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Abstract

Optical fibers, especially multimode fibers (MMFs), show unique physical properties in
sensing and imaging. It has been proven that the multimode interference (MMI) phe-
nomenon in MMF can improve the performance of optical fiber sensors and fiber-optic
imaging systems. A variety of optical fiber sensors have been developed. However, the
demand for higher sensitivity and multi-parameter sensing is still growing, which motivates
this presented study to improve the temperature and strain sensitivity of the MMI-based
optical fiber sensors. The blossom of machine learning methods significantly promotes the
practical usability of the MMF imaging system. It provides the other motivation to study the
robustness of the MMF imaging system to thermal perturbations, which is unavoidable and
would enhance the performance of the imaging systems.

A comprehensive characterization of the standard MMF-based optical fiber sensors is
conducted experimentally to evaluate the core diameter, numerical aperture, and the length
dependences of the temperature and strain sensitivities of a single-mode–multimode–single-
mode (SMS) structure. This study is complementary to the theoretical analysis of the SMS
structures.

According to the literature research and the comprehensive study, the methodology im-
provement focuses on new specialty MMFs and optical fiber sensor configurations. First, an
MMI-based fiber sensor is developed using a new specialty fiber, square-core fiber, for tem-
perature and strain sensing. The sensor configuration is the SMS structure consisting of a
segment of square-core fiber, and the experimental results are compared to other specialty
fibers with conventional circular core shapes. The proposed fiber sensor can also exhibit
strain-insensitive high-sensitivity temperature sensing. Besides, another MMI-based fiber
sensor is demonstrated with a core-offset SMS structure for temperature and strain sens-
ing. The sensitivity dependences on the core-offset amplitudes at the input and output
single-mode fiber (SMF)/MMF boundaries are experimentally analyzed. These two studies
show that new specialty fibers and structures are promising to enhance the sensitivity of
MMI-based fiber sensors. Their simplicity, cost efficiency, and robustness also contribute to
the design and development of SMS structures in the future.

An MMF imaging system combined with deep learning is developed to study two factors
that limit its practical usability. Two neural networks, i.e., fully connected neural networks
(FCNN) and U-Net, are designed and adapted for image reconstruction through an MMF.
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The first factor, the thermal perturbation on the MMF imaging system, is studied by recon-
structing the MNIST handwritten digits dataset with both neural networks in the tempera-
ture range of 25 to 75◦C. The reconstructed images of simulated and experimental data
are compared. The second factor, the complexity of the images for the neural networks, is
demonstrated by the revival of the natural images dataset. A multilayer FCNN and U-Net
are tested and compared. This study is prominent for the practical use of the MMF imaging
system in medical endoscopic imaging and industrial applications.
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1. Introduction

Unnoticeably, optical fibers have become the backbone of our daily lives. When we are on
the Internet, making video calls, or sharing files, they are all through optical fibers. Without
optical fibers, having all the current facilities we have gotten used to would be impossible.
Nowadays, the world is being "fibered."

1.1. Background

For a long time, optical systems took a backseat in technology development until the laser
was invented in the 1960s [1]. It became realistic to have a workable and practical optical
system in the near future. At that time, the propagation of laser beams in the atmospheric
environment was established. It was also well-known that glass can be shaped into thin
and flexible threads to guide light. However, due to the high transmission loss, transmitting
information through such threads was still impossible. Among different materials that have
been studied, fused silica, which is composed of SiO2, was the most suitable one. Still,
even so, the light transmitted in fused silica was attenuated by at least one-third after a
distance no longer than 1 m. Apparently, it has no use. At just the right time, in 1966, Kao
and Hockham made a breakthrough with their discovery in fiber optics [2]. They predict
the strong attenuation of glass was not an intrinsic property but rather caused by chemical
impurities in the glass composition. Their careful calculation of how to transmit light over
long distances in optical glass fibers predicted the possibility of producing glass with an
attenuation no more than 20 dB/km instead of the 1000 dB/km common at that time. In
1969, the first graded index fiber was presented with an attenuation below 100 dB/km [3].
Since then, tremendous progress in this direction has been achieved. In 1969, the first
graded index fiber was presented with an attenuation below 100 dB/km. Only one year later,
the first single-mode fiber (SMF) with an attenuation below 20 dB/km was created [4]. Later,
by fine-tuning the manufacturing procedure, the attenuation of 4 dB/km was achieved. With
a better understanding that the loss is wavelength-dependent, the milestone of 1 dB/km was
reached in 1976 [5]. Finally, in 1979, a loss of only 0.2 dB/km at 1550 nm [6], which is very
close to the limit of what is possible at all with fused silica, was realized. As fiber began to
be deployed, with the development of manufacturing, various auxiliary components arose,
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Chapter 1. Introduction

too. The evolution in optical fibers not only matured optical communications [7, 8] but also
led to the advent of optical fiber sensors [9, 10], even optical fiber-based imaging today.

As optical fiber product maturity developed rapidly, the properties of optical fibers have
been studied exhaustively [11–13]. Optical fiber sensors have been promising sensing
devices for years due to the notable intrinsic characteristics developed from optical fiber
properties, for example, light weight, immunity to electromagnetic, and resistance to cor-
rosive and hazardous environments. The density of fused silica is ∼2.2 g/cm3, and that
of copper wire is ∼8.9 g/cm3. It is not so much realizable by comparing the densities. In
a realistic comparison, 1 km of bare fiber only weighs ∼30 g, while 1 km of copper wire
weighs ∼36.6 kg. In this case, it is a rule of thumb that 1 g of fiber cable replaces 10 kg of
electrical cable. It clearly indicates the advantage where a weight limit is required, like on
vehicles, ships, or even spacecraft.

Optical fiber (SiO2) is an excellent insulating material with resistivity as high as 1×1018 Ω/cm.
Therefore, even close to high-voltage installations, there is no interference gathered by the
fiber. This feature enables the optical fiber to be immune to electromagnetic. In the appli-
cation with strong electromagnetic fields, even if the short circuit happens, the occurrence
of fire can be avoided due to the transmission medium. Moreover, silica is chemically quiet,
and the protective jackets of optical fibers are usually also made of inert materials. There-
fore, optical fiber cables can be deployed in harsh environments where metallic parts would
corrode quickly.

1.1.1. Optical Fiber Sensors

Over the last two decades, optical fiber sensors have grown tremendously, and now the
technology offers significant practical benefits over electrical sensors due to their intrin-
sic characteristics, such as compact size, lightweight, fast response, immunity to electro-
magnetic interference, remote sensing capabilities, as well as resistance to corrosive and
hazardous environments [14–17]. Besides, optical fiber sensors are able to measure mul-
tiple measurands independently and simultaneously. Therefore, numerous research efforts
have been devoted in the past several decades. Thanks to the advancement of fabrication
techniques for optical fibers and related accessories, numberless discrete structures and
methods have been created and reported. Among them, several have received significant
attention, like fiber Bragg gratings (FBGs) [18, 19], long-period gratings (LPGs) [20, 21],
Raman scattering [22, 23], Brillouin scattering [24, 25], surface plasmon resonance [26],
etc. The most prominent FBG sensors have been employed for various real-world applica-
tions, including structural health monitoring, biomedical, gas, etc [27, 28]. Therefore, FBG
sensors have been produced massively.

Nevertheless, the utility of these optical fiber sensors requires the consideration of so-

4



1.1. Background

phisticated equipment, cost, fabrication complexity, and stability, for example. Another
option is an easy-to-fabricate and low-cost structure utilizing the discrete single-mode–
multimode–single-mode (SMS) fiber structure based on multimode interference (MMI), which
offers enhanced sensitivity and selectivity. [29, 30]. The so-called SMS structure is com-
posed of a short segment of multimode fiber (MMF) sandwiched between two single-mode
fibers (SMFs). Besides the unique spectral features and high sensitivity of MMI-based
sensors, the fabrication is easily feasible and relatively low-cost using a standard fusion
splicer. Therefore, it has received substantial attention in the last decade, and a variety
of sensors have been designed, like temperature sensors [31, 32], strain sensors [33, 34],
humidity sensors [35, 36], curvature sensors [37, 38], biomedical sensors [39, 40], vibration
sensors [41], and chemical sensors [42, 43].

However, with the growing need for optical fiber sensors, e.g., higher sensitivity or multi-
parameter sensing, some questions still need to be answered, and further research is nec-
essary. An everlasting requirement is to improve the measurement sensitivity. Besides, the
crosstalk that occurred in multi-parameter sensing is undesired, meaning further study is
highly needed.

1.1.2. Fiber-Optic Imaging

Due to the optical transmission properties of fiber to transmit an image from end to end,
fiber-optic imaging caught the attention of researchers. To accomplish this, most fiber-optic
imaging uses an SMF bundle to collect an image of the target. The bundle contains hun-
dreds/thousands of identical individual SMFs, as one SMF is only capable of transmitting
one pixel of the target image. Fiber-optic imaging has been widely used in medical en-
doscopy, i.e., fiber-optic endoscopes, which are pliable and highly maneuverable as the
fibers can be easily bent and twisted. It allows access to channels in the human body that
semirigid instruments cannot access at all or can access only at great discomfort to the
patients. However, access to small tissues is still limited as the SMF bundle usually has a
millimeter thickness.

The image transmitted through MMFs has the potential to revolutionize the current fiber-
optic endoscope. Because MMF can transmit multiple spatial modes of light simultaneously,
which, in principle, could replace the SMF bundle with a few hundred microns thick MMF.
It will open up new, less invasive endoscopes to perform high-resolution imaging of tissues
out of reach of current endoscopes. Therefore, since 1967 the first reported analog trans-
mission of images through an MMF [44], for half a century, scientists have sought ways
to use MMF to transmit images. Particularly, based on imaging in scattering media, mea-
suring the phase and amplitude of the electromagnetic wave coming out of the MMF and
using these measurements to infer the relationship between the input and the output of
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Chapter 1. Introduction

the MMF. For example, remarkable techniques include analog phase conjugation [45–47],
digital phase conjugation [48–51], and the transmission matrix (TM) method [52–54]. The
TM method, which measures both the phase and amplitude of the output patterns corre-
sponding to multiple input images to create a matrix of complex numbers relaying the input
to the output, is currently the most widely used. This TM can be used to project the output
pattern, display the input images, or reconstruct the input images from the output patterns.

These methods are dependent on phase measurement, which is also their drawback.
There are mainly two reasons. First, phase measurement requires a nontrivial appara-
tus. An extra reference beam is usually brought to the output of the fiber to generate an
interference pattern, which contains the complex optical field (amplitude and phase). Al-
though reference-beam-less phase measurement has been reported, multiple quadrature
phase measurements must be done for the phase extraction. The other reason is that the
phase is sensitive to ambient perturbations, e.g., thermal perturbation and fiber bending,
which results in significant changes in the phase. It is possible to calibrate these changes;
however, this complicates the setup and implementation. A method that can simplify the
imaging system and is robust to the perturbations will bring MMF imaging to the next level
of practical applications.

1.2. Aims and Objectives

This dissertation aims to improve the temperature and strain sensitivity of the MMI-based
optical fiber sensors and investigate the robustness of the MMF imaging system to thermal
perturbations. The development of the methodology is summarized as follows:

1. A comprehensive characterization of standard MMFs. Although MMFs have been
widely used for sensing and various MMI-based optical fiber sensors have been re-
ported, the question of the sensitivity dependences based on the principle of SMS
structure still needs to be answered. Considering the assumptions of the sensing
principle of the SMS structure, an experimental characterization is preferred, which
will offer a guideline for designing the MMI-based optical fiber sensors.

2. Investigation on new specialty MMF. The unique properties of specialty optical fiber
are very likely to introduce a possibility of sensitivity enhancement. Besides, it ma-
tures the study of specialty optical fibers and opens up other potentials for further
implementation. An SMS structure consisting of a specialty MMF, which has the po-
tential to improve sensitivity, should be studied.

3. Design of a new configuration of MMI-based optical fiber sensors. The easiest way
to generate MMI is to use the SMS structure. Nevertheless, the conventional SMS
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1.3. Dissertation Overview

structure only excites a few higher-order modes in the MMF section. Based on the
principle of SMS structure, which is that higher-order modes may improve sensitivity,
a new configuration for higher-order modes of excitation should be designed and
tested.

4. Superiorities of machine learning in MMF imaging against thermal perturbation. Ma-
chine learning has been proven to be robust for reconstructing the images transmitted
through the MMF, but it significantly suffers from thermal perturbation and geometric
deformation. The robustness needs to be investigated quantitatively, which will ben-
efit the further use of MMF imaging, for example, in medical endoscopy. In general,
the performance of machine learning is limited by the complexity of the images. Dif-
ferent neural networks should be tested on natural images, which will broaden the
application of optical-fiber-based endoscopic imaging.

1.3. Dissertation Overview

This dissertation contains seven chapters. In this chapter, a general background of this
study, which starts with a brief history of optical fibers, is presented. The scientific problems,
the aim, and the objectives of this study are described.

Chapter 2 introduces the fundamentals and literature research of MMI-based optical fiber
sensors and MMF imaging. First, the main characteristics of optical fibers are summarized.
Then, the principle of MMI-based optical fiber sensors is presented, followed by the state
of the art of MMI-based fiber sensors and the related discussion. A literature review and
discussion of MMF imaging are given at the end.

Chapter 3 shows a comprehensive characterization of the standard MMF-based SMS
structure for temperature and strain sensing to investigate the sensitivity dependences on
the core diameter, the numerical aperture (NA), and the length of the MMF. According
to the comprehensive study, a strain-insensitive temperature fiber sensor based on MMI
implementing a section of standard MMF is proposed and verified experimentally.

Chapter 4 proposes an optical fiber sensor for temperature and strain measurement using
a new specialty fiber, i.e., square-core fiber. The sensor configuration is the SMS structure
consisting of a segment of square-core fiber, and the experimental results are compared to
other specialty fibers with conventional circular core shapes. The results indicate that the
proposed fiber sensor can exhibit strain-insensitive high-sensitivity temperature sensing.

Chapter 5 demonstrates an MMI-based fiber sensor with a core-offset SMS structure for
temperature and strain sensing. The sensitivity dependences on the core-offset amplitudes
at the input and output SMF/MMF boundaries are experimentally analyzed. Additionally,
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Chapter 1. Introduction

pull tests are performed to evaluate the mechanical strengths of the core-offset SMS struc-
tures.

Chapter 6 presents the MMF imaging system with deep learning. The MMF imaging
system is illustrated, and the data acquisition is described. Further, two neural networks
are trained with different datasets to reconstruct the images transmitted through an MMF,
which indicates the robustness of deep learning in MMF imaging. To investigate the current
research problems in MMF imaging, thermal perturbations are applied and tested with these
two verified neural networks. Finally, the retrieval of natural images transferred through an
MMF is studied using different neural networks.
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2. Fundamentals and State of the Art

As optical fibers are widely used in sensing and imaging applications, the theoretical back-
ground of optical fibers is introduced for a better understanding. The development of mul-
timode fiber sensors is dropped, and the state of the art of multimode fiber imaging is
presented in the following. The current research challenges are discussed, and further
developments in multimode fiber sensing and imaging are proposed.

2.1. Optical Fiber Characteristics

Optical fiber is a flexible kind of optical waveguide of clear glass, which is capable of car-
rying information in the form of light. It confines electromagnetic waves within its interface
by the principle of total reflection and directs the optical waves along the optical fiber axis.
The most commonly used glass for optical fibers is fused silica (quartz glass, amorphous
silicon dioxide SiO2), either in pure form or with some dopants. The classic structure of an
optical fiber contains the core, cladding, and coating, as shown in Fig. 2.1, where a and b

represent the radius of the core and cladding, respectively. The core is the central region
of an optical fiber in which the light is guided. The area directly surrounding the core is
called fiber cladding. The diameter of the cladding is commonly chosen to be 125 µm,
a standard value recommended by the International Telecommunication Union Telecom-
munication Standardization Sector (ITU-T). The coating is a non-glass layer applied to the
optical fiber to offer mechanical protection to the glass.

a

b

Coating

Cladding

Core

Figure 2.1.: Schematic of the cross-section of a standard optical fiber.
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Chapter 2. Fundamentals and State of the Art

Depending on the number of modes allowed to propagate in the optical fiber, two cata-
logs can be observed and classified: single-mode fiber (SMF) and multimode fiber (MMF).
The mode is generally defined as the path of optical wave transmission. Single-mode fibers
usually have a relatively small core (with a diameter of only a few micrometers) and support
only a single propagation mode (disregarding the fact that there are two different polariza-
tion directions). Multimode fibers have a much larger core and support multiple modes with
different intensity distributions. Common types of MMF are 50/125 µm and 62.5/125 µm
fibers, having a core diameter of 50 µm and 62.5 µm, respectively, and a cladding diameter
of 125 µm. Multimode fibers are mainly categorized into step-index (SI) and graded-index
(GI) fibers. The comparison of SMF, step-index MMF, and graded-index MMF are compared
in Fig. 2.2.

ncl

nco

(2)
n(r)

ncl

nco

(3)
n(r)

n(r)

r

ncl

nco

(1) a

b

r

a
b

Core

Cladding

r

a
b

Figure 2.2.: Comparison of (1) single-mode fiber, (2) step-index multimode fiber, and (3)
graded-index multimode fiber.

The step-index MMF is a type of fiber in which the core has a uniform refractive index
(RI) right up to the interface of the core and cladding where a sharp index change occurs,
as shown in Fig. 2.2(2), where a is the core radius, b is the cladding radius, nco is the RI of
core, and ncl is the RI of cladding. When r = a, the RI changes in a step-like fashion.

The graded-index MMF is a type of fiber whose core has a radially decreased RI from the
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2.1. Optical Fiber Characteristics

center of the core to the interface of core and cladding. When light is injected into a GI fiber,
the light travels faster at the edge of the core than in the center, as shown in Fig. 2.2(3).

When light is injected into a step-index MMF, the propagation velocity of each mode is
highly dependent on the incident angle. The light injected at a larger angle (light way in
blue in Fig. 2.2(2)) propagates at a slower velocity, and correspondingly the path length
is longer. Different modes travel different path lengths through the fiber, which leads to a
modal dispersion problem. However, when the light is injected into a graded-index MMF,
different modes travel in curved paths with nearly equal travel time, which greatly reduces
modal dispersion in the MMF.

In this dissertation, as only step-index MMF is used, the following characters will be intro-
duced only for step-index MMF. The MMF represents step-index MMF without specification.

2.1.1. Numerical Aperture

Numerical Aperture (NA) represents an estimation of the maximum acceptance angle for
most multimode fibers but not for single-mode fibers. Qualitatively, NA is a measure of
the light-gathering ability of a fiber. In the ray model of light, a ray’s angle of incidence
determines whether it will be coupled into the fiber core. The cutoff angle is the maximum
acceptance angle (θmax), which is related to the NA, as illustrated in Fig. 2.3. Rays with an
angle of incidence ≤ θmax are totally internally reflected at the boundary between the fiber
core and cladding. To occur the total internal reflection (TIR), the RI of the core (nco) must
be larger than that of the cladding (ncl).

core: n
co

cladding: n
cl

θ
max

surround: n
0

θ
co

Figure 2.3.: Numerical aperture of optical fiber.

The NA of step-index fiber is defined as

NA = n0 sin θmax =
√

n2
co − n2

cl , (2.1)

which indicates that NA is determined only by the refractive indices of the core and the
cladding. Note that the NA is independent of the RI of the medium surrounding the fiber.
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Chapter 2. Fundamentals and State of the Art

If an input medium has a higher RI, the maximum input angle will be smaller, while the
numerical aperture remains unchanged.

2.1.2. Number of Modes

The number of modes allowed to propagate in the optical fiber can be estimated by

Nm =
g

2 (g + 2)
V 2 , (2.2)

where g is the RI profile parameter and V is the normalized optical frequency, which is also
simply called V number. It is defined mathematically as

V =
2 π

λ
a (NA) , (2.3)

where λ is the vaccum wavelength, a is the radius of the fiber core, and NA is the numeri-
cal aperture. Various essential properties of an optical fiber are relevant to V numbers, and
the value of V is the decisive criterion to establish how many modes an optical fiber can
support. When V < 2.405, the optical fiber only supports one mode per polarization direc-
tion, i.e., SMF. Multimode fibers can have much higher V numbers, the number of supported
modes of a step-index and graded-index MMF can be estimated by Eq. 2.2. When g → ∞,
it is a step-index MMF; when g = 2, it is a graded-index MMF. Therefore, the number of
modes in a step-index MMF can be calculated approximately as

Nm ≈ V 2

2
. (2.4)

2.2. Multimode Fiber Sensing

Since the simplest MMI-based fiber structure, i.e., SMS fiber structure, was reported, a
variety of MMI-based fiber sensors were developed. However, the sensing principle is
founded on the basic SMS fiber structure.

2.2.1. Sensing Principle

The SMS structure consists of a short MMF section with ends connected to the SMFs. The
injected light is guided from the input SMF into the MMF and propagates along with the
MMF. At the first SMF/MMF boundary, the spot-size difference between the fundamental
modes in the SMF and MMF excites multiple modes in the MMF, which propagate with their
own propagation constants. At the second SMF/MMF boundary, the net field coupled to
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2.2. Multimode Fiber Sensing

Input SMF Output SMFMMF

Figure 2.4.: Schematic of the basic SMS fiber structure.

the output SMF is determined by the relative phase differences among the many modes
guided in the MMF. Based on the assumption that the SMFs and MMF are axially aligned,
the modes excited in the MMF are axially symmetric. The power in the output SMF Pout

can be given as

Pout = |A2
0 + A2

1 e
i(β0−β1)L + A2

2 e
i(β0−β2)L + . . . |2 , (2.5)

where βm is the propagation constant of the m-th mode, and Am is the field amplitude deter-
mined by the modal overlap between the fundamental mode of the SMF and the concerned
m-th symmetric mode of the MMF, defined as

Am = 2π

∫ ∞

0

ΨS Ψm r dr . (2.6)

By using a well-known Gaussian approximation, the fundamental modal field of the single-
mode fiber can be written as

ΨS(r) =

√
2

π

1

wS

e(−r2/w2
S) , (2.7)

where ws is the Gaussian spot size of the mode. It can be approximated as

wS

aS
=

[
0.65 +

1.619

V
3/2
S

+
2.879

V 6
S

]
; 0.8 ≤ VS ≤ 2.5 , (2.8)

here, aS and VS represent the core radius and the V -number of the SMF, respectively.
The step-index MMF is characterized by the following refractive-index profile

n(r) =

{
nco; r ≤ aM

ncl; r ≥ aM
, (2.9)

where nco is the RI of the MMF core, ncl is the RI of the MMF cladding, and aM is the core
radius of the MMF. The modal field for the m-th mode can be obtained by
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Ψm(r) =


A

J0 (U)
J0

(
U r

aM

)
; r ≤ aM

A

K0 (W )
K0

(
W r

aM

)
; r ≥ aM

, (2.10)

with

U = aM
(
k2
0 n

2
co − β2

m

)1/2 (2.11)

and

W = aM
(
β2
m − k2

0 n
2
cl

)1/2
, (2.12)

where A is a constant, k0 is the free-space wave number, m = 0, 1, 2, . . . and βm is the
corresponding constant that are calculated numerically by the eigenvalue equations as

U
J1(U)

J0(U)
= W

K1(W )

K0(W )
. (2.13)

Substituting the propagation constants and modal field distributions in Eq.2.5 and Eq.2.6,
the power in the output SMF Pout can be calculated.

2.2.2. State of the Art

The MMI-based fiber sensors are suitable for many measurement scenarios. In recent
years, the demand for higher measurement sensitivity and multi-parameter sensing has led
to the rapid growth of various MMI-based fiber sensors with distinct structures.

I. Basic SMS Structure

The conventional SMS structure is, at this point, the most common one, shown in Fig. 2.5(a),
and is used for different physical parameter measurements. In 2007, Liu and Wei [55] pro-
posed a basic SMS fiber sensor for strain and temperature sensing. The strain and tem-
perature sensitivities were 18.6 pm/µε and 58.5 pm/◦C, respectively. In 2011, Gong et.
al [56] presented a curvature sensor using the same structure, which could be applied to
measure very small curvatures over a relatively large scale by suitably choosing to measure
the wavelength shifts or intensity changes. The maximum sensitivity based on wavelength
shift was −10.38 nm/m−1. In the same year, Wu et al. [57] used the same structure for
displacement and temperature sensing. However, the spectral dip shifted to shorter wave-
lengths with increasing displacement but longer wavelengths with increasing temperature.
Therefore, it was not practicable to discriminate between displacement and temperature. A
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bent SMS fiber sensor was introduced to distinguish the displacement and temperature by
measuring changes in both the central wavelength and bandwidth of the spectrum. The re-
alized sensitivity was 5.89 pm/µm for displacement and 11.6 pm/◦C for temperature. Upon
this structure, Huang et al. [58] showed an SMS fiber sensor implemented with a section
of multimode polymer optical fiber (POF) for measuring large strains up to 2×104 µε with a
sensitivity of −1.72 pm/µε. Numata et al. [59] studied a similar SMS fiber sensor consisting
of a section of perfluorinated graded-index POF for temperature and strain measurement in
2014. The achieved sensitivities were −112 pm/µε and 49.8 nm/◦C, respectively.

Input SMF Output SMFMMF

(a)

Input SMF Output SMFNCF

(b)

Figure 2.5.: Schematic of (a) basic SMS fiber structure and (b) basic SMS composed of NCF.

Instead of using the MMF in the basic SMS structure, the no-core fiber (NCF) is an
attractive alternative to function as the multimode section and enhance sensitivity. Silva
et al. [60] demonstrated an ultrahigh-sensitivity temperature fiber sensor based on a basic
SMS structure using a section of NCF. The sensor was proposed to measure RI changes
of a surrounding medium to determine the temperature dependence in a high-sensitivity
RI range. The achieved maximum temperature sensitivity was −1880 pm/◦C in the range
of 0 to 80◦C. The same structure was studied for RI sensing by Chen et al. [61], and the
obtained maximum sensitivity was 259.85 nm/RIU (RIU: refractive index unit). Besides, this
structure was also used as a salinity sensor for the NaCl solution with a salinity range from
3.86% to 21.62%, and the maximum sensitivity of 19.4 pm/% was realized.

II. MMI-based Fiber Sensor with Etched/Polished MMF

The etched/polished MMF reduces the diameter in the MMF section, which results in the
evanescent field penetrating further into the surroundings, and the sensitivity increases.
The schematic configurations of utilized MMI-based structures with a short segment of
etched/polished MMF are shown in Fig. 2.6. In 2000, Ren Xi Gao et al. [62] investigated
temperature sensing in liquid with an MMF, in which the cladding was evenly etched with
Hydrofluoric acid, as shown in Fig 2.6(a). The achieved maximum sensitivity was 0.001◦C
at a particular temperature range of 52–60◦C. Besides, the authors also demonstrated that
this structure could be further used as an RI sensor for liquids [63], which proved that this
structure is suitable for various scenarios. Continually, Yong Zhao et al. [64] proposed this
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structure as an RI sensor with the MMF diameter etched to 40 µm, where the maximum RI
sensitivity of 286.2 nm/RIU was obtained in the RI range from 1.33 to 1.75.

Similar to the basic SMS structure, the NCF has also been implemented in the etched
SMS structure to improve sensitivity. In 2017, Yamile Cardona-Maya et al. [65] analyzed this
configuration with a section of etched NCF as an RI sensor and applied a simple fast Fourier
transform (FFT) measurement technique with an optical spectrum analyzer (OSA) to realize
simultaneous real-time monitoring. The obtained maximum sensitivity was 1442 nm/RIU in
the RI range from 1.32 to 1.35 with the enhancement of using an indium tin oxide (ITO)
deposition. Meanwhile, Omar Fuentes et al. [66] proposed a liquid level sensor with this
configuration. After the NCF diameter was etched to 50 µm, the achieved maximum sensi-
tivity was 0.41 nm/mm, which was 2.77 times the sensitivity before etching (0.15 nm/mm).

Input SMF Output SMFEtched-MMF

(a)

Input SMF Output SMFPolished-MMF

(b)

Figure 2.6.: Schematic of the SMS fiber structure composed of (a) etched MMF and (b) polished
MMF.

At the same time, Jieyuan Tang et al. [67] investigated a side-polished SMS structure
as a RI sensor as well, as shown in Fig. 2.6(b). The polished MMF has advantages as
various materials can be easily coated onto the surface of the MMF. The maximum sensi-
tivity of 65 nm/RIU was obtained with a polished depth of 20.6 µm, which was the optimal
polished depth and led to the highest sensitivity. The same structure was used by Xian-
fan Wang et al. [68] as relative humidity (RH) sensor, which could work over a relatively
high-temperature range that many RH sensors based on moisture-sensitive material coat-
ings cannot perform. The authors proved that the RH sensitivity is related to the polished
surface roughness. Higher roughness results in increased RH sensitivity. Therefore, the
maximum RH sensitivity was obtained at around 0.069 dB/%RH within the humidity range
of 30%RH to 90%RH for a relatively high-temperature environment of 70 to 90◦C.

Additionally, Xianfan Wang et al. [69] reported a double-polished SMS structure for RI
sensing inspired by the one-sided polished SMS structure. The results showed the sens-
ing performance with a high dependence on polished depth. The maximum measured RI
sensitivity was 151.29 nm/RIU in the RI range of 1.3450 to 1.4050.
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III. MMI-based Fiber Sensor with Tapered MMF

Though etched/polished MMI-based structures have many advantages, they increase fabri-
cation difficulties, and meanwhile, the induced surface roughness also influences measure-
ment sensitivity. Alternatively, the tapered fiber structure can replace the etching/polishing
process, as shown in Fig. 2.7(a). Because light, guided in a tapered fiber, has a significant
fraction of power propagating in the evanescent wave. Consequently, the effective index
of the guided mode is affected by the RI of the external medium. It is well known that the
fraction of power in the evanescent wave increases at small taper diameters. Thus, the
sensitivity to environmental changes increases as well. In 2011, Pengfei Wang et al. [70]
proposed this structure as an RI sensor theoretically and experimentally with a 30 µm MMF
taper waist diameter. The obtained maximum sensitivity was 1913 nm/RIU in the RI range
of 1.33 to 1.44. Recently, Biyao Yang et al. [71] tried to apply this structure as a curvature
sensor. The optimum waist diameter was about 68.7 µm for balanced consideration. An
average sensitivity of −21.734 dB/m−1 over the range of 0.7064 m−1 to 1.9129 m−1 and the
maximum sensitivity of −144.876 dB/m−1 at a curvature of 1.9129 m−1 have been achieved.

As mentioned in Section 2.2.2. I, NCF is regularly used in the MMI-based structure. Some
researchers further investigated tapered NCF. Claudecir R. Biazoli et al. [72] demonstrated
the SMS structure with a tapered NCF with a waist diameter of 55 µm for RI sensing. The
maximum sensitivity of 2946 nm/RIU in the RI range of 1.42 to 1.43 was attained. Further-
more, Ricardo M. André et al. [73] also studied the same structure for strain sensing. Sev-
eral taper waists were analyzed, and the measurement sensitivity increased with the taper
waist diameter decreased. When the taper diameter was down to 15 µm from 125 µm, the
maximum sensitivity was −23.69 pm/µε. The conclusion indicates the possibility of mea-
suring strain and temperature simultaneously by combining two different tapered structures
with different strain and temperature sensitivities.

Later, in 2015, Qizhen Sun et al. [74] proposed a fiber sensor based on an SMS structure
with Fresnel reflection, as shown in Fig. 2.7(b), for simultaneous measurement of RI and
temperature. A standard SMF was tapered down to several micrometers in diameter to
form the multimode microfiber (MMMF) to function as an MMF. The light transmits through
the structure and generates one Mach-Zehnder interferometer (MZI), then it is reflected at
the end face of SMF due to the Fresnel reflection. The reflected MZI pattern is injected into
the MMMF again; thus, the other MZI is produced at the first taper region. Therefore, a
reflection spectrum, also an intensity-modulated interference spectrum is obtained. By de-
modulating the fringe power and free spectrum range (FSR) of the spectrum, RI sensitivities
of −72.247 dB/RIU and 68.122 nm/RIU, as well as temperature sensitivities of 0.0283 dB/◦C
and −17 pm/◦C were achieved.

In the same year, Yong Zhao et al. [75] experimented with a new RI sensor based on a
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Figure 2.7.: Schematic of SMS structure with tapered fiber: (a) tapered MMF; (b) tapered multi-
mode microfiber (MMMF) combining Fresnel reflection; (c) multi-tapered MMF; and (d) MMF
sandwiched between two half-tapered SMFs.

multi-tapered SMS structure, as shown in 2.7(c). The sensors were fabricated with three
tapers, five tapers, and eight tapers to reveal the influence of the taper number on the RI
sensitivity theoretically and experimentally. The maximum measuring sensitivity of 261.9
nm/RIU was obtained when the number of tapers was up to eight. The conclusion indicates
that the number of tapers, the higher the RI sensitivity achieved.

In 2016, Guoyong Sun et al. [76] studied the MMF sandwiched between two half-tapered
SMFs, as illustrated in 2.7(d). This structure did not require any tapering or cladding elimi-
nation of the MMF, and the half-tapers of the SMF did not need to be too thin. Therefore, this
structure can endure highly longitudinal stress, measured at 4000 µε, until breaking, nearly
equal to conventional SMS structure. The response sensitivity monotonically increases to
the maximum value of 500.6 nm/RIU when the RI varies from 1.333 to 1.411.

IV. Cascade of MMI-Based Fiber Sensors

With the development of MMI-based structures, some other new structures are brought into
different applications. The new configurations can keep the advantages of the conventional
SMS structure, such as easy fabrication, compactness, and low cost. Meanwhile, they also
can improve measurement performance. In 2008, Linh Viet Nguyen et al. [77] proposed a
high-temperature fiber sensor with an SMF-MMF-SMF-MMF-SMF (SMSMS) structure, as
shown in Fig.2.8(a). The two sections of MMF are very short and play the role of mode
couplers so that a clear interference pattern can be obtained between the core mode of the
MMF-SMF-MMF (MSM) segment and the cladding modes. It illustrates that though several
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cladding modes of the SMF are excited, typically, one high-order cladding mode is dominant
and interferes with the core mode. The measurement range was up to 900◦C stably, and a
maximum sensitivity of 0.088 nm/◦C could be reached. Similarly, in 2012, Yue Ma et al. [78]
extended the same structure as an RI sensor, which took advantage of the reaction of the
evanescent wave of the cladding modes to the surrounding RI variation. A sharp interfer-
ence spectrum was obtained, and the dip wavelength shifted as a function of surrounding
RI. By comparing different lengths of sensing SMF, it was demonstrated that the sensitivity
increases with a longer sensing SMF. A maximum sensitivity of 188 nm/RIU was obtained
when the length of SMF was 40 mm. It also identified that this structure could provide a
tailorable sensing performance and good reproducibility. Later in 2014, Rui Xiong et al. [79]
demonstrated that this structure could also be used for measuring temperature and RI si-
multaneously by the wavelength shifts of the two wavelength transmission dips formed by
the cladding modes interfering with the core mode. The experimental results indicated that
the sensitivities of RI and temperature were −37.9322 nm/RIU and 0.0522 nm/◦C within the
RI range from 1.3105 to 1.3517 and the temperature range of 25 to 85◦C, respectively.

Input SMF Output SMF

MMF MMF

Un-coated SMF

(a)

Input SMF Output SMF

MMF MMF

Un-coated TCF

(b)

Input SMF Output SMF

MMF MMF

TCSMF

(c)

Input SMF Output SMF

NCF MMF

SMF

(d)

Figure 2.8.: Schematic of cascaded SMS fiber structure: (a) SMF-MMF-SMF-MMF-SMF; (b)
SMF-MMF-TCF-MMF-SMF; (c) SMF-MMF-TCSMF-MMF-SMF; and (d) SMF-NCF-SMF-MMF-
SMF.

Meanwhile, another research group, Zhengrong Tong et al. [80], investigated temperature
and RI sensing as well. They used different lengths of MMF, with the long one (20 mm)
being the sensing section and the short one (5 mm) acting as a mode coupler. The input
SMS can be taken as an SMS structure, and the high-order core modes of the MMF are
excited and interfere. At the same time, the MSM is taken as an MSM structure, and
the interferences both happen between the excited cladding modes and the core mode.
Two dips are generated by the SMS and MSM sections, respectively, which have different
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spectral responses to temperature and RI to realize the simultaneous measurement. The
realized sensitivities of temperature and RI could be up to a maximum of 0.1385 nm/◦C and
100.97 nm/RIU, respectively.

Based on the SMSMS structure, in 2017, Yue Wu et al. [81] implemented a section of
twin core fiber (TCF) to replace the un-coated SMF, as shown in Fig. 2.8(b), for simulta-
neous measurement of strain and curvature. Due to the large core pitch, the TCF has the
uncoupled feature, and by splicing two segments of MMFs that are used as beam splitter
and combiner, an in-fiber MZI can be formed. By utilizing coupled-mode theory and an
equivalent refractive index model, the relation between peak wavelength and curvature is
illustrated. The simultaneous measurement of curvature and strain can be realized by sub-
stituting the sensitivities to a coefficient matrix. The experimental sensitivities of tempera-
ture and strain were up to 103.35 nm/m−1 and −4.01 pm/µε, respectively. Meanwhile, Yong
Zhao et al. [82] studied the three-core single-mode fiber (TCSMF) for curvature measure-
ment, as shown in Fig. 2.8(c). The TCSMF is a type of unusual optical fiber with three fiber
cores separately containing one core mode, which acts as the key element for sensing. The
MMFs are used for separating and combining the three core modes, as well as improving
the coupling efficiency between SMF and the three cores. While light propagates through
the MMF, the modal field is expanded due to the larger diameter of the MMF. Then, the light
couples to the TCSMF, acting as the three core modes and other cladding modes via the
modal mismatch interface. In the following, three core modes interfere with each other in
the second MMF and then from the interference spectrum. According to the interference
phase difference, the spectrum shifts change because of the elastic-optic effect as bend-
ing deformation is inflicted. Experiments showed that the maximum curvature sensitivity of
−28.29 nm/m−1 was obtained in the range of 2.79 m−1 to 3.24 m−1.

As it is common to use NCF in these structures, Yaofei Chen et al. [83] proposed in 2016 a
fiber sensor implemented with NCF for temperature and RI sensing, as shown in Fig. 2.8(d).
It can be seen as a cascade of SMF-NCF-SMF (SNS) and SMS structures; therefore, like
the principle of SMS, two distinguishable dips can be generated by appropriately choosing
the lengths of NCF and MMF according to SNS and SMS, respectively. The two-parameter
measurement was achieved by monitoring the wavelength shifts of these two dips in the
transmission spectrum. The obtained maximum RI sensitivity was 113.66 nm/RIU, and
temperature sensitivity was 9.2 pm/◦C.

2.2.3. Discussion and Summary

Fiber sensors based on MMI have been widely used and developed into various appli-
cations, primarily based on the wavelength shifts of the selected dips (or peaks) in the
transmission spectrum. Although the sensitivity is enhanced and the fabrication process is
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improved, some common problems still need to be solved.

I. Current Challenges

The measurement sensitivity commonly takes the linear fit of the wavelength shifts of the se-
lected peaks (or dips) in the transmission spectrum. Thus, the excellent linearity is promis-
ing for high-resolution sensing [84], for example, bio-sensing, chemical sensing, and gas
sensing. In general, when the sensitivity of a sensor increases, the resolution of the sensor
also improves. However, the relationship between the wavelength shifts and measurand
changes is often nonlinear, or they are only linear in limited ranges. This limit could be
quite a challenge in the design of commercial fiber sensors, especially multi-parameter
fiber sensors [85]. Besides, crosstalk is usually undesirable because it induces measure-
ment errors and thus makes the measurement results unreliable, and it mainly occurs in
multi-parameter sensing. For example, in the RI and temperature sensing scenario, the
RI-temperature crosstalk is unavoidable because of the inherent thermo-optic and thermo-
expansion effects in fibers [58, 83]. Therefore, it is necessary to measure, control, or com-
pensate for the nonlinearity and crosstalk to calibrate the measurement sensitivities of SMS
structure-based fiber sensors.

Additionally, in many cases, the measurement range is limited due to the properties and
structure of the fiber sensor. For example, the temperature measurement employed with
polymer optical fibers (POFs) is mainly limited to 80◦C due to its material properties. The
strain measurement utilizing silica optical fibers has a limit of 4000 µε in most reported
strain sensors [58]. These limits are mainly caused by the properties of different optical
fibers. Some structures, such as tapered fiber sensors, could be exclusively used in a
specific measurement range to obtain a boosted measurement performance. The tapered
region results in lower stability and endurance, which indicates that, for instance, it can only
be used in some applications with a moderate strain or temperature. Consequently, it is
vital to seek solutions to overcome the limits.

II. Technique Outlook

1). New structures
From the aspect of structure, the future aim is still simplification, miniaturization, and
multi-parameter measurement. Firstly, simple structures can generally reduce the cost
and fabrication complexity, which can broaden the application of SMS fiber sensors.
Some unique SMS fiber sensors have a prominent measurement performance with their
novel structures, for example, the S-tapered fiber structure [86], balloon-like fiber struc-
ture [87, 88], peanut-shaped fiber structure [89], twisted MMF based SMS structure [90,
91], SMS structure with two waist-enlarged tapers [92], and even an SMS structure with
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periodically embedding short NCF sections in the MMF section [93]. However, these
sensors are not desired because it is challenging to repeat the fabrication in the same
condition, and the cost is relatively high. Secondly, in some cases, the sensor should
be small enough, so the reduction of sensor size is still demanded. For example, the
reported SMS sensors, in reflective configuration, can be theoretically half the size of
the conventional SMS fiber sensors [94–96]. They indicate a new aspect of miniaturiz-
ing SMS fiber sensors. Finally, multi-parameter sensing is continually the main focus of
future applications due to the unavoidable influence of the ambient environment. The
structures introduced previously present some solutions and reveal that structural im-
provement could enhance multi-parameter sensing.

2). New compensation methods
From the aspect of sensitivity compensation, generally, it refers to two methods: one
is the combination of SMS structures with other different configurations; the other is
thin-film coated sensing heads. In the established methods, integrating with FBGs is
the most common one [97–101]. Further, other methods are also proved, like applying
LPGs [102, 103] and the utility of a pair of SMS structures [104]. Besides, for coating
the sensor head, which is typically the MMF segment of the SMS structure, different
materials are studied like Pd/WO3 film [105], Zeolite film [106], and Indium Tin Oxide
(ITO) film [65]. The results show that the sensing performance of the coated fiber struc-
ture is improved compared to the conventional structure. These researches indicate
that proper calibration and compensation can improve measurement sensitivity, range,
and precision. However, most of these methods are primarily designed for specific ap-
plications. Thus, further research on applicable configurations that could be used in
general scenarios is necessary, and the exploration of new potential coating materials
is also essential for improvement.

3). New types of fibers
From the aspect of innovative optic fibers, the specific properties of new fibers are
mainly used. The feasibility and advantages of implementing novel fibers have been
demonstrated, such as microfiber [74, 107, 108], hollow core fiber (HCF) [109, 110],
twin core fiber (TCF) [81], three core single mode fiber (TCSMF) [82], hollow annular
core fiber (HACF) [111], square NCF [112], thin-core fiber [113] and photonic crystal
fiber (PCF) [114, 115]. Nevertheless, problems of complex fabrication, high cost, and
low applicability still exist. This means further investigation of new fiber types is still
required to solve the problems.
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2.3. Multimode Fiber Imaging

Optical fibers are also prominently used in telecommunications [116] and biomedical imag-
ing [117–121]. Optical fiber-based endoscopy has recently obtained prominent attention.
The majority of these endoscopes utilize the SMF bundle, which contains thousands of
SMFs. As only one mode, corresponding to one pixel of an image can be transmitted
through an SMF, it is impossible to transfer images directly through an SMF. The single-
mode fiber bundle circumvents this limitation, where each SMF transmits the information
of one pixel in the output image. Due to the technical drawback of the fiber bundles, the
separation between fiber cores, the output images are pixelated as the spacing between
the cores cannot be observed. A thicker bundle with more SMFs and appropriate optics
can minimize this drawback. However, a new problem appears: the diameter becomes too
large and limits the accessibility of the endoscope.

Alternatively, the multimode fiber (MMF) offers another prospect due to its larger core di-
ameter. It has an extremely high information transmission capacity as thousands of optical
modes propagate simultaneously in the MMF [122]. For example, a typical 100-µm core
diameter MMF might carry around 10000 modes and could principally transfer an image
with the same number of pixels [123]. Still, the waves propagating in the MMF are scram-
bled due to mode-mixing and modal dispersion, and the outputs are seemingly random
patterns known as speckles. This effect cannot be avoided. Despite this, light transmission
in the MMF remains deterministic [124]. The prospect of deterministic light propagating
through MMFs has only been used due to the development of digital holography and em-
pirical measurement of the transmission matrix (TM) based on the studies of highly turbid
medium imaging. This leads to the possibility of extremely narrow and minimally invasive
endoscopes.

2.3.1. State of the Art

In 1967, Spitz and Wertz experimentally demonstrated that the distortion introduced by
modal dispersion could be eliminated by phase conjugation [44]. Several methods were
then developed to understand light propagation in turbid medium. Light propagating through
the turbid medium induces wavefront distortions, destroying the imaging quality [125]. How-
ever, these distortions can also be used to manipulate the wavefront to focus the light for
better imaging [126, 127]. The information transmitted through the turbid medium is dis-
torted due to the multiple scattering caused by the turbid medium. The information distor-
tion can be eliminated if the transmission property of a turbid medium is characterized. For
example, if the TM of the turbid medium is determined, the image distortion can be elimi-
nated by the deterministic relation between the image distortion and the TM [128]. Then,
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the turbid medium can become a useful optical element like the lens to improve the imag-
ing [129]. It has been proven that turbid medium imaging can boost the resolution of the
imaging system and eliminate background noise.

Optical fiber is treated as a unique turbid medium; therefore, MMF imaging is also a
specific case of turbid medium imaging. With the rapid development of some techniques,
like digital holography, its devices, spatial light modulator (SLM), and digital micromirror
device (DMD), it is more accurate and viable to modulate the wavefront. Therefore, one
MMF imaging system becomes feasible.

I. Transmission Matrix (TM) Method

The transmission matrix is a subpart of the usual scattering matrix as introduced in [130],
which describes the relationship between the incident light wave and scattered light wave
in the amplitude and phase distribution. If the TM of the medium is known, the image infor-
mation transmitted through the turbid medium can be reconstructed using the relationship
deterministically connecting the output pattern and the TM. A brief introduction of the basic
concept of turbid medium imaging is presented as the foundation for MMF imaging.

turbid medium

IP OP

Figure 2.9.: Schematic of the basic SMS fiber structure.

The image information is carried by an input light wave EIP (θx, θy) in terms of angular
spectrum transmitting through a turbid medium from the input plane (x, y), as shown in
Fig. 2.9. The output light wave EOP (ξ, η) at the output plan (ξ, η) is described as

EOP (ξ, η) = T (ξ, η;x, y)EIP (θx, θy), (2.14)
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where T (ξ, η;x, y) is the TM of the turbid medium. Then the original image at the input plan
can be reconstructed by

EOP (ξ, η)EIP (θx, θy) = T (ξ, η;x, y)−1EOP (ξ, η), (2.15)

where T (ξ, η;x, y)−1 is the inversion of the TM.
Based on this, various research has been reported for measuring the TM in an MMF

imaging system. Most techniques use variations of the interferometric method to acquire
the TM of the MMF. An example of a commonly used MMF imaging system is shown in
Fig. 2.10. The incident laser is divided into two beams, the measuring beam and the refer-
ence beam, by a beam splitter (BS1). The CMOS captures the intensity but not the phase
information of the transmitted light. The interference of the measuring and reference beams
enables the phase information. However, these methods are difficult to implement as the
system is sophisticated. A reference-free system would be tremendously helpful.

He-Ne Laser

Bs2

P
L1L2SLM

TL1

OBJ1

MMF

OBJ2

L3 L4

Mirror

Mirror

TL2

BS1

CMOS

Reference Beam

Figure 2.10.: Example of a commonly used MMF imaging system. P, polarizer; BS1, beam
splitter; L1, lens; L2, lens; TL1, tube lens; OBJ1, objective lens; MMF, multimode fiber; OBJ2,
objective lens; TL2, tube lens; BS2, beam splitter; L3, lens; L4, lens.

In 2012, a concept of scanner-free and wide-field endoscopic imaging using an MMF was
proposed and investigated [131]. The measured TM of an MMF was used to reverse the on-
the-way-out distortion of the detected light. With the implementation of the speckle imaging
and turbid medium imaging method, seeing an object through an MMF was realized. This
proposed technique utilized a reference beam and also suffered from the bending of the
MMF.

New methods were developed based on numerical modeling to measure and analyze the
TMs of real-life MMFs [124]. The results also showed which modes are the most vulnerable
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or immune to fiber deformations. Furthermore, the TM changes induced by deformation,
e.g., bending, could be tuned by selecting the refractive index and Poisson’s ratio. The
imaging through the MMF was realized without acquiring the TM experimentally.

In 2018, a reference-less optical system was proposed combined with complex semidefi-
nite programming for measuring the TM of the MMF by mode control [132]. The semidefinite
program using convex optimization, together with an SLM, was implemented to generate
the TM of the optical system by using intensity-only measurement. As no reference beam
was needed, no interferometric measurements were required, and therefore, the system
was simple yet powerful. The concept of acquiring the TM without a reference beam, as
shown in Fig.2.11, is a meaningful improvement for endoscopic imaging.

He-Ne Laser

P
L1L2

SLM

TL1OBJ1

MMF

OBJ2

Mirror

TL2

CMOS

Figure 2.11.: Concept of a reference-less MMF imaging system. P, polarizer; L1, lens; L2, lens;
SLM, spatial light modulator; TL1, tube lens; OBJ1, objective lens; MMF, multimode fiber; OBJ2,
objective lens; TL2, tube lens.

Meanwhile, another method for acquiring the complete TM of an MMF in a reference-
less system with phase retrieval techniques was studied [133]. Due to the high speed of the
DMD, a distributed or parallel calculation can be achieved to accelerate the data acquisition.
The obtained TM has demonstrated a strong predictive ability for diffraction-limited imaging
and light focusing.

Later, in 2020, with the reference-less system, a method was introduced based on an
assumption of a pseudo-linearity between the input and output light intensity distributions of
MMF [134]. This method utilized a real-value intensity transmission matrix, which connects
the input and output light intensities. The input images could be retrieved from the intensity
values of the output speckles. This method realized a high-speed image retrieval within
0.01 s for 1024-pixel images.
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II. Machine Learning Method

With the development of computation power, machine learning methods are booming and
dramatically improving image classification and object recognition. Machine learning in-
cludes supervised learning, unsupervised learning, and semi-supervised learning. These
categories are classified according to the tasks, input data, and output data. The param-
eters of the network are optimized during the labeled training process, where the model
learns the training dataset (including input and correct output). The algorithm evaluates its
accuracy through the loss function, adjusting until the error has been minimized sufficiently.
Unsupervised learning is commonly used for finding the characteristics of unlabeled input
data. The models are used for three main tasks: clustering, association, and dimension-
ality reduction. Semi-supervised learning is a hybrid technique between supervised and
unsupervised learning, which utilizes a limited number of labeled data and a large amount
of unlabeled data. According to the availability of the dataset, the most suitable machine
learning method can be chosen.

Deep learning, as a subfield of machine learning, automates much of the feature extrac-
tion of the process, eliminating some of the human intervention. Neural networks, specifi-
cally artificial neural networks (ANNs), are the backbone of deep learning methods, as they
determine the number of node layers, or depth, of neural networks that distinguish a single
neural network from a deep learning algorithm, which must have more than three layers.

Recently, various machine learning methods have been applied to MMF imaging to ad-
dress the limitations that prohibit the efficiency of information transmitted through MMFs,
like fiber length and environmental instability. The changes in the output speckle patterns
and the TM of the MMFs are sensitive to ambient perturbations, such as thermal and me-
chanical perturbations, which affect machine learning methods at a low level. With a similar
setup, as shown in Fig. 2.11, the complexity of the time-consuming measurement of the TM
of the MMF can be significantly reduced.

Navid Borhani et. al [135] used deep neural networks (DNNs) to classify and reconstruct
the input images (handwritten digits from the MNIST database [136]) from the intensity of
the output speckle patterns propagated through an MMF. First, a "U-Net" type [137] convo-
lutional neural network (CNN) with 14 hidden layers was used to reconstruct the SLM input
images from the output speckle patterns. Followed by the use of a "Visual geometry group
(VGG)" type CNN [138] was used to classify the distal speckle patterns and reconstructed
SLM images. The results showed that the classification performance was enhanced with
these two steps. The influence of fiber length up to 1 km was also investigated. The
measured classification accuracy was 96.8% for 10-m-long fiber but dropped to 69.9% for
1-km-long fiber.

A CNN-architecture SpeckleNet was proposed and studied for object classification trans-
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mitted through an MMF [139]. Face images (from the Labeled Face in the Wild database [140])
and nonface images (from the Corel5k database) were tested, and the classification accu-
racy reached 96%.

In 2019, Pengfei Fan used deep learning to address the geometric shape changes of
the MMF, i.e., bending [141]. First, the DNN was trained with input and output pattern
pairs collected with a non-bent MMF. Then, the same data acquisition was performed with
different geometric states of the MMF, named G1, G2, and G3. The DNNs reconstruct the
input pattern excellently when trained by the data under the same MMF geometric state.
However, it could not predict the input pattern at other MMF geometric states. When the
DNN was trained by a mix of data collected at G1, G2, and G3, it could predict the input
patterns for different MMF geometric states. Further, the appropriately trained CNN was
tested to predict the input patterns at a continuously changing geometric state. The results
showed that a DNN trained with possible variations might overcome the high variability and
randomness of the MMF in an imaging system.

Later, in 2020, a pre-trained autoencoder, including an encoder and decoder, was pro-
posed for image reconstruction with an MMF imaging system. First, the network was pre-
trained with the complete data (Fashion-MNIST [142]), excluding the images that will be
transmitted through the MMF, to initialize the parameters. Then, the images and related
output speckle patterns were used to train the network with the parameters initialized by
pre-training. The reconstructed results showed a higher accuracy compared to using U-Net
and fast convergence speed. This network has the potential to reconstruct more complex
images, e.g., natural images.

Meanwhile, a method based on principal component analysis (PCA) for establishing the
inverse TM of the MMF was proposed. The idea of PCA was about the dimension reduction
of a dataset, which preserved as much statistical information as possible [143]. Combined
with a support vector machine (SVM), the proposed method reconstructed and recorded
grayscale images of natural scene images at high resolution and high frame rates with few
training samples. The shortening of training time and low computational power requirement
made this method feasible for MMF endoscopic imaging. However, this method is limited to
the class of natural images, and the background noise influence still needs to be tackled.

A single hidden layer dense neural network (SHL-DNN) was proposed and compared
with commonly used CNNs on MNIST and Fashion-MNIST datasets, in 2021 [144]. The
SHL-DNN is one of the simplest dense neural network architectures. The comparison of
reconstruction accuracy of SHL-DNN and U-Net showed that the SHL-DNN could achieve
a similarly high reconstructed image fidelity, as Structural Similarity Index Measure (SSIM)
0.775 for SHL-DNN and 0.767 for U-Net. However, SHL-DNN required a much shorter
training time, 16 minutes for SHL-DNN and 3.5 hours for U-Net and less network complex-
ity. Further, a "VGG-type" neural network was compared, which did not show improved

28



2.3. Multimode Fiber Imaging

performance over the SHL-DNN. Comparatively, when the images vary significantly in the
training dataset, the proposed neural network performs poorly on the image reconstruction.

Recently, a new dual-function MMF system for simultaneous illumination and imaging
was proposed [145]. The illumination light and images were transmitted through the same
MMF, which reduced the size and complexity of the MMF imaging system. At the same time,
a new deep learning-based encoder-decoder network containing full-connected (FC) lay-
ers was designed for image reconstruction. Five methods, including encoder-decoder net-
work, FC-encoder-decoder network, encoder-FC-decoder network, encoder-decoder-FC
network, and SHL-DNN network, were compared with three datasets, like Fashion-MNIST,
Quickdraw [146], and SIPaKMeD [147]. The experimental results show that the reconstruc-
tion accuracy performed by the FC-encoder-decoder network is significantly boosted with
the least training time. However, the imaging resolution still needs to be improved with new
techniques.

An artificial intelligence-enhanced orbital angular momentum (OAM) data transmission
system was developed, and an approach using multiple parallel neural networks was pro-
posed, which combined a deep CNN with OAM techniques [148]. The image transmission
was performed through a 1-km-long MMF using single networks and parallel networks, and
the results indicated the parallel network had achieved better performance with reduced
required training data. It can lower the requirement for computation power and hardware.
Further, the quality of reconstructed natural images was drastically improved, with model
accuracy increased from 78.17% (single networks) to 96.26% (parallel networks).

To further reduce the required training dataset, an attention-mechanism-assisted U_Net
model (AM_U_Net) with the structural dissimilarity index merit (DSSIM) loss function was
proposed for image reconstructions transmitted through MMF [149]. The DSSIM loss func-
tion has been verified to learn the nonlinear mapping relationship between the input images
and output speckles more effectively than traditional loss functions, e.g., the mean squared
error (MSE) loss function. Besides, the attention mechanism enables the network to extract
more useful information from the images. Therefore, it was possible to train the network
with an ultra-small dataset obtained using a polarization system, where speckle images
are acquired at two linear polarization states. This AM_U_Net was tested at MMF lengths
from 1.2 m to 3.0 m and laser intensities in the range of 1.51 mW to 18.3 mW. The re-
sults indicated that it performed excellently for distorted output speckle images due to the
varying MMF length or laser intensity. Furthermore, the bimodal fusion method utilized the
S- and P-polarized speckles with orthogonal polarization vectors was proposed to increase
the classification accuracy of the reconstructed images up to 98.44%, which is much higher
than non-polarized (80%), P-polarized (87.5%), and S-polarized speckles (90%).

A significant improvement in optical fiber-based endoscopic imaging at high speeds was
made by Liu et al. [150]. The proposed MMF imaging was achieved by transferring two-
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dimensional spatial information into one-dimensional temporal pulsed streams. The neural
network was trained to reconstruct images from the temporal waveforms instead of the
spatial waveforms. When a laser pulse with a temporal duration of less than the delay
difference between different modes is used, the phase delays, at the output of the MMF, can
be split into many isolated subpulses in the time domain. The nonlinear effects in the MMF
can be ignored, and then the temporal distribution of the isolated subpulses depends on
the spatial distribution (images) at the input of the MMF. Therefore, the spatial information
of objects can be encoded into the time waveforms of the output pulses. This technique
utilizes the advantages of the time-stretching method while still having a real-time image
acquisition with a frame rate of over 15 Mfps. This high-speed proof-of-concept system
contributes to the practical use of optical fiber-based endoscopy in vivo applications.

2.3.2. Discussion and Summary

Multimode fiber imaging is developed based on scattering medium imaging. Many conven-
tional methods, like the TM method, have been investigated to reconstruct the input images
from the output speckle patterns propagated along the MMF. However, the MMF imaging
system is usually complicated, and the TM measurement is time-consuming, which limits
the implementation of the MMF imaging into the endoscopes.

The blossom of machine learning techniques accelerates the improvement of MMF imag-
ing in endoscopic applications. Various machine learning-based methods have been pro-
posed and verified that reconstructing the input images from the output speckle patterns
transmitted through the MMFs is feasible, and the reconstruction accuracy is significantly
enhanced. The machine learning methods can also help to overcome the typical limita-
tions of the MMF imaging system, such as sensitivity to the ambient perturbations, the fiber
length, and the complexity of the setup. Still, many limitations need to be solved to bring
MMF imaging to the next level in terms of practical usage.

The MMF imaging suffers from the deformation of the MMF, including thermal pertur-
bations, laser wavelength drifts, and geometric changes. A sophisticated optical setup
contributes to overcoming some limits while increasing the imaging system’s complexity.
Besides, implementing machine learning methods improves imaging quality and image re-
construction accuracy but is limited by the types of images used. For example, the recon-
struction of natural images is still not well established [123]. The reconstruction accuracy
and the image resolution need to be improved. For more complicated images, the com-
bination of a complex optical setup and a more powerful neural network may boost the
feasibility of image reconstruction. However, this solution needs to be revised, and a trade-
off between complexity and accuracy needs to be decided. First, the MMF imaging system
needs to be optimized to reduce the number of optical components to be compact and
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flexible. As MMF-based endoscopic imaging demands the flexibility of the MMF, the de-
formation of the MMF is inevitable. Therefore, the neural network needs to be tuned to fit
the imaging system, which should be adjusted to the deformation of the MMF. Further, the
neural network needs to be investigated for thermal perturbation, as the MMF is sensitive
to temperature changes. The image reconstruction accuracy and the reconstructed image
resolution are the essential factors for MMF-based endoscopic imaging.
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3. Characterization of Standard
Multimode Fibers

The theoretical analysis presented in Chapter 2 indicates that the optical power in the output
SMF of an SMS structure is affected by changes in the propagation constants, i.e., the NA,
core diameter, and the length of the MMF. For simplicity, this theory has some assumptions,
such as that the SMFs and the MMF are perfectly aligned. [151] Therefore, this theoretical
analysis cannot be simply applied to practical scenarios as many other modes need to be
simultaneously considered. [152]. In this chapter, a comprehensive characterization of the
standard MMF-based SMS structure for temperature and strain sensing is performed to
investigate the sensitivity dependences on the core diameter, the NA, and the length of the
MMF. The detailed study also shows that the strain sensitivity is relatively small and thus
has the potential to develop strain-insensitive temperature sensors with standard MMFs
instead of specialty fibers, such as small-core photosensitive fiber [153] and seven-core
fiber [154]. According to this study, the strain-insensitive temperature fiber sensor based on
MMI implementing standard MMF is verified experimentally.

3.1. Principles

Equation 2.5 indicates that the optical power in the output SMF of an SMS structure is
affected by ambient physical parameters, including temperature and strain. Due to the
inherent thermal expansion and thermo-optic effects of the material of the MMF, the spec-
tral characteristics of an SMS structure are temperature-dependent, as the core diameter,
length, and refractive index of the core of the MMF are all functions of the applied tempera-
ture change. The relative wavelength shift (∆λ/λ) against temperature can be theoretically
expressed as [155]

∆λ

λ
= (α1 + ξ)∆T , (3.1)

where α1 and ξ are the coefficients of the thermal expansion and the normalized thermo-
optic coefficient of the MMF material, respectively. It indicates that the spectral shift and
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temperature changes are linearly correlated, and it is determined by the properties of the
MMF material.

The situation is almost the same in strain. When applying strain to the SMS structure, a
spectral shift will occur due to the changes in fiber dimensions and the photoelastic effect.
At a constant temperature, the strain-induced spectral shift can be given as [155, 156]

∆λ

λ
=

[
∆nco

nco

+ 2
∆a

a
− ∆L

L

]
T

, (3.2)

where nco is the refractive index of the MMF core, a is the core radius, and ∆ indicates the
changes in corresponding parameters. Assuming that only an axial strain is applied to the
fiber, then it can be expressed as

∆λ

λ
= − (1 + 2v + pe) ε , (3.3)

where v is the Poisson ratio of the fiber and pe is the effective strain-optic coefficient. It
clearly shows that an axial strain leads to a spectral shift and is related to the properties of
the MMF. Here, we simply calculate strain as [157]

∆ε =
∆L

L
. (3.4)

The theoretical analysis [158] also proves that these physical changes (temperature and
strain) can be quantitatively evaluated by measuring the shift in either power of the spectral
location of the dips (or peaks), which are related to the core diameter, NA, and the length
of the MMF. However, it is difficult to analyze or simulate the performance of the SMS fiber
sensors by simply applying these equations, as an enormous number of modes need to be
considered. This promotes the need for the experimental study of its characteristics for the
design guidelines of SMS structures.

Figure 3.1 schematically shows the experimental setup for temperature and strain mea-
surement. Note that all the MMFs are unjacketed and uncoated. The MMF section is
heated and clamped on two precision translation stages, which can apply varying axial ten-
sile stress on the sample. Both ends of the MMF are connected to the SMFs. The other
end of the input SMF is connected to a broadband light source (BLS, central wavelength:
1550 nm), while the other end of the output SMF is connected to an OSA, which detects
the changes in the light spectrum.

The temperature sensitivity is first measured without strain applied during the experiment.
Due to the different operating temperatures of the MMFs, the temperature range is chosen
from 30 to 70◦C in steps of 5◦C. Then the strain sensitivity is measured at room temperature
∼20◦C. The strain range is 0 to 1750 µε according to the available devices in steps of
250 µε.
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Figure 3.1.: Schematic diagram of the experimental setup for temperature and strain measure-
ment. BLS, broadband light source; SMF, single-mode fiber; MMF, multimode fiber; OSA, optical
spectrum analyzer.

3.2. Comprehensive Characterization

3.2.1. Core Diameter Dependence

The commonly used standard MMF has a 0.22 NA silica core with three different core
diameters: 50 µm (FG050LGA, Thorlabs), 105 µm (FG105LGA, Thorlabs), and 200 µm
(FG200LGA, Thorlabs). Therefore, these three MMFs are used for investigating the core
diameter dependence with a length of 8 cm, which is determined based on the length
dependence in Section 3.2.3.

The temperature sensitivities of the MMF with different core diameters are illustrated
in Fig. 3.2. The measured dependences of the spectral dip on temperature are shown in
Fig. 3.2(a), 3.2(b), and 3.2(c) for 50-µm, 105-µm, and 200-µm core diameters, respectively.
The spectral dips shift to longer wavelengths when the temperature increases. The resulting
wavelength shifts versus temperature are plotted and linearly fitted in Fig. 3.2(d), 3.2(e), and
3.2(f). The dependences are almost linear, with a coefficient of 8.18 pm/◦C, 8.78 pm/◦C,
and 11.41 pm/◦C, respectively.

In the same way, the strain measurement is presented in Fig. 3.3. With the increasing
strain, the spectral dip shifts to shorter wavelengths of 50-µm and 105-µm but to longer
wavelengths of 200-µm core diameter, as shown in Fig. 3.3(a), 3.3(b), and 3.3(c). The
corresponding dip wavelength dependence on strain leads to a coefficient of −2.11 pm/µε,
−1.05 pm/µε, and 0.23 pm/µε, as displayed in Fig. 3.3(d), 3.3(e), and 3.3(f).
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(a) 50-µm core (b) 105-µm core (c) 200-µm core

(d) 50-µm core (e) 105-µm core (f) 200-µm core

Figure 3.2.: Temperature measurement results for the MMF with different core diameters. Mea-
sured spectral dependence on temperature: (a) 50-µm core diameter, (b) 105-µm core diame-
ter, and (c) 200-µm core diameter. Spectral dip shifts as a function of temperature: (d) 50-µm
core diameter, (e) 105-µm core diameter, and (f) 200-µm core diameter.

Table 3.1.: Temperature and strain sensitivities measured with different core diameters of the
MMF.

Fiber Info. Dependence Core Diameter Sensitivity R2

0.22 NA
Length = 8 cm

Temperature

50 µm 8.18 pm/◦C 0.995
105 µm 8.78 pm/◦C 1.000
200 µm 11.41 pm/◦C 0.999

Strain

50 µm −2.11 pm/µε 0.980
105 µm −1.05 pm/µε 0.981
200 µm 0.23 pm/µε 0.984

The obtained temperature and strain sensitivities are summarized in Table 3.1. The linear
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regression coefficients (R2) are in the range of 0.980 to 1.000 for both temperature and
strain sensing, which indicate high linearity. This table points out that a larger core diameter
of the MMF leads to higher temperature sensitivity but lower strain sensitivity (absolute
values). The strain sensitivity dependence on the core diameter also implies that zero
sensitivity can be realized at a specific core diameter.

(a) 50-µm core (b) 105-µm core (c) 200-µm core

(d) 50-µm core (e) 105-µm core (f) 200-µm core

Figure 3.3.: Strain measurement results for the MMF with different core diameters. Measured
spectral dependence on strain: (a) 50-µm core diameter, (c) 105-µm core diameter, and (e)
200-µm core diameter. Dip wavelength versus strain: (b) 50-µm core diameter, (d) 105-µm
core diameter, and (f) 200-µm core diameter.

3.2.2. Numerical Aperture Dependence

The MMFs with a 200-µm core diameter have variable numerical apertures: 0.22 NA
(FG200LEA, Thorlabs), 0.39 NA (FT200EMT, Thorlabs), and 0.5 NA (FP200ERT, Thor-
labs). In this experiment, due to the cladding materials of the MMFs, butt-coupling [159]
is used to connect the MMF to the SMFs. Due to the configuration of the fiber sensor, a
20-cm-long MMF section is used for the measurement.
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(a) 0.22 NA (b) 0.39 NA (c) 0.5 NA

(d) 0.22 NA (e) 0.39 NA (f) 0.5 NA

Figure 3.4.: Temperature measurement results for the MMF with different NAs. Measured spec-
tral dependence on temperature: (a) 0.22 NA, (b) 0.39 NA, and (c) 0.5 NA. Spectral dip shifts
as a function of temperature: (d) 0.22 NA, (e) 0.39 NA, and (f) 0.5 NA.

Table 3.2.: Temperature and strain sensitivities measured with different NAs of the MMF.

Fiber Info. Dependence NA Sensitivity R2

Core Diameter = 200 µm
Length = 20 cm

Temperature

0.22 6.61 pm/◦C 0.992
0.39 −20.54 pm/◦C 0.988
0.5 −5.68 pm/◦C 0.994

Strain

0.22 −0.087 pm/µε 0.992
0.39 −0.091 pm/µε 0.983
0.5 −0.120 pm/µε 0.978

The temperature sensitivity of the MMF with different NAs is demonstrated in Fig. 3.4.
Figure 3.4(a) shows a clear redshift of the wavelength dips with the temperature increases
for the MMF with 0.22 NA, while Fig. 3.4(b) and Fig. 3.4(c) show a blueshift for the MMF with
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0.39 and 0.5 NA, respectively. Figure 3.4(d), 3.4(e), and 3.4(f) present the corresponding
measured temperature sensitivities of 6.61 pm/◦C, −20.54 pm/◦C, and −5.68 pm/◦C.

The strain sensitivity of the MMF with different NAs is illustrated in Fig. 3.5. The clear
blueshifts of the wavelength dips are distinguished with strain applying for the MMF with
0.22, 0.39, and 0.5 NA, as shown in Fig. 3.5(a), 3.5(b), and 3.5(c). The related mea-
sured strain sensitivities are −0.087 pm/µε, −0.091 pm/µε, and −0.120 pm/µε, as plotted
in Fig. 3.5(d), 3.5(e), and 3.5(f).

The obtained temperature and strain dependences on the NA of the MMF are summa-
rized in Table 3.2, in which the R2 values also illustrate high linearity. It expresses that the
temperature sensitivity is independent of the NA of the MMF, while the absolute value of
strain sensitivity increases with the larger NA.

(a) 0.22 NA (b) 0.39 NA (c) 0.5 NA

(d) 0.22 NA (e) 0.39 NA (f) 0.5 NA

Figure 3.5.: Strain measurement results for the MMF with different NAs. Measured spectral
dependence on strain: (a) 0.22 NA, (b) 0.39 NA, and (c) 0.5 NA. Dip wavelength versus strain:
(d) 0.22 NA, (e) 0.39 NA, and (f) 0.5 NA.
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3.2.3. Length Dependence

As previously described, the principle of the SMS fiber sensor has some assumptions. It
leads to a discussion of whether the temperature and strain sensitivities are dependent on
the MMF lengths. [160] As the scope of this work is to investigate the characteristics of
standard MMFs, the 50-µm core diameter MMF with a 0.22 NA is used. Figure 3.6 shows
the temperature sensing results. The spectral dip exhibits a redshift in the wavelength do-
main when the temperature increases for 4-cm-long, 8-cm-long, and 12-cm-long MMFs, as
shown in Fig. 3.6(b-d) and the resulting wavelength shift of the dip against the temperature
variation is plotted and fitted in Fig. 3.7(b-d). The fitting results indicate that the relevant
temperature sensitivities are determined to be 8.20 pm/◦C, 7.98 pm/◦C, and 7.31 pm/◦C.

(a) 2 cm (b) 4 cm (c) 8 cm

(d) 12 cm (e) 16 cm

Figure 3.6.: Temperature measurement results for the MMF with different lengths. Measured
spectral dependence on temperature: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 12 cm, and (e) 16 cm.

The strain sensing results are presented in Fig. 3.8. The spectral dip has a blueshift
with the strain applying for the 4-cm-long and 8-cm-long MMF but has a redshift for the 12-
cm-long MMF, as shown in Fig. 3.8(a-c). The related resulting wavelength shift of the dip
against the increasing strain is plotted and fitted in Fig. 3.8(d-f), and the measured strain
sensitivities are −0.41 pm/µε, −2.11 pm/µε, and 0.30 pm/µε.
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The obtained temperature and strain dependences on the lengths of MMFs are sum-
marized in Table 3.3. The temperature and strain dependences are both verified with the
MMF length of 4 cm, 8 cm, and 12 cm. The results show that the strain sensitivity is in-
dependent of the MMF length, while the temperature sensitivity decreases with increasing
MMF length. Based on the results, two more MMF lengths are studied to further enhance
the results. Figure 3.6(a, e) shows that the spectral dip exhibits a redshift as well for the
2-cm-long and the 16-cm-long MMF, respectively. The obtained temperature sensitivities
are 9.17 pm/◦C and 7.10 pm/◦C, as shown in Fig. 3.7(a, e), which strengthens the conclu-
sion that the increasing length of MMF results in lower temperature sensitivity. Note that,
besides the applied temperature change and strain, the core diameter and length of the
MMF are also slightly changed due to the thermal expansion, thermo-optic effects, and
photoelastic effects. The temperature increase leads to the core diameter expansion and
length increasing, contributing to the sensitivity, whereas axial strain increases the length
but reduces the core diameter, which also influences the sensitivity. This difference may
partially explain the significant difference between temperature and strain dependences.

(a) 2 cm (b) 4 cm (c) 8 cm

(d) 12 cm (e) 16 cm

Figure 3.7.: Temperature measurement results for the MMF with different lengths. Spectral dip
shifts as a function of temperature: (a) 2 cm, (b) 4 cm, (c) 8 cm, (d) 12 cm, and (e) 16 cm.
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(a) 4 cm (b) 8 cm (c) 12 cm

(d) 4 cm (e) 8 cm (f) 12 cm

Figure 3.8.: Strain measurement results for the MMF with different lengths. Measured spectral
dependence on strain: (a) 4 cm, (b) 8 cm, and (c) 12 cm. Dip wavelength versus strain: (d) 4
cm, (e) 8 cm, and (f) 12 cm.

Table 3.3.: Temperature and strain sensitivities measured with different lengths of the MMF.

Fiber Info. Dependence Length Sensitivity R2

Core Diameter = 50 µm
NA = 0.22

Temperature

2 cm 9.17 pm/◦C 0.986
4 cm 8.20 pm/◦C 0.994
8 cm 7.98 pm/◦C 0.990
12 cm 7.31 pm/◦C 0.997
16 cm 7.10 pm/◦C 0.990

Strain

4 cm −0.41 pm/µε 0.932
8 cm −2.11 pm/µε 0.980
12 cm 0.30 pm/µε 0.951
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3.3. Strain-Insensitive Temperature Measurement

The comprehensive study of temperature and strain sensors based on the SMS structure
using standard MMFs implies that the strain sensitivity is relatively low. Therefore, it is
assumed that the SMS structure with standard MMF can be used as a strain-insensitive
temperature sensor.

To prove it, the measurement is performed with the same setup as shown in Fig. 3.1.
According to the configuration of the setup, a 25-cm-long MMF section is placed on the
heating plate while the axial strain is applied, which is in the range of 0 to 1100 µε with
steps of 100 µε. First, when no strain is applied, the temperature measurement is carried
out in the same temperature range of 35 to 70◦C with steps of 5◦C. Then, a temperature
measurement is completed under the same condition for each applied strain.

Figure 3.10 shows the measured dependences of the spectral dip on temperature with
each applied strain, and Fig. 3.11 presents the related measured temperature sensitivity.
First, the measurement results enhance the conclusion of the length of the MMF section.
Figure 3.10(a) presents the measured dependence of the spectral dip on the temperature
when no strain is applied, and the obtained temperature sensitivity is 6.69 pm/◦C with an
R2 value of 0.988, as shown in Fig. 3.11(a). Compared to Table 3.3, as the same MMF
with 25 cm is used, it further enhances the conclusion that the longer MMF section leads to
lower temperature sensitivity.

The measured results are summarized and plotted in Fig. 3.9. The temperature sen-
sitivities are distributed within ±10% of the mean temperature sensitivity while the strain
is applied in the range from 0 to 1100 µε, which indicates that the temperature sensitivity
exhibits good stability and insensitivity against strain. The average measured temperature
sensitivity is 6.14 pm/◦C with a standard deviation of 0.39 pm/◦C.

Figure 3.9.: Measured temperature sensitivity plotted as a function of strain. The gray area
indicates the ±10% range of the mean temperature sensitivity.
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(a) 0 µε (b) 100 µε (c) 200 µε

(d) 300 µε (e) 400 µε (f) 500 µε

(g) 600 µε (h) 700 µε (i) 800 µε

(j) 900 µε (k) 1000 µε (l) 1100 µε

Figure 3.10.: Temperature measurement results with varied applied strains in the range of 0 to
1100 µε with steps of 100 µε.
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(a) 0 µε (b) 100 µε (c) 200 µε

(d) 300 µε (e) 400 µε (f) 500 µε

(g) 600 µε (h) 700 µε (i) 800 µε

(j) 900 µε (k) 1000 µε (l) 1100 µε

Figure 3.11.: Spectral dip shifts as a function of temperature with varied strains applied in the
range of 0 to 1100 µε with steps of 100 µε.

45



Chapter 3. Characterization of Standard Multimode Fibers

3.4. Summary

Comprehensive research of three characteristics of the standard MMF was performed, and
based on the findings, a strain-insensitive temperature sensor was proposed and investi-
gated experimentally. Different commonly used standard MMFs were studied for tempera-
ture and strain sensing. The characterization study of these MMFs concludes:

1) The larger core diameter of the MMF leads to higher temperature sensitivity but lower
strain sensitivity (absolute values).

2) The measured temperature sensitivity is independent of the NA of the MMF section,
while the higher NA of the MMF leads to a higher absolute value of strain sensitivity.

3) The longer MMF section leads to lower temperature sensitivity, while the measured
strain sensitivity is independent of the length of the MMF section.

This experimental study may contribute to the fundamental discussion of whether the tem-
perature and strain sensitivities of the standard SMS fiber sensor are dependent on the
length of the MMF, based on the theoretical analysis [151].

The strain-insensitive temperature sensor was tested based on these results. The applied
strain range is from 0 to 1100 µε with steps of 100 µε, and the mean measured temperature
sensitivity is 6.14 pm/◦C with a standard deviation of 0.39 pm/◦C. The results show that the
proposed temperature fiber sensor with standard MMFs is insensitive to strain.

This work will be a valuable and essential guideline for developing MMI-based fiber sen-
sors in the near future.
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4. Temperature and Strain Sensing
Based on Square-Core Fiber

As mentioned in Section 2.2.3.II, to solve current challenges, such as linearity, crosstalk,
and compactness, it is essential to study new types of fibers. Recently, several new fibers,
like HACF [111] and square NCF [112], have demonstrated advantages in overcoming
some of these limits.

In this chapter, a new fiber, the square-core fiber (SCF), is investigated. The temperature
and strain sensing based on the MMI in the SCF are studied. Square-core fiber produces
an optical beam with uniform intensity over the core area because the shape of the core
promotes mode mixing as light propagates through the fiber. It results in an even distribution
of spatial modes in the output beam; therefore, it is ideal for applications such as laser
machining. Further, square-core fiber also offers reduced focal ratio degradation, which
means the square core shape is free from the input-output correlations, showing great
potential for imaging and spectroscopy applications. These features of square-core fiber
have been demonstrated by Velsink et al. by investigating the core shape, i.e., square core
shape and circular core shape, for wavefront shaping applications where a focus is formed
at the output of the MMF [161]. However, the sensing ability of square-core fiber has not
been experimentally studied.

In the following, we demonstrate that the sensing performance of square-core fiber is
promising. In addition, as the square core shape has yet to be experimentally proved, a
comparison to other specialty fibers, mostly circular core shapes, is also presented. The
experimental results also show this fiber sensor can exhibit strain-insensitive high-sensitivity
temperature sensing.

4.1. Sensor Fabrication and Principle

The square-core fiber (FP150QMT, Thorlabs) features a 150 ± 10 µm × 150 ± 10 µm
square silica core, surrounded by a ϕ225 µm circular polymer cladding, as shown in
Fig. 4.1. As the cladding of SCF is made of hard polymer, it is not feasible to fusion splice
the SCF with SMF, so it is connected to two silica SMFs by butt-coupling [159], i.e., both
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Chapter 4. Temperature and Strain Sensing Based on Square-Core Fiber

ends of the SCF are connected to the ends of SMFs via FC/PC mating adaptors. It is noted
that butt-coupling requires high optical quality end faces of the corresponding fibers. Due
to the large core size and cladding materials of the SCF, the commonly used high-precision
fiber cleaver cannot conduct the cleaving. It is necessary to point out that one possibility is
to use a manual fiber scribe (Carbide Fiber Scribe, S90C, Thorlabs) to cleave the SCF and
produce an optical quality end face.

(a) (b)

Circular Cladding
(Hard Polymer)

Square Core
(Silica)

Figure 4.1.: (a) Photo of square-core fiber from the top view. (b) Schematic diagram of the
square core shape.

The sensor configuration consists of a section of an SCF sandwiched between two
SMFs. The general sensing principle of the SMS fiber sensor is based on the self-imaging
effect in the multimode waveguide, i.e., multimode interference (MMI). When light is guided
through the input SMF and injected into the multimode SCF, multiple modes are excited
and travel along the SCF with their own propagation constants. At the second conjunction
of SCF/SMF, these fields are coupled back to the fundamental mode of the output SMF.
Under the assumption that the SCF and the two SMFs are perfectly aligned, the power in
the output SMF can be expressed by Eq. 2.5.

Table 4.1.: Parameters of the fibers used in the beam propagation simulation.

Fiber Info. Core Diameter Cladding Diameter Core RI Cladding RI

SMF 9 µm 125 µm 1.4504 0.994
Circular MMF 105 µm 125 µm 1.45 1.4332

SCF 150 µm 225 µm 1.45 1.3966

To better understand the beam propagation in the SCF-implemented SMS structure, a
simulation is conducted by BPM-Matlab [162] to compare the beam propagation in the
circular core and square-core fiber. The parameters used for the beam propagation simula-
tion, including core diameter, cladding diameter, core RI, and cladding RI, are adapted from
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4.1. Sensor Fabrication and Principle

the commercial fibers (FG105LCA and FP150QMT, Thorlabs), as shown in Table 4.1. The
lengths of the SMF and MMF are set to 1 cm and 10 cm, respectively, due to the computa-
tion power limit. Figure 4.2 and Fig. 4.3 show the beam propagating in the SMS structure
comprising circular MMF and square-core fiber. The phase distributions in cross-sections
at different lengths are also presented. Obviously, the periodic variation in the optical field
intensity distribution due to the MMI occurs in both fibers. The difference is that the phase
distribution is cross-shaped in the SCF, whereas it is asymptotic and circular in the circular
MMF.
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Figure 4.2.: Beam propagation in an SCF-based SMS structure with phase distributions at
different lengths of the SCF.
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Figure 4.3.: Beam propagation in a circular MMF-based SMS structure with phase distributions
at different lengths of the circular MMF.

This simulation clarifies the difference in beam propagation in the circular core MMF and
the SCF. However, due to the limit of computational power, it is not feasible to simulate the
same lengths and fiber types in this experiment. The sensing properties of the SCF are
verified experimentally in the following.

The schematic diagram of the experimental setup for temperature and strain sensing is
shown in Fig. 4.4. The SCF with a length of 30 cm is used as the sensing region and
connected to two silica SMFs (size: 9/125 µm) by butt-coupling. The other end of the input
SMF is connected to a BLS (central wavelength: 1550 nm) emitting the incident light, while
the other end of the output SMF is connected to an OSA, which detects the changes in

50



4.2. Temperature and Strain Measurement

the light spectrum. The SCF section is placed on a heating plate and clamped onto two
precision translation stages, which are used to apply axial tensile stress on the sensor. The
applied axial strain can be calculated by Eq. 3.4.

SMF SMFSCF

Sensor
Configuration

OSABLS

Heating Plate
Fixed Stage Translation Stage

SMF SMFSCF

Strain Applied

℃

Input Output

Figure 4.4.: Schematic diagram of the experimental setup and the sensor configuration. BLS,
broadband light source; SMF, single-mode fiber; SCF, square-core fiber; OSA, optical spectrum
analyzer.

The transmission spectrum contains multiple dips caused by multimode interference
within the spectrum range. In typical multimode interference structures, the interference
fringes are distorted due to multiple modes, which are excited and participate in the in-
terference. Although any of these dips (or peaks) can be used as a spectral indicator for
sensing, the least distorted one is typically chosen to minimize the measurement error. As
the cleaved end face of the SCF is not perfect, as shown in Fig. 4.1, we choose the spectral
dip close to the central wavelength 1550 nm of the BLS.

4.2. Temperature and Strain Measurement

The temperature dependence of the proposed fiber sensor was first measured without
strain applied. The SCF section was heated in steps of 10◦C to stabilize the sensing ability
from 30 to 80◦C. As shown in Fig. 4.5(a), the wavelength and power of the selected spec-
tral dip change as the temperature changes. The dip shifts to a shorter wavelength when
the temperature increases, accompanied by increased transmission power. The resulting
changes in dip wavelength and transmission power versus temperature are plotted and fit-
ted in Fig. 4.5(b). The fitting results of wavelength-temperature (blue solid line) and power-
temperature (green dash-dot line) both exhibit a high linear regression coefficient value (R2)
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when subject to linear regression analysis. It is determined that the wavelength-temperature
sensitivity is −15.0 pm/◦C with an R2 value of 0.926, and the power-temperature sensitivity
is 0.0878 dBm/◦C with an R2 value of 0.974. The absolute value of wavelength-temperature
sensitivity is comparable with other specialty fiber-based sensors, such as the fiber sen-
sor based on cascaded SNS and the SMS fiber structure; the absolute value of obtained
wavelength-temperature sensitivity is around 1.7 times that [83].

(a) (b)

Figure 4.5.: (a) Measured dependence of spectral dip shifts on temperature in the range of 30 to
80◦C in steps of 10◦C. (b) Dip shift as a function of temperature. The blue solid line represents
the dip wavelength shift against temperature, and the green dash-dotted line represents the dip
power against temperature.

Furthermore, the experiment of strain measurement is conducted at room temperature
(average of 20◦C). The strain is applied in the range of 0 to 1000 µε with steps of 200 µε.
The measured dependence of the spectral dip on strain is shown in Fig. 4.6(a). The
spectral dip shifts to the shorter wavelengths with increasing applied strain, whereas the
transmission power increases. Figure 4.6(b) illustrates the dip wavelength and transmis-
sion power against strain, including the wavelength-strain (blue solid line) and power-strain
(green dash-dotted line) sensitivities. It shows that both fitting curves exhibit good linearity
with high R2 values. The wavelength-strain sensitivity is −1.0 pm/µε with an R2 values of
0.868, and the power-strain sensitivity is 0.0657 dBm/µε with an R2 values of 0.983. The
absolute value of the wavelength-strain sensitivity is comparable to the strain sensitivity of
a thin core fiber implemented MMI-based fiber sensor with a core-offset structure [113].
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(a) (b)

Figure 4.6.: (a) Measured dependence of spectral dip shifts on strain in the range of 0 to 100 µε

in steps of 20 µε. (b) Dip shift as a function of strain. The blue solid line represents the dip
wavelength shift against strain, and the green dash-dotted line represents the dip power against
strain.

Table 4.2.: Comparison of temperature sensitivities with other MMI-based optical fiber sensors
using specialty fibers.

Optical Fiber Sensor
Structure

Measurement
Range

Sensitivity (max.) Reference

SMF – HCF – SMF (with
abrupt taper joints)

18–50◦C 12.3 pm/◦C [110]

SMF – NCF – SMF –
MMF – SMF

30–90◦C 9.2 pm/◦C [83]

SMF – Tapered NCF – SMF 0–280◦C 16.56 pm/◦C [73]
SMF – NCF – SMF (with

FBGs)
0–50◦C 12.8 pm/◦C [100]

Tapered SMF – Micro MMF –
Tapered SMF

35–60◦C 0.028 dB/◦C [74]

SMF – SCF – SMF 30–80◦C
−15.0 pm/◦C

0.0878 dBm/◦C
This work

Comparing Fig. 4.5(b) and Fig. 4.6(b), the absolute value of wavelength temperature sen-
sitivity shows high-temperature measurability, while the small absolute value of wavelength-
strain indicates that the proposed fiber sensor is less sensitive to applied strain. Therefore,
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the multimode interference in the square-core fiber can be potentially exploited to develop
high-sensitivity temperature sensors with reduced strain sensitivity. Table 4.2 presents a
comparison of the temperature measurability for different specialty fibers, showing that
square-core fiber’s temperature sensing ability is promising with a simple structure.

4.3. Strain-insensitive Temperature Measurement

Based on the conclusion that the strain sensitivity at room temperature in an MMI-based
sensor using an SCF can be extremely low, strain-insensitive temperature sensing is demon-
strated using the SCF-based SMS structure. The sensor configuration and experimental
setup are the same as shown in Fig. 4.4, where an SCF with a length of 25 cm is used in
this experiment. The temperature dependence of the transmitted spectral dip is investigated
while a strain is applied from 0 to 500 µε with steps of 100 µε.

(a) 0 µε (b) 100 µε (c) 200 µε

(d) 300 µε (e) 400 µε (f) 500 µε

Figure 4.7.: Temperature measurement results with varied applied strains. Measured spectral
dependences on temperature: (a) 0 µε, (b) 100 µε, (c) 200 µε, (d) 300 µε, (e) 400 µε, and (f)
500 µε strains applied.

First, the temperature measurement is performed in the range of 35 to 70◦C in steps of
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4.3. Strain-insensitive Temperature Measurement

5◦C with no strain applied. Then, the experiment is carried out under the same conditions
while the strain is applied in the range of 0 to 500 µε with steps of 100 µε. The mea-
sured dependences of the spectral dip on temperature are shown in Fig. 4.7. The spectral
dips exhibit blueshifts in the wavelength domain when the temperature increases. The
corresponding resulting wavelength shifts of the spectral dips against the increasing tem-
perature are plotted and fitted in Fig. 4.8. The temperature sensitivities are calculated to
be −22.19 pm/◦C, −22.19 pm/◦C, −22.79 pm/◦C, −23.01 pm/◦C, −21.96 pm/◦C, and −21.93
pm/◦C for 0 µε, 100 µε, 200 µε, 300 µε, 400 µε, and 500 µε strain applied. The fitting
results are all with high R2 values in the range of 0.983 to 0.996.

(a) 0 µε (b) 100 µε (c) 200 µε

(d) 300 µε (e) 400 µε (f) 500 µε

Figure 4.8.: Spectral dip shifts as a function of temperature with varied strains applied: (a) 0
µε, (b) 100 µε, (c) 200 µε, (d) 300 µε, (e) 400 µε, and (f) 500 µε strains applied.

Figure 4.9 shows the temperature sensitivities plotted as a function of strain, which are
distributed within ±3% of their mean value of −22.35 pm/◦C. The standard deviation is
as small as 0.44 pm/◦C. Chapter 3 demonstrated the temperature sensitivity of the strain-
insensitive temperature sensor using a standard MMF with the same length (25 cm), which
is 6.32 pm/◦C. Therefore, the absolute value of the temperature sensitivity of the SCF-based
sensor is ∼3.5 times that of a standard MMF. This result indicates that the temperature
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sensitivity exhibits remarkable stability with almost no influence of strain.

Figure 4.9.: Measured temperature sensitivity plotted as a function of strain. The gray area
indicates the ±3% range of the mean temperature sensitivity.

4.4. Summary

The sensing characteristics of the SCF were experimentally investigated in a simple SMS
structure for temperature and strain measurement. Besides, a beam propagation simulation
in the circular MMF and the SCF was conducted and compared for a better understanding
of the MMI in the SCF.

The obtained maximal wavelength-temperature and wavelength-strain sensitivities are
−15.0 pm/◦C and −1.0 pm/µε, respectively, with the maximal power sensitivities of 0.0878 dBm/◦C
and 0.0657 dBm/µε for temperature and strain. The measurement results proved that the
SCF is promising for sensing. As the strain sensitivity is extremely low compared to the tem-
perature sensitivity, it also indicates that this sensor can exhibit great potential applications
in strain-insensitive temperature measurement.

Based on the characterization of the SCF for temperature and strain sensing, a strain-
insensitive high-sensitivity temperature sensor based on an SMS structure consisting of a
section of an SCF was developed. The obtained mean temperature sensitivity is −22.35 pm/◦C
(with a standard deviation of 0.44 pm/◦C in the strain range of 0 to 500 µε), which is ∼3.5
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times higher than the sensitivity (absolute value) of a standard MMF-based configuration
under the same condition.

The investigation of the SCF refers to the technique outlook of fiber sensors that using a
new type of optical fiber (in Section 2.2.3.II) may improve the sensitivity. This study will also
contribute to the design of strain-insensitive temperature fiber sensors and the development
of MMI-based specialty fiber sensors in the future.
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5. Core-Offset-Based Temperature and
Strain Sensing

New optical fiber sensor configurations are verified to enhance the sensitivities and over-
come some limits mentioned in Section 2.2.3.II, like tapered and side-polished SMS struc-
tures. Recently, another structure, i.e., core-offset structure, has attracted considerable
attention [163]. A Mach-Zehnder interferometer, based on the core-offset SMS structure
comprising a few-mode fiber, has led to a strain sensitivity of 3.35 pm/µε within the range
of 0 to 1000 µε [164]. The offset structure also has the advantage of high RI sensitivity;
for instance, by core-offset splicing of a triple cladding quartz specialty fiber between two
SMFs, the RI sensitivity of as high as 543.75 nm/RIU has been achieved [165]. However,
these core-offset structures utilized specialty fibers to enhance the sensitivities and had
drawbacks such as fabrication difficulty, low repeatability, and high cost. Besides, for most
core-offset structures, the balance between sensitivity and mechanical strength is another
issue that needs to be studied. A larger core-offset value usually leads to higher sensing
sensitivity, resulting in a vulnerable structure.

In this chapter, a simple, inexpensive, and high-sensitivity temperature and strain sensor
based on an SMS structure with core offset is developed and experimentally characterized.
This sensor does not include specialty fibers and can be fabricated using a standard fiber
fusion splicer. The sensitivity dependences of the core-offset amplitudes at the input and
output SMF/MMF boundaries are experimentally investigated. Additionally, as the larger
core-offset also results in a more vulnerable structure, pull tests are performed to evaluate
the mechanical strengths of the core-offset SMS structures.

5.1. Sensor Fabrication and Principle

The operating principle of conventional SMS sensing is based on the assumption that the
MMF and two SMFs are perfectly aligned (refer to Eq. 2.5). However, this principle cannot
be directly applied to the core-offset SMS sensing, where a larger number of higher-order
modes are excited. It is natural to assume that the excitation of higher-order modes may
lead to higher sensitivities; to verify this assumption, we experimentally characterize the
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SMF
SMFMMF

Core Offset

(a)

(b)

SMF MMF

Splicing point

Input
Output

50 mμ

Figure 5.1.: (a) Schematic diagram of the core-offset SMS structure with an offset at the input
SMF/MMF boundary. (b) Image of the core offset spliced (offset = 20 µm).

core-offset SMS structure and investigate the limit of the induced sensitivity enhancement.
The schematic diagram of the core-offset SMS structure is shown in Fig. 5.1(a). In this

experiment, one side of the SMF is core offset spliced. To find the optimal core-offset
SMS structure, different samples are fabricated utilizing standard SMFs (9/125) and a step-
index MMF (50/125) with an inexpensive fiber fusion splicer (INNO View 7). The splicing
settings are kept the same during the fabrication process of all the samples to ensure the
consistency of the quality of the core offset. As the radius of the MMF core is 25 µm, the
samples with core-offset amplitudes of 10, 15, 20, 25, and 30 µm are fabricated, as shown
in Fig. 5.2.

SMF
MMF

Splicing point 50 mμ

(a) 10 µm

SMF
MMF

Splicing point 50 mμ

(b) 15 µm

SMF
MMF

Splicing point 50 mμ

(c) 20 µm

SMF
MMF

Splicing point 50 mμ

(d) 25 µm

SMF
MMF

Splicing point 50 mμ

(e) 30 µm

Figure 5.2.: Images of core-offset spliced parts with offset amplitudes of (a) 10 µm, (b) 15 µm,
(c) 20 µm, (d) 25 µm, and (c) 30 µm.
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The experimental setup is illustrated in Fig. 3.1. The MMF section is heated and clamped
onto two precision translation stages, which can apply varying axial tensile stress to the
sample. The sensing characteristics of the input and output core-offset SMS structures are
investigated separately. An aligned SMS sensor is also prepared in the same condition, as
a reference.The applied axial strain can be calculated by Eq. 3.4. In addition, to check the
mechanical strength of the core-offset SMS structures, pull tests are carried out using the
same setup under the same conditions.

5.2. Temperature and Strain Measurement

The temperature measurement without applied strain is performed in the range of 30 to
70◦C in steps of 5◦C. Examples of the temperature sensing results for the input SMF with
core-offset amplitudes of 10, 15, 20, 25, and 30 µm are shown in Fig. 5.3. The spectral
dips exhibit redshifts in the wavelength domain when the temperature increases, as shown
in Fig. 5.3(a-e).

(a) 10-µm core-offset (b) 15-µm core-offset (c) 20-µm core-offset

(d) 25-µm core-offset (e) 30-µm core-offset

Figure 5.3.: Temperature measurement results for the input core-offset SMS structure. Mea-
sured spectral dependences on temperature with core-offsets of (a) 10 µm, (b) 15 µm, (c) 20
µm, (d) 25 µm, and (c) 30 µm.
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The corresponding resulting wavelength shifts of the spectral dips against the increasing
temperature are plotted and fitted in Fig. 5.4(a-e). The dependences are almost linear, with
coefficients of 7.63 pm/◦C (10 µm), 9.37 pm/◦C (15 µm), 13.92 pm/◦C (20 µm), 9.78 pm/◦C
(25 µm), and 8.48 pm/◦C (30 µm).

(a) 10-µm core-offset (b) 15-µm core-offset (c) 20-µm core-offset

(d) 25-µm core-offset (e) 30-µm core-offset

Figure 5.4.: Temperature measurement results for the input core-offset SMS structure. Spectral
dip shifts plotted as a function of temperature with core-offsets of (a) 10 µm, (b) 15 µm, (c) 20
µm, (d) 25 µm, and (c) 30 µm.

Figure 5.5 shows the temperature sensing results for the output core-offset SMS struc-
ture. The spectral dip demonstrates a redshift in the wavelength domain when the tempera-
ture increases for the core offsets of 10, 15, 20, 25, and 30 µm, as displayed in Fig. 5.5(a-e).
The corresponding resulting wavelength shift of the dip against the temperature variation is
plotted and fitted in Fig. 5.5(f-j), which indicates that the relevant temperature sensitivities
are determined to be 5.98 pm/◦C (10 µm), 7.61 pm/◦C (15 µm), 11.13 pm/◦C (20 µm),
7.88 pm/◦C (25 µm), and 6.74 pm/◦C (30 µm).
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(a) 10-µm core-offset (b) 15-µm core-offset (c) 20-µm core-offset

(d) 25-µm core-offset (e) 30-µm core-offset

(f) 10-µm core-offset (g) 15-µm core-offset (h) 20-µm core-offset

(i) 25-µm core-offset (j) 30-µm core-offset

Figure 5.5.: Temperature measurement results for the output core-offset SMS structure. Mea-
sured spectral dependences on temperature with core-offsets of (a) 10 µm, (b) 15 µm, (c) 20
µm, (d) 25 µm, and (e) 30 µm. Spectral dip shifts plotted as a function of temperature with
core-offsets of (f) 10 µm, (g) 15 µm, (h) 20 µm, (i) 25 µm, and (j) 30 µm.
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(a) 10-µm core-offset (b) 15-µm core-offset (c) 20-µm core-offset

(d) 25-µm core-offset (e) 30-µm core-offset

Figure 5.6.: Strain measurement results for the input core-offset SMS structure. Measured
spectral dependences on strain with core-offsets of (a) 10 µm, (b) 15 µm, (c) 20 µm, (d) 25 µm,
and (c) 30 µm.

Subsequently, the strain sensing is carried out at room temperature (∼20◦C), and the
results for the input core-offset SMS structure are illustrated in Fig. 5.6. The measured
dependences of the spectral dip on strain are presented in Fig. 5.6(a-e) for the core-offsets
of 10, 15, 20, 25, and 30 µm, respectively. The spectral dips shift to shorter wavelengths
with increasing strain. The corresponding resulting wavelength shifts of the spectral dips
against the increasing strain are plotted and fitted in Fig. 5.7, which leads to coefficients of
−0.8 pm/µε (10 µm), −0.89 pm/µε (15 µm), −1.19 pm/µε (20 µm), −0.65 pm/µε (25 µm),
and −0.63 pm/µε (30 µm).

The strain sensing results for the output core-offset SMS structure are presented in
Fig. 5.8. The clear blueshifts of the wavelength dips are distinguished with increasing strain
applied to the sensor with core-offsets of 10, 15, 20, 25, and 30 µm, as shown in Fig. 5.8(a-
e). The related wavelength shifts of the spectral dips against the increasing applied strain
are displayed in Fig. 5.8(f-j). The measured strain sensitivities are −0.71 pm/µε (10 µm),
−0.78 pm/µε (15 µm), −1.06 pm/µε (20 µm), −0.60 pm/µε (25 µm), and −0.57 pm/µε
(30 µm).
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5.2. Temperature and Strain Measurement

(a) 10-µm core-offset (b) 15-µm core-offset (c) 20-µm core-offset

(d) 25-µm core-offset (e) 30-µm core-offset

Figure 5.7.: Strain measurement results for the input core-offset SMS structure. Spectral dip
shifts plotted as a function of strain with core-offsets of (a) 10 µm, (b) 15 µm, (c) 20 µm, (d) 25
µm, and (c) 30 µm.

Note that 20 µm is the largest offset when the core of the SMF is spliced to the core of
the MMF; with offsets of >20 µm, the core of the SMF is (partially or totally) spliced to the
cladding of the MMF, which does not promote the excitation of the higher-order modes in
the MMF core.

Besides, the temperature and strain measurements of the aligned SMS sensor fabricated
in the same conditions as the core-offset ones are performed to compare with the results
of the offset SMS structures. The experiments are conducted using the same setup. The
spectral dips shift to the longer wavelengths with increasing temperature and temperature
sensitivity of 5.83 pm/◦C is obtained, as shown in Fig. 5.9(a-b). The blue shifts of the
wavelength dips are clearly observed with increasing strain applied to the sensor, and the
related strain sensitivity is −0.15 pm/µε, as illustrated in Fig. 5.9(c-d).
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(a) 10-µm core-offset (b) 15-µm core-offset (c) 20-µm core-offset

(d) 25-µm core-offset (e) 30-µm core-offset

(f) 10-µm core-offset (g) 15-µm core-offset (h) 20-µm core-offset

(i) 25-µm core-offset (j) 30-µm core-offset

Figure 5.8.: Strain measurement results for the output core-offset SMS structure. Measured
spectral dependences on strain with core-offsets of (a) 10 µm, (b) 15 µm, (c) 20 µm, (d) 25 µm,
and (e) 30 µm. Spectral dip shifts plotted as a function of strain with core-offsets of (f) 10 µm,
(g) 15 µm, (h) 20 µm, (i) 25 µm, and (j) 30 µm.
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(a) temperature (b) temperature

(c) strain (d) strain

Figure 5.9.: Measured results of the aligned SMS sensor in the same conditions as core-offset
sensors: (a) measured spectral dependences on temperature, (b) spectral dip shifts plotted as
a function of temperature, (c) measured spectral dependences on strain, and (d) spectral dip
shifts plotted as a function of strain.

5.3. Discussion

The summary of the temperature sensing with input and output core-offset SMS structures
is illustrated in Fig. 5.10(a), which shows the temperature sensitivities with the input core-
offset SMS are higher than those with output core-offset SMS. In addition, the temperature
sensitivity exhibits a non-monotonic relationship with increasing core offset, and the highest
temperature sensitivity of 13.92 pm/◦C is achieved at the 20-µm core-offset. The maximal
temperature sensitivity is approximately two times the value of the aligned SMS sensor’s
(5.83 pm/◦C, refer to Fig. 5.9(b)).

Figure 5.10(b) shows the summary of the strain sensitivities with the input and output
core-offset SMS structures. It indicates that the strain sensitivities (absolute values) with
the input core-offset SMS are also higher than those with the output core-offset SMS. It also
exhibits a non-monotonic relationship with increasing core-offset amplitude, and the maxi-
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mal strain sensitivity (absolute value of −1.19 pm/µε) is obtained at the 20-µm core-offset
(where the highest temperature sensitivity is obtained). Compared to the strain sensitivity
of the aligned SMS sensor (−0.15 pm/µε, refer to Fig. 5.9(d)), the maximal strain sensitivity
(absolute value) of the core-offset SMS sensor is enhanced by approximately eight times.
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Figure 5.10.: Summary of measurement with the input and output core-offset SMS structures:
(a) temperature and (b) strain.
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5.4. Summary

Besides, as it is assumed that the core-offset SMS results in a vulnerable structure, the
pull tests are additionally performed to test the mechanical strength of core-offset SMS
structures, and the result indicates that they can withstand at least 1.5% strain regardless
of the offset amplitudes.

5.4. Summary

A high-sensitivity, easy-to-fabricate, and low-cost SMS sensor based on core-offset was
developed and experimentally investigated for temperature and strain sensing. This sensor
is implemented with a commonly used MMF and can be fabricated by a commercial arc
fusion splicer.

The sensing characteristics of the SMS sensors with the core-offsets of 10, 15, 20, 25,
and 30 µm at the input and output SMF/MMF boundaries are investigated. The obtained
maximal temperature and strain sensitivities are 13.92 pm/◦C and −1.19 pm/µε, which
are ∼two times and ∼eight times the values of the aligned SMS sensor (5.83 pm/◦C and
−0.15 pm/µε), respectively. The results also indicate that the maximal sensitivities for
both temperature and strain are obtained with the 20-µm core offset, not the largest core
offset of 30 µm, which indicates the existence of a limit of the offset-induced sensitivity
enhancement. In addition, both temperature and strain sensitivities–with the input core-
offset SMS–are higher than those with the output core-offset SMS. Note that pull tests of
the core-offset SMS structures are additionally performed, which indicates that they can
withstand at least 1.5% of strain regardless of the offset amplitudes.

With its simplicity, cost efficiency, and robustness, this method will be a valuable tool for
enhancing the sensitivities of SMS temperature and strain sensors in the future.
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6. Multimode Fiber Imaging with Deep
Learning

Multimode fiber imaging has attracted considerable attention recently due to the blossom of
machine learning. It has been reported that applying machine learning techniques in MMF
imaging significantly improves the practical usability of the MMF imaging system. However,
this system still suffers from ambient perturbation, such as fiber deformation and temper-
ature changes, as they change the transmission matrix of the MMF. Moreover, the neural
networks are limited by the complexity of the images. In this chapter, an MMF imaging sys-
tem combined with neural networks for image reconstruction is developed. Further, deep
learning methods, like fully connected neural networks and convolutional neural networks,
are tested to be robust to the thermal perturbations in MMF imaging. In the end, the recon-
struction of natural images with different neural networks is investigated.

6.1. Multimode Fiber Imaging System

The MMF imaging system includes two main parts: experimental setup and deep learning.
The former is for creating the dataset to train the neural networks, and the latter is for image
reconstruction. Figure 6.1 illustrates the flowchart of the MMF imaging system with deep
learning. The ground truth images are transmitted through an MMF, and the output speckle
patterns are paired with the input ground truth images as the training dataset to train the
neural networks for reconstructing the input images.

6.1.1. Experimental Setup

The optical setup of an MMF imaging system is depicted in Fig. 6.2, and the related com-
ponents are listed in Table 6.1. The laser beam of a 632.8 nm wavelength HeNe laser
(HNLS008L-EC, Thorlabs) is coupled to an MMF with a 200 µm core diameter and an NA
of 0.39 (FT200UMT, Thorlabs). The input pattern displayed on a phase-only spatial light
modulator (SLM, Holoeye PLUTO-VIS, 1920×1080 pixels) is then demagnified and imaged
on the entrance facet of the MMF through a 4f imaging system composed of lens L1 and
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Speckle Pattern

MMF

Ground Truth

Neural
Network

Image Reconstruction

Pairs
Ground Truth

+
Speckle Pattern

Figure 6.1.: Flowchart of MMF imaging system with deep learning.

Obj1. The speckle pattern from the output facet of the MMF is imaged onto a CMOS camera
(DCC1545M, Thorlabs) by another 4f imaging system.

Figure 6.2.: Schematic diagram of the experimental setup; BE, beam expander; HWP, half-
wave plate; P, polarizer; I1, iris; BS, beam splitter; SLM, spatial light modulator; L1, lens; I2,
iris; L2, lens; Obj1, objective lens; MMF, multimode fiber; Obj2, objective lens; L3, lens; CMOS,
CMOS camera.

The light source at 632.8 nm with a power of 0.8 mW is expanded and collimated by
a beam expander (BE) and filtered by a half-wave plate (HWP) and a polarizer (P). The
light is intensity regulated and linearly polarized. The beam diameter is controlled by an
Iris (I1) and directed through a beam splitter (BS) on the spatial light modulator (SLM). The
pattern created by the SLM is filtered by an Iris (I2) and imaged through the 4f system (L1
and Obj1) at the MMF input. Then, the light travels along with the MMF, and at the output,
another 4f system (L1 and Obj2) magnifies the speckle pattern and projects it onto the
CMOS camera. A heating device is used to generate the thermal perturbation during the
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6.1. Multimode Fiber Imaging System

Table 6.1.: Components list of the MMF imaging system.

Components Serial Number Distributor

HeNe laser HNLS008L-EC Thorlabs
Beam expander (BE) 37-268 Edmund Optics

Half-wave plate (HWP) WPH10M-633 Thorlabs
Linear polarizer LPVISE200-A Thorlabs

Iris diaphragms (I1 and I2) SM1D12 Thorlabs
Cube beamsplitters (BS) BS016 Thorlabs

Spatial light modulator (SLM) PLUTO-VIS Holoeye Photonics
Tube lens (L1, L2, and L3) AC254-050-A-ML Thorlabs

Objective 20x HI Plan 11566070 Leica
Multimode fiber (MMF, 200-µm) FT200UMT Thorlabs
Multimode fiber (MMF, 400-µm) FT400UMT Thorlabs

Objective 40x PLN40X Olympus
CMOS camera DCC1545M Thorlabs

measurement.
The SLM used in the system is a phase-only liquid crystal SLM, which modulates and

creates the desired shaped wavefront. This wavefront generates the desired images in the
far field. To obtain these images, diffracting optical elements (DOEs) created by computer-
generated holograms (CGHs) must be displayed on the liquid crystal screen of the SLM.
The CGHs enable arbitrary removal or the addition of modes for properly transmitting the
input images in the form of the DOEs, offering a high resolution and light efficiency simul-
taneously. The simplified working principle of the SLM is shown in Fig. 6.3. The far-field
image will be coupled into the MMF.

6.1.2. Setup Calibration

The essential part of this setup is to couple the sharp far-field images created by the SLM
into the MMF and obtain the speckle patterns at the output, which will contain the complete
information of the images. Two critical variables need to be considered.

The first one is the spot size of the beam focused by the objective, which depends on its
magnification and can be calculated as

s =
4M2 λ fL

πD
, (6.1)
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Input image

DOE

SLM

near field far field

CGH

Fourier Transform

Figure 6.3.: Simplified working principle of the SLM. CGH, computer-generated hologram; SLM,
spatial light modulator; DOE, diffracting optical element.

where M2 is the laser beam quality factor, λ is the wavelength, fL is the lens focal length,
and D is the input beam diameter at the lens. The beam quality factor of the beam reflected
by SLM can be obtained by the beam parameter product (BPP), which is the product of a
laser beam’s divergence angle (half-angle θ) and the radius of the beam at its narrowest
point (the beam waist w0) as

BPP = θ w0 . (6.2)

The BPP quantifies the quality of a laser beam and how well it can be focused on a small
spot. A different and common beam quality expression is the M2 value. This value is a
normalization of the BPP value, which is made against a diffraction-limited beam (BPP0)
with the specific wavelength as

M2 =
BPP

BPP0

= BPP
π

λ
. (6.3)

The divergence angle (half-angle θ) can be approximately obtained by

θ = arctan
R(L)

L
, (6.4)

where R(L) is the beam radius at a certain distance, and L is considered as far field [166].
This beam radius can be measured, as shown in Fig. 6.4

The second variable is that the maximum incident angle at the end face of the MMF needs
to be equal to or smaller than the acceptance angle of the MMF. The maximum acceptance
angle is related to the NA of the MMF, as described in Section 2.1.1. To realize a high
coupling efficiency, the NA of the objective (NAObj) needs to be equal to or smaller than
the NA of MMF (NA). Assuming the beam entering the objective is collimated, the NA of
the objective can be obtained by
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SLM
w

0

θ
R(L)

L

Figure 6.4.: Schematic diagram of beam quality measurement.

NAObj =
D

2 fObj

, (6.5)

where D is the beam diameter entering the objective and fObj is the focal length of the
objective. Note that it is not critical that NAObj ≤ NA because the beam cannot be ideally
collimated. However, they should not be far from each other.

The divergence angle is measured at a distance L of 200 cm and an R(L) of 33 mm,
which results in a half-angle θ of 0.0165 rad. The beam waist (w0) of the beam incident
onto the SLM is regulated by iris (I1) as 2.5 mm. With these parameters, the value of
the beam quality factor M2 can be estimated as 204.7. Further, the magnifications of the
objective lens can be determined according to the different core diameters of the MMFs.
Note that, in this dissertation, the numerical apertures of the objective lens are 0.39 with
different magnifications, and the numerical apertures of the MMFs are 0.4 with different
core diameters. After the calibration of the setup, a coupling efficiency of >80% can be
achieved, which satisfies the requirement for MMF imaging.

6.1.3. Multimode Fiber Imaging Data Acquisition

To obtain the MMF imaging data, the SLM and camera are integrated and controlled by a
MATLAB script. The flowchart of the data acquisition is shown in Fig. 6.5. The DOEs of in-
put images are computed by the software provided by Holoeye Photonics (HOLOEYE SLM
Pattern Generator). All the generated DOEs are loaded to the SLM at once via MATLAB,
and then each DOE is imaged on the SLM every 10 seconds. The CMOS camera captures
the related speckle at the distal end of the MMF. Note that it is essential to correctly pair
the generated DOE, input images, and output speckle. The MMF imaging setup needs to
be stabilized before the image acquisition due to the mechanical strain of the components.
As the limit of the computation power, a maximum of 25000 images can be loaded at once.
The measurement of 5000 images takes ∼2 hours.
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Figure 6.5.: Flowchart of the multimode fiber imaging data acquisition via MATLAB.
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6.1.4. Deep Learning Architectures

Deep learning has skyrocketed in the past few years due to the astonishing improvement
in computational power and advances in neural network architectures. Almost all deep
learning neural networks stem from two types of networks: convolutional neural networks
(CNNs) and fully connected neural networks (FCNNs).

A simple CNN is a sequence of layers, and three main types of layers are used to build
CNN architecture: convolutional layer, pooling layer, and fully connected layer. An FCNN
consists of a series of fully connected layers that connect every neuron in one layer to every
neuron in the other layer, which has an advantage in that there is no need to make particular
assumptions about the input.

Convolutional Layers

The convolutional layer is the core building block of a CNN, which carries the main compu-
tational load of the network. A convolution is effectively a sliding dot production between
two matrices, where the kernel shifts through the whole image, repeating the same dot
product operation, as shown in Fig. 6.6(a). Note that the kernel must have the same num-
ber of channels as the input images. Convolution is the process of placing a kernel on the
top left corner of an image, multiplying kernel values by the pixel values and adding the
results, moving the kernel to the right by one pixel at a time, and repeating this process.
When the kernel moves to the top right corner, it moves down by one pixel and restarts the
process from left to right. The complete process ends when the kernel moves to the bottom
right corner of the image. In Fig. 6.6(a), after applying a 2×2 kernel to a 3×3 image, a
2×2 image is obtained as the output. In addition, the number of weights per layer is much
smaller, which benefits the possibility of having high-dimensional inputs, such as images.

Pooling Layers

The pooling layer performs downsampling to reduce the spatial dimensions of the input.
Therefore, it reduces the number of learning parameters in the network, i.e., the learn-
ing time and computation. As the feature map produced by the convolutional layers is
location-dependent, it can severely diminish the performance of the network. However, the
pooling layer summarizes the features present in a region of the feature map generated by
a convolutional layer, which enables further performance to be conducted on the pooling-
layer-summarized features. With this, the network can be more robust to variations in the
positions of the features in the input images. The most popular pooling is max pooling,
which selects the maximum value from the region of the feature map covered by the filter.
After the max pooling layer, the feature map only contains the most prominent features of
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the previous feature map. In Fig. 6.6(b), a 2×2 filter with a stride of 2 returns the maximum
values while sliding through the feature map.

Fully Connected Layers

Fully connected layers in a neural network connect every neuron in one layer to every
neuron in the next layer, as shown in Fig. 6.6(c). It shows all the possible connections
(layer to layer), where every input neuron influences every output neuron. However, not
all the weights affect all output neurons. In Fig. 6.6(c), the red lines represent that an
output neuron is calculated using all the input neurons with their weights. The value of
an output neuron is the dot product between the input vector and a row of the weights
matrix. The fully connected layer can be mathematically expressed as the neuron applies
a linear transformation to the input vector through a weights matrix, and then a non-linear
transformation is applied to the product through a non-linear activation function

yjk(x) = f

(
n∑

i=1

wjk vi + bj0

)
, (6.6)

where vi is the input vector, Wjk is the weights matrix, and bj0 is the bias term that can be
added inside the non-linear activation function f , which wraps the dot product between the
input of the layer and the weights matrix of that layer.

6.2. Multimode Fiber Imaging Reconstruction:
Handwritten Digits

Two neural network architectures, based on U-Net and FCNN, are used in this dissertation.
The U-Net is a CNN architecture first developed in 2015 to tackle biomedical image seg-
mentation tasks, which has recently been used for MMF image reconstruction [167]. The
architecture consists of a contracting and an expanding path, also called an encoder and
a decoder path, as shown in Fig. 6.7. The encoder, a traditional stack of convolutional and
max pooling layers, is used to capture the context of the image. The decoder is used for
precise localization using transposed convolutions. Each blue box is a regular convolutional
block. In the encoder, the size of the image reduces gradually with the downsampling while
the depth gradually increases. Consequently, the network learns the context in the image
but loses the localization information. In the decoder, the size of the image gradually in-
creases with the depth decreases, which, intuitively, recovers the localization information
by applying up-sampling. To combine the feature extraction with the location, the feature
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Figure 6.6.: Machine learning basics: (a) illustration of convolution operation (a 2×2 kernel ap-
plied to a 3×3 image, resulting in a 2×2 image), (b) max pooling operation, (c) a fully connected
layer.
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Figure 6.7.: Original U-Net architecture.

maps in the contracting path get concatenated at the same level as the feature maps in the
expanding path.

6.2.1. Neural Networks

The CNN used in this dissertation is optimized based on the original U-Net, and the detailed
architecture is depicted in Fig. 6.8. This CNN consists of 18 convolutional layers with a 3×3
kernel for each layer, starting at the input layer for the speckle image. Each convolutional
layer in the encoder path is followed by a nonlinear activation function (ReLu) and a max
pooling operation with a stride of 2 for down-sampling. In the decoder path, transposed
convolutional layers are used instead of max pooling layers for up-sampling.

The FCNNs are the most elementary neural network architectures for machine learning.
The FCNNs have been used for MMF image reconstruction in early time [168–170], but the
performance was restrained due to the limited computational power. In this dissertation, a
simple FCNN is implemented, as shown in Fig. 6.9. Each input 112×112 image is flattened
(112×112=12544 nodes) and fed into the neural network. The first fully connected layer of
784 nodes transforms the input to the 784 output with a sigmoid activation function and a
dropout regularization. The second fully connected layer repeats the process. The result
from the output layer, which has 784 nodes, is reshaped into a 28×28 image that can be
compared to the ground truth.
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Figure 6.9.: The architecture of the fully connected neural network (FCNN).

Both neural networks were trained using Adam optimization with a batch size of 256
images. Besides, an early stopping condition was added to shorten the training time. It was
found that batch-normalization regularization was crucial for the performance of the CNN,
while dropout regularization functioned better for the FCNN. Therefore, batch normalization
and dropout were applied in the CNN and FCNN, respectively. The objective functions
used to compare the output of neural networks against ground truth (MNIST digits in this
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experiment)
The objective function, i.e., the Structural Similarity Index (SSIM), was used to compare

the output of neural networks against ground truth (MNIST digits in this experiment), which
is a commonly used perceptual metric based on visible structures in the images [171]. It is
defined as

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (6.7)

where x and y are two images being compared, l(x, y) is the luminance comparison func-
tion, c(x, y) is the contrast comparison function, s(x, y) is the structure comparison function,
and α > 0, β > 0, and γ > 0 denote the relative importance of each of the metrics. Hence,
the SSIM is a combination function that yields the similarity index value, which combines all
these comparison functions on different aspects.

The luminance comparison function is described as

l(x, y) =
2µx µy + C1

µx
2 + µy

2 + C1

, (6.8)

where µx and µy are the luminance measured by averaging over all the pixel values in
images x and y, given as

µx =
1

N

n∑
i=1

xi (6.9)

and

µy =
1

N

n∑
i=1

yi , (6.10)

where xi and yi are the i-th value of the images x and y, respectively. Furthermore, the
images x and y have the same total number of pixel values (N ). The C1 is a constant to
ensure stability when the denominator becomes 0, given by

C1 = (K1 Ld)
2 , (6.11)

where Ld is the dynamic range for the pixel values, and K1 is a normal constant. In our
calculation, we set Ld as 1 and K1 as 0.01.

The contrast comparison function is defined as

c(x, y) =
2σx σy + C2

σx
2 + σy

2 + C2

, (6.12)

where σx and σy are the contrast measured by taking the standard deviation of all the pixel
values in images x and y, given as
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σx =

(
1

N − 1

n∑
i=1

(xi − µx)
2

)1/2

(6.13)

and

σy =

(
1

N − 1

n∑
i=1

(yi − µy)
2

)1/2

. (6.14)

Same as the C1, C2 is also a constant, given by

C2 = (K2 Ld)
2 , (6.15)

where K2 is a normal constant as K1.
The structure comparison function is expressed as

s(x, y) =
σxy + C3

σx σy + C3

(6.16)

with

σxy =
1

N − 1

n∑
i=1

(xi − µx)(yi − µy) . (6.17)

Finally, to simplify the Eq. 6.7, we set α = β = γ = 1, C3 = C2/2, K1 = 0.01, K2 = 0.03,
and Ld = 1, the SSIM can be expressed as

SSIM(x, y) =
(2µx µy + 10−4) (2σxy + 9× 10−4)

(µx
2 + µy

2 + 10−4) (σx
2 + σy

2 + 9× 10−4)
. (6.18)

When train the neural networks, the SSIM loss function is defined as

LossSSIM = 1− SSIM . (6.19)

6.2.2. Image Reconstruction through Multimode Fibers

To verify the reconstruction performance of these two networks, the same MNIST dataset
was employed for MMF imaging reconstruction. The output speckles (5000 images) were
experimentally collected with a 400-µm core diameter MMF using the setup in Fig. 6.2.
Then, a dataset of 5000 pairs (input MNIST digits images and output speckle images) was
used to train the neural networks, which was divided into two parts: the training dataset
(4750 pairs) and the validation dataset (250 pairs). The training was conducted on the
same computer (NVIDIA DGX Station A100 Version 5.0.5, GNU/Linux 5.4.0-80-generic
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x86_64). Both networks were trained using the same dataset. The results of MMF imaging
reconstruction for ten representative images (digits 0 to 9) from the validation dataset are
shown in Fig. 6.10.

The trained FCNN and U-Net both can reconstruct from the speckles to ground truth with
remarkable fidelity, as shown in Fig. 6.10(a), 6.10(c), and 6.10(d). It is clear that both neural
networks performed excellently on MMF imaging reconstruction, but the SSIM of FCNN is
slightly higher than that of U-Net. Compared to U-Net, the architecture of FCNN is much
easier, and the training time of FCNN is much less than U-Net for the same amount of
epochs. Besides, the implementation difficulty of FCNN is much lower than U-Net, which
means it is easy to modify the FCNN, e.g., for different image sizes. Therefore, in the
following, we focus on using FCNN; however, the U-Net will also be used as a comparison.

Ground Truth

0.97 0.97 0.92 0.91 0.94 0.94 0.96 0.93 0.97 0.94

0.9 0.94 0.81 0.89 0.86 0.89 0.85 0.83 0.89 0.84

Reconstructed
Digits by FCNN

Reconstructed
Digits by U-Net

Speckles

SSIM (FCNN)

SSIM (U-Net)

(a)

(c)

(b)

(d)

Figure 6.10.: Demonstration of MMF imaging reconstruction on MNIST dataset with a 400-
µm core diameter MMF. (a) Representative samples of 28×28 ground truth images. (b) The
corresponding output speckles (112×112) collected by the setup in Fig. 6.2. (c) Reconstructed
28×28 images (digits) produced by FCNN and the SSIM related to the ground truth are shown
below each reconstructed image. (d) The same images reconstructed by U-Net and its SSIM.

6.2.3. Imaging Reconstruction under Thermal Perturbation

Multimode fiber imaging is very sensitive to ambient changes, and the most common two
factors are geometric deformations and temperature perturbations. A detailed study of
bending in MMF imaging can be found in [141]. However, multimode fiber imaging still
suffers from temperature perturbations as it is not avoidable. For example, when using
MMF-based endoscopy during medical operations, the room temperature and organ tem-
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perature are different, and this temperature change will undoubtedly influence the quality of
MMF imaging. In this section, multimode fiber imaging with temperature perturbations will
be studied.

The speckle acquisition was conducted using the setup shown in Fig. 6.2 in the temper-
ature range of 25 to 75◦C. The MMF was heated constantly during the speckle acquisition.
The transmission characteristics of MMF drift over time, which may degrade the reconstruc-
tion quality. These temporal changes can be caused by thermal and mechanical perturba-
tions. To minimize these changes in MMF itself over time, the speckles were acquired at
25◦C (acquisition 1), then acquired at 30◦C (acquisition 2), and the speckles were collected
again at 25◦C. The process of speckle acquisition is illustrated in Fig. 6.11. As the whole
process takes a few days to complete, reducing the environmental influence in this way is
possible. For example, the neural network is trained using the mixed dataset of acquisitions
1 and 3 (both at 25◦C) and then tested on the speckles collected at 30◦C (acquisition 2).

acquisition 2

30°C

acquisition 4

35°C

acquisition 6

40°C

acquisition 8

45°C

acquisition 10

55°C

acquisition 11

65°C

acquisition 14

75°C

Time

25°C 25°C 25°C 25°C 25°C 25°C 25°C

acquisition 1 acquisition 3 acquisition 5 acquisition 7 acquisition 9 acquisition 11 acquisition 13

Figure 6.11.: Speckle acquisitions at different temperatures with time.

As the speckle changes drastically caused by temperature perturbations, the SSIM method
is not ideal for evaluating the similarity between two speckle images. Here, another method,
the Mean Square Error (MSE), is introduced to compare two speckle images generated with
the same input digit, which is defined as

MSE =
1

MN

M∑
i=1

N∑
i=1

[X(m,n)− Y (m,n)] . (6.20)

where X and Y are the two images with m × n pixels. Figure 6.12 shows the speckle
changes (with a 200-µm core diameter MMF) at different temperatures and the corre-
sponding MSE compared to the speckle acquired at 25◦C, which indicates that the speckle
changes drastically when the temperature increases from 25 to 75◦C.

To quantitatively explain the MSE values, a simulation is performed. Random noises, i.e.,
related to different MSE values, are applied to the speckle patterns collected with a 200-µm
core diameter MMF at 25◦C to generate the simulated noised datasets, and the FCNN and
U-Net are both trained with simulated datasets.
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Ground truth:

Figure 6.12.: Speckle patterns of the ground truth digit 6 (acquired with a 200-µm core diameter
MMF) at different temperatures with corresponding MSE compared to that acquired at 25◦C.

First, the FCNN is trained, and the results are shown in Fig. 6.13. In general, when
no noise is applied, the FCNN can reconstruct the image with remarkable fidelity. With
noise, the reconstruction fidelity gradually drops, and from the MSE value of 0.0332, the
performance of the FCNN is no longer promising, especially for relatively complex digits
like 4, 7, and 9. It also proves that the neural network performance in MMF imaging is
affected by image complexity. The results indicate that the FCNN can only reconstruct the
images within a certain level of scrambled speckle patterns.

As the MSE values in Fig. 6.13 are smaller than 0.0332, which assumes that the FCNN
may reconstruct the digits with promising fidelity. Therefore, the FCNN is trained with the
measured data acquired with a 200-µm core diameter MMF at different temperatures. Fig-
ure 6.14 shows the results of MMF imaging reconstruction at different temperatures for ten
representative images (digits 0 to 9) from the validation dataset. The FCNN recovers the
ground truth image with promising fidelity up to 45◦C (MSE 0.0174), while the fidelity drops
drastically when the temperature increases to 75◦C. It is unsurprising that, as shown in
Fig. 6.12, the speckle is scrambled strongly since the temperature reaches 55◦C. These
results also agree with the simulation results shown in Fig. 6.13.
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Furthermore, the same simulation is carried out using U-Net, and the results are shown
in Fig. 6.15. Same as the FCNN, without noise, the fidelity of image reconstruction with
U-Net is remarkable too. It clearly shows that, with noise, the U-Net generally performs
better than the FCNN. For example, with an MSE value of 0.0332, which is nearly the limit
for FCNN, U-Net can still revive the images with good fidelity. The largest MSE value is
located at the MSE value of around 0.0214, according to Fig. 6.12; therefore, the U-Net is
assumed to be robust to reconstruct the images. Consequently, U-Net is trained with the
same measured data as the FCNN and Fig. 6.16 presents the results. It demonstrates that
up to 75◦C, U-Net still can yield high fidelity, which agrees with the simulation results. For
example, for digit 6, at 75◦C, the MSE of speckle changes is 0.0214 (according to Fig. 6.12),
and the related SSIM of the reconstructed image is 0.71 (see Fig. 6.16). The MSE values of
0.0148 and 0.0332 correspond to the SSIM values of 0.81 and 0.60, respectively, as shown
in Table 6.2. As 0.0148<0.0214<0.0332 and 0.60<0.71<0.81, it leads to the conclusion
that the measured results agree with the simulated results.

Comparing the quality of reconstructed images of the FCNN and U-Net reveals that im-
age reconstruction through an MMF using neural networks, both the FCNN and U-Net, is
remarkable. Both neural networks are robust to a certain level of thermal perturbation ap-
plied to the MMF imaging system; the images are reconstructed with great fidelity when
the temperature increases from room temperature (∼25◦C) to 45◦C, but in the range of 45
to 75◦C, the fidelity of FCNN drastically drops while U-Net still can revive the images with
relatively high fidelity.

Table 6.2.: Comparison of MSE and SSIM of simulation and measurement results.

Target Image Methods MSE SSIM

MNIST Handwritten Digit 6
Simulation (random noise applied)

0.0148 0.81
0.0332 0.60

Measurement (75◦C) 0.0214 0.71
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(i)

(c)

(a) Reconstructed
digit 0

0.91 0.83 0.67 0.52 0.42 0.27 0.21 0.22 0.28 0.19SSIM (FCNN)

Reconstructed
digit 2

0.97 0.87 0.64 0.53 0.42 0.37 0.30 0.24 0.24 0.20SSIM (FCNN)

(b)

0.85 0.78 0.69 0.47 0.40 0.4 0.29 0.22 0.19 0.20SSIM (FCNN)

Reconstructed
digit 1

0.89 0.80 0.48 0.42 0.27 0.31 0.28 0.17 0.17 0.17SSIM (FCNN)

(f) Reconstructed
digit 5

0.83 0.77 0.59 0.30 0.18 0.13 0.11 0.07 0.05 0.07

Reconstructed
digit 3

SSIM (FCNN)

(e)

(d)

0.80 0.71 0.57 0.49 0.36 0.34 0.31 0.29 0.24 0.24SSIM (FCNN)

Reconstructed
digit 4

0.87 0.78 0.57 0.32 0.21 0.18 0.14 0.07 0.07 0.11

Reconstructed
digit 6

SSIM (FCNN)

(h)

(g)

0.91 0.84 0.61 0.36 0.21 0.16 0.15 0.11 0.04 0.06SSIM (FCNN)

Reconstructed
digit 7

0.0000 0.0037 0.0148 0.0332 0.0591 0.0924 0.1329 0.1811 0.2364 0.2991Applied MSE

0.95 0.86 0.56 0.33 0.18 0.15 0.11 0.13 0.12 0.08

Reconstructed
digit 8

SSIM (FCNN)

(j)

0.93 0.82 0.60 0.37 0.42 0.23 0.21 0.19 0.17 0.14SSIM (FCNN)

Reconstructed
digit 9

Figure 6.13.: MNIST digits reconstructed by a fully connected neural network (FCNN) with
simulated noised datasets. The SSIM values indicate the similarities between reconstructed
and ground truth images.
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0.89 0.95 0.75 0.91 0.80 0.85 0.86 0.85 0.93 0.85SSIM (FCNN)

(d)
Reconstructed
at 35°C

Ground Truth

0.93 0.96 0.81 0.89 0.84 0.92 0.90 0.93 0.94 0.92

Reconstructed
at 25°C

SSIM (FCNN)

(a)

(c)

(b)

0.96 0.97 0.91 0.93 0.94 0.93 0.96 0.93 0.97 0.95SSIM (FCNN)

Reconstructed
at 30°C

0.30 0.88 0.10 0.57 0.32 0.44 0.50 0.45 0.44 0.38SSIM (FCNN)

(g)
Reconstructed
at 55°C

0.72 0.91 0.57 0.70 0.55 0.55 0.75 0.59 0.60 0.57

Reconstructed
at 40°C

SSIM (FCNN)

(f)

(e)

0.88 0.92 0.60 0.86 0.74 0.66 0.79 0.83 0.84 0.74SSIM (FCNN)

Reconstructed
at 45°C

0.27 0.84 0.16 0.50 0.27 0.41 0.46 0.41 0.53 0.31

Reconstructed
at 56 °C

SSIM (FCNN)

(i)

(h)

0.23 0.86 0.23 0.45 0.28 0.43 0.48 0.43 0.47 0.31SSIM (FCNN)

Reconstructed
at 75°C

Figure 6.14.: MNIST digits reconstructed by a fully connected neural network (FCNN) at differ-
ent temperatures (speckles acquired with a 200-µm core diameter MMF). (a) shows the ground
truth images, (b)-(i) represent the reconstructed images at different temperatures with the cor-
responding SSIM.
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(i)

(c)

(a) Reconstructed
digit 0

0.92 0.89 0.86 0.76 0.59 0.53 0.59 0.46 0.37 0.43SSIM (U-Net)

Reconstructed
digit 2

0.95 0.92 0.81 0.61 0.58 0.41 0.33 0.24 0.31 0.29SSIM (U-Net)

(b)

0.90 0.90 0.86 0.75 0.65 0.45 0.37 0.50 0.44 0.43SSIM (U-Net)

Reconstructed
digit 1

0.94 0.92 0.83 0.70 0.61 0.52 0.50 0.45 0.41 0.23SSIM (U-Net)

(f) Reconstructed
digit 5

0.88 0.85 0.78 0.70 0.59 0.52 0.41 0.47 0.43 0.31

Reconstructed
digit 3

SSIM (U-Net)

(e)

(d)

0.88 0.86 0.76 0.71 0.49 0.46 0.46 0.43 0.42 0.39SSIM (U-Net)

Reconstructed
digit 4

0.89 0.86 0.77 0.64 0.52 0.32 0.32 0.28 0.24 0.31

Reconstructed
digit 6

SSIM (U-Net)

(h)

(g)

0.93 0.90 0.81 0.60 0.57 0.40 0.47 0.35 0.44 0.30SSIM (U-Net)

Reconstructed
digit 7

0.0000 0.0037 0.0148 0.0332 0.0591 0.0924 0.1329 0.1811 0.2364 0.2991Applied MSE

0.94 0.95 0.88 0.74 0.71 0.56 0.60 0.48 0.41 0.30

Reconstructed
digit 8

SSIM (U-Net)

(j)

0.96 0.94 0.88 0.78 0.73 0.65 0.57 0.47 0.42 0.36SSIM (U-Net)

Reconstructed
digit 9

Figure 6.15.: MNIST digits reconstructed by U-Net with simulated noised datasets. The SSIM
values indicate the similarities between reconstructed and ground truth images.
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0.82 0.93 0.75 0.88 0.73 0.80 0.75 0.88 0.77 0.80SSIM (U-Net)

(d)
Reconstructed
at 35°C

Ground Truth
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Reconstructed
at 25°C

SSIM (U-Net)

(a)

(c)

(b)
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Reconstructed
at 30°C
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(g)
Reconstructed
at 55°C
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Reconstructed
at 40°C

SSIM (U-Net)

(f)

(e)

0.76 0.90 0.69 0.86 0.82 0.80 0.71 0.80 0.77 0.74SSIM (U-Net)

Reconstructed
at 45°C

0.78 0.85 0.60 0.68 0.72 0.68 0.71 0.70 0.78 0.70

Reconstructed
at 56 °C

SSIM (U-Net)

(i)

(h)

0.73 0.91 0.68 0.71 0.66 0.74 0.69 0.78 0.72 0.73SSIM (U-Net)

Reconstructed
at 75°C

Figure 6.16.: MNIST digits reconstructed by U-Net at different temperatures (speckles acquired
with a 200-µm core diameter MMF). (a) shows the ground truth images, (b)-(i) represent the
reconstructed images at different temperatures with the corresponding SSIM.

91



Chapter 6. Multimode Fiber Imaging with Deep Learning

6.2.4. Discussion

The average SSIM of the complete dataset versus the applied MSE value in the simulation
is shown in Fig. 6.17(a), and the average SSIM versus temperature is shown in Fig. 6.17(b).
In the simulation, FCNN leads to a lower SSIM than U-Net with applied noise. The same
trend also occurs in the measurement, but in the temperature range of 25 to 35◦C, FCNN
performs slightly better than U-Net. It might be caused by the instability in the speck-
les over acquisition. One is that besides the thermal perturbation during the experiment,
the changes in the ambiance and MMF itself may contribute to additional distortion in the
speckles. Another possibility is that, due to the thermo-optic effects, thermal expansion,
and photoelastic effects, the temperature increase leads to the core diameter expansion
and length increasing, contributing to the speckle changes. These phenomena may par-
tially explain the difference between simulation and measurement results.
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Figure 6.17.: Average SSIM versus (a) applied MSE values in simulation and (b) temperature
changes in experiment.

6.3. Multimode Fiber Imaging Reconstruction: Natural
Images

As the complexity of the images limits the practical implementation of MMF imaging, the
reconstruction of natural images transmitted through an MMF is investigated by fine-tuning
different neural networks. The original natural image dataset contains 6899 images from
eight distinct classes: airplane, motorbike, person, cat, flower, car, fruit, and dog. By data
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augmentation, i.e., rotation, an input dataset of 10238 images is created, and the speckle
patterns are collected using the same setup. As the size of the ground truth image is
64×64, a 400-µm core diameter MMF is used to guarantee coupling efficiency. The size
of the collected speckle image is 112×112. A dataset of 10238 pairs of ground truth and
speckle images is created and divided into training and validation datasets with a ratio of
19:1, resulting in 9726 pairs for training and 512 pairs for testing.

6.3.1. Multi-Hidden-Layer Fully Connected Neural Network

The proposed FCNN is proven to be able to revive the MNIST handwritten digits with high
fidelity. Therefore, here, it is also used to reconstruct natural images. As the proposed
FCNN is optimized for the MNIST dataset, fine-tuning the network for the natural image
dataset is necessary. The FCNN is determined to be trained using Adam optimization with
a batch size of 256 images, and early stopping is implemented at 100 epochs after the
validation loss stops improving. The learning rate is 0.0001, and the objective function is
MSE.

The reconstruction results of the proposed FCNN (2 hidden layers) are shown in Fig. 6.18(d),
which shows the shapes of the ground truth images but not the details. The SSIM values
are not as high as those of the MNIST dataset but are promising. Furthermore, the effec-
tiveness of the number of layers is investigated, in particular, testing the same architecture
of FCNN with one hidden layer and three hidden layers. The image reconstructions of 1-
hidden-layer and 3-hidden-layer FCNN are presented in Fig. 6.18(c) and Fig. 6.18(e). The
reconstructed images of 1-hidden-layer FCNN contain the most details and also have better
SSIM. The result of the 2-hidden-layer FCNN is less noisy than that of the 1-hidden-layer
FCNN but is more blurry. It is the same for the 3-hidden-layer FCNN; the results are less
noisy but more blurry than the 2-hidden-layer model. The results show that adding hidden
layers in the FCNN does not improve the reconstruction accuracy.

Figure 6.19 shows the MSE losses of multi-hidden-layer FCNNs calculated by objective
function over the training and testing datasets. Both training loss and validation loss of
1-hidden-layer FCNN are lower than those of 2-hidden-layer or 3-hidden-layer FCNN. It
indicates that more hidden layers do not lead to lower MSE loss but increase the training
time as more parameters are added to the model.
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Ground Truth

0.70 0.68 0.74 0.69 0.58 0.62 0.84 0.58

0.61 0.62 0.65 0.45 0.46 0.42 0.86 0.35

Speckles

SSIM (FCNN)

SSIM (FCNN)

(a)

(c)

(b)

(e)

Reconstructed
Digits by

-layer FCNN1

Reconstructed
Digits by
3-layer FCNN

0.69 0.66 0.69 0.64 0.53 0.54 0.86 0.47SSIM (FCNN)

( )d
Reconstructed
Digits by
2-layer FCNN

Figure 6.18.: Natural images reconstructed by multi-hidden-layer fully connected neural net-
work (FCNN): (c) 1-hidden-layer FCNN, (d) 2-hidden-layer FCNN, and (e) 3-hidden-layer FCNN.
The SSIM values indicate the similarities between reconstructed and ground truth images.

Figure 6.19.: Training (dotted line) and validation (solid line) losses as a function of the number
of epochs for multi-hidden-layer FCNN: 1-hidden-layer (blue), 2-hidden-layer (orange), and 3-
hidden-layer (green).
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Besides the MSE loss function, the SSIM loss function is also tested, and these two loss
functions deliver comparable reconstruction qualities. Therefore, the MSE loss function is
still used in the MMF imaging system.

6.3.2. U-Net

The U-Net is widely used in machine-learning-based medical image classification and seg-
mentation. It is proven to be more robust to thermal perturbation in MNIST digits recon-
struction. Therefore, here, U-Net is also applied to the reconstruction of natural images.
The architecture of U-Net is the same as Fig. 6.8, but the training parameters of the net-
work are optimized according to the size of the natural image. The U-Net is trained using
Adam optimization with a batch size of 32 images, and early stopping is also included at
100 epochs after the validation loss stops decreasing. The learning rate is determined to
be 0.0005, and the loss function is MSE, too. The reconstructed images are presented in
Fig. 6.20. The SSIM values are comparable to the results of the FCNN, as the reconstructed
images are more blurry and contain fewer details.

Ground Truth

0.71 0.58 0.61 0.42 0.51 0.48 0.87 0. 73

Speckles

SSIM ( )U-Net

(a)

(c)

(b)

Reconstructed
Digits by
U-Net

Figure 6.20.: Natural images reconstructed by U-Net. The SSIM values indicate the similarities
between reconstructed and ground truth images.

6.3.3. Discussion

In this section, several architectures of neural networks are implemented for reconstruct-
ing natural images. Overall, all architectures are able to revive the general shapes of the
ground truth images. With additional layers, i.e., deeper neural networks, the FCNN and U-
Net can reduce the noise level and, conversely, also lose more details. Table 6.3 compares
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Table 6.3.: Summary of average SSIM, training time, and the number of training parameters for
different neural network architectures.

Architecture Average SSIM Training time (s) Number of parameters

1-hidden-layer FCNN 0.63 1089 68157440
2-hidden-layer FCNN 0.57 1346 84934656
3-hidden-layer FCNN 0.46 1562 101711872

U-Net 0.54 1294 4407673

the average SSIM, the training time, and the total number of parameters of different archi-
tectures. It can be observed that the average SSIM decreases with more hidden layers in
the FCNN. With more hidden layers, the total number of parameters certainly increases, re-
sulting in a longer training time as they are proportionate. The U-Net needs relatively fewer
training parameters but still requires longer training time. Additionally, other architectures of
neural networks, e.g., Generative Adversarial Network (GAN), are also tested, but they do
not provide significant improvement compared to the 1-hidden-layer FCNN. Therefore, the
proposed 1-hidden-layer FCNN can reconstruct natural images with high fidelity compared
to other architectures. This architecture is also faster and easier to adapt to other datasets.

6.4. Summary

A multimode fiber imaging system combined with deep learning is developed in this chap-
ter. Two problems that limit the practical usability of MMF imaging are studied: thermal
perturbation and reconstruction of natural images.

An MMF imaging setup with speckle acquisition is introduced. Two types of neural net-
works are exploited, i.e., fully connected neural networks and convolutional neural networks
(U-Net). Both networks are first tested on the MNIST handwritten digits dataset. The re-
construction results show that both neural networks can reconstruct the MNIST handwritten
digits with remarkable fidelity. Then, the influence of thermal perturbation on image recon-
struction is simulated and verified experimentally. To apply the thermal perturbation, the
MMF is heated from 25 to 75◦C. The speckles at the output distal end of the MMF are
collected at different temperatures. The experimental results are in good agreement with
the simulated results. It shows that, up to a certain level of thermal perturbation, i.e., the
temperature changes from 25 to 45◦C in this work, both FCNN and U-Net are robust to the
thermal perturbation. In the range of 25 to 35◦C, the FCNN performs slightly better than the
U-Net, and from 45 to 75◦C, the U-Net can revive the digits with better fidelity compared to
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the FCNN.
Moreover, the reconstruction of the natural images is also investigated with the proposed

imaging system. The revival of the natural image is carried out with multilayer FCNN and
U-Net. Compared to the convolutional neural network, i.e., U-Net, the proposed 1-hidden-
layer FCNN has advantages like higher reconstruction fidelity, faster training time, and sim-
pler neural network architecture.

This work may provide a guideline for implementing the MMF imaging system practically.
For example, in the low-temperature range, like medical endoscopic imaging, the FCNN is
preferred, as it performs faster than the U-Net with comparable fidelity. Nevertheless, U-Net
may be favored in industrial scenarios, as a high-temperature range is usually needed. The
reconstruction of the natural images with thermal perturbation needs to be investigated for
future use.
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7.1. Conclusion

In this dissertation, fiber-optic multimode interference sensing and imaging are presented.
Several MMI-based fiber sensors have been developed and studied for temperature and
strain measurement, and further, an MMF imaging system with deep learning has been
investigated. The temperature and strain sensitivities of the proposed sensors are sig-
nificantly improved, and these sensors provide guidelines and possibilities for developing
MMI-based fiber sensors for future studies. The MMF imaging system with deep learn-
ing is tested under a common and unavoidable influence, thermal perturbation, on image
reconstruction by MMF imaging. Two neural networks are designed and adapted for the
corresponding system, and the results show they are robust to thermal perturbation. This
research promotes the practical usability of MMF imaging systems in various fields like
medical endoscopic imaging and industrial applications.

In Chapter 1, a brief history of optical fibers is introduced first, and the development of
optical fiber sensors and fiber-optic imaging is followed. The aims and objectives of this
dissertation are pointed out, and the layout of this dissertation is given.

In Chapter 2, the fundamentals and state of the art of MMI-based fiber sensors and MMF
imaging systems are presented. The related characteristics of the MMF, including the NA
and the number of modes, are introduced. The sensing principle of the simplest structure
to generate multimode interference, the so-called SMS structure, is described as the foun-
dation of most MMI-based fiber sensors. Further, the current research status of MMI-based
fiber sensors is summarized. The sensing principle and literature research indicate a fun-
damental discussion: whether the sensitivity is affected by the length of the MMF in the
SMS structure. Besides, it also reveals that high-sensitivity and multi-parameter sensing
are significantly needed. Three possibilities are suggested to enhance the performance of
MMI-based fiber sensors, including new fiber sensor structures, new compensation meth-
ods, and new types of fibers. For MMF imaging, the traditional method to measure the
TM of the MMF is introduced, which is relatively time-consuming and unstable to the ambi-
ent changes and deformation of the MMF. With the blossom of machine learning methods,
MMF imaging combined with machine learning draws massive attention. The current evo-
lution of applying machine learning to MMF imaging is studied. Its advantages, tolerant to
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the deformation of the MMF, and drawbacks, the performance of neural networks limited by
the complexity of the images, are summarized, which leads to two research topics: MMF
imaging with deep learning under thermal perturbation and the reconstruction of natural
images through an MMF.

In Chapter 3, a comprehensive characterization of standard MMF is conducted exper-
imentally to evaluate the core diameter, NA, and length dependences of the strain and
temperature sensitivities of a standard MMF-based SMS structure. The measurement re-
sults show that (i) a larger core diameter brings to higher temperature sensitivity and lower
strain sensitivity (absolute value), (ii) higher NA does not affect the temperature sensitivity
but results in higher strain sensitivity (absolute value), and (iii) longer MMF length leads to
lower temperature sensitivity but does not influence the strain sensitivity. It is noticed that
the strain sensitivities are relatively low during all the measurements. Subsequently, ex-
ploiting the low strain sensitivities, the standard SMS-based strain-insensitive temperature
sensing is demonstrated. The mean temperature sensitivity is 6.14 pm/◦C, and its standard
deviation is 0.39 pm/◦C. The findings will be of great significance for designing SMS struc-
tures, and strain-insensitive temperature sensing will be of practical use for its simplicity
and cost efficiency.

In Chapter 4, according to the possibility summarized in Chapter 2 that the new type of
fiber may enhance the performance of the MMI-based fiber sensors by increasing sensitiv-
ity and reducing crosstalk, a new specialty fiber, i.e., square-core fiber, is investigated. The
SCF has a square-shaped silica core surrounded by circular polymer cladding. An SMS
structure consisting of a segment of the SCF is fabricated and tested for temperature and
strain sensing. The simulation of beam propagation in the SMS structure consisting of cir-
cular core and square-core fiber is carried out. The experimental results show that SCF is
promising for sensing compared to other specialty fibers with circular cores. Similar to the
standard MMF-based SMS structure, the strain sensitivity is extremely low compared to the
temperature sensitivity. Therefore, it also has the potential to exhibit strain-insensitive tem-
perature sensing. The obtained mean temperature sensitivity is −22.35 pm/◦C, with a stan-
dard deviation of 0.44 pm/◦C, in the strain range of 0 to 500 µε), which is ∼3.5 times higher
than the sensitivity (absolute value) of a standard MMF-based configuration (in Chapter
2) under the same condition. This investigation proves that the new type of fiber may im-
prove the sensitivity, and this study will also contribute to the design of strain-insensitive
temperature sensors and the development of specialty fiber-based SMS structures in the
future.

In Chapter 5, based on the conclusion in Chapter 2 that the new sensor structure has
the potential to increase the sensitivity, a core-offset SMS structure is developed for tem-
perature and strain sensing. This sensor consists of a standard MMF and can be easily
fabricated using a commercial arc fusion splicer. Six samples, with the core offsets of 0
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(aligned), 10, 15, 20, 25, and 30 µm, are created, and their performances, with the core
offsets at input and output SMF/MMF boundaries, are investigated. The obtained maximal
temperature sensitivity is 13.92 pm/◦C, which is ∼two times the value of the aligned SMS
sensor, while the strain sensitivity is −1.19 pm/µε, which is ∼eight times higher. The ex-
perimental results also show that both temperature and strain sensitivities–with the core
offset at the input SMF/MMF boundary–are higher than those with the core offset at the
output SMF/MMF boundary. As the maximal sensitivity for both temperature and strain are
obtained with the 20-µm core offset, not the largest core offset of 30-µm, it reveals a ceil-
ing of offset-induced sensitivity improvement. Additionally, pull tests of the core-offset SMS
structures are carried out, and the results indicate that they can withstand at least 1.5% of
strain regardless of the offset amplitudes. This study proved that the new structure is able
to improve the sensitivity and will be a valuable method for enhancing the sensitivities of
SMS temperature and strain sensors in the future, with the simplicity, cost efficiency, and
robustness of this sensor configuration.

In Chapter 6, an MMF imaging system combined with deep learning is developed to study
two factors that limit its practical usability. The experimental setup is built based on the SLM,
the core component, illuminated by an expanded laser beam. The information of the images
is carried by the reflected beam and coupled into an MMF. At the output distal end of the
MMF, the speckle patterns are captured by a CMOS camera. Two neural networks are
designed and adapted for image construction, i.e., fully connected neural networks (FCNN)
and convolutional neural networks (U-Net). First, the MNIST handwritten digits dataset
is reconstructed with both neural networks. The results show that both neural networks
can revive the images with remarkable fidelity. Subsequently, the MMF is heated from
25 to 75◦C to apply the thermal perturbation to the MMF imaging system. Moreover, the
speckles are collected at different temperatures. The reconstruction results of experimental
data agree with the simulation, which shows that to a certain level of thermal perturbation,
i.e., the temperature changes from 25 to 45◦C in this study, both FCNN and U-Net are
robust to the thermal perturbation. The FCNN performs slightly better than the U-Net in
the range of 25 to 35◦C, but from 45 to 75◦C, the U-Net can reconstruct the digits with
better fidelity compared to the FCNN. Furthermore, the reconstruction of natural images,
which are more complex than the MNIST handwritten digits, is also investigated with the
same imaging system. Based on the FCNN, a multilayer FCNN is developed and tested on
the revival of natural images. The results show that the proposed 1-hidden-layer FCNN is
superior to the U-Net and other multilayer FCNNs due to the higher reconstruction fidelity,
faster training time, and simpler network architecture. This study benefits the practical use
of the MMF imaging system. Depending on the complexity of different applications, suitable
neural networks can be employed. For example, in the low-temperature range, like medical
endoscopic imaging, the FCNN is preferred due to the high fidelity with less training time.
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The U-Net may be a better choice for industry, as a high-temperature range is usually
needed, like oil prospecting.

7.2. Outlook

The improvement of the MMI-based sensor configurations presented in this dissertation
includes enhanced sensitivities for temperature and strain sensing, easy-to-fabricate struc-
tures, and cost efficiency. A new specialty fiber, square-core fiber, is used, and its sensing
ability, comparable to other specialty fibers, is proven. However, the characteristics of the
square-core fiber still need to be well demonstrated. The sensing performance can be im-
proved with a better understanding of the square-core fiber. To fabricate an SMS structure,
it is critical that the end faces of the MMF are perfectly cleaved. Specialty fibers are usually
made of uncommon materials, not silica. For instance, the cladding material of square-core
fiber is hard-polymer, which cannot be spliced to the SMFs. Further, there is no matured
technique to cleave the square-core fiber, and the imperfect end faces of the square-core
fiber lead to a noisy transmission spectrum. It results in difficulty localizing the spectral
dip/peak as the indicator to calculate the sensitivity. With the development of manufactur-
ing, cleaving, and fiber-related accessories, specialty fibers will contribute significantly to
the evolution of optical fiber sensors.

The MMI-based fiber sensors are very sensitive to ambient changes and deformation of
the fibers, which leads to inaccurate sensitivity. For example, temperature changes cause
the expansion of the fiber, resulting in changes in fiber length and core diameter, which in-
fluences temperature sensitivity. So reducing the crosstalk and the undesirable influence is
crucial to boost the sensitivity accuracy. In Chapter 3, strain-insensitive temperature sens-
ing is investigated, implying that a zero-strain sensitivity can be realized at a specific core
diameter. The same goes for Chapter 4, which shows that square-core fiber exhibits strain-
insensitive temperature measurement. In future studies, the core diameter dependence
needs to be studied systematically, and it is necessary to explore different specialty fibers
for the purpose of reducing crosstalk. As the square-core fiber has a square-shaped core, it
is easier to apply a coating on the flat surfaces of the fiber core than on the circular-shaped
core. Choosing specific materials may eliminate the crosstalk and increase the sensitivity.

The study of the core-offset SMS structure using standard MMF comprehensively presents
the characteristics of this configuration, and the sensitivity is enhanced significantly. Con-
sidering the studies of specialty fibers and strain-insensitive temperature sensing, it mo-
tivates a possibility to combine the core-offset SMS structure with specialty fibers, which
may boost the sensitivity and reduce the crosstalk simultaneously. With this, high-sensitivity
multi-parameter sensing can be achieved with high accuracy.
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The preliminary demonstration of the MMF imaging system combined with deep learning
for image reconstruction under thermal perturbation shows that the neural networks are
robust to the thermal perturbation applied to the MMF imaging system. It broadens the
practical usability of MMF imaging systems. However, a wider temperature range cannot
be tested due to the limit of the experimental conditions, as the large core diameter MMFs
mostly have polymer claddings that cannot endure high temperatures. Using specialty MMF
and investigating higher temperatures certainly will further expand the use of the MMF
imaging system, for example, in industry. In general, reconstructing complex images, i.e.,
natural images, is still challenging. The complexity of the images limits the neural networks.
With the evolution of deep learning techniques, this limit can be lifted in the near future.
Besides, using the unique characteristics of specialty MMFs for imaging may contribute,
too. As MMF sensing has been established for decades, and MMF imaging is developing
rapidly, implementing sensing into the imaging system will be beneficial. For example,
optical fiber-based medical endoscopes are widely used for surgeries, and measuring the
temperature during the operation is vital. Other devices are usually needed to measure the
temperature separately, and they cannot measure the temperature with the endoscopes in
specific tissues or organs. If the endoscope can measure the temperature simultaneously
with imaging, it will simplify the devices and can measure the temperature particularly. It is
the future of multimode fiber.
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