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Risk analysis of power networks under natural hazards requires a model of the power flow following initial failures
in the network caused by the hazard. The model should include cascading failures through the network, for which
different models have been proposed in the literature. Past studies have compared widely used models for assessing
the performance of power networks, such as the topological, betweenness-based and power flow models, and
found correlations among the model outcomes. However, they do not compare them for systems subjected to
natural hazards, where other factors (e.g., seismic intensity and resulting ground motions) also affect the system
performance. Ultimately, the choice of the appropriate model depends on the analysis purposes, the type of power
network (e.g., transmission vs. distribution), the available amount of information, and computing resources. In this
contribution, we investigate the effect of the cascading failure model on a seismic risk evaluation. To this end, we
perform numerical investigations on the power network in the central coastal area of Valparaı́so Region, Chile.
Specifically, we compute and compare loss-exceedance functions for two models: Origin-destination betweenness
centrality (ODBCM) and DC linear power flow (DCLPFM), for different representative seismic scenarios. We also
compare the models with and without considering the uncertainty in the ground motion field.
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1. Introduction

Cascading failures in power networks are se-
quences of failure events that are triggered by
local component failures. They depend on the net-
work topology, the component capacities and the
load redistribution. In the case of seismic hazards,
the locations of the initial component failures de-
pend on the seismic intensity and the components
fragilities (Poljanšek et al., 2011; Ferrario et al.,
2019).
Seismic risk assessment is associated with mul-

tiple uncertainties (Cornell, 1968; Moehle and
Deierlein, 2004; Yang et al., 2009). One of them is
the uncertainty in the model of cascading network
failures. In this paper, we study the influence of
the choice of the cascading failure model of power
networks on the risk evaluation. We perform nu-
merical investigations on the power network in the

coastal area around Great Valparaı́so, Chile.

2. Probabilistic seismic analysis for
power networks

We follow the probabilistic hazard analysis frame-
work of Fig. 1. We employ it for a probabilistic
seismic hazard analysis of a power network, con-
ditional on a hazard scenario. A similar frame-
work can be found in (Moehle and Deierlein,
2004; Yang et al., 2009).
A seismic scenario is described with hazard

parameters θ, such as magnitude, hypocentral lo-
cation (i.e., longitude, latitude, depth) and orien-
tation (i.e., rake, dip and strike angles). They are
inputs for predicting the intensity measure IM, at
the location of power network components, such
as power plants and substations. In seismic hazard
analysis, IM corresponds to the ground motion
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Fig. 1. Probabilistic hazard analysis, applicable to
power networks (modified from Rosero-Velásquez and
Straub, 2022)

field (GMF), e.g., the Peak Ground Acceleration
(PGA), and multiple models for predicting GMF
are available in the literature (Douglas, 2021). For
considering the uncertainty in the prediction due
to site effects, GMF prediction models can incor-
porate random fields (Wang and Takada, 2005;
Jayaram and Baker, 2010).
The intensity measure is the input for evaluating

the damage state of the power network compo-
nents DM, using fragility functions. A fragility
function is a conditional probability distribution
of the component damage state, given a intensity
value. For simplicity, we consider binary compo-
nent damage states, i.e., either “failure” or “no
failure”. Such fragility functions are available in
the literature based on the components’ function-
ality and power capacity (FEMA, 2003; Pitilakis
et al., 2014).
We take the affected population as loss measure

L. Based on census data and the power network
topology, we divide the study area into consump-
tion areas, and evaluate the population living in
areas not reachable through the damaged network
after cascading effects.
We evaluate the seismic scenario with Monte

Carlo sampling of IM and DM. The output is
the conditional CDF of the affected population,
or equivalently, its conditional loss-exceedance

function.

3. Models of cascading failures

Power networks can be represented as weighted
graphs. The nodes represent bars and generators,
the edges correspond to lines and transformers,
and the weights are associated with a physical
property such as reactance. The topology can be
derived combining GIS data and one-line dia-
grams.
Different models for simulating cascading fail-

ures are available in the literature (Crucitti et al.,
2004; Farina et al., 2008; Hernández-Fajardo
and Dueñas-Osorio, 2013). Here, we consider
two models: the origin-destination betweenness
centrality model (ODBCM), based on (Crucitti
et al., 2004), and the DC linear power-flow model
(DCLPFM), following (Farina et al., 2008). Com-
parisons between these models have already been
performed in (Ouyang, 2013; Cupac et al., 2013;
Abedi et al., 2019), but not in the context of a
natural hazard risk assessment, which is the focus
of our investigation.
We simulate the cascading failures as follows:

First, we generate initial failures at the nodes.
We do that by modelling DM at each node with
a Bernoulli process, whose probability of failure
is conditional on IM and defined by the nodal
component fragility function, as shown in Fig. 1.
Then we simulate the system response without
the failed components. The response is a load
redistribution among the surviving components,
and for some of them the new load might exceed
their capacity. If that occurs at a node or edge, then
it fails too. We repeat these steps (i.e., simulating
system response without failed components and
identifying new component failures) until no new
failure occurs. Finally, we evaluate the affected
population, i.e., the total the population in the
disconnected consumption areas.
A common assumption is to set component

capacities proportional to the component load in
the undamaged network, using a tolerance factor
α ≥ 1 (Crucitti et al., 2004; Ouyang, 2013).
α → 1 implies that the power grid operates close
to its limit capacity and cascading failures will
occur with a probability approaching one. With
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α ≥ 2.0, the grid operates far below component
capacities and becomes robust against cascading
failures. Based on the reviewed literature, we set
α = 1.2.

3.1. Origin-destination betweenness
centrality model (ODBCM)

This models computes the load Li(dm) at com-
ponent i, given the damage state of the power
network components dm, as proportional to its
origin-destination betweenness centrality:

Li(d) ∝
1

|S||T |
∑

s∈S
t∈T
s �=t

rsit(dm)

rst(dm)
(1)

S and T are the sets of source and terminal
nodes, respectively; | · | is the cardinality operator;
rst(dm) is the number of shortest paths connect-
ing nodes s and t, given dm; and rsit(dm) is
the number of shortest paths connecting s and
t and passing through component i, also given
dm. Eq. (1) is applicable to nodes and edges
as components. We employ an adapted version
of the algorithm proposed in (Brandes, 2001) for
computing the betweenness centrality, which is
available in the Python package Networkx.
Goh et al. (2001) have studied the betweenness

centrality for computing network loads in scale-
free networks. It has been applied to represent
power networks (Crucitti et al., 2004; Hernández-
Fajardo and Dueñas-Osorio, 2013).
The ODBCM requires only basic information

about the power network (e.g., topology and line
reactance), and the computational cost is lower
than DCLPFM. However, it does not consider
the power demand. Therefore, power specific risk
metrics such as energy not supplied are not possi-
ble to obtain directly through ODBCM.

3.2. DC linear power flow model
(DCLPFM)

The load Li(dm) at bus i given the damage
state of the power network components dm is the
power calculated from the power flow equations
(El-Hawary, 2008)

si(dm) = vi(dm)
∑

k

(yik(dm))
∗
(vk(dm))∗

(2)
The unknown si = pi + ıqi is the power at bus
i, wherein pi and qi are real and reactive power,
respectively; the unknown vk = |vk| exp (ıθk) is
the voltage at node k; and the known quantity
yik = gik + ıbik is the complex admittance be-
tween buses i and k (ı2 = −1). For simplicity, we
neglect their dependence on dm. At each bus two
out of the four variables (i.e. pi, qi, |vk| or θk) are
known.
The behavior of high voltage transmission net-

works in stationary regime can be described by
linearizing Eq. (2), under three assumptions (Fa-
rina et al., 2008): the resistance is much smaller
than the reactance, (gik << bik); the difference
θik = θi−θk in the voltage angles is small; and the
voltage magnitudes are approximately equal to a
base voltage (|vk| ≈ 1 in proper-unit system). Un-
der these assumptions, the power can be expressed
as a real quantity, and Eq. (2) results in:

si = pi =
∑

k

bijθik (3)

Eq. (3) is also used for finding initial guesses to
solve Eq. (2) with iterative solvers such as Gauss-
Seidel and Newton-Raphson (El-Hawary, 2008).
We employ the Python software PyPSA (Brown

et al., 2018) for solving Eq. (3). The required input
are the line and transformer reactances, and the
loads at buses and generators. The output includes
the power flow through the lines, buses and trans-
formers. This output is the load Li(dm) utilized
for detecting overloaded components during the
cascading effects simulation.
Typically, only the load demand at the buses

is known, and the loads at the generators, which
balance the load demands, are computed by mini-
mizing the generation costs, which is the so-called
DC optimal power flow model (Ferrario et al.,
2019). However, in this work we take the load
demand and generation from historical records.
Unlike ODBCM, DCLPFM considers the de-

mand, and computes the loads in terms of power,
which allows to evaluate the risk not only in terms
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of affected population, but also in terms of power
loss. We note that DCLPFM models are still a
strong idealization of the real behaviour. Firstly,
they model the stationary regime of the network,
which is not expected during cascading failures.
Secondly, they do not optimize the power flow
when a component is removed, which can cause
unrealistic overloads during balancing.

4. Numerical investigations

We study the influence of the choice of the cascad-
ing failure model on the population affected by a
power network failure in the central coastal area
of Valparaı́so Region, Chile.
The study area is located in central Chile, with

geographical extent as shown in Fig. 2. We de-
limited the consumption areas, based on the exist-
ing distribution lines. Based on the latest Chilean
Census (INE, 2017), the consumption areas host
around 1.38× 106 inhabitants.

Fig. 2. Consumption areas in study area, based on
distribution lines, provided in 2018 by the Superinten-
dency of Oil and Electricity (SEC). Labels in upper
case are the communes of the 5th Region of Valparaı́so
that are covered by the study area. Basemap: Open-
StreetMap

Fig. 3 shows the power network model. It con-
siders the high voltage lines (bright red thick lines)
connecting Gran Valparaı́so with the National
Electric System (SEN) (dark red lines) (CNE,
2016; Coordinador, 2019). The straight orange
lines simplify the distribution lines (see Fig. 2).

Fig. 3. Power network model for the study area. The
consumption areas are colored by population density, in
people per km2, with ranges of 0−100 (light green) and
100− 11400 (dark green). Basemap: OpenStreetMap

4.1. Hazard scenarios

Chile is highly exposed to extreme seismic events.
Historical events include the 1960 seismic event
with magnitude Mw = 9.5 in Valdivia, the 1985
event with Mw = 8.0 in Algarrobo, and the
2010 event with Mw = 8.8 in the Maule Region
(Tang and Eidinger, 2006; CSN, 2022). Different
studies have derived site specific ground motion
models (Montalva et al., 2017; Hussain et al.,
2020). Based on a stochastic catalogue obtained
with the event-based calculator of OpenQuake
(GEM, 2022), we selected four seismic scenarios.
The hazard parameters are shown in Tab. 1 and
epicentre locations in Fig. 4. In this study, we
exclude the tsunami damages in Scenarios 18489
and 542.
The stochastic catalogue provides 20 random

GMF realizations per scenario in terms of PGA,
using a spatial correlation model proposed in (Ja-
yaram and Baker, 2009).

4.2. Power network vulnerability model

We assign fragility functions to substations and
power plants according to (FEMA, 2003), clas-
sifying them into three categories: medium-
voltage substation, low-voltage substation, and
medium/large generation plants. All of them have
anchored components. Table 2 shows the fragility
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Table 1. Hazard parameters of the selected seismic
scenarios for the comparative assessment.

Scenario 6285 1401 18489 542

Mag. 6.15 7.15 8.05 9.35
Lon.[◦] -70.89 -70.92 -71.53 -74.02
Lat. [◦] -32.93 -32.93 -32.80 -39.32
Depth[km] 5.00 12.60 43.88 37.60
Rake [◦] 90.00 90.00 90.00 90.00
Dip [◦] 45.00 45.00 10.92 18.31
Strike [◦] 0.02 0.07 9.90 9.73

Notes: Computed with OpenQuake (GEM, 2022). The cata-
logue has around 23000 scenarios withMw ≥ 6.0

Fig. 4. Epicentre locations of the studied earthquake
scenarios. Basemap: OpenStreetMap

function parameters for each category, represent-
ing an extensive damage state.

Table 2. Lognormal fragility parameters μ and σ

for power network components under seismic haz-
ard, for PGA in g (extensive damage state, all with
anchored components)

Category μ σ

Medium-voltage substation -1.05 0.40
Low-voltage substation -1.61 0.35
Medium/large generation plant -0.65 0.55

Source : FEMA (2003)

We construct the network model based on the

one-line diagram and the geographic information
of the SEN (Coordinador, 2019). Only the trans-
mission components (big yellow dots and thick
red lines in Fig. 3 and 4) are considered for simu-
lating cascading effects.
For the loads in the DCLPFM, we took the

hourly power generation and measurements from
(Coordinador, 2019), corresponding to the day
of maximum power generation in 2017, i.e.
28.12.2017. We assign randomly one of these
hours to each of the cascading effect simulations,
to represent the uncertainty in the loads.

4.3. Results

Firstly, we analyze a single simulation of cascad-
ing effects with both models. Fig. 5 shows the
results for a random realization of initial compo-
nent failures with the median GMF based on the
GMF realizations, and with one random GMF, for
Scenario 1401 (Mw = 7.15). One can observe
that the random realization of the GMF amplifies
the PGA in the most densely populated areas,
hence increases the failure probabilities of most of
the components. As a consequence, this random
GMF also produces more initial random compo-
nent failures than the median GMF and results in
a larger affected population.
Secondly, Tab. 3 shows for all considered sce-

narios the average affected population evaluated
with the two models, as well as their coefficient
of variation and correlation coefficients between
the outcomes of the two models. The statistics
are based on 1000 Monte Carlo samples of ini-
tial failures, from which we compute the affected
population with ODBCM and with DCLPFM. We
compute the random initial failures with the me-
dian GMF, and with random GMFs.
Fig. 6 shows the conditional distribution of the

affected population given the scenarios, as well
as the scatter plots. One can observe that extreme
impact events are more likely to occur with ran-
dom GMF. Furthermore, the two cascading effect
models disagree in the shape of the distribution
tail in the simulations with the median GMF. In
the scatter plots, one can observe that DCLPFM
predicts a larger or equal affected population than
ODBCM; with random GMF the difference can



1902 Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)
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Fig. 5. Cascading effect simulation with the median GMF (upper row) and one random GMF (lower row) for
Scenario 1401 ( Mw = 7.15, black triangle). The left column shows failure probabilities at nodes, with green
dots corresponding to a value below 10−4, yellow between 10−4 and 10−2, orange between 10−2 and 10−1, and
red dots larger than 10−1. The areas in the left column are colored by density as in Fig. 3; the middle and right
column show the results. Initial random failures are the black crosses in the maps, failures by cascading effects are
represented by green crosses and dashed lines, and affected areas in the middle and right column are shown in red.

Table 3. Average affected population ODBCM
vs. DCLPFM (in thousands), coefficient of vari-
ation (in brackets), and correlation coefficient ρ
between the outcomes of the two models.

Scenario Median GMF Random GMF
ODBC DCLPF ρ ODBC DCLPF ρ

6285 8.3 14.2 0.6 82.6 100.2 0.9
(1.9) (1.7) (2.3) (2.0)

1401 22.0 38.4 0.4 101.5 125.9 0.8
(1.2) (1.6) (1.6) (1.6)

18489 18.3 34.8 0.8 138.2 151.1 1.0
(3.4) (2.3) (1.6) (1.5)

542 17.0 27.3 0.8 179.7 191.7 0.9
(2.3) (1.7) (1.4) (1.3)

be up to a factor of 10. This can be explained by
the power flow equations balancing, which is not

present in ODBCM.

5. Concluding remarks

In this paper, we analyze the influence of the
choice of cascading effects model on the result-
ing loss measure in the context of probabilistic
seismic hazard analysis of power networks. We
investigate the power network at the coastal area
of Valparaı́so, Chile, subjected to four selected
seismic scenarios, taking the affected population
as risk metric.
We compare two models: ODBCM and

DCLPFM. Both models are cheap to compute,
wherein ODBCM is faster and requires less in-
put data than DCLPFM. In contrast, DCLPFM
takes into account the load demand, and can be
extended to more complex (and computationally
more expensive) models, such as AC power flow
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Fig. 6. Loss exceedance functions obtained with DCLPFM and ODBCM for different seismic scenarios (columns),
Median (first row) and Random (second row) GMF. Vertical lines indicate the location of the sample average. The
third row shows the scatter plots of the affected population, computed with ODBCM and DCLPFM.

model and optimal power-flow.
In the numerical investigations, assuming the

same initial component failures, the two mod-
els can result in different cascading failures. The
affected population calculated with DCLPFM is
found to be either equal or larger than the one
obtained with ODBCM. However, as shown in
Fig. 6, the difference between the conditional
means of the affected population between the two
models is small. Load balancing of the power-flow
equations can overestimate the power flow in the
surviving components, and produce more severe
cascading failures, as well as heavier tails in the
conditional distribution, and slightly larger con-
ditional mean, of the affected population. Further
investigations for incorporating load balancing in
ODBCM can consider either to reduce the toler-
ance factor α, or to assign weights to the source-
terminal pairs in Eq. (1). Likewise, computing
optimal power flow and checking isolated loads or
generators during the cascading failure simulation
are possible improvements to DCLPFM.
Based on the numerical investigations, we

conclude that the choice between ODBCM and
DCLPFM for simulating cascading effects does
not have significant impact in the average value
of the loss measure, especially with random GMF.
The conditional distribution of the risk metric is
more sensitive to the uncertainty in the ground
motion (compare second row with first row in Fig.
6) than to the choice of cascading effects model.
Further investigations should consider more ad-
vanced cascading effect models, as well as multi-
hazard scenarios (e.g., earthquake and tsunami).
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