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Abstract Thermomechanical treatments involving solid-state phase transformations play an important role
for the manufacturing of functional and reliable components in many engineering applications. Accordingly,
numerical investigation andoptimization of suchprocesses require considering thermoelastoplasticity under the
influence of ongoing transformations and in particular the impact of transformation-induced plasticity (TRIP).
While a number of elaborate plasticity models have been proposed for the description of TRIP, none of them
seem to have received much prevalence in applications due to their complexity or hard to determine model
parameters. Instead, the overwhelming majority of applied research either relies on simplistic formulations
dating back to early phenomenological approaches or neglects TRIP altogether. In this work, we therefore
provide an accessible, straightforward and easy-to-implement solution scheme for the TRIP model proposed
by Leblond et al. which, despite being widely recognized, is hardly ever employed in full form. Specifically,
we employ implicit backward-Euler integration and an elastic–plastic operator split approach to update the
stresses in order to obtain a simple and concise algorithm for whichwe then derive the corresponding consistent
tangent modulus. Furthermore, the work contains an application of the solution scheme to a symmetrically
cooled plate and an in-depth discussion of the influence of TRIP by means of this tractable numerical example.
Specifically, we highlight the discrepancies arising in transient and residual stresses and strains compared to
the conventional J2-plasticity approach where the phase transformation is accounted for merely by adapting
the yield strength of the compound.

Keywords Computational plasticity · Phase transformations · Transformation-induced plasticity ·
Thermomechanical processes · Residual stresses · FEM

1 Introduction

The occurrence of softening and anomalous plastic flow of steels in the presence of phase transformations
has been reported as early as the beginning of the last century [37]. Starting in the 1930s, this phenomenon
termed transformation-induced plasticity (TRIP) by Wassermann [38] and Zackay et al. [44] has been subject
of numerous experimental and theoretical studies, see e.g. the reviews of Mitter [26] and Fischer et al. [6].
Since TRIP in the most general sense denotes the alteration of the plastic response of a loaded specimen due
to the occurrence of a phase transformation, it applies to a variety of thermal and mechanical processes. For
example, the improved strength and ductility of “TRIP-steels” due to the mechanically induced transformation
of metastable austenite to martensite during loading is a well-known manifestation of TRIP. However, TRIP
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may also arise in cases where the phase transformation is induced thermally and instead of external mechanical
loading, internal stresses, which result from transient inhomogeneous temperature distributions and transfor-
mation progress, drive plasticity. This applies e.g. to certain heat treatment and welding processes and will be
the focus of this work. With regard to the theoretical understanding and description of TRIP, Greenwood and
Johnson [10] andMagee and Paxton [23] were among the first to publish pioneeringmechanical interpretations
and models to explain their experimental investigations and relate them to the microstructural mechanisms
attributed to TRIP. However, initial efforts to model TRIP were restricted to uniaxial loading [1,10,23,26],
while the advent of computational plasticity and its application in numerical simulations of industrial appli-
cations soon called for general, three-dimensional formulations. Franitza [8] was the first to consider TRIP in
such an application by simulating residual stresses resulting from heat treatment using an ad hoc generalization
of Greenwood and Johnson’s model to three dimensions. Similarly, up until today the majority of the rather few
authors who incorporate TRIP in simulations of thermo-mechanical-metallurgical manufacturing processes
do so by imposing an additional inelastic transformation plastic strain rate of the form

ε̇tp = 3

2
κφ′(z)żσ ′ (1)

while applying J2-plasticity [6,21]. Here, z and σ ′ denote the local volume fraction of the product phase and the
stress deviator, respectively, while φ′(z) is some nonnegative saturation function for TRIP satisfying φ′(0) = 0
and φ′(1) = 1, see [6]. Besides lacking theoretical justification, this phenomenological approach suffers the
downside of requiring a careful selection of the parameter κ either based on experiments, see e.g. [34] and
[28], or empirical formulae with limited validity across materials and processing conditions. Furthermore,
as Leblond et al. [15] show, plastic strains in the weaker phase driven by variations of temperature and
applied stress may contribute to the material’s inelastic response additionally. In a series of very well received
publications at the end of the last century, Leblond et al. [14,16,17] thus proposed a constitutive model free of
additional parameters to describe TRIP, which accounts for the underlying mechanisms by first adopting J2-
thermoelastoplasticity on themicrostructural scale and then deriving amacroscopic constitutive formulation by
analytic homogenization.While refinedmodels—see e.g. [3,7,25,29] amongothers—aswell as generalizations
of Leblond’s reasoning to multiple product phases [18,39] have been published since then, only Leblond’s
model received noteworthy attention from researchers other than the respective original authors. This is most
likely due to its comparatively concise form, the experimental scrutiny it received [34], the absence of difficult
to obtain model parameters and an undisclosed implementation being available for use in a domain specific
commercial finite element code designed for welding applications, see e.g. [43]. Nevertheless, apart from
few applications of recent generalized formulations of the model by their respective originators, e.g. [19,41],
Leblond’s model is almost always not considered in full but is instead reduced to a special case of Eq. (1) to
lessen the implementation effort [24,30,33]. Furthermore, as hinted above, TRIP is sometimes disregarded
completely in heat treatment simulations and other applications of potential relevance (see e.g. [5,11,27] for
such studies on quenching, welding and additive manufacturing) and instead, a modified yield stress depending
on the local phase proportions is often used in conjunctionwith conventional J2-plasticity, as already suggested
by Mitter [26] for ease of implementation. Hence, the purpose and structure of this work is two-fold:

Firstly, following a concise review of the mechanisms of TRIP and Leblond’s model in Sect. 2, we provide
a fully implicit, straightforward and easy-to-implement scheme with consistent tangent modulus for Leblond’s
model in a notation suitable for immediate implementation in Sect. 3. To the best of our knowledge, the only
algorithm published in detail for Leblond’s original model is the one by Kim et al. [12] based on solving for
the equivalent plastic strain update in consideration of isotropic hardening and thereby updating the stresses.
However, since we consider ideal plastic phases and small strains, the averaged equivalent plastic strains of the
phases play no role in the constitutive model and a considerably simpler and straightforward algorithm in terms
of both derivation and implementation will be presented for this special case. This assessment also applies to
the algorithm proposed by Lee et al. [18] for a generalization tomultiple product phases. This algorithmmay be
reduced to our case of a single product phase. However, the reduction of their algorithm to ideal plastic phases
is not obvious since they alternate between aNewton–Raphson iteration for the phases’ equivalent plastic strain
increments and a stress update step reliant on these increments. Additionally, computational efficiency may
be impaired by multiple Newton–Raphson passes being required in their alternating scheme and especially
the lack of an analytic consistent tangent modulus. The latter forces Lee et al. [18] to apply a finite-difference
scheme that requires reevaluation of the stress response for every strain component perturbation.

Secondly, we apply the solution scheme to a tractable thermo-mechanical-metallurgical problem in Sect. 4
to discuss the differences to the previously mentioned simplified approach based on classical J2-plasticity and
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(a) Greenwood and Johnson’s mechanism (b) Magee and Paxton’s mechanism

Fig. 1 Simplified representation of the microstructural mechanisms underlying transformation-induced plasticity in steels with
austenite, ferrite/pearlite and martensite denoted by γ , α and α′, respectively. Adapted from [9]

a modified yield stress to highlight the potential impact of TRIP on residual stresses and strains and end with
a conclusion in Sect. 5.

2 Transformation-induced plasticity

2.1 Mechanisms of transformation-induced plasticity in steels

According to Mitter [26], TRIP can be observed as a significantly increased plastic strain during phase trans-
formations under applied loads for which the corresponding equivalent stress is small compared to the softer
phase’s yield strength. This macroscopic phenomenon is linked to the eigenstrain accompanying a phase trans-
formation γ → α′ which in turn relates to changes of the crystal structure associated with the transformation.
For example, the decomposition of closed-packed face centered cubic austenite into body centered cubic fer-
rite causes a local increase of the specific volume at the transformation site and the austenite to martensite
decomposition is furthermore accompanied by a deviatoric eigenstrain. Two mechanisms driven by both the
transformation eigenstrain and the applied stress are attributed to TRIP in steels [6,15], see Fig. 1:

– Greenwood and Johnson’smechanism [10]: The dilatation at the transformation sitemust be accommodated
by strains (illustrated red inFig. 1a) in the surroundingmatrix for reasons of compatibility, leading to internal
stresses in the latter. These promote plasticity in the softer austenitic matrix if additionally an applied stress
(resulting e.g. from external loading or inhomogeneous thermal strain of the component) is imposed.

– Magee and Paxton’s mechanism [23]: The applied stress may promote martensite to form with a preferred
crystallographic orientation such that the associated deviatoric eigenstrains average to a nonzero strain on
the component scale.

Since both mechanisms correspond to the microstructural scale, any constitutive model of transformation
plasticity based on them must incorporate microstructural information of some kind into its formulation. As
outlined in the following section, this holds in particular for Leblond’s model which is based on Greenwood
and Johnson’s mechanism.

2.2 Constitutive modeling of transformation-induced plasticity in steels—Leblond’s model

In engineering applications, the computational solution of problems involving metal plasticity commonly
requires mathematical models and corresponding numerical solution schemes that are efficient enough to
solve boundary value problems on geometrically complex components which are large in comparison with
the microstructural features of the material. Hence, spatially resolving the microstructure in the numerical
model often is computationally prohibitively expensive and the impact of the mechanisms described in the
preceding section on the macroscopic inelastic response must be modeled by constitutive equations formulated
exclusively on the component level continuum scale.

To this end, the plasticitymodel considered in this work and originally proposed byLeblond and co-workers
[15–17] relies on an approximate analytic homogenization scheme tobridge thegapbetween themicrostructural
and the component scales, see Fig. 2. Postulating ideal small-strain thermoelastoplasticity governed by classical
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microstructural scale
εt = εe + εth + εp

– εe elastic

– εth thermal (+Δεthγ→α′I)

– εp plastic (+Δεp
γ→α′ )

component scale
εt = εe + εthm + εp

– εe = 〈εe〉V

– εthm = 〈εth〉V (hydrostatic)

– εp = 〈εp〉V (deviatoric)

Fig. 2 Schematic representation of the two-scale approach underlying Leblond’s constitutive modeling for TRIP during a phase
transformation γ → α′ and overview of the strain components on both the microstructural and the component scales. The strains
on the component scale are given as volume averages of the strains on the microstructural scale over an imaginary representative
volume V both sufficiently large to resolve local microstructural features and sufficiently small to neglect gradients of component-
level quantities (e.g. the temperature gradient) in the derivation [15]. On the component scale, z = Vα′V−1 denotes the local
volume fraction of the product phase α′ that occupies the subvolume Vα′ ⊂ V

J2-theory within the individual phases’ domains, the total strain εt on the microstructural scale is given by
εt = εe + εth + εp. Here, εe, εth and εp denote the elastic, the thermal and the plastic strain, respectively.
Additionally, wherever transformation progresses at the phase boundary, the hydrostatic part Δεth

γ→α′ I of the
local eigenstrain jump Δεγ→α′ associated with the γ → α′ phase transformation is included in εth while
the corresponding deviator Δε

p
γ→α′ is included in εp [15]. The hydrostatic part Δεth

γ→α′ I corresponds to the
difference of specific volume between the phases while the deviator Δε

p
γ→α′ comprises the shape-altering

part of the transformation strain, e.g. shear strains related to martensitic transformation 1 . The corresponding
strains εe, εthm and εp on the component scale (see Fig. 2 for their definition) are related to the strains on the
microstructural scale by means of volume averaging 〈•〉V = V−1

∫
V • dV , resulting in the total strain

εt = εe + εthm + εp (2)

on the component scale. Based on the well-known constitutive equations of J2-thermoelastoplasticity applied
at the microstructural scale and an analytic, approximate evaluation of the resulting averages, the governing
equations for Leblond’s model may moreover be formulated entirely on the component scale with the volume
fraction z = Vα′V−1 ∈ [0, 1] of the product phase remaining as the only microstructural variable in the
description. The analytic treatment is enabled by the assumption of plasticity being confined to the weaker
γ -phase and the consideration of geometrically simplified surrogate models for the microstructure in parts of
the derivation, among other more technical assumptions, see [16,17].

Thus, averaging of εth—which is hydrostatic provided the thermal expansion of both phases is isotropic—
yields the “thermo-metallurgical” strain

εthm = εthm I =
(
(1 − z)εthγ + zεthα′

)
I (3)

where εthγ (T ) and εth
α′(T ) denote the thermal strains obtained for the respective phases by means of a quenching

dilatometry experiment [15]. Furthermore, as a result of the averaging, the inelastic part εp of the total strain
decomposes into three parts,

εp = ε
cp
σ + ε

cp
T + εtp , (4)

where ε
cp
σ and ε

cp
T describe plastic strains associated to the variation of stressσ and temperature T , respectively2,

and εtp refers to transformation plasticity driven by the variation of the phase proportion z [15].
Since the total strain εt is usually either by itself a primary variable of the solution scheme employed

for the boundary value problem or directly linked to another primary variable (e.g. to the displacements
in a displacement-based formulation) and the thermo-metallurgical strain εthm is known a priori for given
temperature T and phase proportion z, only εp remains to be determined in typical engineering problems
where the stress σ is to be computed based on the elastic strains εe = εt − εthm − εp. To this end, the following
set of governing equations resulting from the aforementioned averaging of the common constitutive equations
of J2-plasticity assumed for the γ -phase were derived by Leblond et al. [16,17]:

1 Leblond et al. [15] assume Δε
p
γ→α′ to be randomly orientated over the portion of the phase boundary in the representative

volume V (seen in Fig. 2) where transformation progresses. Hence, Magee and Paxton’s mechanism is disregarded and the
deviatoric transformation eigenstrain Δε

p
γ→α′ cancels out during averaging so that only the hydrostatic part Δεth

γ→α′ I remains
in the resulting constitutive equations, Eqs. (5)–(9).

2 The superscript “cp” is used according to the original work of Leblond et al. [15–17].
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If σ eq < σY (“TRIP-branch”): Else (“J2-branch”):

ε̇
cp
σ = 3

2σ y
γ

(1−z)g(z)
E σ̇ eq σ ′ (5) ε̇p = λ̇σ ′ with λ̇ � 0 (6)

ε̇
cp
T = 3

σ
y
γ
(αγ − αα′)z ln(z)Ṫσ ′ (7) F(σ ) = σ eq(σ ) − σY = 0 (8)

ε̇tp = − 3Δεth
γ→α′
σ
y
γ

h
(

σ eq

σY

)
ln(z)żH(z − zc)σ ′ (9)

Here, H(z) denotes the Heaviside function, zc the minimum volume fraction of the product phase3 for the
onset of the TRIP strain rate ε̇tp, and g(z) the piece-wise linear function defined by interpolation of the values
in Table 1. Total derivatives w.r.t. time are indicated by over-setting a dot. Furthermore, the hydrostatic part of
the transformation strain Δεth

γ→α′ and the function h(x) are given, respectively, by [17,20]

Δεthγ→α′(T ) = εthα′(T ) − εthγ (T ) (10)

and

h(x) =
{
1 for 0 � x � 0.7
1 + 5(x − 0.7) for 0.7 < x

. (11)

The von Mises equivalent stress σ eq as well as the yield strength σY, which is assumed as threshold for plastic
flow of the whole phase mixture, are given as

σ eq(σ ) =
√

3
2σ

′ : σ ′ (12)

and

σY(z) = (1 − f (z))σ y
γ + f (z)σ y

α′ , (13)

respectively [17], where we write σ ′ for the deviator of the stress tensor. The function f (z) is again the piece-
wise linear interpolant of the values in Table 1. Finally, the material parameters involved are Young’s modulus
E and Poisson’s ratio ν (assumed to be equal for both phases), the coefficients of thermal expansion αγ and
αα′ and the yield strengths σ

y
γ and σ

y
α′ of the respective phases.

Concluding the presentation of the model, we highlight that the subset of governing equations (5)-(9) in
effect for the plastic strain rate depends on whether the current equivalent stress σ eq is below the mixed yield
strength σY(z). The reasoning behind this is that only then the main assumption underlying the equations
of the “TRIP-branch”—that plasticity shall be confined to the softer γ -phase—is admissible. Otherwise, the
whole compound is assumed to be plastic and J2-theory is adopted throughout4. The general approach for the
numerical integration of the constitutive equations is hence to first compute a plastic correction of an elastic
predictor stress (obtained from Hooke’s law by assuming zero plastic strain) using the equations of the “TRIP-
branch” and subsequently, if the resulting stress exceeds the mixed yield strength σY, reverting the correction
and instead correcting the elastic predictor using classical projection algorithms on the “J2-branch” [20, Ch.
9.14]. Note that Leblond’s model therefore reduces to classical J2-plasticity if only one phase is present (i.e.
before the phase transformation, z = 0, or after its completion, z = 1) since then ε̇p = ε̇

cp
σ = ε̇

cp
T = ε̇tp = 0 in

the “TRIP-branch”, implying no correction of the elastic predictor at all if its corresponding equivalent stress
is smaller than σY.

3 According to Leblond et al. [17], this threshold is set to zc = 0.03, whereas Leblond later published the model in [20, Ch.
9.14] setting zc = 0 instead. The algorithm proposed in this paper is formulated to accommodate any choice of zc.

4 This appears reasonable within the context of Leblond’s modeling, since the weaker γ -phase will be entirely plastic for
stresses larger than σY ≥ σ

y
γ w.r.t. the von Mises norm, regardless of Greenwood and Johnson’s mechanism. However, for

martensitic transformations under very large applied stresses, Magee’s mechanism may become the dominant mode of TRIP, as
shown by Liu et al. [22], so that applying J2-plasticity for σ eq ≥ σY may be an oversimplification in such cases and constitutive
models including Magee’s mechanism may be necessary, see e.g. [7].
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Table 1 Data points defining the functions f (z) and g(z) in Leblond’s model by means of piecewise linear interpolation [20, Ch.
9.14]

z 0 0.125 0.25 0.5 0.75 1

f (z) 0 0.0186 0.101 0.392 0.672 1
g(z) 0 2 3 1.75 1.75 1

3 Implicit integration scheme for Leblond’s model

In order to employLeblond’smodel in solidmechanics, themechanical boundary-value problem shall be solved
by application of an incremental-iterative solution scheme since the constitutive model is both nonlinear and
path dependent. Focusing on the evaluation of the constitutive equations, this usually involves the computation
of updated mechanical state variables for a given deformation history [31]. As an example see [4, Ch. 2]
for detailed application guidelines in the context of a displacement-based FE approach. Specifically, for the
plasticity model at hand, the stress must be updated based on given values of phase proportion z, temperature
T and total strain εt . To this end, we derive an implicit integration scheme for Leblond’s model (5)–(9) and
furthermore the associated consistent tangent modulus which is usually required by the global incremental-
iterative method applied to the mechanical boundary-value problem.

3.1 Notation and operator matrices

The derivations in the following sections will be formulated based on the following Voigt mapping for stresses
and strains,

σ T = [
σ11 σ22 σ33 σ12 σ13 σ23

]T and εT = [
ε11 ε22 ε33 2ε12 2ε13 2ε23

]T
, (14)

where we write single underscores for column vectors representing second-order tensors. Correspondingly,
matrices representing fourth-order tensors will be written using double underscores henceforth.

The presentation of the integration scheme is thus very convenient for implementation since the mapping
Eq. (14), which is commonly used in finite-element frameworks, reduces algebraic tensor operations to basic
operations on matrices and vectors with the aid of properly defined operator matrices. Throughout our work,
the following operators are used:

P = 1

3

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, P = 1

3

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15)

They are useful to represent double contractions of deviators of second-order tensors (e.g. σ ′ : σ ′ → σ T Pσ )
and the stress deviator (σ ′ → Pσ ), respectively. Finally, we declare the representations of the second- and
fourth-order identity tensors in Voigt-notation as

IT = [
1 1 1 0 0 0

]T and I = diag(1, 1, 1, 1, 1, 1) , (16)

respectively, where diag(•) denotes a square matrix with the operator’s arguments as diagonal elements.

3.2 Discretization of the constitutive rate equations

We start the derivation of the solution scheme by considering the timestep t → t +Δt , where Δt > 0 denotes
the increment of (pseudo-)time t . To obtain the incremental form of the constitutive equations presented in
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Sect. 2.2, we approximate the time derivatives by finite differences. For example, the plastic strain εp may be
expanded into a Taylor series at the time t to that end,

εp(t) = εp(t + Δt) − ∂εp

∂t

∣
∣
∣
∣
t+Δt

Δt + · · · , (17)

and by dropping the terms of higher than first order, the time derivative ε̇p can be approximated as

ε̇p(t + Δt) = ∂εp

∂t

∣
∣
∣
∣
t+Δt

≈ εp(t + Δt) − εp(t)

Δt
= Δεp

Δt
, (18)

which amounts to the application of an implicit backward-Euler difference scheme if applied analogously to
all rates in the constitutive equations at hand. It is obvious that the time increment Δt may be canceled out if
such a difference quotient is substituted for each rate and by doing so, we arrive at

Δεt = Δεe + Δεthm + Δεp = Δεe + Δεthm + Δε
cp
σ + Δε

cp
T + Δεtp (19)

Δεthm = ΔεthmI =
(
(1 − z)Δεthγ + zΔεthα′ + Δz(εthα′ − εthγ )

)
I (20)

based on the time derivatives of Eqs. (2), (4) and (3) and likewise at

Δε
cp
σ = 3

2σ y
γ

(1 − z)g(z)

E
Δσ eq Pσ (21)

Δε
cp
T = 3

σ
y
γ

(αγ − αα′)z ln(z)ΔT Pσ (22)

Δεtp = −3Δεth
γ→α′

σ
y
γ

h

(
σ eq

σY

)

ln(z)ΔzH(z − zc)Pσ (23)

based on Eqs. (5), (7) and (9). Note that in these equations and in the remainder of this work, we adopt the
convention that whenever no explicit indication is given as to whether a quantity (other than an increment)
refers to the increment’s beginning or its end, it shall always refer to its end. Furthermore, to simplify the
notation we denote the time at the beginning and the end of the n-th increment as tn and tn+1 = tn + Δt ,
respectively, so that we may use the indices n and n + 1 to conveniently indicate quantities referring to these
points of time, e.g. zn = z(tn) and zn+1 = z(tn+1) = z.

3.3 Predictor–corrector scheme

As outlined in the conclusion of Sect. 2.2, the general approach to compute the stress σ n+1 at the end of a time
increment tn → tn+1 corresponds to a predictor–corrector scheme, where we start by computing the elastic
predictor using Hooke’s law as

σ t = σ n + CΔεe = σ n + C
(
Δεt − Δεthm

)
(24)

presuming the increment to be entirely elastic and hence setting Δεp = 0 for the predictor step. Here, C
denotes the isotropic elastic modulus given by

C = E

(1 + ν)(1 − 2ν)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (25)

where ν denotes Poisson’s ratio. Then, a plastic correction for the predictor σ t is first computed using the
“TRIP-branch” of the model to determine σ n+1, see Sect. 3.4. This procedure may be interpreted as elastic–
plastic operator split as discussed by Simo and Hughes [31] for the case of J2-plasticity. Subsequently, if the
equivalent stress σ eq(σ n+1) exceeds σY, the correction is revoked and the “J2-branch” is used to obtain a new
correction for σ t , see Sect. 3.5.
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3.4 Solution of the “TRIP-branch”

We start the derivation by solving Eq. (19) for the elastic strain increment Δεe and applying Hooke’s law to
obtain the stress increment,

σ n+1 − σ n = Δσ = CΔεe = C
(
Δεt − Δεthm − Δε

cp
σ − Δε

cp
T − Δεtp

)
. (26)

Adding σ n on both sides and using Eq. (24) immediately yields the expression for the corrector step,

σ n+1 = σ t − C
(
Δε

cp
σ + Δε

cp
T + Δεtp

) = σ t − β2(σ n+1)CPσ n+1 , (27)

where we define the scalar function β2(σ n+1) for brevity of notation as

β2(σ n+1)
..= 3

σ
y
γ

(
(1 − z)g(z)

2E
Δσ eq(σ n+1) + (αγ − αα′)z ln(z)ΔT

− Δεthγ→α′ h

(
σ eq(σ n+1)

σY

)

ln(z)ΔzH(z − zc)

)

. (28)

Note that the nonlinear equation system Eq. (27) for the stress σ n+1 is similar in form to the system obtained
for ideal J2-plasticity by application of a backward-Euler scheme (see e.g. [4, Ch. 7.3]), but β2(σ n+1)which is
a function of the unknown stress appears instead of the plastic multiplier increment encountered in J2-theory.

In order to compute the stress σ n+1 from the nonlinear system Eq. (27), we apply the Newton–Raphson
method to find a root of the associated residual

rσ (σ n+1) = σ n+1 − σ t + β2(σ n+1)CPσ n+1 . (29)

Furthermore, the Jacobian Jrσ (σ n+1) of the residual is required. Differentiating Eq. (29) yields

Jrσ (σ n+1) = ∂rσ (σ n+1)

∂σ n+1
= I + CPσ n+1

∂β2(σ n+1)

∂σ n+1
+ β2(σ n+1)CP . (30)

Recalling that Δσ eq(σ n+1) = σ eq(σ n+1) − σ eq(σ n) in Eq. (28) and using the immediate results

∂σ eq(σ n+1)

∂σ n+1
= 3

2σ eq(σ n+1)
σ T
n+1P and h′(x) ..= ∂h(x)

∂x
=

{
0 if 0 � x < 0.7
5 if 0.7 < x

, (31)

where we regularize h′ by setting h′(0.7) = 0, we may compute the derivative of β2(σ n+1) in Eq. (30) as

∂β2(σ n+1)

∂σ n+1
= β1(σ n+1)σ

T
n+1P (32)

with the scalar function β1(σ n+1) being defined to shorten the notation as

β1(σ n+1)
..= 3

σ
y
γ

(
(1 − z)g(z)

2E
− Δεth

γ→α′

σY h′
(

σ eq(σ n+1)

σY

)

ln(z)ΔzH(z − zc)

)
3

2σ eq(σ n+1)
. (33)

Inserting this into Eq. (30), the Jacobian for the Newton–Raphson iteration is finally given by

Jrσ (σ n+1) = I + β1(σ n+1)CPσ n+1σ
T
n+1P + β2(σ n+1)CP . (34)

For convenience, the iteration is summarized in Fig. 3. Note that Eq. (29) would be linear and solvable without
iteration if ε

cp
σ was neglected and h was assumed to be unity in Eq. (9).

To conclude the treatment, we derive the consistent tangent modulus Dn+1 associated with the above
formulation. Noting that

∂Δσ (σ n+1)

∂Δεt
= ∂(σ n+1 − σ n)

∂Δεt
= ∂σ n+1

∂Δεt
= ∂σ n+1

∂εtn+1

∂(εtn + Δεt)

∂Δεt
= ∂σ n+1

∂εtn+1
= Dn+1 , (35)
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Newton-Raphson iteration for the “TRIP-branch”

1. Set σn+1,0 to an initial guess (e.g. σn+1,0 = σn).
2. Evaluate the residual rσ(σn+1,0), Eq. (29). If ‖rσ(σn+1,0)‖ � εtol w.r.t. some suitable norm, return

σn+1 = σn+1,0 as approximate solution. Otherwise, initialize the iteration index variable j = 0 and proceed.
3. If 0 � j < jmax, compute the Jacobian Jrσ (σn+1,j) from Eq. (34). Otherwise, if j = jmax, abort the

iteration and start over with a smaller (pseudo-)time increment.
4. Solve the linear equation system Jrσ (σn+1,j)dσn+1,j+1 = −rσ(σn+1,j) for dσn+1,j+1.
5. Update the stress iterate σn+1,j+1 = σn+1,j + dσn+1,j+1 and the residual rσ(σn+1,j+1).
6. If ‖rσ(σn+1,j+1)‖ � εtol return σn+1 = σn+1,j+1 as approximate solution. Otherwise, increment j by 1

and go to step 3.

Fig. 3 Newton–Raphson iteration for the approximation of the stress σ n+1 in the “TRIP-branch”. As termination criteria, an
upper bound εtol for the acceptable residual norm and jmax for the iteration count may be specified

we proceed by computing the derivative of the stress σ n+1 with respect to the increment of total strain. Inserting
Eq. (24) in Eq. (27) and deriving the result with respect to Δεt , we obtain

∂σ n+1

∂Δεt
= C − CPσ n+1

∂β2(σ n+1)

∂Δεt
− β2(σ n+1)CP

∂σ n+1

∂Δεt

= C −
[

CPσ n+1
∂β2(σ n+1)

∂σ n+1
+ β2(σ n+1)CP

]
∂σ n+1

∂Δεt
. (36)

Substituting Eq. (32) for the derivative of β2(σ n+1), reordering and inverting then eventually yields

Dn+1 = ∂σ n+1

∂Δεt
=

[
I + β1(σ n+1)CPσ n+1σ

T
n+1P + β2(σ n+1)CP

]−1
C = Jrσ (σ n+1)

−1C . (37)

Note that the Jacobian occurring on this branch can be inverted very efficiently as follows: Let

u ..= β1(σ n+1)CPσ n+1 , v ..= Pσ n+1 and A ..= I + β2(σ n+1)CP . (38)

Then, the Jacobian Jrσ (σ n+1) can be written as a rank-1 update of the matrix A, i.e.

Jrσ = A + uvT . (39)

According to the Sherman–Morrison formulae [2], the inverse of this matrix is then given as

J−1
rσ

= A−1 − A−1uvT A−1

1 + vT A−1u
(40)

and due to the simple structure of A, the remaining inverse A−1 occurring in this expression is obtained as

A−1 = 2

6G β2(σ n+1) + 3

(

G β2(σ n+1)I IT + 3

2
I
)

, (41)

where G = 1
2 E(1 + ν)−1 denotes the shear modulus.

Finally, we note that the results of this section may be equally applied to the modified Leblond model
proposed by Taleb and Sidoroff [36] by means of the modifications detailed in Appendix A.

3.5 Solution of the “J2-branch”

If the stress σ n+1 obtained on the “TRIP-branch” exceeds σY(z) given by Eq. (13), we revert to the trial stress
σ t and compute a new correction based on J2-theory (Eqs. (6) and (8)) to enforce the associated flow rule and
admissibility of stress. To this end, the classical radial return algorithm of Wilkins [42] with the consistent
tangent given by Simo and Taylor [32] may be applied. For completeness and convenience, we briefly state the
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procedure as summarized by Simo and Hughes [31] with adaptation to the problem at hand and the notation
chosen in this paper. Let Ft denote the yield function evaluated at the predictor

Ft ..= F(σ t) = σ eq(σ t) − σY(z) (42)

and Ft > 0 (otherwise elasticity applies). The unit normal to the von Mises yield surface is given by

n =
√
3

2

Pσ t

σ eq(σ t)
and n =

√
3

2

Pσ t

σ eq(σ t)
(43)

where n and n correspond to the Voigt spaces for stresses and strains, respectively. The plastic multiplier and
the plastic strain increment may be computed in closed form as

Δλ = Ft√
6G

and Δεp = Δλn (44)

where G again denotes the shear modulus. Hence, the stress at the increment’s end follows from

σ n+1 = σ t − 2GΔλ n = σ t − 2Ft√
6

n . (45)

Finally, for the ideal plastic case at hand, the consistent tangent modulus given in [31] degenerates to

D =
(

K − 2G

3
θ

)

I IT + 2θ G

(

I − 1

2

(
P − P

)
− n nT

)

(46)

where K = 1
3 E(1 − 2ν)−1 is the bulk modulus and the scalar θ is defined by

θ ..= 1 −
√
6GΔλ

σ eq(σ t)
. (47)

4 Numerical study and comparison of Leblond’s model to conventional J2-plasticity

To demonstrate the proposed solution scheme and to discuss the role of transformation-induced plasticity as
described by Leblond’s model in a tractable application, we consider the steel plate shown in Fig. 4a. The plate
is assumed to be homogeneous, of initial thickness 2d and infinite along its symmetry plane perpendicular
to the η-axis. Starting from a uniform initial temperature, the plate is symmetrically cooled down to ambient
temperature by free convection on both surfaces, causing phase transformation from austenite to martensite.

In this setting, the solution to the thermo-mechanical problem is symmetric about themid-plane and spatially
dependent on the η-coordinate only. Therefore, the analysis may be reduced to the half plate thickness and
a sufficient spatial discretization of the plate is given by the finite element (FE) model shown in Fig. 4b. In
this model, only one column of elements based on a generalized plane strain formulation is laid out along the
η-direction. Furthermore, the heat conduction problem and the thermo-mechanical problem are sequentially
coupled since we are concerned with small strains and disregard influences of the mechanical state on heat
conduction and phase transformation.

For convenience, the parameters described in the following sections and their corresponding values for our
study are collected in Table 2. We decided to assume the material parameters to be independent of temperature
to simplify the discussion, although this is no requirement for the applicability of the proposed approach.
Heat conduction: Initially, the plate is at uniform temperature T0. We assume linear isotropic heat conduction
governed by Fourier’s law. The outer edge of the FEmodel shown in Fig. 4b is subject to heat transfer defined by
a constant heat transfer coefficient hT while the remaining edges are adiabatic so that the plate eventually cools
down to ambient temperature T∞ < T0. For simplicity, latent heat associated with the phase transformation
is neglected and both the thermal conductivity λ and the specific heat capacity cp are assumed to be constant
and equal for all phases.
Kinetics of phase transformation: Besides the solution of the heat equation, Leblond’s model must be comple-
mented by evolution equations describing the phase transformation kinetics, i.e. the evolution of the volume
fractions of all occurring phases. In this study, we enforce sufficiently fast cooling to deliberately restrict our
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Fig. 4 Plate model and corresponding finite element (FE) model for the numerical study of transformation-induced plasticity. The
following displacement boundary conditions were prescribed in the FE model: The displacement of the node at the coordinate
origin is zero and the nodes at ξ = 0 and η = 0 have zero displacement w.r.t. the ξ - and η- directions, respectively. Additionally,
a multi-point constraint is imposed to enforce identical displacements among all nodes on the right edges w.r.t. the ξ -direction

Table 2 Parameters used for the numerical investigation of the homogeneous steel plate cooled from T0 to T∞. γ and α′ denote
the austenite and martensite phase, respectively. Ms corresponds to C60 steel

Symbol Value Unit Description

d 1 × 10−2 m half thickness of the plate
λ 45 W m−1 K−1 thermal conductivity
cp 466 J K−1 specific heat capacity
T0 830 ◦C initial temperature
T∞ 20 ◦C ambient temperature
hT 1 × 105 W m−2 K−1 heat transfer coefficient

Ms 255 ◦C martensite start temperature
αM 0.011 K−1 rate parameter

E 210 GPa Young’s modulus
ν 0.3 Poisson’s ratio

αγ 2.17 × 10−5 K−1 thermal expansion coefficient of the γ -phase
αα′ 1.30 × 10−5 K−1 thermal expansion coefficient of the α′-phase
εthγ (0◦C) −1.1 × 10−2 strain of γ -phase at T = 0◦C
εth
α′ (0◦C) 0 strain of α′-phase at T = 0◦C

σ
y
γ 150 MPa yield strength of the γ -phase

σ
y
α′ 900 MPa yield strength of the α′-phase

zc 0.03 threshold phase proportion for ε̇tp

consideration to diffusionless phase transformations. In particular, we assume purely martensitic transforma-
tion γ → α′ starting with a completely austenitic microstructure and adopt the classical Koistinen–Marburger
[13] relation to describe the martensite phase proportion z as function of temperature,

z(T ) = 1 − e−αM(Ms−T ) , if T < Ms . (48)

Here, Ms denotes the martensite start temperature and αM the rate parameter of the model.

4.1 Numerical solution of the heat equation and transformation kinetics

The computed temperature and phase proportion solutions are shown in Fig. 5a and b, respectively. Since the
temperature near the surface decreases sooner and faster than in the core of the plate, the transient temperature
field and hence the thermal contraction are inhomogeneous along the plate’s thickness promoting transient
thermal stresses. Phase transformation—as predicted by the Koistinen–Marburger relation—begins only once
the martensite start temperature Ms 
 T0 is reached at the surface while the transformation of the plate’s
interior is delayed. Note that the transformation remains incomplete upon reaching the stationary state due to
insufficient undercooling experienced for the chosen parameter set.
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Fig. 5 Temperature and phase proportion evolution as well as the associated thermo-metallurgical strain along the depth of the
plate

Given the temperature and phase proportion, the thermo-metallurgical strain, Eq. (3), may be computed. To
this end, we take the strains εthγ (T ) and εth

α′(T ), which typically are determined from a quenching dilatometry
test, to be affine functions of temperature,

εthγ (T ) = εthγ (0◦C) + αγ T and εthα′(T ) = εthα′(0◦C) + αα′T . (49)

The thermo-metallurgical eigenstrain thus comprises both the thermal contraction and—by virtue of the
offset between the above functions—the expansion arising from the transformation, the latter of which clearly
dominates once transformation starts, see Fig. 5c.

Concluding the paragraph, we note that Fig. 5 directly represents the three “driving forces” of TRIP for
our considered problem which are associated to Eqs. (5), (7) and (9): The variations of temperature and
phase proportion as well as the inhomogeneous thermo-metallurgical eigenstrain which by virtue of kinematic
compatibility gives rise to variations of stress.

4.2 Numerical results for Leblond’s model and conventional J2-plasticity

Based on the results discussed in Sect. 4.1, we now turn our attention to the mechanical problem and Leblond’s
model. Since we particularly intend to discuss the influence of TRIP, we compare the results obtained from
Leblond’s model with a “conventional” constitutive modeling approach to plasticity under phase transforma-
tions based on J2-theory that is commonly applied in engineering applications.

Let us clarify precisely what we refer to as “conventional” J2-approach. We thereby denote the application
of ideal J2-plasticity with the yield strength defined by Eq. (13) and the thermo-metallurgical strain εthm given
by Eq. (3) and imposed as a (pseudo) thermal eigenstrain. This approach is usually trivially implemented
even in commercial FE frameworks since both yield strength and thermal strain may typically be defined by
straightforward user coding without the need to provide a solution scheme for the whole plastic constitutive
law. Additionally, it is recovered as special case of Leblond’s model when setting the plastic strains on the
“TRIP-branch” to zero, εcpσ ≡ ε

cp
T ≡ εtp ≡ 0, consequently providing a natural counterpart neglecting TRIP.

In the plate we consider, the stress state is equal biaxial so that σξξ is the only independent component of
stress and σηη = 0 as well as σi j = 0 for i �= j . Since the plastic behavior is incompressible according to both
Leblond’s model and classical J2-theory5, the out-of-plane and in-plane plastic normal strains are related by
ε
p
ηη = −2εpξξ while no shear strains occur. Hence, we may limit the presentation to σξξ and ε

p
ξξ without loss

of information. Furthermore, static equilibrium requires that the in-plane normal stress averages to zero along
the thickness,

∫ d

0
σξξ (η) dη = 0 , (50)

thus establishing an intuitive reciprocal relation between regions loaded in tension and compression.
To start the discussion, we first consider the simpler case of conventional J2-plasticity. In Fig. 6a, the

regions of the plate where plastification in tension or compression occurs along the in-plane direction are
shown throughout the cooling of the plate.

5 Incompressibility is implicated by the plastic strains being purely deviatoric according to Eqs. (5)-(7) and Eq. (9).
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Fig. 6 Elastic (green) and plastic (yellow and purple) regionsmapped over time t and the spatial coordinate η calculated according
to the conventional J2-plasticity approach vs. Leblond’s model. The dashed contours represent iso-lines of the product phase
proportion z

From this representation, an immediate qualitative assessment of the process can be drawn:

– First, the surface of the plate is rapidly cooled while the plate’s interior remains at the initial temperature,
leading to thermal shrinkage of the outermaterial only, see Fig. 5c. Since the core counteracts this shrinkage,
tensile stresses develop at the surface while the core is loaded in compression due to equilibrium, Eq. (50),
as shown in Fig. 7a.Hence, as seen in Fig. 6a, the surface region becomes plastic in tension and subsequently
the core plastifies compressively. The size of the plastic domain reaches a maximum at t ≈ 1 s when the
core starts cooling and the thermal strain gradient is at its largest.

– Next, the incipient thermal shrinking of the plate’s core (ref. to Fig. 5c) relieves the stresses both in the
surface and the core region so that the former and subsequently the latter gradually become purely elastic
again while the region in between remains plastic in tension the longest. However, since the surface layers
endured excessive plastic elongation in the in-plane direction, further thermal shrinking of the core gives
rise to compressive stresses in the surface zone and in return to tension in the core, effectively reversing
the stress distribution as seen in detail in Fig. 8a. Therefore, secondary plastification occurs at the surface,
this time in compression.

– At t ≈ 4 s the surface reaches the martensite start temperature and the γ → α′ phase transformation sets
in, see Fig. 5b. From Fig. 5c it is seen that the corresponding increase of specific volume outweighs the
thermal contraction locally once the transformation started. Consequently, the already existing compressive
loading of the surface region intensifies while by virtue of equilibrium the interior necessarily reverts to
tensile loading, Fig. 7a. At the same time, the formation of the much harder product phase significantly
increases the yield strength of the phase mixture given by Eq. (13). Nevertheless, looking at Fig. 6a,
compressive plastic flow in the surface region is sustained so that the local compressive stress continues
to rise and equilibrium in turn requires the untransformed bulk material to become plastic in tension along
an increasing portion of the plate’s depth.

– At t ≈ 7 s the phase transformation reaches the bulk of the plate (0 ≤ η � 0.5d). The corresponding
reversal of the thermo-metallurgical strain seen in Fig. 5c thus relieves the tensile stress in the bulkmaterial,
as observed in Figs. 7a and 8a, and by equilibrium, the compressive stress of the surface region is relaxed,
too. Therefore, the surface zone becomes purely elastic again and subsequently, once the transformation
has begun locally, the bulk material also returns to elasticity as its yield strength still increases due to the
transformation. As a result of this, the plate gradually becomes elastic again throughout.

– By then, the thermo-metallurgical strain gradually starts to saturate from the surface on into the bulk.
Hence, with the temperature gradient and the transformation subsiding, the outer regions of the plate
essentially become strain driven by the plate’s corematerial from then on. Therefore, the remaining thermo-
metallurgical expansion of the core causes another reversal of stress along the thickness, as seen in Figs.
7a and 8a at t ≈ 10 s. Close inspection of Fig. 6a reveals a small region of tertiary plasticity in tension at
the surface towards the transformation’s end but apart from this, the plate remains thermoelastic until the
steady state is reached.

Having understood the cooling process from the viewpoint of conventional J2-theory, we may now focus
on the comparison to the results of Leblond’s model to elaborate the predicted impact of TRIP. First, we
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Fig. 7 Transient in-plane normal stress computed by conventional J2-plasticity vs. Leblond’s model

Fig. 8 Transient in-plane stress and plastic in-plane strain evaluated at the surface of the plate, its core and in between for both
considered constitutive models. The solid and dashed lines represent the results from Leblond’s model (L.) and J2-plasticity,
respectively. The dotted lines correspond to the local product phase proportion z and refer to the right ordinate

immediately find from Figs. 6, 7 and 8 that both constitutive models indeed yield the same results up to the
onset of transformation at t ≈ 4 s, as expected. At this time, when the outer region of the plate is loaded in
compression, the reversal of the local thermo-metallurgical expansion (Fig. 5c) as before promotes plasticity
in compression, see Fig. 6b. But as Fig. 8b indicates, the plastic flow predicted by Leblond’s model exceeds
the prediction from J2-theory. Since up to this time the stresses, strains and governing equations were equal
for both models, this difference arises from the solution of the “TRIP-branch”. Indeed, in our example, we
found this branch to exclusively govern the plastic behavior at any point in the plate subsequent to the local
onset of transformation. Resulting from the just mentioned increased compressive plastic flow for Leblond’s
model, a slight initial relaxation of the surface region’s stress is observed in Fig. 8a at the beginning of the
transformation. Consequentially, in the initial stage, where transformation is confined to the near-surface zone
of the plate, the stress continues to remain smaller there according to Leblond’s model as opposed to J2-theory.
Note that for reasons of equilibrium and compatibility, the predicted stresses and plastic strains in the bulk
may already deviate ahead of the local transformation even though both plasticity models still coincide there
at that time. In particular, equilibrium requires the stresses in the bulk of the plate to be smaller as well when
compared to the prediction from J2-theory, as seen in Fig. 8a. Therefore, in the bulk of the plate, the domain
of plasticity in tension prior to the local transformation appears significantly smaller and delayed, compare
Fig. 6b to Fig. 6a. In a certain region between the plate’s surface and its core, elasticity is even maintained
up until the beginning of the local transformation according to Leblond’s model, whereas J2-theory predicted
plasticity in tension.

By the time the transformation reaches the inner half of the plate at t ≈ 8 s, the surface region—as noted
above—is already elastic according to J2-theory due to the strongly increased yield stress σY. But since
Leblond’s model permits plasticity for stresses below this lower bound of J2-plasticity, the surface remains
plastic in compression until the transformation almost reaches the plate’s core, Fig. 8b. Accordingly, relaxation
of the compressive stress in the middle part of the considered model (η ≈ 0.5d) is now possible due to TRIP.
During this stress relaxation (seen just before t ≈ 9 s in Fig. 8a), the initial tensile stress in the middle region
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Fig. 9 Distributions of residual stress and plastic out-of-plane residual strain computed from Leblond’s model (L.) and the
conventional J2-plasticity approach. Note that the small “corrugation” in the distributions computed by J2-theory correspond to
the small portion of the plate’s thickness, where according to Fig. 6a no secondary plastification occured

is at first slightly overcompensated by the plastic accommodation of the thermo-metallurgical strain increase,
similar as previously observed at the surface upon the onset of transformation. However, as more of the interior
transforms, an almost stress-free state is reached in the middle region until the core starts to transform.

As seen in Fig. 8a, the stresses finally reverse at t ≈ 9 s similar as predicted by J2-theory since the
transformation near the surface subsides and the thermo-metallurgical strain of the bulk predominates. At that
point, the transient stresses (as opposed to the plastic strains and hence the permanent deformation) are rather
similar for both constitutive models. But since from then on J2-theory dictates elasticity virtually throughout
the remainder of the cooling while Leblond’s models promotes stress relaxation by plastic accommodation, the
deviations subsequently become considerable especially near the plate’s surface and core, see Fig. 8a. Driven
by the core’s thermo-metallurgical expansion, the stress evolution follows the same general pattern as before
in J2-theory: The still expanding bulk of the plate becomes loaded in compression and in turn, the surface
stress becomes tensile.

The plastic relaxation due to TRIP, however, results inmuch smallermagnitudes of stress so that the remain-
ing residual stresses shown in Fig. 9a—although mostly coincident with respect to sign—differ considerably
in magnitude. Hence, as seen from this example, neglecting TRIP potentially entails a large overestimation of
transient and residual stresses since any plastic accommodation associated with plasticity in the weaker mother
phase is disregarded for stresses smaller than an artificially defined mixed yield stress of similar type as given
by Eq. (13). Moreover, the subsurface residual strains computed here even differ in sign along most of the
plate’s depth as seen in Fig. 9b where only the plastic component is shown since εthm I is homogeneous in the
steady state. This result indicates the possibility of predicting even qualitatively different permanent deforma-
tions for components of greater geometrical complexity than our plate when neglecting TRIP in computations
of thermo-mechanical processes which involve phase transformations.

Lastly, we conclude the discussion by considering the individual contributions of the three strains ε
cp
σ , εcpT

and εtp defined on the “TRIP-branch” by Eqs. (5), (7) and (9), respectively. In Fig. 10, the in-plane components
of these strains are shown alongside the plastic strain ε

J2
ξξ accumulated on the “J2-branch” of Leblond’s model

during the same simulation. As noted, the plastic strains on the “TRIP-branch” vanish prior to the local
beginning of the phase transformation whereas—in our example—plasticity is governed exclusively by the
“TRIP-branch” afterwards. Furthermore, Fig. 10 demonstrates that plastic flow past the onset of transformation
is dominated by εtp, while the contribution of the other two components is rather small in this situation. Note,
however, that these proportions are subject both to the material and the processing parameters. For example,
in case of a slower phase transformation (i.e. smaller ż) and a smaller difference of specific volume between
the phases (i.e. smaller Δεth

γ→α′) or higher rates of temperature and equivalent stress (larger Ṫ and σ̇ eq,
respectively6), εcpσ and ε

cp
T tend to have a larger impact on the overall plastic strain.

As a final remark on the convergence characteristics of the proposed algorithm and the applicability of
Leblond’s model, we point the reader to Appendix B, where we demonstrate the convergence behavior in
the FE context with the plate problem discussed in this section, as well as Appendix C, where predictions

6 This may e.g. be the case when applying cyclic mechanical loading to the component or during thermal cycling in the
temperature range where the γ - and α′-phases coexist.
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Fig. 10 Components of plastic in-plane normal strain computed using Leblond’s model

of Leblond’s model obtained from the proposed implementation are compared with experimental dilatometry
data extracted from literature.

5 Conclusion

In this work, we provide an implicit solution scheme for Leblond’s model of TRIP suitable for straightfor-
ward implementation in computational frameworks for solid mechanics problems. Furthermore, the model is
compared to a standard J2-plasticity-based approach in a tractable application by considering the symmetric
cooling of an infinite plate. Despite the simplicity of this plate problem, the predictions for spatial and temporal
evolution, intensity and even the very occurrence of plasticity in the presence of phase transformation differ sig-
nificantly between the two constitutive models. Nonetheless, in this transparent example, the smaller transient
and residual stresses could be attributed to the additional potential for plastic accommodation enabled by TRIP
for stresses below an artificial yield strength of any sort as commonly assumed in conventional J2-plasticity
approaches for the entire phase compound using simple mixture rules.

In applications of greater complexity regarding geometry, boundary conditions and thermo-mechanical
loading, however, the interpretation and impact of TRIP is less apparent but the considered constitutive models
may still predict substantially different distributions of residual stress and strain. Indeed, given the dependency
of TRIP on the loading history in relation to the progression of the phase transformation, residual stress
distributions differing even in sign from predictions of plain J2-theory across most of the component are
within the realms of possibility, as we found in further numerical investigations of quenched cylindrical models
under varying cooling rates. As an extreme case, though arguably a pathological one for practical choices of
material and process parameters, the conventional J2-plasticity approach may even predict no residual stresses
at all in opposition to Leblond’s model if the transient stresses never reach the “mixed” yield strength of the
compound. On the other hand, it may indeed be acceptable to assume elasticity for stresses below such an
artificial compound yield strength if the phases’ yield strengths are rather similar. In general however, with
regard to its potentially unforeseeable implications, we conclude that TRIP should not be neglected a priori in
thermo-mechanical investigations if phase transformations occur. Hence, particularly obvious applications of
relevance include the simulation of heat treatment and welding processes.

In terms of implementation, the scheme we provide requires only a moderate amount of additional effort
compared to implementing J2-plasticity. In particular, only a concise set of matrix-vector-operations that we
covered in detail using the appropriate Voigt mapping remain as additional effort for implementing the “TRIP-
branch”. Hence, employing the algorithm as a user definedmaterial model is straightforward even when having
to comply with the often somewhat limited application programming interfaces of commercial FE software.
However, from the viewpoint of computational efficiency, the integration point localNewton–Raphson iteration
for solving the governing equations of TRIP obviously entails additional effort compared to J2-plasticity.

To conclude this work, we remark that further analysis should be carried out to enhance and apply the
proposed numerical scheme and to further compare Leblond’s model and plain J2-approaches. Regarding the
constitutive modeling, the most notable limitation of the proposed scheme is the restriction to ideal plastic
phases. Furthermore, the comparison of the constitutive models we considered should be extended to more
complexgeometries andprocesses amenable to cross-checkingwith carefully designed experiments comprising
e.g. residual stress or plastic deformation measurements. Finally, an application to large scale problems would
allow an evaluation of the additional computational cost compared to J2-plasticity (and hence of potential limits
of practicality) when modeling and optimizing heat-treatment and welding of complexly shaped components.



An implicit integration scheme for Leblond’s model 337

Acknowledgements This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under the project number 410264412.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt DEAL.

A Adaption to Taleb and Sidoroff’s modification of Leblond’s model

Taleb and Sidoroff [36] proposed the following modification of Eq. (9) to replace the cutoff zc in the original
formulation:

ε̇tp = −3Δεth
γ→α′

σ
y
γ

{
ln(zl)ż σ ′ for z � zl
ln(z)ż σ ′ for z > zl

, where zl = σ
y
γ

2Δεth
γ→α′

4G + 3K

9KG
. (51)

G and K denote the shear and bulk modulus, respectively. Switching over to the Voigt notation used in this
work, this may be expressed analogously to Eq. (23) as

Δεtp = −
3Δεth

γ→α
′

σ
y
γ

ln(z)Δz H̃(z, zl)Pσ , (52)

where H̃(z, zl) is defined using the left-continuous Heaviside function H0(0) = 0, H0(z) = H(z) for z �= 0,
as

H̃(z, zl) =
((

1 − H0(z − zl)
) ln(zl)

ln(z)
+ H0(z − zl)

)

. (53)

The procedure and tangent described in Sect. 3.4 are then equally valid for the modified model, if H(z − zc)
is simply replaced by H̃(z, zl) in β2(σ n+1) while β1(σ n+1) degenerates to

β1(σ n+1) = 3

σ
y
γ

(1 − z)g(z)

2E

3

2σ eq(σ n+1)
. (54)

B Convergence behavior

Using the consistent tangent modulus plays an important role for the rate of convergence of the iterativemethod
employed for the solution of the nonlinear mechanical boundary value problem, as pointed out by Simo and
Taylor [32]. In particular, if the Newton–Raphson scheme is applied to solve the spatially discretized boundary
value problem, as in our FE example, the quadratic rate of convergence of theNewton iterationmay degrade and
thus harm computational efficiency if no consistent tangent is provided for the constitutive response [31,32].
To provide insight into the convergence behavior of the algorithm proposed in this work within FE analyses,
Fig. 11 shows the maximum residual forces in the model during the global Newton iteration for the quenching
problem considered in Sect. 4.2. It can be seen that the expected superlinear convergence is indeed attained.

http://creativecommons.org/licenses/by/4.0/
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Fig. 11 Maximum residual forces ||F||∞ in the discretized model per global equilibrium iteration of the FE solver for all time
increments that required more than two iterations towards equilibrium

C Comparison of predicted TRIP with experimental results from dilatometer tests

To compare the predictions of our implementation of Leblond’s model with experimental data and thus to
provide validation from a practical viewpoint, we consider the dilatometry experiments conducted by Taleb and
Petit [35] in their investigation of TRIP in a low alloyed steel. Such an experiment may be adequately captured
by a simple FE model consisting of a single element subject to a traction load and a predefined temperature
evolution, since the uniaxial stress state and the temperature are homogeneous and known beforehand. Two
thermal cycles between T∞ = 20◦ C and Tmax = 1100◦ C have been prescribed following [35] and a power
law has been assumed for the description of the phase transformations both during cooling—where bainite is
formed according to Taleb and Petit [35]—and during austenitization:

z(T ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 T < TL

1 −
(

T−TL
TH−TL

)2
TL ≤ T ≤ TH

0 TH < T .

(55)

As per the dilatometry data given in [35], the transformation start and finish temperatures during cooling are
TH = 560◦ C and TL = 400◦ C, respectively, while TL = 760◦ C and TH = 840◦ C for the (re)austenitization.
Likewise, the thermal expansion coefficients of austenite, αγ , and of the product phase bainite, αα′ , as well as
the strains at ambient temperature have been extracted from [35], while the elastic properties as well as the
austenite’s yield strength are taken from [40]:

αγ = 23 × 10−6 K−1, αα′ = 16 × 10−6 K−1 , (56)

εthγ (T∞) = −1 × 10−2, εthα′(T∞) = 0 , (57)

E(T ) =
(
208 − 0.19 T + 1.19 × 10−3 T 2 − 2.82 × 10−6 T 3 + 1.66 × 10−9 T 4

)
GPa , (58)

ν = 0.3 , (59)

σ
y
γ =

(
183 − 0.147 T

)
MPa , (60)

where T is given in ◦C. For the product phase, we assumed σ
y
α′ = 900 MPa. The first thermal cycle is stress

free, whereas in the second thermal cycle a tensile load of 23 MPa is applied during cooling shortly before the
beginning of the transformation.
The strains computed using our proposed algorithm for Leblond’s model agree well with the measurements
reported by Taleb and Petit [35], as shown in Fig. 12. Note in particular that the strain evolution during the phase
transformation in the final cooling step, which is the distinct feature governed by TRIP in this experiment,
is well approximated by our simulation. In contrast, this feature cannot be predicted at all by a classical J2-
based approach akin to the one discussed in Sect. 4.2 of this work. We remark that the experimental data
of Taleb and Petit [35] displays a slightly different thermal expansion on cooling than on reheating which
additionally appears to be somewhat nonlinear in temperature below TL during the final cooling, as opposed
to our assumption of linear thermal expansion of each phase. However, it is difficult to draw a conclusion on
the reasons for this based solely on the information given in [35].
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Fig. 12 Total axial strain during two subsequent thermal cycles (labeled C1 and C2, respectively) in a dilatometry experiment as
predicted by the proposed implementation of Leblond’s model compared to the experimental data provided by Taleb and Petit
[35]
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