The
set S1 := {ν ∈ R

2 : |ν| = 1} is the set of all 2-dimensional unit vectors. For every such
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vector ν = (ν1, ν2) ∈ S
1 we denote by ν⊥ := (−ν2, ν1) ∈ S

1 the unit vector orthogonal to ν

obtained by rotating ν counterclockwise by π/2. Given v,w ∈ S
1 we denote by 〈v,w〉 their

scalar product and by v×w = −〈v,w⊥〉 their cross product. We denote by ι the imaginary
unit in the complex plane. It will be often convenient to write vectors in S1 as exp(ιθ), θ ∈ R.
We denote by Rν

�,h the rectangle of length � > 0 and height h > 0 with two sides orthogonal

to ν ∈ S
1 given by

Rν
�,h := {x ∈ R

2 : |〈x, ν⊥〉| < �/2 , |〈x, ν〉| < h/2} ,

extending the definition to the case � = +∞ by setting Rν∞,h := {x ∈ R
2 : |〈x, ν〉| < h/2}.

Given ρ > 0 we define the cube centered at the origin with side length ρ and one face
orthogonal to ν by Qν

ρ := Rν
ρ,ρ . For ρ = 1 we simply write Qν instead of Qν

1. By Lν :=
{x ∈ R

2 : 〈x, ν〉 = 0} we denote the line orthogonal to ν passing through the origin, while
H ν+ := {x ∈ R

2 : 〈x, ν〉 ≥ 0} and H ν− := R
2 \ H ν+ stand for the two half spaces separated by

Lν . Given x0 ∈ R
2 we set Qν

ρ(x0) := x0 + Qν
ρ , R

ν
�,h(x0) := x0 + Rν

�,h , L
ν(x0) := x0 + Lν

and H ν±(x0) := x0 + H ν±.

2.2 Triangular lattices and discrete energies

In this paragraph we define the discrete energy functionals we consider in this paper. To this
end we first define the triangular lattice L. It is given by

L := {z1ê1 + z2ê2 : z1, z2 ∈ Z} ,

with ê1 = (1, 0), and ê2 = 1
2 (1,

√
3). For later use, we find it convenient here to introduce

ê3 := 1
2 (−1,

√
3) as a further unit vector connecting points of L and to define three pairwise

disjoint sublattices of L, denoted by L1, L2, and L3 (see Fig. 1), by

L1 := {z1(ê1 + ê2) + z2(ê2 + ê3) : z1, z2 ∈ Z} , L2 := L1 + ê1 , L3 := L1 + ê2 .

Eventually, we define the family of triangles subordinated to the lattice L by setting

T (R2) := {T = conv{i, j, k} : i, j, k ∈ L, |i − j | = | j − k| = |k − i | = 1} ,

where conv{i, j, k} denotes the closed convex hull of i, j, k. It is also convenient to introduce
the families of upward/downward facing triangles

T ±(R2) := {
T = conv{i, j, k} ∈ T (R2) : i ∈ L1, j ∈ L2, k ∈ L3, ±( j − i)×(k − i) > 0

}
.

For ε > 0, we consider rescaled versions of L and T (R2) given by Lε := εL and
Tε(R

2) := εT (R2), T ±
ε (R2) := εT ±(R2). With this notation every T ∈ Tε(R

2) has vertices
εi, ε j, εk ∈ Lε . The same notation applies to the sublattices, namely Lα

ε := εLα for α ∈
{1, 2, 3}. Given a Borel set A ⊂ R

2 we denote by Tε(A) := {T ∈ Tε(R
2) : T ⊂ A}

the subfamily of triangles contained in A. Eventually, we introduce the set of admissible
configurations as the set of all spin fields

SFε := {u : Lε → S
1} .

In the case ε = 1 we set SF := SF1. For u ∈ SFε we now define the discrete energies
Fε(u) as follows: for every T ∈ Tε(R

2) we set

Fε(u, T ) := ε|u(εi) + u(ε j) + u(εk)|2 ,
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and we extend the energy to any Borel set A ⊂ R
2 by setting

Fε(u, A) :=
∑

T∈Tε(A)

Fε(u, T ) .

If A = � we omit the dependence on the set and write Fε(u) := Fε(u,�).

2.3 Chirality

In this section we introduce the relevant order parameter to analyze the asymptotic behavior
of Fε, namely the chirality χ . More in detail, given u ∈ SFε and T = conv{εi, ε j, εk} ∈
Tε(R

2) with i ∈ L1, j ∈ L2 and k ∈ L3 we set

χ(u, T ) := 2

3
√
3

(u(εi)×u(ε j) + u(ε j)×u(εk) + u(εk)×u(εi)) . (2.1)

Moreover, we define χ(u) : � → R by setting χ(u)(x) := χε(u, T ) if x ∈ int T . Given
u ∈ SFε and T = conv{εi, ε j, εk} ∈ Tε(R

2) it is sometimes convenient to rewrite χε(u, T )

and Fε(u, T ) in terms of the angular lift of u. More precisely, let θ(εi), θ(ε j), θ(εk) ∈ R be
such that u(εα) = exp(ιθ(εα)), α ∈ {i, j, k}. Then

χ(u, T ) = 2

3
√
3

(
sin

(
θ(ε j) − θ(εi)

)+ sin
(
θ(εk) − θ(ε j)

)+ sin
(
θ(εi) − θ(εk)

))
,

(2.2)

Fε(u, T ) = 3ε + 2ε
(
cos

(
θ(ε j) − θ(εi)

)+ cos
(
θ(εk) − θ(ε j)

)+ cos
(
θ(εi) − θ(εk)

))
.

(2.3)

The next lemma is useful to relate the chirality and the energy in a triangle.

Lemma 2.1 Let f , g : [0, 2π)×[0, 2π) → R be given by

f (θ1, θ2) := sin(θ1) + sin(θ2 − θ1) − sin(θ2) ,

g(θ1, θ2) := cos(θ1) + cos(θ2 − θ1) + cos(θ2) .

Then f and g have the following properties:

(i) f (θ1, θ2) ∈ [− 3
√
3

2 , 3
√
3

2 ] for every θ1, θ2 ∈ [0, 2π). Moreover, f (θ1, θ2) ∈
{− 3

√
3

2 , 3
√
3

2 } if and only if g(θ1, θ2) = − 3
2 .

(ii) f (θ1, θ1) = f (θ1, 0) = f (0, θ2) = 0 for every θ1, θ2 ∈ [0, 2π). In addition, for every
θ2 ∈ (0, 2π) there holds f ( · , θ2) > 0 on (0, θ2) and f ( · , θ2) < 0 on (θ2, 2π).

Proof Since there obviously holds f (θ1, θ1) = f (θ1, 0) = f (0, θ2) = 0, we only need

to prove (i) and the second part of (ii). To prove (i) we show that min f = − 3
√
3

2 and

max f = 3
√
3

2 and we relate minimizers and maximizers of f to minimizers of g. To this end
we start computing

∇ f (θ1, θ2) =
(
cos(θ1) − cos(θ2 − θ1)

cos(θ2 − θ1) − cos(θ2)

)
and ∇g(θ1, θ2) =

(− sin(θ1) + sin(θ2 − θ1)

− sin(θ2 − θ1) − sin(θ2)

)
.

A direct calculation shows that ∇ f (θ1, θ2) = 0 for some (θ1, θ2) ∈ (0, 2π)×(0, 2π) if and
only if

θ1 = θ2

2
+ z1π and θ2 = θ1

2
+ z2π , for some z1, z2 ∈ {0, 1} . (2.4)
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For (θ1, θ2) ∈ (0, 2π)×(0, 2π) this can only be satisfied if

(θ1, θ2) = ( 2π3 , 4π
3 ) or (θ1, θ2) = ( 4π3 , 2π

3 ) . (2.5)

Then, since f = 0 on the boundary of [0, 2π)×[0, 2π), we deduce that

min[0,2π)×[0,2π)
f = f

((
4π

3
,
2π

3

))
= −3

√
3

2
and

max[0,2π)×[0,2π)
f = f

((
2π

3
,
4π

3

))
= 3

√
3

2
.

Moreover, g(( 2π3 , 4π
3 )) = g(( 4π3 , 2π

3 )) = − 3
2 , which shows one direction of the second

part of (i). To prove the opposite direction, let us assume that (θ1, θ2) ∈ (0, 2π)×(0, 2π)

is such that g((θ1, θ2) = min g. Then necessarily ∇g(θ1, θ2) = 0, from which we deduce
that (θ1, θ2) must satisfy (2.4) (the possibility that θ1 = π or θ2 = π are ruled out by the
fact that g( · , π) = g(π, · ) = −1). The pairs (θ1, θ2) satisfying (2.4) are either (θ1, θ2) =
( 2π3 , 4π

3 ) or (θ1, θ2) = ( 4π3 , 2π
3 ) and in both cases it holds g(θ1, θ2) = − 3

2 . This yields
that min g = − 3

2 and that the opposite direction of (i) holds, upon noticing that g ≥ −1 on
the boundary of [0, 2π)×[0, 2π). To complete the proof of (ii) let us fix θ2 ∈ (0, 2π) and
consider f ( · , θ2) as a function of θ1. Then (2.4) shows that ∂ f

∂θ1
(θ1, θ2) = 0 if and only if

θ1 ∈ {θpos2 , θ
neg
2 }, where

θ
pos
2 := θ2

2
∈ (0, θ2) , θ

neg
2 := θ2

2
+ π ∈ (θ2, 2π) . (2.6)

Moreover, upon extending f ( · , θ2) to an open interval containing (0, 2π), we get

∂ f

∂θ1
(0, θ2) = ∂ f

∂θ1
(2π, θ2) = 1 − cos(θ2) > 0 and

∂ f

∂θ1
(θ2, θ2) = cos(θ2) − 1 < 0 .

In particular, from the intermediate value theoremwe deduce that f ( · , θ2) is strictly increas-
ing on (0, θpos2 ) and strictly decreasing on (θ

pos
2 , θ2). Since in addition f (0, θ2) = f (θ2, θ2) =

0 this implies that f ( · , θ2) > 0 on (0, θ2). Arguing similarly on the intervals (θ2, θ
neg
2 ) and

(θ
neg
2 , 2π) we obtain f ( · , θ2) < 0 on (θ2, 2π), which proves (ii). ��

Remark 2.2 Using the expressions of χ(u, T ) and Fε(u, T ) in (2.2)–(2.3) one can show that
χ(u, T ) ∈ [−1, 1] and χ(u, T ) ∈ {−1, 1} if and only if Fε(u, T ) = 0, i.e., configurations
that maximize or minimize χ( · , T ) are at the same time minimizers for Fε( · , T ). This
follows from Lemma 2.1 (i) upon noticing that in (2.2)–(2.3) it is not restrictive to assume
that θ(εi) = 0, since both χε and Fε are invariant under rotations in u. We observe that also
a quantitative version of this property holds. Namely, a continuity argument shows that for
every δ > 0 there exists Cδ > 0 such that for every u ∈ SFε and every T ∈ Tε(R

2) the
following implication holds:

χ(u, T ) ∈ (−1 + δ, 1 − δ) �⇒ Fε(u, T ) ≥ Cδε . (2.7)

Remark 2.3 As a consequence of Lemma 2.1 (ii) one obtains the following characterization
of the sign of the chirality. Let θ(ε j) ∈ [0, 2π) be the angle between u(εi) and u(ε j)
and let θ(εk) ∈ [0, 2π) the angle between u(εi) and u(εk). Then χ(u, T ) > 0 if and
only if θ(ε j) < θ(εk) and χ(u, T ) < 0 if and only if θ(ε j) > θ(εk). In other words, a
positive chirality on T = conv{εi, ε j, εk} corresponds to a counterclockwise ordering of
(u(εi), u(ε j), u(εk)) on S

1, while a negative chirality corresponds to a clockwise ordering
on S

1 (Fig. 2).
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εi εj

εk

u(εi)

u(εj)

u(εk) εi εj

εk

u(εi)

u(εj)
u(εk)

Fig. 2 On the left: a configuration of vectors with positive chirality which shows the criterion explained in
Remark 2.3. On the right: negative chirality

3ε

ν

∂+
ε Qν

∂−
ε Qν

Fig. 3 Discrete boundary of the square Qν

2.4 Statement of themain result

Notice that χ(u) ∈ L1(�). We then extend Fε to L1(�) by setting

Fε(χ) = inf{Fε(u) : u ∈ SFε , χ(u) = χ} , (2.8)

with the convention inf ∅ = +∞.

Remark 2.4 If χ ∈ L1(�) is such that χ = χ(u) for some u ∈ SFε , then the infimum in
(2.8) is actually a minimum.

To state the main theorem we need to introduce two ground states, that we name uposε , unegε ∈
SFε which have a uniform chirality equal to +1 and −1, respectively. They are given by

uposε (x) :=

⎧
⎪⎨

⎪⎩

exp(ι0) if x ∈ L1
ε ,

exp(ι2π/3) if x ∈ L2
ε ,

exp(ι4π/3) if x ∈ L3
ε ,

unegε (x) :=

⎧
⎪⎨

⎪⎩

exp(ι0) if x ∈ L1
ε ,

exp(ι4π/3) if x ∈ L2
ε ,

exp(ι2π/3) if x ∈ L3
ε ,

for every x ∈ Lε. We also set upos := upos1 , uneg := uneg1 . The ground states upos and uneg

will be used as boundary conditions on the discrete boundary of the square Qν given by (see
Fig. 3)

∂±
ε Qν = {x ∈ Lε : ± 〈ν, x〉 ≥ 3ε , dist(x, ∂Qν) ≤ 3ε} . (2.9)
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Theorem 2.5 The energiesFε : L1(�) → [0,+∞] defined by (2.8)�-converge in the strong
L1(�)-topology to the functional F : L1(�) → [0,+∞] given by

F (χ) :=
⎧
⎨

⎩

∫

Jχ
ϕ(νχ ) dH1 if χ ∈ BV (�; {−1, 1}) ,

+∞ otherwise in L1(�) ,

(2.10)

where ϕ : S1 → [0,+∞) is defined by

ϕ(ν) := lim
ε→0

min
{
Fε(u, Qν) : u = uposε on ∂+

ε Qν, u = unegε on ∂−
ε Qν

}
. (2.11)

The proof of Theorem 2.5 will be carried out in Sections 4 and 5 , where we prove
separately the asymptotic lower bound (Proposition 4.1) and the asymptotic upper bound
(Proposition 5.1), respectively.

Remark 2.6 By standard arguments in the analysis of asymptotic cell formulas (see e.g. [4,
Proposition 4.6]) one can show that the limit in (2.11) actually exists, so that ϕ is well
defined. Note that, by the symmetries of the interaction energies, there holds ϕ(−ν) = ϕ(ν).
Moreover, one can show (cf. [4, Proposition 4.7]) that the one-homogeneous extension of ϕ

is convex, hence continuous.

Remark 2.7 By a scaling argument we note that for all ρ > 0 there holds

ϕ(ν) = lim
ε→0

1

ρ
min

{
Fε(u, Qν

ρ) : u = uposε on ∂+
ε Qν

ρ , u = unegε on ∂−
ε Qν

ρ

}
, (2.12)

where ∂±
ε Qν

ρ are defined according to (2.9) with Qν
ρ in place of Qν .

3 Compactness

Proposition 3.1 Let (uε) be a sequence of spin fields uε ∈ SFε satisfying

sup
ε

Fε(uε) < +∞ . (3.1)

Then there exists χ ∈ BV (�; {−1, 1}) such that up to subsequences χ(uε) → χ in L1(�).

To prove Proposition 3.1 we first estimate from below the energy of a spin field u on two
neighboring triangles where χ(u) changes sign. Given a triangle T ∈ Tε(R

2) we introduce
the class Nε(T ) of its neighboring triangles, namely those triangles in Tε(R

2) that share a
side with T . More precisely, we define

Nε(T ) := {T ′ ∈ Tε(R
2) : H1(T ∩ T ′) = ε} . (3.2)

Lemma 3.2 Let u ∈ SFε and suppose that T pos, T neg ∈ Tε(R
2) with T neg ∈ Nε(T pos) are

such that χ(u, T pos) ≥ 0 and χ(u, T neg) ≤ 0. Then Fε(u, T pos ∪ T neg) ≥ 5
3ε.

Proof It is not restrictive to assume thatT pos = conv{εi, ε j, εk} andT neg = conv{εi, ε j ′, εk}
with i ∈ L1, j, j ′ ∈ L2 and k ∈ L3. Moreover, we can assume that u(εi) = ê1,
that is, θ(εi) = 0 according to the notation in (2.2)–(2.3). Then, using the function
g : [0, 2π) × [0, 2π) → R defined in Lemma 2.1, we can rewrite Fε(u, T pos ∪ T neg) as

Fε(u, T pos ∪ T neg) = 6ε + 2ε
(
g (θ(ε j), θ(εk)) + g

(
θ(ε j ′), θ(εk)

))
.
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Moreover, thanks to Lemma 2.1 (ii) the chirality constraint reads 0 ≤ θ(ε j) ≤ θ(εk) ≤
θ(ε j ′). Thus, the statement is proved if we show that for all θ1, θ2, θ3 ∈ [0, 2π) with
0 ≤ θ1 ≤ θ2 ≤ θ3 there holds

6 + 2 (g(θ1, θ2) + g(θ3, θ2)) ≥ 5

3
. (3.3)

We first observe that (3.3) trivially holds if θ2 = 0 or θ2 = π . Indeed, if θ2 = 0, then
also θ1 = 0, hence g(θ1, θ2) + g(θ3, θ2) = 4 + 2 cos(θ3) ≥ 2, thus (3.3) is satisfied. If,
instead, θ2 = π , then a direct computation shows that g(θ1, θ2) + g(θ3, θ2) = −2 for every
θ1, θ3 ∈ [0, 2π), which directly gives (3.3).

Suppose now that θ2 ∈ (0, 2π) \ {π} and let us minimize g( · , θ2) on the two intervals
[0, θ2] and [θ2, 2π). As in the proof of Lemma 2.1 we obtain that ∂g

∂θ1
(θ1, θ2) = 0 if and only

if θ1 ∈ {θpos2 , θ
neg
2 } with θ

pos
2 , θneg2 as in (2.6). Moreover, we have

∂2g

∂θ21
(θ

pos
2 , θ2) = −2 cos

(
θ2

2

)
and

∂2g

∂θ21
(θ

neg
2 , θ2) = 2 cos

(
θ2

2

)
. (3.4)

Thus, either θ
pos
2 ∈ (0, θ2) or θ

neg
2 ∈ (θ2, 2π) is a minimizer for g( · , θ2), depending on

wether θ2 ∈ (0, π) or θ2 ∈ (π, 2π). Suppose first that θ2 ∈ (π, 2π). Then (3.4) implies
that g( · , θ2) is minimized in [0, θ2) by θ

pos
2 , while in [θ2, 2π) it attains its minimum on the

boundary, that is at θ2. This yields

g(θ1, θ2) + g(θ3, θ2) ≥ g(θpos2 , θ2) + g(θ2, θ2) = 2 cos

(
θ2

2

)
+ 3 cos(θ2) + 1 , (3.5)

for every θ1 ∈ [0, θ2] and θ3 ∈ [θ2, 2π). Using the equality cos(θ2) = 2 cos2( θ2
2 ) − 1, the

estimate in (3.5) can be continued via

g(θ1, θ2) + g(θ3, θ2) ≥ 6 cos2
(

θ2

2

)
+ 2 cos

(
θ2

2

)
− 2 . (3.6)

Since the mapping t �→ 6t2 + 2t − 2 admits its minimum at t = −1/6, from (3.6) we finally
deduce that

g(θ1, θ2) + g(θ3, θ2) ≥ −13

6
,

which is equivalent to (3.3). Eventually, the case θ2 ∈ (0, π) follows similarly by exchanging
the roles of θ1 and θ3 and replacing θ

pos
2 by θ

neg
2 . ��

Based on Lemma 3.2 we now prove Proposition 3.1.

Proof of Proposition 3.1 We divide the proof in two steps. First, we construct a sequence (χ̂ε)

of auxiliary functions χ̂ε : � → {−1, 1} whose level sets {χ̂ε = 1} have uniformly bounded
perimeter. Second, we show that the constructed auxiliary functions are close in L1(�) to
the original chirality functions χ(uε) defined according to (2.1).
Step 1. (Compactness of the auxiliary functions) Let ε > 0 and define χ̂ε : � → {−1, 1}
by

χ̂ε :=
{
1 if χ(uε) > 0 ,

−1 otherwise.

We claim that for every �′ ⊂⊂ � we have

H1(∂{χ̂ε = 1} ∩ �′) ≤ CFε(uε) . (3.7)

123



149 Page 12 of 36 A. Bach et al.

Then the uniform bound (3.1) together with [7, Theorem 3.39 and Remark 3.37] yields the
existence of a function χ ∈ BV (�; {−1, 1}) and a subsequence (not relabelled) such that
χ̂ε → χ in L1(�). To prove (3.7) it is convenient to consider the class of triangles

T pos
ε := {T ∈ Tε(�) : χ(uε, T ) > 0 and χ(uε, T

′) ≤ 0 for some T ′ ∈ Nε(T ) ∩ Tε(�)} ,

whereNε(T ) is as in (3.2). Let �′ ⊂⊂ �. By the very definition of χ̂ε and of χ(uε) we have

∂{χ̂ε = 1} ∩ �′ ⊂ ∂

⎛

⎝
⋃

T∈T pos
ε

T

⎞

⎠ ,

provided
√
3ε < dist(�′, ∂�). Estimating the H1-measure of the latter set in terms of the

cardinality of T pos
ε we thus infer

H1(∂{χ̂ε = 1} ∩ �′) ≤ 3ε#T pos
ε . (3.8)

The last term in (3.8) can be bounded using Lemma 3.2. Indeed, from Lemma 3.2 we deduce
that

5

3
ε#T pos

ε ≤
∑

T∈Tε(�)

∑

T ′∈Nε(T )∩Tε(�)

Fε(uε, T ∪ T ′) ≤ 3Fε(uε), (3.9)

where the additional factor 3 comes from the fact that each triangle is counted 3 times. Thus,
(3.7) follows from (3.8) and (3.9).
Step 2. (Closeness to χ(uε)) We claim that for every δ > 0 and every �′ ⊂⊂ � there holds

lim
ε→0

∣∣{|χ̂ε − χ(uε)| > δ} ∩ �′∣∣ = 0 , (3.10)

i.e., the functions χ̂ε−χ(uε) converge to 0 locally inmeasure. Since ‖χ̂ε−χ(uε)‖∞ ≤ 2, this
implies that (χ̂ε − χ(uε)) → 0 in L1(�), which concludes the proof of the Proposition 3.1
thanks to Step 1. It remains to prove the claim (3.10). Let �′ ⊂⊂ � and δ > 0 and let Cδ be
given by (2.7). Setting

T δ
ε := {T ∈ Tε(�) : χ(uε, T ) ∈ (−1 + δ, 1 − δ)} ,

for ε sufficiently small we deduce that

|{|χ̂ε − χ(uε)| > δ} ∩ �′| ≤
√
3

4
ε2#T δ

ε ≤
√
3

4
εC−1

δ

∑

T∈T δ
ε

Fε(uε, T ) ≤
√
3

4
εC−1

δ Fε(uε) .

Hence, (3.10) follows from the uniform bound (3.1).
��

4 Lower bound

In this sectionwe start proving themain result of our paper, namelyTheorem2.5 by presenting
the optimal lower bound estimate on the energyFε, the technically most demanding part of
our contribution. We begin with a blow-up argument that gives us a first asymptotic lower
bound.

Proposition 4.1 Let Fε be as in (2.8). Then for every χ ∈ L1(�) we have

�- lim inf
ε→0

Fε(χ) ≥ F (χ) ,
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whereF is given by (2.10) and the �- lim inf is with respect to the strong topology in L1(�).

Proof Let χε → χ in L1(�). We assume that lim infε Fε(χε) < +∞, otherwise we have
nothing to prove. Moreover, upon extracting a (not relabeled) subsequence we can assume
the liminf to be a limit and hence supε Fε(χε) < +∞. In view of Remark 2.4 we can find
a sequence of spin fields uε ∈ SFε with χ(uε) = χε and Fε(χε) = Fε(uε). In particular,
supε Fε(uε) < +∞. Thus, from Proposition 3.1 we deduce that χ ∈ BV (�; {−1, 1}). As a
consequence, to prove the statement of the proposition it suffices to show that

lim inf
ε→0

Fε(uε) ≥
∫

Jχ

ϕ(νχ ) dH1, (4.1)

where ϕ is as in (2.11). To prove (4.1) we consider the sequence of non-negative finite Radon
measures με given by

με :=
∑

T∈Tε(�)

ε|uε(εi) + uε(ε j) + uε(εk)|2δεi ,

where δεi denotes the Dirac delta in εi . From the condition supε Fε(uε) < +∞ it follows
that supε με(�) < +∞, hence there exists a non-negative finite Radon measure μ such that

up to subsequences (not relabeled) με
∗
⇀μ. By the Radon-Nikodým Theorem the measure μ

can be decomposed in the sum of two mutually singular non-negative measures as

μ = μ jH1 Jχ + μs .

Then, to establish (4.1) it is sufficient to show that

μ j (x0) ≥ ϕ(νχ (x0)) for H1-a.e. x0 ∈ Jχ , (4.2)

where νχ (x0) denotes the measure theoretic normal to Jχ at x0. To verify (4.2) we choose
x0 ∈ Jχ satisfying

(i) μ j (x0) = dμ

dH1 Jχ
(x0) = lim

ρ→0

μ(Qν
ρ(x0))

ρ
, where we have set ν := νχ (x0),

(ii) lim
ρ→0

1

ρ2

∫

Qν
ρ (x0)∩Hν+(x0)

|χε(x) − 1| dx = 0 = lim
ρ→0

1

ρ2

∫

Qν
ρ (x0)∩Hν−(x0)

|χε(x) + 1| dx ,

andwe notice that (i) and (ii) are satisfied forH1-a.e.x0 ∈ Jχ thanks to theBesicovitch deriva-
tion Theorem and the definition of approximate jump point, respectively. Moreover, since μ

is a finite Radonmeasure, we can choose a sequence ρn → 0 along whichμ(∂Qν
ρn

(x0)) = 0.

Thanks to [7, Proposition 1.62 (a)], the convergence με
∗
⇀μ together with (i) implies that

μ j (x0) = lim
n→+∞

μ(Qν
ρn

(x0))

ρn
= lim

n→+∞ lim
ε→0

με(Qν
ρn

(x0))

ρn

≥ lim
n→+∞lim sup

ε→0

1

ρn
Fε(uε, Q

ν
ρn

(x0)) , (4.3)

where the last inequality follows from the positivity of the energy. Notice that for every n ∈ N

there exist sequences (ρε
n) and (xε

0) with limε ρε
n = ρn , limε xε

0 = x0, xε
0 ∈ Lε , and

Tε(Q
ν
ρε
n
(xε

0)) ⊂ Tε(Q
ν
ρn

(x0)) . (4.4)
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In fact, if we write x0 in terms of the basis ê1, ê2 as x0 = a1ê1 + a2ê2 for some a1, a2 ∈ R,
we obtain the required sequence (xε

0) by setting

xε
0 := ε

⌊a1
ε

⌋
ê1 + ε

⌊a2
ε

⌋
ê2 ∈ Lε .

Then, upon noticing that |xε
0 − x0| ≤ 2ε, it suffices to set ρε

n := ρn − 4ε. Indeed, if
T ∈ Tε(Qν

ρε
n
(xε

0)), by definition we have that for every x ∈ T

|〈x − xε
0, ν〉| <

ρε
n

2
and |〈x − xε

0, ν
⊥〉| <

ρε
n

2
,

so that for any x ∈ T there also holds

|〈x − x0, ν〉| ≤ |〈x − xε
0, ν〉| + |xε

0 − x0| <
ρn

2
,

and similarly |〈x − x0, ν⊥〉| < ρn/2, hence T ∈ Tε(Qν
ρn

(x0)). As a consequence, (4.4) holds
true. In particular, we obtain the following estimate

1

ρn
Fε(uε, Q

ν
ρn

(x0)) ≥ ρε
n

ρn

ε

ρε
n

∑

T∈Tε(Qν
ρn (xε

0 ))

|uε(εi) + uε(ε j) + uε(εk)|2

= ρε
n

ρn

∑

T∈Tσε
n
(Qν )

σ ε
n |vε,n(σ

ε
n i) + vε,n(σ

ε
n j) + vε,n(σ

ε
n k)|2,

(4.5)

where we have set σε
n := ε/ρε

n and vε,n(z) := uε(xε
0 + ρε

n z) for every z ∈ Lσε
n
. Let

χν : R2 → {−1, 1} be given by

χν(x) :=
{
1 if 〈x, ν〉 ≥ 0 ,

−1 if 〈x, ν〉 < 0 .

Then (ii) ensures that χ(vε,n) → χν in L1(Qν) as first ε → 0 and then n → +∞. Thus,
gathering (4.3)–(4.5) and applying a diagonal argument we find a sequence σm := εm/ρnm
converging to 0 asm → +∞ such that for vm := vεm ,nm there holds χ(vm) → χν in L1(Qν)

and
μ j (x0) ≥ lim inf

m→+∞ Fσm (vm, Qν) .

For �, h > 0 let us finally introduce the minimization problem

ψ(�, h, ν) := 1

�
inf

{
lim inf

ε→0
Fε(uε, R

ν
�,h) : χ(uε) → χν in L1(Rν

�,h)

}
, (4.6)

so that the sequence (vm) is admissible for ψ(1, 1, ν). Then (4.2) follows from Proposition
4.2 below, concluding the proof of Proposition 4.1. ��
Proposition 4.2 Let ψ be the function defined in (4.6). Then ψ(1, 1, ν) ≥ ϕ(ν) for every
ν ∈ S

1.

To prove Proposition 4.2 it is necessary to modify admissible sequences for the infimum
problem defining ψ(1, 1, ν) in such a way that they satisfy the boundary conditions required
in theminimumproblemdefiningϕ(ν), without essentially increasing the energy. Thiswill be
done by a careful interpolation procedure based on several auxiliary results and estimates that
we prefer to state in separate lemmas below. As a first step towards the proof of Proposition
4.2 we show thatψ(�, h, ν) is independent of � and h, which in turn will allow us to conclude
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that the energy of admissible functions for ψ(1, 1, ν) concentrates close to the line segment
Lν (see Lemma 4.4 below).

Lemma 4.3 Let ψ : (0,+∞)×(0,+∞)×S
1 → [0,+∞] be given by (4.6); then ψ(·, ·, ν) is

independent of �, h for every ν ∈ S
1.

Proof Let ν ∈ S
1 be fixed. To show that ψ(·, ·, ν) does not depend on �, h it suffices to show

that for every �, h, λ > 0 the following identities hold

ψ(λ�, h, ν) = ψ(�, h, ν) and ψ(�, λh, ν) = ψ(�, h, ν) . (4.7)

Let us fix �, h > 0. We first observe that

ψ(�, λh, ν) ≥ ψ(�, h, ν) for every λ ∈ [1,+∞) , (4.8)

ψ(�, h, ν) ≥ ψ(�, λh, ν) for every λ ∈ (0, 1) , (4.9)

since Fε is increasing as a set function. The proof of (4.7) is now divided into three steps.
Step 1. ψ is invariant under dilations, i.e.,

ψ(λ�, λh, ν) = ψ(�, h, ν) for every λ > 0 . (4.10)

Let (uε) be any sequence of spin fields uε : Lε → S
1 with χ(uε) → χν in L1(Rν

λ�,λh). We

define the rescaled functions vε : Lε/λ → S
1 by setting vε(z) := uε(λz) for every z ∈ Lε/λ.

Then χ(vε) → χν in L1(Rν
�,h) and

F ε
λ
(vε, R

ν
�,h) =

∑

T∈T ε
λ

(Rν
�,h)

ε

λ
|vε(

ε
λ
i) + vε(

ε
λ
j) + vε(

ε
λ
k)|2

= 1

λ

∑

T∈Tε(Rν
λ�,λh )

ε|uε(εi) + uε(ε j) + uε(εk)|2 = 1

λ
Fε(uε, R

ν
λ�,λh) .

Setting η := ε/λ → 0 as ε → 0 and passing to the infimum over all admissible sequences
(uε) we deduce that

ψ(λ�, λh, ν) ≥ 1

�
inf

{
lim inf

η→0
Fη(vη, R

ν
�,h) : χ(vη) → χν in L1(Rν

�,h)

}
= ψ(�, h, ν) .

The opposite inequality and hence (4.10) follow by observing that

ψ(�, h, ν) = ψ(λ−1(λ�), λ−1(λh), ν) ≥ ψ(λ�, λh, ν) .

Note that thanks to (4.10) it suffices to show the first equality in (4.7). In fact, if the first
equality in (4.7) is true, from (4.10) we directly deduce that

ψ(�, λh, ν) = ψ(λ−1�, h, ν) = ψ(�, h, ν) for every λ > 0 .

Step 2. We continue establishing the first equality in (4.7) by showing that

ψ(N�, h, ν) = ψ(�, h, ν) for every N ∈ N . (4.11)

For N ∈ N fixed let (uε) be a sequence of spin fields satisfying χ(uε) → χν in L1(Rν
N�,h).

We subdivide the rectangle Rν
N�,h in N open rectangles of the form

Rν
�,h(xm) with xm :=

(
m − N − 1

2

)
�ν⊥ for m ∈ {0, . . . , N − 1} .
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Notice that x ∈ Rν
�,h(xm) if and only if

∣∣〈x, ν⊥〉 −
(
m − N − 1

2

)
�
∣∣ <

�

2
and |〈x, ν〉| <

h

2
,

and therefore Rν
�,h(xm) ⊂ Rν

N�,h for allm ∈ {0, . . . , N −1}. By choosingm0 ∈ {0, . . . , N −
1} such that Fε(uε, Rν

�,h(xm0)) ≤ Fε(uε, Rν
�,h(xm)) for every m ∈ {0, . . . , N − 1} we obtain

the estimate

1

N�
Fε(uε, R

ν
N�,h) ≥ 1

N�

N−1∑

m=0

Fε(uε, R
ν
�,h(xm)) ≥ 1

�
Fε(uε, R

ν
�,h(xm0)) . (4.12)

We now define a suitable shifted version of uε whose energy is concentrated in a rectangle
centered at zero. To this end, as in the proof of Proposition 4.1 it is convenient to write the
vector ν⊥ in terms of the basis {ê1, ê2} as ν⊥ = a1ê1 + a2ê2 for some a1, a2 ∈ R and to
introduce the vector xε

m0
∈ Lε given by

xε
m0

:= ε
⌊(m0 − N−1

2

)
�a1

ε

⌋
ê1 + ε

⌊(m0 − N−1
2

)
�a2

ε

⌋
ê2 .

We then define spin fields vε : Lε → S
1 by setting vε(z) := uε(z + xε

m0
). As in the

proof of Proposition 4.1 we notice that |xε
m0

− xm0 | ≤ 2ε, χ(vε) → χν in L1(Rν
�,h)

and Rν
�−4ε,h−4ε(x

ε
m0

) ⊂ Rν
�,h(xm0). Let us fix λ ∈ (0, 1) and ελ > 0 sufficiently small

such that � − 4ελ > λ�, h − 4ελ > λh. Then for every ε ∈ (0, ελ) there holds
Tε(Rν

λ�,λh(x
ε
m0

)) ⊂ Tε(Rν
�,h(xm0)), hence

1

�
Fε(vε, R

ν
λ�,λh) ≤ 1

�
Fε(uε, R

ν
�,h(xm0)) .

Moreover, since vε is admissible for ψ(λ�, λh, ν), we have

λψ(λ�, λh, ν) ≤ 1

�
lim inf

ε→0
Fε(vε, R

ν
λ�,λh) . (4.13)

Combining (4.10) in Step 1 with (4.12)–(4.13), in view of the arbitrariness of uε we finally
obtain

λψ(�, h, ν) = λψ(λ�, λh, ν) ≤ ψ(N�, h, ν) .

Thus, by letting λ → 1 we deduce that ψ(�, h, ν) ≤ ψ(N�, h, ν). Finally, (4.11) follows
from (4.10) and (4.9) by observing that

ψ(�, h, ν) ≤ ψ(N�, h, ν) = ψ(�, h
N , ν) ≤ ψ(�, h, ν) .

Step 3. We prove the first equality in (4.7). Suppose first that λ ∈ (0,+∞) ∩ Q. Then
λ = N/M for some N , M ∈ N, hence applying twice (4.11) yields

ψ(λ�, h, ν) = ψ( N
M �, h, ν) = ψ( 1

M �, h, ν) = ψ(M( 1
M �), h, ν) = ψ(�, h, ν) . (4.14)

Suppose now that λ ∈ (0,+∞) and let (λn) ⊂ (0,+∞) ∩ Q with λn → λ as n → +∞,
λn > λ for every n ∈ N. Thanks to (4.10) and (4.14) we deduce that

ψ(λ�, h, ν) = ψ(λn�,
λn
λ
h, ν) = ψ(�, λn

λ
h, ν) ≥ ψ(�, h, ν) ,

where the last inequality follows from (4.8), since λn/λ > 1. To prove the opposite inequality
it suffices to take a sequence (λn) ⊂ (0,+∞)∩Q converging to λwith λn < λ. Then, arguing
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1

δ

r

6ε

ν

Fig. 4 The grey region depicts a possible element Sε,r ∈ S ν
ε,δ

as before and now applying (4.8) we obtain

ψ(λ�, h, ν) = ψ(�, λn
λ
h, ν) ≤ ψ(�, h, ν) ,

hence equality follows.
��

On account of Lemma 4.3 we show that for a sequence (uε) realizing the infimum in the
definition of ψ(1, 1, ν) the energy concentrates close to the line Lν . As a consequence, we
obtain that outside a small neighborhood of Lν there exists a suitable strip on which the
energy is of order o(ε). To be more precise, for fixed ν ∈ S

1, δ > 0, and every ε > 0 we
introduce the class S ν

ε,δ of strips

S ν
ε,δ :=

{
Qν

r+12ε \
(
Q

ν

r ∪ R
ν

1,δ

)
: r ∈ (1 − 3δ, 1 − 2δ)

}
. (4.15)

We denote the elements of S ν
ε,δ by Sε,r (see Fig. 4). Then the following result holds true.

Lemma 4.4 Let ν ∈ S
1 and let (uε) be a sequence such that χ(uε) → χν in L1(Qν) and

Fε(uε, Qν) → ψ(1, 1, ν). Then for every δ > 0 there exists a sequence σε → 0 (depending
on δ) and a strip Sε = Sε,rε ∈ S ν

ε,δ such that

Fε(uε, Sε) + ‖χ(uε) − χν‖L1(Sε)
≤ εσε . (4.16)

Proof Let ν ∈ S
1 and (uε) be as in the statement and let δ > 0 be fixed. For every Borel set

A ⊂ Qν set

Gε(uε, A) := Fε(uε, A) +
∫

A

|χ(uε) − χν | dx .

We consider for ε small enough the family of pairwise disjoint strips Sε,rmε ∈ S ν
ε,δ with

rmε = 1 − 3δ + 12mε and m ∈ {0, . . . , � δ
12ε � − 1} and we notice that

� δ
12ε �−1⋃

m=0

Sε,rmε ⊂ Qν
1−2δ \ (Q

ν

1−3δ ∪ R
ν

1,δ) ⊂ Qν \ R
ν

1,δ .
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This implies in particular that

� δ
12ε �−1∑

m=0

Gε(uε, Sε,rmε ) ≤ Gε

⎛

⎜⎝uε,

� δ
12ε �−1⋃

m=0

Sε,rmε

⎞

⎟⎠ ≤ Fε(uε, Q
ν\Rν

1,δ)+
∫

Qν\Rν
1,δ

|χ(uε)−χν | dx .

Averaging overm ∈ {0, . . . , � δ
12ε �− 1} we thus findm(ε) such that the strip S

ε,rm(ε)
ε

satisfies

Gε(uε, Sε,rm(ε)
ε

) ≤
⌊ δ

12ε

⌋−1 (
Fε(uε, Q

ν \ R
ν

1,δ) + ‖χ(uε) − χν‖L1(Qν )

)
. (4.17)

Notice that Fε(uε, Qν \ R
ν

1,δ) → 0 as ε → 0. In fact, Lemma 4.3 together with the choice
of (uε) yields

ψ(1, 1, ν) = lim
ε→0

Fε(uε, Q
ν) ≥ lim sup

ε→0
Fε(uε, R

ν
1,δ) ≥ lim inf

ε→0
Fε(uε, R

ν
1,δ)

≥ ψ(1, δ, ν) = ψ(1, 1, ν) ,

from which we readily deduce that Fε(uε, Rν
1,δ) → ψ(1, 1, ν) as ε → 0, hence

Fε(uε, Q
ν \ R

ν

1,δ) ≤ Fε(uε, Q
ν) − Fε(uε, R

ν
1,δ) → 0 as ε → 0 .

Thus, in view of (4.17), it suffices to set σε := 13
δ

(Fε(uε, Qν \ R
ν

1,δ)+‖χ(uε)−χν‖L1(Qν ))

and rε := rm(ε)
ε to find the required strip Sε,rε ∈ S ν

ε,δ satisfying (4.16). ��

We are now in a position to start with the interpolation procedure mentioned before. The final
interpolation procedure will be based on a one-dimensional construction that we introduce
below.

4.1 One-dimensional interpolation

To define the one-dimensional interpolation we consider slices in the triangular lattice. To
this end, let ê1, ê2, and ê3 be as in Section 2.2. Given α ∈ {1, 2, 3}we consider the orthogonal
vector ê⊥

α to êα and we define the slice in the direction êα by

�α :=
{
sêα + t ê⊥

α : s ∈ R , t ∈ [0,
√
3
2 ]
}

.

Given z ∈ Z, we define

�α,z := �α +
√
3
2 z ê⊥

α =
{
sêα + t ê⊥

α : s ∈ R , t ∈ [
√
3
2 z,

√
3
2 (z + 1)]

}
.

Finally, for every ε we set
�α,z

ε := ε�α,z . (4.18)

We shall define the one-dimensional interpolation in a slice �α starting from a triangle
T0 ∈ T (R2) such that T0 ⊂ �α . Let us denote by i0 ∈ L1, j0 ∈ L2, k0 ∈ L3 the vertices

of T0. Note that 〈i0, ê⊥
α 〉, 〈 j0, ê⊥

α 〉, 〈k0, ê⊥
α 〉 ∈ {0,

√
3
2 }. We define the lattice points ih ∈ L1,

jh ∈ L2, kh ∈ L3 and the triangle Th with the following recursive formula: we set τ(0) := 1,
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êα i0 j0

k0 jh

kh

ih

iN jN

kN

Σα(T0)

u upos

Fig. 5 Example of interpolation from u to upos in the slice �α(T0) starting from the triangle T0 (in grey)

τ(
√
3
2 ) := −1 and for h ∈ N

ih+1 := ih + êα + 1
2 êα + τ(〈ih, ê⊥

α 〉)
√
3
2 ê⊥

α ,

jh+1 := jh + êα + 1
2 êα + τ(〈 jh, ê⊥

α 〉)
√
3
2 ê⊥

α ,

kh+1 := kh + êα + 1
2 êα + τ(〈kh, ê⊥

α 〉)
√
3
2 ê⊥

α ,

Th+1 := conv{ih+1, jh+1, kh+1} ⊂ �α ,

(4.19)

(see Fig. 5). Observe that τ(〈ih+1, ê⊥
α 〉) = −τ(〈ih, ê⊥

α 〉), the analogous equality being true
also for jh and kh . Moreover, T2h = T0 + 3hêα .

We define the half-slice �α(T0) of the lattice L starting from T0 by

�α(T0) := conv{Th : h ∈ N} . (4.20)

Given u : L → S
1 and N ,m ∈ N, we now define in the half-slice�α(T0) a one-parameter

family (parametrized by m) of spin fields which coincides with u on T0 and with the fixed
ground state upos on Th for h ≥ N . We construct the interpolation in such a way that the
configuration of spins rotates a fixed amount of times by 2π . To make the construction
precise, we first say that the three angles θ(i0) ∈ R (not necessarily in [0, 2π)), θ( j0) ∈
[θ(i0) − π, θ(i0) + π) and θ(k0) ∈ [θ( j0) − π, θ( j0) + π) represent a lifting of u in T0
if u(i0) = exp(ιθ(i0)), u( j0) = exp(ιθ( j0)) and u(k0) = exp(ιθ(k0)). We then define the
interpolated angles θ(ih), θ( jh), θ(kh) for h = 0, . . . , N by

θ(ih) := θ(i0) + h
2πm − θ(i0)

N
=
(
1 − h

N

)
θ(i0) + h

N
2πm ,

θ( jh) := θ( j0) + h
2πm + 2π

3 − θ( j0)

N
=
(
1 − h

N

)
θ( j0) + h

N
2πm + h

N

2π

3
,

θ(kh) := θ(k0) + h
2πm + 4π

3 − θ(k0)

N
=
(
1 − h

N

)
θ(k0) + h

N
2πm + h

N

4π

3
,

(4.21)

and θ(ih) := 2πm, θ( jh) := 2πm + 2π
3 , θ(kh) := 2πm + 4π

3 for h ≥ N + 1 (see Fig. 5).
Eventually, we define uN ,m : L ∩ �α(T0) → S

1 by setting

uN ,m(ih) := exp(ιθ(ih)) , uN ,m( jh) := exp(ιθ( jh)) , uN ,m(kh) := exp(ιθ(kh)) .

(4.22)
Note that uN ,m = upos on Th for h ≥ N .

In the next lemma we estimate the energy of the interpolation on �α(T0) in terms of the
energy on the initial triangle T0 plus an error depending on the number of steps N and on
m. We assume that the configuration of spins in the initial triangle is sufficiently close to a
ground state with chirality 1 (not necessarily upos).
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Lemma 4.5 Let T0 ∈ T (R2) be a triangle of vertices i0 ∈ L1, j0 ∈ L2, and k0 ∈ L3. Let
u : L → S

1 and let θ(i0) ∈ R, θ( j0) ∈ [θ(i0)−π, θ(i0)+π) and θ(k0) ∈ [θ( j0)−π, θ( j0)+
π) be three angles representing a lifting of u in T0 satisfying

∣∣∣θ( j0) − θ(i0) − 2π

3

∣∣∣ ≤ 1

4
,

∣∣∣θ(k0) − θ( j0) − 2π

3

∣∣∣ ≤ 1

4
. (4.23)

Let N ,m ∈ N and assume that
2πm ≥ |θ(i0)| + 2π . (4.24)

Let uN ,m be the interpolation on �α(T0) defined according to (4.22). Then there exists a
constant C > 0 independent of N and m such that

F1(u
N ,m, �α(T0)) ≤ C

(
NF1(u, T0) + m2

N

)
.

Proof It is not restrictive to assume that j0 − i0 = êα as in Fig. 5. We shall estimate each of
the terms in the sum

F1(u
N ,m, �α(T0)) =

N−1∑

h=0

|uN ,m(ih) + uN ,m( jh) + uN ,m(kh)|2

+
N−1∑

h=0

|uN ,m(ih+1) + uN ,m( jh) + uN ,m(kh)|2

+
N−1∑

h=0

|uN ,m(ih+1) + uN ,m( jh) + uN ,m(kh+1)|2,

(4.25)

where we used that for h ≥ N we have that

|uN ,m(ih) + uN ,m( jh) + uN ,m(kh)|2 = |upos(ih) + upos( jh) + upos(kh)|2 = 0 ,

being upos a ground state. Adopting the notation for the angles used in the construction
in (4.22), we recast the energy in the first term of the sum as

|uN ,m(ih) + uN ,m( jh) + uN ,m(kh)|2
= 3 + 2 cos(θ( jh) − θ(ih)) + 2 cos(θ(kh) − θ( jh)) + 2 cos(θ(ih) − θ(kh)) .

(4.26)

Note that, by (4.21) and (4.23),

∣∣∣θ( jh) − θ(ih) − 2π

3

∣∣∣ ≤
∣∣∣θ( j0) − θ(i0) − 2π

3

∣∣∣ ≤ 1

4
,

∣∣∣θ(kh) − θ( jh) − 2π

3

∣∣∣ ≤
∣∣∣θ(k0) − θ( j0) − 2π

3

∣∣∣ ≤ 1

4
,

∣∣∣θ(kh) − θ(ih) − 4π

3

∣∣∣ ≤
∣∣∣θ(k0) − θ(i0) − 4π

3

∣∣∣ ≤ 1

2
.

(4.27)

By Taylor’s formula, there exists ζ ∈ [φ, 2π/3] such that 1 + 2 cos(φ) = −√
3(φ − 2π

3 ) +
1
2 (φ − 2π

3 )2 + 1
3 sin(ζ )(φ − 2π

3 )3. As a result we obtain the estimates

1

3

(
φ − 2π

3

)2
≤ 1 + 2 cos(φ) + √

3

(
φ − 2π

3

)
≤ 2

3

(
φ − 2π

3

)2
, for

∣∣∣φ − 2π

3

∣∣∣ ≤ 1

2
.
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Analogously,

1

3

(
φ − 4π

3

)2
≤ 1 + 2 cos(φ) − √

3

(
φ − 4π

3

)
≤ 2

3

(
φ − 4π

3

)2
, for

∣∣∣φ − 4π

3

∣∣∣ ≤ 1

2
.

Then by (4.26), (4.27), and the two previous estimates we infer that

|uN ,m(ih) + uN ,m( jh) + uN ,m(kh)|2

≤ 2

3

[(
θ( jh) − θ(ih) − 2π

3

)2
+
(

θ(kh) − θ( jh) − 2π

3

)2
+
(

θ(kh) − θ(ih) − 4π

3

)2]

≤ 2

3

[(
θ( j0) − θ(i0) − 2π

3

)2
+
(

θ(k0) − θ( j0) − 2π

3

)2
+
(

θ(k0) − θ(i0) − 4π

3

)2]

≤ 2

3
3|uN ,m(i0) + uN ,m( j0) + uN ,m(k0)|2 = 2F1(u, T0) .

This proves that

N−1∑

h=0

|uN ,m(ih) + uN ,m( jh) + uN ,m(kh)|2 ≤ 2NF1(u, T0) .

Let us now consider the second term in the sum in the right-hand side of (4.25). For every
h = 0, . . . , N − 1 we have

|uN ,m(ih+1) + uN ,m( jh) + uN ,m(kh)|2
≤ 2 |uN ,m(ih) + uN ,m( jh) + uN ,m(kh)|2 + 2 |uN ,m(ih+1) − uN ,m(ih)|2.

The first term is estimated as via 2F1(u, T0). As for |uN ,m(ih+1) − uN ,m(ih)|2, by (4.21) we
have that

|uN ,m(ih+1) − uN ,m(ih)|2 = 2 − 2 cos(θ(ih+1) − θ(ih)) = 2 − 2 cos

(
2πm − θ(i0)

N

)
.

Using the fact that 1 − cos(t) ≤ t2
2 we deduce

|uN ,m(ih+1) − uN ,m(ih)|2 ≤
(
2πm − θ(i0)

N

)2
≤ C

m2

N 2 ,

since |θ(i0)| ≤ 2πm. Hence

N−1∑

h=0

|uN ,m(ih+1) + uN ,m( jh) + uN ,m(kh)|2 ≤ CNF1(u, T0) + C
m2

N
.

The third term in the right-hand side in (4.25) is treated analogously using the inequality

|uN ,m(kh+1) − uN ,m(kh)|2 = 2 − 2 cos(θ(kh+1) − θ(kh)) = 2 − 2 cos

(
2πm + 4π

3 − θ(k0)

N

)

≤
(
2πm + 4π

3 − θ(k0)

N

)2
≤ C

m2

N2 ,

wherewe used (4.23) to get that |θ(k0)|+ 4π
3 ≤ |θ(i0)|+ 1

2 + 4π
3 ≤ |θ(i0)|+2π ≤ 2π(m+1).

��
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We are now in a position to prove Proposition 4.2 and thus conclude the proof of the lower
bound in Proposition 4.1.

Proof of Proposition 4.2 For the reader’s convenience, we recall here the definitions of ϕ(ν)

and ψ(1, 1, ν):

ϕ(ν) = lim
ε→0

min{Fε(u, Qν) : u = uposε on ∂+
ε Qν and u = unegε on ∂−

ε Qν} ,

ψ(1, 1, ν) = inf

{
lim inf

ε→0
Fε(uε, Q

ν) : χ(uε) → χν in L1(Qν)

}
.

Let us fix a sequence (uε) such that χ(uε) → χν in L1(Qν) and Fε(uε, Qν) → ψ(1, 1, ν).
The aim of this proof is to define a modification ũε of uε such that

ũε = uposε on ∂+
ε Qν and ũε = unegε on ∂−

ε Qν, (4.28)

lim sup
ε→0

Fε(̃uε, Q
ν) ≤ lim

ε→0
Fε(uε, Q

ν) . (4.29)

This allows us to conclude that ϕ(ν) ≤ ψ(1, 1, ν).
The construction of the modified sequence (̃uε) is divided in several steps.

Step 1. (Choosing a strip with low energy). We begin the construction by exploiting the
property that the energy of (uε) concentrates close to the interface Qν ∩ Lν in order to
choose a strip with low energy. Given δ ∈ (0, 1

3 ), we consider the family of strips S ν
ε,δ

defined in (4.15) and we apply Lemma 4.4 to deduce the existence of a strip Sε = Sε,rε =
Qν

rε+12ε \
(
Q

ν

rε ∪ R
ν

1,δ

)
∈ S ν

ε,δ such that

Fε(uε, Sε) + ‖χ(uε) − χν‖L1(Sε)
≤ εσε , (4.30)

where σε → 0. Themodification ũε of uε will coincide with u
pos
ε and unegε in Qν \(Q

ν

1−δ ∪
R

ν

1,δ) (notice that the square Qν
1−δ contains the closure of Sε, cf. (4.15)). In the triangles

contained in Sε the energy is low and thus uε is close to ground states, yet not necessarily
uposε or unegε . There ũε will start to interpolate from the configuration uε until it reaches the
fixed ground state uposε or unegε close to the boundary.

We shall describe in detail how to define ũε in the top part of the cube given by Qν+ =
Qν ∩ {x : 〈x, ν〉 > 0}, where the chirality of uε converges to 1. The construction in Qν− ∩
{x : 〈x, ν〉 < 0} is completely analogous.
Step 2. (Choosing triangles with low energy). We show here how to choose the triangles with
low energy where to start the modification of uε. Let us consider the line

Lε := {x ∈ R
2 : 〈x, ν〉 = rε

2 + 3ε} ,

which cuts in two the top part of the strip given by the rectangle

Stopε := Rν
rε,6ε

(
( rε2 + 3ε)ν

) = (Lε + B3ε(0)) ∩ Rν
rε,1 ⊂ Sε . (4.31)

We describe now how to start the modification in Stopε . The modification in the other parts

Sleftε := Rν⊥
rε,6ε

(
( rε2 + 3ε)ν⊥) \ R

ν

1,δ ,

Srightε := Rν⊥
rε,6ε

(
−( rε2 + 3ε)ν⊥) \ R

ν

1,δ ,

cf. Figure 6, will be only sketched since it is completely analogous.
We consider now the slices (�α,z

ε )z∈Z of the ε-triangular lattice defined in (4.18). We

choose α ∈ {1, 2, 3} such that |〈êα, ν〉| ≥
√
3
2 , namely the best approximation of ν in the
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Qν
1−2δ

δ
2

Sleft
ε

Sright
ε

Stop
ε

rε

2 6ε

Qν
1−3δ

Lε

3ε

ν

ν⊥

Fig. 6 Parts of the strip Sε in Qν+

ν êα

Lε

Σα,z
ε

Fig. 7 A chain of triangles (Tz)z∈Z

set {ê1, ê2, ê3}. Equivalently, |〈êα, ν⊥〉| ≤ 1
2 , where ν⊥ is the direction of Lε . (For S

right
ε and

Sleftε we consider a different direction, namely β ∈ {1, 2, 3} such that |〈êβ, ν⊥〉| ≥
√
3
2 .)

We can find a chain of closed triangles which intersect Lε such that each slice in the
direction êα contains only one triangle of the chain. Specifically, there exist (Tz)z∈Z, satisfying

Tz ∈ T +
ε (R2) , Tz ⊂ �α,z

ε , Tz ∩ Lε �= ∅ , Tz ∩ Tz+1 �= ∅ , (4.32)

for every z ∈ Z, cf. Fig. 7. We prove this statement in Lemma 4.6 below, since the geometric
argument is irrelevant for the present discussion.

The modification of uε starts in the triangles Tz of the chain contained in Stopε . For this
reason it is convenient to consider

Z top
ε := {z ∈ Z : Tz ⊂ Stopε } and z0 ∈ argminZ top

ε .

For future purposes we observe that
√
3

4
ε2#Z top

ε =
∣∣∣
⋃

z∈Z top
ε

Tz
∣∣∣ ≤ |Stopε | = 6εrε ≤ 6ε �⇒ #Z top

ε ≤ C1

ε
, (4.33)

for some positive constant C1 and for ε small enough.
Step 3. (Estimating the maximal winding number). The energy regime we are working in
does not rule out the possibility that inside the strip Sε the configuration of spin field displays
global rotations. However, the bound of the energy in Sε allows us to estimate the maximal
number of complete turns of 2π . To present precisely the estimate, we define in the triangles
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chosen in Step 2 the liftings θε ∈ R of uε according to the following recursive argument.
Given z ∈ Z top

ε we denote by iz ∈ L1, jz ∈ L2, kz ∈ L3 the points in the sublattices such that
εiz, ε jz, εkz are the vertices of the triangle Tz (some points might have multiple labels). We
now define recursively angles θε(εiz), θε(ε jz), θε(εkz) in suitably chosen intervals of length
2π satisfying uε(εiz) = exp (ιθε(εiz)) , uε(ε jz) = exp (ιθε(ε jz)) , uε(εkz) = exp (ιθε(εkz))
as follows. We choose

θε(εiz0) ∈ [0, 2π) ,

θε(ε jz0) ∈ [θε(εiz0) − π, θε(εiz0) + π) ,

θε(εkz0) ∈ [θε(ε jz0) − π, θε(ε jz0) + π) ,

θε(εiz+1) ∈ [θε(εiz) − π, θε(εiz) + π) .

The choice of θε(ε jz) and θε(εkz) is made according to the same recursive procedure above,
but taking as starting point (instead of θε(εiz0)) the angles θε(ε jz0) and θε(εkz0), respectively.
We claim that

1

2π
sup

z∈Z top
ε

z≥z0

{|θε(εiz) − θε(εiz0)| , |θε(ε jz) − θε(ε jz0)| , |θε(εkz) − θε(εkz0)|
} ≤ C2

√
σε

ε
,

(4.34)
for some positive constant C2. To prove the claim, let us fix z∗ ∈ Z top

ε , z∗ ≥ z0. Note that
z∗ − z0 ≤ C1

ε
by (4.33). Jensen’s inequality implies that

|θε(εiz∗) − θε(εiz0)|2

≤
(
z∗−1∑

z=z0

|θε(εiz+1) − θε(εiz)|
)2

≤ (z∗ − z0)
z∗−1∑

z=z0

|θε(εiz+1) − θε(εiz)|2

≤ C1

ε

z∗−1∑

z=z0

|θε(εiz+1) − θε(εiz)|2 ≤ C

ε

z∗−1∑

z=z0

2 − 2 cos (θε(εiz+1) − θε(εiz))

= C

ε

z∗−1∑

z=z0

|uε(εiz+1) − uε(εiz)|2

(4.35)

for some positive constants C , where we used the fact that 1 − cos(φ) ≥ 1
12φ

2 for every
|φ| ≤ π . We start observing that the regular hexagon Hz containing Tz and Tz+1 is contained
in Sε . Indeed, let x ∈ Hz and let y ∈ Tz ∩ Lε ⊂ Stopε . Then dist(x, Lε) ≤ |x − y| ≤
diam Hz = 2ε < 3ε. Hence, cf. (4.31), x ∈ (Lε + B3ε(0))∩ Rν

rε+6ε,1 ⊂ Sε. Let us show that

|uε(εiz+1) − uε(εiz)|2 ≤ 2

ε
Fε(uε, Hz) . (4.36)

Indeed, if Tz ∩ Tz+1 = {εiz} = {εiz+1}, then |uε(εiz+1) − uε(εiz)|2 = 0; if Tz ∩ Tz+1 =
{ε jz} = {ε jz+1} (and analogously if Tz ∩ Tz+1 = {εkz} = {εkz+1}), then we let T ′
be the third triangle in conv{Tz, Tz+1}. The triangle T ′ is either conv{εiz, ε jz, εkz+1} or
conv{εiz+1, ε jz, εkz} and is always contained in Hz , see Fig. 8. Letting εk be its vertex in
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Σα,z+1
ε

εiz+1

εjz

εk

Σα,z
ε

εkz εiz

T ′
HzTz

Tz+1

Fig. 8 Triangle T ′ in a possible configuration of Tz and Tz+1

L3
ε (either εkz or εkz+1) we have that

|uε(εiz+1) − uε(εiz)|2
≤ 2 |uε(εiz+1) + uε(ε jz+1) + uε(εk)|2 + 2 |uε(εiz) + uε(ε jz) + uε(εk)|2

≤ 2

ε
Fε(uε, Hz) .

Then we estimate the last sum in (4.35) using (4.36) by

z∗−1∑

z=z0

|uε(εiz+1) − uε(εiz)|2 ≤
z∗−1∑

z=z0

2

ε
Fε(uε, Hz) ≤ C

ε
Fε(uε, Sε) ≤ Cσε ,

for some positive constant C . In conclusion, by (4.35) we have that

|θε(εiz∗) − θε(εiz0)| ≤ C

√
σε

ε
.

Arguing in an analogous way for |θε(ε jz∗) − θε(ε jz0)| and |θε(εkz∗) − θε(εkz0)|, we
conclude the proof of the claim (4.34).

We consider the bound on the maximal winding number given by

mε :=
⌈
C2

√
σε

ε

⌉
+ 8 , (4.37)

where �C2

√
σε

ε
� is the smallest natural number grater than or equal to C2

√
σε

ε
and C2 is the

constant given in (4.34).
Step 4. (Modification on slices). We define the modification on the slices �α,z

ε starting from
triangles Tz with z ∈ Z top

ε by reproducing the construction in Lemma 4.5. Here we make
precise the choice of the parameters for this construction and the notation. Let us assume,

without loss of generality, that 〈êα, ν〉 ≥
√
3
2 (if, instead, 〈êα, ν〉 ≤ −

√
3
2 we work with−êα).

For z ∈ Z top
ε we let i0z := iz ∈ L1, j0z := jz ∈ L2, k0z := kz ∈ L3 where εiz , ε jz , εkz are the

vertices of Tz . As in (4.19), we define the lattice points i hz ∈ L1, j hz ∈ L2, khz ∈ L3 and the
triangle T h

z with the following recursive formula: for h ∈ N we set

i h+1
z := i hz + êα + 1

2 êα + τ(〈i hz , ê⊥
α 〉)

√
3
2 ê⊥

α ,

j h+1
z := j hz + êα + 1

2 êα + τ(〈 j hz , ê⊥
α 〉)

√
3
2 ê⊥

α ,

kh+1
z := khz + êα + 1

2 êα + τ(〈khz , ê⊥
α 〉)

√
3
2 ê⊥

α ,

T h+1
z := conv{εi h+1

z , ε j h+1
z , εkh+1

z } ⊂ �α,z
ε ,

(4.38)
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where τ(0) := 1, τ(
√
3
2 ) := −1. As in (4.20), we define the half-slice �α,z

ε (Tz) of the lattice
Lε starting from Tz by �α,z

ε (Tz) := conv{T h
z : h ∈ N}.

Number of interpolation steps. The number of interpolation steps will be defined by finding
the first shifted triangle T 2h

z0 in the half-slice �
α,z0
ε (Tz0) that is well contained in Rν∞,1−δ \

R
ν

∞,1−2δ . Specifically, we define

Nε := min{2h : h ∈ N , T 2h
z0 ⊂ Rν

∞,1−5δ/4 \ R
ν

∞,1−7δ/4} .

Given another z ∈ Z top
ε , we have that

T Nε
z ⊂ Rν∞,1−δ \ R

ν

∞,1−2δ . (4.39)

Indeed, let y = y0 + 3ε Nε

2 êα ∈ T Nε
z with y0 ∈ Tz . Let x0 ∈ Tz0 ∩ Lε, cf. (4.32), and let

x := x0 + 3ε Nε

2 êα ∈ T Nε
z0 . Since y0 ∈ Lε + B3ε(0), we have that |〈y0 − x0, ν〉| < 3ε and

thus |〈y − x, ν〉| < 3ε, i.e., y belongs to the 3ε-neighborhood of Rν
∞,1−5δ/4 \ R

ν

∞,1−7δ/4,

which is contained in Rν∞,1−δ \ R
ν

∞,1−2δ .
Observe that

Nε ≤ C3

ε
(4.40)

for some positive constant C3. To prove this, let x0 ∈ Tz0 and x := x0 + 3ε Nε

2 êα ∈ T Nε
z0 .

The segment [x0; x] is fully contained in Rν∞,1−δ \ R
ν

∞,1−3δ and thus δ ≥ |〈x − x0, ν〉| =
3ε Nε

2 〈êα, ν〉 ≥ 3ε Nε

2

√
3
2 .

Winding number. We choose mε given by (4.37). We consider the angles θε(εiz), θε(ε jz),
θε(εkz) introduced in Step 3. By (4.37) and (4.34) we infer that

2πmε ≥ 2πC2

√
σε

ε
+ 16π ≥ 2π |θε(εiz) − θε(εiz0)| + 16π ≥ 2π |θε(εiz)| + 2π ,

hence (4.24) is satisfied.
Checking the assumptions on the angles. We check that the assumptions (4.23) are satisfied.
First, we claim that for ε small enough the configuration uε has positive chirality in every
triangle T ∈ Tε(R

2) contained in Stopε . To prove it, let us start by showing that the sign
of the chirality is constant arguing by contradiction. Assume that there exist two triangles
T ′, T ′′ ⊂ Stopε with a common side such that χ(uε) ≤ 0 in T ′ and χ(uε) ≥ 0 in T ′′. Then
by (4.30) and Lemma 3.2 we would get

εσε ≥ Fε(uε, Sε) ≥ Fε(uε, T
′ ∪ T ′′) ≥ 5

3
ε ,

which contradicts the condition σε → 0. Therefore χ(uε) has constant sign in Stopε . In fact,
χ(uε) > 0 in Stopε . If instead χ(uε) ≤ 0 in Stopε , by (4.30) we would have that

εσε ≥ ‖χ(uε) − χν‖L1(Stopε )
=
∫

Stopε

(1 − χ(uε)) dx ≥ |Stopε | = 6εrε ≥ 6ε
( 1
2 − 3

2 δ
)

,

which contradicts σε → 0. In conclusion, χ(uε) > 0 in Stopε .
Let now z ∈ Z top

ε . We have

|uε(εiz) + uε(ε jz) + uε(εkz)|2 = 1

ε
Fε(uε, Tz) ≤ 1

ε
Fε(uε, Sε) ≤ σε .
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Since χ(uε) > 0 in Tz , for ε small enough uε is close to a ground state with chirality 1 and
therefore, using (2.3) and Lemma 2.1 (see also (2.5)),

∣∣∣θε(ε jz) − θε(εiz) − 2π

3

∣∣∣ ≤ 1

4
,

∣∣∣θε(εkz) − θε(ε jz) − 2π

3

∣∣∣ ≤ 1

4
. (4.41)

Definition of the interpolation. We are in a position to define the interpolation. We repro-
duce the one-dimensional construction of Lemma 4.5 by suitably translating and scaling it,
providing the precise notation as it will be useful for later estimates. We shall define the
interpolation only on slices starting from every other triangle Tz , for the constructions on two
slices �α,z

ε and �α,z+2
ε completely determine the values of the modified spin configuration

in �α,z+1
ε . For this reason, let z ∈ Z top

ε be such that z ≡ z0 mod 2. We then define the
interpolated angles θ(εi hz ), θ(ε j hz ), θ(εkhz ) for h = 0, . . . , Nε as in (4.21) by (recall that
i0z = iz , j0z = jz , k0z = kz)

θε(εi
h
z ) := θε(εiz) + h

2πmε − θε(εiz)

Nε
=
(
1 − h

Nε

)
θε(εiz) + h

Nε
2πmε ,

θε(ε j
h
z ) := θε(ε jz) + h

2πmε + 2π
3 − θε(ε jz)

Nε
=
(
1 − h

Nε

)
θε(ε jz) + h

Nε
2πmε + h

Nε

2π

3
,

θε(εk
h
z ) := θε(εkz) + h

2πmε + 4π
3 − θε(εkz)

Nε
=
(
1 − h

Nε

)
θε(εkz) + h

Nε
2πmε + h

Nε

4π

3
,

(4.42)
and θε(εi hz ) := 2πmε , θε(ε j hz ) := 2πmε + 2π

3 , θε(εkhz ) := 2πmε + 4π
3 for h ≥ Nε + 1.

Eventually, we define utopε : Lε ∩ �α,z
ε (Tz) → S

1 by setting

utopε (εi hz ) := exp(ιθ(εi hz )) , utopε (ε j hz ) := exp(ιθ(ε j hz )) , utopε (εkhz ) := exp(ιθ(εkhz )) .

By (4.39) we have that

utopε |T = uposε |T if T ⊂ �α,z
ε (Tz) \ R

ν

∞,1−δ . (4.43)

Estimate on “even” slices. We observe that the construction of utopε is simply a translation
and a scaling of the construction in Lemma 4.5. As the assumption (4.23) is satisfied, cf.
(4.41), we can apply Lemma 4.5 to deduce that

Fε(u
top
ε , �α,z

ε (Tz)) ≤ C

(
NεFε(uε, Tz) + ε

m2
ε

Nε

)
. (4.44)

Estimate on “odd” slices. We estimate the energy on the missing half-slices. Let us fix
z, z + 1, z + 2 ∈ Z top

ε with z ≡ z0 mod 2. Let T be a triangle contained in �α,z+1
ε (Tz+1).

Then T shares two vertices with one triangle contained in �α,z
ε (Tz) or with one triangle

contained in �α,z+2
ε (Tz+2). Let us assume, without loss of generality, that the two shared

vertices are the vertices ε j ′ ∈ L2
ε and εk′ ∈ L3

ε of some triangle T ′ ⊂ �α,z
ε (Tz). The third

vertex of T ′ is of the type εi h
′

z ∈ L1
ε for some h′ ∈ N. Moreover, the third vertex of T is shared

with a triangle T h
z+2, h ∈ N, and is of the type εi hz+2 ∈ L3

ε . We remark that |h′ − h| ≤ 2.
Indeed, by (4.38) we have that

i h
′

z = iz + h′ 3
2 êα ±

√
3
2 ê⊥

α ,

i hz+2 = iz+2 + h 3
2 êα ±

√
3
2 ê⊥

α .
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From the assumptions on the position of the two triangles together with the definition of
i h

′
z , i hz+2 it follows that

0 = 〈i h′
z −i hz+2, êα〉 = 〈iz−iz+2, êα〉+(h′−h) 32 �⇒ |h′−h| = 2

3 |〈iz−iz+2, êα〉| ≤ 2 ,

where in the last inequality we used the fact that Tz ∩ Tz+1 �= ∅ and Tz+1 ∩ Tz+2 �= ∅.
We estimate the energy in the triangle T by

Fε(u
top
ε , T ) = ε|utopε (εi hz+2) + utopε (ε j ′) + utopε (εk′)|2

≤ 2ε|utopε (εi h
′

z ) + utopε (ε j ′) + utopε (εk′)|2 + 2ε|utopε (εi h
′

z ) − utopε (εi hz+2)|2
= 2Fε(u

top
ε , T ′) + 2ε|utopε (εi h

′
z ) − utopε (εi hz+2)|2 .

Note that (4.34) and (4.37) imply

|θε(εiz+2)| ≤ |θε(εiz+2) − θε(εiz0)| + |θε(εiz0)| ≤ |θε(εiz+2) − θε(εiz0)| + 2π ≤ 2πmε .

From (4.42), from the previous estimate, and since |h′ − h| ≤ 2 it follows that

|utopε (εi hz ) − utopε (εi h
′

z+2)|2 = 2 − 2 cos(θε(εi
h
z ) − θε(εi

h′
z+2)) ≤ ∣∣θε(εi

h
z ) − θε(εi

h′
z+2)

∣∣2

=
∣∣∣
(
1 − h

Nε

)
(θε(εiz) − θε(εiz+2)) + h − h′

Nε

(2πmε − θε(εiz+2))

∣∣∣
2

≤ 2
∣∣θε(εiz) − θε(εiz+2)

∣∣2 + 2
∣∣∣
h − h′

Nε

∣∣∣
2∣∣∣2πmε − θε(εiz+2)

∣∣∣
2

≤ 2
∣∣θε(εiz) − θε(εiz+2)

∣∣2 + C
m2

ε

N 2
ε

It remains to estimate
∣∣θε(εiz)−θε(εiz+2)

∣∣2. Using the fact that 1−cos(φ) ≥ 1
12φ

2 for every
|φ| ≤ π and by (4.36) we obtain that

∣∣θε(εiz) − θε(εiz+2)
∣∣2 ≤ 2

∣∣θε(εiz) − θε(εiz+1)
∣∣2 + 2

∣∣θε(εiz+1) − θε(εiz+2)
∣∣2

≤ C
∣∣uε(εiz) − uε(εiz+1)

∣∣2 + C
∣∣uε(εiz+1) − uε(εiz+2)

∣∣2

≤ C

ε
(Fε(uε, Hz) + Fε(uε, Hz+1)) ,

where Hz is an hexagon containing Tz and Tz+1 and Hz+1 is an hexagon containing Tz+1

and Tz+2. In conclusion, we have that

Fε(u
top
ε , T ) ≤ C

(
Fε(u

top
ε , T ′) + Fε(uε, Hz) + Fε(uε, Hz+1) + ε

m2
ε

N 2
ε

)
.

Summing over all triangles in �α,z
ε (Tz+1) (their number is CNε) we deduce that

Fε(u
top
ε , �α,z+1

ε (Tz+1))

≤ C
(
Fε(u

top
ε , �α,z

ε (Tz)) + Fε(u
top
ε , �α,z+2

ε (Tz+2)) + NεFε(uε, Hz)

+ NεFε(uε, Hz+1) + ε
m2

ε

Nε

)
.

(4.45)
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Final estimate on top part. By (4.45), (4.44), summing over z and by (4.30), (4.33), (4.37),
and (4.40) we conclude that1

∑

z∈Z top
ε

Fε(u
top
ε , �α,z

ε (Tz))

≤
∑

z∈Z top
ε

z≡z0 mod 2

C

(
Fε(u

top
ε , �α,z

ε (Tz)) + NεFε(uε, Hz) + NεFε(uε, Hz+1) + ε
m2

ε

Nε

)

≤
∑

z∈Z top
ε

z≡z0 mod 2

C

(
NεFε(uε, Tz) + NεFε(uε, Hz) + NεFε(uε, Hz+1) + ε

m2
ε

Nε

)

≤ CNεFε(uε, Sε) + Cε
m2

ε

Nε

#Z top
ε ≤ C

C3

ε
εσε + Cε

(
C2

√
σε

ε
+ 4

)2
ε

C3

C1

ε

≤ C (σε + ε) .

(4.46)

Step 5. (parts of the square). The modification starting from Sleftε and Srightε is completely

analogous. We recall that β ∈ {1, 2, 3} is such that |〈êβ, ν⊥〉| ≥
√
3
2 . We consider chains of

triangles contained in Sleftε and Srightε given by Lemma 4.6 (suitably adapted). In half-slices in
the direction êβ starting from triangles of these chains and approaching the boundary ∂Qν ,

we define uleftε and urightε as in Step 4.
We are finally in a position to define ũε in Qν+. We fix δ ∈ (0, 1

8 ) and we consider the
two-barred cross-shaped set (the white region in Fig. 9)

Pδ := Rν
1−5δ,1 ∪ (Rν

1,1−5δ \ R
ν

1,3δ) .

Given T ∈ Tε(R
2) such that T ⊂ Qν , we distinguish some cases.

Case T ⊂ Pδ ∩ Qν
rε+6ε: We set

if T ⊂ Pδ ∩ Qν
rε+6ε : ũε|T := uε|T (4.47)

Case T ⊂ Rν
1−5δ,1 \ Q

ν

rε (part of the cross-shaped set Pδ aligned with ν): We give the
definition in the case T ⊂ Qν+ (the case T ⊂ Qν− being analogous). Let y0 ∈ T . Let us

consider the slice�α,z
ε such that T ⊂ �α,z

ε and let us show that z ∈ Z top
ε . Let x ∈ Tz and first

of all note that x ∈ Lε + B3ε(0). Since T and Tz are contained in the same slice, by definition
of �α,z

ε we can find s ∈ R such that x0 := y0 + sêα ∈ Tz . Since y0 /∈ Q
ν

rε , the segment

[x0; y0] is contained in Rν∞,1 \ Rν

∞,rε , thus |s|
√
3
2 ≤ |s||〈êα, ν〉| = |〈x0− y0, ν〉| ≤ 1

2 (1−rε),

i.e., |s| ≤ 1√
3
(1 − rε) <

√
3δ. Then, using that |〈êα, ν⊥〉| ≤ 1

2 ,

|〈x, ν⊥〉| ≤ |〈x − x0, ν
⊥〉| + |〈x0 − y0, ν

⊥〉| + |〈y0, ν⊥〉|
≤ ε + |s||〈êα, ν⊥〉| + 1

2 − 5
2 δ < ε +

√
3
2 δ + 1

2 − 5
2 δ < 1

2 − 3
2 δ < rε

2 ,

1 In this estimate it becomes evident that it was crucial to prove that the energy concentrates close to the
interface. A classical averaging/slicing argument would only provide a bound on the strip Sε of the type
Fε(uε, Sε) ≤ Cε. This would not suffice to conclude that the modified sequence does not increase the energy,
as the right-hand side in this estimate would end up to be a constant.
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ν

êα

êβ

1
2 − 5

2δ

1
2δ

rε

2

rε

2 + 3ε

1
2 − 5

2δ3
2δ

1
2δ

Fig. 9 Definition of ũε in Qν+: in the hatched regions it is equal to upos; in thewhite region enclosed by Qν
rε+6ε

it is equal to uε ; outside of Qν
rε it is defined through the interpolation u

top
ε , uleftε , and u

right
ε constructed with

the slices in the lattice directions êα and êβ

i.e., x ∈ Rν
rε,1

and hence x ∈ (Lε + B3ε(0)) ∩ Rν
rε,1

= Stopε . We set

if T ⊂ Rν
1−5δ,1 \ Q

ν

rε : ũε|T :=
{
utopε |T if T ⊂ �α,z

ε (Tz) ,

uε|T otherwise.
(4.48)

The definition is consistent with the previous case: if T ⊂ Qν
rε+6ε \ Q

ν

rε , then T is not
contained in any half-slice �α,z

ε (Tz) (because Tz ∩ ∂Qν
rε+6ε �= ∅) and thus ũε|T = uε|T ,

in accordance with (4.47). If T ⊂ Rν
1−5δ,1 \ Q

ν

rε but T is not contained in any half-slice
�α,z

ε (Tz), then T ⊂ Sε. In particular, by (4.46) and (4.30) we infer that

Fε(̃uε, R
ν
1−5δ,1 \ Q

ν

rε ) ≤
∑

z∈Z top
ε

Fε(u
top
ε , �α,z

ε (Tz)) + Fε(uε, Sε) ≤ C(σε + ε) . (4.49)

Case T ⊂ (Rν
1,1−5δ \ R

ν

1,3δ) \ Q
ν

rε (part of the cross-shaped set Pδ aligned with ν⊥): As
in the previous case, assuming T ⊂ Qν+, we define ũε|T := uleftε |T if T is contained in a

half-slice starting from a triangle in Sleftε , ũε|T := urightε |T if T is contained in a half-slice

starting from a triangle in Srightε , and ũε|T := uε|T otherwise. As before, the definition is
compatible with (4.47). Similarly to (4.49) we obtain that

Fε(̃uε, (R
ν
1,1−5δ \ R

ν

1,3δ) \ Q
ν

rε ) ≤ C(σε + ε) . (4.50)

Case T ∩ (R2 \ Pδ) �= ∅: let x be a vertex of T and assume that x is not the vertex of a
triangle T ′ covered by the previous cases. Then we set ũε(x) := uposε (x) if 〈x, ν〉 ≥ 0 and
ũε(x) := unegε (x) if 〈x, ν〉 < 0. In particular,

if T ⊂ Qν+ \ Pδ : ũε|T = uposε |T ,

if T ⊂ Qν− \ Pδ : ũε|T = unegε |T .
(4.51)

We remark that

ε2#{T ⊂ Qν : T ∩ ∂Pδ �= ∅} ≤ Cδε �⇒ #{T ⊂ Qν : T ∩ ∂Pδ �= ∅} ≤ C
δ

ε
(4.52)
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and

#{T ⊂ Qν \ Pδ : T ∩ Lν �= ∅} ≤ C
δ

ε
. (4.53)

Let us check that ũε attains the desired boundary conditions (4.28). Let T ⊂ Qν+ \ Q
ν

1−δ .
If T ⊂ (Qν+ \ Qν

1−δ)∩ Rν
1−5δ,1 (and similarly if T ⊂ (Qν+ \ Qν

1−δ)∩ (Rν
1,1−5δ \ Rν

1,3δ)), then

we are in the case covered by (4.48). By (4.43) we have ũε|T = utopε |T = uposε |T . Otherwise,
if T ∩ (R2 \ Pδ) �= ∅, let x be a vertex of T and assume that x is not the vertex of a triangle T ′
covered by the previous cases. Then, by definition, ũε(x) := uposε (x). We argue analogously
if T ⊂ Qν− \ Q

ν

1−δ . Finally, if T ∩ Lν �= ∅, then T ⊂ Lν + B2ε(0) and thus it is not relevant
for the boundary conditions by the definition of discrete boundary ∂±

ε Qν .
Step 6. (Energy estimate). By (4.52), (4.51), and (4.53) we have that

Fε(̃uε, Q
ν) ≤ Fε(̃uε, Pδ) + Fε(̃uε, Q

ν \ Pδ) +
∑

T∩∂Pδ �=∅
Fε(̃uε, T )

≤ Fε(̃uε, Pδ) + Fε(u
pos
ε , Qν+ \ Pδ) + Fε(u

neg
ε , Qν− \ Pδ)

+
∑

T⊂Qν\Pδ

T∩Lν �=∅

Fε(̃uε, T ) + Cδ

≤ Fε(̃uε, Pδ) + Cδ .

Moreover, by (4.47), (4.49), and (4.50) we deduce that

Fε(̃uε, Pδ) ≤ Fε(uε, Pδ ∩ Qν
rε+6ε) + Fε(̃uε, R

ν
1−5δ,1 \ Q

ν

rε ) + Fε(̃uε, (R
ν
1,1−5δ \ R

ν

1,3δ) \ Q
ν

rε )

≤ Fε(uε, Q
ν) + C (σε + ε) .

In conclusion,
lim sup

ε→0
Fε(̃uε, Q

ν) ≤ lim
ε→0

Fε(uε, Q
ν) + Cδ .

Eventually, letting δ → 0 and with a diagonal argument, we construct a sequence which
satisfies (4.29).

��
In the proof of Proposition 4.2 we applied the following lemma.

Lemma 4.6 Let �α,z
ε be the slices of the triangular lattice defined in (4.18). Let L be a line

in R2 orthogonal to ν and assume that |〈êα, ν⊥〉| ≤ 1
2 . Then there exists a chain of triangles

(Tz)z∈Z satisfying for every z ∈ Z

Tz ∈ T +
ε (R2) , Tz ⊂ �α,z

ε , Tz ∩ L �= ∅ , Tz ∩ Tz+1 �= ∅ . (4.54)

Proof It is enough to prove the following:
Claim: Let z ∈ Z and let Tz ∈ T +

ε (R2) be such that Tz ⊂ �α,z
ε and Tz ∩ L �= ∅. Then there

exists Tz+1 ∈ T +
ε (R2) such that Tz+1 ⊂ �α,z+1

ε , Tz+1 ∩ L �= ∅, and Tz ∩ Tz+1 �= ∅. (The
analogous statement with �α,z−1

ε in place of �α,z+1
ε holds true.)

With the proven claim at hand it is immediate to define a chain of triangles (Tz)z∈Z which
satisfies the properties in (4.54) by initializing the construction from a triangle Tz0 ∈ T +

ε (R2)

which satisfies Tz0 ∩ L �= ∅ and Tz0 ⊂ �
α,z0
ε . Such a triangle always exists since the set

R
2 \⋃T∈T +

ε (R2) T is the union of disjoint open triangles, thus cannot contain L .
To prove the claim let us denote be êβ, êγ the remaining two unit vectors connecting points

of L and introduced in Section 2.2 and let us set τβ := sign〈êβ, ê⊥
α 〉, τγ := sign〈êγ , ê⊥

α 〉.
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T β T γ

Tz

Σα,z+1
ε

Σα,z
ε

êα

L

x

xγxβ

Tz

sα
z

x
L

Fig. 10 On the left: the triangles Tz , T β and T γ , the line L , and the segment [xβ ; xγ ]. On the right: if x /∈ Tz ,
the angle between L and sαz belongs to [0, π

3 )

For later use we observe that τβ = τγ if and only if α �= 2, that is if and only if 〈êβ, êα〉 =
−〈êγ , êα〉. In particular, we always have

τβ〈êβ, êα〉 = −τγ 〈êγ , êα〉 and τβ〈êβ, êα〉τγ 〈êγ , êα〉 = −1/4 . (4.55)

Suppose now that Tz ∈ T +
ε (R2), Tz ⊂ �α,z

ε with Tz ∩ L �= ∅. The triangles T β :=
Tz+ετβ êβ ∈ T +

ε (R2) and T γ := Tz+ετγ êγ ∈ T +
ε (R2) satisfy Tz∩T β �= ∅ and Tz∩T γ �= ∅.

Moreover, they are contained in �α,z+1
ε . Indeed, for x ∈ Tz we have 〈ê⊥

α , x + ετβ êβ〉 =
〈ê⊥

α , x〉 + ετβ〈ê⊥
α , êβ〉 = 〈ê⊥

α , x〉 + ε
√
3
2 ∈ [ε

√
3
2 (z + 1), ε

√
3
2 (z + 2)], hence T β ⊂ �α,z+1

ε

(analogously T γ ⊂ �α,z+1
ε ).

The triangle Tz has one side contained in ∂�α,z
ε , i.e., either in sα

z := Rêα + ε
√
3
2 zê⊥

α or

in sα
z+1 := Rêα + ε

√
3
2 (z + 1)ê⊥

α . Let us assume, without loss of generality, that the side is
contained in sα

z . The line L intersects sα
z in a point x . We claim that x ∈ Tz . Indeed, if x /∈ Tz ,

then the angle in [0, π
2 ] between the lines L and sα

z belongs to [0, π
3 ), since L intersects also

Tz , see Fig. 10. Let us fix y ∈ Tz ∩ L �= ∅. Then we have |〈x − y, êα〉| > 1
2 |x − y|. This

contradicts the fact that |〈x− y, êα〉| = |x− y||〈ν⊥, êα〉| ≤ 1
2 |x− y| since |〈ν⊥, êα〉| ≤ 1

2 . In
conclusion x ∈ Tz ∩ sα

z . Then xβ := x + ετβ êβ ∈ T β ∩ sα
z+1, xγ := x + ετγ êγ ∈ T γ ∩ sα

z+1.
The line L intersects the segment [xβ; xγ ], and thus either T β or T γ . To see this, we let
yλ := λxβ + (1 − λ)xγ for λ ∈ [0, 1]. Note that

〈y0 − x, ν〉 = ετγ 〈êγ , ν〉 = ετγ

(
〈êγ , ê⊥

α 〉〈ê⊥
α , ν〉 + 〈êγ , êα〉〈êα, ν〉

)

= ε

(√
3

2
〈ê⊥

α , ν〉 + τγ 〈êγ , êα〉〈êα, ν〉
)

,

and analogously 〈y1 − x, ν〉 = ε
(√

3
2 〈ê⊥

α , ν〉 + τβ〈êβ, êα〉〈êα, ν〉
)
. In combination with

(4.55), this yields

〈y0 − x, ν〉〈y1 − x, ν〉 = ε2
(
3

4
〈ê⊥

α , ν〉2 − 1

4
〈êα, ν〉2

)
≤ 3

8
− 3

8
= 0 , (4.56)

where we used that 〈ê⊥
α , ν〉2 = 〈êα, ν⊥〉2 ≤ 1

4 and 〈êα, ν〉2 ≥ 3
4 . Now (4.56) together with

the continuity of the mapping λ �→ 〈yλ − x, ν〉 implies that there exists λ ∈ [0, 1] with
〈yλ − x, ν〉 = 0, hence yλ ∈ (T β ∪ T γ ) ∩ L .

��
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5 Upper bound

It remains to prove the �-limsup inequality to complete the proof of Theorem 2.5.

Proposition 5.1 Let Fε be as in (2.8). Then for every χ ∈ L1(�) we have

�- lim sup
ε→0

Fε(χ) ≤ F (χ) , (5.1)

where F is given by (2.10) and the �- lim sup is with respect to the strong topology in
L1(�).

Proof It is not restrictive to assume that χ ∈ BV (�; {−1, 1}). Moreover, thanks to
Remark 2.6, the density result [13, Corollary 2.4], and the L1-lower semicontinuity of the
�-limsup it suffices to prove (5.1) for χ ∈ BV (�; {−1, 1}) such that Jχ is polygonal, i.e.,
Jχ = ⋃N

n=1 �n , where �n are line segments satisfying H1(�n ∩ ∂�) = 0. To simplify the
exposition we restrict ourselves to the case Jχ = �1 ∪�2 with �1 = [x0; x1], �2 = [x1; x2],
x0, x1, x2 ∈ R

2, i.e., the two segments have one common endpoint. The general case then
follows by repeating the construction on each line segment.
Step 1. (Construction of a recovery sequence) Denoting by �1, �2 the length of �1, �2 and
by ν1, ν2 the outer unit normal to the set {χ = 1} on �1, �2, upon relabeling we can assume
that x1 = x0 + �1ν

⊥
1 , x2 = x1 + �2ν

⊥
2 . Moreover, we have

F (χ) = �1ϕ(ν1) + �2ϕ(ν2) , (5.2)

where ϕ is as in (2.12). Let ρ > 0 be sufficiently small and let u1ε,ρ ∈ SFε and u2ε,ρ ∈ SFε

be admissible for the minimum problems defining ϕ(ν1), ϕ(ν2), respectively with

lim
ε→0

Fε(u
1
ε,ρ, Qν1

ρ ) = ρ ϕ(ν1) and lim
ε→0

Fε(u
2
ε,ρ, Qν2

ρ ) = ρ ϕ(ν2) . (5.3)

We now start constructing a recovery sequence for χ by subdividing �1 and �2 into
segments of length of order ρ and suitable shifting u1ε,ρ , u

2
ε,ρ along these segments. In doing

so we need to leave out a small region close to the common endpoint x1. Namely, denoting by
θ ∈ (0, π] the angle between �1 and �2 we choose c = c(ν1, ν2) > 0 with c ≥ 1

2 + 1
2 cot(

θ
2 )

and we only subdivide the smaller segments [x0; x1 −cρν⊥
1 ] and [x1 +cρν⊥

2 ; x2] as follows.
We set M1

ε,ρ := � �1−cρ
ρ+5ε �, M2

ε,ρ := � �2−cρ
ρ+5ε � and we choose lattice points

xε
m,1 ∈ B2ε

(
x0 + m(ρ + 5ε)ν⊥

1

)
∩ L1

ε for m ∈ {0, . . . , M1
ε,ρ} ,

xε
m,2 ∈ B2ε

(
x1 + (cρ + m(ρ + 5ε))ν⊥

2

)
∩ L1

ε for m ∈ {0, . . . , M2
ε,ρ} .

Note that the constant c and the lattice points xε
m,1, x

ε
m,2 are chosen in such a way that, for ε

small enough,

Uρ :=
M1

ε,ρ⋃

m=0

Qν1
ρ (xε

m,1) ∪
M2

ε,ρ⋃

m=0

Qν2
ρ (xε

m,2)

is a union of pairwise disjoint cubes, see Fig. 11. This allows us to define uε,ρ ∈ SFε by
setting

uε,ρ(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1ε,ρ(x − xε
m,1) if x ∈ Qν1

ρ (xε
m,1) , m ∈ {0, . . . , M1

ε,ρ} ,

u2ε,ρ(x − xε
m,2) if x ∈ Qν2

ρ (xε
m,2) , m ∈ {0, . . . , M2

ε,ρ} ,

uposε (x) if x ∈ {χ = 1} \Uρ ,

unegε (x) if x ∈ {χ = −1} \Uρ .
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ν⊥
1

ν1

ν⊥
2

ν2

x0

ρ

x1

ρ

x2

�2

Γ2

Qν2
ρ (xε

m,2) Qν1
ρ (xε

m,1)

�1

Γ1

Fig. 11 Covering the segments �1 and �2 with cubes of side ρ in the �-lim sup construction

We observe that since xε
m,1, x

ε
m,2 belong to the sublatticeL1

ε , the boundary conditions satisfied

by the shifted functions u1ε,ρ( · − xε
m,1), u

2
ε,ρ( · − xε

m,2) are compatible one with each other

and with uposε and unegε on � \Uρ . In particular, if x ∈ � is such that dist(x, Jχ ) ≥ ρ/2 then
χ(uε,ρ)(x) = χ(x), which implies that ‖χ(uε,ρ) − χ‖L1(�) ≤ CρH1(Jχ ) → 0 as ρ → 0.
Step 2. (Energy estimate) In order to estimate Fε(uε,ρ) we start by rewriting the energy as

Fε(uε,ρ) =
M1

ε,ρ∑

m=0

Fε

(
uε,ρ, Qν1

ρ (xε
m,1)

)+
M2

ε,ρ∑

m=0

Fε

(
uε,ρ, Qν2

ρ (xε
m,2)

)+
∑

T∈Tε(�)
T∩(�\Uρ)�=∅

Fε(uε,ρ, T ) ,

(5.4)
and we estimate the terms on the right-hand side of (5.4) separately. Let us first consider the
energy on triangles T ∈ Tε(�)with T ∩(�\Uρ) �= ∅. Suppose that dist(T , Jχ ) > 5ε. Then,
if T ⊂ � \Uρ we have uε,ρ = uposε or uε,ρ = unegε on T , so that Fε(uε,ρ, T ) = 0. If instead
T ∩Uρ �= ∅, the fact that dist(T , Jχ ) > 5ε ensures that T intersects a cube inUρ in a region
where the boundary conditions are prescribed. Thus, using once more the compatibility of
the boundary conditions, we infer that Fε(uε,ρ, T ) = 0. This implies that

∑

T∈Tε(�)
T∩(�\Uρ)�=∅

Fε(uε,ρ, T ) ≤ 3ε#{T ∈ Tε(�) : T ∩ (� \Uρ) �= ∅ , dist(T , Jχ ) ≤ 5ε}

≤ C(ρ + ε/ρ) , (5.5)

where to obtain the first inequality we used Fε(uε,ρ, T ) ≤ 9ε, while the second inequality
follows by counting triangles contained either in

([x1 − cρν⊥
1 ; x1] ∪ [x1; x1 + cρν⊥

2 ]) +
B6ε(0) or in

(
∂Uρ ∩ Jχ

)+ B6ε(0).
Combining (5.4), (5.5), and (5.3) we deduce that

lim sup
ε→0

Fε(uε) ≤ lim sup
ε→0

(M1
ε,ρ + 1) Fε(u

1
ε,ρ, Qν1

ρ ) + lim sup
ε→0

(M2
ε,ρ + 1) Fε(u

2
ε,ρ, Qν2

ρ )

+ Cρ ≤
(⌊�1

ρ

⌋
+ 1

)
ρ ϕ(ν1) +

(⌊�2

ρ

⌋
+ 1

)
ρ ϕ(ν2) + Cρ .

(5.6)
Since the latter term converges to �1ϕ(ν1) + �2ϕ(ν2) as ρ → 0, thanks to (5.2) and (5.6), a
diagonal argument provides us with a sequence (uε) = (uε,ρ(ε)) with χ(uε) → χ in L1(�)

and satisfying lim supε Fε(uε) ≤ F (χ), from which we finally deduce (5.1).
��
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