
1 

 

Towards predicting Pedestrian Evacuation Time and Density from 

Floorplans using a Vision Transformer 

Patrick Berggold, Stavros Nousias, Rohit K. Dubey, André Borrmann 

Technical University of Munich, Germany 

patrick.berggold@tum.de 

Abstract. Conventional pedestrian simulators are inevitable tools in the design process of a building, 

as they enable project engineers to prevent overcrowding situations and plan escape routes for 

evacuation.  However, simulation runtime and the multiple cumbersome steps in generating 

simulation results are potential bottlenecks during the building design process. Data-driven 

approaches have demonstrated their capability to outperform conventional methods in speed while 

delivering similar or even better results across many disciplines. In this work, we present a deep 

learning-based approach based on a Vision Transformer to predict density heatmaps over time and 

total evacuation time from a given floorplan. Specifically, due to limited availability of public 

datasets, we implement a parametric data generation pipeline including a conventional simulator. 

This enables us to build a large synthetic dataset that we use to train our architecture. Furthermore, 

we seamlessly integrate our model into a BIM-authoring tool to generate simulation results instantly 

and automatically. 

1 Introduction 

During the design and development process of a building, various experts from different 

disciplines are involved. Within the Architecture, Engineering, and Construction industry 

particularly, there is a multitude of disciplines – each making decisions individually – and thus 

impacting the decisions of other disciplines and the entire workflow in subsequent stages of the 

project. Consequently, errors or miscommunication in the early stages of the project, when the 

most critical decisions on the building performance are made, may lead to substantial temporal 

or economic expenses in later phases (Gervásio, 2014).  

In recent years, Building Information Modelling (BIM) has gained massive popularity in 

facilitating collaboration among different disciplines starting from the early design phases 

(Borrmann, et al., 2018). BIM-authoring tools allow all project participants to collaborate 

simultaneously on a building’s digital representation, and retrieve building information such as 

floorplans directly from the model itself. Therefore, as the project progresses, building models 

are gradually developed and refined, from immature conceptual layouts in the early design 

phases to increasingly complex entities. During this process, many design options need to be 

explored and evaluated by architects and engineers. The early integration of simulations into 

the workflow is thereby greatly beneficial, as simulations illustrate how decisions and design 

choices from one or multiple disciplines affect the physical reality of the project, which supports 

decision-making and relieves decision uncertainties (Abualdenien & Borrmann, 2019). 

Amongst the many factors that influence the design phases of a building, the analysis of 

pedestrian flow dynamics plays a crucial role, in particular for large public buildings and 

transportation hubs. It enables project engineers to learn about essential information, such as 

planning escape routes for evacuation or preventing overcrowding situations, and therefore 

identify bottlenecks in the design of the building. Consequently, pedestrian simulators are 

essential tools that influence important building design choices. However, time-consuming 

tasks, such as running long-lasting, resource-intense simulations, are potential bottlenecks that 

may block the workflow and decision-making in the building design processes for various 

project partners. Furthermore, in practice, several cumbersome, manual steps are necessary to 

mailto:patrick.berggold@tum.de


2 

 

obtain simulation results from the BIM model, involving its export, e.g. into an IFC (Industry 

Foundation Classes) file, from which the semantics and geometry are extracted and converted 

into special simulation project files, to subsequently generate the results (Clever, et al., 2021). 

To this end, we propose a data-driven approach that can realistically and instantly predict 

pedestrian densities over time, and total crowd evacuation time based on a building's floorplan, 

as well as simulation configuration, in substantially shorter time than conventional simulation. 

Furthermore, we integrate our model into a BIM-authoring tool to generate instant, fully 

automated results from the BIM model itself, circumventing any time-consuming, manual 

export or conversion steps, and opening possibility for an interactive exploration of the solution 

space. To showcase and evaluate our approach, we create a large and realistic synthetic dataset 

of evacuation scenarios, utilizing a conventional pedestrian simulator. As strong advocates of 

open-source development within the scientific community, we share our code (Dynamo and 

training scripts) on GitHub: github.com/patrickberggold/PedSimAutomation. 

The paper is organized as follows: the next section discusses related work in pedestrian 

dynamics simulations and machine learning-based surrogate models. Subsequently, Section 3 

describes the methodology of our approach. Section 4 covers the experimental evaluation, and 

details about the training and the resulting metrics. Finally, Section 5 concludes this article. 

2 Related Work 

2.1 Microscopic simulations 

The simulation of pedestrian and crowd dynamics has been frequently discussed in the 

literature, and many models have been developed to accurately describe and predict locomotion 

patterns. In particular, microscopic, agent-based models are capable of accurately describing 

individual interactions and choices, since they describe pedestrians as agents, which are 

heterogeneous individuals that behave according to some pre-defined rules (Cheng, et al., 

2014). Furthermore, microscopic models can be categorized into differential and non-

differential models (Cristiani, et al., 2014), with the Social Force Model (SFM) (Helbing & 

Molnar, 1995) being the most popular representative of the former category. The SFM is based 

on a force equation that contains both repulsive and attractive forces, which incorporate the 

interactions between agents and obstacles, and enforce destination-driven behaviour. With 

respect to non-differentiable microscopic models, the Optimal Steps Model (OSM) (Seitz & 

Köster, 2012) combines the continuity of space with the natural stepwise movement of humans, 

in which the agents determine their path according to a utility function that incorporates 

different attractive and repulsive potentials, similar to the SFM. 

2.2 Surrogate Modelling 

While the aforementioned and several other conventional models generate sufficiently accurate 

simulation results, the generation of those results is typically time-consuming and potentially 

resource-intensive, depending on various factors such as the number of agents, simulation 

duration, number of interaction terms, etc. This motivates the application of surrogate models, 

which are capable of generating results of similar quality, but orders of magnitude faster. Given 

the impressive advances of machine learning (ML) techniques in recent years across many 

different disciplines, surrogate modelling based on ML seems to be the most promising 

candidate for instantly generating simulation results. For instance, in (Lehmberg, et al., 2020), 

the authors apply a surrogate model based on the Koopman operator to generate a crowd density 

time series in a simple bus station scenario. While their approach demonstrates the general 



3 

 

advantages of employing a surrogate model, it is only applied to one simple use case, and thus, 

it is unclear how well this technique generalizes to more complex real-world scenarios. Better 

generalization is achieved in (Sohn, et al., 2020), where the authors employ a deep learning 

(DL) framework for predicting the aggregation of crowd densities over the entire simulation 

time. In particular, aggregated change is predicted via a Convolutional Neural Network (CNN) 

as a one-dimensional numerical number. While this approach successfully describes general 

crowd motion behaviour, it neglects simulation time prediction, and does not sufficiently 

quantify how and when congestions occur. In (Clever, et al., 2021), another CNN is employed 

for predicting the mean densities in realistic train station scenarios, which makes it possible to 

identify potential bottlenecks in the building design. However, the mean density does not 

provide any information as to when overcrowding situations occur, and how they develop. 

Finally, in (Clever, et al., 2022), a CNN is employed to solely predict evacuation time, also for 

train station scenarios, without including overcrowding analysis. Hence, in this article, we aim 

at combining previous premises, by instantly and accurately predicting pedestrian simulation 

results. Simultaneously, we remove any manual export and conversion steps involved in the 

result generation by integrating our approach into the overall BIM model for full automation. 

3 Methodology 

Our approach focuses on developing a DL framework that can accurately and instantly assess 

the building design quality inside the BIM model with respect to pedestrian dynamics. 

Therefore, we outline our methodology in the following. Due to the limited availability of 

public datasets, our first step involves generating a large synthetic dataset of evacuation 

scenarios, utilizing three parametric models to train our DL model. This dataset encompasses 

various combinations of geometry and simulation input parameters, facilitating robust 

generalization capabilities, as detailed below. Furthermore, we formulate density prediction as 

a classification task, as depicted in Table 1 and visualized in Figure 3. Lastly, we provide an 

in-depth description of our DL architecture. 

3.1 Dataset generation 

Our dataset is based on three parametric models, which resemble office buildings with different 

hallway layouts and room arrangements. As BIM-authoring tool, we use Autodesk's Revit 

(Autodesk, 2023), which is in practice a frequently used software for model-based building 

design. In Revit, the integrated parametric modelling system is called Dynamo, which has 

access to the Revit API; it is able to execute operations within Revit, being able to construct 

regular models, and access element properties and geometry. Moreover, it is possible to 

generate different variants of building types, solely by varying the input parameters of the 

parametric model. Each of the three parametric models (displayed in Figure 1) is generated 

from individual Dynamo scripts, serving as simple use cases for office building types in 

evacuation scenarios. The input parameters to those parametric models are of a purely 

geometrical nature. Namely, we create twelve different versions of each parametric model, 

based on different combinations of geometrical input parameters, namely a) floorplan length, 

b) floorplan width, c) corridor width, d) number of rooms, e) bottleneck inclusion, f) obstacle 

inclusion. While the first four parameters are numerical inputs, the last two are Booleans, 

meaning that bottlenecks and obstacles may or may not be included in the parametric model. If 

set to ‘true’, a bottleneck is placed in front of the escape area, such as a staircase, or obstacles 

are placed on the way to the escape area. Figure 1 visualizes three different parametric models 

and Figure 2 presents a flowchart of the dataset generation process in three steps. Step 1 of 

Figure 2 depicts both the absence and the presence of the bottleneck- and obstacle-option. 



4 

 

 

Figure 1: The three different parametric models, generated from individual Dynamo scripts. 

 
Figure 2: Flow chart of the dataset generation in three steps, including the floorplan export from Revit 

(1), the conversion into image and simulator format (2), and pre-processing for the deep learning 

pipeline (3). 

As a conventional pedestrian simulator, we use the crowd:it simulator (accu:rate, 2023) to 

compute the coordinates of each agent over all timesteps via the OSM. In order to run pedestrian 

simulations in evacuation scenarios for the generated BIM models, we export the floorplans 

from Revit (Figure 2, step 1), and convert them subsequently to the XML-based crowdit format 

(Figure 2, step 2) for the simulator. With respect to pedestrian simulations, there is not just a 

variety of building geometries to consider, but also different simulation configurations that need 



5 

 

to be covered. We apply numerous variations per building geometry through a second set of 

simulation input parameters, namely a) origin areas, b) destination areas, c) the number of 

agents per origin, and d) mean desired agent velocity. Specifically, the simulator requires the 

location and number of origin and destination areas. At the start of the simulation, a pre-defined 

number of agents is initialized into each of the origin areas, to subsequently move toward the 

nearest destination area as the simulation proceeds. After the simulation terminates (when the 

last agent has reached its goal), a four-dimensional table is created, consisting of timestamp, 

agent id, and agent coordinates x and y. Thus, this table contains all agent trajectories, from 

initialization to termination. 

In free space, each agent moves with its individual desired velocity, which is drawn from a 

Gaussian distribution that has the last simulation parameter as its mean, and a pre-defined 

default of 0.26 m/s as standard deviation. In accordance with the use case of evacuation 

scenarios, we place the origin areas into the rooms, and the destination areas at the ends of the 

hallways. For each of the 36 different building geometries, we run numerous pedestrian 

simulations. Specifically, each simulation represents a different combination of the simulation 

parameters. While the ranges for the first and seconds parameters depend on the room 

arrangements in the geometry, the second-to-last and last parameters range between 10, 20, and 

30 agents per origin, and 1 m/s, 1.34 m/s (which is empirically the average, free-flow pedestrian 

velocity (Weidmann, 1992)), and 2.0 m/s mean desired agent velocity, respectively. One of the 

pedestrian simulations is shown in the upper half of Figure 3, with three origin areas (in red), 

one destination area (in green), 30 agents per origin, and 1.0 m/s mean velocity.  

The combinations of all parameter values amount to a total of 130,356 simulations. On our 

CPU, an 11th Gen Intel(R) Core(TM) i7, the mean runtime of one simulation takes about 10.2 

seconds, with a standard deviation of ca. 3.5 seconds. Note that for the given hardware, the 

runtime durations are likely to substantially scale up as more floorplan complexity is added and 

real-life use cases are included, e.g. multi-story buildings, more complex geometry (such as 

complicated convolutions), or larger floorplan dimensions. Additionally, the floorplans need to 

be exported and manually fed into the simulator in separate, consecutive steps, introducing 

another cumbersome and time-consuming chore in the simulation process, making it less 

efficient and prone to human errors. 

 

 

Figure 3: Conversion of the simulation results into eight consecutive frames. For each frame, the cell-

wise densities are obtained and classified by counting the number of agents in each cell within the 

corresponding frame. 



6 

 

3.2 Density classification and pre-processing 

We aim to build and train a deep neural network (DNN) that is capable of assisting the 

qualitative floorplan analysis based on the results of the pedestrian simulator. Accordingly, the 

dataset, which is used to train and evaluate our model, consists of numerous floorplan-to-

simulation result mappings. Because of the major success of DNNs in image processing tasks, 

we supply the floorplans as images to the network, including the corresponding origin and 

destination areas. As displayed in Figure 2, steps 1 and 2, we export the floorplans from Revit 

and convert them to RGB image and simulator (.crowdit) format simultaneously.  

For practitioners, the dynamics of macroscopic quantities that emerge from microscopic 

interaction rules, such as critical densities or pedestrian streams, are of particular interest, as 

they enable an accurate, qualitative analysis of when and where congestions occur, and how 

they develop over time. Therefore, our framework predicts the temporal development of agent 

densities plus total evacuation time (TET), based on floorplan and simulation parameter input. 

The variable shapes of the input and the transformation to macroscopic values in the output 

require a couple of pre-processing steps. Firstly, resizing and padding operations are applied to 

bring the floorplan images to a uniform size of 640x640 pixels. This image size translates into 

pre-defined maximum real-world dimensions of 64x64 meters. Thus, the floorplan images are 

resized according to their individual resolutions, centred into the square image, and padded with 

zeros (black colour). Afterwards, we subdivide the input image into a grid of sufficiently small 

cells. We choose a grid cell size of 4x4 pixels corresponding to 0.4x0.4 meters square, which 

is a common cell size for pedestrian experiments and simulations (Kouskoulis & Antoniou, 

2017). To capture the dynamic development of the emerging macroscopic patterns, we 

subdivide each simulation into eight consecutive, equitemporal time frames, each of which with 

a duration of ∆𝑡 =
𝑇𝑒𝑣𝑎𝑐

8
 , where 𝑇𝑒𝑣𝑎𝑐 is the TET, which is equal to the timestamp of the last 

agent reaching its destination (thus terminating the simulation). Within each frame, cell-wise 

density is determined by counting the number of agents 𝑁𝑐 per cell, as visualized in Figure 3. 

Since total simulation runtimes vary depending on geometry and parameter configuration, the 

respective frame durations vary as well, which is why the densities must be normalized to the 

frame interval ∆𝑡. Hence, we determine counts per time in each cell: 𝜌̃𝑐 =
𝑁𝑐

∆𝑡
. In the simulations, 

the position of each agent corresponds to the centre of a circle representing the pedestrian’s 

torso, whose diameter lies (by default) uniformly between 0.42 to 0.46 meters. We define the 

prediction of densities as cell-wise classification problem in the following way: 

Table 1: Density class rules and descriptions 

Class Rule Description 

Class 0 𝜌̃𝑐 = 0 "No agents present" 

Class 1 𝜌̃𝑐 ∈ (0, 0.4] 𝑠−1 "Low density" 

Class 2 𝜌̃𝑐 ∈ (0.4, 0.8] 𝑠−1 "Increased density, congestion danger" 

Class 3 𝜌̃𝑐 > 0.8 𝑠−1 "High density, congestion" 

In summary, one sample in the dataset comprises the mapping from floorplan image and 

simulator configuration as input to the eight consecutive density heatmaps plus evacuation time 

𝑇𝑒𝑣𝑎𝑐 as output (Figure 2, step 3). 

3.3 Deep learning architecture 

The DNN predicts a series of consecutive density heatmaps plus TET from the floorplan input 

image and additional simulation information. Therefore, the model’s architecture (see Figure 

4) is inspired by the powerful image-to-image models that are capable of demonstrating state-

of-the-art performance on semantic segmentation and image classification tasks. Namely, the 



7 

 

basis of the model is the self- and cross-attention mechanisms that are commonly used in Vision 

Transformer (Dosovitskiy, et al., 2020) models. Firstly, the input images containing the 

floorplans are patched into 16x16 pixels and transformed into feature vectors via patch 

embeddings. Simultaneously, we supply additional simulation information in the shape of 

vectors to the network, consisting of the numbers of (1) origins, (2) destinations and (3) agents 

per origin, (4) the mean desired velocity, and (5) the site dimensions, meaning length and width 

of the floorplan in meters. This information is initially encoded using embeddings and linear 

layers, and subsequently concatenated and passed to a shared linear layer. In order to share and 

combine information between the image and information feature vectors, the encoder employs 

six consecutive, identical layers, each with a self-attention layer followed by a cross-attention 

layer. The first self-attention takes as input the 768-dimensional hidden states of the image 

encodings, and outputs hidden states that are the queries for the following cross-attention. 

Meanwhile, the cross-attentional modules also take as input the shared layer feature vectors, 

which are used as keys and values, and generates the input to the self-attention module in the 

subsequent encoder layer. The output of the encoder is used for density prediction, by decoding 

the hidden states with a series of transposed convolutional and max-pooling layers, followed 

by the UPerNet (Xiao, et al., 2018). We slightly modify its final layer by replacing it with a 

series of eight convolutional-batch norm layers that compute the cell-wise classification scores 

in each of the eight frames. Furthermore, the encoder states are also used as keys and values to 

another 3-layer cross-attentional modules, which takes as query input the output of the shared 

information layer. TET is predicted through a final linear layer with one-dimensional output.  

 

Figure 4: Overview of the DNN architecture, which receives as input the floorplan image plus 

additional simulation information and generates as prediction total evacuation time and eight density 

heatmaps (only frame 5 is shown here for clarity). 

4 Experimental evaluation 

4.1 Training 

During training, the input images and density heatmap targets are flipped horizontally and 

vertically, transposed, and rotated around 90 degrees, all with probability of 0.5. We train the 

architecture from scratch, initializing all module weights according to Glorot (Glorot & Bengio, 

2010). To cover both density and evacuation time prediction errors, we use a combined loss 

function, consisting of a classification and a regression error: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑒𝑣𝑎𝑐 + 𝜆𝑇 ∙ 𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 = 𝑀𝑆𝐸(𝑇𝑒𝑣𝑎𝑐 , 𝑇̂𝑒𝑣𝑎𝑐) + 𝜆𝑇 ∙ (1 − 𝑇𝐼(𝑦𝑒𝑣𝑎𝑐 , 𝑦̂𝑒𝑣𝑎𝑐)) 



8 

 

The total loss 𝐿𝑡𝑜𝑡𝑎𝑙 is the sum of the regressive mean-squared-error (MSE) loss 𝐿𝑒𝑣𝑎𝑐 with 

respect to TET 𝑇𝑒𝑣𝑎𝑐, and the Tversky loss 𝐿𝑇𝑣𝑒𝑟𝑠𝑘𝑦 (Salehi, et al., 2017) for cell-wise density 

classification over all time frames. An additional scaling coefficient 𝜆𝑇 is introduced as 

hyperparameter to balance the two losses to facilitate simultaneous training.  

The Tversky loss is chosen as classification loss to tackle the heavy class imbalance that exists 

in the density heatmaps, with the vast majority of cells being labelled as class 0 ( >95% in each 

frame). It originates from the Tversky index 𝑇𝐼 (Tversky, 1977) that is an asymmetric similarity 

measure on two feature sets, for instance the predicted labels 𝑃 and ground truth labels 𝐺: 

𝑇𝐼 =
|𝑃 ∩ 𝐺|

|𝑃 ∩ 𝐺| + 𝛼 ∙ |𝑃\𝐺| + 𝛽 ∙ |𝐺\𝑃|
=  

𝑇𝑃

𝑇𝑃 + 𝛼 ∙ 𝐹𝑃 + 𝛽 ∙ 𝐹𝑁
  𝑤𝑖𝑡ℎ 𝛼, 𝛽 ≥ 0 

Given the true positives 𝑇𝑃, the Tversky index measures the similarity between 𝑃 and 𝐺 by 

penalizing the false positives 𝐹𝑃 against the false negatives 𝐹𝑁 via the two hyperparameters 𝛼 

and 𝛽. Thus, the Tversky index lies between 0 and 1, with 1 being perfect classification. After 

several optimization runs, we settled on 𝛼 = 0.1 and 𝛽 = 0.9. This means false positives are 

penalized substantially less than false negatives, prioritizing the minority classes. 

We noticed that the model struggles when optimizing both classification and regression 

simultaneously in the early stages of the training, leading regularly to stagnation after only few 

epochs. Consequently, we pre-trained the model solely on the more complex task of cell-wise 

classification, neglecting the cross-attentional and linear modules associated with evacuation 

time prediction. The corresponding training and validation curves can be seen in Figure 5a. 

Subsequently, we trained the model on the simultaneous optimization task (see Figure 5b), 

while freezing all image processing weights in the first epoch (and unfreezing them afterwards).  

                                                 (a)                                                                                   (b) 

Figure 5 (a) Pre-training curves of cell-wise density classification, (b) training curves with the 

combined loss 𝐿𝑡𝑜𝑡𝑎𝑙, consisting of the MSE and Tversky loss. Both trainings were conducted with the 

Adam optimizer, using an initial learning rate of 5e-4, the ‘ReduceLROnPlateau’ scheduler 

(patience=3) and early stopping. 

4.2 Results 

In order to interpret the training results, we evaluate the evacuation time and density heatmap 

predictions separately on unseen samples in the test set. For the classification task, a multi-class 

confusion matrix over the test set is displayed in Figure 6, summarizing the performance of the 

classification capability with ground truth labels along the y-axis, and the predicted labels along 



9 

 

x. Concerning evacuation time, we simply measure the 

mean absolute error 𝑀𝐴𝐸 between ground truth and 

prediction, and the corresponding relative error 𝑅𝐸 

related to the true evacuation time over all test set 

samples 𝑁𝑡𝑒𝑠𝑡. Altogether, the network predicts TET 

with more than 90% accuracy, which is a substantial 

increase to the results in (Clever, et al., 2022). 

𝑀𝐴𝐸 =
1

𝑁𝑡𝑒𝑠𝑡
∑ |𝑇𝑒𝑣𝑎𝑐,𝑖 − 𝑇̂𝑒𝑣𝑎𝑐,𝑖|

𝑁𝑡𝑒𝑠𝑡

𝑖

= 𝟒. 𝟔𝟓 𝒔𝒆𝒄 

𝑅𝐸 =
1

𝑁𝑡𝑒𝑠𝑡
∑

𝑀𝐴𝐸𝑖

𝑇𝑒𝑣𝑎𝑐,𝑖

𝑁𝑡𝑒𝑠𝑡

𝑖

= 𝟖. 𝟔𝟐% 

4.3 Integration into Revit 

Lastly, model inference is executed within 

Dynamo by integrating a customized Python 

environment into a Python block (named DNN 

Forward pass in Figure 7). Accordingly, the 

simulation parameters and site dimensions are 

supplied via the Geometry and Simulation 

parameters blocks, as well as the floorplan image 

that is generated from the rest of the Dynamo 

script. On our CPU, the network’s forward pass 

generating the prediction takes roughly 1.7 

seconds inside Dynamo, representing a significant 

speed-up compared to the conventional approach 

of undergoing several manual, laborious steps. 

5 Conclusion 

In this article, we present an architecture capable of predicting both densities over time and total 

evacuation time realistically, based on floorplan information and simulator configuration. Thus, 

we show that our model is able to qualitatively assist the floorplan analysis, particularly in the 

early stages of the building design process. By integrating our model into the parametric 

modelling system Dynamo, we fully automate the generation of simulation results, achieving a 

significant speed-up compared to conventional approaches. An inherent constraint of our 

proposed methodology is the requirement of predetermined maximum floorplan dimensions for 

efficient model training with uniform image sizes. For larger floorplans, re-training the model 

is necessary, and for considerably smaller ones, the capabilities of cell-wise density prediction 

may deteriorate. Nevertheless, our methodology showcases a noteworthy improvement in 

efficiency by saving time and computational resources during the building design process. 

6 Acknowledgments 

This work was supported by mFUND – Bundesministerium für Digitales und Verkehr in 

Germany by funding the research project BEYOND. Furthermore, we acknowledge the support 

Figure 6: Multi-class confusion matrix of 

the density classification prediction. 

Figure 7: Integration of the trained model into 

Dynamo to fully automate the generation of 

simulation results from the BIM model. 



10 

 

of Georg Nemetschek Institute for funding the project FORWARD as a continuation of the 

work presented in this paper.  

References 

Abualdenien, J. & Borrmann, A., 2019. A meta-model approach for formal specification and consistent 

management of multi-LOD building models. Advanced Engineering Informatics, Issue 40, p. 135–153. 

accu:rate, 2023. crowd:it – the software for state-of-the-art planners. [Online]  

Available at: https://www.accu-rate.de/en/software-crowd-it-en/ [Accessed 01 04 2023]. 

Autodesk, 2023. Revit: BIM software for designers, builders, and doers. [Online]  

Available at: https://www.autodesk.de/products/revit/ [Accessed 01 04 2023]. 

Borrmann, A., König, M., Koch, C. & Beetz, J., 2018. Building information modeling: Why? what? 

how?. s.l.:Springer International Publishing. 

Bragança, L., Vieira, S. M. & Andrade, J. B., 2014. Early stage design decisions: the way to achieve 

sustainable buildings at lower costs. The scientific world journal.  

Cheng, L., Yarlagadda, R., Fookes, C. & Yarlagadda, P. K., 2014. A review of pedestrian group 

dynamics and methodologies in modelling pedestrian group behaviours. World journal of mechanical 

engineering, 1(1), 002-013..  

Clever, J., Abualdenien, J. & Borrmann, A., 2021. Deep learning approach for predicting pedestrian 

dynamics for transportation hubs in early design phases. EG-ICE Workshop on Intelligent Computing 

in Engineering.  

Clever, J., Abualdenien, J., Dubey, R. K. & Borrmann, A., 2022. Predicting occupant evacuation times 

to improve building design. ECPPM 2022-eWork and eBusiness in Architecture, Engineering and 

Construction, pp. 335-342. 

Cristiani, E., Piccoli, B. & Tosin., A., 2014. Multiscale Modeling of Pedestrian Dynamics. In: Modeling, 

Simulation and Applications. s.l.:Springer International Publishing. 

Dosovitskiy, A. et al., 2020. An image is worth 16x16 words: Transformers for image recognition at 

scale. arXiv preprint arXiv:2010.11929.. 

Gervásio, H., Santos, P., Martins, R. & da Silva, L. S., 2014. A macro-component approach for the 

assessment of building sustainability in early stages of design. Building and Environment, Volume 73, 

pp. 256-270. 

Glorot, X. & Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural 

networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics. 

JMLR Workshop and Conference Proceedings. 

Helbing, D. & Molnar, P., 1995. Social force model for pedestrian dynamics. Physical review E, 51(5).  

Kouskoulis, G. & Antoniou, C., 2017. Systematic review of pedestrian simulation models with a focus 

on emergency situations. Transportation Research Record 2604.1 , Issue 111-119. 

Lehmberg, D. et al., 2020. Exploring koopman operator based surrogate models - accelerating the 

analysis of critical pedestrian densities. Traffic and Granular Flow 2019, pp. 149-157. 

Salehi, S. S. M., Erdogmus, D. & Gholipour, A., 2017. Tversky loss function for image segmentation 

using 3D fully convolutional deep networks. Machine Learning in Medical Imaging: 8th International 

Workshop. 

Seitz, M. J. & Köster, G., 2012. Natural discretization of pedestrian movement in continuous space. 

Physical Review E, 86(4):046108.  

Sohn, S. S. et al., 2020. Laying the foundations of deep long-term crowd flow prediction. Computer 

Vision–ECCV 2020: 16th European Conference.  

Tversky, A., 1977. Features of similarity. Psychological review 84(4), 84(4), p. 327. 

Weidmann, U., 1992. Transporttechnik der Fussgänger. Schriftenreihe des IVT, 2 ed., Institut für 

Verkehrsplanung, Transporttechnik, Strassen- und Eisenbahnbau (IVT), Volume 90. 

Xiao, T. et al., 2018. Unified perceptual parsing for scene understanding. Proceedings of the European 

conference on computer vision (ECCV), pp. 418-434. 


