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1  |  INTRODUC TION

Globally, biodiversity declines, threatening over 82,000 species 
(Maxwell et al.,  2016). Apart from land-use change and the direct 

exploitation of species, anthropogenic climate change is now among 
the most important drivers of biodiversity decline (IPBES,  2019; 
Newbold et al., 2020). It alters the environmental conditions to such 
an extent that many ecoregions will be put under substantial survival 
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Abstract
Aim: Environmental conditions define the suitability of an area for biotopes, and any 
area can be suitable for several biotopes. However, most previous studies modelled 
the distribution of single biotopes ignoring the potential co-occurrence of biotopes in 
one area, which limits the usefulness of such models for conservation and restoration 
planning. In this study, we described the potential biotope composition of an area in 
response to environmental conditions.
Location: Bavaria, Federal State of Germany.
Methods: Based on the Bavarian biotope mapping data, we modelled the distribution 
of 29 terrestrial biotopes based on six climate variables and six chemical and four 
physical soil properties using the species distribution modelling algorithm Maxent.
Results: For most biotopes, we found that climate variables were more important than 
soil variables for the biotope distribution and that the area of the predicted biotope 
distribution was larger than the observed distribution. The potential biotope composi-
tion illustrated that while 8% of the area in Bavaria was not sufficiently suitable for 
any analysed biotope, 92% of the modelled area in Bavaria was suitable for at least 
one biotope, 84% for two and 77% for at least three biotopes. The difference in suit-
ability between the most suitable biotopes in composition was minor. Further, over 
one-quarter of the modelled area was suitable for 6–8 different biotopes.
Main Conclusions: Our study showed that considering a composition of potentially 
suitable biotopes in a raster cell, instead of only the most suitable biotope, provides 
valuable information to identify conservation priorities and restoration opportunities.
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stress (Beaumont et al., 2011), forcing them to adapt their environ-
mental demands (Sillero et al.,  2022) or to move to more suitable 
areas, which poses multiple challenges to them. It is unclear whether 
they can arrive at a new area with suitable conditions due to land-
scape destruction and fragmentation (Hof, 2021), and even if a spe-
cies can reach a new area with suitable environmental conditions, it 
is questionable if local human activities allow the occurrence of the 
species (cf. effects of land use; Franklin, 1995).

Measures to reduce biodiversity decline need to be accompa-
nied by biodiversity monitoring, but monitoring data are available for 
only a few well-studied species groups in a few well-sampled regions 
(IUCN,  2021). Comprehensive monitoring of all species will take 
too long, but conservation planning needs information now. One 
way to overcome this challenge is to monitor and preserve whole 
biotopes instead of single species (Chytrý et al.,  2020; European 
Community,  1992; Watson et al.,  2014). Biotopes are landscape 
elements characterised by specific species communities (primar-
ily plant species composition) that developed due to environmen-
tal conditions (Colwell & Rangel,  2009). Thus, biotopes represent 
specific land-cover types that can be displaced by other land-cover 
types like agricultural fields. Monitoring and conserving biotopes is 
assumed to monitor and conserve the associated species and bio-
diversity (Watson et al., 2014), thereby mitigating the challenge of 
lacking biodiversity data.

For some biotopes (and their associated species), the currently 
remaining areas might not be large enough to ensure long-term 
survival due to insufficient population sizes (Matthies et al., 2004). 
Future climate and land-use change will further exacerbate this 
problem (Hof et al., 2011). Therefore, besides conservation, active 
biotope restoration is needed. To select areas suitable for resto-
ration, information about the potential distribution of biotopes is 
crucial (Loidi & Fernández-González, 2012). Rather than depending 
on qualitative expert opinions, which was classically done in po-
tential natural vegetation approaches (Tüxen,  1956), information 
on potential biotope distribution can be provided quantitatively by 
distribution modelling (i.e. the predicted distribution of biotopes, 
Guisan et al.,  2017; Jiménez-Alfaro et al.,  2018). These models 
evaluate the abiotic environmental conditions of an area and esti-
mate the potential suitability for a biotope based on the concept 
that abiotic environmental variables describe the potential distri-
bution of a biotope (Franklin, 1995). Ideally, this potential distribu-
tion would be available for each biotope so that conservation and 
restoration could consider multiple biotopes. However, the focus of 
previous studies was only on a few specific biotopes with high con-
servation interest (e.g. Keith et al., 2014; Marage & Gégout, 2009; 
Vogiatzakis & Griffiths, 2006), or the studies were on coarse spatial 
scales (Jiménez-Alfaro et al., 2018), which limits the use for regional 
management and planning (Rubanschi et al., 2022).

In this paper, we model the potential biotope composition by 
considering multiple environmentally suitable biotopes in one area. 
This approach will provide crucial information for conservation and 
restoration planning. We use the unique dataset of the Bavarian 

biotope mapping (Lang & Zintl, 2018) that describes the occurrence 
of an extensive range of different biotopes in the German Federal 
State of Bavaria. For a selection of 29 terrestrial biotopes, we project 
the environmental suitability in Bavaria based on 16 abiotic variables 
covering climate and soil properties using the Maxent species dis-
tribution modelling algorithm. Based on these projections, we iden-
tified the potential biotope composition for the whole of Bavaria. 
Specifically, our study aimed at (a) identifying the environmental 
variables that drive the distribution of single biotopes, (b) illustrating 
which biotopes can potentially co-occur in an area and (c) showing 
how many biotopes can potentially co-occur.

2  |  METHODS

2.1  |  Study region

The study was conducted in the Federal State of Bavaria (south-
east Germany), covering an area of around 70,550 km2 located be-
tween 47°16′-50°34′N and 8°58′-13°50′E. The Bavarian elevation 
profile includes the Calcareous Alps in the south (2962 m a.s.l. on 
Mt. Zugspitze), the Bavarian Forest in the north-east (1455 m a.s.l. 
on Mt. Arber), the hook-shaped Franconian Jura in the centre (600–
700 m a.s.l.) and the lowlands between 100 and 500 m a.s.l. The 
Bavarian climate ranges from sub-oceanic in the northwest to sub-
continental in the plains and basins, to a montane climate in the Alps. 
Bedrock also varies from granite and gneiss in the Bavarian Forest to 
limestone in the Alps and the Franconian Jura. Land use in Bavaria 
is dominated by agriculture (46.3%) and forestry (35.3%) (Bayrisches 
Landesamt für Statistik, 2020).

2.2  |  Environmental conditions in 
Bavaria and their selection

To describe the current environmental conditions across Bavaria, we 
collected 19 climate variables from the WorldClim dataset (Version 
2.1, spatial resolution of 30 arc seconds, temporal aggregation of 
the years 1970–2000; Fick & Hijmans,  2017), nine soil chemical 
properties (spatial resolution of 250 m; Ballabio et al., 2019), six soil 
physical properties (spatial resolution of 250 m; Ballabio et al., 2016) 
and elevation as a topographical variable (spatial resolution of 30 arc 
seconds; European Environment Agency, 2016), resulting in a total 
of 35 variables that could be used for predicting the biotope distri-
bution (Table 1).

The environmental variables were provided in different spatial 
resolutions (see Table 1), which we resolved by using the coarsest 
grid to avoid the need for downscaling variables. We thus created a 
raster based on the resolution of the climatic variables (30 arc sec-
onds, 56.6 ha ± 0.9 ha, i.e. a square of c. 930 m × 610 m in the study 
region) and rescaled the other environmental variables by calculat-
ing for the new raster cells the mean value of the initial raster cells 
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overlapping with the new raster cells. This rescaling was performed 
with the geographic information system QGIS (QGIS Development 
Team, 2020). 385 out of a total of 126,697 raster cells were excluded 
as they were entirely covered by water bodies or had a high propor-
tion of sealed surfaces such as airports or cities.

To correctly assess the association of biotope distribution with 
environmental variables, the variables require low collinearity and 
low variance inflation factors (VIFs; Dormann et al.,  2013; Zuur 
et al., 2010). Therefore, we excluded variables that correlated with 
|r| > .7 (Figure  S1 in Appendix  S3; Dormann et al.,  2013) or had a 
VIF > 3 (Table S6 in Appendix S2; Zuur et al., 2010). After the step-
wise elimination of variables using the “vifcor” and “vifstep” func-
tions of the “usdm” packaged 1.1-18 (Naimi et al., 2014) in R 3.6.1 
(R Core Team,  2020), 16 variables remained, including six climate 
variables, six chemical and four physical soil properties (Table  1). 
The variable selection eliminated the topographical variable eleva-
tion because of its collinearity with climate variables (Figure S1 in 
Appendix S3).

2.3  |  The Bavarian biotope mapping

Since 1985, the Bavarian Environment Agency (Bayerisches 
Landesamt für Umwelt) maps biotopes by monitoring the entire area 
of Bavaria. They aim to map all (semi-)natural areas housing specific 
biological communities containing often protected or threatened spe-
cies (Rubanschi et al.,  2022). Consequently, most mapped biotopes 
are protected under federal and state nature conservation acts (§ 30 
and 39 of the BNatSchG/Federal Nature Conservation Act, articles 
16 and 23 of the BayNatSchG/Bavarian Nature Conservation Act). 
For each mapped biotope, the spatial shape of the area (polygon) and 
vegetation composition were recorded. This vegetation composition 
was then compared with a classification key (Lang & Zintl, 2018) to as-
sign the observation to one of 108 biotopes (Table S1 in Appendix S2). 
Since 2006, some of the 108 biotopes were even further differentiated 

Abiotic variables (spatial 
resolution) Short name Unit

Soil physical properties (250 m)

Available Water 
Capacity

Available_Water_
Capacity

mm/m

Bulk density Bulk_density T × m−3

Clay content %

Coarse fragments Coarse_fragments %

Sand content %

Silt content Silt% %

Topology (30 arc seconds)

Elevation m

Note: Variables used in the Maxent models are italic and have a short 
name, which is used in Figure 1.

TA B L E  1  (Continued)TA B L E  1  Summary of environmental variables and their spatial 
resolution

Abiotic variables (spatial 
resolution) Short name Unit

Climate (30 arc seconds)

Annual Mean 
Temperature

°C

Mean Diurnal Range °C

Isothermality Isothermality %

Temperature Seasonality Temp_Seasonality °C × 100

Max Temperature of 
Warmest Month

°C

Min Temperature of 
Coldest Month

°C

Temperature Annual 
Range

°C

Mean Temperature of 
Wettest Quarter

Mean_Temp_Wettest_
Quarter

°C

Mean Temperature of 
Driest Quarter

Mean_Temp_Driest_
Quarter

°C

Mean Temperature of 
Warmest Quarter

°C

Mean Temperature of 
Coldest Quarter

°C

Annual Precipitation mm

Precipitation of 
Wettest Month

mm

Precipitation of Driest 
Month

mm

Precipitation Seasonality Prec_Seasonality %

Precipitation of 
Wettest Quarter

mm

Precipitation of Driest 
Quarter

mm

Precipitation of 
Warmest Quarter

mm

Precipitation of Coldest 
Quarter

Prec_Coldest_Quarter mm

Soil chemical properties (250 m)

Cation Exchange 
Capacity

Cation_Exchange_
Capacity

cmol × kg−1

C/N ratio ratio

Calcium carbonates CaCO3 g kg−1

Nitrogen Nitrogen g × kg−1

pH in CaCl2 pH

pH in H2O pH

pH in H2O minus pH in 
CaCl2

pH_H2O_CaCl_ratio pH

Phosphorus Phosphorus mg × kg−1

Potassium Potassium mg × kg−1
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into subtypes according to the Fauna-Flora-Habitat (FFH) guidelines, 
which aim to protect wild species and their habitats and to provide 
a European-wide network of habitats (European Community,  1992; 
Lang & Zintl, 2018). Due to small-scale fluctuation in species composi-
tion, many recorded polygons consisted of mixtures of different bio-
topes (e.g. 10% “Nutrient-poor old grasslands and fallow grasslands”, 
20% “Nutrient-poor grasslands, base-rich” and 70% “Hedges, near 
natural”). In total, 1.7 million biotopes were observed, covering about 
5% (3723 km2) of the area of Bavaria (Rubanschi et al., 2022).

2.4  |  Preparation of biotope data

Using the Bavarian biotope mapping dataset, we treated each biotope 
per polygon as an independent observation of this biotope. Further, 
we focused on the 108 main biotopes and ignored the additional dif-
ferentiation into subtypes. Instead, we grouped the biotopes into six 
biotope types based on the dominating vegetation described in the 
biotope mapping manual (Lang & Zintl, 2018), covering the following 
proportions of the total mapped biotope area: bush (11.4%), forest 
(23.5%), grassland (32.6%), peatland (13.9%), water-associated (9.5%) 
and biotopes, which were human-dominated or had no clear defini-
tion (9.1%) (see Appendix 1 and Rubanschi et al., 2022).

For the biotope distribution modelling, we focused on terrestrial 
biotopes (bushes, forests and grasslands) that provided a sufficient 
number of observations. Thus, we excluded all peatland, water-
associated and human-dominated biotopes and those biotopes with 
<500 observations, resulting in 29 biotopes with a total number of 
685,647 observations (Table  2; 39.5% of all biotope observations) 
covering 2028 km2 (54.5% of the mapped biotope area) with an av-
erage polygon size of 0.51 ha.

Abiotic variables were arranged as raster cells and biotopes were 
recorded as polygons. Most of the biotope polygons (71.05%) were lo-
cated in single raster cells that represent the environmental conditions 
of that polygon. The remaining 28.95% of biotope polygons extended 
over multiple raster cells. To describe the environmental conditions of 
these polygons, we calculated for each observed polygon the weighted 
mean of environmental condition (WM, see Equation 1) by multiplying 
the environmental value (EV, see Equation 1) of a raster cell overlapped 
by the polygon with the proportion of the whole polygon in the re-
spective raster cell (POLYproportion/POLYwhole, see Equation 1). Then, 
we sum the weighted mean values over all raster cells overlapped by 
one polygon (Equation 1, n equals the number of raster cells a polygon 
is overlapping with, i equals the raster cell in which the respective pro-
portion of polygon overlapped).

2.5  |  Modelling and evaluating the potential 
distribution of biotopes

All biotopes occurring in Bavaria are recorded in the Bavarian bio-
tope mapping as spatially explicit polygons. However, biotopes are 

land-cover types that can be displaced by anthropogenic land use. 
Thus, the absence of biotopes in an area cannot be interpreted as 
evidence for unsuitable abiotic conditions. Therefore, we treat the 
presence/absence dataset of the biotope mapping as a presence-
only dataset (cf., Elith et al., 2020; Lobo et al., 2010). We used the 
observations of a biotope in a polygon and the weighted mean 
environmental conditions of the respective polygon as presence 
data. Raster cells that do not overlap with the respective polygons 
were considered as background data in the model. The majority of 

(1)WM =

∑n

i=1
EVi ∗

POLYproportion i

POLYwhole

TA B L E  2  Summary of selected biotopes showing their biotope 
type and number of observations

Biotope Class Observations

Alluvial forest Forest 21,950

Alpine lawn Grassland 5319

Alpine nutrient-poor grassland Grassland 1799

Alpine yellow oat grasslands Grassland 621

Beech forest, heat-loving Forest 946

Black alder forest Forest 1015

Block and rubble forests Forest 583

Broadleaf forest, mesophilic Forest 11,522

Broadleaf forest, soil acidic Forest 2241

Dwarf shrubs and gorse heath Bushes 3784

Heat-loving edges Grassland 7873

Heat-loving shrubs Bushes 2651

Hedges, near natural Bushes 197,402

Large sedge meadows outside 
the siltation zone

Grassland 16,161

Mesophilic shrubs, near 
natural

Bushes 56,741

Moist and wet tall herbaceous 
vegetation, planar to 
montane

Grassland 56,664

Mountain pine scrubs Bushes 2237

Nard grass lawn Grassland 6617

Nutrient-poor grasslands, 
base-rich

Grassland 44,552

Nutrient-poor old grasslands 
and fallow grasslands

Grassland 89,116

Nutrient-poor yellow oat 
grasslands

Grassland 645

Pine forests, base-rich Forest 1536

Pine forests, soil acidic Forest 709

Pipegrass meadows Grassland 7133

Sandy nutrient-poor 
grasslands

Grassland 3677

Species-rich extensive 
grassland

Grassland 66,442

Species-rich lowland meadows 
of medium sites

Grassland 6085

Watercourse companion trees, 
linear

Forest 54,812

Wetland shrubs Bushes 14,814
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biotope polygons were observed in different raster cells (<3% of 
biotope polygons occurred in raster cells where another polygon 
of the same biotope was observed), and on average, the distance 
between the observed biotope polygons was high (mean distance 
62.35–209.98 km, median distance 24.45–234.86 km for individual 
biotopes). Consequently, we think spatial autocorrelation to be a 
minor issue with this data and saw no requirement for specific algo-
rithms, which correct for spatial autocorrelation. We modelled the 
distribution for each of the 29 biotopes in response to environmen-
tal conditions in a separate model (see ODMAP protocol in Appendix 
S1; Zurell et al., 2020).

We used the algorithm Maximum Entropy (Maxent) to model 
the distribution of the biotopes (Phillips et al.,  2006). Maxent has 
already been used to predict the distribution of vegetation commu-
nities (Fischer et al., 2019; Hemsing & Bryn, 2012; Jiménez-Alfaro 
et al., 2018; Tarkesh & Jetschke, 2012) and typically showed higher 
predictive accuracy than other distribution modelling approaches 
(Merow et al.,  2013; Warren et al.,  2020). Here, Maxent predicts 
a biotope's distribution by finding its distribution with maximum 
entropy (i.e. that is closest to uniform), where the average value of 
each environmental variable for the predicted distribution equals 
the average of the variable in the observed distribution of the bio-
tope (Phillips et al., 2006). Thus, we infer the predicted distribution 
from the environmental conditions at the observations without 
placing any unjustified constraints (Tarkesh & Jetschke, 2012). This 
also means that Maxent does not necessarily consider the absence 
of a biotope as evidence for unsuitable environmental conditions 
(see Phillips et al.,  2006), which encourages our interpretation of 
the dataset. Since we used Maxent with a present-only dataset, the 
model output represents the relative probability of a biotope being 
present in a raster cell (Halvorsen, 2012). Often this probability is 
compared with the suitability of a raster cell, which is calculated with 
a present/absent dataset. To simplify the interpretation of the model 
predictions, we considered the relative probability of presence as 
suitability since the predictions of present-only and present/absent 
datasets are comparable (Hirzel et al., 2006).

The biotope distribution models were calculated with Maxent 
version 3.4.1 (Phillips et al., 2006) using the package “dismo” 1.1-4 
(Hijmans et al., 2017) in R 3.6.1 (R Core Team, 2020). Maxent set-
tings were: maximum number of iterations = 10,000, convergence 
threshold = 0.00001 and model output =  logistic. The rest of the 
model settings were set to default (allowing all feature transforma-
tion; see Table S5 in Appendix S2). To assess the variability in model 
accuracy, we used a bootstrap approach with 100 repetitions per 
model (Efron, 1992). For each repetition, Maxent used 90% of the 
data to fit the model (training data) and 10% for later evaluation 
(test data). After fitting the distribution model based on the training 
data, we predicted the suitability for the reminding 10% of test data, 
which the model had not seen. Then, we calculated the area under 
the receiver-operator curve (AUC; Mason & Graham, 2002) for the 
test dataset. The AUC measures the probability that the model as-
signs higher suitability to a random presence observation than a ran-
dom background point (Liu et al., 2011; Phillips et al., 2006). In other 
words, AUC is high when differences in predicted suitability between 

present observations and the background points of a model are 
large. Unlike other performance metrics, it is independent of a pre-
selected suitability threshold and can be applied directly to the row 
model output (Liu et al., 2011). AUC values can range from 0 to 1, 
where 1 indicates a model that perfectly predicts the distribution of 
the biotope according to its observation, while 0.5 is a model that is 
not better than random guesses. Generally, the predictability of the 
models can be considered reasonable when the AUC values are over 
0.7 (Pearce & Ferrier, 2000; Swets, 1988). Because of the presence-
only approach of the Maxent algorithm, the maximum achievable 
AUC is slightly lowered to <1 (Phillips et al.,  2006). Although our 
main focus was on the threshold-independent performance met-
ric AUC we also calculated the true skill statistic (TSS), which is a 
threshold-dependent performance metric that ranges between −1 
and +1, where +1 indicates that the model perfectly predicts the 
biotope's distribution according to its observation, while 0 indi-
cates a model that is not better performing than random guesses 
(Allouche et al., 2006).

To summarise the results of the separate bootstrap runs, we cal-
culated the mean and standard deviation of AUC for each biotope 
distribution model (Table  3). Then, we predicted with each of the 
100 models per biotope (bootstrap repletion) the suitability of each 
Bavarian raster cell for this biotope by calculating the mean suitabil-
ity across all models resulting in a suitability map for each biotope 
in Bavaria (Figure S1 in Appendix S2). To compare the predictions 
of the different models, we selected the logistic format, which is 
monotonically related to the raw Maxent output (Elith et al., 2011). 
With that, the suitability values ranged between 0 and 1, where 0 
indicates that the environmental conditions were unsuitable and 1 
perfectly suitable for the biotope.

To test the robustness of our results, we compared the results 
of the Maxent models to results obtained with generalised adap-
tive models (GAM; Guisan et al., 2017) using the same presence and 
background data as for the Maxent models (just the number of it-
erations was reduced to 5). Results of the GAMs are presented as 
sensitivity analyses (Figure S4 and Table S3 in Appendix S2).

2.6  |  Importance of environmental variables for the 
biotope distribution

To evaluate which environmental conditions affected the distribu-
tion of individual biotopes, we calculated the permutated variable 
importance (Phillips, 2017). There, one variable after the other was 
randomly permuted over all raster cells. As a result, there was a loss 
in accuracy, which was recorded and transformed into a percentage 
value for each variable. This value represents the importance of the 
variable for the predictive accuracy of the model. In other words, a 
large accuracy loss due to the permutation of the variable indicates 
that the distribution of the biotope depends strongly on that vari-
able, which is characterised by a high percentage (Phillips, 2017). Per 
biotope and each bootstrap repetition, the model yielded a permu-
tated importance for each environmental variable. To summarise the 
permutated importance over all bootstrap repetitions, we calculated 
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its mean and standard deviation per environmental variable and bio-
tope (Table S2 in Appendix S2).

2.7  |  Potential biotope composition in Bavaria

For the 29 biotopes, the models provided a suitability value for each 
raster cell. Converting a continuous suitability value to a presence-
absence map requires applying a suitability threshold. Commonly, 
a biotope-specific threshold is selected that minimises the discrep-
ancy between predicted and observed distribution (Liu et al., 2005). 
To avoid using a threshold that depends on the observed biotope 
distribution (as this observed distribution is known to be strongly 
affected by anthropogenic land use), we interpreted the suitability 

value in its original sense as a value that evaluates how suitable the 
abiotic environmental conditions in a raster cell are for a particular 
biotope. This way, we selected a suitability threshold of 0.5 to differ-
entiate between suitable or unsuitable abiotic environmental condi-
tions for the biotope in a raster cell (cf. Bailey et al., 2002; Stockwell 
& Peterson, 2002; Woolf et al., 2002). We are aware that suitability 
values are affected by prevalence, which is the proportion between 
biotope observation and background points (Santika, 2011). Biotopes 
with high prevalence will tend to have generally higher suitability val-
ues, while biotopes with low prevalence will tend to have generally 
low suitability values (Jiménez-Valverde & Lobo, 2007; Santika, 2011). 
However, since the prevalence in the modelling process (training sam-
ples/background points), was lower than 0.5 (Table S1 in Appendix S3) 
for all biotopes except for “Hedges, near natural”, we expected that 
the selected suitability threshold of 0.5 will not inflate the potential 
occurrence of biotopes but rather evaluate the potential occurrence 
of biotopes with low prevalence more conservatively. To assess the 
effects of prevalence and the sensitivity of the results to the chosen 
threshold value, we repeated the analyses with thresholds of 0, 0.25 
and 0.75 (Figures S2 and S3 in Appendix S2).

To characterise the potential biotope composition, we counted 
the number of biotopes that can occur in a raster cell (“potential 
biotope richness” hereafter) and visualised this number in a map 
(Figure 2). If all biotopes were excluded from a raster cell due to suit-
ability values below the threshold, these raster cells would be con-
sidered unsuitable for any of the biotopes and the potential biotope 
richness would be zero. For each biotope, we calculated the preva-
lence of the biotope depending on the potential biotope richness in 
the raster cells (Figure 3).

For visualising the three most suitable biotopes in a raster cell, 
we produced maps that show either the biotope with the highest, 
2nd highest or 3rd highest suitability (Figure 4). If a raster cell con-
tained fewer than three biotopes, due to the applied threshold, we 
considered these raster cells in the respective suitability order as 
unsuitable.

3  |  RESULTS

3.1  |  Accuracy of the biotope distribution models

The AUC values for 24 of the 29 modelled biotopes were over 0.7 
(Table 3) and are conceded as reasonable (Pearce & Ferrier, 2000; 
Swets, 1988). Alpine biotopes like “Alpine lawn” showed the highest 
AUC values with 0.99 while “Hedges, near natural” showed the low-
est AUC value with 0.59.

3.2  |  Importance of environmental variables for the 
biotope distribution

Generally, climatic variables were more important for the biotope 
distribution than soil chemical or soil physical properties (Figure 1). 

TA B L E  3  Summary of the biotope model mean AUCs and their 
standard deviation (SD)

Biotope AUC SD

Alluvial forest 0.73 0.00

Alpine lawn 0.98 0.00

Alpine nutrient-poor grassland 0.99 0.00

Alpine yellow oat grasslands 0.99 0.00

Beech forest, heat-loving 0.95 0.01

Black alder forest 0.83 0.02

Block and rubble forests 0.99 0.00

Broadleaf forest, mesophilic 0.78 0.01

Broadleaf forest, soil acidic 0.85 0.01

Dwarf shrubs and gorse heath 0.89 0.01

Heat-loving edges 0.88 0.01

Heat-loving shrubs 0.90 0.01

Hedges, near natural 0.59 0.00

Large sedge meadows outside the 
siltation zone

0.70 0.01

Mesophilic shrubs, near natural 0.75 0.00

Moist and wet tall herbaceous 
vegetation, planar to montane

0.67 0.00

Mountain pine scrubs 0.99 0.00

Nard grass lawn 0.91 0.00

Nutrient-poor grasslands, base-rich 0.78 0.00

Nutrient-poor old grasslands and 
fallow grasslands

0.67 0.00

Nutrient-poor yellow oat grasslands 0.99 0.00

Pine forests, base-rich 0.94 0.01

Pine forests, soil acidic 0.96 0.01

Pipegrass meadows 0.89 0.01

Sandy nutrient-poor grasslands 0.86 0.01

Species-rich extensive grassland 0.68 0.00

Species-rich lowland meadows of 
medium sites

0.86 0.01

Watercourse companion trees, linear 0.66 0.00

Wetland shrubs 0.74 0.01
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For most of the biotopes, precipitation seasonality was the most im-
portant variable (Figure 1). This is especially true for “Alpine yellow 
oat grasslands”, for which precipitation seasonality had a variable im-
portance of 75%. Other variables that strongly influenced the oc-
currence of biotopes (importance score of up to 25%) were mean 
temperature of wettest quarter, mean temperature of driest quarter and 
precipitation of coldest quarter.

While soil variables were generally seldom selected as import-
ant variables, there were some exceptions. For example, for “Moist 
and wet tall herbaceous vegetation, planar to montane” and “Large 
sedge meadows outside the siltation zone”, nitrogen and potassium 
played an important role. Phosphorus was important for biotopes 

like “Hedges, near natural” and “Nutrient-poor old grasslands and 
fallow grasslands”; however, the AUC value for these biotopes was 
low. Additionally, the models of “Alpine lawn” and “Alpine nutrient-
poor grassland” rated the soil physical property coarse fragments as 
important.

3.3  |  Assessing the potential biotope composition 
in Bavaria

For most biotopes, the potential distribution was larger than the ob-
served distribution (Figure S1 in Appendix S2). Further, the average 

F I G U R E  1  Results of Maxent model showing the average importance scores in percentage of the 16 climate and soil variables for the 
29 biotopes. The full names of environmental variables can be found in Table 1. Biotopes and environmental variables are grouped by their 
types. The sum of the importance of each environmental variable group per biotope is provided under the black line. All values are rounded 
and are reflected by the red colour's intensity for the individual values and the blue colour's intensity for the summed values.
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suitability value of the most suitable biotope in a raster cell was 
0.813. Comparing the suitability values in raster cells with biotope 
compositions of three biotopes showed a difference between the 
first and second most suitable biotope of 0.073, on average, and 
0.122 between the first and third, on average.

The highest predicted potential biotope richness was 17, found 
in 10 raster cells (0.01% of all raster cells), which was slightly higher 
than the highest observed biotope richness of 14. Most raster cells 
showed a potential biotope richness of 6–8 different biotopes 
(Figure 3), totalling one-quarter of all raster cells. Raster cells with 
high potential biotope richness were found in the Franconian Jura, 
Bavarian Forest and the pre-alpine lands in the south (Figure  2). 
Further, a high number of raster cells provided suitable conditions 
for only one biotope (Figure 3, 10,653 raster cells, 7.78% of the ras-
ter cells).

Some biotopes like “Hedges, near natural” or “Large sedge 
meadows outside the siltation zone” showed generally high prev-
alence in all potential biotope compositions (Figure  3). With an 
increasing number of suitable biotopes for a raster cell, we saw a 
homogenisation in biotope composition (Figure 3). Only a few other 
biotopes, with generally rare prevalence, occurred in those biotope 
compositions.

With the application of the 0.5 threshold, 92% of Bavaria was 
considered suitable for at least one biotope, 84% for two and 77% 
for up to three biotopes, which usually belonged to different biotope 
types. The remaining 8% of Bavaria showed unsuitable conditions 
for any of the analysed biotopes. The map illustrating the biotopes 
with the highest suitability in a raster cell (Figure 4a) showed that 
one biotope often dominated large regions of Bavaria. In other 
words, many neighbouring raster cells provided the most suitable 

conditions for the same biotope. Some of these regions were also 
dominated by one biotope in the map illustrating the biotopes with 
the second-highest suitability in a raster cell but often from a dif-
ferent biotope type (Figure 4b). This pattern ended in a rather noisy 
map of different neighbouring biotopes in the map illustrating the 
biotopes with the third-highest suitability in a raster cell (Figure 4c).

The sensitivity analyses (Figures  S2 and S3 in Appendix  S2) 
showed that the number of suitable biotopes in a raster cell de-
creased with a higher suitability threshold. Further, the difference 
in suitability values of the most suitable biotopes decreased by ap-
plying higher thresholds (Table S2 in Appendix S3). Thus, the results 
became more conservative with higher thresholds since the raster 
cells were only considered suitable for particular biotopes with very 
high suitability values. However, the main results that most raster 
cells are suitable for several biotopes and the regions that provide 
suitable conditions for a high number of biotopes remained the 
same (Figures S2 and S3 in Appendix S2). The comparison between 
Maxent models and the GAMs showed a strong correlation between 
the model predictions and similarities in model accuracy (Figure S4 
and Table S3 in Appendix S2).

4  |  DISCUSSION

We found that climate variables were more important than soil vari-
ables in driving the biotope distribution for most biotopes. Based 
on the knowledge of which variables were driving the biotope dis-
tribution, we projected the potential distribution of biotopes. The 
suitable area (potential distribution) for most biotopes was larger 
than the observed distribution. Merging the predictions for individ-
ual biotopes into a potential biotope composition showed that the 
environmental conditions in more than three-quarters of Bavaria 
were considered suitable for at least three biotopes. Further, over 
one-quarter of Bavaria was considered suitable for 6–8 different 
biotopes. However, our results also indicate that environmental con-
ditions in 8% of Bavaria may be unsuitable for any biotope (suitability 
values below 0.5).

4.1  |  Caveats of modelling the potential 
distribution of biotopes

Before covering the effects of environmental variables on the po-
tential biotope distribution and composition, questions about model 
input, model selection and the usage of a threshold need to be dis-
cussed (Guisan et al., 2017). In this study, we analysed data from a 
monitoring whose goal was to describe the presence and absence 
of all biotopes in Bavaria (Lang & Zintl, 2018). Since, previous stud-
ies (IPBES, 2019; Newbold et al., 2020) showed that the occurrence 
of biotopes is strongly influenced by anthropogenic land use the 
absence of a biotope is not necessarily the evidence for unsuitable 
environmental conditions. Therefore, we treated the dataset as a 
presence-only instead of a presence/absence dataset.

F I G U R E  2  Number of biotopes that were considered suitable 
in a raster cell. Raster cells shown in grey do not feature a biotope 
with a suitability value >0.5. See text for explanations.



500  |    RUBANSCHI et al.

Maxent is an established, powerful algorithm to analyse distribu-
tions based on presence-only datasets (Merow et al., 2013; Warren 
et al., 2020). Nevertheless, to show the consistency of the Maxent 

predictions, they need to be compared with predictions of other dis-
tribution models. Here, we compared them with the predictions of 
GAMs and saw a strong correlation between them and similarity in 

F I G U R E  3  Number of raster cells providing suitable conditions for a certain number of biotopes (upper histogram). Values in the lower 
heatmap explain the prevalence of a biotope in raster cells that provide suitable conditions for a certain number of biotopes. No value 
and a grey panel in the heatmap indicate that the biotope was considered unsuitable in any raster cell of the raster cells providing suitable 
conditions for the respective number of biotopes. All values are rounded and are reflected by the red colour's intensity.
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model accuracy (Figure S4 and Table S3 in Appendix S2), confirming 
the validity of the Maxent predictions. However, the Maxent models 
provided better interpretable predictions than the GAMs. Maxent 
predicted values were evenly distributed between 0 and 1, while 
some GAMs predicted only values between 0 and 0.5 or less (e.g. see 
“Black alder forest”, Figure S4 in Appendix S2). Consequently, GAMs 
depended on the selection of very low thresholds to provide rea-
sonably predicted distributions. Because these GAM predictions are 

based on the observation data, the models minimise the divergence 
between predicted and observed distribution (thus, including the 
effects of land-use and environmental conditions). Consequently, 
predicted areas of suitable environmental conditions were under-
estimated. By contrast, Maxent models considered raster cells with-
out a biotope observation not necessarily unsuitable for the biotope 
concerning the environmental conditions (see Phillips et al., 2006). 
Therefore, we consider Maxent predictions more useful because 

F I G U R E  4  Predicted biotope distributions in Bavaria. The three maps show for each raster cell the biotope with the (a) highest, 
(b) 2nd highest and (c) 3rd highest suitability. Raster cells shown in grey do not feature a biotope with a suitability value >0.5. See text for 
explanations.
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they provide an intuitive interpretation and are not as sensitive to 
land use affecting the model's predictions. Other approaches like 
stacked or joint distribution models (Zurell et al., 2020) that also con-
sider biotic interactions could be promising future research avenues. 
Typically, these interactions are modelled between single species, 
which might be more challenging when considering whole biotopes 
with their associated species compositions.

Regarding model performance indicators, we compared the 
threshold-independent AUC to the threshold-dependent TSS, 
which indicated similar model accuracy (Table S3 in Appendix S2). 
In contrast to AUC, TSS depends on the present biotope distribu-
tion, which may be strongly affected by anthropogenic land use. 
The thresholds selected to calculate the TSS were generally lower 
than the 0.5 threshold that we used to translate Maxent suitability 
to potential biotope occurrences (Table S4 in Appendix S2). Due to 
the lower threshold selected to calculate TSS, the number of true 
positive predictions increased, however, introducing at the same 
time a high number of false positive predictions (commission error) 
due to many biotopes that had few observations compared with 
many background points (Table  S1 in Appendix  S3; see Allouche 
et al., 2006). However, all additional (true and false) positive predic-
tions due to thresholds lower than 0.5 were in raster cells with low 
suitability for the biotope. Thus, models would recommend less suit-
able environments for conservation (true positive predictions) and 
restoration (false positive predictions). When the actual distribution 
of a threatened species or biotope is not known, it is much more 
costly for conservation to overlook a potential occurrence (low num-
ber of false positive predictions; Jiménez-Valverde & Lobo,  2007; 
Loiselle et al., 2003). However, as we know the actual distribution 
of the biotopes, we are interested in identifying sites that provide 
highly suitable environmental conditions for successful conserva-
tion or restoration. By using a lower or higher threshold to translate 
suitability values to a potential occurrence, conservation planning 
can adapt the sensitivity to environmental conditions and include 
raster cells with lower suitability for more options (see Figures S2a, 
S2b, S3a and S3b in Appendix  S2) or select only raster cells with 
very suitable conditions (see Figures S2d and S3d in Appendix S2). 
We are convinced that the 0.5 threshold used in our study provides 
balanced results.

4.2  |  Abiotic environmental variables driving the 
distribution of biotopes

For more than half of the biotopes, climate variables were the most 
important variables for the prediction of their distribution. This un-
derlines the findings of other studies for different forest biotopes: 
Brzeziecki et al.  (1995) showed that when the mean temperature 
was increased by more than 2°C, the entire distribution of biotopes 
on a national scale would change, and John et al. (2020) showed that 
rainfall was one of the most important variables in predicting the 
distribution of biotopes. Similarly, we found that precipitation season-
ality and the mean temperature of the wettest quarter were important 

for a range of biotopes. The most likely explanation for the effect of 
climate variables on the distribution of biotopes is that the occur-
rence of the species characterising a biotope are driven by climate. In 
particular, the germination and growth of plants are highly depend-
ent on climate (Kadereit et al., 2014). Further, climate affects plant 
growth indirectly by changing the availability of nutrients in the soil 
(Marschner & Rengel, 2012).

Despite the dominance of climatic variables, the distribution of 
some biotopes was also strongly influenced by several soil variables. 
Previous studies showed that also soil variables could determine 
the distribution of biotopes, either together with climate variables 
(Fischer et al., 2019) or by themselves. Our study found that potas-
sium and nitrogen were important for “Large sedge meadows outside 
the siltation zone” and “Moist and wet tall herbaceous vegetation”. 
Since these were biotopes with sufficient water availability and 
hence a lower importance of precipitation conditions, potassium and 
nitrogen became the limiting factor. High values of coarse fragments, 
i.e. the occurrence of rocks and gravel, characterise mainly the al-
pine regions and also its most dominant biotope, the “Alpine lawn” 
(Figure S1 in Appendix S2). As other alpine biotopes, however, were 
more restricted to specific areas in the alpine region (Figure S1 in 
Appendix S2), the model considered other variables as more import-
ant in these cases.

As shown by Franklin et al. (2013), the variable's importance may 
change due to the selected spatial resolution; however, even if some 
models considered soil variables more important than climate vari-
ables, we have to take into account that this is only possible if climate 
conditions are suitable. Only under suitable climate conditions may 
other environmental conditions become limiting in the distribution 
of a biotope (see, e.g. P- and N-limitation in terrestrial ecosystems; 
Vitousek et al.  (2010)). This indicates, similar to other studies (e.g. 
Beaumont et al., 2011; Brzeziecki et al., 1995; Hickler et al., 2012; 
John et al., 2020), that especially future climate change may have a 
strong effect on these biotopes, which will probably force them to 
shift to more environmentally suitable areas (Hof et al., 2011).

4.3  |  How land use drives the observed 
distribution of biotopes

In addition to the abiotic environmental conditions, which de-
scribe the potential of a biotope to occur in an area, anthropogenic 
land use and disturbance often influence the realised occurrence 
(Franklin, 1995). Consequently, the observed distribution of bio-
topes is the product of suitable abiotic conditions for a biotope 
and the outcome of the applied anthropogenic land-use or dis-
turbance regimes, which in turn depend on human decisions that 
are often guided by economic factors. However, anthropogenic 
effects may not only establish a biotope in a suitable area but 
can also displace a biotope even if suitable abiotic conditions are 
given. Indication for this displacement is also evident in the results 
of our study. For all biotopes, we predicted a broader potential dis-
tribution based on environmental conditions compared with the 



    |  503RUBANSCHI et al.

observed distribution (Figure  S1 in Appendix  S2). This indicates 
that the potential of the biotopes based on abiotic conditions is 
not fully realised, most likely because of displacement effects of 
anthropogenic land use or disturbance. Instead, we see the reali-
sation of other land-use types (e.g. agriculture with 46.3% of the 
Bavarian area; Bayrisches Landesamt für Statistik,  2020), which 
reduced the area for observed biotopes to just 5% of Bavaria 
(Rubanschi et al., 2022).

4.4  |  Deviation between the observed and 
potential biotope distribution

Generally, most models had a high accuracy in predicting the distri-
bution of biotopes. In particular, alpine and some forest biotopes, 
which were restricted to certain regions with unique environmen-
tal conditions, had the highest accuracy (Table  3). This high accu-
racy agrees with studies for other biotopes that are restricted to 
specific regions with characteristic environmental conditions (e.g. 
mangroves; John et al., 2020) or range-limited species (Hernandez 
et al., 2006).

For some modelled biotopes, the predictive accuracy was low 
(Table 3). This may happen when the model estimates a broad en-
vironmental niche for a biotope and predicts, therefore, a wider 
potential distribution in comparison to the observed distribution. 
One possible mechanism leading to a broad biotope environmen-
tal niche is when the biotope was defined by a variable species 
composition in the biotope classification key. An example is here 
the “Hedges, near natural” where the biotope classification key 
says that predominately “[…] native woody plant composition 
[were] mapped” (Lang & Zintl, 2018). Since different species com-
positions were accepted as “Hedges, near natural”, the environ-
mental niche of the biotope is the sum of multiple varying species 
niches, which might create a broad biotope niche (see Table S7 in 
Appendix S2). Another possible mechanism is that a biotope pos-
sibly occurred in many regions with varying environmental con-
ditions (e.g. “Nutrient-poor old grasslands and fallow grasslands” 
with 89,116 observations). Consequently, the environmental 
niche of these frequent biotopes is broad, which leads to fre-
quent predictions in biotope compositions (see Aune-Lundberg & 
Strand, 2017).

A second explanation for the lower model accuracy of some 
biotopes can be that additional variables affect the distribution 
of the biotope, which were not included in the models. Including 
these variables would probably have helped restricting the predic-
tions more closely towards the observed biotope distribution. One 
such variable may be water dynamics, which could have improved 
the predictive accuracy for biotopes like “Watercourse compan-
ion trees, linear” by restricting its potential distribution to areas 
near water. Another such variable could be land use (see above). 
However, not only the direct displacement of a biotope is possible 
but also differences in land-use intensity, for example in “Species-
rich extensive grassland”. For this biotope, an increase in land-use 

intensity would change the species composition, potentially be-
yond the combinations defined as characteristic for the biotope 
and therefore changes the biotopes' actual distribution compared 
with its potential distribution. All these mechanisms are not exclu-
sive and can act in combination when, for example, the definition 
of a biotope is not explicit, and the biotope also occurred in many 
regions with varying environmental conditions (e.g. “Hedges, near 
natural” with 197,402 observations).

While large deviations between the predicted and the observed 
distribution are generally interpreted as “poor” predictions (Pearce & 
Ferrier, 2000; Swets, 1988), we expected such deviations because 
we aimed at modelling the potential distribution of biotopes and not 
their actual distribution. This approach is based on our assumption 
that abiotic variables describe the potential distribution of a biotope, 
and other variables like land use and disturbance realise this poten-
tial distribution, which is a nested set within the potential distribu-
tion (Franklin, 1995). Therefore, we assumed that by leaving out land 
use and disturbance, we do not restrict our predictions to the actual 
distribution but rather picture the abiotic potential distribution, thus 
accepting lower accuracy values.

4.5  |  The potential biotope composition

With the application of the 0.5 threshold, the models predicted large 
parts of Bavaria to be suitable for multiple biotopes (Figures 2 and 4), 
with little difference in suitability values between the most suitable 
biotopes (Table  S2 in Appendix  S3). Compared with other studies 
(e.g. Fischer et al., 2019; Zhou et al., 2016) we did not consider just 
the most suitable biotope but rather all potentially suitable biotopes 
for a raster cell. Given that raster cells were larger in area than the 
biotopes (average raster cell size 56.6  ha vs. biotope polygon size 
0.51 ha; Rubanschi et al., 2022) and that the environmental values 
represent a mean value for a raster cell ignoring heterogeneity or 
fluctuations within the raster cell, we assume that our results provide 
an extended picture beyond the realised biotope distribution com-
pared with previous studies. Especially, the potential co-occurrence 
of biotopes due to heterogeneity of environmental conditions within 
the large raster cells was nicely shown by Seo et al.  (2009). There, 
they modelled the suitability for the same species at different spa-
tial resolutions showing fluctuation in suitability within large raster 
cells. Thus, different locations within a raster cell may be suitable 
for different biotopes. Based on this, one could assume that with a 
sufficiently high resolution of the environmental variables only one 
biotope may be projected per raster cell. However, even then, it is 
important to consider for each raster cell multiple biotopes suitable 
because external drivers like land use may prefer one suitable bio-
tope over the others.

When we further analyse the potential biotope composition, we 
see that biotopes with broad environmental niches were found in 
all potential biotope compositions with high proportion independent 
of the number of suitable biotopes in the composition (Figure  3). 
However, they were often displaced by biotopes with narrower 
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niches if the raster cells were suitable for just a small number of bio-
topes. In these raster cells, the environmental conditions were either 
so unique that just the biotopes with a narrow niche could occur, or 
the environmental conditions were just suitable for biotopes with 
broad environmental niches.

In contrast to the regions that were potentially suitable for sev-
eral different biotopes, based on our selected threshold, 8% of the 
Bavarian area was considered unsuitable for any of the biotopes 
(Figures  2 and 4). In these regions, the Bavarian biotope mapping 
dataset generally observed no or only a small number of the bio-
topes (cf., Rubanschi et al., 2022), probably due to displacement by 
agriculture or forestry (cf., Agency European Environment, 2020). If 
the biotopes were displaced, these regions may be suitable for one 
of the biotopes, but the models cannot assign the occurring environ-
mental condition to any biotope and therefore consider these areas 
unsuitable. However, even when these areas would be unsuitable 
for any of the 29 analysed biotopes, it does not indicate that no 
biotope can occur there. Some of the excluded rare and/or aquatic 
biotopes could occur there as strongly differing environmental con-
ditions might characterise these biotopes compared with the set of 
biotopes modelled here.

Since we used Bavarian biotopes and the Federal State of 
Bavarian as a study area, together with current environmental con-
ditions, we created reasonable models within the study's boundaries 
(Fitzpatrick & Hargrove, 2009). To use the models outside of Bavaria 
and ensure reasonable predictions, the new environmental condi-
tions would need to be in the models' predictability (Fitzpatrick & 
Hargrove, 2009). Thus, it is challenging to scale up the predictions 
of Bavarian biotopes for comparison with other potential distribu-
tion studies on a continental scale (e.g. Jiménez-Alfaro et al., 2018). 
Further, even though the biotopes of those studies may share sim-
ilarities with Bavarian biotopes, they may not reflect the specific 
characteristics of the locally adapted Bavarian biotopes since they 
operate on a greater scale. While studies on such a great scale (e.g. 
Jiménez-Alfaro et al.,  2018) can provide a general overview, local 
conservation and restoration planning need information about lo-
cally adapted biotopes and their potential distribution that a study 
like ours can provide.

4.6  |  Implications for biodiversity assessments, 
conservation and restoration

Our results emphasised that the potential biotope richness of a 
raster cell could be even higher than the observed. Since this po-
tential richness is based on a selection of 29 biotopes, these val-
ues should be interpreted as lower bounds of potential richness 
and may be even higher when taking into account the rare and/
or aquatic biotopes that were not included in this study. With this 
new insight into the potential biotope composition, it will be pos-
sible to better assess the potential biodiversity since the biotopes 
are proxies for characteristic species compositions. Such assess-
ments become possible when considering not only the biotope 

with the highest suitability in a raster cell but rather a composition 
of similarly suitable biotopes.

The maps we provide can support conservation planning by 
identifying areas where the protection of specific biotopes may 
be promising due to the high suitability of the environmental con-
ditions. Extending conservation planning from the biotope with 
the highest suitability in an area towards a composition of similarly 
suitable biotopes enables to cover potential uncertainties due to 
fluctuation in land-use and disturbance regimes. Especially, regions 
that potentially host many different biotopes could be considered as 
priority areas for conservation. The potential biotope composition 
could even be further evaluated by using different climate scenarios 
to identify which biotopes or regions may be resilient to oncoming 
changes in climate.

From the restoration point of view, our results can be used to 
find areas suitable to reintroduce biotopes or whole biotope compo-
sitions. Restoration should be prioritised especially in areas where 
the number of potentially occurring biotopes was much larger than 
the observed biotope number. With this, we would increase the bio-
tope diversity in an area and ensure the long-term persistence of the 
biotopes by increasing their entire distribution. Further, our models 
enable us to quantitatively include climate change into restoration 
planning. Applying different climate scenarios, the models can be 
used to identify regions where environmental conditions may be-
come suitable and support the shifts of biotopes to more suitable 
environmental conditions by introducing biotopes.

In conclusion, our study showed that considering not only the 
most suitable biotope but rather a composition of potentially suit-
able biotopes in an area could provide important information for 
adapted conservation and restoration planning. Future research 
regarding biotope compositions is comparing the potential and re-
alised biotope compositions and forecasting the impacts of future 
climate change on potential biotope distributions and composition.
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APPENDIX 1

CLASSIFICATION DESCRIPTION OF BIOTOPES INTO THEIR 
BIOTOPE TYPES
In the first step, we merged the biotopes, consisting of multiple 
“Lebensraumtypen”. The differences between them were as ex-
plained in the biotope mapping manual marginal (Lang & Zintl, 2018). 
With this step, we reduced the number of biotopes from 200 to 
108. In the second step, we classified these biotopes into similar 
vegetational types based on the biotope mapping manual (Lang & 
Zintl, 2018). We distinguished between aquatic vegetation, bushes, 
forest, grassland, peatland, siltation zone, water body and “other” 
(Table S1 in Appendix S2).

We classified a biotope as aquatic vegetation when the biotope's 
species composition and the biotope mapping manual indicated that 
the vegetation is occurring within a water body. A biotope was clas-
sified as a bush biotope type if it was dominated by woody non-tree 
vegetation including shrub- and bushlands, hedges. If a biotope is 
dominated by tree species and shows a forest-typical vegetation 
structure, it was classified as a forest biotope type. Biotopes clas-
sified as grassland biotope types were dominated by grasses and 
herbs independent of the abiotic condition if there was no water 
accumulation for a longer period. If the biotope accumulated water 
for a longer period and produced peat, we classified the biotope 
as peatland independent of what higher vegetation was occurring 
within the biotope. The biotope type of siltation zone consisted of 
all biotopes directly adjacent to water bodies and relied on water 
dynamics. All mapped open water bodies, often with no vegetation, 
were classified as water body. Biotopes that did not fit in any of 
these biotope types because they were too diverse, only occurred at 
unique locations, were artificially created and dominated by anthro-
pogenic actions or were no longer mapped and could not be assigned 
to another biotope were classified as “Other”. The specific reason 
why a biotope was classified as “Other” can be found in Table S1 in 
Appendix S2 in the column “Classification explanation”. Additionally, 
if the biotope mapping manual gave additional information about 
the biotope that affected our biotope type classification, we added 
the information also in the “Classification explanation” column of 
Table S1 in Appendix S2.
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As described in the method section, we decided to concen-
trate in this study on terrestrial biotopes. Therefore, we excluded 
the aquatic vegetation, peatland, siltation zone, water body and 
“other” biotope types (Table  S1 in Appendix  S2). Additionally, 

we used a threshold of at least 500 observations per biotope. 
Which biotopes were excluded, and the reason for their exclu-
sion was noted in the column “Reason of exclusion” in Table S1 in 
Appendix S2.
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