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Abstract

We investigate recurrence and transience of Branching Markov Chains (BMC) in dis-

crete time. Branching Markov Chains are clouds of particles which move (according to an

irreducible underlying Markov Chain) and produce offspring independently. The offspring

distribution can depend on the location of the particle. If the offspring distribution is con-

stant for all locations, these are Tree-Indexed Markov chains in the sense of [1]. Starting

with one particle at location x, we denote by α(x) the probability that x is visited infinitely

often by the cloud. Due to the irreducibility of the underlying Markov Chain, there are three

regimes: either α(x) = 0 for all x (transient regime), or 0 < α(x) < 1 for all x (weakly recur-

rent regime) or α(x) = 1 for all x (strongly recurrent regime). We give classification results,

including a sufficient condition for transience in the general case. If the mean of the offspring

distribution is constant, we give a criterion for transience involving the spectral radius of

the underlying Markov Chain and the mean of the offspring distribution. In particular, the

critical BMC is transient. Examples for the classification are provided.

Keywords: Branching Markov Chains, recurrence and transience, Lyapunov function, spec-

tral radius
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1 Introduction

A Branching Markov Chain (BMC) is a system of particles, which move independently ac-

cording to the transition probabilities of an underlying Markov chain. We take a countable

state space X and an irreducible stochastic transition kernel P for the underlying Markov

chain (X, P ). The BMC starts with one particle in an arbitrary starting position xs ∈ X at

time 0. Particles move independently according to P. At each position x ∈ X , they inde-

pendently produce offspring according to some probability distribution µ(x) on {1, 2, 3, . . .}

(which can depend on the position x of the particle) and die. We assume that there is always

at least one offspring particle, so that the number of particles is always increasing in time.

Similar models have been studied in [7].

The transition probabilities of the Markov chain and the offspring distribution can be given

as a (typical) realization of a random environment. The behavior of the resulting “Branching

Random Walk in Random Environment” has been classified in [3], [5] and [6] for the case

where the underlying Markov chain is a Random Walk in Random Environment on Z+ or

on a tree. A similar, but more general model, where movement and offspring production are
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not independent anymore, is considered in [4].

Let α(x) be the probability that, starting the BMC from xs = x, the location x is visited

by infinitely many particles. Using the irreducibility of the underlying Markov Chain, we

obtain, similar to Lemma 3.1 in [1], the following classification:

Lemma 1.1. There are three possible regimes:

α(x) = 0 ∀x ∈ X (1)

(transient regime)

0 < α(x) < 1 ∀x ∈ X (2)

(weakly recurrent regime)

α(x) = 1 ∀x ∈ X (3)

(strongly recurrent regime).

We write α ≡ 0 (≡ 1) if α(x) = 0 (= 1) ∀x ∈ X. We say that a BMC is recurrent if it is

not transient, i.e. if (2) or (3) are satisfied. Note that in the weakly recurrent regime, the

values of α(x) do in general not coincide.

We first give a sufficient condition, Theorem 3.1, for transience where the Markov chain

can be any irreducible Markov chain and the branching distributions can be arbitrary. Under

the assumption of constant mean offspring we obtain in Theorem 3.2 a classification in

transience and recurrence for all irreducible Markov chains. In particular, we show that in

the critical case the BMC is transient. It is left to forthcoming work to study the subdivision

of the recurrent phase. Under homogeneity conditions, i.e. quasi-transitivity, on the BMC

we show that the strongly recurrent regime coincides with the recurrent regime, i.e. (2) does

not occur, see Theorem 3.4.

2 Preliminaries

We give the definition of the spectral radius of an irreducible Markov chain (X, P ) and quote

a result which characterizes the spectral radius in terms of t−superharmonic functions. For

further details see e.g. [8].

Definition 2.1. Let (X, P ) be an irreducible Markov chain with countable state space X

and transition operator P = (p(x, y))x,y∈X . The spectral radius of (X, P ) is defined as

ρ(P ) := lim sup
n→∞

(
p(n)(x, y)

)1/n

∈ (0, 1], (4)

where p(n)(x, y) is the probability to get from x to y in n steps. P is interpreted as a

(countable) stochastic matrix, so that p(n)(x, y) is the (x, y)−entry of the matrix power P n.

We set P 0 = I, the identity matrix over X.

The transition operator P acts on functions f : X → R by

Pf(x) :=
∑

y

p(x, y)f(y). (5)
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Definition 2.2. The Green function of (X, P ) is the power series

G(x, y|z) =

∞∑

n=0

p(n)(x, y)zn, x, y ∈ X, z ∈ C.

Remark 2.1. For all x, y ∈ X the power series G(x, y|z) has the same radius of convergence

1/ρ(P ).

Definition 2.3. Fix t > 0. A t−superharmonic function is a function f : X → R satisfying

Pf ≤ tf.

We write S(P, t) for the collection of all t−superharmonic functions and S+(P, t) for the

positive cone of S(P, t), i.e. S+(P, t) = {f ∈ S(P, t) : f ≥ 0}.

A base of the cone S+(P, t) can be defined with the help of a reference point x0 ∈ X by

B(P, t) := {f ∈ S+(P, t) : f(x0) = 1}.

Lemma 2.1. B(P, t) is compact in the topology of pointwise convergence.

Proof. The closedness of B(P, t) follows from Fatou’s lemma. Let x ∈ X, then irreducibility

implies the existence of nx such that p(nx)(x0, x) > 0. If f ∈ B(P, t) then

p(n)(x0, x)f(x) ≤ Pnf(x0) ≤ tnf(x0) = tn.

Hence

f(x) ≤
tnx

p(nx)(x0, x)
∀f ∈ B(P, t),

and the desired compactness follows.

Lemma 2.2.

ρ(P ) = min{t > 0 : ∃ f(·) > 0 such that Pf ≤ tf}

Proof. If there exists a function f 6= 0 in S+(P, t), then p(n)(x, x)f(x) ≤ Pnf(x) ≤ tnf(x).

Hence ρ(P ) = lim supn

(
p(n)(x, x)

)1/n
≤ t. Conversely, for t > ρ(P ) the function f(x) =

G(x, x0|1/t) is by Remark 2.1 well-defined. It is clear that f(·) is non-zero and in S+(P, t).

Hence, B(P, t) 6= ∅. We have B(P, t1) ⊆ B(P, t2) for t1 < t2. By compactness of the sets

B(P, t), it follows that B(P, ρ(P )) =
⋂

t>ρ(P ) B(P, t) 6= ∅.

2.1 Branching Markov Chains

We consider an irreducible Markov chain (X, P ) in discrete time. For all x ∈ X let

µ1(x), µ2(x), . . .

be a sequence of non-negative numbers satisfying

∞∑

k=1

µk(x) = 1 and m(x) :=
∞∑

k=1

kµk(x) < ∞.
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We define the Branching Markov Chain (BMC) on (X, P ) following [7]. At time 0 we

start with one particle in an arbitrary starting position xs ∈ X. When a particle is in x,

it generates k offspring particles at x with probability µk(x) (k = 1, 2, . . .) and dies. The

k offspring particles then move independently according to the Markov chain (X, P ) and

generate their offspring as well. At any time, all particles move and branch independently of

the other particles and the previous history of the process. The resulting BMC is a Markov

chain with countable state space X ′, namely the space of all particle configurations

ω(n) = {x1(n), x2(n), . . . , xη(n)(n)},

where xi(n) ∈ X is the position of the ith particle at time n and η(n) is the total number

of particles at time n. Since there is always at least one offspring particle, the number

of particles is always increasing in time. In most cases under consideration the number of

particles η(n) tends to infinity as n → ∞ almost surely. Therefore, it is not interesting to

ask if a BMC is recurrent as a Markov chain on X ′: η(n) → ∞ implies its transience. It is

more reasonable to define transience and recurrence as in Lemma 1.1. With the notations

above we can write α(x) as

α(x) = Px




∞∑

n=1

η(n)∑

i=1

1{xi(n)=x} = ∞



 ,

where Px(·) = P(·|xs = x) and x ∈ X. Note that a BMC in our setting is strongly recurrent

(α ≡ 1) if every state x ∈ X is visited with probability 1. In analogy to [7], we introduce the

following modified version of the BMC. We fix an arbitrary position x0 ∈ X, which we denote

the origin of X. After the first time step we conceive the origin as an absorbing point: if a

particle reaches the origin it stays there forever and stops producing offspring. We denote

this new process with BMC*. The process BMC* is analogous to the original process BMC

except that p(x0, x0) = 1, p(x0, x) = 0 ∀x 6= x0 and µ1(x0) = 1 from the second time step

on. Let η0(n, xs) be the number of particles at position x0 at time n, given that the BMC*

started in xs ∈ X. We define the random variable ν(xs) as

ν(xs) = lim
n→∞

η0(n, xs).

The random variable ν takes values in {0, 1, 2, . . .} ∪ {∞}.

3 Results

We present a sufficient condition for transience of a Branching Markov Chain (BMC), which

is inspired by the Lyapunov methods developed in [3] and [7].

Theorem 3.1. A BMC with irreducible underlying Markov chain (X, P ) and m(y) > 1 for

some y ∈ X is transient if there exists a strictly positive function f(·) such that

Pf(x) ≤
f(x)

m(x)
∀x ∈ X. (6)

Proof. We show that the total number of particles returning to a starting point xs = x0 6= y

is finite. The total number of particles in x0 can be interpreted as the total number of progeny
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in a branching process (Zn)n≥0. We show that this process dies out with probability one.

The branching process (Zn)n≥0 is defined as follows: Note that each particle has a unique

ancestry line which leads back to the starting particle at time 0 at x0. Let Z0 = 1 and

let Z1 be the number of particles being the first particle in their ancestry line (after the

starting particle) to visit x0. Inductively we define Zn as the number of particles being the

nth particle in their ancestry line to visit x0. This defines a Galton-Watson process with

offspring distribution Z
d
=Z1. We have that

∞∑

n=1

Zn =

∞∑

n=1

η(n)∑

i=1

1{xi(n)=x0}

and Z
d
=ν(x0). In order to show that (Zn) dies out almost sure it suffices to show that

Eν(x0) ≤ 1 and Px0
(ν(x0) < 1) > 0. Given the first statement the latter is true since

m(y) > 1 and hence Px0
(ν(x0) > 1) > 0. It remains to show the first statement: Consider

the corresponding BMC* and define

Q(n) :=

η(n)∑

i=1

f(xi(n)),

where xi(n) is the position of the ith particle at time n. One can show that Q(n) is a

supermartingale and that

ν(xs) ≤
Q∞

f(xs)
.

We refer the reader for the technical details to the proof of Theorem 3.2 in [7]. We obtain

by taking expectations and starting the BMC* in xs = x0

Eν(x0) ≤
EQ∞

f(x0)
≤

EQ(0)

f(x0)
=

f(x0)

f(x0)
= 1. (7)

Remark 3.1. In contrast to Theorem 2.2. in [3] and Corollary 3.1 in [7] we demand that the

condition (6) holds for all x ∈ X but don’t require that f(x) → 0. Note that in [3] the BMC*

is defined in a slightly different way: the origin x0 is always absorbing.

Remark 3.2. The converse of Theorem 3.1 does not hold in general, for a counterexample

see Section 5 in [3].

3.1 BMC with constant mean offspring

We assume that the mean number of offspring is constant, i.e. m(x) = m > 1 for all x ∈ X.

Note that we do not assume (µk(x))k = (µk(y))k for x, y ∈ X , and the BMC therefore needs

not to be a Tree-Indexed Markov Chain as in [1].

Under these assumptions, we have the following.

Theorem 3.2. For a BMC with irreducible underlying Markov chain (X, P ) and constant

mean offspring m > 1, it holds that the BMC is transient if m ≤ 1/ρ(P ) and recurrent if

m > 1/ρ(P ).
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Remark 3.3. If m = ∞ then the BMC is recurrent, since one can compare the process with

a suitable BMC with m̃ > 1/ρ(P ).

Proof. The first part follows from Lemma 2.2 and Theorem 3.1. To show the recurrence

we use ideas developed in [1], [3] and [7]: We compare the original BMC with some new

process with fewer particles and show that the new process is recurrent. We start the BMC

in x0 ∈ X . We know from the hypothesis and the definition of ρ(P ), that there exists a

k = k(x0) such that

p(k)(x0, x0) > m−k.

We observe the BMC only at times k, 2k, 3k, . . . . Particles that are not in x0 at these times

are neglected. Let ξ(n) be the number of the remaining particles in x0 at time nk. The

process ξ(·) is a Galton-Watson process with mean p(k)(x0, x0) · mk > 1, thus survives with

positive probability and hence the origin is visited infinitely often by the original BMC with

positive probability.

Remark 3.4. Theorem 3.2 implies in particular that Markov chains indexed by Galton-

Watson trees are transient in the critical case m = 1/ρ(P ), since if (µk(x))k = (µk(y))k for

all x, y ∈ X the BMC is a Markov chain indexed by a Galton-Watson tree, compare to [1].

3.2 Quasi-transitive BMC

Let X be a locally finite, connected graph and Aut(X) be the group of automorphisms of X.

Let P be the transition matrix of an irreducible Markov chain on X and Aut(X, P ) be the

group of all γ ∈ Aut(X) which satisfy p(γx, γy) = p(x, y) for all x, y ∈ X. We say the Markov

chain (X, P ) is transitive, if the group Aut(X, P ) acts transitively on X and quasi-transitive

if Aut(X, P ) acts with finitely many orbits on X, that is if each vertex of X belongs to one

of finitely many orbits.

We say a BMC is quasi-transitive if the group Aut(X, P, µ) of all γ ∈ Aut(X, P ) which

satisfy µk(x) = µk(γx) ∀k ≥ 1 for all x ∈ X acts with finitely many orbits on X. Using

induction on n, one can show the following.

Lemma 3.3. For a quasi-transitive BMC it holds that for all x, y ∈ X and all γ ∈ Aut(X, P, µ)

Px




η(n)∑

i=1

1{xi(n) = y} = k



 = Pγx




η(n)∑

i=1

1{xi(n) = γy} = k



 ∀n ∈ N. (8)

For quasi-transitive BMC we have a 0−1− law for the return probability. In other words,

α ∈ {0, 1} in this case.

Theorem 3.4. For a quasi-transitive BMC with underlying Markov chain (X, P ) and branch-

ing distribution (µk(x))k≥1 with constant mean offspring m(x) = m > 1 ∀x, it holds that

• the BMC is transient (α ≡ 0) if m ≤ 1/ρ(P ).

• the BMC is strongly recurrent (α ≡ 1) if m > 1/ρ(P ).

Proof. The statement for the case m ≤ 1/ρ(P ) follows from Theorem 3.2. Recurrence in

the case m > 1/ρ(P ) also follows from Theorem 3.2. In order to show the strong recur-

rence (α ≡ 1) in the case m > 1/ρ(P ), we use ideas from the proof of Theorem 4.3 in [3].
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Constructing infinitely many supercritical Galton-Watson processes whose extinction prob-

abilities are bounded away from 1, we show that at least one location is hit infinitely often.

We start the BMC in xs1
∈ X . We know from the hypothesis and the definition of ρ(P ),

that there exists a k1 = k1(xs1
) such that

p(k1)(xs1
, xs1

) > m−k1 .

We construct a new process ξ1(·) by observing the BMC only at times k1, 2k1, 3k1, . . . and by

neglecting all the particles not being in position xs1
. Then, ξ1(n) is the number of particles

of the new process in xs1
at time nk1. In this way, we obtain a Galton-Watson process ξ1(·).

The number of particles in xs1
at time nk1 of the original BMC is at least ξ1(n). The process

ξ1(·) is a Galton-Watson process with mean p(k1)(xs1
, xs1

) · mk1 > 1. Hence ξ1(·) dies out

with a probability q1 = q1(xs1
) < 1. If this first process dies out, we start a second process

ξ2(·), defined in the same way with a starting position xs2
(xs2

can be any location which is

occupied by a particle at the time where the first process dies out) and k2 = k2(xs2
) such

that

p(k2)(xs2
, xs2

) > m−k2 .

This process dies out with probability q2 = q2(xs2
). If the second process dies out we construct

a third one, and so on. We obtain a sequence of processes ξi(·) with extinction probabilities

qi. It suffices now to show that the qi are bounded away from 1: the probability that all

the processes die out is then
∏

i qi = 0. Due to Lemma 3.3 we have that for two starting

positions x and y of the same orbit

Px




η(n)∑

i=1

1{xi(n) = x} = k


 = Py




η(n)∑

i=1

1{xi(n) = y} = k


 ∀n ∈ N.

Hence two processes started in x and y have the same distributions and hence the same

extinctions probabilities. Since there are only finitely many orbits, there are only finitely

many different extinction probabilities qi.

Remark 3.5. Instead of considering quasi-transitive Markov Chains, we could also assume

that (p(l)(x, x))1/l converges uniformly in x, i.e. ∀ ε > 0 ∃ l such that (p(l)(x, x))1/l >

ρ(P )− ε, ∀x ∈ X, and that there is a k ∈ N such that infx

∑k
i=1 iµi(x) ≥ 1/ρ(P ). Observing

in the same way as in the proof of Theorem 3.4 the BMC with branching distributions

µ̃0(x) =
∑∞

i=k+1 µi(x) and µ̃i(x) = µi(x) for i = 1, . . . , k and x ∈ X, we obtain supercritical

Galton-Watson processes ξi with bounded variances and means bounded away from 1, since

l and k do not depend on xsi
. Hence the extinction probabilities qi are bounded away from

1.

4 Examples

1. A BMC with transient underlying Markov chain (X, P ) is transient if

sup
x∈X

m(x) ≤ 1/ρ(P ).

2. A branching symmetric random walk on Zd, d ∈ N, is strongly recurrent for all branch-

ing distributions with constant mean offspring m > 1.
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3. Consider a random walk on Z with drift: Let X = Z, p ∈ (0, 1) and P given by

p(x, x + 1) = p = 1 − p(x, x − 1).

Take branching distributions with constant mean offspring m. The spectral radius is

ρ(P ) = 2 ·
√

p(1 − p). Hence, the corresponding BMC is transient if

m ≤
1

2 ·
√

p(1 − p)

and strongly recurrent if

m >
1

2 ·
√

p(1 − p)
.

(This reproduces a result of [3] in section 4, noted that there is a calculation error in

the formula after Theorem 4.3 of [3] so that the "<" should become a " ≤".)

4. More generally, take X = Zd and ei ∈ Zd with (ei)j = δij for i, j ∈ {1, . . . , d}, d ≥ 1.

Let P be defined by

p(x, x + ei) = p+
i , p(x, x − ei) = p−i such that

d∑

i=1

p+
i +

d∑

i=1

p−i = 1, ∀x ∈ Z
d

and such that P is irreducible. Take branching distributions with constant mean off-

spring m. The spectral radius can be calculated with the help of the Perron-Frobenius

Theorem (see for example [8]):

ρ(P ) = 2
d∑

i=1

√
p+

i p−i .

The corresponding BMC is strongly recurrent if

m >
1

2
∑d

i=1

√
p+

i p−i

.

Otherwise it is transient.
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