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Abstract

The present article proposes a mortar-type finite element formulation for consistently embedding curved, slender beams
into 3D solid volumes. Following the fundamental kinematic assumption of undeformable cross-sections, the beams are
identified as 1D Cosserat continua with pointwise six (translational and rotational) degrees of freedom describing the cross-
section (centroid) position and orientation. A consistent 1D-3D coupling scheme for this problem type is proposed, requiring to
enforce both positional and rotational constraints. Since Boltzmann continua exhibit no inherent rotational degrees of freedom,
suitable definitions of orthonormal triads are investigated that are representative for the orientation of material directions within
the 3D solid. While the rotation tensor defined by the polar decomposition of the deformation gradient appears as a natural
choice and will even be demonstrated to represent these material directions in a Ly-optimal manner, several alternative triad
definitions are investigated. Such alternatives potentially allow for a more efficient numerical evaluation. Moreover, objective
(i.e. frame-invariant) rotational coupling constraints between beam and solid orientations are formulated and enforced in
a variationally consistent manner based on either a penalty potential or a Lagrange multiplier potential. Eventually, finite
element discretization of the solid domain, the embedded beams, which are modeled on basis of the geometrically exact
beam theory, and the Lagrange multiplier field associated with the coupling constraints results in an embedded mortar-type
formulation for rotational and translational constraint enforcement denoted as full beam-to-solid volume coupling (BTS-
FULL) scheme. Based on elementary numerical test cases, it is demonstrated that a consistent spatial convergence behavior
can be achieved and potential locking effects can be avoided, if the proposed BTS-FULL scheme is combined with a suitable
solid triad definition. Eventually, real-life engineering applications are considered to illustrate the importance of consistently
coupling both translational and rotational degrees of freedom as well as the upscaling potential of the proposed formulation.
This allows the investigation of complex mechanical systems such as fiber-reinforced composite materials, containing a large
number of curved, slender fibers with arbitrary orientation embedded in a matrix material.

Keywords Beam-to-solid coupling - 1D-3D position and rotation coupling - Mixed-dimensional coupling - Finite element
method - Geometrically exact beam theory - Mortar methods - Fiber-reinforced materials

1 Introduction two, into a 3D matrix material is a common approach to

enhance the mechanical properties of a structure. Fiber-

Embedding fibers or beams, i.e. solid bodies that can mechan-
ically be modeled as dimensionally reduced 1D structures
since one spatial dimension is much larger than the other
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reinforced structures can be found in many different fields,
e.g. in form of steel reinforcements within concrete struc-
tures, lightweight fiber-reinforced composite materials based
on carbon, glass or polymer fibers in a plastic matrix, or
additively manufactured components allowing for a very
flexible and locally controlled reinforcement of plastic,
metal, ceramic or concrete matrix materials [32,33,42]. At
a different length scale, fiber embeddings play a key role for
essential processes in countless biological systems, e.g. in the
form of embedded networks (e.g. cytoskeleton, extracellular
matrix, mucus) or bundles (e.g. muscle, tendon, ligament)
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[2,21,31,41]. Most of these applications are characterized by
geometrically complex embeddings of arbitrarily oriented,
slender and potentially curved fibers. Computational mod-
els predicting the response of such reinforced structures are
essential for a time- and cost-efficient design and develop-
ment of technical products, but also to gain fundamental
understanding of biological systems at length scales that
are not accessible via experiments. In the context of com-
putational modeling, as considered in the following, the
embedded 1D structures will be referred to as fibers or beams,
respectively, and the 3D matrix as solid.

One common modeling approach for this physical beam-
to-solid volume coupling problem is based on homogenized,
anisotropic material models for the combined fiber-matrix
structure [1,70]. This widely used approach is appealing
since, e.g. no additional degrees of freedom are required
to model individual fibers, and existing simulation tools
can be used as long as they support anisotropic material
laws. However, such models cannot give detailed informa-
tion about the interactions between fibers and surrounding
matrix as, e.g. required to study mechanisms of failure.
Moreover, the fiber distribution in the solid has to be suf-
ficiently homogeneous and a separation of scales is required,
i.e. the fiber size has to be sufficiently small as compared to
the smallest dimension of the overall structure. Eventually,
when modeling new fiber arrangements, the homogenization
step inherent to these continuum models requires sub-scale
information, e.g. provided by a model with resolved fiber
geometries.

Another modeling approach consists of fully describing
the fibers and surrounding solid material as 3D continua.
This leads to a surface-to-surface coupling problem at the
2D interface between fiber surface and surrounding solid. In
the context of the finite element method, these surfaces can be
tied together by either applying fiber and solid discretizations
that are conforming at the shared interface or via interface
coupling schemes accounting for non-matching meshes, such
as the mortar method [45,47-49]. Alternatively, extended
finite element methods (XFEM) [40] or immersed finite ele-
ment methods [29,55] can be used to represent 2D fiber
surfaces embedded in an entirely independent background
solid mesh. While such fully resolved modeling approaches
allow to study local effects with high spatial resolution, the
significant computational effort associated with these mod-
els prohibits their usage for large-scale systems with a large
number of slender fibers.

The class of applications considered here typically
involves very slender fibers. In this regime it is well justified,
and highly efficient from a computational point of view, to
model individual fibers as beams, e.g. based on the geometri-
cally exact beam theory [9,12,14,24,30,36,38,51,52,59-61],
which is known to combine high model accuracy and
computational efficiency [5,53]. Based on the fundamen-
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tal kinematic assumption of undeformable cross-sections,
such beam models can be identified as 1D Cosserat con-
tinua with six degrees of freedom defined at each centerline
point to describe the cross-section position (three transla-
tional degrees of freedom) and orientation (three rotational
degrees of freedom). Thus, the problem of beams embedded
in a 3D solid volume can be classified as mixed-dimensional
1D-3D coupling problem between 1D Cosserat continua
and a 3D Boltzmann continuum. A variety of 1D-3D cou-
pling approaches exist in the literature, however most of
them involve truss/string models, i.e. 1D structural mod-
els account only for internal elastic energy contributions
from axial tension, e.g. [13,17,20,25,26,43,50]. Work on
the 1D-3D coupling between beams, i.e. full Cosserat con-
tinua, and solids is much rarer. In [16], collocation along
the beam centerline is applied to couple beams with a sur-
rounding solid material. A mortar-type coupling approach
is proposed in the authors’ previous work [63], where a
Lagrange multiplier field is defined along the beam center-
line to weakly enforce the coupling constraints. The 1D-3D
coupling between beams and a surrounding fluid field, as rel-
evant for fluid-structure-interaction (FSI) problems, has been
considered in some recent contributions [22,68].

All the aforementioned 1D-3D beam-to-solid coupling
schemes have in common that only the beam centerline
positions, but not the cross-section orientations, are cou-
pled to the solid, which will be denoted as translational
1D-3D coupling. In such models, an embedded fiber can still
perform local twist/torsional rotations, i.e. cross-section rota-
tions with respect to its centerline tangent vector, relative to
the solid. While this simplified coupling procedure can rea-
sonably describe the mechanics of certain problem classes
where such relative rotations will rarely influence the global
system response, e.g. embedding of straight fibers with cir-
cular cross-section shape, for most practical applications a
more realistic description of the physical problem requires
to also couple the rotations of beam and solid.

In a very recent approach by [27] the full 1D-3D cou-
pling problem involving positions and rotations has been
addressed for the first time. The coupling of the two direc-
tors spanning the (undeformable) beam cross-section with
the underlying solid continuum together with the coupling of
the cross-section centroids results in a total of nine coupling
constraints. One specific focus of this interesting contri-
bution lies on a static condensation strategy, which allows
to eliminate the associated Lagrange multipliers and the
beam balance equations from the final, discrete system of
equations. The requirement of a C'-continuous spatial dis-
cretization of the solid domain, as resulting from the proposed
condensation strategy, is satisfied by employing NURBS-
based test and trial functions.

The present work proposes a full 1D-3D coupling
approach based on only six, i.e. three translational and three
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rotational, coupling constraints between the cross-sections
of 1D beams, modeled according to the geometrically exact
beam theory, and a 3D solid. The finite element method
is employed for spatial discretization of all relevant fields.
Consistently deriving the full 1D-3D coupling on the beam
centerline from a 2D-3D coupling formulation on the beam
surface via a first-order Taylor series expansion of the solid
displacement field would require to fully couple the two
orthonormal directors spanning the (undeformable) beam
cross-section with the (in-plane projection of the) solid
deformation gradient evaluated at the cross-section centroid
position. It is demonstrated that such an approach, which
suppresses all in-plane deformation modes of the solid at
the coupling point, might result in severe locking effects in
the practically relevant regime of coarse solid mesh sizes.
Therefore, as main scientific contribution of this work, dif-
ferent definitions of orthonormal triads are proposed that are
representative for the orientation of material directions of
the 3D continuum in an average sense, without additionally
constraining in-plane deformation modes when coupled to
the beam cross-section. It is shown that the rotation tensor
defined by the polar decomposition of the (in-plane pro-
jection of the) deformation gradient appears as a natural
choice for this purpose, which even represents the average
orientation of material directions of the 3D continuum in a
L,-optimal manner. Moreover, several alternative solid triad
definitions are investigated that potentially allow for a more
efficient numerical evaluation.

Once these solid triads have been defined, objective
(i.e. frame-invariant) rotational coupling constraints in the
form of relative rotations are formulated for each pair of
triads representing the beam and solid orientation. Their vari-
ationally consistent enforcement either based on a penalty
potential or a Lagrange multiplier potential, with an asso-
ciated Lagrange multiplier field representing a distributed
coupling moment along the beam centerline, is shown. Even-
tually, finite element discretization of the Lagrange multiplier
and relative rotation vector field along the beam centerline
results in an embedded mortar-type formulation for rotational
constraint enforcement. In combination with a previously
developed mortar-type formulation (BTS-TRANS) for trans-
lational 1D-3D coupling [63], this results in a full 1D-3D
coupling approach denoted as full beam-to-solid volume
coupling scheme (BTS-FULL). Finite element discretization
of the solid and the embedded (potentially curved) beams
inevitably results in non-matching meshes, which underlines
the importance of a consistently embedded mortar-type for-
mulation as proposed in this work. Based on elementary
numerical test cases, it is demonstrated that a consistent
spatial convergence behavior can be achieved and potential
locking effects can be avoided if the proposed BTS-FULL
scheme is combined with a suitable solid triad definition.
Eventually, real-life engineering applications are considered

to illustrate the importance of consistently coupling both
translational and rotational degrees of freedom as well as
the upscaling potential of the proposed formulation to study
complex mechanical systems such as fiber-reinforced com-
posite materials, containing a large number of curved, slender
fibers with arbitrary orientation embedded in a matrix mate-
rial.

The remainder of this work is organized as follows: In
Sect. 2, we state the fundamental modeling assumptions of
the proposed BTS-FULL scheme. Specifically, the impor-
tance of enforcing both rotational and translational coupling
conditions is demonstrated, and the general implications of a
1D-3D coupling approach are discussed. In Sect. 3, we give
a short summary of the theory of large rotations as required
to formulate rotational coupling conditions. In Sect. 4, the
governing equations for the solid and beam domains are
presented, and objective rotational coupling constraints are
defined and enforced in a variationally consistent manner,
either based on a penalty or a Lagrange multiplier potential.
In Sect. 5, we propose different definitions of orthonormal
triads that are suitable to represent the orientation of solid
material directions in an average sense. In Sect. 6, discretiza-
tion of the coupling conditions based on the finite element
method is considered, once in a Gauss point-to-segment man-
ner and once as mortar-type approach along with a weighted
penalty regularization. Finally, numerical examples, care-
fully selected to verify different aspects of the proposed
formulation, are presented in Sect. 7.

2 Motivation and modeling assumptions

In Sect. 2.1, the main modeling assumptions generally
underlying 1D-3D coupling schemes will be discussed. Sub-
sequently, in Sect. 2.2, the importance of a full position and
rotation coupling (BTS-FULL) will be motivated for general
application scenarios, and special cases will be discussed,
where also a purely translational coupling (BTS-TRANS)
can be considered as reasonable approximation.

2.1 Modeling assumptions underlying the 1D-3D
coupling

The considered class of 1D-3D coupling schemes is based
on the assumption that the fiber material is stiff compared
to the solid material, and local fiber cross-section dimen-
sions are small compared to the global solid dimensions.
Thus, the solid may be discretized without subtracting the
fiber volume, formally resulting in overlapping solid and fiber
domains. While consistent 2D-3D coupling on the fiber sur-
face would allow for high-resolution stress field predictions
in the direct vicinity of the 2D fiber-solid interface, such
approaches require an evaluation of coupling constraints on
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Fig. 1 Plane coupling problem of a single fiber cross-section with a
solid finite element mesh—full 1D-3D coupling (left) vs. 2D-3D cou-
pling (right)

a 2D interface and a sufficient discretization resolution of
the solid with mesh sizes smaller than the fiber cross-section
dimensions, thus in large parts deteriorating the advantages
provided by a reduced dimensional description of the fibers.

In truly 1D-3D coupling approaches, the coupling con-
ditions are exclusively defined along the beam centerline,
thus preserving the computational advantages of the dimen-
sionally reduced beam models. Of course, such approaches
inevitably introduce a modeling error as compared to the 2D-
3D coupling, i.e. the surface tractions on the 2D beam-solid
interface are approximated by localized resultant /ine forces
and moments acting on the beam centerline. This has a sig-
nificant impact on the analytical solution of the problem, as
line loads acting on a 3D continuum result in singular stress
and displacement fields, cf. [19,44,66]. Thus, convergence
of the 1D-3D solution towards the 2D-3D solution is not
expected. However, in the realm of the envisioned applica-
tions, we are rather interested in global system responses than
in local stress distributions in the direct vicinity of the fibers.
Thus, practically relevant solid element sizes are considered
that are larger than the fiber cross-section dimensions. In this
regime of mesh resolutions, this inherent modeling error of
1D-3D approaches can typically be neglected.

To verify this statement, consider a plane problem of a
beam cross-section, loaded with a moment, that is coupled
to a solid finite element as depicted in Fig. 1. As long as the
cross-section diameter is smaller than the solid finite element
mesh size, the resulting discrete nodal forces Fs acting on
the solid are independent of the employed coupling approach,
i.e. either 1D-3D coupling with associated coupling moment
M (Fig. 1, left) or 2D-3D coupling with associated coupling
surface load t (Fig. 1, right). Obviously, this is an idealized
setting, but it illustrates that 1D-3D coupling approaches can
be considered as valid models for solid mesh sizes larger
than the cross-section diameter, which will also be verified
in Sect. 7. For a more detailed discussion of this topic the
interested reader is referred to our previous publication [63],
specifically to Figure 15 in [63], which depicts an analogous
scenario for the coupling of translational degrees of freedom.

@ Springer

2.2 Motivation for full translational and rotational
coupling

To differentiate the scope of validity of the proposed BTS-
FULL scheme (coupling of positions and rotations) and of
existing BTS-TRANS schemes (coupling of positions only),
two application scenarios are discussed.

As first scenario, systems are considered (i) that contain
only transversely isotropic fibers (e.g. circular cross-section
shape and initially straight) and (ii) whose global system
response is dominated by the axial and bending stiffness
of the fibers, i.e. the torsional contribution is negligible. As
demonstrated in [63], BTS-TRANS schemes can be consid-
ered as a reasonable mechanical model in this case, since
local (twist/torsional) rotations of the fibers with respect to
their straight axes will rarely influence the global system
response. Torsion-free beam models [37] represent an elegant
mechanical description of the fibers for such applications.

As second scenario, systems are considered that con-
tain transversely anisotropic fibers (e.g. non-circular cross-
section shape or initially curved). First, it is clear that
twist rotations of the fiber cross-sections with respect to
the centerline tangent (even if not possible in their simplest
form as rigid body rotations) will change the global sys-
tem response, since such fibers exhibit distinct directions of
maximal/minimal bending stiffness or initial curvature. Sec-
ond, due to the inherent two-way coupling of bending and
torsion in initially curved beams [37], bending deformation
will inevitably induce torsion in such application scenarios,
i.e. the global system stiffness is approximated as too soft
if these torsional rotations are not transferred to the matrix
by a proper coupling scheme. Thus, a unique and consistent
mechanical solution for this scenario can only be guaranteed
by BTS-FULL schemes.

Remark 2.1 In fact, both aforementioned application scenar-
ios might lead to non-unique static solutions if neglecting
the rotational coupling. However, for transversely isotropic
fibers the non-uniqueness only occurs at the local fiber level,
i.e. the twist orientation of the fibers is not uniquely defined,
which does not influence the global system response. The
locally non-unique fiber orientation is typically only an issue
from a numerical point of view (e.g. linear solvers), and can
be effectively circumvented by employing, e.g. torsion-free
beam models not exhibiting the relevant rotational degrees
of freedom. For transversely anisotropic fibers, such local
twist rotations will change the global system response. This
gives rise to non-unique static solutions on the global level
and, thus, has significant implications from a physical point
of view.
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3 Large rotations

This section gives a brief overview on the mathematical treat-
ment of finite rotations as required for the formulation of
rotational coupling constraints. For a more comprehesive
treatment of this topic, the interested reader is referred to
[8,12,24,38,52,60]. Let us consider a rotation tensor

A:[gl,g2,53]6503, D

where S O3 is the special orthogonal group and the base vec-
tors g. form an orthonormal triad, that maps the Cartesian
ba51s vectors ¢; onto .. In the following, a rotation pseudo-
vector ¥ is used for 1ts parametrization, i.e. A = A(¥). The

rotation vector describes a rotation by an angle ¥ = Hwﬁ H

around the rotation axis e, = ¥/ || ¢ ||. The parametrization
can be given by the well-known Rodrigues formula [3]

AW =exp (S(¥))

= LsinyS (e, ) + (1 —cosy) 8 (ey). .

where exp(-) is the exponential map. Furthermore, § € so’

is a skew-symmetric tensor, where so> represents the set of
skew-symmetric tensors with S (a)b=a x bV a,b € R>.
The inverse of the Rodrigues formula (2), i.e. the rotation
vector as a function of the rotation tensor, will be denoted
as ¥ (A) = rv(A) in the remainder of this work. In practice,
Spﬁrier’s algorithm [62] can be used for the extraction of
the rotation vector.

Twotriads A (1/1 ) and A2(1/f ), with their respective rota-
tion vectors ¥ . and l/f canbe related by the relative rotation
A, ) The relatlve rotation is given by

A, (¥) = Ay (¥, DA (¥ )
¢ 3)
Ay (¥,) = A )DA @)

with the identity AT = A ~! for all elements of SO3. Thus,
the (non-additive) rotation vector ¢, = 1v (Ay) # ¥, -
¥, describes the relative rotation between A; and A,.

In a next step, the infinitesimal variations of the rotation
tensor shall be considered, which can be expressed either by
an infinitesimal additive variation 8¢ of the rotation vector

59, )

or by a infinitesimal multiplicative rotation variation 386,
which is also denoted as spin vector:

d
SA = —
- de

Afcst)A(¥)=S@0)A(¥).  ©

e=0

While the definition of the multiplicative rotation variation
(5) can often be found in the literature, e.g. in [14,24,61],
the notation introduced for the additive rotation variation (4)
simply represents the standard definition of partial differ-
entiation, which is based on additive increments. With the
relation above and the definition of S, the variations of the
triad basis vectors § 8, read

8&, =480 x 8, (6)

The infinitesimal additive and multiplicative rotation vector
variations can be related according to

59 = T(¥)50, ™

where the transformation matrix T'(y) [61] is defined as

T(Y) = WWT—% (v)

1 ®)
)

2 tan (%)

In [34], the objective variation §, of a spatial quantity defined
in a moving frame A, is defined as the difference between
the total variation and the variation of the base vectors of
the moving frame. In the context of rotational coupling con-
straints this will be required when expressing the objective
variation of a relative rotation vector ¥ )

So¥y, = 8, =80y x ¥, =T (¥, )0, — 38)). ()
For a detailed derivation of this expression for the objective
variation the interested reader is referred to [34].

Remark 3.1 Via right-multiplication of (8) with the rotation
vector ¥ it can easily be shown that ¥ is an eigenvector (with
eigenvalue 1) of T and also of 7, i.e. Ty =y and ZTK =
¥. This property will be beneficial for derivations presented
in subsequent sections. Every vector parallel to ¥ is also an
eigenvector of T'. This can be interpreted in a geometrical
way: If the additive increment §¥ to a rotation vector ¥ is
parallel to the rotation vector, i.e. (S_K =dye, andy = yb_gw ,
the resulting compound rotation ¥ + éy = (¢ + 8v) ey
is still defined around the rotation axis ey In this case, the
rotation increment is a plane rotation relative to A (¥ ), and the
multiplicative and additive rotational increments are equal to
each other, Sf =46.
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Remark 3.2 In addition to A, also the symbol R will be used
in the following to represent rotation tensors.

4 Problem formulation

We consider a 3D finite deformation full beam-to-solid vol-
ume coupling problem (BTS-FULL) as shown in Fig. 2. All
quantities are refereed to a Cartesian frame e, e,, e5. For
simplicity, we focus on quasi-static problems in this work,
while the presented BTS-FULL method is directly applicable
to dynamic problems as well. The principle of virtual work
serves as basis for the proposed finite element formulation.
Contributions to the total virtual work of the system can be
split into solid, beam and coupling terms, where the solid
and beam terms are independent of the coupling constraints,
i.e. well-established modeling and discretization techniques
can be used for these single fields, cf. [63].

4.1 Solid formulation

The solid body is modeled as a 3D Boltzmann continuum,
defined by its domain 259 C R3 in the reference config-
uration, with boundary 9§25 . Throughout this work, the
subscript (-)¢ indicates a quantity in the reference configura-
tion. A solid material point can be identified by its reference
position X¢ € R3. The current position x s € R? relates to
X5 via the displacement field ug € R3, i.e.

x5 (X5) = Xg+ug(Xs). (10)

The domain and surface of the solid in the deformed
configuration are 2 and 9£2g, respectively. Virtual work
contributions § WS of the solid are given by

6W5=f S :8EdV,
250

—f b sugdvy —/ t-dugdAo,
25,0 I's

where 8 denotes the (total) variation of a quantity, § € R3*3
is the second Piola—Kirchhoff stress tensor, E € R3*3 is the
work-conjugated Green—Lagrange strain tensor, é e R3is
the body load vector and £ € R> are surface tractions on
the Neumann boundary I'; C 0825 0. The Green-Lagrange
strain tensor is defined as E = % (E TF—1 ) where the
deformation gradient F € R3*3 is defined according to

(1)

F=—. 12
£=9x, 12)

For the compressible or nearly incompressible solid mate-
rial, we assume existence of a hyperelastic strain energy
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function ¥ (E), which allows to determine[ the second Piola—
Kirchhoff stress tensor according to S = %}EE)

4.2 Geometrically exact beam theory

The beams are modeled as 1D Cosserat continua embedded
in 3D space based on the geometrically exact Simo—Reissner
beam theory. Thus, each beam cross-section is described by
six degrees of freedom, namely three positional and three
rotational degrees of freedom. This results in six deformation
modes of the beam: axial tension, bending (2x), shear (2x)
and torsion.

The cross-section centroids are connected by the center-
line curve r(s) € R3, where s € [0, L] =: £2p.o C Ris the
arc-length coordinate along the beam centerline §2p o in the
reference configuration, and L the corresponding reference
length. The displacement of the beam centerline u 5 (s) € R3
relates the reference position r, to the current position r via

r(s) =ro(s) +ug(s). (13)

The orientation of the beam cross-section field is described
by the following field of right-handed orthonormal triads
Ap(s) = [g,,(5). 8,,(5). 8, (9] = Ap(¥ ,(5)) € SO,
which maps the global Cartesian basis vectors e; onto the
local cross-section basis vectors g ,.(s) = Ape; for i =
1,2, 3. Therein, ﬂ 5 € R3 is the rotation pseudo-vector
chosen as parametrization for the triad. Moreover, the triad
field in the reference configuration is denoted as A g ((s) :=
(851.005): 837 0(5): 830N = Ap (¥ ,(5)), and the
relative rotation between the triads in reference and current
configurationisdenotedas Rp := Ap A1T9,0- According to the
fundamental kinematic assumption of undeformable cross-
sections, the position of an arbitrary material point within the
beam cross-section either in the reference or in the current
configuration can be expressed as follows:

Xp(s, 0, ) =ro(s) +ag, () +Bg, (©),  (14)
Xp(s 0 B) = 1(s) + g, () + B (9, (15)

where « and B represent in-plane coordinates. Based on a
hyperelastic stored-energy function according to

Hint,B = / ﬁint,B ds
25,0 (16)

~ 1
with [T = 5(L'Cp L +27Cy2)

81’7int B

the material force stress resultants F = —'== and moment

3 Mine. B

stress resultants M = S@- can be derived. Here, I' € R3
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Fig.2 Employed notations and
relevant kinematic quantities
defining the 3D finite
deformation BTS-FULL
problem

is a material deformation measure representing axial ten-
sion and shear, 2 € R3 is a material deformation measure
representing torsion and bending, and C, € R3>3 and
Cy € R3*3 are cross-section constitutive matrices. Even-
tually, the beam contributions to the weak form are given
by

SWEB =8y p + W2, (17)

with the virtual work §W2

~ of external forces and moments.

4.3 Full beam-to-solid volume coupling (BTS-FULL)

In the proposed BTS-FULL method, the pointwise six
degrees of freedom associated with the beam centerline posi-
tions and cross-section triads are coupled to the surrounding
solid, i.e.

r—xg=0 on I (18)
zSB =0 on I.. (19)
Herein, I, = $25,0 N £2p,o is the one-dimensional cou-

pling domain between the beam centerline and the solid
volume, i.e. the part of the beam centerline that lies within the
solid. The rotational coupling between beam cross-section
and solid as presented in this section is in close analogy to
the generalized cross-section interaction laws proposed in
[34]. The rotation vector ﬁ SB describes the relative rotation
between a beam cross-section triad A z and a corresponding
triad A g associated with the current solid configuration,

¥, =1v(454%). (20)

Opposite to A p, which is well defined along the beam cen-
terline, there is no obvious or unique definition for A ¢ in the
solid domain. In Sect. 5, different definitions of the solid triad
A are presented and investigated. However, for the deriva-
tion of the coupling equations, it is sufficient to assume the
general form Ag = A¢(F), i.e. formulating the solid triad

as a general function of the solid deformation gradient in the
current configuration.

The formulation of the constraint equations along the
beam centerline brings about an advantageous property of
the BTS-FULL method: the translational (18) and rotational
(19) coupling constraints are completely decoupled. There-
fore, the rotational coupling equations (19) can be interpreted
as a direct extension to the BTS-TRANS method, which
only couples the beam centerline positions to the solid as
derived and thoroughly discussed in [63]. In what follows,
two different constraint enforcement strategies for the rota-
tional coupling conditions will be presented.

Remark 4.1 In Sect. 7, we compare the BTS-FULL method
to a full 2D-3D coupling approach that enforces constraints
at the 2D beam-solid interface. The governing equations, as
well as the discretized coupling terms for this 2D-3D cou-
pling scheme are stated in Appendices 2 and 3.

4.3.1 Penalty potential

We consider a quadratic space-continuous penalty potential
between beam cross-section triads and solid triads defined
along the beam centerline:

1 T
H59 = /FC Tleg ds = /FC §£SB££SB ds, (21)

with the cross-section coupling potential ¢, = 7, (s) and
the symmetric penalty tensor ¢ € R3*3. Variation of the
penalty potential leads to the following contribution to the
weak form:

07T
51‘[692/ —930¢SBds
LY —

- /F (‘SOﬂSB)TEﬂSB ds. (22)

Therein, 8,¥ SB is the objective variation of the rotation vec-

tor ﬁ SB' Making use of (9), the variation of the total potential
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becomes, cf. [34],

51T, = / (605 —80,5)" TT (W Dew , ds . 23)

c

where 80 ¢ and 80 5 are multiplicative variations associated
with the solid and beam triad, respectively. Here, we consider
penalty tensors of the form ¢ = €gl with a scalar penalty
parameter €y € R* with physical unit Nm/m. With this def-
inition and the identity T7 ()¢ = ¥ (cf. Remark 3.1) the

variation of the penalty potential simplifies to
T
81, 269/ (305 —305) Ypds. (24)
I

It is well-known from the geometrically exact beam theory
that the (multiplicative) virtual rotations 66 are work-
conjugated to the moment stress resultants. Therefore, €y ¥ SB

can be directly interpreted as the (negative) coupling moment
acting on the beam cross-section.

4.3.2 Lagrange multiplier potential

Alternatively, the Lagrange multiplier method can be
employed to impose the rotational coupling constraints. A
Lagrange multiplier field A, = A4(s) € R3 is therefore
defined on the coupling curve .. For now, this field is a
purely mathematical construct in the sense of generalized
coupling forces associated with the coupling conditions (19).
The Lagrange multiplier potential for the rotational coupling
is

HMZ/F;MSBds. (25)

Variation of the Lagrange multiplier potential again leads to
a constraint contribution to the weak form, i.e.

81T, :/F Sy ¥, ds +/F AjSo¥, ds . (26)
5W)\9 —(SWCH

Therein, § W), and § W¢, are the variational form of the cou-
pling constraints and the virtual work of the generalized
coupling forces A,, respectively. With (9) the virtual work
of the generalized coupling forces becomes

—8We, =/F (805 —30) TT (Y Iy ds . 27)

Since the multiplicative rotation variations 86  are work-
conjugated to the moment stress resultants of the beam, the
term —T T(z s B))—”(’ can be interpreted as a distributed cou-
pling moment acting along the beam centerline.
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Remark 4.2 For a vanishing relative rotation 221 =0, as
enforced in the space-continuous problem setting according
to (19), the identity — T T (ﬂ s B) = I holds true and the rota-
tional Lagrange multipliers exactly represent the coupling
moments along the beam centerline. However, for the dis-
cretized problem this is only an approximation.

4.3.3 Objectivity of full beam-to-solid volume coupling

As indicated above, the solid triad field depends on the solid
deformation gradient F'. It can easily be shown, that the pre-
sented solid triad definitions STR — POL, STR — AVG and
STR — ORT, in Sect. 5 are objective with respect to an arbi-
trary rigid body rotation R* € SO3, i.e.

A5 =Ag(R*F) = R*A4(F). (28)

The geometrically exact beam model employed in this con-
tribution is also objective [36,38], i.e.

Ay =RAy. (29)
Equations (28) and (29) inserted into the definition of the

relative beam-to-solid rotation vector according to (20) gives
the rotated relative rotation vector,

T T
Vi, = VRAALRT) = Ry

(30)
where the identity rv(R*AR*T) = R* rv(A) has been used.
Thus, the rotational coupling conditions (19) in combination
with the proposed solid triad definitions and the employed
geometrically exact beam models are objective. As shown
in [34], in this case also an associated penalty potential of
type (21) or an associated Lagrange multiplier potential of
type (25) is objective.

The previous considerations show objectivity of the
proposed (space-continuous) 1D-3D coupling approaches.
However, in the realm of the finite element method, cf. Sect.
6, it is important to demonstrate that objectivity is pre-
served also in the discrete problem setting. It is well known
that the discretized deformation gradient, as required for
the definition of solid triads, is objective as long as stan-
dard discretization schemes (e.g. via Lagrange polynomials)
are applied to the displacement field of the solid. Also the
employed beam finite element formulation based on the geo-
metrically exact beam theory is objective, even though this
topic is not trivial and the interested reader is referred to
[36,38]. Therefore, it can be concluded that the proposed 1D-
3D coupling schemes are objective for the space-continuous
as well as for the spatially discretized problem setting.

Remark 4.3 Objectivity is the main reason for formulating
the rotational coupling constraints (19) based on the relative
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rotation vector, i.e. z sp = 0, cf. [34]. As alternative choice
for the rotational coupling constraints the difference between
the beam and solid triad rotation vectors, i.e. 10 llr

0, could be considered. However, such couphng constramts
would result in a non-objective coupling formulation [34].

5 Definition of solid triad field

One of the main aspects of the present work is the definition
of a suitable right-handed orthonormal triad field A in the
solid, which is required for the coupling constraint (19). This
is by no means a straightforward choice, and different triad
definitions will lead to different properties of the resulting
numerical coupling scheme. In the following, a brief moti-
vation will be given for the concept of solid triads before
different solid triad definitions will be proposed.

5.1 Motivation of the solid triad concept

If the embedded beam is considered as a 3D body, a consistent
2D-3D coupling constraint between the 2D beam surface and
the surrounding 3D solid can be formulated as

Xp—XxX3=0 on I3pip. (3D

Therein, I>p.3p is the 2D-3D coupling surface, i.e. the part
of the beam surface that lies withing the solid volume. In the
following, let X, denote the line of material solid points
that coincide with the beam centerline in the reference config-
uration, i.e. X, = r. Furthermore, the orthonormal triad
Agoy = [gS] 085200 &sa. 0] shall represent material direc-
tions of the solid that coincide with the beam triad in the
reference configuration according to

Ago=Ap (32)

The corresponding quantities in the deformed configuration
are denoted as x 5 . and A. Let us now expand the position
field in the solid as Taylor series around x g ., i.e.

xg=x5,+F AX + O(AXY), (33)

where F is the deformation gradient of the solid according
to (12). The 1D-3D coupling strategy underlying the pro-
posed BTS-FULL scheme relies on the basic assumption
of slender beams, i.e. R « L, where R is a character-
istic cross-section dimension (e.g. the radius of circular
cross-sections). This assumption allows to truncate the Tay-
lor series after the linear term as long as small increments
AX = g0 + '3533,0’ with o, B < R, are considered:

Xy~ Xg,tagg g (34)

which results in an error of order O(R?). Here, the directors
g and g, , which are not orthonormal in general, represent
the push forward of the solid directions g $2.0 and g 860

8 = F 8si0 for i =2,3. (35
It follows from (34) and (15) that the 2D-3D coupling condi-
tions (31) between the beam surface and the expanded solid
position field are exactly fulfilled if the following 1D-3D
coupling constraints are satisfied:

xg,=r, (36)
85 = 8pr 853~ 8p3 37

Coupling constraints of the form (37) enforce that the mate-
rial fibers g, and g g of the solid remain orthonormal during
deformatlon thus enforcing vanishing in-plane strains of the
solid at the coupling point x5, = r. In Sect. 7, it will be
demonstrated that constraints of this type lead to severe lock-
ing effects when applied to finite element discretizations that
are relevant for the proposed BTS-FULL scheme, i.e. solid
mesh sizes that are larger than the beam cross-section dimen-
sions. It will be demonstrated that such locking effects can be
avoided if the solid triad field is defined in a manner that only
captures the purely rotational contributions to the local solid
deformation at xy , = r without additionally constraining
the solid directors in the deformed configuration. As will be
demonstrated in the next sections, the rotation tensor defined
by the polar decomposition of the deformation gradient is
an obvious choice for this purpose, but also alternative solid
triad definitions are possible. Table 1 gives an overview of
the solid triad variants proposed in the following.

All of these solid triad definitions A¢ = [gSI , gsz’ gs3]
will be a function of the solid deformation gradient F,
i.e. Ag = Ag(F). Moreover, all solid triad definitions will
be constructed in a manner such that the associated orthonor-
mal base vectors g 5 and g ¢5 Tepresent the effective rotation
of the non-orthonormal directors g &5 and g, in an average
sense. Thus, it will be required that g g, and g 8, lie within a
plane defined by the normal vector

85 % 83

n= ; (38)

&g, = 25,

in the following denoted as the r-plane. Eventually, in the
examples in Sect. 7, two desirable properties of the solid triad
field for the proposed BTS-FULL method are identified:

(i) The solid triad should be invariant, i.e. symmetric/
unbiased with respect to the reference in-plane beam
cross-section basis vectors 8500 and 8530
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Table 1 Listing of the different

Description

solid triad variants presented in Solid triad

this contribution STR — POL
STR — DIR; /3
STR — AVG
STR — ORT

Obtained from the polar decomposition of the solid deformation gradient
Fix one chosen solid material direction to the solid triad
Fix average of two solid material directions to the solid triad

Orthogonal solid material directions stay orthogonal

(i) Theresulting BTS-FULL method should not lead to lock-
ing effects in the spatially discretized coupled problem.

These properties will be investigated for the following solid
triad definitions.

5.2 Polar decomposition of the deformation
gradient (STR — POL)

Based on polar decomposition, the deformation gradient of
the solid problem can be split into a product ¥ = vR¢ =
R U consisting of a rotation tensor R¢g € § 03 and a (spa-
tial or material) positive definite symmetric tensor v or U,
respectively, which describes the stretch. An explicit calcula-
tion rule for the rotation tensor, e.g. based on v, can be stated
as:

=FF", (39)
Ry=v'F. (40)

|

As mentioned above, it is desirable that the orthonormal base
vectors g g, and g 8 ., of the solid triad A lie in a plane with
normal vector n accordmg to (38). Itcan easily be verified that
the rotation tensor R ¢ associated with the total deformation
gradient F according to (40) will in general not satisfy this
requirement. Thus, a modification will be presented in the
following to preserve this property.

5.2.1 Construction of STR — POL triad

Since the sought-after solid triad shall be uniquely defined
already by the two in-plane directors g ) and 8502 modified
version of the deformation gradient will be con51dered

n _
Fr=n®g t8,98,,18:3% 85, “D

which consists of the projection of the total deformation gra-
dient F into the nr-plane extended by the additional term
n®g SLO" This modified deformation gradient ensures that
the two relevant in-plane basis vectors are correctly mapped,
ie. 8, = Eﬂ&sz,o and 8¢ = EEES&O’ while the third
basis vector, which is not relevant for the proposed coupling
procedure, is mapped onto the normal vector of the n-plane,
ie.n = F ﬁg SLo" This specific definition of a deformation
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gradient allows for the following multiplicative split:
F" = FPR", (42)

where R% describes the (pure) rotation from the initial solid
triad A g ; onto a (still to be defined) orthonormal intermedi-
ate triadA = [gl, g2, g3], whose base vectors gz and g3 lie
within the r-plane, and F2P represents a (quasi-2D) in-plane
deformation between §2 and g, and the non-orthonormal
base vectors g, and 85 Now, by applying the polar decom-
position only to the in- plane deformation, i.e.

F = PR, (43)
a solid triad can be defined from the initial triad A  as:
AspoL = RPR" Ay . (44)

Once an intermediate triad A is defined, the required rotation
tensors B%D and R™ can be calculated as follows:

1. R* = AAT,,
2. F?P = FY(R™)T,

3. ( 2D)2 FZD(FZD)T
4. E%D — (E2D)_1E2D~

The last remaining question is the definition of the triad A. It
can be shown that the choice of this triad is arbitrary and does
not influence the result, since a corresponding in-plane rota-
tion offset would be automatically considered/compensated
(in the sense of a superposed rigid body rotation) via the rota-
tional part E%D of the in-plane polar decomposition (43)
For example, a simple choice is given by g = n, g
§S2/||gs2 || and g g,=nx g which coincides with the s sohd
triad definition later dlscussed in Sect. 5.3.1.

Remark 5.1 It can be verified that Rg = R3P R" is fulfilled
for quasi-2D deformation states, e.g. for pure torsion load
cases where the beam axis remains straight during the entire
deformation (see example in Sect. 7.5). In this case, the (sim-
pler) polar decomposition of the total deformation gradient
F according to (40) can exploited.
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5.2.2 Properties of STR — POL triad

In contrast to alternative solid triad definitions that will be
investigated in the following sections, the definition accord-
ing to (44), referred to as STR — POL or by the subscript
()poL, 1s not biased by an ad-hoc choice of material direc-
tors in the solid that are coupled to the beam. Instead, the
rotation tensor R describes the rotation of material direc-
tions coinciding with the principle axes of the deformation
(i.e. it maps the principle axes from the reference to the spatial
configuration), which has two important implications: First,
the choice of material directions that are coupled depend on
the current deformation state and will in general vary in time.
Second, the principle axes represent an orthonormal triad per
definition, and, thus the coupling to the beam triad will not
impose any constraints on the local in-plane deformation of
the solid. Consequently, this solid triad variant fulfills both
requirements (i) and (ii) as stated above.

Eventually, a further appealing property of the STR — POL
triad shall be highlighted. Let 6y € [—m, 7] represent the
orientation of arbitrary in-plane directors in the reference
configuration defined to coincide for solid and beam accord-
ing togs.o(eo) = EB,O(QO) = cos (6p) g32’0+sin (6o) 8530
Their push-forward is given by g (6s(6p)) = F™ g 0(90)
for the solid and g ,(03(60)) = Rp 8500 for the beam,
where the angles 65 € [—m, w] and 6p € [—m, 7] represent
the corresponding in-plane orientations in the deformed con-
figuration (see Appendix 1 for a detailed definition). Since
in-plane shear deformation is permissible for the solid but
not for the beam, the orientations 65(6y) and 6 (6y) cannot
be identical for all 6y € [—m, ] and arbitrary deforma-
tion states. However, as demonstrated in Appendix 1, when
coupling the beam triad to the STR — POL triad according
to (44), the beam directors gy (6p(6p) represent the orienta-
tion of the solid directors g S(OS (6p) in an average sense such
that the following L;-norm is minimized:

/(95(90) — 05 (60))*dby — min. for Ag=Agpo- (45)

In conclusion, STR — POL is an obvious choice for the
solid triad with many favorable properties, e.g. it represents
the average orientation of material solid directions in a L,-
optimal manner. However, it requires the calculation of the
square root of a tensor, and more importantly, for latter vari-
ation and linearization procedures also the first and second
derivatives of the tensor square root with respect to the solid
degrees of freedom. This results in considerable computa-
tional costs, since this operation has to be performed at local
Gauss point level. Therefore, alternative solid triad defini-
tions will be proposed in the following that can be computed

more efficiently, while still being able to represent global
system responses with sufficient accuracy.

5.3 Alternative solid triad definitions
All solid triad variants considered in the following rely on

the non-orthonormal solid directors g 5 and g $ according
to (35), their normalized counterparts

(46)

g..
ro._ 280 .
8 = ’ for i =2,3
&

and the corresponding normal vector n according to (38).
Based on these definitions, three different variants will be
exemplified in the following.

5.3.1 Fixed single solid director (STR — DIRy3)

In the first variant, denoted as STR — DIR2/3, the orientation
of one single solid director, either g or g 3 is fixed to the
solid triad, cf. Figure 3(b). The ch01ce which solid material
direction to couple is arbitrary. Therefore, two variants will
be distinguished:

(47)
(48)

/ /
AS,DIRZ = [n, 8o X gsz]

Agpr, = [1. 8, xn, 8.1,
Since the variant STR — DIRjy/3 does not fulfill the require-
ment (i) as stated above, it will only be considered for
comparison reasons in the 2D verification examples in
Sect. 7.

5.3.2 Fixed average solid director (STR — AVG)

In order to solve this problem, i.e. to define a solid triad that
is symmetric with respect to the base vectors g and g3,
an alternative variant denoted as STR — AVG is proposed
which relies on the average of the directors 52 and 53, cf. Fig.
3(c):

85, T 853
Esave = T, N (49)
‘ 85 T 853 )

With this average vector the solid triad can be constructed
as:

Ag avg = R (—(/9n) Ag avg rer

. (50)
with  Ag AvG ref = [ 2 Esave X 85 avG I

The rotation tensor R (— (7 /4)@) in (50) represents a “back-
rotation” of the constructed reference triad Ag Ay rer DY an
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Fig.3 Illustration of STR — DIR>, STR — AVG and STR — ORT solid
triad definitions for an exemplary 2D problem setting. For simplicity it
is assumed that the beam reference triad aligns with the Cartesian frame
ey, €, €3, i.e. Ag = I. a Reference configuration, b STR — DIR;,
¢ STR — AVG and d STR — ORT

angle of —m /4 to ensure that the resulting solid triad aligns
with the beam triad in the reference configuration according
to (32). In Sect. 7, it will be shown numerically that the variant
STR — AVG, similar to the variant STR — POL, fulfills both
requirements (i) and (ii) stated above.

Remark 5.2 Theoretically, an additive director averaging
procedure such as (49) can result in a singularity if the under-
lying vectors are anti-parallel, i.e. gsz = _gsa' However,

since the associated material directors are orthogonal in the
reference configuration, i.e. g?z 08530 = 0, and shear angles

smaller than 7t /2 can be assumed, this singularity will not be
relevant for practical applications.

5.3.3 Fixed orthogonal solid material directions
(STR — ORT)

In the last considered solid triad definition, both mate-
rial directors 5;2 and §’53 are coupled to the solid triad
simultaneously. This variant enforces that the directors Egz
and 5’53 remain orthogonal to each other, and thus it is
denoted as STR — ORT, indicated by a subscript (-)orT. The
STR — ORT variant is realized by applying the rotational
coupling constraints (19) twice, once with Ag g, accord-
ing to (47) and once with A S DIR3 according to (48).
Opposed to the other triad definitions in this section, this
version additionally imposes a constraint on the solid dis-
placement field by enforcing all shear strain components to
vanish at the coupling point. In Sect. 7, it will be demonstrated
that this over-constrained solid triad definition can lead to
severe shear locking effects, i.e. requirement (ii) from Sect.
5.11isnot satisfied. Thus, also this variant will only be consid-
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ered for comparison reasons in the 2D verification examples
in Sect. 7.

5.4 Variation of the solid rotation vector

In the coupling contributions to the weak form (24) and (26)
the multiplicative rotation vector variation 6 ¢ (spin vector)
of a solid rotation vector ¢ s arises. The spin vector is work-
conjugated with the coupling moments, i.e. it is required to
calculate the virtual work of a moment acting on the solidin a
variationally consistent manner. In contrast to the beam spin
vector 66 5, which represents the multiplicative variation of
primal degrees of freedom in the finite element discretization
of the geometrically exact Simo—Reissner beam theory and
is discretized directly, no such counterpart exists for the solid
field. Therefore, it is assumed that the solid spin vector can
be stated as a function of a set of generalized solid degrees
of freedom ¢ (which will later be identified as nodal position
vectors in the context of a finite element discretization) and
their variations 84 . The additive variation of the solid rotation
vector z s (¢q) then reads

V5= "% (51)

The multiplicative and additive variations are related via (7),
which gives the spin vector associated with the solid triad as
a function of the generalized solid degrees of freedom:

oY (q)
805 =17 (¥s@)) ——5q. 52
bs=T"¥,(q) T (52)
Remark 5.3 Alternatively, the solid spin vector can be
expressed by the variations of the corresponding solid triad

basis vectors g and their variations § [ cf. [36,38]:

—_ T T T
005= (0858 5;) (985,851 ) £t (385,850 £
og og
_ 252 253
= ((Em ® 553) 3q + (isz ® §51) dq

+(g5,® )—3551 5
E53985) "o )T

This formulation for the solid spin vector is equivalent to the
one in (52), but only contains the solid triad basis vectors and
their variations. Therefore, this definition of the solid spin
vector is better suited for solid triads constructed via their
basis vector. Especially in the implementation of the finite
element formulation, it is advantageous to avoid the com-
putation and inversion of the transformation matrix in (52).
Nonetheless, in the remainder of this contribution, the solid
spin vector as defined in (52) is used to improve readability
of the equations.



Computational Mechanics (2022) 69:701-732

713

Fig.4 Degrees of freedom for a single beam element used in this work.
All quantities related to the beam centerline position are depicted in
blue, all cross-section orientation related quantities are depicted in red

6 Spatial discretization

In this work, spatial discretization of the beam, solid and cou-
pling problem will exclusively be based on the finite element
method. In the following, a subscript (-);, refers to an interpo-
lated field quantity, superscripts (e) and ( f) indicate that the
quantity is defined for a solid element e and a beam element
f, respectively. Accordingly, (e, f) refers to coupling terms
between the solid element e and beam element f. The global
element count is made up of ng s solid finite elements and
nel, g beam finite elements.

6.1 Solid and beam problem

For the solid domain an isoparametric finite element approach
is used to interpolate position, displacement and virtual dis-
placement field within each solid element .Qée;l:

S(e) _N© (5 S, ) xS@© (53)
S(e) _ N©@ (g5 1S ¢5) qg5@ 54
u, = £5,10°,¢ (54)

5 S(e) N(e‘) (é nS’ ;S) adS(e) (55)

Therein, N© e R? Xt is the element shape function
matrix, which depends on the solid element parameter coor-
dinates £5, 0%, ¢5 € R. Furthermore, X5 ¢ R”éi)f, d5© ¢
Rdor and 8d5© ¢ Rdor are the element reference position
vector, element displacement vector and element virtual dis-
placement vector, respectively. Each solid element has n do)f
degrees of freedom.

The beam finite elements used in this work are based on
the Simo-Reissner formulation presented in [35,38]. Fig-
ure 4. illustrates the degrees of freedom for a single beam
finite element. The beam centerline interpolation is C'-
continuous based on third-order Hermite polynomials with

two centerline nodes per element. Each node for the center-

line interpolation has 6 degrees of freedom: 3 for the nodal

position 7 r(f ) and 3 for the centerline tangent ¢ t(f ) atthe node,

thus resultmg in a total of 12 element degrees of freedom
describing the beam centerline position. The interpolated
position of the beam centerline is

— HD (P )[ T A(f)T A(f)T A(f)T]

56
:H(f)(EB)(XB(f)deB(f)), o

with the beam position shape function matrix H/) e R3*12,
the beam centerline reference position vector X (/) e R12
and the beam centerline displacement vector d” ) e RI2,
Furthermore, €8 € R is the parameter coordinate along the
beam centerline.

A triad interpolation scheme based on three element nodal

rotation vectors l/lif) w;f) nd 1# is utilized [14]. The
third node is placed in the middle of the element and carries
no translational degrees of freedom, only rotational ones. The
three local nodal rotation vectors serve as primal degrees of
freedom for the interpolated rotation field along the beam
centerline. Each local rotation vector has 3 degrees of free-
dom, thus resulting in a total of 9 rotational degrees of
freedom per beam finite element. The interpolation of the
beam cross-section triad along the beam centerline is a non-
trivial task and requires an orthonormal interpolation scheme
for the interpolated triad A(f o (£8) to guarantee that the inter-
polated triad field is still a ‘member of the rotational group
SO3. Furthermore, objectivity of the discrete beam defor-
mation measures has to be preserved by the interpolation,
which is a challenging task if rotational degrees of freedom
are involved. In this contribution we will refer to the interpo-

lated triad field AY), (£) = nl (gB R ¢(f))

an abstract nonlinear function of the beam parameter coor-
dinate and the nodal rotation vectors. The corresponding
interpolated field of multiplicative rotation vector increments

Al g 31 (£8) has been consistently derived in [14] and reads:

A ()

3
A0y, = ZLQ)(EB)AQ,W DeByady) . (57)

i=1

Therein, i )

ces for the multiplicative nodal rotation increments A0

and 1Y) € B3 and AOB € R’ are the correspond—

ing element-wise assembled quantities. It should be pointed

out that T Ef) are nonlinear functions of the beam parameter

coordinate and the nodal rotation vectors of the beam ele-
ment, i.e. these rotational shape functions are deformation-
dependent. To avoid this nonlinearity in the discretized spin

€ R3*3 are generalized shape function matri-
f)
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vector, i.e. the virtual rotation field 805{ L, which would

require additional linearization contributions to calculate a
consistent tangent, the beam finite elements employed in
this work follow a Petrov—Galerkin discretization approach.
Therein, standard Lagrange shape functions are used to inter-
polate the discretized nodal spin vectors:

3
S L 50, = L €%)00y . (58)

i=1

s =

Here, Ll(:f ) € R are standard second-order Lagrange poly-

nomials, and SQEf) are the nodal spin vectors. Again, this
equation can be assembled element-wise, thus resulting in
the shape function matrix L) € R3*? and the element spin

vector 56}” e R’

In what follows, all coupling terms are evaluated on the
beam centerline. This requires the projection of points along
the beam centerline parameter space into the solid element
parameter space, which in turn is achieved by solving the set
(f) (53), for
a given &2 To improve readablhty, the superscrlpts indicat-
ing the beam and solid elements will be omitted from now
on. They will however be stated in the virtual work contribu-
tions and the integration domains in order to clearly indicate
pair-wise values. Additionally, any dependency on element
parameter coordinates will not be stated explicitly.

of nonlinear equations X S(e) (ES nS, ¢ )

Remark 6.1 While the C'-continuous centerline representa-
tion of the employed beam elements [35] is not mandatory
for the considered beam-to-solid volume coupling problem, it
offers significant advantages in problems additionally involv-
ing beam-to-beam [39] or beam-to-solid contact interaction,
which will be addressed in our future research.

6.2 Gauss point-to-segment coupling of
cross-section rotations

Evaluating the variation of the total coupling pot