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Abstract
The present article proposes a mortar-type finite element formulation for consistently embedding curved, slender beams
into 3D solid volumes. Following the fundamental kinematic assumption of undeformable cross-sections, the beams are
identified as 1D Cosserat continua with pointwise six (translational and rotational) degrees of freedom describing the cross-
section (centroid) position and orientation. A consistent 1D-3D coupling scheme for this problem type is proposed, requiring to
enforce both positional and rotational constraints. Since Boltzmann continua exhibit no inherent rotational degrees of freedom,
suitable definitions of orthonormal triads are investigated that are representative for the orientation ofmaterial directionswithin
the 3D solid. While the rotation tensor defined by the polar decomposition of the deformation gradient appears as a natural
choice and will even be demonstrated to represent these material directions in a L2-optimal manner, several alternative triad
definitions are investigated. Such alternatives potentially allow for a more efficient numerical evaluation. Moreover, objective
(i.e. frame-invariant) rotational coupling constraints between beam and solid orientations are formulated and enforced in
a variationally consistent manner based on either a penalty potential or a Lagrange multiplier potential. Eventually, finite
element discretization of the solid domain, the embedded beams, which are modeled on basis of the geometrically exact
beam theory, and the Lagrange multiplier field associated with the coupling constraints results in an embedded mortar-type
formulation for rotational and translational constraint enforcement denoted as full beam-to-solid volume coupling (BTS-
FULL) scheme. Based on elementary numerical test cases, it is demonstrated that a consistent spatial convergence behavior
can be achieved and potential locking effects can be avoided, if the proposed BTS-FULL scheme is combined with a suitable
solid triad definition. Eventually, real-life engineering applications are considered to illustrate the importance of consistently
coupling both translational and rotational degrees of freedom as well as the upscaling potential of the proposed formulation.
This allows the investigation of complex mechanical systems such as fiber-reinforced composite materials, containing a large
number of curved, slender fibers with arbitrary orientation embedded in a matrix material.

Keywords Beam-to-solid coupling · 1D–3D position and rotation coupling · Mixed-dimensional coupling · Finite element
method · Geometrically exact beam theory · Mortar methods · Fiber-reinforced materials

1 Introduction

Embeddingfibers or beams, i.e. solid bodies that canmechan-
ically be modeled as dimensionally reduced 1D structures
since one spatial dimension is much larger than the other
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two, into a 3D matrix material is a common approach to
enhance the mechanical properties of a structure. Fiber-
reinforced structures can be found in many different fields,
e.g. in form of steel reinforcements within concrete struc-
tures, lightweight fiber-reinforced compositematerials based
on carbon, glass or polymer fibers in a plastic matrix, or
additively manufactured components allowing for a very
flexible and locally controlled reinforcement of plastic,
metal, ceramic or concrete matrix materials [32,33,42]. At
a different length scale, fiber embeddings play a key role for
essential processes in countless biological systems, e.g. in the
form of embedded networks (e.g. cytoskeleton, extracellular
matrix, mucus) or bundles (e.g. muscle, tendon, ligament)
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[2,21,31,41]. Most of these applications are characterized by
geometrically complex embeddings of arbitrarily oriented,
slender and potentially curved fibers. Computational mod-
els predicting the response of such reinforced structures are
essential for a time- and cost-efficient design and develop-
ment of technical products, but also to gain fundamental
understanding of biological systems at length scales that
are not accessible via experiments. In the context of com-
putational modeling, as considered in the following, the
embedded 1D structureswill be referred to as fibers or beams,
respectively, and the 3D matrix as solid.

One common modeling approach for this physical beam-
to-solid volume coupling problem is based on homogenized,
anisotropic material models for the combined fiber-matrix
structure [1,70]. This widely used approach is appealing
since, e.g. no additional degrees of freedom are required
to model individual fibers, and existing simulation tools
can be used as long as they support anisotropic material
laws. However, such models cannot give detailed informa-
tion about the interactions between fibers and surrounding
matrix as, e.g. required to study mechanisms of failure.
Moreover, the fiber distribution in the solid has to be suf-
ficiently homogeneous and a separation of scales is required,
i.e. the fiber size has to be sufficiently small as compared to
the smallest dimension of the overall structure. Eventually,
when modeling new fiber arrangements, the homogenization
step inherent to these continuum models requires sub-scale
information, e.g. provided by a model with resolved fiber
geometries.

Another modeling approach consists of fully describing
the fibers and surrounding solid material as 3D continua.
This leads to a surface-to-surface coupling problem at the
2D interface between fiber surface and surrounding solid. In
the context of the finite elementmethod, these surfaces can be
tied together by either applying fiber and solid discretizations
that are conforming at the shared interface or via interface
coupling schemes accounting for non-matchingmeshes, such
as the mortar method [45,47–49]. Alternatively, extended
finite element methods (XFEM) [40] or immersed finite ele-
ment methods [29,55] can be used to represent 2D fiber
surfaces embedded in an entirely independent background
solid mesh. While such fully resolved modeling approaches
allow to study local effects with high spatial resolution, the
significant computational effort associated with these mod-
els prohibits their usage for large-scale systems with a large
number of slender fibers.

The class of applications considered here typically
involves very slender fibers. In this regime it is well justified,
and highly efficient from a computational point of view, to
model individual fibers as beams, e.g. based on the geometri-
cally exact beam theory [9,12,14,24,30,36,38,51,52,59–61],
which is known to combine high model accuracy and
computational efficiency [5,53]. Based on the fundamen-

tal kinematic assumption of undeformable cross-sections,
such beam models can be identified as 1D Cosserat con-
tinua with six degrees of freedom defined at each centerline
point to describe the cross-section position (three transla-
tional degrees of freedom) and orientation (three rotational
degrees of freedom). Thus, the problem of beams embedded
in a 3D solid volume can be classified as mixed-dimensional
1D-3D coupling problem between 1D Cosserat continua
and a 3D Boltzmann continuum. A variety of 1D-3D cou-
pling approaches exist in the literature, however most of
them involve truss/string models, i.e. 1D structural mod-
els account only for internal elastic energy contributions
from axial tension, e.g. [13,17,20,25,26,43,50]. Work on
the 1D-3D coupling between beams, i.e. full Cosserat con-
tinua, and solids is much rarer. In [16], collocation along
the beam centerline is applied to couple beams with a sur-
rounding solid material. A mortar-type coupling approach
is proposed in the authors’ previous work [63], where a
Lagrange multiplier field is defined along the beam center-
line to weakly enforce the coupling constraints. The 1D-3D
coupling between beams and a surrounding fluid field, as rel-
evant for fluid-structure-interaction (FSI) problems, has been
considered in some recent contributions [22,68].

All the aforementioned 1D-3D beam-to-solid coupling
schemes have in common that only the beam centerline
positions, but not the cross-section orientations, are cou-
pled to the solid, which will be denoted as translational
1D-3D coupling. In such models, an embedded fiber can still
perform local twist/torsional rotations, i.e. cross-section rota-
tions with respect to its centerline tangent vector, relative to
the solid. While this simplified coupling procedure can rea-
sonably describe the mechanics of certain problem classes
where such relative rotations will rarely influence the global
system response, e.g. embedding of straight fibers with cir-
cular cross-section shape, for most practical applications a
more realistic description of the physical problem requires
to also couple the rotations of beam and solid.

In a very recent approach by [27] the full 1D-3D cou-
pling problem involving positions and rotations has been
addressed for the first time. The coupling of the two direc-
tors spanning the (undeformable) beam cross-section with
the underlying solid continuum together with the coupling of
the cross-section centroids results in a total of nine coupling
constraints. One specific focus of this interesting contri-
bution lies on a static condensation strategy, which allows
to eliminate the associated Lagrange multipliers and the
beam balance equations from the final, discrete system of
equations. The requirement of a C1-continuous spatial dis-
cretizationof the solid domain, as resulting from theproposed
condensation strategy, is satisfied by employing NURBS-
based test and trial functions.

The present work proposes a full 1D-3D coupling
approach based on only six, i.e. three translational and three
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rotational, coupling constraints between the cross-sections
of 1D beams, modeled according to the geometrically exact
beam theory, and a 3D solid. The finite element method
is employed for spatial discretization of all relevant fields.
Consistently deriving the full 1D-3D coupling on the beam
centerline from a 2D-3D coupling formulation on the beam
surface via a first-order Taylor series expansion of the solid
displacement field would require to fully couple the two
orthonormal directors spanning the (undeformable) beam
cross-section with the (in-plane projection of the) solid
deformation gradient evaluated at the cross-section centroid
position. It is demonstrated that such an approach, which
suppresses all in-plane deformation modes of the solid at
the coupling point, might result in severe locking effects in
the practically relevant regime of coarse solid mesh sizes.
Therefore, as main scientific contribution of this work, dif-
ferent definitions of orthonormal triads are proposed that are
representative for the orientation of material directions of
the 3D continuum in an average sense, without additionally
constraining in-plane deformation modes when coupled to
the beam cross-section. It is shown that the rotation tensor
defined by the polar decomposition of the (in-plane pro-
jection of the) deformation gradient appears as a natural
choice for this purpose, which even represents the average
orientation of material directions of the 3D continuum in a
L2-optimal manner. Moreover, several alternative solid triad
definitions are investigated that potentially allow for a more
efficient numerical evaluation.

Once these solid triads have been defined, objective
(i.e. frame-invariant) rotational coupling constraints in the
form of relative rotations are formulated for each pair of
triads representing the beam and solid orientation. Their vari-
ationally consistent enforcement either based on a penalty
potential or a Lagrange multiplier potential, with an asso-
ciated Lagrange multiplier field representing a distributed
couplingmoment along the beam centerline, is shown. Even-
tually, finite element discretization of theLagrangemultiplier
and relative rotation vector field along the beam centerline
results in an embeddedmortar-type formulation for rotational
constraint enforcement. In combination with a previously
developedmortar-type formulation (BTS-TRANS) for trans-
lational 1D-3D coupling [63], this results in a full 1D-3D
coupling approach denoted as full beam-to-solid volume
coupling scheme (BTS-FULL). Finite element discretization
of the solid and the embedded (potentially curved) beams
inevitably results in non-matching meshes, which underlines
the importance of a consistently embedded mortar-type for-
mulation as proposed in this work. Based on elementary
numerical test cases, it is demonstrated that a consistent
spatial convergence behavior can be achieved and potential
locking effects can be avoided if the proposed BTS-FULL
scheme is combined with a suitable solid triad definition.
Eventually, real-life engineering applications are considered

to illustrate the importance of consistently coupling both
translational and rotational degrees of freedom as well as
the upscaling potential of the proposed formulation to study
complex mechanical systems such as fiber-reinforced com-
positematerials, containing a large number of curved, slender
fibers with arbitrary orientation embedded in a matrix mate-
rial.

The remainder of this work is organized as follows: In
Sect. 2, we state the fundamental modeling assumptions of
the proposed BTS-FULL scheme. Specifically, the impor-
tance of enforcing both rotational and translational coupling
conditions is demonstrated, and the general implications of a
1D-3D coupling approach are discussed. In Sect. 3, we give
a short summary of the theory of large rotations as required
to formulate rotational coupling conditions. In Sect. 4, the
governing equations for the solid and beam domains are
presented, and objective rotational coupling constraints are
defined and enforced in a variationally consistent manner,
either based on a penalty or a Lagrange multiplier potential.
In Sect. 5, we propose different definitions of orthonormal
triads that are suitable to represent the orientation of solid
material directions in an average sense. In Sect. 6, discretiza-
tion of the coupling conditions based on the finite element
method is considered, once in aGauss point-to-segmentman-
ner and once as mortar-type approach along with a weighted
penalty regularization. Finally, numerical examples, care-
fully selected to verify different aspects of the proposed
formulation, are presented in Sect. 7.

2 Motivation andmodeling assumptions

In Sect. 2.1, the main modeling assumptions generally
underlying 1D-3D coupling schemes will be discussed. Sub-
sequently, in Sect. 2.2, the importance of a full position and
rotation coupling (BTS-FULL) will be motivated for general
application scenarios, and special cases will be discussed,
where also a purely translational coupling (BTS-TRANS)
can be considered as reasonable approximation.

2.1 Modeling assumptions underlying the 1D-3D
coupling

The considered class of 1D-3D coupling schemes is based
on the assumption that the fiber material is stiff compared
to the solid material, and local fiber cross-section dimen-
sions are small compared to the global solid dimensions.
Thus, the solid may be discretized without subtracting the
fiber volume, formally resulting in overlapping solid andfiber
domains. While consistent 2D-3D coupling on the fiber sur-
face would allow for high-resolution stress field predictions
in the direct vicinity of the 2D fiber-solid interface, such
approaches require an evaluation of coupling constraints on
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Fig. 1 Plane coupling problem of a single fiber cross-section with a
solid finite element mesh—full 1D-3D coupling (left) vs. 2D-3D cou-
pling (right)

a 2D interface and a sufficient discretization resolution of
the solid with mesh sizes smaller than the fiber cross-section
dimensions, thus in large parts deteriorating the advantages
provided by a reduced dimensional description of the fibers.

In truly 1D-3D coupling approaches, the coupling con-
ditions are exclusively defined along the beam centerline,
thus preserving the computational advantages of the dimen-
sionally reduced beam models. Of course, such approaches
inevitably introduce amodeling error as compared to the 2D-
3D coupling, i.e. the surface tractions on the 2D beam-solid
interface are approximated by localized resultant line forces
and moments acting on the beam centerline. This has a sig-
nificant impact on the analytical solution of the problem, as
line loads acting on a 3D continuum result in singular stress
and displacement fields, cf. [19,44,66]. Thus, convergence
of the 1D-3D solution towards the 2D-3D solution is not
expected. However, in the realm of the envisioned applica-
tions, we are rather interested in global system responses than
in local stress distributions in the direct vicinity of the fibers.
Thus, practically relevant solid element sizes are considered
that are larger than the fiber cross-section dimensions. In this
regime of mesh resolutions, this inherent modeling error of
1D-3D approaches can typically be neglected.

To verify this statement, consider a plane problem of a
beam cross-section, loaded with a moment, that is coupled
to a solid finite element as depicted in Fig. 1. As long as the
cross-section diameter is smaller than the solid finite element
mesh size, the resulting discrete nodal forces FS acting on
the solid are independent of the employed coupling approach,
i.e. either 1D-3D coupling with associated coupling moment
M (Fig. 1, left) or 2D-3D coupling with associated coupling
surface load τ (Fig. 1, right). Obviously, this is an idealized
setting, but it illustrates that 1D-3D coupling approaches can
be considered as valid models for solid mesh sizes larger
than the cross-section diameter, which will also be verified
in Sect. 7. For a more detailed discussion of this topic the
interested reader is referred to our previous publication [63],
specifically to Figure 15 in [63], which depicts an analogous
scenario for the coupling of translational degrees of freedom.

2.2 Motivation for full translational and rotational
coupling

To differentiate the scope of validity of the proposed BTS-
FULL scheme (coupling of positions and rotations) and of
existing BTS-TRANS schemes (coupling of positions only),
two application scenarios are discussed.

As first scenario, systems are considered (i) that contain
only transversely isotropic fibers (e.g. circular cross-section
shape and initially straight) and (ii) whose global system
response is dominated by the axial and bending stiffness
of the fibers, i.e. the torsional contribution is negligible. As
demonstrated in [63], BTS-TRANS schemes can be consid-
ered as a reasonable mechanical model in this case, since
local (twist/torsional) rotations of the fibers with respect to
their straight axes will rarely influence the global system
response. Torsion-free beammodels [37] represent an elegant
mechanical description of the fibers for such applications.

As second scenario, systems are considered that con-
tain transversely anisotropic fibers (e.g. non-circular cross-
section shape or initially curved). First, it is clear that
twist rotations of the fiber cross-sections with respect to
the centerline tangent (even if not possible in their simplest
form as rigid body rotations) will change the global sys-
tem response, since such fibers exhibit distinct directions of
maximal/minimal bending stiffness or initial curvature. Sec-
ond, due to the inherent two-way coupling of bending and
torsion in initially curved beams [37], bending deformation
will inevitably induce torsion in such application scenarios,
i.e. the global system stiffness is approximated as too soft
if these torsional rotations are not transferred to the matrix
by a proper coupling scheme. Thus, a unique and consistent
mechanical solution for this scenario can only be guaranteed
by BTS-FULL schemes.

Remark 2.1 In fact, both aforementioned application scenar-
ios might lead to non-unique static solutions if neglecting
the rotational coupling. However, for transversely isotropic
fibers the non-uniqueness only occurs at the local fiber level,
i.e. the twist orientation of the fibers is not uniquely defined,
which does not influence the global system response. The
locally non-unique fiber orientation is typically only an issue
from a numerical point of view (e.g. linear solvers), and can
be effectively circumvented by employing, e.g. torsion-free
beam models not exhibiting the relevant rotational degrees
of freedom. For transversely anisotropic fibers, such local
twist rotations will change the global system response. This
gives rise to non-unique static solutions on the global level
and, thus, has significant implications from a physical point
of view.
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3 Large rotations

This section gives a brief overview on themathematical treat-
ment of finite rotations as required for the formulation of
rotational coupling constraints. For a more comprehesive
treatment of this topic, the interested reader is referred to
[8,12,24,38,52,60]. Let us consider a rotation tensor

Λ = [ g1, g2, g3 ] ∈ SO3, (1)

where SO3 is the special orthogonal group and the base vec-
tors g

i
form an orthonormal triad, that maps the Cartesian

basis vectors ei onto g
i
. In the following, a rotation pseudo-

vector ψ is used for its parametrization, i.e. Λ = Λ(ψ). The

rotation vector describes a rotation by an angle ψ =
∥
∥
∥ψ

∥
∥
∥

around the rotation axis eψ = ψ/

∥
∥
∥ψ

∥
∥
∥. The parametrization

can be given by the well-known Rodrigues formula [3]

Λ(ψ) = exp
(

S
(

ψ
))

= I + sinψS
(

eψ

)

+ (1 − cosψ) S2
(

eψ

)

,
(2)

where exp(·) is the exponential map. Furthermore, S ∈ so3

is a skew-symmetric tensor, where so3 represents the set of
skew-symmetric tensors with S

(

a
)

b = a × b ∀ a, b ∈ R
3.

The inverse of the Rodrigues formula (2), i.e. the rotation
vector as a function of the rotation tensor, will be denoted
as ψ(Λ) = rv(Λ) in the remainder of this work. In practice,
Spurrier’s algorithm [62] can be used for the extraction of
the rotation vector.

Two triadsΛ1(ψ1
) andΛ2(ψ2

), with their respective rota-
tion vectorsψ

1
andψ

2
, can be related by the relative rotation

Λ21(ψ21
). The relative rotation is given by

Λ2(ψ2
) = Λ21(ψ21

)Λ1(ψ1
)

�
Λ21(ψ21

) = Λ2(ψ2
)Λ1(ψ1

)T,

(3)

with the identity ΛT = Λ−1 for all elements of SO3. Thus,
the (non-additive) rotation vector ψ

21
= rv

(

Λ21

) �= ψ
2

−
ψ

1
describes the relative rotation between Λ1 and Λ2.
In a next step, the infinitesimal variations of the rotation

tensor shall be considered, which can be expressed either by
an infinitesimal additive variation δψ of the rotation vector

δΛ = d

dε

∣
∣
∣
∣
ε=0

Λ
(

ψ + εδψ
)

=
∂Λ

(

ψ
)

∂ψ
δψ, (4)

or by a infinitesimal multiplicative rotation variation δθ ,
which is also denoted as spin vector:

δΛ = d

dε

∣
∣
∣
∣
ε=0

Λ
(

εδθ
)

Λ
(

ψ
)

= S
(

δθ
)

Λ
(

ψ
)

. (5)

While the definition of the multiplicative rotation variation
(5) can often be found in the literature, e.g. in [14,24,61],
the notation introduced for the additive rotation variation (4)
simply represents the standard definition of partial differ-
entiation, which is based on additive increments. With the
relation above and the definition of S, the variations of the
triad basis vectors δg

i
read

δg
i
= δθ × g

i
. (6)

The infinitesimal additive and multiplicative rotation vector
variations can be related according to

δψ = T (ψ)δθ , (7)

where the transformation matrix T (ψ) [61] is defined as

T (ψ) = 1

ψ2ψψT − 1

2
S

(

ψ
)

+ ψ

2 tan
(

ψ
2

)

(

I − 1

ψ2ψψT
)

.
(8)

In [34], the objective variation δo of a spatial quantity defined
in a moving frame Λ1 is defined as the difference between
the total variation and the variation of the base vectors of
the moving frame. In the context of rotational coupling con-
straints this will be required when expressing the objective
variation of a relative rotation vector ψ

21
:

δoψ21
= δψ

21
− δθ1 × ψ

21
= T (ψ

21
)(δθ2 − δθ1). (9)

For a detailed derivation of this expression for the objective
variation the interested reader is referred to [34].

Remark 3.1 Via right-multiplication of (8) with the rotation
vectorψ it can easily be shown thatψ is an eigenvector (with

eigenvalue 1) of T and also of TT, i.e. Tψ = ψ and TTψ =
ψ . This property will be beneficial for derivations presented
in subsequent sections. Every vector parallel to ψ is also an
eigenvector of T . This can be interpreted in a geometrical
way: If the additive increment δψ to a rotation vector ψ is
parallel to the rotationvector, i.e. δψ = δψeψ andψ = ψeψ ,
the resulting compound rotation ψ + δψ = (ψ + δψ) eψ

is still defined around the rotation axis eψ . In this case, the
rotation increment is a plane rotation relative toΛ(ψ), and the
multiplicative and additive rotational increments are equal to
each other, δψ = δθ .
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Remark 3.2 In addition to Λ, also the symbol R will be used
in the following to represent rotation tensors.

4 Problem formulation

We consider a 3D finite deformation full beam-to-solid vol-
ume coupling problem (BTS-FULL) as shown in Fig. 2. All
quantities are refereed to a Cartesian frame e1, e2, e3. For
simplicity, we focus on quasi-static problems in this work,
while the presentedBTS-FULLmethod is directly applicable
to dynamic problems as well. The principle of virtual work
serves as basis for the proposed finite element formulation.
Contributions to the total virtual work of the system can be
split into solid, beam and coupling terms, where the solid
and beam terms are independent of the coupling constraints,
i.e. well-established modeling and discretization techniques
can be used for these single fields, cf. [63].

4.1 Solid formulation

The solid body is modeled as a 3D Boltzmann continuum,
defined by its domain ΩS,0 ⊂ R

3 in the reference config-
uration, with boundary ∂ΩS,0. Throughout this work, the
subscript (·)0 indicates a quantity in the reference configura-
tion. A solid material point can be identified by its reference
position X S ∈ R

3. The current position xS ∈ R
3 relates to

X S via the displacement field uS ∈ R
3, i.e.

xS
(

X S

) = X S + uS

(

X S

)

. (10)

The domain and surface of the solid in the deformed
configuration are ΩS and ∂ΩS , respectively. Virtual work
contributions δWS of the solid are given by

δWS =
∫

ΩS,0

S : δE dV0

−
∫

ΩS,0

b̂ · δuS dV0 −
∫

Γσ

t̂ · δuS dA0 ,

(11)

where δ denotes the (total) variation of a quantity, S ∈ R
3×3

is the second Piola–Kirchhoff stress tensor, E ∈ R
3×3 is the

work-conjugated Green–Lagrange strain tensor, b̂ ∈ R
3 is

the body load vector and t̂ ∈ R
3 are surface tractions on

the Neumann boundary Γσ ⊂ ∂ΩS,0. The Green-Lagrange
strain tensor is defined as E = 1

2

(

FTF − I
)

, where the
deformation gradient F ∈ R

3×3 is defined according to

F = ∂xS
∂X S

. (12)

For the compressible or nearly incompressible solid mate-
rial, we assume existence of a hyperelastic strain energy

functionΨ (E), which allows to determine the second Piola–
Kirchhoff stress tensor according to S = ∂Ψ (E)

∂E .

4.2 Geometrically exact beam theory

The beams are modeled as 1D Cosserat continua embedded
in 3D space based on the geometrically exact Simo–Reissner
beam theory. Thus, each beam cross-section is described by
six degrees of freedom, namely three positional and three
rotational degrees of freedom. This results in six deformation
modes of the beam: axial tension, bending (2×), shear (2×)
and torsion.

The cross-section centroids are connected by the center-
line curve r(s) ∈ R

3, where s ∈ [0, L] =: ΩB,0 ⊂ R is the
arc-length coordinate along the beam centerline ΩB,0 in the
reference configuration, and L the corresponding reference
length. The displacement of the beam centerline uB(s) ∈ R

3

relates the reference position r0 to the current position r via

r(s) = r0(s) + uB(s). (13)

The orientation of the beam cross-section field is described
by the following field of right-handed orthonormal triads
ΛB(s) := [g

B1
(s), g

B2
(s), g

B3
(s)] = ΛB(ψ

B
(s)) ∈ SO3,

which maps the global Cartesian basis vectors ei onto the
local cross-section basis vectors g

Bi
(s) = ΛBei for i =

1, 2, 3. Therein, ψ
B

∈ R
3 is the rotation pseudo-vector

chosen as parametrization for the triad. Moreover, the triad
field in the reference configuration is denoted as ΛB,0(s) :=
[g

B1,0
(s), g

B2,0
(s), g

B3,0
(s)] = ΛB,0(ψ B,0

(s)), and the

relative rotation between the triads in reference and current
configuration is denoted as RB := ΛBΛT

B,0.According to the
fundamental kinematic assumption of undeformable cross-
sections, the position of an arbitrary material point within the
beam cross-section either in the reference or in the current
configuration can be expressed as follows:

X B(s, α, β) = r0(s) + αg
B2,0

(s) + β g
B3,0

(s), (14)

xB(s, α, β) = r(s) + αg
B2

(s) + β g
B3

(s), (15)

where α and β represent in-plane coordinates. Based on a
hyperelastic stored-energy function according to

Πint,B =
∫

ΩB,0

Π̃int,B ds

with Π̃int,B = 1

2
(Γ TCFΓ + ΩTCMΩ)

(16)

the material force stress resultants F = ∂Π̃int,B
∂Γ

and moment

stress resultants M = ∂Π̃int,B
∂Ω

can be derived. Here, Γ ∈ R
3
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Fig. 2 Employed notations and
relevant kinematic quantities
defining the 3D finite
deformation BTS-FULL
problem

e3

e2

e1

ΩS,0

ΩS

ΩB,0 ΩB

XS

xS

r
r0

ΛB,0

ΛBΛS,0
ΛS

is a material deformation measure representing axial ten-
sion and shear, Ω ∈ R

3 is a material deformation measure
representing torsion and bending, and CF ∈ R

3×3 and
CM ∈ R

3×3 are cross-section constitutive matrices. Even-
tually, the beam contributions to the weak form are given
by

δWB = δΠint,B + δWB
ext, (17)

with the virtual work δWB
ext of external forces and moments.

4.3 Full beam-to-solid volume coupling (BTS-FULL)

In the proposed BTS-FULL method, the pointwise six
degrees of freedom associated with the beam centerline posi-
tions and cross-section triads are coupled to the surrounding
solid, i.e.

r − xS = 0 on Γc (18)

ψ
SB

= 0 on Γc. (19)

Herein, Γc = ΩS,0 ∩ ΩB,0 is the one-dimensional cou-
pling domain between the beam centerline and the solid
volume, i.e. the part of the beam centerline that lies within the
solid. The rotational coupling between beam cross-section
and solid as presented in this section is in close analogy to
the generalized cross-section interaction laws proposed in
[34]. The rotation vector ψ

SB
describes the relative rotation

between a beam cross-section triad ΛB and a corresponding
triad ΛS associated with the current solid configuration,

ψ
SB

= rv
(

ΛSΛ
T
B

)

. (20)

Opposite to ΛB , which is well defined along the beam cen-
terline, there is no obvious or unique definition for ΛS in the
solid domain. In Sect. 5, different definitions of the solid triad
ΛS are presented and investigated. However, for the deriva-
tion of the coupling equations, it is sufficient to assume the
general form ΛS = ΛS(F), i.e. formulating the solid triad

as a general function of the solid deformation gradient in the
current configuration.

The formulation of the constraint equations along the
beam centerline brings about an advantageous property of
the BTS-FULL method: the translational (18) and rotational
(19) coupling constraints are completely decoupled. There-
fore, the rotational coupling equations (19) can be interpreted
as a direct extension to the BTS-TRANS method, which
only couples the beam centerline positions to the solid as
derived and thoroughly discussed in [63]. In what follows,
two different constraint enforcement strategies for the rota-
tional coupling conditions will be presented.

Remark 4.1 In Sect. 7, we compare the BTS-FULL method
to a full 2D-3D coupling approach that enforces constraints
at the 2D beam-solid interface. The governing equations, as
well as the discretized coupling terms for this 2D-3D cou-
pling scheme are stated in Appendices 2 and 3.

4.3.1 Penalty potential

We consider a quadratic space-continuous penalty potential
between beam cross-section triads and solid triads defined
along the beam centerline:

Πεθ =
∫

Γc

πεθ ds =
∫

Γc

1

2
ψT

SB
cψ

SB
ds , (21)

with the cross-section coupling potential πεθ = πεθ (s) and
the symmetric penalty tensor c ∈ R

3×3. Variation of the
penalty potential leads to the following contribution to the
weak form:

δΠεθ =
∫

Γc

∂πεθ

∂ψ
SB

δoψ SB
ds

=
∫

Γc

(

δoψ SB

)T
cψ

SB
ds . (22)

Therein, δoψ SB
is the objective variation of the rotation vec-

torψ
SB

. Making use of (9), the variation of the total potential
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becomes, cf. [34],

δΠεθ =
∫

Γc

(

δθ S − δθ B

)T TT(ψ
SB

)cψ
SB

ds , (23)

where δθ S and δθ B are multiplicative variations associated
with the solid and beam triad, respectively. Here, we consider
penalty tensors of the form c = εθ I with a scalar penalty
parameter εθ ∈ R

+ with physical unit Nm/m. With this def-
inition and the identity TT(ψ)ψ = ψ (cf. Remark 3.1) the

variation of the penalty potential simplifies to

δΠεθ = εθ

∫

Γc

(

δθ S − δθ B

)T
ψ

SB
ds . (24)

It is well-known from the geometrically exact beam theory
that the (multiplicative) virtual rotations δθ B are work-
conjugated to themoment stress resultants. Therefore, εθψ SB
can be directly interpreted as the (negative) couplingmoment
acting on the beam cross-section.

4.3.2 Lagrangemultiplier potential

Alternatively, the Lagrange multiplier method can be
employed to impose the rotational coupling constraints. A
Lagrange multiplier field λθ = λθ (s) ∈ R

3 is therefore
defined on the coupling curve Γc. For now, this field is a
purely mathematical construct in the sense of generalized
coupling forces associated with the coupling conditions (19).
The Lagrange multiplier potential for the rotational coupling
is

Πλθ =
∫

Γc

λT
θ ψ

SB
ds . (25)

Variation of the Lagrange multiplier potential again leads to
a constraint contribution to the weak form, i.e.

δΠλθ =
∫

Γc

δλT
θ ψ

SB
ds

︸ ︷︷ ︸

δWλθ

+
∫

Γc

λT
θ δoψ SB

ds

︸ ︷︷ ︸

−δWCθ

. (26)

Therein, δWλθ and δWCθ are the variational form of the cou-
pling constraints and the virtual work of the generalized
coupling forces λθ , respectively. With (9) the virtual work
of the generalized coupling forces becomes

− δWCθ =
∫

Γc

(δθ S − δθ B)TTT(ψ
SB

)λθ ds . (27)

Since the multiplicative rotation variations δθ B are work-
conjugated to the moment stress resultants of the beam, the
term −TT(ψ

SB
)λθ can be interpreted as a distributed cou-

pling moment acting along the beam centerline.

Remark 4.2 For a vanishing relative rotation ψ
21

= 0, as
enforced in the space-continuous problem setting according
to (19), the identity −TT(ψ

SB
) = I holds true and the rota-

tional Lagrange multipliers exactly represent the coupling
moments along the beam centerline. However, for the dis-
cretized problem this is only an approximation.

4.3.3 Objectivity of full beam-to-solid volume coupling

As indicated above, the solid triad field depends on the solid
deformation gradient F. It can easily be shown, that the pre-
sented solid triad definitions STR − POL, STR − AVG and
STR − ORT, in Sect. 5 are objective with respect to an arbi-
trary rigid body rotation R∗ ∈ SO3, i.e.

Λ∗
S = ΛS(R

∗F) = R∗ΛS(F). (28)

The geometrically exact beam model employed in this con-
tribution is also objective [36,38], i.e.

Λ∗
B = R∗ΛB . (29)

Equations (28) and (29) inserted into the definition of the
relative beam-to-solid rotation vector according to (20) gives
the rotated relative rotation vector,

ψ∗
SB

= rv(R∗ΛSΛ
T
BR

∗T) = R∗ψ
SB

, (30)

where the identity rv(R∗ΛR∗T) = R∗ rv(Λ) has been used.
Thus, the rotational coupling conditions (19) in combination
with the proposed solid triad definitions and the employed
geometrically exact beam models are objective. As shown
in [34], in this case also an associated penalty potential of
type (21) or an associated Lagrange multiplier potential of
type (25) is objective.

The previous considerations show objectivity of the
proposed (space-continuous) 1D-3D coupling approaches.
However, in the realm of the finite element method, cf. Sect.
6, it is important to demonstrate that objectivity is pre-
served also in the discrete problem setting. It is well known
that the discretized deformation gradient, as required for
the definition of solid triads, is objective as long as stan-
dard discretization schemes (e.g. via Lagrange polynomials)
are applied to the displacement field of the solid. Also the
employed beam finite element formulation based on the geo-
metrically exact beam theory is objective, even though this
topic is not trivial and the interested reader is referred to
[36,38]. Therefore, it can be concluded that the proposed 1D-
3D coupling schemes are objective for the space-continuous
as well as for the spatially discretized problem setting.

Remark 4.3 Objectivity is the main reason for formulating
the rotational coupling constraints (19) based on the relative
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rotation vector, i.e. ψ
SB

= 0, cf. [34]. As alternative choice
for the rotational coupling constraints the difference between
the beam and solid triad rotation vectors, i.e. ψ

B
− ψ

S
=

0, could be considered. However, such coupling constraints
would result in a non-objective coupling formulation [34].

5 Definition of solid triad field

One of the main aspects of the present work is the definition
of a suitable right-handed orthonormal triad field ΛS in the
solid, which is required for the coupling constraint (19). This
is by no means a straightforward choice, and different triad
definitions will lead to different properties of the resulting
numerical coupling scheme. In the following, a brief moti-
vation will be given for the concept of solid triads before
different solid triad definitions will be proposed.

5.1 Motivation of the solid triad concept

If the embeddedbeam is considered as a 3Dbody, a consistent
2D-3D coupling constraint between the 2D beam surface and
the surrounding 3D solid can be formulated as

xB − xS = 0 on Γ2D-3D. (31)

Therein, Γ2D-3D is the 2D-3D coupling surface, i.e. the part
of the beam surface that lies withing the solid volume. In the
following, let X S,r denote the line of material solid points
that coincidewith the beamcenterline in the reference config-
uration, i.e. X S,r = r0. Furthermore, the orthonormal triad
ΛS,0 = [g

S1,0
, g

S2,0
, g

S3,0
] shall represent material direc-

tions of the solid that coincide with the beam triad in the
reference configuration according to

ΛS,0 = ΛB,0. (32)

The corresponding quantities in the deformed configuration
are denoted as xS,r and ΛS . Let us now expand the position
field in the solid as Taylor series around xS,r , i.e.

xS = xS,r + F ΔX + O(ΔX2), (33)

where F is the deformation gradient of the solid according
to (12). The 1D-3D coupling strategy underlying the pro-
posed BTS-FULL scheme relies on the basic assumption
of slender beams, i.e. R 	 L , where R is a character-
istic cross-section dimension (e.g. the radius of circular
cross-sections). This assumption allows to truncate the Tay-
lor series after the linear term as long as small increments
ΔX = αg

S2,0
+ β g

S3,0
, with α, β ≤ R, are considered:

xS ≈ xS,r + αg
S2

+ β g
S3

, (34)

which results in an error of orderO(R2). Here, the directors
g
S2

and g
S3
, which are not orthonormal in general, represent

the push-forward of the solid directions g
S2,0

and g
S3,0

:

g
Si

:= F g
Si,0

for i = 2, 3. (35)

It follows from (34) and (15) that the 2D-3D coupling condi-
tions (31) between the beam surface and the expanded solid
position field are exactly fulfilled if the following 1D-3D
coupling constraints are satisfied:

xS,r = r, (36)

g
S2

= g
B2

, g
S3

= g
B3

. (37)

Coupling constraints of the form (37) enforce that the mate-
rial fibers g

S2
and g

S3
of the solid remain orthonormal during

deformation, thus enforcing vanishing in-plane strains of the
solid at the coupling point xS,r = r . In Sect. 7, it will be
demonstrated that constraints of this type lead to severe lock-
ing effects when applied to finite element discretizations that
are relevant for the proposed BTS-FULL scheme, i.e. solid
mesh sizes that are larger than the beam cross-section dimen-
sions. It will be demonstrated that such locking effects can be
avoided if the solid triad field is defined in a manner that only
captures the purely rotational contributions to the local solid
deformation at xS,r = r without additionally constraining
the solid directors in the deformed configuration. As will be
demonstrated in the next sections, the rotation tensor defined
by the polar decomposition of the deformation gradient is
an obvious choice for this purpose, but also alternative solid
triad definitions are possible. Table 1 gives an overview of
the solid triad variants proposed in the following.

All of these solid triad definitions ΛS = [ g̃
S1

, g̃
S2

, g̃
S3

]
will be a function of the solid deformation gradient F,
i.e. ΛS = ΛS(F). Moreover, all solid triad definitions will
be constructed in a manner such that the associated orthonor-
mal base vectors g̃

S2
and g̃

S3
represent the effective rotation

of the non-orthonormal directors g
S2

and g
S3

in an average
sense. Thus, it will be required that g̃

S2
and g̃

S3
lie within a

plane defined by the normal vector

n = g
S2

× g
S3

∥
∥
∥g

S2
× g

S3

∥
∥
∥

, (38)

in the following denoted as the n-plane. Eventually, in the
examples in Sect. 7, two desirable properties of the solid triad
field for the proposed BTS-FULL method are identified:

(i) The solid triad should be invariant, i.e. symmetric/
unbiased with respect to the reference in-plane beam
cross-section basis vectors g

B2,0
and g

B3,0
.
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Table 1 Listing of the different
solid triad variants presented in
this contribution

Solid triad Description

STR − POL Obtained from the polar decomposition of the solid deformation gradient

STR − DIR2/3 Fix one chosen solid material direction to the solid triad

STR − AVG Fix average of two solid material directions to the solid triad

STR − ORT Orthogonal solid material directions stay orthogonal

(ii) The resultingBTS-FULLmethod should not lead to lock-
ing effects in the spatially discretized coupled problem.

These properties will be investigated for the following solid
triad definitions.

5.2 Polar decomposition of the deformation
gradient (STR− POL)

Based on polar decomposition, the deformation gradient of
the solid problem can be split into a product F = vRS =
RSU consisting of a rotation tensor RS ∈ SO3 and a (spa-
tial or material) positive definite symmetric tensor v or U ,
respectively, which describes the stretch. An explicit calcula-
tion rule for the rotation tensor, e.g. based on v, can be stated
as:

v2 = FFT, (39)

RS = v−1F. (40)

Asmentioned above, it is desirable that the orthonormal base
vectors g̃

S2
and g̃

S3
of the solid triad ΛS lie in a plane with

normal vectorn according to (38). It can easily beverified that
the rotation tensor RS associated with the total deformation
gradient F according to (40) will in general not satisfy this
requirement. Thus, a modification will be presented in the
following to preserve this property.

5.2.1 Construction of STR− POL triad

Since the sought-after solid triad shall be uniquely defined
already by the two in-plane directors g

S2
and g

S3
, a modified

version of the deformation gradient will be considered,

Fn = n ⊗ g
S1,0

+ g
S2

⊗ g
S2,0

+ g
S3

⊗ g
S3,0

, (41)

which consists of the projection of the total deformation gra-
dient F into the n-plane extended by the additional term
n ⊗ g

S1,0
. This modified deformation gradient ensures that

the two relevant in-plane basis vectors are correctly mapped,
i.e. g

S2
= Fng

S2,0
and g

S3
= Fng

S3,0
, while the third

basis vector, which is not relevant for the proposed coupling
procedure, is mapped onto the normal vector of the n-plane,
i.e. n = Fng

S1,0
. This specific definition of a deformation

gradient allows for the following multiplicative split:

Fn = F2DRn, (42)

where Rn describes the (pure) rotation from the initial solid
triad ΛS,0 onto a (still to be defined) orthonormal intermedi-
ate triad Λ̄ = [ ḡ

1
, ḡ

2
, ḡ

3
], whose base vectors ḡ

2
and ḡ

3
lie

within the n-plane, and F2D represents a (quasi-2D) in-plane
deformation between ḡ

2
and ḡ

3
and the non-orthonormal

base vectors g
2
and g

3
. Now, by applying the polar decom-

position only to the in-plane deformation, i.e.

F2D = v2DR2D
S , (43)

a solid triad can be defined from the initial triad ΛS,0 as:

ΛS,POL = R2D
S RnΛS,0. (44)

Once an intermediate triad Λ̄ is defined, the required rotation
tensors R2D

S and Rn can be calculated as follows:

1. Rn = Λ̄ΛT
S,0,

2. F2D = Fn(Rn)T,

3. (v2D)2 = F2D(F2D)T,

4. R2D
S = (v2D)−1F2D.

The last remaining question is the definition of the triad Λ̄. It
can be shown that the choice of this triad is arbitrary and does
not influence the result, since a corresponding in-plane rota-
tion offset would be automatically considered/compensated
(in the sense of a superposed rigid body rotation) via the rota-
tional part R2D

S of the in-plane polar decomposition (43).
For example, a simple choice is given by ḡ

1
= n, ḡ

2
=

g
S2

/‖g
S2

‖ and ḡ
3
= n× ḡ

2
, which coincides with the solid

triad definition later discussed in Sect. 5.3.1.

Remark 5.1 It can be verified that RS = R2D
S Rn is fulfilled

for quasi-2D deformation states, e.g. for pure torsion load
cases where the beam axis remains straight during the entire
deformation (see example in Sect. 7.5). In this case, the (sim-
pler) polar decomposition of the total deformation gradient
F according to (40) can exploited.
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5.2.2 Properties of STR− POL triad

In contrast to alternative solid triad definitions that will be
investigated in the following sections, the definition accord-
ing to (44), referred to as STR − POL or by the subscript
(·)POL, is not biased by an ad-hoc choice of material direc-
tors in the solid that are coupled to the beam. Instead, the
rotation tensor RS describes the rotation of material direc-
tions coinciding with the principle axes of the deformation
(i.e. itmaps the principle axes from the reference to the spatial
configuration), which has two important implications: First,
the choice of material directions that are coupled depend on
the current deformation state and will in general vary in time.
Second, the principle axes represent an orthonormal triad per
definition, and, thus the coupling to the beam triad will not
impose any constraints on the local in-plane deformation of
the solid. Consequently, this solid triad variant fulfills both
requirements (i) and (ii) as stated above.

Eventually, a further appealingproperty of theSTR − POL
triad shall be highlighted. Let θ0 ∈ [−π, π ] represent the
orientation of arbitrary in-plane directors in the reference
configuration defined to coincide for solid and beam accord-
ing to g

S,0
(θ0) = g

B,0
(θ0) = cos (θ0) gB2,0

+sin (θ0) gB3,0
.

Their push-forward is given by g
S
(θS(θ0)) = Fn g

S,0
(θ0)

for the solid and g
B
(θB(θ0)) = RB g

B,0
(θ0) for the beam,

where the angles θS ∈ [−π, π ] and θB ∈ [−π, π ] represent
the corresponding in-plane orientations in the deformed con-
figuration (see Appendix 1 for a detailed definition). Since
in-plane shear deformation is permissible for the solid but
not for the beam, the orientations θS(θ0) and θB(θ0) cannot
be identical for all θ0 ∈ [−π, π ] and arbitrary deforma-
tion states. However, as demonstrated in Appendix 1, when
coupling the beam triad to the STR − POL triad according
to (44), the beam directors g

B
(θB(θ0) represent the orienta-

tion of the solid directors g
S
(θS(θ0) in an average sense such

that the following L2-norm is minimized:

π∫

−π

(θS(θ0) − θB(θ0))
2dθ0 → min. for ΛB =ΛS,POL. (45)

In conclusion, STR − POL is an obvious choice for the
solid triad with many favorable properties, e.g. it represents
the average orientation of material solid directions in a L2-
optimal manner. However, it requires the calculation of the
square root of a tensor, and more importantly, for latter vari-
ation and linearization procedures also the first and second
derivatives of the tensor square root with respect to the solid
degrees of freedom. This results in considerable computa-
tional costs, since this operation has to be performed at local
Gauss point level. Therefore, alternative solid triad defini-
tions will be proposed in the following that can be computed

more efficiently, while still being able to represent global
system responses with sufficient accuracy.

5.3 Alternative solid triad definitions

All solid triad variants considered in the following rely on
the non-orthonormal solid directors g

S2
and g

S3
according

to (35), their normalized counterparts

g′
Si

:= g
Si

∥
∥
∥g

Si

∥
∥
∥

for i = 2, 3 (46)

and the corresponding normal vector n according to (38).
Based on these definitions, three different variants will be
exemplified in the following.

5.3.1 Fixed single solid director (STR− DIR2/3)

In the first variant, denoted as STR − DIR2/3, the orientation
of one single solid director, either g′

S2
or g′

S3
, is fixed to the

solid triad, cf. Figure 3(b). The choice which solid material
direction to couple is arbitrary. Therefore, two variants will
be distinguished:

ΛS,DIR2
= [ n, g′

S2
, n × g′

S2 ] (47)

ΛS,DIR3
= [ n, g′

S3
× n, g′

S3 ], (48)

Since the variant STR − DIR2/3 does not fulfill the require-
ment (i) as stated above, it will only be considered for
comparison reasons in the 2D verification examples in
Sect. 7.

5.3.2 Fixed average solid director (STR− AVG)

In order to solve this problem, i.e. to define a solid triad that
is symmetric with respect to the base vectors g′

2
and g′

3
,

an alternative variant denoted as STR − AVG is proposed,
which relies on the average of the directors g′

2
and g′

3
, cf. Fig.

3(c):

g
S,AVG

= g′
S2

+ g′
S3

∥
∥
∥g′

S2
+ g′

S3

∥
∥
∥

. (49)

With this average vector the solid triad can be constructed
as:

ΛS,AVG = R
(−(π/4)n

)

ΛS,AVG,ref

with ΛS,AVG,ref = [ n, g
S,AVG

, n × g
S,AVG ]. (50)

The rotation tensor R
(−(π/4)n

)

in (50) represents a “back-
rotation” of the constructed reference triad ΛS,AVG,ref by an
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(a) (b)

(c) (d)

Fig. 3 Illustration of STR − DIR2, STR − AVG and STR − ORT solid
triad definitions for an exemplary 2D problem setting. For simplicity it
is assumed that the beam reference triad aligns with the Cartesian frame
e1, e2, e3, i.e. ΛB,0 = I . a Reference configuration, b STR − DIR2,
c STR − AVG and d STR − ORT

angle of −π/4 to ensure that the resulting solid triad aligns
with the beam triad in the reference configuration according
to (32). In Sect. 7, itwill be shownnumerically that the variant
STR − AVG, similar to the variant STR − POL, fulfills both
requirements (i) and (ii) stated above.

Remark 5.2 Theoretically, an additive director averaging
procedure such as (49) can result in a singularity if the under-
lying vectors are anti-parallel, i.e. g′

S2
= −g′

S3
. However,

since the associated material directors are orthogonal in the
reference configuration, i.e. gT

S2,0
g
S3,0

= 0, and shear angles

smaller than π/2 can be assumed, this singularity will not be
relevant for practical applications.

5.3.3 Fixed orthogonal solid material directions
(STR− ORT)

In the last considered solid triad definition, both mate-
rial directors g′

S2
and g′

S3
are coupled to the solid triad

simultaneously. This variant enforces that the directors g′
S2

and g′
S3

remain orthogonal to each other, and thus it is
denoted as STR − ORT, indicated by a subscript (·)ORT. The
STR − ORT variant is realized by applying the rotational
coupling constraints (19) twice, once with ΛS,DIR2

accord-
ing to (47) and once with ΛS,DIR3

according to (48).
Opposed to the other triad definitions in this section, this

version additionally imposes a constraint on the solid dis-
placement field by enforcing all shear strain components to
vanish at the couplingpoint. InSect. 7, itwill be demonstrated
that this over-constrained solid triad definition can lead to
severe shear locking effects, i.e. requirement (ii) from Sect.
5.1 is not satisfied. Thus, also this variant will only be consid-

ered for comparison reasons in the 2D verification examples
in Sect. 7.

5.4 Variation of the solid rotation vector

In the coupling contributions to the weak form (24) and (26)
the multiplicative rotation vector variation δθ S (spin vector)
of a solid rotation vector ψ

S
arises. The spin vector is work-

conjugated with the coupling moments, i.e. it is required to
calculate the virtual work of amoment acting on the solid in a
variationally consistent manner. In contrast to the beam spin
vector δθ B , which represents the multiplicative variation of
primal degrees of freedom in the finite element discretization
of the geometrically exact Simo–Reissner beam theory and
is discretized directly, no such counterpart exists for the solid
field. Therefore, it is assumed that the solid spin vector can
be stated as a function of a set of generalized solid degrees
of freedom q (which will later be identified as nodal position
vectors in the context of a finite element discretization) and
their variations δq. The additive variation of the solid rotation
vector ψ

S
(q) then reads

δψ
S

= ∂ψ
S
(q)

∂q
δq. (51)

The multiplicative and additive variations are related via (7),
which gives the spin vector associated with the solid triad as
a function of the generalized solid degrees of freedom:

δθ S = T−1
(

ψ
S
(q)

) ∂ψ
S
(q)

∂q
δq. (52)

Remark 5.3 Alternatively, the solid spin vector can be
expressed by the variations of the corresponding solid triad
basis vectors g

Si
and their variations δg

Si
, cf. [36,38]:

δθ S =
(

δgT
S2
g
S3

)

g
S1

+
(

δgT
S3
g
S1

)

g
S2

+
(

δgT
S1
g
S2

)

g
S3

=
((

g
S1

⊗ g
S3

) ∂ g
S2

∂q
+

(

g
S2

⊗ g
S1

) ∂ g
S3

∂q

+
(

g
S3

⊗ g
S2

) ∂ g
S1

∂q

)

δq.

This formulation for the solid spin vector is equivalent to the
one in (52), but only contains the solid triad basis vectors and
their variations. Therefore, this definition of the solid spin
vector is better suited for solid triads constructed via their
basis vector. Especially in the implementation of the finite
element formulation, it is advantageous to avoid the com-
putation and inversion of the transformation matrix in (52).
Nonetheless, in the remainder of this contribution, the solid
spin vector as defined in (52) is used to improve readability
of the equations.
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Fig. 4 Degrees of freedom for a single beam element used in this work.
All quantities related to the beam centerline position are depicted in
blue, all cross-section orientation related quantities are depicted in red

6 Spatial discretization

In this work, spatial discretization of the beam, solid and cou-
pling problem will exclusively be based on the finite element
method. In the following, a subscript (·)h refers to an interpo-
lated field quantity, superscripts (e) and ( f ) indicate that the
quantity is defined for a solid element e and a beam element
f , respectively. Accordingly, (e, f ) refers to coupling terms
between the solid element e and beam element f . The global
element count is made up of nel,S solid finite elements and
nel,B beam finite elements.

6.1 Solid and beam problem

For the solid domain an isoparametricfinite element approach
is used to interpolate position, displacement and virtual dis-
placement field within each solid element Ω(e)

S,h :

X S(e)
h = N(e)

(

ξ S, ηS, ζ S
)

X S(e) (53)

uS(e)
h = N(e)

(

ξ S, ηS, ζ S
)

dS(e) (54)

δuS(e)
h = N(e)

(

ξ S, ηS, ζ S
)

δdS(e). (55)

Therein, N(e) ∈ R
3×n(e)

dof is the element shape function
matrix, which depends on the solid element parameter coor-

dinates ξ S, ηS, ζ S ∈ R. Furthermore, X S(e) ∈ R
n(e)
dof , dS(e) ∈

R
n(e)
dof and δdS(e) ∈ R

n(e)
dof are the element reference position

vector, element displacement vector and element virtual dis-
placement vector, respectively. Each solid element has n(e)

dof
degrees of freedom.

The beam finite elements used in this work are based on
the Simo–Reissner formulation presented in [35,38]. Fig-
ure 4. illustrates the degrees of freedom for a single beam
finite element. The beam centerline interpolation is C1-
continuous based on third-order Hermite polynomials with

two centerline nodes per element. Each node for the center-
line interpolation has 6 degrees of freedom: 3 for the nodal

position r̂( f )
i and 3 for the centerline tangent t̂

( f )
i at the node,

thus resulting in a total of 12 element degrees of freedom
describing the beam centerline position. The interpolated
position of the beam centerline is

r( f )
h = H( f )(ξ B)

[

r̂( f )
1

T
, t̂

( f )
1

T
, r̂( f )

2

T
, t̂

( f )
2

T
]T

= H( f )(ξ B)
(

X B( f ) + dB( f )
)

,

(56)

with the beam position shape functionmatrix H( f ) ∈ R
3×12,

the beam centerline reference position vector X B( f ) ∈ R
12

and the beam centerline displacement vector dB( f ) ∈ R
12.

Furthermore, ξ B ∈ R is the parameter coordinate along the
beam centerline.

A triad interpolation scheme based on three element nodal

rotation vectors ψ̂
( f )

1
, ψ̂

( f )

2
and ψ̂

( f )

3
is utilized [14]. The

third node is placed in the middle of the element and carries
no translational degrees of freedom, only rotational ones. The
three local nodal rotation vectors serve as primal degrees of
freedom for the interpolated rotation field along the beam
centerline. Each local rotation vector has 3 degrees of free-
dom, thus resulting in a total of 9 rotational degrees of
freedom per beam finite element. The interpolation of the
beam cross-section triad along the beam centerline is a non-
trivial task and requires an orthonormal interpolation scheme
for the interpolated triadΛ

( f )
B,h(ξ

B) to guarantee that the inter-
polated triad field is still a member of the rotational group
SO3. Furthermore, objectivity of the discrete beam defor-
mation measures has to be preserved by the interpolation,
which is a challenging task if rotational degrees of freedom
are involved. In this contribution we will refer to the interpo-

lated triad field Λ
( f )
B,h(ξ

B) = nl
(

ξ B, ψ̂
( f )

1
, ψ̂

( f )

2
, ψ̂

( f )

3

)

as

an abstract nonlinear function of the beam parameter coor-
dinate and the nodal rotation vectors. The corresponding
interpolated field ofmultiplicative rotation vector increments
Δθ

( f )
B,h(ξ

B) has been consistently derived in [14] and reads:

Δθ
( f )
B,h =

3
∑

i=1

Ĩ
( f )
i (ξ B)Δθ̂

( f )
i = Ĩ

( f )
(ξ B)Δθ̂

( f )
B . (57)

Therein, Ĩ
( f )
i ∈ R

3×3 are generalized shape function matri-

ces for the multiplicative nodal rotation increments Δθ̂
( f )
i ,

and Ĩ
( f ) ∈ R

3×9 and Δθ̂
( f )
B ∈ R

9 are the correspond-
ing element-wise assembled quantities. It should be pointed

out that Ĩ
( f )
i are nonlinear functions of the beam parameter

coordinate and the nodal rotation vectors of the beam ele-
ment, i.e. these rotational shape functions are deformation-
dependent. To avoid this nonlinearity in the discretized spin
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vector, i.e. the virtual rotation field δθ
( f )
B,h , which would

require additional linearization contributions to calculate a
consistent tangent, the beam finite elements employed in
this work follow a Petrov–Galerkin discretization approach.
Therein, standard Lagrange shape functions are used to inter-
polate the discretized nodal spin vectors:

δθ
( f )
B,h =

3
∑

i=1

L( f )
i (ξ B)δθ̂

( f )
i = L( f )(ξ B)δθ̂

( f )
B . (58)

Here, L( f )
i ∈ R are standard second-order Lagrange poly-

nomials, and δθ̂
( f )
i are the nodal spin vectors. Again, this

equation can be assembled element-wise, thus resulting in
the shape function matrix L( f ) ∈ R

3×9 and the element spin

vector δθ̂
( f )
B ∈ R

9.
In what follows, all coupling terms are evaluated on the

beam centerline. This requires the projection of points along
the beam centerline parameter space into the solid element
parameter space, which in turn is achieved by solving the set
of nonlinear equations X S(e)

h

(

ξ S, ηS, ζ S
) = r( f )

0,h

(

ξ B
)

, for

a given ξ B . To improve readability, the superscripts indicat-
ing the beam and solid elements will be omitted from now
on. They will however be stated in the virtual work contribu-
tions and the integration domains in order to clearly indicate
pair-wise values. Additionally, any dependency on element
parameter coordinates will not be stated explicitly.

Remark 6.1 While the C1-continuous centerline representa-
tion of the employed beam elements [35] is not mandatory
for the consideredbeam-to-solid volumecouplingproblem, it
offers significant advantages in problems additionally involv-
ing beam-to-beam [39] or beam-to-solid contact interaction,
which will be addressed in our future research.

6.2 Gauss point-to-segment coupling of
cross-section rotations

Evaluating the variation of the total coupling potential (24)
based on the discretized solid position field and beam cross-
section rotation field as presented in the last section yields
the discrete variation of the coupling potential:

δΠ
(e, f )
εθ ,h = εθ

∫

Γ
(e, f )
c,h

(

T−1(ψ
S,h

)
∂ψ

S,h

∂dS
δdS

−Lδθ̂ B

)T

ψ
SB,h

ds .

(59)

Therein, Γ
(e, f )
c,h = Ω

( f )
B,h ∩ Ω

(e)
S,h is the discretized coupling

domain between beam element ( f ) and solid element (e).
The integral in (59) is evaluated numerically via a Gauss–
Legendre quadrature, resulting in a Gauss point-to-segment

(GPTS) coupling scheme. From a mechanical point of view
this can be interpreted a weighted enforcement of the rota-
tional constraints at each integration point along the beam,
i.e. a Gauss point-to-segment type coupling:

δΠ
(e, f )
εθ ,h ≈ εθ

nGP∑

i=1

[(

T−1(ψ
S,h

)
∂ψ

S,h

∂dS
δdS

−Lδθ̂ B

)T

ψ
SB,h

]

ξ B=ξ̃ B
i

wi ,

(60)

where nGP is the number of Gauss–Legendre points, ξ̃ B
i is

the beam element parameter coordinate for Gauss–Legendre
point i with the corresponding weight wi . Again, in order
to improve the readability of the remaining equations in this
subsection, the explicit indication of the evaluation at the
Gauss–Legendre points will be omitted in the following. The
previous equation can now be stated in matrix form as

δΠ
(e, f )
εθ ,h ≈ [ δθ̂TB δdST ]

nGP∑

i=1

wi

[
f Bc,GP
f Sc,GP

]

=
[

δθ̂
T
B δdST

] [
rBc,GP
r Sc,GP

]

.

(61)

Therein, the abbreviations f Bc,GP ∈ R
9 and f Sc,GP ∈ R

n(e)
dof for

the generalized Gauss point coupling forces on the rotational
beam degrees of freedom and the generalized solid element
degrees of freedom, respectively, have been introduced:

f Bc,GP = −εθ LTψ
SB,h

f Sc,GP = εθ

(
∂ψ

S,h

∂dS

)T

T−T(ψ
S,h

)ψ
SB,h

.
(62)

Furthermore, rBc,GP ∈ R
9 and r Sc,GP ∈ R

n(e)
dof are the beam

and solid coupling residual vectors. Employing a Newton–
Raphson algorithm to solve the global system of nonlinear
equations, a linearization of the residual vectors with respect
to the element degrees of freedom is required, which reads:

[
ΔrBc,GP
Δr Sc,GP

]

=
nGP∑

i=1

wi

⎡

⎢
⎢
⎣

∂ f Bc,GP
∂ψ

B,h
T (ψ

B,h
) Ĩ

∂ f Bc,GP
∂dS

∂ f Sc,GP
∂ψ

B,h
T (ψ

B,h
) Ĩ

∂ f Sc,GP
∂dS

⎤

⎥
⎥
⎦

[

Δθ̂ B

ΔdS

]

.

(63)

Therein, the transformation matrix T (ψ
B,h

) appears, since
the linearization is performed with respect to the multiplica-
tive rotation incrementsΔθ B,h . Furthermore, the generalized

shape function matrix Ĩ follows from the interpolation of the
multiplicative rotation increments, cf. (57). The previously
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derived matrices and vectors are all defined on beam-to-solid
element pair level. Since no additional degrees of freedom
are introduced, the pair-wise contributions can simply be
assembled and added to the global linear systemof equations.
The Gauss point-to-segment coupling approach is presented
here to illustrate how the rotational coupling conditions can
be enforced in a point-wise manner. However, in [63] it
has been shown that a Gauss point-to-segment coupling
approach leads to spurious contact locking for embedded
one-dimensional beams in three-dimensional solid volumes.
Therefore, this approach will not be investigated further in
the remainder of this contribution, but amortar-type coupling
is proposed instead.

6.3 Mortar-type coupling of cross-section rotations

Employing a mortar-type coupling approach, the rotational
Lagrange multiplier field λθ introduced in Sect. 4.3.2 is also
approximated with a finite element interpolation, cf. [7,46,
71]. The rotational Lagrange multiplier field is defined along
thebeamcenterline and accordingly its finite element approx-
imation is defined along the beam finite element and reads
as follows:

λ
( f )
θ,h =

n( f )
λ∑

i=1

Φ
( f )
i (ξ B)λ

( f )
θ,i = Φ( f )(ξ B)λ

( f )
θ , (64)

where n( f )
λ is the number of Lagrange multiplier nodes on

beam element ( f ), Φ
( f )
i is the shape function for the local

node i and λ
( f )
θ,i ∈ R

3 is the rotational Lagrange multiplier

at node i . Furthermore, Φ( f ) ∈ R
3×3n( f )

λ is the element-
wise assembled Lagrange multiplier shape function matrix

for a beam element and λ
( f )
θ ∈ R

3n( f )
λ is the vector with all

corresponding discrete rotational Lagrange multiplier val-
ues per beam element. As indicated by the dependency on
beam parameter coordinate ξ B , the Lagrange multiplier field
is defined along the beam centerline. However, there is no
requirement that the Lagrange multiplier shape functions are
identical to the beam centerline shape functions, or even that
the number of beam nodes matches the number of Lagrange
multiplier nodes. A more thorough discussion on the choice
of Lagrange multiplier shape functions is given at the end of
this section.

When inserting the finite element interpolations, the dis-
cretized variation of the coupling constraints (26) reads

δW (e, f )
λθ ,h = δλT

θ

∫

Γ
(e, f )
c,h

ΦTψ
SB,h

︸ ︷︷ ︸

gc,λθ

ds = δλT
θ rc,λθ . (65)

Therein, the abbreviations gc,λθ
∈ R

n( f )
dof,λ and rc,λθ ∈ R

n( f )
dof,λ

represent the integrand of the pair constraint equations and
the residual of the pair constraints equations, respectively.
The discretized virtual work of the coupling forces (27) reads

−δW (e, f )
Cθ ,h =

[

δθ̂
T
B δdST

]

⎡

⎣

∫

Γ
(e, f )
c,h

f Bc,λθ
ds

∫

Γ
(e, f )
c,h

f Sc,λθ
ds

⎤

⎦

=
[

δθ̂
T
B δdST

] [
rBc,λθ

r Sc,λθ

]

.

(66)

Therein, the abbreviations f Bc,λθ
∈ R

9 and f Sc,λθ
∈ R

n(e)
dof rep-

resent the integrand of the beam and solid element coupling
forces, i.e.

f Bc,λθ
= LTTT(ψ

SB,h
)Φλθ ,

f Sc,λθ
=

∂ψ
S,h

∂dS

T

T−T(ψ
S,h

)TT(ψ
SB,h

)Φλθ .

(67)

Furthermore, rBc,λθ
∈ R

9 and r Sc,λθ
∈ R

n(e)
dof are the beam

and solid coupling residual vectors, respectively. Again, a
linearization of the residual contributions with respect to the
discrete beam-to-solid pair degrees of freedom is required
for the Newton–Raphson algorithm. The linearization is:

⎡

⎣

ΔrBc,λθ

Δr Sc,λθ

Δrc,λθ

⎤

⎦ =
⎡

⎣

qSS qSB qSλθ

qBS qBB qBλθ

qλθ S qλθ B 0

⎤

⎦

⎡

⎣

Δθ̂ B

ΔdS

λθ

⎤

⎦ . (68)

Therein, the abbreviations q(·) for the stiffness matrices of
the pair-wise coupling terms have been introduced, i.e.

⎡

⎣

qSS qSB qSλθ

qBS qBB qBλθ

qλθ S qλθ B 0

⎤

⎦

=
∫

Γ
(e, f )
c,h

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ f Bc,λθ

∂ψ
B,h

T (ψ
B,h

) Ĩ
∂ f Bc,λθ

∂dS
∂ f Bc,λθ

∂λθ

∂ f Sc,λθ

∂ψ
B,h

T (ψ
B,h

) Ĩ
∂ f Sc,λθ

∂dS
∂ f Sc,λθ

∂λθ

∂ gc,λθ

∂ψ
B,h

T (ψ
B,h

) Ĩ
∂ gc,λθ

∂dS
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ds .

(69)

As in the GPTS case, the previously derived vectors and
matrices are all defined on beam-to-solid element pair level.
However, in this case additional unknowns have been intro-
duced, i.e. the rotational Lagrange multipliers λθ on pair
level. In practice, all derivatives explicitly stated in (66) and
(68) are evaluated using forward automatic differentiation
(FAD), cf. [28], using the Sacado software package [56],
which is part of the Trilinos project [67].

At this point it should be pointed out that all cou-
pling integrals are evaluated numerically using so-called
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segment-based integration, cf. [18,63]. Therein, the beam
finite element parameter space is divided into subsegments
at points where the beam crosses a solid finite element face.
Each subsegment is subsequently integrated using a Gauss–
Legendre quadrature with a fixed number of integration
points. This leads to a highly accurate numerical integra-
tion procedure and allows for the resulting finite element
coupling method to pass classical patch tests in surface-to-
surface problems as well as constant stress transfer tests in
beam-to-solid problems, cf. [18,63].

The choice of proper Lagrange multiplier basis functions
is important for the mathematical properties of the result-
ing finite element discretization. The Lagrange multiplier
shape functions must fulfill an inf-sup condition to guar-
antee stability of the mixed finite element method [11]. This
is a well-studied topic in the context of classical surface-
to-surface mesh tying or contact. However, as pointed out
in [63], beam-to-solid coupling problems diverge from the
standard surface-to-surface case in some aspects. First, the
discretization along the beam centerline with Hermite poly-
nomials is unusual compared to standard (i.e. Lagrange
polynomial-based) finite element discretizations. Also, the
1D-3D coupling can be classified as a mixed-dimensional
embedded mesh problem, since there is no explicit curve
in the solid domain to match the beam centerline, which
can lead to stability issues [57]. Additionally, in this con-
tribution we deal with rotational coupling, which also differs
from the standard surface-to-surface case. A deep mathe-
matical analysis of these properties is beyond the scope of
the present contribution. However, we will build upon the
extensive studies and findings from [63], where it has been
shown that a linear interpolation of the Lagrange multipli-
ers combined with a penalty regularization leads to a stable
finite element formulation of the coupled problem. Instabil-
ities might only occur if the beam finite elements become
shorter than the solid finite elements. However, this is not a
mesh size relation that is within the envisioned applications
for the BTS-FULL method. Alternative approaches to avoid
thementioned instabilities are available in the literature, such
as Nitsche’s method [15,23,58], or discontinuous Galerkin
formulations [23,57]. Another appealing approach is the
so-called vital vertex method introduced in [6], where dis-
crete Lagrange multipliers are inserted at intersection points
between the coupled meshes, i.e. the intersections between a
beam finite element centerline and the solid elements in the
presented beam-to-solid case.

6.4 Beam-to-solid volume coupling (BTS-TRANS)

In Sects. 6.2 and 6.3, GPTS and mortar-type coupling dis-
cretizations for the rotational coupling between the beam
cross-section and the solid volume (19) have been presented.
The translational coupling of the beam centerline (18), how-

ever, is entirely based on the mortar-type beam-to-solid
volume coupling (BTS-TRANS) method previously intro-
duced in [63]. The resulting linearized system of equations
for the centerline translation couplingwith saddle point struc-
ture reads:

⎡

⎢
⎢
⎢
⎢
⎣

K S 0 0 −MT

0 K B
rr K B

rθ DT

0 K B
θr K B

θθ 0

−M D 0 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ΔDS

ΔDB
r

ΔDB
θ

Λr

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

−RS

−RB
r

−RB
θ

MDS − DDB
r

⎤

⎥
⎥
⎥
⎥
⎦

.

(70)

Therein, K S is the solid tangent stiffness matrix, DS and
ΔDS are the global solid displacement vector and its incre-
ment, respectively, and RS is the residual of the solid degrees
of freedom. In (70), the beam terms are split into centerline
and rotation contributions indicated by (·)r and (·)θ , respec-
tively.At this point it should benoted that due to the employed
Petrov–Galerkinmethod the beam stiffnessmatrices are non-
symmetric, as will be the case for the rotational coupling
contributions to the global stiffnessmatrix. Furthermore, DB

r
andΔDB

r are the global beam centerline displacement vector
and its increment, andΔDB

θ represents the global vector col-
lecting themultiplicative rotation increments associated with
the nodal triads of the beam finite elements. The update of
the rotation state has to be preformed according to [38]. The
BTS-TRANS coupling is represented by the discrete mortar
matrices D and M and the centerline Lagrange multipliers
Λr . The structure of the global stiffness matrix in (70) illus-
trates that only the beam centerline degrees of freedom (and
not the rotational degrees of freedom) are coupled to the solid
degrees of freedom in the previously proposed BTS-TRANS
coupling scheme.

6.5 Combinedmortar-type coupling of translations
and rotations (BTS-FULL)

The global system of equations for the mortar-type BTS-
FULLmethod is the combination of themortar-type coupling
for the centerline positionsBTS-TRANS (70) and themortar-
type coupling of the beam cross-section rotations (68). The
resulting global system of equations becomes:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K S + QSS 0 QSB −MT QSλθ

0 K B
rr K B

rθ DT 0

QBS K B
θr K B

θθ + QBB 0 QBλθ

−M D 0 0 0

Qλθ S 0 Qλθ B 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

ΔDS

ΔDB
r

ΔDB
θ

Λr

Λθ

⎤

⎥
⎥
⎥
⎥
⎦
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=

⎡

⎢
⎢
⎢
⎢
⎣

−RS − RS
c,λθ−RB

r
−RB

θ − RB
c,λθ

MDS − DDB
r

−Rc,λθ

⎤

⎥
⎥
⎥
⎥
⎦

, (71)

where Q(·) are the globally assembled pair-wise stiffness

matrices q(·), and R(·)
c,λθ

are the globally assembled resid-
ual vectors of the local rotational coupling contributions
r(·)
c,λθ

. Additionally, Λθ are the globally assembled rotational
Lagrange multipliers λθ . Therefore, the size of the global
system of equations of the uncoupled system is extended
by the total number of translational and rotational Lagrange
multipliers.

Remark 6.2 The structure of the global system of equations
for BTS-FULL (71) illustrates the direct coupling of the
rotational degrees of freedom of the beam with the solid
degrees of freedom, i.e. QBλθ

and Qλθ B . Disregarding all
other advantages of our BTS-FULL method, this motivates
its from a pure numerical point of view, as possible rigid body
rotations of straight embedded fibers around their centerline
are constrained, which is not the case for the BTS-TRANS
method (70).

Remark 6.3 In the BTS-TRANS method, the mortar-type
coupling matrices D and M only depend on the reference
configuration, i.e. they only have to be calculated once and
can be stored for the entire simulation. In the BTS-FULL
method, the (rotational) coupling terms Q(·) depend on the
current configuration, i.e. the coupling terms have to be
re-evaluated in each Newton-Raphson step. However, this
should not be viewed as a drawback of BTS-FULL scheme,
rather as a simplification of the BTS-TRANS variant, which
results from neglecting the rotational coupling terms.

6.6 Penalty regularization

In the present mortar-type coupling case (BTS-FULL) the
constraint equations are enforced with the Lagrange multi-
pliermethod, thus resulting in amixed formulation.However,
a direct solution of the global system (71) might intro-
duce certain drawbacks, such as an increased system size
compared to the uncoupled system and a generalized sad-
dle point structure. In [63] the constraint equations have
therefore been enforced using a well-known penalty regu-
larization, which means that a relaxation of the translational
coupling constraints −MDS + DDB

r = Rc,r = 0 in the
form of Λr = εrV−1

r Rc,r is introduced. Therein, εr ∈ R
+

is a scalar penalty parameter and V r is a scaling matrix to
account for non-uniform weighting of the constraint equa-
tions [63,72]. The numerical examples in [63] show that for
reasonably chosen penalty parameters the resulting violation

of the constraint equations due to their relaxation does not
have any impact on the accuracy of theBTS-TRANSmethod.
Therefore, the constraint enforcement of the new rotational
coupling Eq. (65) is also carried out with the penalty method.
The constraint relaxation is achieved through

Λθ = εθV
−1
λθ

Rc,λθ , (72)

again with a scalar penalty parameter εθ ∈ R
+ and a global

scaling matrix for the rotational Lagrange multipliers Vλθ .
The global scalingmatrix is assembled from the nodal scaling
matrices κ

(i,i)
λθ

for the Lagrange multiplier node i , i.e.

κ
(i,i)
λθ

=
∫

Γc,h

Φi ds I3×3. (73)

With the introduction of the constraint relaxation (72), the
Lagrange multipliers Λθ are no longer independent degrees
of freedom of the system, but a function of the beam rotations
and solid displacements. Therefore, they can be eliminated
from the global system of Eq. (71), which results in the con-
densed linear system of equations

⎡

⎣

ASS ASr ASθ

Ar S Arr Arθ

Aθ S Aθr Aθθ

⎤

⎦

⎡

⎣

ΔDS

ΔDB
r

ΔDB
θ

⎤

⎦ =
⎡

⎣

BS

Br

Bθ

⎤

⎦ . (74)

Therein, the following abbreviations have been introduced
for improved readability:

ASS = K S + QSS + εrMTV−1
r M + εθ QSλθ

V−1
λθ

Qλθ S

ASr = −εrMTV−1
r D

ASθ = QSB + εθ QSλθ
V−1

λθ
Qλθ B

Ar S = −εr DTV−1
r M

Arr = K B
rr + εr DTV−1

r D

Arθ = K B
rθ

Aθ S = QBS + εθ QBλθ
V−1

λθ
Qλθ S

Aθr = K B
θr

Aθθ = K B
θθ + QBB + εθ QBλθ

V−1
λθ

Qλθ B

BS = −RS − RS
c,λθ

− εrMTV−1
r

(

DDB
r − MDS

)

− εθ QSλθ
V−1

λθ
Rc,λθ

Br = −RB
r − εr DTV−1

r

(

DDB
r − MDS

)

Bθ = −RB
θ − RB

c,λθ
− εθ QBλθ

V−1
λθ

Rc,λθ .

(75)
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Fig. 5 Moment test problem

7 Examples

The following numerical examples are set up using the beam
finite element pre-processor MeshPy [64] and are simulated
with our in-house parallel multi-physics research code BACI
[4].

7.1 Single element moment test

The first problem setup is depicted in Fig. 5. A straight beam
is embedded inside a solid cube (E = 1N/m2, ν = 0) and
the beam is loaded with a distributed torsion moment in e1
direction, which is constant along the beam centerline. This
example is used to investigate how a moment on a beam is
transferred to solid nodal forces. The cube is modeled with a
single eight-noded hexahedral element and all solid degrees
of freedom are fixed. A single Simo–Reissner beam finite
element is used to discretize the beam. No Dirichlet bound-
ary conditions are applied on the beam and the coupling
between the beam and the solid is realized with our novel
mortar-type BTS-FULL method. Thus, the only interaction
between the beam and the solid is the transfer of the external
moment. The resulting nodal reaction forces for the differ-
ent solid triad definitions introduced in Sect.5 are depicted in
Fig. 6. Therein, the results for the STR − POL, STR − AVG
and STR − ORT variants, cf. Fig. 6a, 6d and 6e, match up
to machine precision. In general, however, the solid cou-
pling reaction forces may differ for different definitions of
the solid triad, as visible for the variants STR − DIR2/3 in
Fig. 6 and c. This observation can be explained by the fact
that the representation of a moment via nodal forces is non-
unique, i.e. there is an infinite number of possible force pair
combinations to achieve this. However, from a mechanical
point of view, the force pairs resulting from the STR − POL,
STR − AVG and STR − ORT variants seem more natural
than the ones for the STR − DIR2/3 variants. Moreover, the
former three variants result in the (unique) force pair solu-
tion if the moment is applied as a constant shear stress on the
beam surface, cf. Sect. 2. Additionally, it can be observed for
the STR − DIR2/3 variants that the choice which local solid
direction is coupled to the solid triad drastically affects the
result for the nodal forces.

(e)

(c) (d)

(a) (b)

Fig. 6 Results for the moment test problem—the nodal reaction forces
are shown for different solid triads

7.2 Shear test

The next elementary test case is illustrated in Fig. 7. The
problem geometry is the same as in the previous example.
The cube (side length h = 1m) is fixed at two bottom corner
points to constrain all rigid body modes. A constant surface
load τ = 0.001N/mm2 is applied to the surfaces of the cube,
as depicted in Fig. 7. No boundary conditions are applied
to the beam. This problem illustrates how the specific solid
triads affect the shear stiffness of the solid element and will
be studied in two steps.

In a first step, wewant to investigate the impact of the local
stiffening effect the beam cross-section has on the surround-
ing solid material. To do so, a reference solution is created
by applying a full 2D-3D beam-to-solid coupling scheme,
i.e. the coupling conditions are enforced on the beam sur-
face, cf. Appendices 2 and 3. For comparison purposes, a
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Fig. 7 Shear test problem

Fig. 8 Shear test problem—reference solution for solid without a beam
(left) and solid with an embedded beam (2D-3D coupling), r = 0.1m
(right). The second Piola-Kirchhoff stress S23 is shown in the solid.
Displacements are scaled by a factor of 100

variant of this problem is simulated without the embedded
beam, i.e. the pure solid shear problem. Figure 8 illustrates
the shear stress in the solid, with and without the embedded
beam, for an exemplary beam radius r = 0.1m. As expected,
the solution is uniform in the entire solid volume for the pure
solid variant. In the 2D-3D beam-to-solid coupling variant,
the embedded beam affects the solid stress and displacement
fields. The overall displacement of the solid is smaller than
for the variant without a beam, thus demonstrating the stiff-
ening effects of the beam cross-section. In agreement with
our fundamental modeling assumption of overlapping beam
and solid domains (see Sect. 2), the solid shear stress inside
the beam domain is zero. Outside of the beam domain, the
solid shear stress field shows slight fluctuations due to the
local constraints enforcing the 2D-3D coupling at the beam
surface. However, close to the boundaries of the cube, these
fluctuations become negligible and the shear stress field is
quite homogeneous and therefore very similar to the pure
solid shear problem.

In a second step, this problem is simulated with one sin-
gle solid finite element to investigate potential shear locking
effects. The coupling between beam and solid is now realized
with our novel BTS-FULL method and a rotational penalty
parameter of εθ = 100Nm/m. In Fig. 9, the deformed solid
element and the resulting coupling reaction forces on the

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Results for the shear test problem—the nodal reaction forces are
shown for different solid triads. Displacements are scaled with a factor
of 100

solid nodes are depicted for the different solid triad defini-
tions and again for the problemwithout embedded beam.Due
to the orthogonality constraints in the STR − ORT variant,
no shear mode remains in the solid finite element, i.e. it is
rigid with respect to shear deformations (in fact, small defor-
mations can be observed due to the penalty regularization). In
this example, all other solid triad definitions result in a solid
displacement field matching the variant without embedded
beam up to machine precision. Table 2 states the rigid body
rotation angle ψB of the beam for the different solid triad
variants. The rotation angle ψB of the beam depends on the
employed solid triad variant. With the STR − DIR2 variant
the beam does not rotate at all since the orientation of the
local solid material fiber does not change. The STR − DIR3

variant, on the other hand, results in the largest rotation of
the beam, since the solid triad is coupled to the solid mate-
rial fiber which undergoes the largest orientation change.
Although they are not identical up to machine precision, the
STR − POL and STR − AVG variants lead to very similar
results for the rotation of the beam, i.e. roughly an average
of the STR − DIR2 and STR − DIR3 variants.

The results show that the presented solid triads lead to
either no shear stiffening effects in the solid (STR − POL,
STR − DIR2,3 and STR − AVG) or to severe locking result-
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Table 2 Numerical results for
the shear test problem

Solid triad ψB

STR − POL −0.09899932

STR − DIR2 −0.00000000

STR − DIR3 −0.19485464

STR − AVG −0.09742732

STR − ORT −0.00099010

ing in a complete constraining of all shear modes
(STR − ORT). To assess which variant resembles best
the resolved 2D-3D coupling scheme, the relative L2-
displacement error

‖e‖L2,rel =
√

∫

ΩS,0

∥
∥uS

h − uS
ref

∥
∥
2
dV0

√
∫

ΩS,0

∥
∥uS

ref

∥
∥
2
dV0

(76)

is compared. In the results presented in the following, the ref-
erence solution is the solution obtainedwith a fine solidmesh
and a 2D-3D coupling. Figure 10 illustrates ‖e‖L2,rel for dif-
ferent beam diameter to solid cube length ratios d/h. The
relative error for the STR − ORT variant is almost constant 1
for all beam diameters ratios, i.e. even for beam cross-section
sizes similar to the cube dimensions a full constraining of all
shear modes does not accurately describe the physical cou-
pling. For all other variants the behavior of the relative error
is the same, since none of them constrain the shear defor-
mation mode in the solid, i.e. the beam cross-sections rotate
with the solid without constraining it. For small ratios of
beam radius to solid cube length the error is close to zero.
For larger ratios of beam radius to solid cube length, the
error increases as there is a real physical stiffening effect due
to the embedded beam cross-section in the 2D-3D problem
that is not captured by the 1D-3D coupling schemes. How-
ever, in the entire range of practically relevant solid mesh
sizes (relative to the beam cross-section size) as illustrated
in Fig. 10, the solid triad variants that do not constrain the
in-plane deformation of the solid result in a better approxi-
mation of the physical system behavior as compared to the
STR − ORT triad.

7.3 Fiber composite under shear loading

In this example, multiple fibers are placed inside a solid cube,
cf. Fig. 11. The solid cube has the dimensions 1m × 1m ×
1m and consists of a hyperelastic Saint Venant–Kirchhoff
materialmodel (E = 1N/m2, ν = 0.0). Embedded inside the
solid cube are 5×5 fibers with a radius of 0.0125m.All fibers
point in e3 direction. The solid is fixed in e2 direction at the
left boundary, and loaded with two equilibrating shear loads
(τ = 0.01N/m2) at the left and right boundary. To constrain
the remaining rigid body mode, the lower left corner point

Fig. 10 Relative displacement error ‖e‖L2,rel for different beam diam-
eter to solid cube length ratios d/h. The relative error is computed with
respect to the 2D-3D reference solution. The curves represent different
solid triad variants

e3

e2

τ

τ

Fig. 11 Fiber composite under shear loading—Problem setup of 5× 5
embedded fibers inside a solid cube

is fixed in e3 axis. The fibers are coupled to the solid via the
BTS-FULL method and no additional boundary conditions
act on the fibers. The cube is meshedwith 7×7×1 solid hex8
elements, and each fiber is represented by a single Simo–
Reissner beam finite element. The penalty parameters for the
BTS-FULLmethod are εr = 100N/m2 and εθ = 100Nm/m.
In this example, the results obtained with the BTS-FULL
method and different solid triads will be compared with a
spatially converged reference solution, where the coupling
between the beam surfaces and solid volume is discretized in
a surface-to-volume (2D-3D) manner, i.e. the beam surface
instead of the centerline is fixed to the solid, cf. Appendices
2 and 3.

The resulting shear stresses are visualized in Fig. 12. In
the full 2D-3D model, there are stress concentrations at the
interface between the beam surfaces and the solid. It is impor-
tant to point out that the BTS-FULL method (1D-3D), is not
able to capture these stress concentrations, regardless of the
employed solid triad. However, this has not been the inten-
tion of the BTS-FULL method in the first place, but instead
we want to make sure that the far field stress in the solid is
represented accurately. Figure 12 illustrates the shear stress
results obtained with the STR − POL, STR − DIR2/3 and
STR − AVG solid triads. In the reference solution the in-
plane shear stress is positive at the top and bottom of the
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Fig. 12 Fiber composite under
shear loading—Full 2D-3D
coupling (left), STR − POL,
STR − DIR2/3 and STR − AVG
(middle), and STR − ORT
(right). The second
Piola-Kirchhoff stress S23 is
shown in the solid

Table 3 Numerical results for the fiber composite under shear loading – the displacement u at the top right corner of the cube for the 2D-3D
reference solution and different types of solid triad fields, and the relative error

Coupling type Solid triad u in m ‖u−uref‖‖uref‖
2D-3D (reference) – [0, 0.0311342,−0.0706488] –

1D-3D STR − POL, STR − DIR2/3, STR − AVG [0, 0.0299373,−0.0681153] 3.6282%

STR − ORT [0, 0.0293469,−0.0547324] 19.559%

cube and negative in the middle. The results obtained with
the STR − POL, STR − DIR2/3 and STR − AVG solid tri-
ads are similar to the ones obtained with 2D-3D coupling.
However, the results with the STR − ORT solid triads clearly
exhibit drastic shear locking effects due to the (over-) con-
straining of orthogonal solid directions. Table 3 provides the
displacement at the top right corner of the cube for the 2D-3D
reference solution and different types of solid triad fields, as
well as the relative error. The error for the STR − ORT solid
triad is six times larger than for all other solid triads. This
again illustrates the unwanted locking effects introduced by
the STR − ORT solid triads variant.

At this point a short recap of the first three examples for
each of the investigated solid triad constructions is given
to summarize their applicability in the context of our BTS-
FULL method:

STR − POL All basic consistency tests are fulfilled by this
variant. However, due to the computational
complexity of the polar decomposition in 3D,
cf. Sect. 5.2, this variant is not used in the
remaining examples presented in this contri-
bution.

STR − DIR2/3 The examples show that the (arbitrary) choice
of the solid material direction for the con-
struction of the solid triad can have a consid-
erable effect on the results. Therefore, these
variants will not be employed in the follow-
ing. However, for comparison purposes they
will be included in the spatial convergence
example, cf. Sect. 7.5.

STR − AVG All basic consistency tests are fulfilled by the
averaged solid triad and the results are very
close to the ones obtained via the STR − POL
variant, while being less expensive from a

computational point of view. This variant is
used in the remaining examples of this con-
tribution.

STR − ORT This variant leads to considerable shear lock-
ing in the range of coarse solid mesh resolu-
tions, which is exactly the range of interest
for the proposed 1D-3D coupling schemes.
Therefore, this variant will not be used in the
remainder of this contribution.

7.4 Transfer of constant torque

This example serves as a consistency test for the BTS-FULL
method and its ability to transfer a constant torque. It is an
extension of the constant stress transfer problem for theBTS-
TRANSmethod previously presented in [63]. The example is
inspired by classical patch tests, which are well-established
tools to investigate the consistency of finite element formu-
lations [65]. The constant torque test is depicted in Fig. 13.
It consists of a solid block ΩS with two embedded beams
ΩB1 and ΩB2. The two beams occupy the same spatial posi-
tion. The solid is fixed at the lower surface and no external
loads are applied. One beam is loaded with a torsion load
m, and the other beam with a torsion load −m, both act-
ing along their axial direction. The magnitude of the torsion
load is 10Nm/m. Based on the space-continuous problem
description, the opposing loads on the two beams cancel
out each other, and in sum the two beams transfer no loads
to the solid. This gives the trivial solution uS = 0 for the
displacement field in the solid, cf. [63], and a constant solu-
tion for the beam rotations along their axis. In this test it
shall be verified that this solution can also be represented
in the spatially discretized setting using an arbitrarily coarse
discretization. Both beams are coupled to the solid via the
BTS-FULL method. There is no direct interaction between

123



722 Computational Mechanics (2022) 69:701–732

e3
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ΩB1 = ΩB2
ΩS

−m

m

Fig. 13 Problem setup for the transfer of constant torque example. Both
beams ΩB1 and ΩB2 occupy the same spatial position

the two beams, but all interactions are transferred through
the solid domain.

The geometry and material parameters are taken from
[63]. The dimensions of the solid block are 1m × 1m × 2m
and aSaintVenant–Kirchhoffmaterialmodel (E = 10N/m2,
ν = 0.3) is employed. The block is discretized with 4×4×7
eight-noded, first-order hexahedral elements. The circular
cross-sections of the two beams have a radius of 0.05m, and
the beam material parameters are E = 100N/m2 and ν = 0.
The beams B1 and B2 are discretized with 5 and 7 Simo–
Reissner beam finite elements, respectively. This results in a
non-matching discretization between the two beams as well
as between the beams and the solid. Coupling between the
beams and the solid is realized with a linear interpolation
of both the translational and rotational Lagrange multipliers.
The STR − AVG solid triads are employed in this example,
cf. Sect. 5.3.2. The penalty parameters are εr = 100N/m2

and εθ = 100Nm/m.
Figure 14 illustrates the results of this test. The stress in

the solid and the curvature in the beam are indeed zero up
to machine precision, thus matching the expected analytical
solution.

This example illustrates the ability of the BTS-FULL
method to exactly represent a constant torsion state along
the beam and the consistency of the coupling terms despite
the fact that arbitrary non-matching meshes are involved.

7.5 Spatial convergence

This numerical example investigates the spatial convergence
properties of the BTS-FULL method under uniform mesh
refinement. The problem is depicted in Fig. 15. It consists
of a solid block with the dimensions 5m × 1m × 1m and
a Saint Venant–Kirchhoff material model (E = 10N/m2,
ν = 0). A beam (cross-section radius 0.125m, L = 5m, E =
300N/m2, ν = 0) is embedded inside the solid block. No
external loads orDirichlet boundary conditions are applied to
the beam, i.e. homogeneous Neumann boundary conditions
at both ends. The right end of of the block is loaded with a

Fig. 14 Results for the constant torque transfer test. The second Piola–
Kirchhoff stress S33 is shown in the solid and the curvature κ in the
middle of each beam element is shown in the beams

shear stress τ . The shear stress at point p = Le1+ ye2+ ze3
reads

τ = (−ze2 + ye3
)

0.05N/m3, (77)

thus resulting in a total torque of 1.65885 · 10−2Nm. This
example can be interpreted as an adapted version of the spa-
tial convergence problem in [63] to verify the scenario of
rotational coupling. A similar problem is also investigated in
[27]. The spatial convergence behavior of the BTS-FULL
method will be analyzed with respect to a spatially con-
verged reference solution obtained with a 2D-3D coupling
discretization, as described in Sect. 2. To compare the results,
the L2 displacement error in the solid is calculated via

‖e‖L2 = 1

V0

√
∫

ΩS,0

∥
∥uS

h − uS
ref

∥
∥
2
dV0 . (78)

Here, V0 = 1m3 is the solid volume in the reference con-
figuration. It should be pointed out that the 2D-3D coupling
problem does not have the same analytical solution as the
BTS-FULL problem, because the 1D-3D coupling results in
a singularity in the analytical solution, cf. Sect. 2.1. There-
fore, spatial convergence of the BTS-FULL method towards
the reference solution is not expected all the way towards the
asymptotic limit of arbitrarily small solid element sizes, but
only in the practically relevant regime of solid mesh sizes
that are larger than the beam cross-section radius. In this
regime, the singularity, i.e. the difference between the 1D-
3D and 2D-3D models can not be fully resolved by the finite
element solution space. This fact can be exploited to obtain
reasonably accurate results with our BTS-FULL (i.e. 1D-
3D) method for the envisioned applications and practically
relevant mesh resolutions.
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Fig. 15 Convergence test case for the BTS-FULL method—Problem
setup of a coupled beam and solid structure

The solution to the presented problem has a point sym-
metry around the e1 axis. Therefore, the STR − POL and
STR − AVG solid triad variants coincide and give the same
numerical results up to machine precision. Similarly, the
results obtained with the STR − DIR1/2 variants match up
to machine precision. Figure 16 shows the convergence plot
for different types of solid triads as well as for the 2D-3D
coupling approach. For coarse discretizations an excellent
convergence behavior can be observed for the BTS-FULL
variants, slightly below the convergence rate of the reference
2D-3D method, but with a significantly reduced compu-
tational cost. All BTS-FULL convergence plots exhibit a
kink at a certain solid mesh resolution: the STR − DIR1/2

variants at around hsolid = 0.07m, and the STR − POL
and STR − AVG variants at around hsolid = 0.06m. Fig-
uratively speaking, the difference between the 1D-3D and
2D-3D coupling model becomes dominant at the kink posi-
tion, since the solid element size to beam cross-section
diameter ratio becomes smaller. Nevertheless, the kink only
occurs when the solid element size is already smaller than the
cross-section radius, which is far away from the envisioned
geometric relations for theBTS-FULLmethod anyways. The
results confirm that for solid element sizes larger than the
beam cross-section diameter, i.e. our desired and practically
relevant discretization case, the results obtained with the
BTS-FULL method (1D-3D) exhibit excellent spatial con-
vergence properties and thus give a very good approximation
of the 2D-3D coupling problem.

7.6 Plane cantilever bending

In this example we consider a cantilever structure modeled
as a solid continuum subject to a moment load. The problem
is illustrated in Fig. 17a. The cantilever has the dimen-
sions 5m × 1m and consists of a Saint Venant–Kirchhoff
material (E = 10N/m2, ν = 0). At the left boundary all
displacement components are fully constrained. A moment
load M = 0.0290888Nm acts on the cantilever at the mate-
rial point XM = [4.5, 0]Tm. This moment is chosen such
that, if the cantilever were modeled using 1D beam theory, it

Fig. 16 Spatial convergence plot for different solid triads and the 2D-
3D reference solution

should bend exactly to a quarter circle, due to a pure bending
deformation in the region between the Dirichlet boundary
and the applied moment. Directly imposing a conservative
moment load on a solid, i.e. a Boltzmann continuum, which
exhibits no rotational degrees of freedom is a non-trivial task.
Standard approaches would require to model the moment
as a (deformation-dependent) load/traction field distributed
across an arbitrarily chosen sub-volume of the solid. In this
example we impose the external moment on the solid struc-
ture by defining a solid triad (STR − AVG) at the application
point of the moment. The nodal external forces effectively
acting on the solid are obtained by projecting the moment to
the solid finite element space via the discrete version of (52).
The cantilever is discretized with 25 × 5 plane four-noded,
first-order quadrilateral elements. In Fig. 17b the deformed
cantilever is illustrated. The global displacement behavior
is as expected, i.e. the cantilever bends to a quarter circle.
Of course, the local strain state close to the point where the
external moment is applied is not meaningful in a contin-
uum mechanics sense, since we impose a singular moment
at that point. However, according to Saint Venant’s princi-
ple, a linear stress distribution across the beam height, as
expected for the pure bending of a slender beam-like struc-
ture, can be observed at a sufficient distance from the point
where the moment is induced. This example illustrates that
the presented rotational coupling approach is not limited to
the coupling of beam cross-section orientations, but can also
be used as a stand-alone feature to impose moments onto a
solid domain in a variationally consistently manner. It should
be pointed out that this example has only been carried out in
2D for reasons of simplicity, while the illustrated capability
is available in 3D problems, too.
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Fig. 17 Plane cantilever bending problem. a Problem setup of the
cantilever beam with a moment load. b Deformed cantilever with the
Green–Lagrange strains E22

Fig. 18 Problem setup for the plate with embedded beam examples.
In variant A the embedded part of the beam has the shape of a quarter
circle, in variant B it is straight. In both cases the red line indicates
along which edge the results are plotted in Fig. 21

7.7 Plate with embedded beam

In this example a beam is only partially embedded inside a
solid plate and loaded with a tip force. Two different geome-
try variants of the embedded beam are considered, cf. Fig. 18.
In variant A the embedded part of the beam has the shape of
a quarter circle, while it is straight in variant B. The plate
has the dimensions 1m× 1m× 0.1m and consists of a Saint
Venant–Kirchhoff material (E = 1N/m2, ν = 0.3). The
embedded Simo–Reissner beam has a cross-section radius
r = 0.025m and the material parameters are E = 100N/m2

and ν = 0. In both variants the beam is loaded with a tip
load F =-0.0001N e3 at the end that sticks out of the solid
domain. The solid plate is fully clamped at the left and at the
bottom.

The coupling of beam and solid is realized with our
novel BTS-FULLmethod and compared to the BTS-TRANS
method from [63], i.e. the one without rotational coupling.
First-order Lagrange polynomials are employed to discretize
the translational and rotational Lagrange multipliers. The
penalty parameters are εr = 100N/m2 and εθ = 100Nm/m.
The solid plate is modeled with 1 × 10 × 10 eight-noded
solid-shell elements [10,69], while the entire beam is dis-
cretized with six Simo–Reissner beam finite elements. The
resulting global finite element model has 807 degrees of
freedom.A full 3Dmodel, also resolving thebeamwith three-
dimensional solid finite elements and consisting of 90,190
second-order tetrahedra (tet10) elements, serves as a compar-
ison. The discretization of the full 3Dmodel has been chosen
such that mesh convergence is guaranteed. Consequently, the
full 3D model consists of 270,570 degrees of freedom.

The results for variant A are shown in Fig. 19. It can be
seen that the the full 3D model and the new BTS-FULL
method exhibit the same overall behavior, while the beam
experiences much larger deformations and the solid smaller
ones in the BTS-TRANS model without rotational coupling.
This is due to the fact that in the full 3D problem a consider-
able portion of the external load is transferred from the beam
to the solid via shear stresses on the beam surface, which are
represented by moments in the reduced-dimensional model.
Only the newBTS-FULLmethod is able to capture these cou-
pling moments. Figure 20 shows the results for variant B. In
this case a solution for the purely translational BTS-TRANS
method (i.e. only centerline position coupling) does not even
exist within a quasi-static framework, since the beam has
an unconstrained rigid body rotation mode around its axis of
the embedded part. Again, the displacement results of the full
3D problem and the BTS-FULLmodel are very close to each
other. A more detailed comparison of the different variants is
given in Fig. 21. Therein, the displacements along the curve
indicated in Fig. 18 are visualized. Now it also becomes clear
quantitatively that the displacement results obtained with the
BTS-FULL method are very close to the ones obtained with
the full 3D problem. Considering that the former reduces
the number of degrees of freedom by a factor of about 330
as compared with the latter, this is a remarkable result and
showcases the efficiency of the new BTS-FULL method for
challenging applications.

7.8 Twisted plate

In this final example we consider a plate, with complex,
spatially distributed fiber reinforcements in 3D, cf. Fig. 22.
The plate has the dimensions 1m × 3.5m × 0.1m and con-
sists of a Neo-Hookean material (E = 1N/m2, ν = 0.3).
The plate is fully clamped at the left face. The right face
of the plate is rotated around the e2 axis with the rota-
tion angle φ = [0, 2π ], i.e. the plate is twisted along the
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Fig. 19 Deformed plate with embedded beam, variant A—for the full model (left), BTS-FULL model (middle) and BTS-TRANS model (right).
The contour plots visualize the displacement magnitude

e2 axis. Different shapes of fibers are embedded in the
plate: semicircles with a radius of 0.25m and straight lines
with a length of 0.6m. The fiber semicircles are rotated by
±15◦ with respect to the e2 axis to make the example more
challenging and represent general 3D fiber-solid element
intersection scenarios. The embedded fibers have a cross-
section radius r = 0.01m and the material parameters are
E = 400N/m2 and ν = 0. The coupling of fibers and
solid is realized with the BTS-FULL method (STR − AVG
solid triad, εr = 100N/m2 and εθ = 100Nm/m). First-
order Lagrange polynomials are employed to discretize the
translational and rotational Lagrange multipliers. The solid
plate is modeled with 10 × 35 × 2 eight-noded solid-shell
elements, while each fiber is discretized with four Simo–
Reissner beam finite elements, thus resulting in a total of
92 beam finite elements. The displacement controlled twist-
ing deformation of the plate is appliedwithin 100 quasi-static
load steps.At this point it should bementioned that this exam-
ple could not be solved with the BTS-TRANS method, since
the rigid body rotation modes of the straight fibers lead to a
non-converging Newton–Raphson algorithm in the very first
load step. This underlines the advantages of themechanically
consistent coupling provided by the BTS-FULL method.

Figure 23 illustrates the deformed structure at different
load steps. Until load step 75, the reinforced plate exhibits a
more or less homogeneous twist along the e2 axis. From load
step 75 to load step 100, the reinforced plate folds around the
e2 axis. To assess the non-linear behavior of this structure
and evaluate the global impact of the fiber-reinforcements,
the fiber-reinforced plate is compared to a simple plate (same
material) without any fibers. Fig. 24 depicts the reaction
moment M2 around the e2 axis at the fully clamped sur-
face of the plate with and without fiber-reinforcements. Until
load step 70, the structures behave similarly. However, as

Fig. 20 Deformed plate with embedded beam, variant B—for the full
3D model (left), BTS-FULL model (right). The contour plots visualize
the displacement magnitude

Fig. 21 Deformed configuration of the edge indicated in Fig. 18 for
variants A and B, and for different modeling techniques
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Fig. 22 Twisted plate problem—Fiber placement in the pate, all dimensions are in m (left) and 3D view illustrating the rotation of the curved fibers
around the e2 axis (right)

Fig. 23 Deformed twisted plate problem at different load steps. The magnitude of the displacements is shown in the solid

expected the fiber-reinforcements lead to an increased reac-
tion moment for the same twist angle φ, i.e. to a stiffer
structural response. Both structures exhibit a limit point with
an unstable post-critical solution, i.e. the structures would
collapse if the twist is applied in a load-controlled manner.
The fiber-reinforcements affect the critical point of the struc-
ture such that the instability occurs at a smaller twist angle
and the critical moment is increased. This illustrates the com-
plex influences that fiber-reinforcements may have on the
global non-linear behavior of a structure.

Figure 25 illustrates the final configuration and shows a
close-up view of the deformed embedded fibers. The max-
imum normal stresses in the fibers resulting from axial
and bending deformations can be estimated for this exam-
ple as ≈ 15N/m2 and ≈ 26N/m2 (not visualized in the
figure), respectively. In the solid the maximum principal
Cauchy stress is 0.578N/m2 (not visualized in the figure).
As expected, the stresses in the stiff fibers are much larger
than in the relatively soft solid matrix. To further investi-
gate the influences of the different deformation modes of the
fibers, Fig. 26 depicts the tension, shear, torsion and bending

Fig. 24 Reaction moment M2 around the e2 axis at the fully clamped
surface of the plate over the course of the simulation—for the plate with
and without fiber-reinforcements

contributions to the total internal elastic energy of the fibers
over the course of the simulation. In the first few load steps,
the main contributors to the internal elastic energy of the sys-
tem are bending and torsion deformations, cf. right part of
Fig. 26. This can be attributed to the fact that in the beginning
of the simulation the deformations of the plate mainly take
place in in e3 direction, which predominantly causes bend-
ing and torsion deformations of the fibers. As the plate is
twisted further, geometrically non-linear effects materialize
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Fig. 25 Deformed twisted plate problem—full plate (right) and closeup
of the embedded fibers (right). Magnitude of the displacements is visu-
alized in the solid and the axial force N is shown in the beams

especially on the outer edges of the plate. The edges form
helix like curves. Due to the constrained displacements in
e3 direction at the clamped surfaces, the outside edges of the
plate are stretched in e3 direction. This causes axial tension in
the fiber semicircles at the outside. Starting at approximately
load step 25, themain contribution to the internal elastic fiber
energy comes from axial deformations. In the post-buckling
state, the bending deformation of the plate, and therefore also
of the fibers increases. This causes an increase in the internal
elastic bending and torsion energy of the fibers. Moreover,
shear deformations only have a minor contribution to the
total internal energy of the fibers, which is expected due to
the slenderness of the embedded fibers, thus motivating a
future use of the BTS-FULL method in combination with
shear stiff Kirchhoff–Love beam theories [36,37].

The considerable contributions of bending and torsional
energy to the internal elastic energy of thefibers demonstrates
the importance of consistently representing these modes and
coupling them to the background solid material as done by
our proposed BTS-FULL scheme. For this example, this
would not be the case if simplified models for the fibers
(e.g. modeled as strings without bending stiffness) or for the
fiber-solid coupling (e.g. BTS-TRANS) were applied.

This example also showcases the maturity of the imple-
mented BTS-FULL method from an algorithmic point of
view. The chosen solid mesh, in combination with the tilted

Fig. 27 Twisted plate problem with an increased complexity—
deformed configuration after a rotation φ = π . The magnitude of the
displacements is plotted in the solid and the axial strains ε are plotted
in the beams

fiber semicircles results in complex 3D intersections between
the beam finite elements and the solid finite elements, thus
illustrating the robustness of the employed numerical integra-
tion algorithm. As a final example, a more complex model
of a fiber-reinforced plate is considered. Therein, the dimen-
sions of the plate are repeated 5 times in e1 and e2 direction
and 3 times in e3 direction. The pattern and size of the fiber-
reinforcements is similar to the one illustrated in Fig. 22,
however, in this case there are 3 layers of fiber-reinforcements
over the thickness of the plate. This results in a total of
approximately 53,000 solid finite elements and 1,800 fibers
with 4 beam finite elements each, i.e. the problem size is
scaled by a factor of approximately 75 compared to the
previously considered plate. The deformed configuration of
the plate is visualized in Fig. 27 . This further illustrates
the robustness and scalability of the presented BTS-FULL
method for large-scale problems.

8 Conclusion

In this work we have proposed a 1D-3D coupling method
to consistently embed 1D Cosserat beams into 3D Boltz-

Fig. 26 Twisted plate
problem—internal elastic
energies in the fibers, split up in
tension, shear, torsion and
bending contributions
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mann continua (solids). Six constraint equations act on each
point along the Cosserat beam centerline, namely three trans-
lational constraints and three rotational constraints, thus
resulting in a full, mechanically consistent coupling between
the 1D beams and the 3D continuum. Deriving the full 1D-
3D coupling on the beam centerline from a 2D-3D coupling
on the beam surface via a Taylor series expansion of the
solid displacement field would require to fully couple the
deformed solid directors with the undeformable beam cross-
section triad. It is demonstrated that such an approach, which
suppresses all in-plane deformation modes of the solid at
the coupling point, might result in severe locking effects
in the practically relevant regime of relatively coarse solid
mesh sizes. Therefore, a suitable triad field has to be defined
in the 3D Boltzmann continuum that only represents solid
material directions in an average sense without constrain-
ing them. It has been shown that the rotational part of the
polar decomposition of the (in-plane projection of the) solid
deformation gradient is a natural choice, since it repre-
sents the average orientation of material directions of the
3D continuum in a L2-optimal manner. Additionally, sev-
eral other solid triad definitions have been presented, which
allow for a more efficient numerical evaluation. Further-
more, existing Lagrange multiplier-based coupling methods
for the translational degrees of freedom have been extended
for the coupling of rotational degrees of freedom, all within
the theory of large rotations. The coupling equations have
been discretized using a mortar-type approach and enforced
using a regularized weighted penalty method. Based on ele-
mentary numerical test cases, it has been demonstrated that
a consistent spatial convergence behavior can be achieved
and potential locking effects can be avoided, if the proposed
BTS-FULL scheme is combined with a suitable solid triad
definition. Furthermore, numerical experiments have been
conducted to show the applicability of the proposed method
to real-life engineering applications.

Future work will focus on the extension of the proposed
beam-to-solid volume coupling approach to beam-to-solid
surface coupling as well as to beam-to-solid surface contact.
Especially in the latter case, the proposed rotational coupling
constraints are essential to capture effects such as frictional
contact between beam and solid. Another topic of interest for
future research is the combination of 1D-3D and 2D-3D cou-
pling within a unified beam-to-solid coupling approach. This
would allow to use 2D-3D coupling alongwith a refined solid
mesh only in domains where high resolution of solid stress
fields is of interest, and using the proposed, highly efficient
1D-3D coupling approach in the remaining problem domain.
Moreover, also a combination of the developed schemes with
concepts allowing for a consistent coupling of the beam ends
with the solid domain, cf. [54], are considered as promising
future research direction.
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Appendix

Proof of L2-optimality of STR− POL triad

In the following, a proof shall be given for (45). First, an
angle θ0 ∈ [−π, π ] is defined that represents the orientation
of arbitrary in-plane directors in the reference configura-
tion defined to coincide for solid and beam according to
g
S,0

(θ0) = g
B,0

(θ0) = cos (θ0) gB2,0
+ sin (θ0) gB3,0

.

The push-forward to the spatial configuration is given by
g
S

= Fn g
S,0

(θ0) for the solid and g
B

= RB g
B,0

(θ0) for

the beam.As stated in Section 5.1, it is a desirable property of
the (to be defined) solid triad and therefore also of the beam
triad that the base vectors g

B2
and g

B3
lie in the n-plane,

i.e. the plane spanned by the solid base vectors g
S2

and g
S3
.

Thus, in analogy to (42) as stated for the solid, it is assumed
that the total rotation of the beam cross-section RB is split
in a multiplicative manner into two successive rotations

RB = R2D
B Rn (79)

where Rn describes the 3D rotation from ΛB,0 to Λ̄ and
R2D
B the quasi-2D rotation from Λ̄ to ΛB . Thus, after push-

forward to the intermediate configuration defined by Rn the
corresponding directors of solid and beam still coincide:

ḡ
S
(θ0) = ḡ

B
(θ0) = Rn g

B,0
(θ0) = cos (θ0) ḡ2 + sin (θ0) ḡ3.

(80)

In the following, the material and spatial principle axes asso-
ciated with the polar decomposition (43) of the in-plane
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deformation gradient F2D are denoted as GP2 and GP3 as

well as g
P2

= R2D
S GP2 and g

P3
= R2D

S GP3. Since the

principle axes GPi and the orthonormal base vectors ḡ
i
are

related by quasi-2D rotations with respect to the normal vec-
tor n, the directors in (80) can alternatively be stated as

ḡ
S
(θ0) = ḡ

B
(θ0) = cos (θ̃0) GP2 + sin (θ̃0) GP3, (81)

where θ̃0 = θ0 − θdiff is defined via the constant offset value
θdiff describing the rotation from ḡ

i
to GPi . The final beam

cross-section triad follows from the second (quasi-2D) rota-
tion R2D

B = R(θ2DB n) from ḡ
i
to g

Bi
described by the scalar

rotation angle θ2DB . In a similar fashion the (quasi-2D) rota-
tion R2D

S = R(θ2DS n) from GPi to g
Pi

is described by the

scalar rotation angle θ2DS . Due to the 2D-nature of these rota-
tions, the beam directors g

B
in the spatial configuration can

be derived from (81) according to:

g
B
(θ0) = cos (θ̃0+θ2DB −θ2DS ) g

P2
+ sin (θ̃0+θ2DB −θ2DS ) g

P3
.

(82)

Let the principle stretch ratios associated with the in-plane
deformation gradient F2D be denoted as λ2 and λ3. Then, the
solid directors g

S
= Fn g

S,0
(θ0) in the spatial configuration

can be derived according to:

g
S
(θ0)= v2DR2D

S [cos (θ̃0) GP2 + sin (θ̃0) GP3]
= λ2 cos (θ̃0) gP2

+ λ3 sin (θ̃0) gP3
.

(83)

Here, the relation g
Pi

= R2D
S GPi and the diagonal structure

v2D = λ2gP2
⊗ g

P2
+ λ3gP3

⊗ g
P3

of the spatial stretch

tensor has been exploited. From (82) and (83), the orienta-
tion angles of the spatial beam and solid directors g

B
(θ0)

and g
S
(θ0) relative to the spatial principle axis g

P2
can be

identified according to:

θB(θ0)= θ̃0+θ2DB −θ2DS , (84)

θS(θ0)= arctan

(

λ3 sin (θ̃0)

λ2 cos (θ̃0)

)

. (85)

Now, the difference between the solid director orientations
and the beam director orientations, measured in the L2-norm,
shall be minimized, i.e. :

∫ π

−π

(θB(θ0) − θS(θ0))
2dθ0 → min. (86)

As necessary condition, the first derivative of the integral
with respect to θ2DB has to vanish, i.e.

∫ π

−π

(θB(θ0) − θS(θ0))dθ0 =̇ 0. (87)

By exploiting the property θS(−θ0) = −θS(θ0) of (85), it
can easily be shown that (87) results in the requirement:

θ2DB = θ2DS ⇔ R2D
B = R2D

S . (88)

This means that the beam directors g
Bi

have to coincide with
the principle axes g

Pi
and, thus, the total beam triad has to

satisfy ΛB = R2D
S RnΛB,0, which is identical to the solid

triad definition STR − POL according to (44) with the initial
condition ΛB,0 = ΛS,0. By checking the second derivative,
it can easily be confirmed that this solid triad choice indeed
results in a minimum of the L2-norm in (86).

Full 2D-3D coupling

In the example section we compare the 1D-3D (i.e. BTS-
FULL) method to reference solutions obtained with a 2D-3D
coupling approach. For the sake of completeness, we state
the kinematic coupling constraints for the employed 2D-3D
coupling approach. The coupling constraints read

r + rCS − xS = 0 on Γ2D-3D. (89)

Therein, Γ2D-3D is the 2D-3D coupling surface, i.e. the part
of the beam surface that lies within the solid volume. Further-
more, rCS ∈ R

3 is the cross-section position vector, i.e. the
vector that points from the cross-section centroid to the cross-
section perimeter. The cross-section position vector can be
expressed by the current beam triad basis vectors g

B2
and

g
B3
, or via the cross-section rotation tensorΛB and theCarte-

sian basis vectors e2 and e3, i.e.

rCS = αg
B2

+ β g
B3

= ΛB

(

αe2 + βe3
)

. (90)

Therein, α ∈ R and β ∈ R are the beam cross-section coor-
dinates, i.e. they parametrize the beam cross-section. In the
following, two methods to enforce the 2D-3D coupling con-
ditions (89) are presented, once with a Lagrange multiplier
method and once with a quadratic penalty potential.

Penalty potential

The quadratic penalty potential reads

Πε,2D-3D = ε2D-3D

2

∫

Γ2D-3D

(

r + rCS − xS
)T(

r + rCS − xS
)

.

(91)

Here, ε2D-3D ∈ R is a scalar penalty parameter. Variation of
the penalty potential gives the following contributions to the

123



730 Computational Mechanics (2022) 69:701–732

weak form:

δΠε,2D-3D =
∫

Γ2D-3D

δrT ε2D-3D

(

r + rCS − xS
)

︸ ︷︷ ︸

f
2D-3D

+ δθTB ε2D-3D

(

S
(

rCS
) (

r − xS
))

︸ ︷︷ ︸

m2D-3D

+δxTS ε2D-3D

(

−r − rCS + xS
)

︸ ︷︷ ︸

− f
2D-3D

dA0 .

(92)

Therein, the coupling force f
2D-3D

, acting on the beam cen-
terline and solid, can be identified. Furthermore, m2D-3D is
the coupling moment acting on the beam cross-section. This
demonstrates the projection of purely positional coupling
constraints (on the surface of the beam) onto the beam cen-
terline, and illustrates the arising rotational coupling terms
in a 2D-3D coupling approach.

Lagrangemultiplier potential

The 2D-3D coupling conditions (89) can also be enforced
with a Lagrange multiplier method. A Lagrange multiplier
vector field λ2D-3D ∈ R

3 is therefore defined on the coupling
surface Γ2D-3D. The total Lagrange multiplier potential for
the 2D-3D coupling reads

Πλ,2D-3D =
∫

Γ2D-3D

λT
2D-3D

(

r + rCS − xS
)

dA0 . (93)

The variation of the total Lagrange multiplier potential gives
the following contributions to the weak form:

δΠλ,2D-3D =
∫

Γ2D-3D

(

δλT
2D-3D

(

r + rCS − xS
) + δrTλ2D-3D

+δθTB S
(

rCS
)

λ2D-3D − δxTSλ2D-3D

)

dA0 .

(94)

Again, this showcases the projection onto the beam center-
line, in this case of the Lagrange multiplier field λ2D-3D,
i.e. the coupling surface tractions on the beam surface.

Gauss point-to-segment approach for full 2D-3D
coupling

Evaluating the variation of the total coupling potential (92)
on the basis of the discretized solid position field and beam
cross-section rotation field yields the discrete variation of the

Fig. 28 Illustration of the
discrete coupling points for
2D-3D coupling along a single
cross-section [63]

e3

e2

e1

r(ξ̃Bj )

g
B2

g
B3

2D-3D coupling potential:

δΠε,2D-3D,h = ε2D-3D

∫

Γ2D-3D,h
((

HδdB + S
(

Lδθ̂ B

)

ΛB,h

(

αe2 + βe3
) − NδdS

)T

(

HdB + ΛB,h

(

αe2 + βe3
) − NdS

))

dA0 .

(95)

Therein,Γ2D-3D,h is the discrete beam surface. It is important
to point out that the beam surface is not directly discretized.
It is an analytical surface defined by the discretized beam
centerline, the beam cross-section orientations and the beam
cross-section geometry. Equation (95) can be stated inmatrix
form as

δΠε,2D-3D,h =
[

δdST δdBT
δθ̂ B

T
]

⎡

⎢
⎣

∫

Γ2D-3D,h
f Sc,2D-3D dA0

∫

Γ2D-3D,h
f Bc,r ,2D-3D dA0

∫

Γ2D-3D,h
f Bc,θ,2D-3D dA0

⎤

⎥
⎦

=
[

δdST δdBT
δθ̂ B

T
]

⎡

⎣

r Sc,2D-3D
rBc,r ,2D-3D
rBc,θ,2D-3D

⎤

⎦ , (96)

with the generalized point-wise 2D-3D coupling forces

f Sc,2D-3D = ε2D-3D

(

NTNdS − NTHdB

−NTΛB,h

(

αe2 + βe3
))

,

f Bc,r ,2D-3D = ε2D-3D

(

−HTNdS + HTHdB

+HTΛB,h

(

αe2 + βe3
))

,

f Bc,θ,2D-3D = ε2D-3D

(

−LTS
(

ΛB,h

(

αe2 + βe3
))

NdS

+LTS
(

ΛB,h

(

αe2 + βe3
))

HdB
)

. (97)

Furthermore, r Sc,2D-3D, r
B
c,r ,2D-3D and rBc,θ,2D-3D are the local

residual vectors. Again, a linearization of the residual con-
tributions with respect to the discrete beam-to-solid pair
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degrees of freedom is required for the Newton–Raphson
algorithm. The linearization reads:

⎡

⎣

Δr Sc,2D-3D
ΔrBc,r,2D-3D
ΔrBc,θ,2D-3D

⎤

⎦=
∫

Γ2D−3D,h

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ f Sc,2D-3D
∂dS

∂ f Sc,2D-3D
∂dB

∂ f Sc,2D-3D
∂ θ̂ B

T(ψ
B,h

) Ĩ

∂ f Bc,r ,2D-3D
∂dS

∂ f Bc,r ,2D-3D
∂dB

∂ f Bc,r ,2D-3D
∂ θ̂ B

T (ψ
B,h

) Ĩ

∂ f Bc,θ,2D-3D

∂dS
∂ f Bc,θ,2D-3D

∂dB

∂ f Bc,θ,2D-3D

∂ θ̂ B
T (ψ

B,h
) Ĩ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

dA0

·
⎡

⎣

ΔdS

ΔdB

Δθ̂ B

⎤

⎦ .

(98)

The local contributions (96) and (98) to the global residual
and the stiffness matrix, respectively, can be assembled in a
straightforward manner and will not be stated here for the
sake of brevity. As in the BTS-FULL mortar-type coupling,
all derivatives explicitly stated in (98) are evaluated using
forward automatic differentiation (FAD).

In practice, all integrals presented in this section are eval-
uated using a GPTS approach as illustrated in Figure 28,
cf. [63]. At each Gauss–Legendre point ξ̃ B

i along the beam
centerline, multiple equally spaced coupling points (illus-
tratedwith the symbol ’×’ in Figure 28) are defined along the
circumference of the corresponding cross-section. Mechani-
cally speaking, each coupling point is tied to the underlying
solid via a linear penalty constraint.
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