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Reconstruction of the respiratory 
signal through ECG and wrist 
accelerometer data
Julian Leube1, Johannes Zschocke1,2, Maria Kluge3, Luise Pelikan3, Antonia Graf3, 
Martin Glos3, Alexander Müller4, Ronny P. Bartsch5, Thomas Penzel3,6 & Jan W. Kantelhardt1*

Respiratory rate and changes in respiratory activity provide important markers of health and 
fitness. Assessing the breathing signal without direct respiratory sensors can be very helpful in large 
cohort studies and for screening purposes. In this paper, we demonstrate that long-term nocturnal 
acceleration measurements from the wrist yield significantly better respiration proxies than four 
standard approaches of ECG (electrocardiogram) derived respiration. We validate our approach by 
comparison with flow-derived respiration as standard reference signal, studying the full-night data 
of 223 subjects in a clinical sleep laboratory. Specifically, we find that phase synchronization indices 
between respiration proxies and the flow signal are large for five suggested acceleration-derived 
proxies with γ = 0.55± 0.13 for males and 0.58± 0.14 for females (means ± standard deviations), 
while ECG-derived proxies yield only γ = 0.36± 0.16 for males and 0.39± 0.14 for females. Similarly, 
respiratory rates can be determined more precisely by wrist-worn acceleration devices compared 
with a derivation from the ECG. As limitation we must mention that acceleration-derived respiration 
proxies are only available during episodes of non-physical activity (especially during sleep).

There is substantial evidence that deviations of the respiratory rate from its normal behavior can be used as a 
predictor of clinically relevant and potentially fatal events and conditions (see, e.g., the very recent review paper 
by Liu et al.1 and references therein), although the relevance of respiratory rate has long been overlooked in 
clinical setting2 and other fields3. For example, spontaneous breathing rates below six breath per minute (bpm) 
was prospectively shown to be a stronger predictor of subsequent in-hospital mortality than abnormal heart 
rate, hypertension or the decrease (or loss) of consciousness4. In a very recent study of non-invasive risk assess-
ment for cardiac patients, abnormally high respiratory rate ( > 18.6 bpm ) and low expiration-triggered sinus 
arrhythmia turned out to be among the three most sensitive early risk indicators as components of the Polyscore 
index5; previous work also demonstrated the importance of respiratory rate for cardiac patients6,7. Therefore, it is 
appropriate to include measurements of respiratory rate and the influence of respiration activity on the heart in 
large cohort studies that aim at identifying early indicators for health risks and to study effects of healthy aging8,9.

Although many methods and technologies for the measurement of respiratory rate and the identification of 
breathing intervals have been suggested over the past decades1,10,11, there is still a need for inexpensive, reliable, 
and non-obtrusive sensors. In order to assess respiratory behavior in large epidemiological cohort studies with 
many thousands of participants from the general population, the handling of the measurement technology 
should be as easy as possible with a minimum of additional costs. The derivation of respiration proxies from the 
recordings of devices already used in such studies are thus particularly valuable. An important approach in this 
regard is exploiting the respiratory modulation of other physiological signals, such as the electrocardiogram 
(ECG) often registered in long-term (Holter) recordings for 24 h1,12–14 or during sleep studies15. ECG amplitude 
and baseline as well as frequency are modulated by respiration via motions of the heart axis and respiratory sinus 
arrhythmia (RSA), respectively, leading to more than a dozen of respiration proxies12.

In addition, similar proxies can be derived from the photoplethysmogram (PPG)16,17, with best signals 
recorded at the forehead and the finger for normal and deep breathing pattern, respectively18. In a systematic 
comparison study, feature-based techniques in the time domain turned out to be generally superior to filter-based 
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techniques and techniques in the frequency domain1,12. In addition, feature-based time-domain techniques 
facilitate the determination of the individual breathing intervals (instead of a mere breathing rate), and they are 
more useful for studying the data of patients with possibly irregular breathing (e.g., due to apneas) or extremely 
low or high breathing rates.

A few approaches tried a fusion of ECG or PPG derived respiration with respiration proxies from accelerom-
eter and gyroscope data19–21. Accelerometer-based methods for measuring breathing-related movements have 
been roughly validated22–24. However, mainly accelerometers and gyroscopes, appropriately positioned over the 
diaphragm1, the dome-shaped skeletal muscle of the thoracic cavity25 (or the chest wall11), as well as the forehead26 
have been considered, so that an additional sensor is needed in these efforts.

In this paper we propose and validate an approach for extracting proxy signals for respiratory events from 
wrist accelerometer data. Wrist accelerometers are often employed in large cohort studies for the purpose of 
activity/inactivity tracking as well as sleep/wake identification of the subjects. No cables nor obtrusive sensors 
are needed, since a wrist accelerometer is worn like a common wrist watch. There are a few previous studies on 
wrist accelerometer data10,26,27 that focus on estimating mean respiratory rate using spectral techniques.

Results
Here, we present our results for respiratory proxies derived from wrist accelerometer data. Specifically, we con-
sider the instantaneous respiratory phases and respiratory rates derived from acceleration recorded for all three 
perpendicular axes (x, y, and z) on the non-dominant arm of 223 subjects. For details, we refer to the “Methods” 
section and Tables 1 and 2, in particular. In addition to the proxies Accx , Accy , and Accz for the normal axes, we 
have studied data for the corresponding rotational angles ϑ and ϕ of the wrists.

In order to relate with previous literature, we compare our results with respiratory proxies derived from ECG 
recordings. Specifically, we have considered the following four previously established ECG-derived proxies of 
respiration: averages of maximum and minimum of QRS complex (B1), differences of maximum and minimum 
of QRS complex [B2, also commonly referred to as ECG-derived respiration (EDR)], duration of RR intervals 
(B3), and maxima of QRS complex (B5), see also Table 1 and “Methods” section. We have selected these four 
proxies based on their superior performance in a previous study13.

Phase synchronization.  Figure 1 shows a boxplot of the phase synchronization indices γ [Eq. (5)] for all 
considered respiration proxies (see Table 1) compared to flow as the respiration standard signal, including the 
results for all 223 subjects (see Table 2). Although many previous works focused on EDR proxies (see “Meth-
ods”), we found that all wrist acceleration proxies perform significantly better (t-tests: p < 0.001 ). The rotational 

Table 1.   List of respiration proxies considered in this work; see “Methods” section below for the description of 
the signals and particularly Fig. 6 for wrist acceleration measurements.

Measure Description

Accx Wrist acceleration in longitudinal direction (in mg)

Accy Wrist acceleration in lateral direction (in mg)

Accz Wrist acceleration in lateral direction (in mg)

ϑ rotational angle of the wrist (in rad)

ϕ rotational angle of the wrist (in rad)

B1 Average of maximum and minimum of QRS complex (in µV)

B2 (EDR) Difference of maximum and minimum of QRS complex (in µV)

B3 Duration of RR interval (in ms)

B5 Maximum of QRS complex (in µV)

Table 2.   Overview of all subjects included in the analysis. Subjects with multiple diagnoses are counted in 
each appropriate diagnosis line, i.e., multiple times. The last line reports data for all subjects irrespective of 
diagnosis.

Diagnosis Females Males

No diagnosed sleep disorder 5 6

Sleep-related breathing disorders (SRBD) 42 69

Insomnia 29 15

Central disorders of hypersomnolence 25 16

Sleep-related movement disorder 20 11

Parasomnias 6 5

Circadian rhythm sleep-wake disorders 0 6

Other sleep disorders 5 7

All subjects 110 113
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angles ϕ and ϑ performed best with averages γ = 0.55± 0.13 ( 0.58± 0.14 ) and 0.55± 0.13 ( 0.58± 0.15 ) for 
males (females), respectively (mean ± standard deviation). Accx ( γ = 0.55± 0.13 and 0.58± 0.15 for males 
and females, respectively), Accy ( γ = 0.53± 0.13 and 0.56± 0.13 ), and Accz ( γ = 0.53± 0.13 and 0.58± 0.15 ) 
also achieved significantly larger average synchronization indices than each of the ECG-derived proxies. The 
best ECG proxies were B3 (based on RSA) with γ = 0.34± 0.12 ( 0.39± 0.14 ) and B5 with γ = 0.36± 0.12 
( 0.37± 0.18 ) for males (females). Differences between males and females were significant for Accz ( p < 0.05 ) 
and B3 ( p < 0.01).

A direct comparison of all subjects with sleep-related breathing disorders (SRBD) and all other subjects 
yielded similar results for both subgroups, although, in the SRBD subgroup, the γ values were significantly 
( p < 0.05 ) smaller for all acceleration-derived proxies and even reached p < 0.01 for ϑ and Accz . ECG-derived 
proxies B1 and B5 yielded slightly larger γ values in the SRBD subgroup ( p < 0.05 ), while differences were not 
significant for B2 and B3.

Figure 2 shows the mean values of all pairwise synchronization indices γ between the proxies and the flow. 
Clearly, all acceleration-derived proxies are quite well synchronized to each other. ϑ is very similar to Accx , 
while ϕ is similar to Accy and Accz , for example [cp. Eq. (2)]. Many ECG-derived proxies (particularly B1, B2 
and B5) are well synchronized with each other, but not so well synchronized with the recorded respiratory flow.

In Fig. 3 the phase synchronization of all proxies to the recorded flow signal is traced for several nocturnal 
hours with least wakefulness (1:00 am to 5:00 am). Overall, ϕ and Accx yielded the best synchronization, but the 
differences compared with ϑ , Accy , and Accz are tiny. It seems that the synchronization of B3 slightly increases 
with time.

Figure 4 shows the distributions of synchronization indices for all 30 s segments of all recordings. If only 
ECG-derived proxies were available for the selection, synchronization indices between 0.2 and 0.3 would be 
most common, and values above 0.9 could rarely be achieved. However, for accelerometer data derived proxies, 
synchronization indices above 0.9 turned out to be the most frequent. In fact, the distributions of γ values reached 
if all proxies are considered is not much different from the distribution achieved for acceleration-derived proxies 
only, except in the regime of γ < 0.2.

Respiratory rates.  Figure 5 shows the differences of average respiratory rates derived from all proxies and 
the recorded flow signal. The acceleration-derived respiratory rates closely agreed with the real respiratory rate 
with average deviations between −0.38 breaths per minute (bpm, −2.6 %) for ϕ and up to + 0.32 bpm (+ 2.1%) 

Figure 1.   Boxplot of the average synchronization between proxies and measured respiration. Phase 
synchronization indices γ according to Eq. (5) between all respiration proxies (see Table 1) and the recorded 
flow signal have been averaged over the complete sleeping period and all 223 subjects (see Table 2). The orange 
part of each box represents the values between the lower quartile and the median, and the blue part represents 
the values between the median and the upper quartile. The ends of the whiskers mark the 2.5% quantile and 
the 97.5% quantile, respectively. The total average values appear as black crosses in the boxplot along with the 
averages for male (yellow dots) and female (red dots) subjects. According to t-tests, the results for Accx , Accy , 
Accz , ϑ , and ϕ were significantly different from all other results ( p < 0.001 ), but not significantly different from 
each other. The same holds for the results regarding the ECG-derived proxies B1, B2, B3 and B5. Differences 
between males and females were marginally significant ( 0.05 > p ≥ 0.01 ) for Accx , Accy , ϕ , ϑ , and B2, and 
significant ( p < 0.01 ) for Accz and B3.
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for the other acceleration-derived proxies. The ECG-derived proxies generally underestimated respiratory rates 
with average deviations between −3.1 bpm and −1.5 bpm ( −21.2 to −10.4%). However, we would like to stress 
that the estimation of mean respiratory rates is not the main goal of our medically oriented approach, which 
shall also capture interruptions of respiration (apneas) as well as times with very low and high respiratory rates, 
i.e., extreme events and respiratory variability. In this respect, we would like to note that significant differences 
between subjects with and without SRBD (present in the flow signal) could be identified in most acceleration-
based proxies ( Accx , Accy , ϑ , and ϕ ) and in B1, but not in B2, B3, or B5.

Figure 2.   Synchronization matrix. Phase synchronization indices γ according to Eq. (5) between all pairs of 
respiration proxies (see Table 1) and the flow have been averaged over the complete sleeping period and all 223 
subjects. They are presented in a symmetrical color-coded matrix with brown indicating full synchronization 
and white indicating no synchronization—see color bar on the right.

Figure 3.   Best synchronization with flow during nocturnal hours. For each respiration proxy (see Table 1), this 
matrix shows the average phase synchronization index γ with respect to the flow signal (see color bar on the 
bottom) during the considered nocturnal hour.
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Discussion
In this paper, we have introduced and validated an approach for obtaining respiration proxies from nocturnal 
long-term wrist acceleration measurements from 223 clinical subjects including (but not restricted to) patients 
with various sleep-related disorders. We have shown that each of the the suggested five acceleration-derived 
proxies is significantly ( p < 0.001 ) more reliable than each of the four known standard ECG-derived respiration 
proxies, exploiting ECG baseline, amplitude, and frequency changes.

Figure 4.   Histogram of best achievable proxy synchronization. The histograms show the numbers of 30 s 
segments of the total data (all 223 subjects) for which a γ value in the particular interval (0.0 to 0.1, 0.1 to 0.2, 
etc.) could be achieved taking into account all proxies (green), only acceleration-derived proxies (orange), and 
only ECG-derived proxies (blue).

Figure 5.   Boxplot of average difference of respiratory rate. The differences of respiratory rates calculated 
from each respiration proxy and the measured flow signal has been averaged over all 30 s segments and all 223 
subjects. The boxes and markers correspond to those in Fig. 1. Note that ϕ yielded a slightly lower respiratory 
rate (negative difference) than the other acceleration-derived proxies. The results regarding the ECG-derived 
proxies B1, B2, and B5 were also lower. Differences between males and females were not significant.
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For comparison, we have considered four established ECG-derived proxies of respiration, B1, B2, B3, and B5, 
selected because of their superior performance in the study by Charlton et al.13, where 15 proxies for a recon-
struction of respiratory activity from one-channel ECGs were compared in healthy subjects. Measures B1, B2, 
and B5 are based on the varying direction of the heart axis during the respiratory cycle, leading to ECG baseline 
wander (exploited in B1 and B5) and ECG amplitude modulation (exploited in B2 and B5). B2 is also known as 
ECG-derived respiration (EDR) method and considered in many other studies, see e.g.28 B3 is based on the effects 
of RSA29 leading to ECG frequency modulation and thus also known as RSA method30. Specifically, in the study 
of Charlton et al., B2 yielded the highest median subject-specific correlation coefficients (CC) with respiratory 
activity in both, young and elderly subjects (CC = 0.76 and 0.77, respectively), B5 performed similarly well (CC 
= 0.74 and 0.76, respectively), and B1 was at the third rank for elderly subjects (CC = 0.72, versus 0.66 in the 
young). We also included the best frequency modulation based proxy B3 for comparison, although it performed 
well in young subjects only (CC = 0.66, versus 0.44 in the elderly)13.

The variation of phase synchronization values among the subjects was large for the acceleration-derived 
γ values as indicated by the widths of the box plots and their whiskers in Fig. 1. This is most probably due to 
multiple possibilities of arm placement of the subjects during sleep. While an arm lying on the chest will lead to 
an improved respiration proxy, a widely extended arm leads to weaker respiratory movements at the wrist. As 
expected, the length of the acceleration vector, r, reached a drastically lower phase synchronization index (not 
shown in Fig. 1), since the magnitude of the gravitational force does not change with respiration. Nevertheless, 
the directions of this vector in the reference frame of the wrist-fixed recording device change as respiration causes 
slight repetitive turns of the wrist1, as exploited in our other accelerometer-derived proxies. While B2 was the 
best proxy in earlier studies13, in our study all ECG-derived respiration proxies yielded similar (not significantly 
different) results.

The respiratory rate can be determined more exactly by wrist worn acceleration devices. Respiration proxies 
obtained from the data of all three accelerometer axes using a simple moving average smoothening ( Accx , Accy , 
Accz ) as well as the derived rotation angle ϑ turned out to be similarly reliable. Since the derived rotation angle 
ϕ yielded a significant deviation in the respiratory rate, we suggest not using it although the approach seemed 
very promising initially. Based on our data, our recommendation goes to Accx and ϑ.

We note that recent work on a BioWatch26 used single-axis wrist accelerometer data in the frequency domain 
from 0.13 to 0.66 Hz (corresponding to 8 and 40 breaths per minute) to estimate respiratory rates. The technique 
focused on average breathing rate in intervals of 20 s as determined via spectral analysis, not trying to identify 
individual breaths, breathing interruptions, or breath-to-breath intervals. Besides that, it was limited to 32 h of 
sleep data from three subjects and 72 mins of daytime data (sitting, standing and lying without motion) from 
twelve subjects. Another recent study determined the average respiratory rates in 15 subjects using wrist acceler-
ometer data27, reporting an average deviation of 16.6% with respect to respiratory rate from a chest band. Another 
paper from the same group reported that respiratory rate can be most reliably estimated via accelerometry, if the 
sensor is attached to the subjects’ torso or shoulders31.

As an improvement compared to BioWatch, the recently introduced SleepMonitor10 exploited wrist acceler-
ometer data recorded at 16 Hz in 30-s windows, fusing the spectrally determined respiratory rates from all three 
axes and this way obtaining results with errors about half as large as those of BioWatch. Mean absolute errors 
for the wrist-motion determined respiratory rate as compared with the chest-motion determined rate were 0.72 
and 1.08 breaths per minute for normally and disorderedly (either sleep apnea or intentional strong breathing 
variations) breathing subjects, respectively. The technique, validated with data from 70 nights of 16 subjects 
(including two subjects with sleep-disordered breathing), included a Kalman filter working with predictions of 
respiratory rate in addition to FFT filtering and did not try to capture interruptions of respiration (apneas) nor 
extreme variations of respiratory rates.

Since our approach fully works in the time domain, not involving spectral analysis, it is rather insensitive to 
non-stationarities of the recorded data and not limited to certain ranges of respiratory rate or requiring smooth 
changes of respiratory activity. Therefore, not only respiratory rate but also possibly clinically relevant extreme 
events and interruptions of respiratory activity can be assessed. Although further development, optimization, 
and validation is necessary before our approach could be clinically applied, we think our method can be used 
in its current form to derive the respiratory signal from nocturnal accelerometer recordings obtained in large 
cohort studies. Such cohorts are currently recorded in the framework of, e.g., the UK Biobank study and the 
German National Cohort (GNC) study.

Limitations.  We must certainly mention that acceleration-derived respiration proxies are available during 
episodes of non-physical activity (especially during sleep) only, while ECG-derived respiration is not limited 
in this way. We also remark that our approach for using accelerometer data as a respiratory proxy will fail in a 
zero-gravity environment, e.g. in a space station, since it requires the vertical gravitational direction as reference.

Methods
Measurements.  All measurements took place in the sleep laboratory of the Charité-Universitätsmedizin 
Berlin, Germany, between April 2017 and December 2018. The study was approved by the ethics committee of 
the Charité-Universitätsmedizin Berlin and registered at the German Clinical Trial Register (DRKS) with ID 
DRKS00016908. All methods were performed in accordance with the relevant guidelines and regulations. In 
total, 392 subjects were included in the study after signing informed consent. During their first diagnostic night 
at the sleep laboratory, all subjects wore a SOMNOwatch  plus device (Somnomedics GmbH, Randersacker, 
Germany), recording simultaneously 3d wrist acceleration of the non-dominant arm at 128 Hz sampling rate 
(see Fig. 6) and a one channel ECG at 256 Hz. Furthermore, full polysomnography (PSG, including recordings 
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of electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), ECG, respiratory flow, 
etc.) was recorded using either the system Alice (Löwenstein Medical, Bad Ems, Germany), Embla (Embla sys-
tems, Broomfield, CO, United States), or SOMNOscreen (Somnomedics GmbH, Randersacker, Germany). For 
our analysis we used the acceleration and ECG data recorded by SOMNOwatch and the respiratory flow signal 
recorded by the PSG system.

The measurements of the SOMNOwatch device and the PSG system were synchronized after recording by 
matching the R peaks of the ECGs recorded by both of them. 145 subjects had to be excluded from further analy-
sis, since reliable synchronization could not be established this way because of poor ECG quality in either of the 
two recordings. We note that this synchronization method required matching R peaks from the simultaneously 
recorded ECGs during each 20 minutes of the recordings, since we identified jumps (i.e. unmarked time gaps) 
in more than 15% of all PSG recordings across all three recording systems; no such gaps occurred in the Som-
nowatch recordings. In addition, we had to determine and take into account drifts of the recorded time cumulat-
ing to typically 1–2 s per night. Another 24 subjects had to be excluded because their respiratory recordings from 
the SOMNOscreen system could not be successfully exported into the European data format (EDF+) leading to 
completely or substantially (for more than half of the recording time) missing flow signals. The final 223 subjects, 
aged between 18 and 78 years (mean 47.9 ± 13.7 years ) with average body mass index 27.7 ± 5.7 kg/m2 , had 
an average time in bed (TiB) of 7.6 ± 0.8 h . Only data recorded during the lights-off period were considered. 
All subjects were regular patients of the sleep laboratory with confirmed sleep disorders. In Table 2 we list the 
frequency of sleep disorders classified by ICSD-3 (International Classification of Sleep Disorders).

Reconstruction of respiratory signals from accelerometry.  Our initial observation of a peak in the 
0.3 Hz range (corresponding to ≈ 18 breaths per minute) in nocturnal three-axis accelerometry data recorded at 
the wrist32 was the starting point for our approach towards respiration proxies. After we had found that the high 
amplitude resolution of modern accelerometers (down to 3mg ≈ 0.03m/s2 ) can resolve tiny motions caused 
by respiratory activity10,32,33, we have systematically studied if this effect can be used for a practical derivation of 
respiration proxies.

The data processing consists of several steps and starts by smoothing the recorded 128 Hz raw acceleration 
data ẍ(t) by calculating a moving average. Specifically, we calculated a moving average with a window width of 
±0.5 s (i.e., ±64 data points),

(1)Accx(t) =
1

129

+64
∑

j=−64

ẍ(t + (j/128Hz))

Figure 6.   Acceleration recording at the wrist. The photo shows the placement of the SOMNOwatch plus 
device (Somnomedics GmbH, Randersacker, Germany) at the wrist with the coordinate axes (x, y, and z; 
yellow) according to the device’s orientation as well as the gravity acceleration vector (red) pointing vertically 
upwards from the center of the earth. The device measures the three components of the gravity acceleration with 
respect to its coordinate axes. From this data the two orientational angles, ϑ = angle between x axis and gravity 
acceleration and ϕ = angle between y axis and projection of the gravity acceleration into the y − z plane (dashed 
red vector), can be calculated according to Eq. (3).
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to obtain smoothened longitudinal acceleration (with the x axis in the direction towards the elbow and the hand, 
see Fig. 6) as first respiration proxy. Similarly, we obtained smoothened lateral accelerations for the the y and z 
axes oriented perpendicular to x, Accy and Accz , see Table 1. The window size of 1 s in Eq. (1) was chosen such 
that there is typically one heartbeat in each window so that effects of heartbeats and pulse wave propagation 
through the wrist (see also34) are systematically dampened in this moving average procedure. Finally, a resampling 
to a rate of 4 Hz is applied, since respiration proxies do not need temporal resolutions beyond that.

The red curve in Fig. 7a shows an example for the final respiration proxy determined from y axis accelerom-
etry during sleep. The respiratory cycles can clearly be identified.

We note however, that wrist accelerations caused by respiratory activity are relatively small. In fact, what the 
acceleration measurement device registers is not an respiration-caused acceleration per se, but instead a slight 
turning of the wrist in synchrony with the respiratory activity (see also1). This turning leads to slightly modified 
projections of the (vertical) gravitational force onto the axes of the coordinate system of the sensor device and 
thus to slight variations of the x, y and z components of the registered gravitational vector, see Fig. 6. Therefore, 
one can expect that one or both of the two angles representing the direction of the gravitational vector are even 
better proxies for respiration than the components in particular directions. Hence, in addition to Accx , Accy 
and Accz , we consider their angles in spherical coordinates, ϑ (angle between gravity vector and x axis), and ϕ 
(angle between projection of gravity vector into the y − z plane and y axis) as shown in gravity vector Fig. 6:

corresponding to

see also Table 1. We have applied the same smoothening [Eq. (1)] and resampling procedure to r, ϕ , and ϑ as to 
the acceleration components above. We expect that ϕ and/or ϑ are much better respiration proxies than r if our 
assumption regarding changing directional projections of the (constant) gravitational vector holds. Hence, the 
suggested transformation can facilitate the selection of an optimal proxy.

Finally, instantaneous respiratory phases have been calculated from all respiration proxies as well as the 
directly registered respiratory signal flow(t) (blue curve in Fig. 7a). The first step in this procedure was the 
normalization of the time series via (i) subtraction of a moving average similar as in Eq. (1) and (ii) division by 
a moving standard deviation. Both of these moving quantities have been calculated for windows of ±5 s dura-
tion around the center point, so that effectively frequencies between 0.1 Hz (cutoff by moving average with 10 
s window size) and 1 Hz (cutoff by moving averag with 1 s window size) remain in the respiration proxies. The 
resulting narrow-banded signals oscillating around zero can easily be transformed into instantaneous respiratory 
phases φ(t) via a Hilbert transform35,

using φx(t) = arctan2(HT[x(t)], x(t)) for x = Accx , Accy , …, flow(t). Fig. 7b shows these reconstructed respira-
tory phases for all signals of Fig. 7a.

In this study we focus on analyzing and comparing instantaneous respiratory phases (instead of respiratory 
rates or breathing cycles), because the phases comprise all information without the need to define certain points 
in the breathing cycle, e.g., beginning or ending, transition form inspiration to expiration, etc. Respiratory 
phases increase continuously from −π ≈ −3.14 to +π and then jump back to −π in a sawtooth-like pattern, 
see Fig. 7b. However, since phases are actually defined on a circle, the values of −π and +π refer to identical 
phase angles, the selection of the jump point is arbitrary, and constant phase shifts (possibly including multiples 
of 2π ) have no relevance. Therefore, when comparing instantaneous phase signals, their differences are always 
taken modulo 2π , and constant differences are disregarded. This is advantageous, since proxies derived, e.g., 
from inverted flow or acceleration (or ECG) signals, leading to phases differing by +π or −π exactly, will be con-
sidered as equivalent. Nevertheless, pauses and flow variations within the respiratory cycle are well reproduced 
by instantaneous phases as can be seen by the deviations from a straight sawtooth pattern for the flow phases in 
the bottom panel of Fig. 7b.

Reconstruction of respiratory signals from ECG.  To derive measures B1, B2, B3, and B5, the ECG 
data were processed with the software LibRasch36 to identify QRS complexes. We visually verified and manually 
checked QRS classifications (normal, ventricular ectopic, and supra-ventricular ectopic) and corrected them if 
necessary. Noisy parts where no QRS detection was possible were manually marked and excluded from further 
analysis. All normal QRS complexes were used for B1, B2, and B5, while only time intervals between two succes-
sive normal QRS complexes were used for B3. The resulting time series were homogeneously resampled at a rate 
of 4 Hz by cubic spline interpolation. Subsequently, a FFT band pass filter with limit frequencies 0.01 Hz and 0.5 
Hz was applied to eliminate variations clearly outside the respiratory band. As an example, the green curve in 
Fig. 7a shows the B1 proxy for a typical subject during sleep.

Phase synchronization and comparison of respiratory rates.  In order to compare and test two 
reconstructed respiratory phases φx(t) and φy(t) (for x, y = Accx , Accy , …, flow(t)), we calculate the phase 
synchronization index γ by37

(2)Accx = r cosϑ , Accy = r cosϕ sinϑ , Accz = r sin ϕ sinϑ ,

(3)r =
√

Acc2x + Acc2y + Acc2z ,ϕ = arctan2(Accz , Accy),ϑ = arccos(Accx/r),

(4)x(t)+ iHT[x(t)] = A(t) exp[iφx(t)],

(5)γ (k) =
∣

∣

〈

exp[i(φx(t)− φy(t))]
〉∣

∣,
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Figure 7.   Proxy data and reconstructed respiratory phases. (a) Respiration proxies determined from the 
averages of maximum and minimum of each QRS complex (proxy B1, green) and smoothened lateral y axis 
acceleration Accy (red) recorded at the subjects wrist during sleep. For comparison, the respiratory flow 
recorded by a separate sensor placed at the subject’s nose is also shown (blue). The vertical line at t = 30s marks 
the window size we have used for our comparisons. (b) Corresponding respiratory phases φ(t) derived from 
each of the signals shown in part (a) via Hilbert transform and Eq. (4).
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where the average 〈. . .〉 runs over all times from t − 15s to t + 15s with t = k · 30s and k is the index of the 30 
s windows. This definition has the advantage that constant phase differences between the two proxies (and 
differences by multiples of 2π ) as well as changing proxy amplitudes are disregarded. A γ value close to one 
indicates strong phase synchronization, i.e., a close similarity of the two phase signals, while a γ value close to 
zero indicates dissimilarity. The approach will be used for comparisons of two proxies as well as comparisons of 
proxies with the flow signal considered as a reference for real respiration. As examples for the typical values of 
γ , we note that the first (second) 30-s window of the signals presented in Fig. 7b yields γ = 0.35 (0.57) for the 
comparison of EDR (the B1 proxy, green) with the flow (blue), and γ = 0.98 (0.90) for the comparison of the 
Accy proxy (red) with the flow.

We note that we used respiratory phases derived from the PSG-recorded flow signal as reference without a 
validation in this study. However, this approach does not lead to any bias regarding the comparison with different 
respiration proxies, since a corrupted flow signal will not be synchronized with any respiration proxy. Exclud-
ing subjects with partly unreliable flow recordings would probably have led to somewhat larger group averages 
of the phase synchronization index γ for all proxies. But since it would also have led to excluding subjects with 
nocturnal breathing disorders, we have decided against this. Nevertheless, for a subset of 118 PSG recordings, we 
compared the flow-derived respiratory phase signal with respiratory phases derived from thorax and abdomen 
inductive plethysmography by calculating the average synchronization indices according to Eq. (5) for each of 
the three pairs. Our results of γ = 0.68± 0.19 (comparison flow versus thorax plethysmography), 0.42± 0.33 
(flow versus abdomen plethysmography), and 0.45± 0.34 (thorax versus abdomen plethysmography) indicate 
that (i) phase synchronization indices γ in the range from 0.4 to 0.7 indicate good phase synchronization and 
(ii) flow and thorax inductive plethysmography recordings are probably more reliable than abdomen recordings.

In another approach to compare the respiration proxy signals, we calculated and compared respiratory rates. 
A breathing interval was defined by jumps of the instantaneous respiratory phase φx(t) from a value above + 1 
to a value below −1 one time step (0.25 s) later, see Fig. 7b (for x = Accx , Accy , …, flow(t)). We calculated the 
average respiratory rate for each 30 s window, and finally obtained an average respiratory rate of all windows for 
each respiration proxy and the flow signal. We note that this approach defines the beginning of a breath by the 
phase jump, however, since we only count number of breaths in large windows of 30 s, different beginnings for 
different proxies are not relevant.

Since the distributions of both, γ values and respiratory rates, are close to Gaussian, we applied a two-tailed 
Student’s t-test to check for the significance levels of differences between our results for all proxies. In addition, 
we checked for the significance of differences between two sets of similarly sized subgroups, (i) males and females 
and (ii) subjects with and without diagnosed sleep apnea syndrome; see Table 2 for the numbers of subjects in 
these subgroups.
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