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Abstract

The digitalization of our society has led to the adoption of novel data-centric applications and
use cases that rely on communication networks. In turn, networks and their operators face new
challenges with respect to traffic growth, diversity of communication patterns, and temporal vari-
ability of communication demand. Besides the softwarization of the networks through control
and data plane programmability, the programmability and reconfiguration of the topology have
emerged as one promising approach to render network operation more efficient. Optical tech-
nologies allow reconfiguring the topology, i.e., changing the connectivity between networking
devices at run-time. However, this results in new problems and challenges for network manage-
ment. For instance, every reconfiguration interrupts connectivity, which in turn puts stress on
the network’s control and data plane.

This thesis investigates topological reconfiguration-awareness in demand-aware networks on
a macroscopic level by exploring the characteristics of topological reconfigurability in commu-
nication networks along three dimensions: reconfiguration delay, networking layers involved in
reconfigurations, and reconfiguration classes.

The reconfiguration delay, i.e., the length of the interruption due to reconfiguration, directly
impacts the network operation efficiency. It can vary widely depending on the equipment
used. In addition to the optical switching devices, also the link endpoints contribute to this
delay. In order to investigate this first characteristic and provide a better understanding of how
commercially off-the-shelf (COTS) networking devices behave under reconfigurations, this thesis
presents procedures to measure the end-to-end reconfiguration delay on the control and data
plane. It also analyzes the results of a measurement campaign of COTS networking devices
and derives statistical models of the reconfiguration delay. The results show, a strongly varying
behavior across the devices. Finally, the thesis introduces a flexible emulation framework that
aids the evaluation of different reconfigurable topologies using only COTS equipment.

The second dimension is motivated by the fact that topological reconfigurations unavoidably
lead to reconfigurations on higher networking layers, e.g., the IP routing. The question arises if
and how these reconfigurations can be jointly optimized with the topological reconfigurations.
This thesis assesses the benefits of such joint optimization and reconfiguration of multi-layer
networks. It provides a multi-layer modeling and corresponding mixed integer program for a
cooperative environment between an Internet Service Provider (ISP) and content providers (CPs).
In contrast to previous work, the proposed joint optimization spans the IP topology, IP routing,
and the demand layer. The evaluation on production data from a large ISP demonstrates its
benefits across a range of reconfiguration frequencies, achieving 15% reduction in deployed
capacity on average.

As far as the reconfiguration classes are concerned, there are two classes: demand-aware (DA)
and demand-oblivious (DO). Utilizing their potential requires agility of the routing algorithms
and control planes. This is particularly the case for datacenter network (DCN) environments with
frequent reconfigurations. As the timely propagation of an up-to-date view of the network is
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challenging, many designs fall back on separating the traffic on the dynamic (adaptive) topology
part from that on the static part, creating a situation of segregated routing. This thesis proposes
a novel, high-throughput reconfigurable datacenter network (RDCN) design, coined Duo, which
builds on the properties of de Bruĳn graphs. These graphs allow greedy routing along the shortest
paths using local information. The property translates to the dynamic case facilitating the design
of an efficient control plane. Duo can be implemented using longest prefix matching and provides
out-of-the-box support for TCP and other transport protocols. The evaluation results demonstrate
Duo’s superiority over state-of-the-art solutions, and a proof-of-concept implementation shows
its feasibility.

The two reconfiguration classes have shown their benefits for different traffic patterns. Choos-
ing the best-suited reconfiguration class is particularly challenging, as the traffic may be a mix
of several patterns. This thesis proposes two systems that integrate both reconfiguration classes
into a single topology and, thereby, introduces macroscopic awareness for the third characteristic
of topological reconfigurations. The proposed systems Cerberus and Trio contain three sub-
topologies that are beneficial for different traffic patterns. The sub-topologies are sized to match
the shares of the traffic classes in the overall traffic mix. Cerberus and Trio utilize flow sizes or
application-level information to assign traffic to the best-suited sub-topology. In addition, using
label-based source routing and link endpoint-based management of the sub-topologies’ recon-
figuration classes, Trio also features the ability to adapt the sizes of the sub-topologies. This
enables Trio to continue matching the traffic even if the traffic mix changes – a new dimension
of demand-awareness. The results show that both concepts outperform state-of-the-art solutions
and illustrate the benefits of matching the reconfiguration classes in the topology to the traffic
mix in terms of increased throughput and lower flow completion times.
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Kurzfassung

Die Digitalisierung unserer Gesellschaft hat zur Einführung neuer datengestützter und auf Kom-
munikationsnetzen basierenden Anwendungen und Anwendungsfällen geführt. In Folge dessen
sind Netze und ihre Betreiber mit neuen Herausforderungen in Bezug auf Verkehrswachstum,
Vielfalt der Kommunikationsmuster und zeitlicher Variation des Kommunikationsbedarfs kon-
frontiert. Neben der Softwarisierung der Netzwerke auf der Steuerungs- und Datenebenen,
haben sich die auch die Programmierbarkeit und Rekonfiguration der Netztopologie als vielver-
sprechende Ansätze herausgestellt, um die Effizienz des Netzbetrieb zu erhöhen. Optische Tech-
nologien ermöglichen es, auch in kabelgebundenen Netzen, die Netztopologie zu verändern,
das heißt, die Verbindungen zwischen den Netzelementen zur Laufzeit anzupassen. Dieses
Anpassen der Verbindungen auf der physikalischen Ebene führt zu neuen Problemen und Her-
ausforderungen für die Verwaltung und den Betrieb der Netzwerke. Jede Rekonfiguration der
Netztopologie unterbricht Verbindungen auf höheren Netzebenen und führt dadurch zu Belas-
tungen auf Steuerungs- und Datenebenen.

Diese Dissertation untersucht die Berücksichtigung der topologischen Rekonfiguration auf
einer makroskopischen Ebene im Netzmanagement. Dafür werden die Charakteristiken solcher
Rekonfigurationen entlang drei Dimensionen näher betrachtet: der Rekonfigurationsdauer, der
involvierten Netzwerkschichten sowie der verwendeten Rekonfigurationsklassen.

Die Rekonfigurationsdauer, das heißt, die Länge der Verbindungsunterbrechung aufgrund der
topologischen Rekonfiguration, hat einen direkten Einfluss auf die Effizienz des Netzwerkbe-
triebs. Sie kann in Abhängigkeit der verwendeten Geräte stark variieren. Neben dem optischen
Schaltelement tragen auch die Verbindungsendpunkte zur Rekonfigurationsdauer bei. Um diese
erste Charakteristik genauer zu untersuchen und ein besseres Verständis zu bekommen, wie sich
kommerziell erhältliche Netzwerkgeräte in Anbetracht topologischer Rekonfigurationen verhal-
ten, wird in dieser Dissertations zunächst eine Messmethode um die Ende-zu-Ende Rekonfigura-
tionsdauer auf der Steuerungs- und Datenebene zu ermitteln, präsentiert. Im Anschluss werden
die Ergebnisse einer Messkampagne von verschiedenen kommerziell erhältlichen Netzgeräten
anlysiert und statistische Modelle der Rekonfigurationsdauer aus den Messdaten hergeleitet. Die
Ergebnisse zeigen ein stark unterschiedliches Verhalten der untersuchten Geräte. Im Anschluss
wird eine flexible Emulationsumgebung, die die Bewertung verschiedener rekonfigurierbarer
Topologien ermöglicht und dafür nur kommerziell verfügbares Equipment benötigt, präsentiert.

Die zweite Dimension ist aus der Tatsache begründet, dass Rekonfigurationen der Netztopolo-
gie zwangsläufig zu Rekonfigurationen auf höheren Netzwerkschichten führen, zum Beispiel
dem IP Routing. Es stellt sich die Frage, ob und wie diese Rekonfigurationen zusammen mit
Rekonfigurationen der Netztopologie optimiert werden können. Dafür werden die Vorteile einer
solchen gemeinsamen Optimierung und Rekonfiguration von mehrschichtigen Netzwerken un-
tersucht. Eine neu-formulierte, mehrschichtige Modellierung und ein dazugehöriges Mixed
Integer Program zur Optimierung in einer kooperativen Umgebung aus einem Internetservicean-
bieter und Inhalteanbietern bilden die Grundlage dafür. Anders als vorherige Arbeiten, erstreckt
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sich die vorgestellte gemeinsame Optimierung über die Ebenen der IP Topologie, das IP Rout-
ing und die Kommunikationsbedarfsschicht. Die Auswertung auf Basis der Daten eines großen
Internetserviceanbieters verdeutlichen die Vorteile des Ansatzes über verschiedene Rekonfigura-
tionshäufigkeiten, wodurch eine Reduktion der benötigten Kapazität um 15% im Mittel erreicht
wird.

Bei den Rekonfigurationen der Netzwerktopologie haben sich zwei Klassen herauskristallisiert:
bedarfsorientiert und bedarfsagnostisch. Um ihr gesamtes Potenzial auszu-schöpfen müssen
Routingalgorithmen und die Steuerungsebene schnell reagieren können. Dies ist besonders
in Rechenzentrumsnetzwerken mit häufigen Rekonfigurationen der Fall. Da eine ausreichend
zügige Verteilung des aktuellen Netzwerkzustandes durch das gesamte Netz oftmals schwer zu
erreichen ist, greifen viele existierende Lösungen darauf zurück, den Verkehr auf dem dynamis-
chen Teil der Topologie von dem auf dem festen Teil der Topologie zu trennen. Diese Dissertation
führt ein neuartiges Design für einen hohen Netzdurchsatz ein. Das System Duo baut auf den
Eigenschaften von de Bruĳn Graphen auf. Diese Graphen ermöglichen ein gieriges Routing über
den kürzesten Pfad zum Ziel nur mit Hilfe von lokal verfügbaren Informationen. Diese Eigen-
schaften übertragen sich auch auf den Fall einer dynamischen Erweiterung des Graphen und
ermöglichen dadurch eine effiziente Realisierung der Steuerungsebene. Duo kann mit Longest
Prefix Matching implementiert werden und unterstützt TCP und andere Transportprotokolle.
Die Auswertung zeigt Duos Überlegenheit gegenüber den Lösungen des Stand der Technik und
eine Laborimplementierung zeigt die Machbarkeit des Konzepts.

Die beiden Rekonfigurationsklassen haben Vorteile für unterschiedliche Verkehrsmuster. Die
passende Rekonfigurationsklasse auszuwählen ist besonders herausfordernd, da der Gesamt-
verkehr auch eine Mischung verschiedener Muster sein kann. Diese Dissertation führt zwei
Systeme ein, die beide Rekonfigurationsklassen in einer Topologie vereinen. Die beiden Systeme,
Cerberus und Trio, haben drei Teiltopologien, die jeweils für unterschiedliche Verkehrsmuster
geeignet sind. Die Größen der Teiltopologien sind an die Anteile der Verkehrsmuster am
Gesamtverkehr angepasst. Cerberus und Trio verwenden die Flussgrößen oder Anwendungsin-
formationen um den Verkehr der besten Teiltopologie zuzuweisen. Zusätzlich ermöglichen zwei
Designentscheidungen von Trio, ein labelbasiertes Quellenrouting sowie eine endpunktbasierte
Verwaltung der Teiltopologien, sodass die Grö"sen der Teiltopologien über Zeit angepasst werden
können. Dadurch kann Trio sich dem Verkehr anpassen, auch wenn sich die Verkehrsmischung
verändert. Dies bedeutet eine neue Dimension der Bedarfsorientierung. Die Auswertungsergeb-
nisse zeigen, dass beide Systeme den Stand der Technik überbieten. Gleichzeitig verdeutlicht
dies die Vorteile, die durch das Anpassen der Rekonfigurationsklassen an die Verkehrsmischung
in Form von höherem Netzdurchsatz und niedrigeren Flussübertragungszeiten entstehen.
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Chapter 1

Introduction

Today’s communication networks have become more and more the backbone of our digitialized
society. Next-generation communication technologies such as 5G and 6G networks have led
to a substantial increase in available bandwidth and, thereby, have enabled the adoption of
new data-centric applications [28, 29, 30]. Examples are video and game streaming, video
broadcasting, smart assistants, ubiquitous data collection and analytics, or the metaverse. This
development challenges network operators who strive toward efficient network operation along
three dimensions:

First, we observed massive traffic growth in the past years. The average and the peak traffic rates
have steadily increased with a compound average growth rate of 30% between 2018 and 2022 [31].
Second, besides the traffic growth, the applications’ patterns and the requirements from the
applications toward the network have changed too. Fostered by the shift to remote work during
the COVID-19 pandemic, users upload or stream videos from home [32]. Moreover, the amount
of machine-to-machine type communication increases [33]. Looking at the different applications
that share the network, the requirements range from low bandwidth but latency-sensitive traffic,
e.g., from Tactile Internet or control loops in industrial networks towards bandwidth-hungry but
latency-tolerant applications, e.g., from large file transfers [30]. In particular in datacenters (DCs)
that host cloud environments, a plethora of applications are running over the same network. The
diversity ranges from web frontends via application backends and databases to distributed data
analytics and machine learning (ML) traffic, all on the same network [34, 35, 36]. A recent study
by Avin et al. [37] illustrates that all these applications result in different traffic patterns in the
network – both in the temporal and spatial domains. Third, the temporal variability of the traffic
increased. That is, the bursty user or application behaviors put more stress on the network in the
case of bandwidth-hungry applications such as large software updates or ML [38, 39].

To address these problems, software defined networking (SDN) has been introduced as a
paradigm to increase the flexibility of communication networks [40]. With SDN, operators can
program and adapt the network at runtime. Putting the initial focus of SDN to the control [40] and
data plane [41] programmability, the underlying network topology may still limit the gains from
SDN. Standard topology designs are static and often oblivious to traffic in the network [42, 43,
44]. In particular, the increased temporal variability of demand patterns has raised the question
if there is still a single best network topology that operators should choose. Thus, the SDN
paradigm has recently been extended to the network topology [45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56]. Thanks to the advances in optical technologies, reconfigurable topologies have been
adopted to drive the flexibility of wide area networks (WANs) and datacenter networks (DCNs)
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and help operators to sustain a high quality of service (QoS). Reconfigurable topologies build on
an optical infrastructure that interconnects a set of network nodes. Each node is equipped with a
number of sending and receiving ports that enable parallel (logical) connectivity to other nodes.
These logical connections can be adapted over time by leveraging recent optical technologies. For
instance, a node is first logically connected to another node and later to a third node. The used
optical technology and infrastructure restrict the number and set of possible connections. With
this, the topology can adapt to the demand and provide high bandwidth between nodes where
needed. However, while this reconfigurability, in general, has the potential to adapt the topology
to the present demand pattern, i.e., make the topology demand-aware (DA), it comes with three
operational problems:

First, the reconfiguration introduces an interruption of the network connectivity. Intuitively,
a link is not available when a reconfiguration happens. During this time, the network’s capac-
ity deteriorates. The length and frequency of reconfigurations impact the overall efficiency of
the network operation. In addition, varying technologies and network devices might behave
differently under or due to such topological reconfigurations. Thus, a solid understanding of
the reconfiguration behavior is vital to network operators. While this downside of topological
reconfigurations is generally acknowledged in the literature, a thorough investigation of different
influencing factors is missing.

Second, topological reconfigurations trigger reconfigurations on higher layers, such as in the
IP routing and traffic engineering (TE) or even on the application layer, e.g., in L7-load balancing.
While it is obvious that the endpoints of a reconfigured link must update their forwarding
information, updates on other nodes might be necessary, too, in order to leverage the full potential
of the adapted topology.

Third, different classes of reconfigurations have emerged in the literature: demand-oblivious
(DO) and DA reconfigurations. Operators face the task of selecting the right class for their net-
work. The former does not consider the demand in the network, i.e., it follows a pre-defined
schedule and therefore, can generally reconfigure faster (there is no need to collect demand infor-
mation). However, the applied topologies might be suboptimal. In contrast, DA reconfigurations
allow operators to optimize the topology according to a specified metric at the cost of a lower
reconfiguration frequency.

The overall goal of this doctoral thesis is to present designs of demand-aware networks that
consider the characteristics of topological reconfigurations on a macroscopic level. To this end,
the thesis addresses three sub-goals that align with the operational problems presented above.
Accordingly, the major contributions of this thesis are three-fold: the measurement and modeling
of topological reconfigurations, the design of a DA network that considers the impact of reconfig-
urability on multiple layers, and the design of a DA network that considers the different flavors of
reconfigurability combined with an efficient control plane. The following sections describe these
research challenges and the thesis’ contributions in more detail.

1.1 Research Problems & Challenges

This section describes the main research problems and challenges that are addressed in the
subsequent Chapters 4-7.
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1.1.1 Modeling and Evaluation of Topological Reconfigurability

Intuitively, reconfigurations of the network topology stress the network since the components
must adapt to a new state. For instance, network interface cards (NICs) must establish new links
and propagate this new state to routing daemons or network controllers. These, in turn, need
to update their view of the network topology to take necessary actions, e.g., to update their
forwarding tables.

Reconfiguration times can vary widely depending on the use case and equipment. For in-
stance, in WANs, links established with common bandwidth-tunable optical transceivers or
reconfigurable optical add-drop multiplexers (ROADMs) have reconfiguration times in the order
of minutes [57, 58]. There is sufficient time for other network equipment to adapt to the new
state on this timescale. For DCNs, there exists optical hardware with reconfiguration times in the
order of micro-seconds (e.g., Mordia [52], RotorNet [48]) or even nano-seconds (e.g., Sirius [53]
or PULSE [59]). However, many commercially off-the-shelf (COTS) components in DCN, such
as NICs or packet switches, are not designed with frequent reconfigurations or state changes in
mind. Consequently, they might behave unexpectedly and, in the worst case, hinder the efficient
operation of a reconfigurable datacenter network (RDCN).

Thus, a first challenge on the way toward more efficient demand-aware topologies is a deeper
understanding of the components’ behavior under reconfigurations. The state-of-the-art pro-
vides individual evaluations of COTS equipment, e.g., [54, 51, 47, 48]. However, a thorough
exploration of whether and how existing programmable networking equipment can cope with
such reconfigurations is missing. Such a benchmark should cover different devices and varying
reconfiguration scenarios. Moreover, data sheets of optical, reconfigurable equipment provide
measurements for the physical layer. Nevertheless, to understand the end-to-end reconfiguration
behavior, the design of a measurement procedure that considers the end-to-end reconfiguration
delay of optical links, i.e., the time until packets are received via the new circuit and the delay on
the control plane, is needed.

The second aspect of this challenge is to evaluate and compare system designs with different
types of reconfigurable topology components. Such an evaluation is challenging, in particular
for experimental assessments. Testbeds of RDCNs are usually based on custom-built prototypes
and rely on modified hardware and software which is not publicly available. Therefore, a broad
comparison is not easily achievable.

1.1.2 Leveraging Reconfigurations on Multiple Layers in WANs

The design and operation of communication networks are commonly approached in a multi-layer
fashion [60]. Topological reconfigurations take place on one of the lower network layers. As a
result, these reconfigurations might impact the state of the upper layers. For instance, in a WAN
scenario, the first (lowest) layer consists of the logical topology (IP links) mapped to the physical
network topology, i.e., the fiber infrastructure. On top, the second layer determines the IP routing
(or TE) of the traffic. Changes in the IP topology will require changes in the routing state. Besides
changes on the nodes directly affected by the reconfiguration, updates on other nodes might also
be needed. For instance, it might be necessary to update the routing tables on other nodes to
utilize the available network capacity most efficiently and achieve a high QoS.
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It is common practice to optimize and adapt the two mentioned layers in WANs with respect
to the observed demand in the network on a coarse timescale [61, 62, 63]. While this is already
a challenging optimization problem, it neglects the potential of one additional dimension: opti-
mizing and reconfiguring the demand. Most traffic in end-user-facing WANs, so-called eyeballs,
originates from large content providers (CPs) or content delivery networks (CDNs). The large
CPs can control to some extent where their traffic enters the end-user-facing WANs, e.g., by mod-
ifying the domain name system (DNS) entries of their services. The flexibility from this so-called
end-user mapping in combination with the reconfiguration of the topology should be leveraged to
reduce resource consumption further and increase the QoS for end-users. Such an optimization
across three layers relies on different technologies on the optical and IP routing layers, with po-
tentially different reconfiguration properties. Therefore, the evaluation of this joint optimization
should capture the individual gains of the layers to provide more comprehensive guidelines to
operators.

1.1.3 Design and Implementation of Efficient Control Planes for Demand-aware RDCN

Routing algorithms and control planes for DA RDCN can be implemented in a centralized or
distributed fashion. The centralized approach, particularly promoted by the SDN paradigm,
requires a global, ideally consistent view of the network. Examples of such control planes or
DCNs building thereon are given from multiple large operators [64, 65]. However, the global
view is already challenging to obtain from a scalability point of view in static network topologies.
Given the frequent adaptations of the topology in RDCNs, it becomes even more challenging.

Also, implementing the distributed approach comes with challenges due to the fast reactions
needed. The challenge here is not necessarily the algorithmic problem per se but a fast reaction
to the new topology state. As mentioned before, to most efficiently utilize newly created links,
updates on all nodes in the network are needed. In general, existing RDCNs typically rely
on a hybrid topology that combines static and dynamic parts. While such a combination is
powerful [47], current architectures support only somewhat restricted routing. First, routing
on the dynamic topology part is limited to one or two hops only [47, 66]. Second, routing
is often segregated, i.e., flows are forwarded on either the static or the dynamic topology part
but not both [47, 51]. This segregated routing also comes with additional overheads: during
reconfiguration, the links are unavailable, and packets must be buffered. Regular store-and-
forward switches are not sufficient to implement this, and more complex buffer management
is needed. Thus, there is a need for an RDCN design with a decentralized routing approach
that supports routing over multiple hops over both static and dynamic links and relies on local
decisions in order to react quickly to changing links.

1.1.4 Design of Macroscopic Topology Reconfiguration-aware Networks for DCs

In the past decade, researchers presented several designs for RDCNs targeting different traffic
constellations. Based on their reconfiguration behavior, these designs can be discriminated into
two classes: DA [66, 47, 51, 45, 46, 54] and DO [48, 49, 53]. Static DCNs constitute a third class.
Depending on the class, two types of taxes (cost) can occur: latency and bandwidth tax. Both
taxes impact a flow’s performance (e.g., the completion time) depending on the its size. For
instance, a high latency tax more strongly impacts small flows (the flow has to wait a long time for
a reconfigurable link to come up). In contrast, a large flow (with a large “ideal” completion time)
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will not experience a substantial increase in its overall completion time. Opposed to this, a high
bandwidth tax (the flow utilizes multiple hops in the network) more likely results in congestion,
lower throughput, and ultimately, increased completion time for large flows.

As a result, the class of reconfigurable topology that is most suited depends on a flow’s size,
and the design of a DCN that is aware of the different classes of topological reconfigurability
is a challenging task. Given the traffic mix inside the network, the first aspect of the network
design is how to dimension the different topology parts to maximize the topology’s throughput
and minimize the completion times of the flows. The dimensioning should account for the two
taxes. The second challenging aspect is designing the architecture and the resource management
for such a hybrid topology that consists of several classes of reconfigurable sub-topologies. This
challenge includes, on the one hand, an algorithm that optimizes the scheduling for DA and DO
links and, on the other hand, a data plane design and a routing algorithm that enable forwarding
across the sub-topologies.

1.2 Contributions

This section overviews and summarizes the contributions of this thesis to the research area
of demand-aware, topologically-reconfigurable networks. It briefly describes the conducted
research efforts and illustrates their relations. Figure 1.1 visualizes the structure of the thesis with
respect to the contributions and methodologies. The major contributions cover two scenarios
(WAN and DCN) and align into the following three groups: (1) measurements and evaluation
frameworks of reconfigurable topologies, (2) mathematical models, optimization, and numerical
analysis of networks using multiple layers of reconfigurations in WANs, and (3) architectures,
control and data plane designs of RDCNs that use multiple classes of reconfigurations.

The increased use of data-centric applications has led to new applications and traffic patterns
in networks. Some of these new applications can particularly benefit from reconfigurable (and
DA) networks. As a specific example, the first minor contribution is the analysis of the network
traffic of distributed machine learning (DML) frameworks [10]. The study elaborates on network
traffic traces from three state-of-the-art DML frameworks, four different ML models, and various
configurations. Moreover, it assesses the impact of network parameters. The study demonstrates
that the frameworks employ specific traffic patterns depending on the configuration. Therefore,
the traffic of such applications is a good candidate for reconfigurable networks.

The second contribution provides a deeper understanding of the behavior of programmable
COTS equipment under topological reconfigurations [11]. Therefore, this thesis first provides a
meta-analysis of existing measurements of topological reconfigurations to uncover missing as-
pects for a holistic analysis of the end-to-end reconfiguration delay. It then identifies potential
factors of variability for the reconfiguration delay and presents three measurement procedures.
They are tailored for two classes of devices: programmable switches and programmable NICs.
The measurement procedures do not require specialized measurement equipment as they build
on the capabilities of programmable COTS data-plane devices. Assessing six programmable
COTS networking devices provides insights into their behavior under optical circuit reconfigu-
ration and verifies the hypotheses about the influence factors. Thereby, it extracts the significant
components of end-to-end reconfiguration delay. As a complementation of this contribution,
this thesis presents a flexible framework for Experimentation with Reconfigurable networks
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(ExReC) [12]. ExReC can be configured in different ways, allowing us to emulate different RDCN
architectures. It relies only on COTS hardware and uses emulation to reduce dependence on
hardware that is either expensive or unavailable. The thesis illustrates the versatility and benefits
of ExReC under various workloads, including a DML training application.

This thesis’ third and first major contribution targets the joint optimization of reconfigurations
on multiple layers. To this end, the WAN use case is considered. Multi-layer optimization
is a common approach in the design and optimization of WANs. However, existing work is
limited to optimizing individual layers or combinations of two. In contrast, this thesis analyzes
to what extent and how a reconfigurable optical network topology can be combined with a clever
request mapping to optimize the routing of the traffic of large CP or CDNs in an Internet Service
Provider (ISP) network [1]. Therefore, it presents a Mixed Integer Program (MIP) formulation
that, given the peering locations (point of presence (PoP)) of the CDNs and CPs as well as the
end-users’ demands, jointly optimizes three layers: CDN user mapping1, IP routing, and IP
topology and its embedding in the optical domain. In order to evaluate the benefits of this joint
optimization, the thesis proposes a greedy algorithm that optimizes the network in two stages;
CDN user mapping followed by IP routing and topology in the second stage. The proposed
approaches are empirically evaluated based on measurement data from the production network
of a large ISP. The evaluation shows that the joint optimization can significantly lower the ISP’s
network loads not only during the critical peak hour but also on average and reduce the required
backbone capacity by up to 15%. Besides the gains achieved by the joint optimization, the
evaluation features a reconfiguration analysis, elaborating the required amount and frequency of
reconfigurations. Moreover, it illustrates the predictability of the required optimization and its
benefits during events such as the COVID-19 pandemic or under link failures. Finally, the thesis
showcases avenues for a possible system implementation and deployment scenario.

As the fourth and second major contribution, this thesis proposes a novel, cost-effective and DA
RDCN architecture, Duo which uses static and DA network components in a hybrid topology [2].
Unlike previous RDCN designs, Duo supports multi-hop, integrated routing in a work-conserving
(in a store-and-forward sense) manner. That is, unlike RotorNet [48] or Sirius [53], it does not
require specialized queues or flow scheduling but can be implemented using regular store-and-
forward switches. At its core, Duo builds on the structural properties of de Bruĳn graphs,
which allow using standard IP routing and longest prefix matching with small forwarding tables
and standard transport layer protocols such as NDP or TCP. In addition to the system design, we
present centralized and distributed algorithms for scheduling the reconfigurable links. We imple-
ment Duo in a packet-level simulator and empirically evaluate it under different traffic scenarios.
In addition to showing its superiority in throughput over state-of-the-art static and dynamic
networks, the evaluation assesses its sensitivity to parameters and analyzes its routing behavior.
Finally, the thesis demonstrates the feasibility of Duo with a proof-of-concept implementation of
the control and data plane with standard programmable network stacks.

The fifth and third major contribution brings macroscopic reconfiguration-awareness to RDCNs.
Therefore, this thesis integrates both reconfiguration classes in a single RDCN design. The re-
sulting architecture combines static, DO (rotor), and DA switches into a hybrid topology. This
thesis explores two specific system proposals for such a system: Cerberus [3] and Trio [4].

1For sake of readability, we use only the term CDN when referring to the end-user mapping. It implicitly includes
also CP. Chapter 5 provides a more detailed description of what networks are considered.
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Building on the observation that the best-suited reconfiguration class depends on the type of
traffic or, more generally, the traffic pattern, Cerberus matches the traffic with the best topology
reconfiguration class. Specifically, it forwards the traffic to the respective topology part. This
provides reconfiguration-awareness to the flows on a macroscopic level, i.e., it only considers
the reconfiguration class but not individual reconfigurations. For instance, latency-sensitive
flows are forwarded via the static topology part; large flows use direct connections as provided
by DO switches, and medium-sized all-to-all traffic is sent via rotor switches. Using flow-level
simulations, this thesis shows that Cerberus outperforms other RDCNs regarding throughput.

Trio re-uses the general idea but elaborates on an end-to-end system design in more detail.
First, it leverages the de Bruĳn-graph-based base topology from Duo. Moreover, it presents
a data and control plane design that allows reconfiguring individual links, according to the
reconfiguration class, and also adjusting the sizes of the sub-topologies. That is, it can convert DA
to DO switches during run-time and vice versa. The packet-level simulation-based evaluation
illustrates that Trio increases the goodput compared to Duo and other state-of-the-art solutions.
Moreover, it maintains competitive flow completion times and shows slight improvements in
resource efficiency.

1.3 Thesis Organization

This thesis is organized as follows.
Chapter 2 presents a more in-depth motivation for DA networks. Therefore, it provides traffic

analysis for DML workloads, which serve as an example of an emerging application in DCN. In
particular, it measures and evaluates the traffic originating from a selection of state-of-the-art and
industry-standard DML frameworks and varying ML models and configurations.

Chapter 3 introduces basic terminology and technological background for reconfigurable opti-
cal networks for the two considered use cases, WAN and DCN. It further provides an overview of
the state-of-the-art in both scenarios and introduces the top-of-rack (ToR)-matching-ToR model
that can describe existing spine-leaf reconfigurable topologies.

Chapter 4 revolves around the measurement of programmable COTS equipment under re-
configuration. Therefore, it first summarizes existing measurements of equipment for topology
reconfigurability. It then presents the measurement framework and describes the outcomes of the
measurement campaign by extracting the dominating factors of influence on the reconfiguration
delay. Finally, the chapter motivates and presents the emulation framework ExReC for hybrid
topologies consisting of DO and DA components. The emulation framework is verified and used
to illustrate the benefits of such hybrid topologies.

Chapter 5 addresses network operation and optimization with reconfigurations on multiple
layers in the WAN scenario. First, it describes the challenges that arise with the dominance of
CP in ISP networks and presents the chapter opportunities. Afterward, it formalizes the joint
optimization framework and presents two solution methods. Finally, it evaluates the proposed
approach using real data from a large European ISP and discusses potential deployment options.

Chapter 6 concerns with the design of reconfigurable, demand-aware DCNs. To motivate Duo,
the chapter qualitatively compares existing RDCNs designs with respect to routing approaches.
It then presents Duo, a high throughput RDCN, that features local routing and control decisions.
Duo is evaluated using packet-level simulations as well as a proof-of-concept implementation.
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Finally, Chapter 7 proposes a step towards reconfiguration-aware RDCNs by presenting and
evaluating Cerberus and Trio. It first describes and evaluates Cerberus, a three-headed topol-
ogy design that matches flows with the best-suited reconfigurable topology. Afterward, it in-
troduces Trio which extends the basic structure and insights from Duo (Chapter 6) with the
reconfiguration-aware design from Cerberus. The chapter describes important data and control
components and mechanisms and evaluates Trio using packet-level simulations.

Chapter 8 concludes this thesis and discusses possible directions for future work.
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Research Area

Reconfiguration-awareness in Flexible, Demand-aware Network Topologies

Preliminaries

Motivating Trends in Demand Patterns (Chapter 2) [10]

Overview of Reconfigurable Topologies (Chapter 3)

Main Contributions

Methodologies

Summary & Discussion (Chapter 8)

Reconfiguration Delay

Measurements, Modeling and Emulation of Topological Reconfigura-
bility (Chapter 4) [11, 12]

Multi-layer Reconfigurations
Wide area network

Modeling and Optimization of
Multi-layer Reconfigurability
(Chapter 5) [13, 1]

Multi-class Reconfigurations
Datacenter network

Control Plane-efficient,
Demand-aware RDCNs (Chap-
ter 6) [2]

Macroscopic Reconfiguration-
aware Networks for DCs
(Chapter 7) [3, 4]

Measurement tool (Sec. 4.3) Statistical models (Sec. 4.4,
4.5)

Testbed measurements
(Sec. 4.4, 4.5, 4.7)

Packet processing software implementation (Sec. 4.6)

Multi-layer network modeling (Sec. 5.3)

Mixed Integer Programming (Sec. 5.3)

Algorithm design & implementation
(Sec. 5.3)

Empirical evaluation (Sec. 5.4)

Architecture (Sec. 6.2.1, 7.3.1, 7.4.1)

Control plane algorithms (Sec. 6.2.2, 7.3.2,
7.4.1)

Source routing (Sec. 7.4.1)

Priority Queueing (Sec. 6.2.3, 7.4.1)

Packet-level simulation (Sec. 6.3, 7.4.2)

Flow-level simulation (Sec. 7.3.4)

Prototype (Sec. 6.4)

Figure 1.1 Thesis structure. The main contributions belong to three fields: measurements of topology
reconfigurations and design of evaluation frameworks, networks with reconfigurations on multiple layers,
and networks with multiple classes of topology reconfigurations. Whereas the first field focuses on
understanding the impacts of topological reconfigurations with hardware measurements and testbed
implementations, the second and third present system designs and resource management algorithms.
These are evaluated using simulations (both) and prototype system implementations (only third aspect).
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Chapter 2

Motivating Trends in Network Demand Patterns

This chapter illustrates the traffic characteristics of a high-bandwidth application in datacenter
networks (DCNs). Thereby, it shall motivate the use of reconfigurable datacenter networks
(RDCNs) for such applications and sketch the opportunities that arise with the observed traffic
patterns. The investigated application is machine learning (ML) which is being applied to more
and more use cases ranging from business to health to entertainment [67, 68, 69].

This increased demand for high-performance models comes with an increase in computational
demand which, in turn, leads to the distribution of the workload across multiple machines [70, 71].
With distributed workloads, the computational restraints shift to communication bottlenecks [72],
and a variety of frameworks for distributed training of ML models (DML) has been proposed.
These frameworks take communication into account [73, 74, 75, 76, 77, 78], e.g., by modifying the
communication structure. However, a detailed evaluation and comparison of the communication
structure of such frameworks is missing.

This chapter overviews and characterizes the communication behavior of three state-of-the-art,
industry-standard distributed machine learning (DML) frameworks. It analyzes traffic traces
from running these DML frameworks in more than 75 scenarios varying the trained models, the
framework configurations, and the packet loss in the network. Further, the chapter provides
insights into the flow patterns and the network’s throughput. The study reveals that traffic can
largely vary across the frameworks. While some frameworks exhibit well-predictable patterns, a
desired property for demand-aware (DA) networks, others are less structured. Another cost aspect
of DML training is presented by relating networking resource consumption to ML training metrics
such as accuracy. The results can inform the networking community about traffic characteristics
and contribute toward generating realistic DML traffic for simulation studies.

Content and Outline: Section 2.1 briefly overviews DML and the available frameworks. Sec-
tion 2.2 lists related traces or generation methodologies for DML traffic. Section 2.3 describes the
testbed and measurement procedure. Section 2.4 provides the flow-level analysis of the commu-
nication behavior and outlines potential influence factors of bandwidth consumption. Section 2.5
summarizes this chapter and discusses possible avenues for future work.

This chapter is entirely based on the work of a research internship that was supervised by me.
The results were presented in a previous conference publication [10]. As a contribution to the re-
search community, the code (https://github.com/tum-lkn/dml-network-traffic-analysis)
and the collected traces have been made publicly available [27].

https://github.com/tum-lkn/dml-network-traffic-analysis
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2.1 Background

This section gives a short introduction to ML and DML. It further overviews commonly used
communication structures and libraries for DML and finally, presents available DML frameworks.

2.1.1 Machine Learning Training

Machine learning can be defined as the iterative usage of the training dataset to gradually fit a
model, a Neural Network (NN). Each repetition in this iterative process applies a function to the
dataset for the successful determination of the NN’s parameters. The backpropagation algorithm
is one of the most popular algorithms for training an NN. As introduced by Rumelhart, Hinton,
and Williams in 1986, backpropagation is known as an efficient way to compute the gradient
of the cost function with respect to the NN parameters [79]. Backpropagation is utilized as the
standard approach in NN training.

Backpropagation calculates weight updates proportional to the error propagated back from
the output through the different layers of the NN. These weight updates are generally done in
batches, i.e., chunks of the training dataset. The training consists of numerous iterations until the
prediction error drops below a threshold or a maximum of iterations is reached.

The numerous iterations are computationally intensive, in particular as dataset and model sizes
grow. However, the backpropagation algorithm can be formulated as a matrix-vector multipli-
cation operation, and thus, it can be parallelized across different workers using MapReduce [80]
approach. The map stage computes the per-worker update of the NN, and the reduce stage
gathers and aggregates these updates. The following sub-section describes different approaches
of this distribution in more detail.

2.1.2 Distributed Training

Distributed training splits the total workload among multiple workers in order to parallelize and
speed up the overall training process. In general, there are two fundamental flavors of distributed
training:

Data Parallelism. Data parallel methods split and distribute the dataset across the available
workers (Figure 2.1a). Each worker holds a local copy of the entire model and performs the
update steps on the local copy. All workers synchronize their copy of the model by exchanging
their gradient information, e.g., using the parallelized variant of the Stochastic Gradient Descent
(SGD) [81]. This step is referred to as all-reduce.

This process can be done either synchronously or asynchronously. In the synchronous case, each
worker waits until all the other workers complete their calculations and only then exchanges
parameters. In the asynchronous case, each worker runs at its own pace without being affected
by the slow workers. This approach increases the fault tolerance, as the training job will continue
to function even if one of the nodes fails. On the downside, it introduces stale gradients, in which
the slow workers train and update an old model version [82].

Model Parallelism. Model parallelism partitions the model and distributes the parts across
the available workers (Figure 2.1b). It is beneficial if the model’s size exceeds a single node’s
resources, e.g., the memory of the graphics processing unit (GPU). Since the layers of the model
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Figure 2.1 Two approaches to parallelization of distributed training: Data and Model Parallelism. Figure
based on [84, Fig. 2].

are evaluated sequentially, a naïve implementation leads to underutilization of the available
computing resources. Pipeline parallelism has been introduced to mitigate this. It subdivides a
batch of data into micro-batches which are evaluated on the different model parts in a pipelined
fashion [83].

Since most commonly used models still fit onto single nodes, model parallelism is less often
applied in practice. Therefore, this chapter focuses on data parallelism.

2.1.3 Communication Topologies

The communication topology describes how the workers logically interconnect and how updates
are relayed and aggregated across the set of workers. There are several popular communication
structures such as trees, rings, and parameter server (PS) architectures, which are being used in
practice for DML clusters [84]. The synchronous all-reduce paradigm is used with mesh, tree, and
ring structures, whereas asynchronous training is generally implemented on PS architectures [85].

During the all-reduce phase, each worker sends its model updates to all other workers. When
using a ring structure, a worker sends its updates only to one other worker that forwards the
updates to the next worker and so on, forming a ring-like structure. Model updates received from
other workers are forwarded along the ring too until the message has reached all workers. For
tree structures, the communication and the exchange of updates are relayed via the respective
parent nodes where one worker is the root. PS uses a more centralized approach: All the
variables are stored in one or multiple PSs and workers communicate with the PSs for pushing
and pulling updated gradients. One worker is designated as the chief and coordinates the training
process. The various communication topologies have different requirements and hence multiple
communication libraries exist in the literature [86].

2.1.4 Communication Libraries

The two main communication primitives are point-to-point communication and collective com-
munication. Point-to-point communication serves the purpose of transmitting a message between
a pair of processes, whereas collective communication is used for the transmission of messages
among groups of processes. Frequently used libraries that implement these communication prim-
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itives include Google Remote Procedure Call (gRPC) [87], Message Passing Interface (MPI) [88],
Facebook’s Gloo [89] and NVIDIA Collective Communication Library (NCCL) [90].
gRPC relies on point-to-point communication, in the spirit of client/server communication where
a client can directly call a method on a server. The library has no collective communication
support.
MPI is the most often used, de facto standard for high-performance computing and supports
collective communication [86]. It has many implementations ranging from the widely used
open-source OpenMPI library to commercial ones.
Gloo is a collective communications library developed by Facebook specially for ML applications.
It provides implementations for broadcast and all-reduce.
NCCL is developed to achieve high bandwidth over PCIe and NVLink between GPUs in a sin-
gle node, or over Ethernet and InfiniBand for connections across machines. It is optimized for
NVIDIA GPUs, implementing multi-node and multi-GPU communication standards supporting
collective communication as well as point-to-point communication. It is often used for accelerat-
ing collective communication in DML [74].

2.1.5 Distributed Machine Learning Frameworks

DML frameworks build around the presented communication libraries and topologies and basic
ML libraries such as TensorFlow [75] or PyTorch [77], and orchestrate the distributed training
process.

The DML survey in [84] presents a thorough overview of the existing libraries and frameworks
for distributing the training workload. The evaluation in this chapter focuses on three frameworks
which provide Data Parallelism, and represent the state-of-the-art in research and/or are adopted
by industry: TensorFlow Distributed [75], Horovod [73] and KungFu [74].
TensorFlow Distributed is the distributed training implementation provided by TensorFlow. It
can distribute tasks across multiple GPUs, tensor processing units (TPUs), or machines employ-
ing data parallel methods. TensorFlowDistributed uses gRPC as the communication library and
supports synchronous and asynchronous communication strategies through ring all-reduce al-
gorithms and parameter server strategies on top of gRPC, and NCCL’s all-reduce algorithms [86].
Horovod is an industry-standard distributed deep learning training framework supporting
TensorFlow, Keras [91], PyTorch [77], and Apache MXNet [92] as ML libraries. It distributes
the training process with minimal code addition to the single-node training scripts and supports
only synchronous communication strategies through ring all-reduce algorithms. Horovod can
use Gloo or MPI for collective communication. It also supports NCCL for tensor operations,
however, primitive administrative operations such as gathering the number of workers and the
ranks of the workers require MPI or Gloo.
KungFu is a framework for adaptively distributing the ML workload. It provides synchronous and
asynchronous training and includes an online monitoring component that adapts the communi-
cation architecture of the workers according to the network state during training. Its distributed
synchronous optimizer (referred to as Synchronous SGD optimizer) is equivalent to the one in
Horovod. The asynchronous optimizer (referred to as Pair Averaging optimizer) is the imple-
mentation of Asynchronous Decentralized Parallel SGD [93]. KungFu includes its own collective
communication API which can be accelerated via NCCL. Moreover, KungFu provides a variety
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of topologies for the communication patterns of the workers. These include Tree, Star, Clique,
and Binary Tree Star (BTS).

2.2 Related Work

There are several relevant works, which shed light on the characteristics of network traffic of
different DML frameworks from different perspectives. From a computing resources perspective,
Jeon et al. provide insights about jobs’ requirements and analysis on GPU usage from large-scale
DML production clusters [94]. But they neglect the communication aspect and do not analyze
the network traffic in detail.

Since several studies have shown that communication is a bottleneck to distributed training,
like [72], many research papers focus on improving the communication efficiency such that in-
creasing the number of GPUs linearly scales out the performance. Such solutions include, among
others, compressing the gradients [95], coordinating the distributed gradient computations to
micro-manage the communication patterns of nodes [96], pruning model parameters [70] or
scheduling communication [97]. They use additional (local) computation to reduce communi-
cation and focus on improving the total training time, but they leave aside implications on the
network traffic and analysis thereof.

Existing literature has also considered the networking perspective to achieve linear scale-out.
These works propose to modify the all-reduce architecture to hierarchical all-reduce [98], network-
based systems such as in-network aggregation to overcome communication bottlenecks [99, 100],
flow schedulers [101], or tailored topologies [102, 103, 104]. They contain descriptions of DML
network traffic but focus on point solutions for specific frameworks, their configurations, or
communication patterns. For instance, Liu et al. [103] assume only PS-based DML, whereas
Gebara et al. [100] consider only ring-reduce DML traffic in their evaluation. This chapter
provides analyses and compares traffic patterns as observed from multiple publicly available
frameworks and varying configurations.

In addition to proposing new designs, some works examine different approaches’ training
throughput in terms of image per second trained and their scalability [105, 106]. Other works
aim to measure the network performance of distributed training approaches as in [72, 86]. All
these researches focus on identifying the communication bottleneck to the total training time
but leave detailed network traffic patterns aside. There exists prior works which assesses the
performance of DML on various topologies [100, 107]. However, these works include simplified
assumptions about flow distributions and the used DML frameworks. That is, they consider
given flow sizes and only homogeneous communication structures, e.g., only PS. Finally, there
are papers outlining link utilization metrics of DML training [108]. However, these papers lack
either distinction between frameworks and model sizes, or do not specify temporal patterns.

The work closest to this study is Driple [109] which uses a Graph neural network to predict
the resource consumption of DML training jobs. However, Driple focuses on the prediction of
burst duration and amplitude of training jobs whereas this study is concerned with the overall
traffic patterns in the network. Overall there is no comprehensive analysis of the network traffic
of different DML frameworks and their configurations.
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Figure 2.2 Overview of the testbed to collect network traffic from DML frameworks. Four servers are
connected to a 10Gbps switch. Each server has one GPU and runs a virtual machine (VM) with a worker
of the DML framework. Traffic traces and application logs are collected inside the VMs. An Experiment
Manager orchestrates the measurement.

2.3 Measurement Setup

The goal of this chapter is to explore and compare the network behavior of frameworks and
models on a small representative setup. This section describes the testbed and the measurement
procedure for tracing the network traffic.

2.3.1 Testbed

Figure 2.2 shows the testbed. It consists of four servers running Ubuntu 18.04 (5.15.0-47-generic
kernel) with 128 GB of RAM and Intel Xeon Silver 4114 @ 2.2 GHz (20 cores). Each of the servers
contains one NVIDIA Tesla T4 GPU and is connected via a 10 G Ethernet port (red box) to a Dell
S4048-ON switch in L2 forwarding mode. The servers run kernel-based VMs with 48 GB of RAM
and 8 pinned central processing unit (CPU) cores. Each of the VMs is running the latest version of
"generic/ubuntu1804" Vagrant Box. The GPU and network interface card (NIC) are handed over
to the VMs using PCI pass-through capabilities. Communication libraries and frameworks are
installed using the default instructions from the respective web pages or repositories. Specifically,
this study uses TensorFlow 2.3.0, Horovod v0.22, KungFu 0.2. Each VM is configured to collect
packets originating from itself via tcpdump. Moreover, application-level logs are collected with
respect to each training step (training accuracy, loss, and step duration) for further analysis.
A fifth server, the Experiment Manager, connects via a dedicated network and orchestrates the
measurement.

2.3.2 Settings

In order to analyze and understand the structure of the communication pattern, four models
of different sizes are trained: MobileNetv2 (14 MB) [110], DenseNet201 (80 MB) [111], ResNet50
(97 MB) [112] and ResNet101 (171 MB) [112]. The models are available in the most popular deep
learning libraries such as TensorFlow and are used as benchmarks in similar studies [86, 74].
The training uses the CIFAR10 [113] dataset. It consists of 60 000 32x32 color images with 50 000
training and 10 000 test samples. If not stated otherwise, the batch size per worker is 64. All
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Figure 2.3 Comparison of total transmitted volume for 20 epochs of DML training across four models and
four framework configurations (a). Traffic volumes correlate with the size of the model being trained (b).
The total transmitted volume correlates to the model size.

models are initialized with random weights (cold start). Moreover, the study uses the Adam
optimizer [114] and trains for 20 epochs where an epoch considers all samples in the training
dataset. The evaluation covers the following configurations of the frameworks:

• TensorFlow Distributed Framework: Ring-Reduce Synchronous SGD (S-SGD) on GPU;

• TensorFlow Distributed Framework: Parameter Server Training on CPU (PS);

• Horovod Framework: Ring Reduce and Hierarchical Reduce S-SGD on GPU;

• KungFu Framework: S-SGD on GPU;

• KungFu Framework: Asynchronous Decentralized Parallel SGD on GPU (PairAvg).

For further variation, the Horovod configuration is run with NCCL, MPI, and Gloo as commu-
nication libraries. Similarly, TensorFlow is evaluated with gRPC and NCCL. For KungFu, BTS,
Tree, Star, and Clique connectivity patterns are run. The study excludes additional optimization
strategies described in Section 2.2 since they are not an inherent component of the frameworks.
All the measurements involve four nodes (workers), except PS training, which includes six nodes
(four workers, one PS, and one chief). Each of the framework settings and models is measured
once – more than 75 scenarios in total.

2.4 Evaluation

This section presents the observations from the packet traces collected during the distributed
training process in order to compare the network traffic of different frameworks, models, and
communication backends. First, the section analyzes the volume of data transmission and elab-
orates on the connectivity patterns of different setups. Then, it conducts a flow-level analysis of
the network architecture and assesses the impact of the network’s condition. Finally, the achieved
training accuracy is related to the transmitted network traffic.
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2.4.1 Total Data Transferred

Figure 2.3 shows the total transmitted volume per model and framework together with the model
sizes. The volumes for 20 epochs range between ≈ 140 GB and ≈ 4 000 GB. The trained model
is the dominant influencing factor on the total transmitted volume. TensorFlow, Horovod and
KungFu S-SGD distribute the SGD with the same approach. Hence, they transmit the same
total amount of data. Compared to these, KungFu PairAvg is more communication efficient; it
transmits ≈ 30% fewer data for all the models. For instance, it transmits 2677 GB for ResNet101,
whereas the other frameworks transmit ≈ 4020 GB. Other influencing factors in the frameworks’
configuration are not observed: Repeated measurements with RMSProp [115] instead of Adam,
or NCCL instead of gRPC or MPI, do not differ in the transmitted volumes.

Figure 2.3b presents the sizes of the trained models. The model size is positively correlated with
the total amount of data transferred during a run. This is in line with similar assessments [100].
Larger models have more variables. Thus, the gradients that are exchanged in the reduce stage,
are expected to be larger, and therefore, more data is transmitted.

2.4.2 Communication Patterns

Figure 2.4 shows heatmaps of the total transmitted volume between nodes to illustrate the com-
munication pattern of various frameworks and configurations. The darker the cell, the more data
has been transmitted between a pair of nodes.

For the ring-reduce pattern (Figure 2.4a), the dark squares indicate the neighboring nodes in
the ring. In this case, the structure of the ring is𝑊1−𝑊2−𝑊3−𝑊4−𝑊1. In all frameworks, the
user can specify the order of the ring. On average, the intense communication pairs in the ring
accumulate 566 GB, whereas the opposite direction in the ring amounts to less than 1 GB. These
opposite flows are constituted from acknowledgments. Communication happens only along the
ring. The “non-ring” elements in the matrix are three orders of magnitude smaller. KungFu
S-SGD with BTS (Figure 2.4b) illustrates a pattern where W1 is the root of a tree and relays all
the communication between the other nodes. W4 is a child of W2 and relays 1/3 of the traffic
through it. The reason for the direct communication between W1 and W4 could not be clarified.
Tree and Star communication topologies use only W1 as relaying node (Figure 2.4c & 2.4d). The
Clique structure (Figure 2.4e) shows the densest pattern for S-SGD with data transmissions for all
communication pairs. KungFu PairAvg (Figure 2.4f-2.4i) consistently employs a full-mesh pattern.
A more intense structure similar to the ring pattern is evident. Finally, the PS configuration
(Figure 2.4j) shows that workers are communicating only with the parameter server. No cross-
communication among the workers is observed. The chief distributes the tasks to all the workers
and the parameter server.

In conclusion, the framework and its configuration can have a strong impact on the patterns
of network traffic. In particular, Ring, tree, and PS structures exploit predictable communication
patterns with high volumes between few pairs are evident. A repetition of this evaluation with
eight workers confirmed that the observations are also valid for larger scenarios.

2.4.3 Flow Analysis

Having analyzed the total traffic, we are now interested in how many network flows are present
during training and how the traffic is distributed among the flows. A flow is defined as the
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Figure 2.4 Comparison of DML communication patterns: heatmap of total transmitted volume per DML
framework configuration, averaged over all models. “Ch.” indicates the Chief node in Figure 2.4j Connec-
tivity patterns depend on the distributed optimizer and training strategy in use.

five-tuple of source and destination IP addresses, transport protocol, and source and destination
ports.

2.4.3.1 Flow Structure

Figure 2.5 shows bars indicating the total number of flows per framework and model. The parts
of the bars (indicated by the hatches) correspond to different flow sizes. The lower part is the
number of small flows (< 6 GB) and the top part are flows with a size ≥ 6 GB. The threshold
is chosen such that the accumulated volume of all large flows is larger than 95% of the total
transmitted volume. The total number of flows in a framework is constant across models except
for Horovod and KungFu with the Clique topology. Moreover, the total number of flows in a
distributed training scenario depends mainly on the number of workers and the communication
strategies. Repeated measurements with the same settings indicate that the number of flows does
not change across runs with the same configuration. The number of flows ≥ 6 GB varies across
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Figure 2.5 Comparison of number of flows per DML framework and model. The stacked bars (indicated
by the hatch) separate flows by their size 𝑠 into small and large ones (≥ 6GB). TensorFlow and Horovod
represent ring topology. For KungFu, BTS, Tree and Star topologies have the same number of flows,
whereas Clique topology has more flows.

the configurations. For synchronous training, there are four big flows in the ring topology, six big
flows in BTS and Tree, and eight big flows for the case of the asynchronous PairAvg optimizer.
While the chosen threshold ensures that the large flows make at least 95% of the total transmitted
volume, we observe that they even can contribute up to 99% on average (not shown in the figure).
Overall, we observe more variance across models and frameworks for small-sized flows.
TensorFlowwith ring all-reduce strategy has 24 flows. For four workers in the ring structure,

four main flows exchange gradients (large flows), and another four flows serve the acknowl-
edgments in the reverse direction (part of the small flows). However, TensorFlow opens side
connections between the non-neighboring nodes in the ring. The traces contain 16 of such flows
which each amounts only to 1 MB traffic on average with 912 KB variance.
Horovod has 24 flows except for a single MobileNetv2 measurement with 88 flows. When the

VM and Horovod are set up for the first time, Horovod runs initial checks between the servers
and this causes the number of flows to grow to 88. This behavior is repeated every hour due to
caching mechanisms inside the framework. Although the number of flows in TensorFlow and
Horovod is the same, the latter one uses eight flows for SSH connections.
KungFu S-SGD, using BTS, Tree and Star communication topologies, has 12 flows in total,

consisting of 2 flows in both directions for each edge of the tree. The Clique topology serves 46
flows on average. We observe that only the number of small increases (lower part of the bar) while
the number of large flows is the same as for the other communication topologies with KungFu
S-SGD. In addition to the 12 flows for serving gradient exchanges, it has 22 small flows consisting
of two sizes with 54 Bytes and 74 Bytes. The remaining flows have an average size of 63 MB.
KungFu PairAvg creates the most flows. Its pattern has 36 flows in total for BTS, Tree and

Star communication topologies and 64 for Clique topology. In both cases, the number of flows
for both classes increases. Focusing on BTS, W1 has four flows with the other workers in both
directions making up 24 flows (cf. Figure 2.4f). The remaining 12 flows are between the rest of
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Figure 2.6 Throughput per flow over time. Horizontal bars show individual flows. The opacity of the bar
indicates the throughput per 10 s time window normalized to the maximum throughput in a scenario. The
trained model is ResNet50. KungFu PairAvg distributes traffic over more flows than the other scenarios.

the workers in both directions. Since W1 is the root node of the tree, it has double the number of
connections. Similar to the configurations with S-SGD, small flows that amount to 54 Bytes and
74 Bytes, make up the difference in flow numbers between Clique and the other communication
topologies. Overall, we conclude that the chosen communication strategy impacts the number of
flows independently of the framework.

2.4.3.2 Temporal Behavior of Flows

Figure 2.6 illustrates the transmission behavior of the flows over time.1 For each flow, it illustrates
the transmitted data per 10 s time window. The more opaque a cell of the bar, the more data is
transmitted in that time window. The values are normalized to the maximum value per scenario.

In line with the previous observations for the number of flows, the large share of the bars is
transparent, i.e., the corresponding flows do not carry a large volume. They are present during the
whole run. However, the transmitted volume is low. Also, the large flows (dark bars) transmit
uniformly throughout the whole training process. They serve the gradient exchanges which
contribute towards the learning process.

1We omit the PS scenario in the following since it was trained on the CPU and hence the timings are not comparable.
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Figure 2.7 Throughput per communication pair over time. Synchronous communication shows clearly
periodic behavior (a). Less structure is evident in the asynchronous case (b). The ring structure of the
synchronous case has only 4 flows forming the ring; the other flows are 0.

For the ring-reduce patterns employed by TensorFlow (Figure 2.6a) and Horovod (Figure 2.6b),
all the large flows start at the very beginning of the training. This is different for KungFu S-SGD
optimizer. A closer look with one second precision reveals that two sets of flows start at the
very beginning and the other two start slightly after. The BTS pattern causes this difference. All
the traffic is relayed via the root node of the tree. There is a slight delay between receiving and
sending at the root and hence the arrival times of the flows are slightly different.

In the asynchronous case implemented by KungFu PairAvg, flows arrive independently of each
other. Besides, the data transmission shows less of a continuous pattern. This is not very much
clear since all workers have the same specifications and do not deviate in terms of computation
power.

The flow-level analysis reveals different patterns across the frameworks. Besides the number
of flows, the intra-flow behavior differs. To assess this more in detail, the following subsection
evaluates the data transmission rates of the communication pairs.

2.4.4 Intra-flow Patterns

As a first evaluation of the intra-flow behavior, Table 2.1 reports the average throughput values
for the four 10 G links in the testbed. The results build on 10 measurement runs per framework
configuration and additionally, each run is split into three windows to calculate the average
throughput (batch mean). This leads to 30 samples in total. Note that computation phases are
also included when computing the throughput and that NCCL acceleration is not used. The bold
fontface indicates largest value per row.

Overall, none of the frameworks makes efficient usage of the available bandwidth. For all
models, Horovod and KungFu S-SGD consistently obtain higher throughput values, followed
by KungFu PairAvg and TensorFlow. Within a framework, the trained model affects the ob-
served throughput. Smaller models, e.g., MobileNetv2 and DenseNet201, result in lower average
throughput values than the larger models such as ResNet101.
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Table 2.1 Average throughput summed over all links, without NCCL acceleration. Square brackets report
95% confidence intervals. The unit is Gbps.

TensorFlow Horovod KungFu (S-SGD) KungFu (PairAvg)
MobileNetv2 4.91 [4.82, 5.00] 8.19 [7.80, 8.58] 6.96 [6.14, 7.78] 4.55 [4.06, 5.04]
DenseNet201 6.42 [6.29, 6.55] 11.59 [11.39, 11.80] 12.33 [12.00, 12.65] 10.09 [9.88, 10.29]

ResNet50 6.81 [6.71, 6.90] 12.80 [12.12, 13.48] 13.17 [12.68, 13.67] 11.72 [11.46, 11.98]
ResNet101 6.33 [6.19, 6.47] 13.68 [13.37, 14.00] 13.56 [13.18, 13.95] 12.08 [11.76, 12.41]

Table 2.2 Throughput of a single flow which carries gradient exchange. Square brackets report 95%
confidence intervals. The unit is Gbps.

Average Throughput Peak Throughput
TensorFlow - gRPC 1.65 [1.61, 1.68] 9.60

TensorFlow - gRPC - NCCL 6.38 [6.25, 6.51] 9.78
Horovod - MPI 3.29 [3.20, 3.39] 8.07

Horovod - MPI - NCCL 6.61 [6.55, 6.67] 9.74
Horovod - Gloo 4.70 [4.56, 4.83] 9.61

Horovod - Gloo - NCCL 6.23 [6.11, 6.35] 9.76
KungFu (S-SGD) 2.76 [2.65, 2.87] 9.56
KungFu (PairAvg) 1.42 [1.28, 1.56] 9.62

Larger models lead to larger gradients being transmitted at the end of a step; hence, larger mod-
els lead to more data transmission. However, contrary to the expectation, the used framework can
cause a bottleneck. We observe that bandwidth utilization is closely linked to the framework and
communication backend in use rather than the model size. For instance, TensorFlow bottlenecks
the communication at an average throughput around 4.9 Gbps for MobileNetV2 and 6.5 Gbps
for the other models. However, Horovod reaches a throughput of 8.19 Gbps for MobileNetV2
exceeding TensorFlow’s performance for the larger models. The lower utilization of TensorFlow
is caused by the lack of collective communication support of gRPC library. OpenMPI as used by
Horovod outperforms gRPC and KungFu’s dedicated API further improves upon OpenMPI. Since
KungFu PairAvg optimizer consumes less data overall in comparison to the other frameworks, it
translates into lower bandwidth utilization.

In order to illustrate the differences between the synchronous and asynchronous training im-
plementations, Figure 2.7 zooms into 250ms of the captured data for training the MobileNetv2
model. The figure compares the throughput of each communication pair across the two synchro-
nization approaches. Figure 2.7a shows the synchronous case usingHorovodwith the ring-reduce
pattern. In this case, the framework uses all connections forming the ring in a burst-and-stop
fashion. The peaks correspond to gradient exchanges and the valleys correspond to computation
phases. Since the training is synchronized across the workers, they exchange gradients at the
same time. The asynchronous implementation uses KungFu PairAvg (Figure 2.7b). It shows peaks
and bottoms at independent times without a particular structure. All the workers are pushing
updates once their computation phase is complete.

Table 2.2 compares the throughput of a single flow across eight combinations of frameworks
and communication backends. The flow is used for gradient exchange while training a ResNet50
model. Starting with the peak throughput, we observe that it is only little influenced by the
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Figure 2.8 Line plot of the achieved training accuracy against the transmitted volume. Comparison of
DML frameworks and models. The dashed lines indicate 60% and 80% accuracy levels respectively. Each
framework exhibits diminishing gains in accuracy with respect to transmitted data.

framework and the communication backend. All values are close to the link capacity, in the
range of 9.50 − 9.80 Gbps except for Horovod with MPI (8.07 Gbps). The behavior changes for
the average throughput. The comparison demonstrates that the average throughput significantly
depends on the communication backend. On average, gRPC utilizes less than 17% of the available
bandwidth. MPI and Gloo make better use of the bandwidth. Without NCCL, they obtain average
throughput values of 3.29 Gbps and 4.70 Gbps respectively. KungFu seems to underperform in
comparison to other backends for a single flow. However, as it uses six or eight communication
pairs depending on the training strategy, it makes up for it on the total throughput (cf. Table 2.1).
Finally, accelerating gRPC, MPI, or Gloo with NCCL increases the utilization of the available
bandwidth. The improved implementation of the collectives reduces the computation time and
thereby, increases the average utilization to 65%.

From an intra-flow perspective, there are clear phases of computation and communication for
all frameworks independently of the distribution approach. All frameworks show the periodic
nature of synchronous all-reduce. However, depending on the framework, there are specific
nuances in flow timings. The asynchronous case exhibits less structure.
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Figure 2.9 Throughput of one communication pair
over time for three batch sizes. Batch size affects the
periodicity of communication. The trained model is
MobileNetv2.
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Figure 2.10 Bar plot of the training duration for dif-
ferent loss values. The values are normalized with
respect to the measurement without loss. Introduc-
ing loss impacts the training time drastically.

2.4.5 The Cost of Accuracy

Figure 2.8 shows the accuracy on the training dataset against the accumulated, transmitted data for
the considered models and frameworks. Overall, we observe the expected increase in accuracy
with transmitting more data and diminishing gains in accuracy with more data transmitted.
However, the exact behavior varies depending on the used framework and model. Starting with
MobileNetV2 (Figure 2.8a), TensorFlow achieves much lower accuracy of ≈ 0.65 compared to the
other frameworks which all achieve an accuracy > 0.9. This is consistent for the other models:
TensorFlow either achieves lower accuracy or requires significantly more data to transmit to
achieve comparable performance.

To compare the remaining frameworks in more detail, we evaluate the point where they
first reach an accuracy of 0.8. KungFu and Horovod reach this point with < 50 GB data for
MobileNetV2. Although their synchronous distribution approaches are implemented similarly
(wrapping TensorFlow’s optimizer), their behavior starts to differ for larger models to train. For
DenseNet201 (Figure 2.8b), Horovod needs around 410 GB and KungFu 510 GB; for ResNet50,
the values are 770 GB and 880 GB (Figure 2.8c); and for ResNet101, they are 2.45 TB and 2.82 TB
respectively (Figure 2.8d). KungFu PairAvg outperforms all the other frameworks as it reaches
the same accuracy with around 30% less data consumption.

The used frameworks and desired training performance need to be considered when estimating
the cost of training in the network. A direct relation between the amount of transmitted data and
the achieved accuracy is hard to infer. The main relation is introduced by the number of training
steps as elaborated by other works.

2.4.6 Impact of Batch Size

The batch size refers to the number of data samples used by each worker in a single training
step. Since the DML frameworks exchange data between the workers at the end of each step,
the batch size directly influences the communication-to-computation ratio. Figure 2.9 shows the
throughput on a single link for batch sizes of 64, 128, and 512 samples. Bigger batch sizes increase
the computation-to-communication ratio: the duration of the valleys with no communication
increases. Although the batch size affects this ratio, the transferred volume per step remains
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the same and the communication phases on average utilize similar bandwidth to exchange the
gradients. This behavior is consistent across all frameworks and models (figures are omitted for
brevity).

2.4.7 Impact of Packet Loss

In order to simulate a more complex scenario with contention on links, we introduce additional
packet loss on some links. Figure 2.10 relates the total training duration for MobileNetv2 trained
with TensorFlow against the packet loss. The values are normalized by the case with 0% loss.
We observe that the packet loss strongly impacts the training duration: an increased packet loss
results in drastically larger training times. 0.01% loss doubles the training time; 2% loss leads
to training duration more than eight times larger than for 0% loss. The performance decrease
of loss-based TCP in lossy networks explains this observation [116]. Introducing loss reduces
the growth of the congestion window, which results in lower throughput, longer communication
phases, and, hence, increased training time.

2.5 Summary

This chapter investigates the network traffic of three state-of-the-art DML frameworks with vary-
ing configurations and training parameters. The analysis reports key network metrics such as
throughput, flow, and intra-flow patterns and relates them to training accuracy. The major find-
ings are three-fold: For all configurations, the majority of the network traffic stems from a few
large flows which exist throughout the whole training process. Such a skewed pattern is well-
suited for reconfigurable, DA networks. Further, the findings indicate that the number, and the
specific spatial and temporal distribution of these large flows, and also the remaining flows, vary
depending on the framework and the specific configuration. However, the transmitted volume is
mainly influenced by the model that is trained.

In the context of reconfigurable, DA networks, this measurement campaign opens interesting
future research directions and may even help improve traffic engineering and topology design for
ML applications. Moreover, the insights from this chapter provide guidance for realistic traffic
modeling and generation for simulation studies as well as can help users and operators to tune
their datacenter (DC) architecture according to the communication needs of the training system.
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Chapter 3

Preliminaries and State of the Art of
Reconfigurable Optical Networks

This chapter provides general background information on reconfigurable optical networks for the
two use cases considered in this thesis: wide area network (WAN) and datacenter network (DCN).
The chapter first describes the considered use cases in more detail (Section 3.1) and then lists the
technological enablers of reconfigurability (Section 3.2). Section 3.3 defines and illustrates major
characteristics of topological reconfigurations. Finally, this chapter provides an overview of
the major directions that have been explored in prior work as well as existing system designs
and implementations. Following the structure of the thesis, the chapter first presents the WAN
scenario (Section 3.4) followed by DCN (Section 3.5). Note that this chapter is intended to be a
primer on the topics and focuses on the most important aspects only. In addition, we present
a generalized topology architecture underlying the majority of the reconfigurable datacenter
network (RDCN) proposals (Section 3.6). For more detailed surveys, the reader is referred
to [117, 118, 119].

The generalized RDCN architecture (Section 3.6) is from [3] and also part of another thesis.
Both authors have equally contributed to this part.

3.1 Use cases

Throughout this thesis, we will consider two use cases for reconfigurable and demand-aware
topologies which are presented in the following.

3.1.1 Wide Area Networks

The WAN use case revolves around systems that implement IP-over-Optical Transport Networks
(IP-over-OTN). They are mainly used to connect different metro areas or DCs and are considered
in a two layer model containing the IP and the optical layer. The network endpoints can vary
depending on the exact scenario. Examples are DCs, point of presences (PoPs), Internet exchange
points (IXP), servers, or connections to other networks such as fixed access or mobile networks.
This thesis focuses on the interconnecting, long-haul transit networks. The network endpoints
connect to IP routers which in turn connect to circuit switching elements in the optical layer. The
optical switching elements are connected by optical fibers. They establish and end-to-end path
(using the same wavelength) between the IP routers, a so-called lightpath.
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Figure 3.1 Overview of the WAN use case. Illustration of (a) IP and (b) optical layers. Circles are IP routers
or optical nodes respectively. End-users, IXPs, and datacenters (DCs) connect to IP routers. Solid black
lines are logical links (IP layer) and installed fiber links (OTN layer). The dotted, blue lines in (b) represent
the embedding of these IP links into the OTN.

Figure 3.1 gives an overview of the scenario and the two layers. It shows a single IP-over-OTN
long-haul network. In Figure 3.1a, the IP routers (circles) connect to three types of network
endpoints. Fixed or mobile access networks with connected end-users are the first type. The
endpoints of the second type are private network interconnects (PNI or peerings) to content
providers (indicated by the DCs). These are usually created at central exchanges or PoPs of the
network operators. Lastly, it connects to an IXP. Figure 3.1b shows the mapping of the IP links
onto lightpaths in the OTN (blue lines). The span of the lightpaths varies. The optical switching
elements can either terminate a lightpath and forward it to the local IP router, or relay it to another
node.

In general, today’s optical switching elements are considered reconfigurable so that the con-
nectivity on the IP layer can be modified during the lifetime of the infrastructure. For instance,
this can be used to adapt to changing or evolving demands and has already been subject to
previous work, as discussed later. Since changing the underlying physical infrastructure, i.e., the
installation of new fibers, occurs on a large timescale, the reconfiguration of the topology revolves
around moving capacity in the IP layer. The goal is to serve all demands, or at least as many as
possible, while minimizing operational expenditures (OPEX), e.g., in terms of power or deployed
lightpaths.

3.1.2 Datacenter Networks

DCNs provide connectivity between a large number of end-hosts (servers) which are grouped in
racks. They traditionally consist of statically connected packet switches. In order to provide high
capacity between end-hosts in the network, several stages of aggregation, e.g., in fat-trees are
common [42]. Figure 3.2a illustrates an example. The servers connect via the top-of-rack (ToR)
switches towards the backbone. In the example, the backbone has two aggregation stages: the
aggregation layer (“Agg”) and the core layer. The capacity of the aggregation stages matches the
capacity of the ToR uplinks. A well established alternative to fat-trees are Clos-based topolo-
gies [42].
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Figure 3.2 Examples of static and reconfigurable DCN architectures. The black, solid lines indicate static
links and blue, dotted lines are links to the optical switching fabric. The static topology (a) can either be
augmented (b) or fully replaced (c) by an optical switching fabric. In the latter case, a two layer leaf-spine
layout is a common choice.

The increasing demands and changes in traffic patterns and variability (cf. Chapter 2) have
led to the observation that these static topologies become harder to operate in a cost-effective
way [45, 52]. In the past decade, researchers started to explore topologies that integrate circuit
switching elements, for instance by replacing parts of the static infrastructure. This creates hybrid
topologies, in which, periodically or on demand, direct connections (or shortcuts) between parts
of the network are established. In turn, these shortcuts reduce the requirements for switching
capacity on the static topology part. Most research has converged to consider the ToR switch as
connecting point to the optical fabric. However, there exist also notable exceptions from large
operators [45, 66, 64]. Besides, prior work explored different concepts to augment [56, 50] or even
fully replace the static topology parts (e.g., [52, 47, 53]). In all cases, the objectives are to maximize
throughput between hosts and minimize the latency.

Figure 3.2 illustrates two basic architectures for DCNs. The first example (Figure 3.2b) is
a hybrid topology, in which a traditional fat-tree topology (black) is augmented with an OCS
(blue). The second example (Figure 3.2c) fully relies on optical switching for connecting the
ToRs, no static fabric exists. In both cases, end-hosts connect via the packet-switched ToR to the
network. The ToR has at least one optical transceiver which connects to the optical switching
fabric. Several technologies exist to implement optical switching which we will discuss in the
following.

3.2 Optical Switching Components

The main drivers of reconfigurable topologies are advances in optical switching components.
Compared to electrical switching components, optical switches usually work on a circuit-level
granularity agnostic to the used data rate compared to packet-level switching. The circuit-level
granularity comes at the higher cost of setting up a circuit. However, switching speeds dramat-
ically increased in the past years from tens of milliseconds to micro- or even nanoseconds [120,
53, 59]. This makes optical switching-based network architecture more viable compared to pure
electrical packet switched ones. The following presents two major classes of optical switching
devices: optical circuit switches and reconfigurable optical add-drop multiplexers.
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Figure 3.3 Liquid crystal (LC) on silicon wavelength selective switch (WSS). The figure is based on [119,
Figure 6].

3.2.1 (Wavelength-selective) Optical Circuit Switches

OCSs have been established as the main optical switching component in the DCN context. They
are available in a wavelength selective or wavelength oblivious fashion. In the wavelength
selective version, colors can be forwarded differently. In general, a grating splits incoming light,
and after passing lenses, the light is exposed to the actual switching element. Then, the switching
element guides or reflects the light to the respective output port. There are several approaches to
implementing the switching [119]:

• Arrayed waveguide gratings (AWGs) are used to separate several colors from a single fiber
into multiple fibers. Combined with tunable transceivers, they have been used as optical
switches [53]. By adjusting the color of the light, the egress port changes, and thereby, the
connectivity is changed. The switching speed depends on the transceiver, but switching
delays below 820ps were achieved [121].

• Microelectromechanical systems (MEMSs) are built using small mirrors that steer the light
to the correct output port. Since the mirror must physically be moved, they generally show
slower switching speeds compared to the alternatives. However, the reflection results in
lower losses. MEMS-based OCS are commercially available at scales up to 320 ports, and
these commercial versions provide switching speeds in the order of milliseconds [122, 123,
124].

• LC (on silicon) (Figure 3.3) modifies the polarization of the light in order to block or pass
through to an egress port. First, a conventional grating splits the light onto a silicon chip.
The chip is divided into small areas (cells) for each color. Electrical current is used to adjust
the phase shift and steer the beam of the light to the intended output ports. LC can reach
switching speeds in the order of microseconds [125].

• Rotating disks (rotor switches) are another option for implementing optical switching [48].
In contrast to the other two approaches, the configuration and connection cycle are fixed.
Light is projected onto a rotating disk with holes that allow the light to pass to the egress
port of the switch. Only a prototype implementation is available, reaching reconfiguration
speeds of 20𝜇s [120]
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Figure 3.4 Structure of a 2-degree, colorless and directionless reconfigurable optical add-drop multiplexer
(ROADM). Three WSSs steer the different colors (𝜆1 ,𝜆2 . . . ) from/to the add/drop ports or pass them
through to the next node in the network. The (de-)multiplexer combines or splits different colors from/to
the local ports (circles). Figure is based on [126, Figure 6].

3.2.2 ROADM

ROADMs are commonly used to set up circuits (or lightpaths) in the WAN context. They have
passed several stages of evolution, adding more flexibility [126]. The basic functionality is to add
or drop a specific wavelength to the local output port but let other wavelengths pass through to
the next element. Initially, each ROADM had a pre-configured fixed wavelength to add or drop.
In colorless ROADMs, the wavelength is flexible, e.g., configured by the connected transceiver.
Further improvements include directionless ROADMs, which can send light from the local port
flexibly on both uplink ports, and contentionless ROADMs, where different add-sources can use the
same wavelength when they are forwarded in different directions in the network. This simplifies
the wavelength assignment.

A ROADM is composed of a set of power splitters and WSSs that block or let different wave-
lengths pass. Figure 3.4 shows the structure of a 2-degree colorless and directionless ROADM. It
consists of three WSSs and one colorless (de-)multiplexer. The multiplexer combines wavelengths
from different input ports. The lower WSS guides the colors to the desired output port of the
ROADM. The other two WSSs can pass through colors or steer them toward the drop ports.

3.3 Characteristics of Networks with Topological Reconfigurations

In order to better elaborate on the presented designs and solutions in this thesis, this section first
briefly presents the components of a reconfigurable link (Section 3.3.1). These are also used to
describe how different networking layers are affected or can be considered when reconfiguring the
topology (Section 3.3.3). Lastly, Section 3.3.4 introduces the different classes of reconfigurations
observed in the literature. We will later use these two properties to discriminate existing designs
and solutions for the two use cases (Section 3.4 and Section 3.5).

3.3.1 Components of an abstract reconfigurable link

Figure 3.5 zooms in on the components of a single reconfigurable link. We ignore use case
specifics and consider an abstract link. The link endpoints connect to the optical switching
element via their transceivers and fibers. Such endpoints can either be hosts or (programmable)
switches. Link endpoints generally both send and receive traffic. Therefore, the transceivers are
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Figure 3.5 Components of an (abstract) reconfigurable link. Transceivers connect via the optical switching
element. Arrows indicate possible synchronization efforts on the ISO/OSI layers.

bidirectional, and two fibers connect to the optical switching element (one for sending and one for
receiving direction). At the OCS, one fiber connects to an ingress and the other to an egress port.
With this differentiation, the configuration of the switching element, and thereby the topology
configuration, can be represented by a bipartite graph of the ingress and egress ports. Each node
can connect to exactly one other node forming a matching.1 A topology configuration may contain
bidirectional links, i.e., both directions of the transceivers of two endpoints are connected. In this
case, the connections corresponding to the solid and the dashed line in the OCS in Figure 3.5
are set. Nevertheless, a large body of prior work and also this thesis generally assumes that
circuits are unidirectional, e.g., only the solid line is set as circuit (cf. [46, 52, 47, 128, 48, 53]).
Using unidirectional circuits intuitively leads to a higher degree of freedom when configuring
the topology.

3.3.2 Reconfiguration Delay

Each reconfiguration of such a link leads to an unavoidable interruption of the connectivity. The
length of this interruption, the reconfiguration delay 𝑅, and the frequency of reconfigurations are
fundamental factors for the efficiency of the reconfigurable topology. We define the time between
two initiations of a topology reconfiguration as a slot. The length of a slot (𝑠) is the time that the
configuration is active plus the reconfiguration delay (𝑅).

The reconfiguration delay is not only affected by the physical switching speed of the OCS but
also by the behavior of the upper layers. Upon reconfiguration, i.e., establishing a new optical
circuit, the lower layers of the ISO/OSI stack (PHY and MAC) must negotiate and establish
the link. Afterward, the networking layer may need to exchange information about the logical
connection and, moreover, propagate this information through the network (not shown).

3.3.3 Considered Networking Layers

A second characteristic of reconfigurable topologies is the set of actively considered layers for
reconfiguration. Specifically, in Figure 3.5, the networking layer might exchange and forward
information about the established link through the rest of the network. Besides the endpoints
of the reconfigured link, redistribution of load to other links or nodes in the network turned
out to be beneficial to utilize the full potential of the topological reconfiguration. Prior research

1In graph theory, a matching of a graph with vertices 𝑉 is a set 𝑀 of independent edges where every vertex in 𝑉 is
incident with one edge in 𝑀 [127, Chapter 2]. From now on, the terms “matching” and “optical switch” are used
synonymously throughout this thesis.
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Figure 3.6 Example showcasing the benefits of considering multiple layers for re-optimization with recon-
figurations. The solid lines show static links, the dotted ones dynamic links. The orange arrows show the
forwarding path from node 4 to the destination node 3 using the entries in the forwarding tables (boxes).
In Figure 3.6c, the blue entry has been updated. Updating the routing after the topological reconfiguration
reduces forwarding path lengths.

contributes examples for both approaches considering different amounts and sets of layers (cf.
Section 3.4.4).

To illustrate this, we consider Figure 3.6. The leftmost sub-figure shows the initial topology
and IP routing configuration. Circles are IP routers and lines indicate logical connections. Next
to each router is its forwarding table. The tables show only forwarding entries with respect to
destination node 3. When only reconfiguring the topology but not the routing (Figure 3.6b), traffic
from node 4 to node 3 will use a longer path than necessary (4→2→5→3), wasting the capacity
of the network. Note that forwarding tables of the nodes that are endpoints of a reconfigured
link (here: node 2 and 5) must always update their forwarding table. When considering multiple
layers for reconfiguration (Figure 3.6c), the adapted solution updates the forwarding entry at
node 4 (blue highlight) and sends traffic from node 4 to node 3 via the shortest possible path
(4→5→3). Thereby, less capacity in the network is used, i.e., the available resources are used
more efficiently. This example only considers topology and routing. However, an extension to
demand- or application-related layers is possible.

3.3.4 Classes of Topological Reconfigurations

A third attribute of reconfigurable topologies is the reconfiguration class. In this thesis, we define
the reconfiguration class by the fact that the reconfigurations are demand-aware or demand-
oblivious, which both are observed in prior works [117]. For DA reconfigurations, the network
controller gathers some demand estimate of the network, e.g., a (predicted) demand matrix.
Based on this matrix, the controller optimizes the required optical links. Figure 3.7a illustrates
an example of DA reconfigurations. Each column shows the OCS configuration and the demand
matrix of the respective time instance. The first two demand matrices are the same, and so
are the two optimized configurations of the OCS directly connecting the source and destination
nodes with high demand (orange/shaded areas). The demand pattern changes for the following
time instances, and the OCS’s configuration is adapted accordingly. In general, this class of
reconfigurations results in large reconfiguration periods as demand collection or estimation is
a complex problem on its own [48]. Moreover, it requires optical switches that can set links on
request. That is rotor switches are generally not usable.
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Figure 3.7 The two classes of topological reconfigurations: demand-aware (DA) and demand-oblivious
(DO). The upper row shows the topology configurations and the lower row the demand matrix. DA
changes the topoloy according to the demand, whereas DO follows a pre-defined sequence regardless the
demand matrix.

The second class, DO reconfigurations, does not rely on demand estimates. Instead, it follows
a pre-defined, fixed schedule to configure the circuits. The example in Figure 3.7b shows how
the OCS’s reconfiguration changes independently of the demand. The advantage is generally
shorter reconfiguration periods but at the cost of reduced flexibility. DO reconfigurations can be
implemented with all types of optical switches.

3.4 Reconfigurable Wide Area Networks

The adaptation of WANs to changing, mainly growing, traffic demands has been well explored by
the research community [129, 130, 119]. Much of the existing work considers long-term capacity
planning for the operation of the network throughout its lifetime. Here, the reconfiguration
periods are in the order of months or years. Another share of prior work considers more frequent
reconfigurations with reconfiguration delays in the order of minutes [57]. Most recent work
achieved reconfiguration delays in the order of seconds in a testbed environment [131]. These
works build on applying software defined networking (SDN) to optical transport networks. A
more in-depth introduction is found in [132] and [119].

This section briefly summarizes essential aspects that have been explored by previous work,
with a focus on how reconfigurations and different layers have been accounted for. Therefore, it
lists and gives examples of common modeling and optimization approaches to minimize the oper-
ating costs when reconfiguring WANs by means of adding or removing lightpaths and optimizing
routing (Section 3.4.1). It continues with works that explicitly try to minimize reconfigurations
(Section 3.4.2). With recent technological advances, bandwidth-variable transceivers (BVTs)
became feasible and have been explored to increase the efficiency of resource utilization (Sec-
tion 3.4.3). Finally, we overview how explicit application requirements or requests have been
integrated into the reconfiguration of WANs (Section 3.4.4). This illustrates how prior research
has made attempts to extend the layers considered during reconfiguration [119].

3.4.1 Minimizing operating costs

The main objective of optimizing the logical IP topology and routing revolves around reducing
the OPEX. The definition of OPEX varies, but commonly considered components or proxy metrics
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include the amount of deployed capacity in the IP layer, the number of used transceivers, or the
power consumption. The general setting is to minimize the costs while serving a given demand.
Therefore, the metrics above are also referred to or measured as efficiencies.

Early work on reconfigurable WANs refers to the adaptation of the logical topology over
time. Namely, examples are [133, 61]. These works focus on the IP topology and consider the
routing adaptation only as a side product. For instance, Gencata and Mukherjee [133] propose
a Mixed Integer Program (MIP) to minimize the most loaded link in the logical topology. They
propose a periodic measurement of the link utilizations with a threshold-based decision to
trigger the re-optimization. For the optimization, they use a similar model as Ramamurthy
and Ramakrishnan [61], who focus on the average packet latency and the resources used (total
lightpaths set up and physical fibers used). Besides the logical topology, both works implicitly
optimize the IP routing.

Other works take the notion of several layers more explicitly into consideration [134, 135, 136].
Akgun and Buzluca [134] present an optimization that explicitly considers the ratio of applied
traffic grooming. That is the ratio of dedicated lightpaths between node pairs and bundling
traffic on the IP layer by means of IP routing. Lopez et al. [135] propose an approach in a similar
direction. They design an algorithm using Bayesian decision theory to decide if optical bypasses
(dedicated lightpaths between node pairs) or grooming should be used to fulfill a traffic demand.
Specifically, the used risk function trades off the gains from the bypasses with the used resources
in the physical topology. Morales et al. [136] use traffic predictions to facilitate reconfiguring the
network a priori, i.e., before the demand changes. This contrasts the previously presented works,
which decide based on traffic measurements. The actual optimization problem minimizes the
used transceivers and the amount of unserved traffic.

Another stream of research models and integrates energy consumption of networking equip-
ment as operating cost into the optimization of the reconfigurable WAN [137, 138, 139, 140]. An
initial comparative study is given by Idzikowski et al. [137], who benchmark the energy savings
when reconfiguring only the IP layer, only the optical layer, or both. Their evaluation demon-
strates that the largest energy savings stem from reconfigurations in the IP layer. Van Heddeghem
et al. [138] follow up on this by providing a more detailed model of the power consumption. In
addition, they demonstrate the major benefits of using optical bypasses on energy savings. Be-
sides energy savings, these two works consider only fulfilling the demand. In contrast, Lee and
Rhee [140] focus on a different aspect. They relate the energy savings to the increase in delay
of the transmissions by means of end-to-end propagation time. Their evaluation describes the
trade-offs between these two metrics. More recently, Fenz et al. [141] evaluate the benefits of
reconfigurable WANs under varying traffic patterns. To this end, the authors compare a joint
logical topology and traffic engineering (TE) formulation against a topology oblivious baseline,
using publicly available demand and physical topologies. Finally, they present an improved DO
topology design scheme to account for reconfiguration costs.

3.4.2 Minimizing reconfigurations

The previously listed works all consider the adaptation of the IP topology. But only a few of the
examples consider the number of reconfigurations during their evaluations or contain triggering
mechanisms to limit the frequency of reconfigurations, e.g., [133]. This part gives an overview of
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prior work that explicitly addresses the impact of reconfigurations during optimization or focuses
on the stability of the IP and optical routing.

Much of these related work revolves around the impact of optical network reconfiguration
on routing stability. For instance, Sinha and Murthy [142] present a framework to evaluate the
trade-off that reconfiguration policies provide with respect to efficient resource utilization and
minimizing traffic disruption. Moreover, they propose a policy that leverages predictions of the
future demand matrices to pre-plan the reconfigurations. Bianco et al. [143] explore the Pareto
frontier of minimizing deployment and reconfiguration costs. They first study the characteristics
of the Pareto-optimal solutions and then present different reconfiguration schemes to allow
operators to explore the trade-off of the two costs. Tran and Killat [144] consider the problem
from a different direction. They extend Gencata’s work [133] and propose a reconfiguration policy
based on a load-balance indicator. They further present a Mixed Integer Linear Program (MILP)
that jointly minimizes the total number of lightpath changes as well as the average path length
over all node pairs. Bonetto et al. [145] integrate reconfiguration costs into the optimization
of the IP-over-OTN network. They present a MIP formulation and three heuristics that solve
the problem on a per time instance basis. The goal is to minimize energy consumption and
reconfigured traffic. The latter is also considered by Ohsita et al. [146], who evaluate how gradual
reconfiguration using estimations of the future traffic performs.

While the aforementioned works consider mainly the addition and removal of lightpaths as
reconfigurations, other works look more specifically at the impacts on the routing. An example is
given by the works of Chamania et al. [147, 148], who specifically focus on keeping the reconfigu-
rations in the IP routing layer low. To this end, they propose an algorithm to add optical bypasses
only over congested links. These bypasses are not considered when updating the general routing
but only to offload traffic from the congested links. They present an Integer Linear Program (ILP).

3.4.3 Reconfiguring modulation and bandwidth

Early works in the domain of reconfigurable WANs are limited to adding or removing lightpaths
in order to add new logical connections or increase the capacity of logical links. With advances in
optical devices, elastic optical networks (EONs) became available. EONs use BVTs which allow
adjusting the link’s bandwidth using a single lightpath, e.g., by increasing the used range of fre-
quencies (bandwidth) or changing the modulation scheme. Note that this can generally impact
the performance of other lightpaths traversing the same fiber [149]. With the new opportunities,
the range of parameters increases, but the considered optimization objectives still revolve around
minimizing operating costs and reconfigurations. Tanaka et al. [150] give a first particular exam-
ple. They provide a multi-period IP-over-EON reconfiguration algorithm minimizing the overall
power consumption. However, they consider large periods between reconfigurations, e.g., years
or months.

More recent work includes [151, 152, 153, 154]. RADWAN [151] builds on BVTs and adapts
the optical links’ capacity based on the observed signal-to-noise ratio (SNR) to achieve higher
throughput while also considering the routing churn during reconfigurations. To this end, the
authors formulate an extended multi-commodity flow problem that maximizes throughput while
also considering the churn in the network. Operators can tune the trade-off between throughput
and reconfiguration. Besides a simulation-based evaluation, RADWAN is also shown to be
feasible in a testbed implementation. Another instance is provided by Zhong et al. [155]. Like
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RADWAN, the authors argue that the length of the optical bypasses may reduce the achieved
capacity. In turn, they present an algorithm to split optical lightpaths into shorter ones that
allow using higher modulation schemes. Thereby, the capacity of individual links is increased.
However, at the cost of traffic interruptions. Tseng [156] focuses on the planning reconfigurations
in the scenario created by RADWAN. He explicitly considers the reconfiguration delay and
presents a multi-step planning algorithm with limited reconfigurations per step. Furthermore, it
is shown that the optimal solution to the problem is NP-hard. Therefore, a Linear Program (LP)
heuristic is derived. Shoofly [152] extends RADWAN to the optimization of optical bypass
connections. The authors leverage data from a cloud provider to argue that optical bypasses
come with longer optical paths before the re-generation of the signal. This potentially reduces
the usable modulation schemes and resilience to link failures. Shoofly bases on a MIP to allocate
the demands to the optical bypasses considering the capacity constraints stemming from the path
length. RADWAN’s approach is also extended along other dimensions. Jia et al. [153] consider
it as a basis for the online transfer scheduling problem and present several greedy and online
scheduling algorithms that are shown to provide several competitive ratios for optimization
objectives, such as makespan and minimum sum completion time for arbitrarily sized jobs. Their
work is further extended to the sum of flow times in [154].

3.4.4 Considering special demand types or application requirements

Finally, also the optimization of reconfigurable WANs with different types of demand has gath-
ered some attraction; for instance, in the case of network function virtualizations (NFVs) or virtual
network embedding (VNE). Here, the demands are not given as matrices of (IP) demand but
rather as virtual network (VN) requests with specific bandwidth requirements that must be met
by allocating virtual nodes and edges on the physical (substrate) topology. The introductions and
surveys in [157, 158] provide an in-depth overview of existing solutions in this context.

Some notable examples are [159, 160, 161, 162, 163, 164]. Shakya et al. [159] present an
embedding algorithm for VNs in EONs. They particularly address the problem of fragmentation
of the resources in the EON. The presented solution prioritizes the allocation of consecutive
blocks of resources, i.e., wavelengths. The authors also present a reconfiguration algorithm to
reduce the alignment of resources after VNs have been removed from the substrate network.
Nonde et al. [160] combine VNE over EON with a focus on energy consumption. Their modeling
covers several aspects of power consumption from the IP and optical layers and is integrated into a
MIP formulation with two different objectives. These objectives cover the total substrate resources
allocated to a request as well as the number of used (active) substrate links and nodes as a proxy
metric for energy consumption. To give a better understanding of the impact of the allocation of
VNs on different layers, i.e., IP or optical, Zhang et al. [161] propose an auxiliary graph model.
They evaluate the performance in three classes of substrate topologies: electrical layer, optical
layer, and multi-layer. Chowdhury et al. [162] follow a similar direction, highlighting the benefits
of multi-layer networks for VNE.

Application-awareness is also introduced to the multi-layer optimization regime by other
means [63]. For instance, Ghonaim et al. [165] present a design where applications can request
optical bypasses (shortcuts) from the network. The idea is to use this on-demand connection
to alleviate the bursty traffic behavior of applications. They evaluate their approach using a
simulation and demonstrate an efficiency increase of 33%. The routing is not optimized since
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the bypass is reserved for the single node pair or application. Other works consider application
requirements such as latency constraints during optimization [166, 167, 168, 62, 63, 169]. On the
one hand, these works increase the span of layers that are integrated during optimization but,
on the other hand, do not specifically cover intermediate layers. For example, Klinkowski and
Walkowiak [166] optimize for a mix of anycast traffic from content delivery networks (CDNs) and
fixed source destination generic traffic in an EON setting. They compare settings with different
settings of flexibility with and without BVTs and varying modulation capabilities to illustrate
the gains of EON for such demand allocation. Perello et al. [167] consider optimizing anycast
demands in a CDN setting. However, they do not include the IP layer in their optimization. They
present a MIP formulation and also a heuristic to reduce the time to solution.

Lopez et al. [168] and Rozic et al. [62] take a more implementation-oriented view. They introduce
frameworks to implement application-aware IP-over-WDM networks. That is, they define the
necessary interfaces between the application and the control plane of the network. Finally, Luo
et al. [169] present an optimization scheme, DaRTree, for multicast transfers that considers the
jobs’ deadlines. DaRTree uses a linear program relaxation and deterministic rounding to adapt
the topology and routing configuration specifically for multicast jobs. The evaluation shows that
it can increase the number of accepted requests by 70%.
Takeaway: Reconfigurable WAN have been subject to a wide range of research touching different
problems and covering a multitude of optimization aspects. The previous overview highlights
that existing work largely covers multiple layers for optimization and reconfiguration. However,
we observe that set of considered layers is limited, and that joint consideration of the layers
spanning from optical via IP to the demand layer and the related resource optimization problem
is missing.

3.5 Reconfigurable Datacenter Networks

The literature contains a solid amount of prior work also for the use case of RDCNs. The proposals
differ from the WAN use case as they consider shorter reconfiguration periods, mostly within
the sub-second range. The existing RDCN proposals vary in the used technology, achieved
reconfiguration speeds, and on an algorithmic level. This section starts with an overview of DO
RDCN proposals in Section 3.5.1 followed by DA (Section 3.5.2). Moreover, it describes what
has been explored with respect to higher layer protocols, e.g., the transport layer, which are not
designed for frequently changing network conditions (Section 3.5.3). Finally, Section 3.5.4 reports
on theoretical results achieved in prior work. For more detailed surveys, the reader is referred
to [119, 118, 170].

3.5.1 Demand-oblivious RDCNs

A pioneer work for demand-oblivious RDCNs is RotorNet [48]. The authors explicitly decouple
the switch configuration from the traffic patterns in order to omit statistics collection and a cen-
tralized control plane. The basic idea is to cycle through a fixed set of matchings to emulate a
full graph and have a link between every pair of racks once in every cycle. While this approach
performs well for uniformly distributed demands, skewed demands deteriorate efficiency. There-
fore, RotorNet forwards skewed demands indirectly to an intermediate rack similar to Valiant
load balancing (VLB) [171]. The presented control plane protocol, RotorLB (RLB), ensures that
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racks are not overloaded by indirect traffic and, thereby, guarantees transmission to the final
destination within two hops and two full cycles. Opera [49] advances the core idea of RotorNet.
The matchings are constructed so that they resemble a time-varying expander graph. Moreover,
the OCSs change their matchings one by one so that the network is connected at every point in
time. Opera divides traffic into low-latency and bulk. The former uses multi-hop routing on the
temporarily static expander graph with NDP [172] as the transport protocol. The bulk traffic is
scheduled with RLB. The evaluation demonstrates reduced latency compared to RotorNet and
static expander-based and Clos-based topologies of similar sizes.

Sirius [53] proposes an all-optical, passive core network that consists only of a single layer of
AWG routers. The switching capability moves to the transceivers, which are designed to adjust
their sending wavelength quickly. The custom design of wavelength tunable lasers and clock
synchronization mechanism allow cycling at reconfiguration periods of hundreds of nanoseconds.
Like RotorNet, Sirius periodically cycles through a set of matchings and uses traffic indirection
to create a uniform demand pattern. However, it uses a randomized approach, which converts
the demand matrix into an uniform matrix. The smaller slot size can fit only a single packet. The
authors demonstrate the feasibility of Sirius and show its cost and performance improvements
compared to (non-blocking) static topologies.

MARS [173] addresses the high buffer requirements of previous RDCNs such as RotorNet,
Opera, or Sirius, which cycle through the complete graph over time. The authors conclude
that such topologies are infeasible at scale and identify alternative solutions that periodically
cycle through graphs with smaller nodal degrees. MARS chooses the nodal degrees to optimize
throughput subject to given available buffer sizes and delay tolerances.

3.5.2 Demand-aware RDCNs

The majority of RDCNs considers DA reconfigurations. First, the overview summarizes ToR-level
RDCNs that use heuristics or optimal solutions to find configurations for single demand matrices.
Later, it lists works that use scheduling and decomposition approaches as well as machine learning
(ML)-based optimizations. Further, we can distinguish topologies with segregated and non-
segregated routing and summarize pod-level and application-specific designs.

3.5.2.1 Matching-based reconfigurations

A large group of RDCN designs tries to find the best topology configuration for a given demand
matrix. We refer to these classes as “machting-oriented” solutions.

A first example is Helios [45]. It is one of the first hybrid topology designs that combine an
electrical packet-switched network with an optical circuit-switched one to augment the electrical
network with direct connections in the optical domain. The control loop collects traffic statistics
(as a flow-rate matrix) and classifies pod-to-pod demands into mice and elephant flows. After
removing mice flows from the matrix, it uses Edmond’s algorithm to determine the new configu-
ration of the OCS. Edmond’s algorithm serves for optimization in c-Through [56] too. C-Through
proposes a host-based approach for routing over a hybrid packet and circuit-switched network.
The hosts add a special Virtual LAN (VLAN) tag to every packet thereby controlling its routing.
The ToRs forward the packet according to the VLAN tag over the packet-switched or the circuit-
switched part. To leverage the higher bandwidth of the optical network, large Transport control
protocol (TCP) buffers are configured (so that TCP can increase the congestion window more
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quickly). The discussion also covers the problems of circuit reconfiguration delay (the minimum
time needed to set a circuit for every rack of interest) and synchronization between applications
concluding that c-Through is more suited for applications with loose or no synchronization.

Proteus [174] employs a different approach. It uses a fully optical interconnect between the
ToR switches. It combines MEMS-based optical switching with WSS to adjust the connectivity
and capacity between ToRs. The optimization bases on a greedy heuristic. The authors only
give a primer on costs and power consumption but leave out a detailed performance analysis.
OSA [46] builds on the core idea of Proteus to combine optical space switching with adjusting link
capacities. It features the same components and optimizes the configuration in three steps: OCS
configuration, routing configuration, and wavelength assignment. It is shown to outperform
Helios and c-Through on several traffic patterns. Megaswitch [54] is another example of a
design using WSSs. It builds around a ring of multiple parallel fibers. Circuits are set up using
different wavelengths along the ring. The controller ensures basic connectivity and dedicates
more wavelengths, i.e., more capacity, to node pairs with high demands.

Flat-Tree [51] proposes the idea to dynamically (and also only partially) convert the DCN
between a Clos-like topology with more efficient wiring and good intra-rack performance and
a random graph with superior throughput. The approach employs a decentralized scheme that
allows different zones of the network to be connected differently. Routing is done with k-shortest
paths and multi-path (MP)-TCP. The authors address how to implement the control plane using
SDN and how to minimize the number of forwarding rules. No explicit method of triggering the
conversion is mentioned, but the authors refer to network upgrade approaches. The evaluation
in simulations and a testbed demonstrate that Flat-Tree performs competitively to an LP optimal
solution and can adapt to workloads with varying locality (global, pod, rack). However, the
exact method of triggering the adaptation is not mentioned. Flexspander [175] builds on the idea
of a flexible Expander network. The intra-pod topology is a fixed Expander, and OCSs provide
dynamic connectivity on the pod level. This increases the capacity towards highly skewed traffic
demands. The authors present a MIP and heuristics to optimize the OCS layer and evaluate their
topology with packet-level simulations on several traffic patterns.

Other works propose to use wireless technology or free-space optics as direct interconnects
between ToRs. Initial work with wireless links is presented by Zhou et al. [176]. They propose
to use beamforming to reduce interference and to leverage reflections at the ceiling to create
additional paths for the beams. A second example is FireFly [177]. Besides presenting the hard-
ware implementation for the free-space optics, the authors introduce a new metric to measure
the performance of the dynamic topologies. The so-called dynamic bisection bandwidth is the
minimum bisection bandwidth given the optimal topology for each possible network partition.
They further introduce optimal (ILP-based) and heuristic solutions to the reconfiguration and the
routing problem. Finally, they address the issue of correctness during the reconfiguration: avoid-
ing black holes, maintaining connectivity, and upper-bound the packet latency. The proposed
system leverages the SDN concept, is implemented for packet-level and flow-level simulation and
emulation, and is evaluated for several kinds of traffic patterns (uniform, hotspot). ProjecToR [47]
is another RDCN using free-space optics. It is a fully reconfigurable topology that is split into two
parts. The first part is reconfigured on a large time scale, e.g., once per day, to set up a basic fixed
topology that provides connectivity but is also optimized toward the demand. The remaining
available transceivers are used for opportunistic scheduling of DA links. When senders accumu-
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late a certain amount of packets towards a destination, they request to set up a link. The paper
proposes a distributed algorithm solving the stable marriage problem. The approach has been
extended from an algorithmic point of view in [178], focusing on minimizing flow completion
times. The authors present a stable matching algorithm that is shown to be 𝑂(𝜖−2)-competitive.

A series of works considers RDCNs from the perspective of adjustable data structures [179, 180,
181]. For instance, Splaynet [179] uses distributed binary search trees as the basis for minimizing
routing costs in RDCNs. The authors formally evaluate the performance and guarantees of
their algorithm and prove that it is optimal if specific criteria are met. Finally, they extend their
approach to multiple trees. Similar works [181, 180] also build upon self-adjusting (tree) data
structures as optimization approaches for RDCNs.

C-Share [182] tackles the problem of elephant flow routing in RDCN networks by routing
large flows from different source-destination pairs over common (existing) circuits, i.e., re-using
circuits, and allows non-segregated routing. That is, a flow can use both electrical (static) and
optical (dynamic) links when forwarding between ToRs. The design uses a flat ToR-level topology
and host-based elephant flow detection and tagging to reduce the number of forwarding rules on
the ToRs. The proposed heuristic runs periodically and greedily tries to offload as much traffic as
possible to the circuits. It uses a product of demand and path length to calculate a weight which
is used to calculate the matchings. For shared circuits, the offload happens only on the last hop.
The approach is evaluated using both simulation and emulation and shows savings in deployed
routing rules and flow completion time for mice as well as elephant flows. A completely different
structure is employed by Wang et al. [183]. They propose to add OCSs between servers and ToRs.
The rationale is to balance traffic from the servers across the ToRs so that aggregation and core
layers are more evenly loaded and bottlenecks are relieved. Packet-level simulations show the
advantages of such a design compared to an oversubscribed network and higher power efficiency
compared to a non-blocking network.

Finally, there is a stream of prior work that considers a different (explicit) optimization goal [184,
185, 186]. The proposed topologies split the spine layer into switches dedicated to intra-pod and
inter-pod traffic. While optimization is also performed with respect to one snapshot of demand,
the performance is assessed regarding packet loss and latency. That is, the topology accom-
modates all demand (given as rates) by adapting circuits and allocated capacity (modulation).
However, these works do not assess how more frequently used metrics, such as flow completion
time or throughput are affected.

3.5.2.2 Demand-aware scheduling RDCNs

Aside from optimizing a single topology configuration for a given demand matrix, other works
have considered scheduling a sequence of topology configurations to serve the demand matrix.
Thereby, these approaches present one way to consider reconfiguration times.

Mordia [52] names two major factors that limit reconfiguration speed and hence deteriorate
the benefits in existing RDCNs: slow OCS and slow decisions in the control plane due to soft-
wareization and hence, they propose a low-delay circuit switch (≈ 11.5𝜇𝑠) and a scheduling
scheme that leverages short-term traffic predictions and application-level information. Calculat-
ing the schedule, i.e., a sequence of circuits, allows decoupling calculation from actual switching.
After collecting and scaling the demand matrices such that all row and column sums are = 1,
Mordia uses the Birkhoff-von Neumann decomposition (BvN decomposition) to find the schedule
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of configurations. The schedule is pruned to schedule only circuits with a minimum duration.
The goal is to keep the duty cycle as high as possible. Thereby, the amount of traffic sent over the
optical network can be varied. ReacToR [50] builds on Mordia’s design but extends to a hybrid
network with electrical (static) and optical topology parts. Moreover, it builds on the observation
that segmentation offloading to the network interface card (NIC) leads to bursts with a duration
of tens to hundreds of microseconds. The idea is to circuit switch according to these bursts to
hide reconfigurations from the transport protocols. It presents data and control plane design
to schedule the demands in such a hybrid network. A prototype implementation and extensive
simulation study demonstrate feasibility and performance improvements.

Solstice [187] formalizes a hybrid switch model, which consists of parallel OCS and electrical
packet switch with a lower rate but flexible forwarding. The authors present an ILP to optimally
solve the scheduling problem and a heuristic algorithm. The heuristic builds on the fact that
bi-stochastic matrices are suited for BvN decomposition. Therefore, it first adds artificial demand
to convert the demand matrix into a bi-stochastic matrix and then employs a loop similar to
BvN decomposition. The loop terminates when the leftover demand is small enough to be trans-
mitted in parallel to the schedule via the packet switch. Eclipse [188] uses the same hybrid switch
model but improves upon Solstice. The presented algorithm is a constant factor approximation
of the optimal solution.

Vargaftik et al. [128] extend the hybrid switch model by interconnecting the switches and creat-
ing composite paths with electrical and optical components. The goal is to improve performance
for one-to-many and many-to-one traffic patterns. In the previous model, those patterns are
either constrained by the packet switch’s low bandwidth or the OCS’s high reconfiguration costs.
The scheduling algorithm is inspired by existing approaches to scheduling in hybrid networks.
It extends the demand matrix by adding entries for potential one-to-many and many-to-one de-
mands to the rows/columns that correspond to the inter-fabric link. The demand matrix is fed to
the hybrid switch scheduler, and the output is split up for the different fabrics to create the final
schedule. The evaluation considers switches with different reconfiguration costs and shows that
the new proposal outperforms Solstice and Eclipse.

Sunflow [189] presents a different extension of the hybrid switch model: it does not interrupt
all circuits upon reconfiguration (not all-stop). The scheduling algorithm, which is specifically
designed for coflow traffic patterns, uses an event-driven mechanism to reconfigure when at least
one circuit becomes idle. This approach bases on the assumption of knowing the amount of data
that every sub-flow of a coflow transmits and reduces the penalty due to reconfiguration.

3.5.2.3 ML-based optimization

Given the hardness of the scheduling problem, some work explored ML to optimize the topology
or at least to speed up the optimization process [190]. The first example is xWeaver [191]. The
paper proposes a Supervised Learning based solution to topology adaptation. xWeaver has two
phases. During the offline phase, the system uses demand traces and flow-level simulations to
create and learn mappings between demand, topology configuration, and performance, e.g., flow
completion time. This learned mapping serves as input to a heuristic algorithm that searches for
high-performance topologies given a demand matrix. The generated dataset of high-performance
demand-topology pairs serves as input to train another Neural Network (NN) that maps from
demand to topology configuration. This NN is used during the actual deployment phase to
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predict topology configurations. DeepConf [192] uses Reinforcement Learning to optimize the
topology configuration. The whole network is controlled by an SDN controller that runs multiple
Reinforcement Learning agents for different tasks (routing, topology reconfiguration, energy
saving. . . ). The DeepConf framework provides an abstraction of the network that the agents use
for training on data from domain-specific simulators. Specifically, the agent predicts the topology
configuration from an observed demand matrix. For each link, the output layer of the NN gives
probabilities of the potential optical links to be used. The links with the highest probabilities
are then selected. The generated reward represents the link utilization and flow completion time
as performance metrics. The evaluation compares to the optimal solution on Fat-Tree [42] and
VL2 [193] and shows that DeepConf performs comparably to the optimal solution while having
shorter times to solution in the online case.

3.5.2.4 Pod-level RDCNs

The works above consider reconfiguration of the topology at high frequencies, i.e., in the order
sub-second reconfiguration periods. A different stream of research revolves around a more
robust topology optimization to increase the reconfiguration periods to the order of hours or even
days [194, 66, 64, 195]. These topologies consider pod-level RDCN so that the re-optimizations
are performed on more aggregated traffic which has been shown to generally be more stable [66].
Specifically, METTEOR [194] is a first example of such robust optimization. The idea is to optimize
the topology based on representative samples of the observed demand. Therefore, a sequence of
observed demand matrices is first clustered. The found cluster centers serve as input for a robust
optimization that maximizes the minimum throughput across the cluster centers. In follow-up
work, they extend the approach to perform robust optimization over a convex set of critical traffic
matrices [195]. Zhang et al. [66] also consider a pod-level RDCN to benefit from higher traffic
aggregation. They argue that ToR-level designs are not feasible due to the unavailability of suitable
equipment (e.g., OCSs with high port count) and the necessity of detailed traffic predictions.
The system reconfigures based on a convex hull of demand predictions while minimizing the
maximum (logical) link utilization. Finally, Poutievski et al. [64] report on deploying an RDCN in
a production environment. They leverage pod-level reconfigurability, and use a reconfiguration
period of several hours. Generally, the routing is limited to 2-hop paths, but specific details on
the optimization are left out. The trade-off between ToR-level and pod-level RDCNs is explored
in more detail by Teh et al. [196]. The authors compare both types under various conditions and
with DO and DA reconfigurations with respect to power, cost, and performance.

3.5.2.5 Application-specific RDCNs

Application-specific designs or reconfiguration algorithms have been introduced along two
streams. The first stream considers coflows, i.e., groups of flows that relate to each other [128,
189, 197]. Namely, examples already discussed are cp-Switch [128] and Sunflow [189]. Another
example is SplitCast [198] which is specifically designed for multicast traffic. Here, the differences
are mainly in the considered objective function and preemption behavior.

A second specific application that is more in focus by the research community is distributed
machine learning (DML) [103, 199, 200, 201]. A first example is PSNet [103] which proposes an
RDCN specifically designed for parameter server (PS)-based DML traffic. The authors argue that
the network connection of parameter servers becomes the bottleneck during training since all
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worker nodes have to synchronize with this single point. Accordingly, the PS should be provided
with more bandwidth. PSnet has two levels: The lower level (modules) contains several ToRs,
PSs, and worker nodes. The PSs are connected to all ToRs in a module (using multiple interfaces),
and workers connect through a circuit switch to ToRs for resilience. On the upper layer, modules
form an R-regular graph where R is the number of ToRs per module. Ideally, PSs and workers of a
job are allocated in a single module to keep paths short. The topology configuration is optimized
when a new training job starts. SiP-ML [200] proposes an optical interconnect using silicon
photonics as switching elements. It interconnects graphics processing units (GPUs) in a ring and
uses WSS to set up circuits. Besides optimizing the topology, it partitions the training job across
the workers considering data and model parallelism. The OCSs’ configuration is optimized using
an ILP and a heuristic. TopoOpt [199] extends the basic idea from SiP-ML and presents a joint
topology and workload allocation. The optimization follows an iterative process optimizing the
workload given the topology and vice versa until the solution converges or a maximum number
of iterations has passed. Since the traffic pattern of a single job is fixed throughout the training
process 2, the OCSs are configured once per job and kept until the job finishes. The authors show
that their TopoOpt can allocate multiple jobs simultaneously.

3.5.3 Higher Layer Considerations for RDCNs

Looking at the higher networking layers, such as IP routing and the transport layer, significantly
fewer works have addressed these explicitly. An exception for a (generic) routing solution for
RDCNs is TAGO [202]. TAGO is designed for block(pod)-level reconfigurable topologies. It
prioritizes direct global paths and balances traffic among available direct interconnects with per-
packet decisions. For intra-pod routing, equal cost multi-path (ECMP) is used. For inter-pod
traffic, it randomly chooses a boundary router with probability proportional to its capacity to the
destination pod. To implement this, TAGO uses an SDN controller, which installs the necessary
rules with a global view. The authors demonstrate that TAGO increases throughput and reduces
tail latency for several traffic patterns and topologies compared to ECMP, VLB and baselines that
consider shortest path routing. However, from a practical point of view, the churn in the routing
table and the achievable reconfiguration periods still need to be clarified.

Abu-Tair et al. [203] perform an emulation-based study of performance improvements due
to RDCN. They focus on the throughput increase and completion time decrease when using
TCP. The study compares relatively simple flow scheduling techniques and circuit assignment
algorithms and only evaluates the throughput and the completion time but does not elaborate
on additional traffic due to reconfigurations. They observe performance increases only when
using DA scheduling schemes. ReTCP [204] studies the behavior of TCP reconfigurations with
heterogeneous capacities for electrical and optical links. The authors illustrate that existing TCP
variants cannot sufficiently grow the congestion window when the high-capacity optical link
becomes available. To alleviate this, ReTCP considers explicit notifications before the circuit
is set. Triggered by the notifications, the end-hosts can increase the congestion window. A
presented alternative solution is to dynamically adjust the sizes of the ToRs’ virtual queues to
pre-buffer packets. Time-division TCP [205] extends on the idea of explicit notifications of circuits.
It maintains an independent congestion state per distinct path in the reconfigurable fabric, e.g.,
one for the path via the electrical (low capacity) part and one for the path via the optical (high

2An observation we also made in Chapter 2 of this thesis.
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capacity) topology part. Connection-wide tasks are organized in a shared way. Time-division
TCP is evaluated on an emulated network and shows significant performance improvements
over previous variants such as datacenter TCP or multi-path TCP. PowerTCP [206] considers a
different approach. Although it is not directly tailored towards RDCNs, it achieves high circuit
utilization and significantly reduces tail latency. To do so, it relies on in-band network telemetry
to estimate the bandwidth-delay product and to quickly react to changes.

3.5.4 Performance Bounds for RDCNs

Several works explore the RDCNs from a more theoretic point of view, formalizing the problem,
deriving performance bounds, and assessing the complexity of the related problems [117, 207,
190, 208]. Foerster et al. [207] study the algorithmic hardness of hybrid RDCN. They prove
that commonly used matching algorithms are optimal when there is only one reconfigurable
switch in the topology and the routing is enforced to be segregated, i.e., traffic is routed either
via the optical or the electrical network. Furthermore, they show that the topology and routing
optimization problem becomes NP-hard when non-segregated routing is allowed. In [190],
Foerster et al. extend their work with a focus on non-segregated routing. They demonstrate that
non-segregated routing policies for RDCNs can be computed in polynomial time under specific
assumptions. However, variations of the problem that relax these assumptions are proven to
remain NP-hard.

Zhao et al. [208] present a metric to capture the performance of a physical topology given
a demand. The metric relies on the achievable throughput and relates the value of the given
topology to those of any topology (including the “best”). Thereby, the metric can be used to
capture the optimality of a physical topology given the demand. The metric is used to prove the
performance guarantees of four representative RDCNs. Amir et al. [209] study the performance
bounds and design of optimal RDCNs, focusing on the trade-off between maximizing throughput
and minimizing latency. Specifically, given a constant throughput rate, they identify the minimum
achievable latency of a design that satisfies the throughput constraint, i.e., they obtain a lower
bound on the maximum latency. This analysis is limited to specific network sizes. In follow-up
work, the authors extend their results to networks of all sizes [210].

Takeaway: Previous work covers many aspects of RDCNs, including proposals using the different
classes of topological reconfigurations. However, we observe that practical designs of RDCNs,
particularly with non-segregated routing, are missing. Moreover, joint consideration of both
reconfiguration classes and their interplay within a single topology has yet to be studied.

3.6 Unified Model for RDCNs: ToR-Matching-ToR

By carefully inspecting existing proposals of RDCNs, we observe that most of them (DA and DO)
employ a two layer leaf-spine architecture. We can generalize this architecture into a model with
𝑛 leaf switches and 𝑘 optical spine switches. In order to account for the DA and DO topologies,
the spine switches can be of different types: static (ß), DO (Dobl) and DA (Da). From each
switch type, there are 𝑘𝑠 , 𝑘𝑑𝑜 and 𝑘𝑑𝑎 switches, respectively with 𝑘 = 𝑘𝑠 + 𝑘𝑑𝑜 + 𝑘𝑑𝑎 . Each optical
spine switch connects each of its ingress-ports to exactly one egress-port and vice versa forming a
matching (cf. Section 3.3.1). The resulting structure is a ToR connected to a matching to a ToR and
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Figure 3.8 Schematic view of the ToR-Matching-ToR model for describing RDCNs.

gives the name of ToR-Matching-ToR (TMT) model. The TMT can model existing architectures
such as RotorNet [48], Opera [49] or ProjecToR [47], by supporting multiple switch types.

Figure 3.8 illustrates a schematic view of the TMT model. It interconnects a set of 𝑛 ToR (packet)
switches, 𝑁 = {𝑡1 , 𝑡2 , . . . 𝑡𝑛}, and a set of 𝑘 spine (circuit) switches, 𝑆𝑊 = {𝑠𝑤1 , 𝑠𝑤2 , . . . , 𝑠𝑤𝑘}.
Internally, each switch connects its ingress- and egress-ports via a matching. Each ToR 𝑖 (1 ≤ 𝑖 ≤ 𝑛)
has 𝑘 uplinks, where uplink 𝑗 : 1 ≤ 𝑗 ≤ 𝑘 connects to port 𝑖 at (spine) switch 𝑠𝑤 𝑗 . The uplinks can
be separated into egress and ingress directions. The directed egress (leaf) uplink is connected
to the ingress port of the (spine) switch, and the directed ingress (leaf) uplink is connected to
the egress port of the (spine) switch. The matchings inside the spine switches are directed from
ingress to egress The model is agnostic of the technological details of the optical link and can be
used for any bandwidth (e.g., 10 Gbps as in [211, 48, 49]) and higher rates, e.g., 50 Gbps as in [53]
or 100 Gbps. At any point in time and if it is not reconfiguring, each switch 𝑠𝑤 ∈ 𝑆𝑊 matches
its ingress and egress ports. The matching may be reconfigured at runtime to another matching.
Each switch 𝑗 has a set of one or more (feasible) matchingsℳ 𝑗 where 𝑚 𝑗 = |ℳ 𝑗 | is the number
of matchings. Changing from a matching 𝑀′ ∈ ℳ to a matching 𝑀′′ ∈ ℳ takes time 𝑅 𝑗 : the
reconfiguration delay of switch 𝑗. Furthermore, the model assumes that, during reconfiguration, the
links in 𝑀′∩𝑀′′, i.e., the links which are not being reconfigured, can still be used for forwarding
(not-stop-all switches) [189]. Depending on the technology, different switches in 𝑆𝑊 support
different sets of matchings and reconfiguration delays.

3.7 Summary

This chapter presents the technological background for reconfigurable topologies and introduces
the two considered use cases. Using the components of a reconfigurable link, it elaborates on
the three main characteristics we analyze in this thesis: reconfiguration delay, networking layers
considered during reconfiguration, and classes of reconfiguration. The summary of the most
prominent related work for both use cases provides a broad overview of the area’s state-of-the-
art. For RDCNs, the TMT model is presented to describe a significant body of the prior work.
Moreover, the chapter hints at existing research gaps with respect to the characteristics. A more
in-depth discussion of related work for the individual characteristics is left to the respective
chapters.
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Chapter 4

Measurements, Modeling, and Emulation of
Topological Reconfigurability

Reconfiguring topologies comes at a cost: the time it needs to reconfigure the optical hardware.
Meanwhile, data rates both in datacenter networks (DCNs) and in wide area networks (WANs)
are increasing to hundreds of gigabits. Hence, even interruptions of hundreds of milliseconds
can diminish the benefit of adapting networks when reconfiguring frequently.

Indeed, optical hardware can cycle through given configurations with reconfiguration delays
in the order of microseconds [52, 48] or nanoseconds [53]. However, this specialized kind of
hardware is not widely available. Moreover, due to its cycling speeds, it is also limited in its
programmability. The schedules are fixed or can only be changed on a coarse timescale [48,
49, 53]. This limits the application of such hardware to demand-oblivious (DO) reconfigurable
datacenter networks (RDCNs). As an alternative to specialized hardware, commercially off-the-
shelf (COTS) optical circuit switches (OCSs) provide reconfigurations in order of milliseconds
and are reconfigurable on-demand, such that a scheduling or matching algorithm can determine
the next configuration based on the network state. Several prototypes based on COTS OCS were
built, and their advantages were demonstrated, e.g., [45, 46, 55, 191].

In order to facilitate the demanded planning and to operate such RDCNs efficiently, a solid
understanding of the reconfiguration behavior, its stability, predictability, and influence factors is
necessary. Having access to a performance model of reconfiguration delays can open possibilities
to consider specific reconfiguration costs and, thereby, reduce negative impacts. Thus, it can
ultimately help to reap the benefits of adaptive networks. Moreover, while promising performance
results have been demonstrated with various experimental studies, it is often challenging to
experiment with these technologies. They are usually based on custom-built prototypes and rely
on tailored hardware and software which is not publicly available.

This chapter addresses these two issues and sheds light on the first characteristic of recon-
figurable topologies, the reconfiguration delay. First, it evaluates the reconfiguration behavior
of programmable optical networks, i.e., networks consisting of programmable switches, pro-
grammable end-devices and programmable optical hardware. To this end, the chapter presents
a meta-analysis of existing work on topological reconfigurations and draws the landscape of
such measurements. Based on the structure of a reconfiguration command, it then elaborates on
potential factors of variability for the reconfiguration delay, such as the number and frequency
of reconfigurations. It contributes three measurement procedures tailored for two classes of
devices: programmable switches and programmable network interface cards (NICs). The pro-
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cedures leverage the potential of programmable COTS equipment, i.e., they do not require any
specialized measurement equipment. Finally, the results of a measurement campaign provide
insights into the behavior of six programmable COTS networking devices under optical circuit
reconfiguration and verify the hypotheses about the influence factors. Thereby, we extract the
significant components of end-to-end reconfiguration delay.

Second, this chapter presents a flexible framework for building reconfigurable networks, ExReC,
that only relies on commercially available COTS hardware. The framework supports experimen-
tation and reproducibility and can be configured in different ways, allowing the emulation of
different RDCN architectures that follow the ToR-Matching-ToR (TMT) model presented in Sec-
tion 3.6. In particular, ExReC can emulate hybrid topologies consisting of components from both
classes of topological reconfigurability, DO and demand-aware (DA). ExReC uses emulation to
reduce dependence on hardware that is either expensive or not available. Therefore, it uses an
electronic packet switch (EPS) and label-based routing. Moreover, since today’s programmable
switches are usually unsuited for the packet scheduling logic required by Time Division Multi-
ple Access (TDMA)-based DO topologies (e.g., RotorNet [48]), ExReC implements this logic on
generic servers. This increases the flexibility for implementing forwarding logic. The chapter val-
idates and demonstrates ExReC under various workloads, also considering a distributed machine
learning (DML) training application.

Content and Outline: Section 4.1 overviews prior work with respect to modeling and measure-
ments of reconfiguration delays as well as available prototype implementations and experimen-
tation frameworks. Based on the components of an optical link and a reconfiguration command,
Section 4.2 models the reconfiguration delay and hypothesizes possible factors of influence. Sec-
tion 4.3 presents a measurement procedure and overviews the available testbed components.
More details on the measurement framework for the individual scenarios are given in Section 4.4
and Section 4.5, along with the results and an assessment of the influence factors. Section 4.6 and
Section 4.7 present and validate ExReC. Finally, Section 4.8 summarizes this chapter.

This chapter is based on two previous conference publications [11] (Section 4.1 - Section 4.5)
and [12] (Section 4.1, Section 4.6, and Section 4.7). As a contribution to the research community,
the code and the hardware specifications from ExReC have been made available at https:
//github.com/tum-lkn/exrec.

4.1 Related Work

The related work for this chapter revolves around two directions: the modeling and measurement
of reconfiguration delay and the experimentation and emulation of topological reconfigurability.

4.1.1 Modeling and Measurements of Topological Reconfigurability

Related work on measurements of topological reconfigurations spans two domains. First, this
section reviews existing measurements of end-to-end reconfiguration delays and compares them
to the values used in more theory-oriented works that contain only simulations or analytical
evaluations. Second, it provides a selection of performance modeling in the area of programmable
networks.

https://github.com/tum-lkn/exrec
https://github.com/tum-lkn/exrec
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Table 4.1 Overview of existing reconfiguration delay measurements: name, if circuit switching is pro-
grammable, if (ToR) switches are used for aggregation, the endpoints of the links, if only commercially
available equipment is used, measured data plane reconfiguration delay, and if reconfiguration delays are
drilled down.

Name On-demand Connects
via switch

Data plane device
(Switch/FPGA/NIC)

Uses COTS
OCS Delays Drills

down

D
C

N

Mordia [52] ✗ ✗ Myricom 10G-PCIE-8B (N) ✗ 11.5 µs ✗

ReacToR [50] ✗ (✓) HTG-V6HXT-100GIG-565 (F) ✗ 11.5 µs ✗

RotorNet [48] ✗ ✗ Myricom 10G NICs (N) ✗ 150 µs ✗

Sirius [53] ✗ ✗ Xilinx UltraScale VCU108 (F) ✗ 3.84 ns ✓

Helios [45] ✓ ✓ Fulcrum Monaco 24-port 10G (S) ✓ 27 ms ✓

OSA/ Wave-
Cube [46, 55]

✓ ✗ some 1G NICs (N) ✓ 9 ms ✗

Flat-tree [51] ✓ ✓ Not specified ✓ 2 − 2.5 s ✗

xWeaver [191] ✓ ✓ Not specified ✓ 300 ms ✗

MegaSwitch [54] ✓ ✓ Broadcom Pronto-3922 (S) ✗ 3 ms ✓

ProjecToR [47] ✓ ✗ TI DLP Discovery 4100 (F) ✗ 12 µs ✗

W
A

N RADWAN [151] ✓ n/a Not specified ✓ ≈ 70s ✗

Hall et al. [131] ✓ n/a Not specified ✓ 570 ms ✗

This thesis n/a ✓/✗ multiple ✓ 7.5 ms − 1.5 s ✓

4.1.1.1 Measurements of Reconfiguration Delay in Optically-switched DCNs

While there is no dedicated measurement study for circuit switching in RDCNs, different pro-
totypes exist and are evaluated with respect to their reconfiguration delay. These measurement
results can be classified into two groups: RDCNs that use (pre-)calculated schedules and RDCNs
with programmable, on-demand reconfigurations.1 Table 4.1 overviews the measurements and
the involved network devices. The table provides insights into the class of reconfigurations, if the
measurement considers a switch (top-of-rack (ToR))-based scenario, the used data plane device,
if only commercially available OCSs are used, the achieved delay, and if the measurement study
elaborates on different components of the reconfiguration delay.

RDCNs with pre-calculated schedules. Mordia [52] proposes a custom-built OCS that supports
arbitrary reconfigurations. The design features a 2D-microelectromechanical system (MEMS)
and wavelength selective switches (WSSs) instead of 3D-MEMS. Thereby, Mordia achieves re-
configuration delays of 11.5 µs on average. The prototype emulates ToRs with generic servers,
which are equipped with Myricom 10G-PCIE-8B dual port NICs and Dense Wavelength Division
Multiplexing (DWDM) transceivers. A Field Programmable Gate Array (FPGA)-based controller
communicates the active circuits and synchronizes the hosts via an out-of-band channel. The
analysis does not provide a decomposition of the reconfiguration delays. ReacToR [50] extends
the Mordia OCS prototype and emulates ToRs with FPGAs (HTG-V6HXT-100GIG-565). The re-
configuration delays are in line with those from Mordia. Also, ReacToR does not give a deeper
analysis of reconfiguration delay or potential influence factors.

RotorNet [48] is another custom circuit switch implementation. Similarly to the previous ones,
it provides host-based measurements of end-to-end reconfiguration delays using Myricom 10G
NICs. The measurements show delays of 150 µs. Out-of-band notifications synchronize the hosts
and the circuit switch. RotorNet follows a DO reconfiguration approach, i.e., reconfigurations are

1Note that this classification is slightly different to the reconfiguration classes presented in the literature overview in
Section 3.5 since we are interested in the switching mode.
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pre-determined and cannot be varied at runtime. Sirius [53] uses an optical fabric with passive
components. Circuits are set up using arrayed-waveguide gratings and transceivers with tunable
lasers that tune their wavelengths according to a pre-determined schedule. In the prototype, the
endpoints of the links are realized via FPGAs (Xilinx UltraScale VCU108). Tuning the lasers can
operate at nanoseconds speed so that end-to-end reconfiguration delays of 3.84 ns are achieved.

The aforementioned prototypes provide all end-to-end reconfigurations < 1ms. However, they
address a different use case in which circuit scheduling is not performed on-demand but uses
pre-defined schedules. Those schedules are either fixed or changed on a coarse time level.

RDCNs with on-demand reconfigurations. The majority of programmable RDCNs with on-
demand reconfigurations uses full crossbar, 3D-MEMS-based OCS or Wavelength Division Mul-
tiplexing (WDM) switching. Helios [45] uses a commercially available Glimmerglass OCS with
64 ports and connects Fulcrum Monaco switches with 10G ports. The authors report on several
configuration changes and firmware modifications necessary on the switch, such as deactivating
debouncing and electronic dispersion compensation (EDC), which were conducted with support
from the manufacturer. They drill down the reconfiguration time into two components: The
reconfiguration time on the data plane is 27 ms; the control plane adds another 170 ms in case
of synchronous requests to the OCS and 30 ms in case of asynchronous requests. However, the
measurements do not investigate how reconfiguration parameters or networking devices affect
end-to-end reconfiguration delay.

OSA [46] and WaveCube [55] use the same testbed. It consists of a Polatis Series 1000 32-port
OCS and a CoADna WSS. The measurements of the optical receive power report reconfiguration
delays of 14 ms for the WSSs and 9 ms for the OCS. The authors do not provide further insights
into the end-to-end reconfiguration delays nor details about the used NICs that connect to the
optical fabric. Flat-tree [51] uses a commercially available 192-port OCS. Xia et al. estimate the
end-to-end reconfiguration time based on observed TCP throughput between 2 − 2.5 s. This also
includes forwarding rule updates on the ToR switch. The authors do not report how individual
components contribute to the end-to-end delay. Similarly, coarse observations are provided in
xWeaver [191]. Here, the observed time for the TCP throughput to restore after reconfiguration
is around 300 ms. Again, the authors do not provide details of the used equipment.

In contrast, MegaSwitch [54] provides a detailed overview of the used devices. The prototype
builds around Broadcom Pronto-3922 switches, running in OpenVSwitch mode, with InnoLight
10GBASE-ER DWDM SFP+ transceivers. The custom-built optical fabric uses WSSs and is con-
trolled by a Raspberry Pi. The authors split the total reconfiguration time into three components:
the optical reconfiguration delay (3 ms), the added overhead due to flow updates on the packet
switches (13 ms), and the control plane delay (7 ms). While this provides an initial model for
the total reconfiguration time, it does not cover potential influence factors of the individual
components.

ProjecToR [47] relies on free-space optics for switching and uses TI DLP Discovery 4100 kits
with 0.7 XGA chipsets as forwarding equipment. The reconfiguration measurements focus on the
loss of light duration due to mirror adjustments and are in the order of 12 µs. Measurements of
end-to-end reconfiguration delays are not provided. Due to the distributed nature of ProjecToR,
it differs from our use case.

In conclusion, existing measurements for RDCNs with on-demand reconfigurations that rely
on commercially available equipment consistently achieve reconfiguration delays in the order of



4.1 Related Work

51

milliseconds. The modeling and evaluation of impact factors is basic, and only individual points
are provided. A comprehensive investigation and model are missing.

4.1.1.2 Measurements of Reconfiguration delay in Demand-aware WANs

Reconfiguration delays in WANs have not been studied extensively. One exception is RAD-
WAN [151], which provides a brief measurement of the reconfiguration delay of the modulation
format in a lab environment. The study gives a singular delay of ≈ 70s. It does not vary any
parameters, and the detailed settings are not specified. Hall et al. [131] evaluate the reconfigura-
tion delay of band multiplexing modules. Again the measurement considers a lab environment.
Specifically, they compare the automated tuning of link parameters with the (manual) restoration
of previously cached configuration parameters for the amplifiers. The achieved reconfiguration
delay for new demand situations is ≈ 20s, whereas the restoration of cached values takes only
≈ 0.57s. The measurement revolves around optical performance indicators but does not show
end-to-end reconfiguration delay. Moreover, the exact equipment used is not specified.

4.1.1.3 Reconfiguration Delays Used in Theory-oriented Studies

Prior algorithmic or theory-oriented studies orient at measurement results such as those listed
above. Depending on the particular approach targeted by the study, the reconfiguration delays
vary. Works that aim at pre-calculating schedules consider the micro-second scale values. For
instance, Solstice [187] uses 20 µs; Sunflow [189] considers delays between 10 µs and 100 ms.
Similarly, Vargaftik et al. [128] use 20 µs and 20 ms depending on the evaluated switch. C-Share
represents an approach that calculates circuits on demand. The used delay is 20 ms. In summary,
these works use measurement results of other works and do not consider the potential variability
of the reconfiguration delay in their evaluations.

4.1.1.4 Performance Models for Programmable Network Devices

Predictability and evaluation of performance models as a general concept have already been
explored for other aspects of programmable networks. Harkous et al. [212] analyze the influence
of P4 constructs on packet processing latency. Scholz et al. [213] model packet rates, latencies,
and resource consumption of two classes of P4 targets in dependence on matching types and
table sizes of P4 programs. Katsikas et al. [214] provide such evaluations for programmable
NICs and further evaluate the impacts of reconfiguring such devices. Performance modeling of
programmable control planes has been conducted too. For instance, van Bemten et al. [215] assess
the predictability of commercially available OpenFlow switches with respect to the correctness
and latency of reconfigurations. Other works provide specific benchmarking and modeling tools
for such software defined networkings (SDNs) [216, 217].

4.1.2 Experimentation & Emulation

Also regarding experimentation and emulation of topological reconfigurability, prior work can be
discriminated according to the reconfiguration class. Table 4.2 summarizes existing experimental
evaluations of the two classes, the scales, and the availability of the components from a hardware
and software perspective.
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Table 4.2 Overview of experimental platforms for reconfigurable networks: name, basic methodology,
achieved scale, link rate, if DO is available, if DA is available, if only COTS equipment is used, and if
artifacts to reproduce measurements are available.

Name Basis Scale Link rate DO DA COTS Source Code
RotorNet [48] HW 8 emulated ToRs 10 Gbps ✓Prototype ✗ ✗ n/a
Opera [49] HW 8 emulated ToRs 10 Gbps ✓emulated (P4) ✗ ✓ n/a
Sirius [53] HW 4 nodes 50 Gbps ✓ ✗ ✗ n/a
Etalon [204] Emulation 8 emulated ToRs

(128 hosts)
10 Gbps ✓emulated

(Click Router)
✗ ✓ ✓

Helios [45] HW 24 End-hosts 10 Gbps ✗ ✓ ✓ n/a
xWeaver[191] HW 10 emulated ToRs 10 Gbps ✗ ✓ ✓ n/a
OSA/WaveCube [46,
55]

HW 8 emulated ToRs unclear ✗ ✓ ✓ n/a

Flat-Tree [51] HW 24 End-hosts 10 Gbps ✗ ✓ ✓ n/a
ProjecToR [47] HW 3 ToRs - ✗ ✓Prototype ✗ n/a
MegaSwitch [54] HW 40 End-hosts 10 Gbps ✗ ✓Prototype ✗ n/a
Mordia/ReacToR [52,
50]

HW 23 End-hosts 10 Gbps ✗ ✓Prototype ✗ n/a

c-Through [56] HW 4 emulated ToRs,
16 hosts

1 Gbps ✗ ✓emulated
(host-based)

✓ n/a

C-Share [182] Mininet 10 leaf switches 100 Mbps ✗ ✓emulated
(OpenVSwitch)

✓ n/a

PSNet [103] HW 3 ToRs 1 Gbps ✗ ✓emulated
(OpenVSwitch)

✓ n/a

This thesis HW 8 emulated ToRs 10 Gbps ✓emulated
(DPDK, VLAN)

✓ ✓ ✓

4.1.2.1 Demand-oblivious RDCNs

As already observed in Section 4.1.1, DO switches are not commercially available. Thus, all
experimental assessments rely on prototype implementations. For instance, the seminal work
RotorNet [48] uses the rotor switch implementation presented in [120]. It emulates ToRs on
physical servers and connects them via 10 Gbps links. In contrast, Opera [49] is evaluated with
a P4 switch-based emulation using only COTS components. Specifically, it uses an 6.5-Tbps
Intel Tofino which emulates all ToR switches as well as the circuit switching fabric. Although
they authors rely on COTS components only, the framework is not publicly available. The Sirius
prototype [53] uses FPGAs as endpoints of the links. The FPGAs control the custom-built tunable
transceivers in order to cycle through the matching. The setup achieves a link rate of 50 Gbps.
Etalon [204] provides an emulation of DO topologies using only COTS components. It emulates
multiple ToRs (and racks) per physical server in the testbed and uses time dilation to achieve
higher rates. However, it only relies on software-based forwarding solutions and fully virtualizes
the topology. The framework is available but only considers a DO topology so far.

4.1.2.2 Demand-aware RDCNs

DA switches can be configured to create direct connections between ToRs according to the traffic
conditions. They have a high degree of freedom and can realize any possible matching. When a
circuit is established, it provides constant datarate between ToRs. As observed in Section 4.1.1,
the reconfiguration delay of DA switches 𝑟𝑑𝑎 is usually larger than the reconfiguration delay of
DO switches 𝑟𝑑𝑜 .
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For DA reconfigurable topologies, a wider range of experimental evaluations has been con-
ducted. A group of studies relies on commercially available OCSs, e.g., Helios [45], OSA/
WaveCube [46, 55], xWeaver [191] or Flat-Tree [51]. They present setups that represent ToRs by
physical servers. The considered sizes are in the order of tens of end-hosts and they support
link rates of 10 Gbps. However, for none of them, the source code is available. Other studies
explore different types of interconnects, e.g., ProjecToR [47], MegaSwitch [54] or Mordia [52],
but use prototype implementations of the switches that are not available. Finally, DA topologies
have also been evaluated using emulations. For instance, c-Through [56] considers host-based
scheduling, i.e., the hosts know the active circuits and only send traffic accordingly. C-Share [182]
uses Mininet [218] and OpenVSwitch for OCS emulation. Specifically, the OCS is emulated by
an OpenVSwitch that forwards packets on an input port only to one output port at a time. The
achieved link rates (100 Mbps) are bounded by the performance of the server. Finally, PSNet [103]
is another example for a testbed implementation of a DA RDCN which relies on OpenVSwitch
to emulate circuit switching. The setup is rather small with 3 ToRs and 6 end-hosts and also the
source code is not available.

Summary

The state of the art provides only singular measurements of reconfiguration delays for COTS
devices. It has not been thoroughly explored if and how existing programmable networking
equipment can cope with such reconfiguration. In particular, a benchmark across different
devices and varying reconfiguration scenarios has not been done yet. This is critical as previous
evaluations of programmable networking devices showed that they behave differently, e.g., with
respect to OpenFlow updates [215]. Moreover, the discussed theory-oriented works make varying
assumptions about reconfiguration delays and often base them on previous measurements or the
data sheets of the OCSs [187, 128, 189]. Yet, these figures do not always consider the end-to-
end reconfiguration delay of optical links and the delay on the control plane. In addition, they
neglect potential variability, i.e., rely on the assumption that end-to-end reconfigurations are
deterministic. The review of programmable, on-demand RDCN prototypes shows consistent
values for the reconfiguration delays. But the end-to-end reconfiguration delay of programmable
optical links has not been modeled in detail yet.

Finally, all the experimental evaluations of reconfigurable topologies consider either DO or
DA switches but not a hybrid setting. In addition, in all but one case, the frameworks are not
available.

4.2 Modeling End-to-end Reconfiguration Delay of Programmable
Optical Links

Figure 4.1 shows a programmable optical link. The link is terminated by control- and/or data-
plane programmable interfaces, e.g., an end-host-based (Smart-)NIC or FPGA (left), or an Open-
Flow or P4-capable switch (right). The NICs are equipped with duplex optical transceivers to
send and receive data via separate circuits. The optical link traverses an on-demand configurable
(programmable) OCS. An external controller handles the components.

A reconfiguration takes several steps. First, the controller sends the new configuration to the
OCS. After processing the command, the OCS sets the new circuit in place. The transmitter and
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Figure 4.1 Example of a programmable optical link. Three programmable networking devices (1 host, 2
switches) are connected via an on-demand reconfigurable OCS. An external controller handles all the
components.
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Figure 4.2 Variants of circuits and reconfigurations on the OCS. Ports TX, RX1, and RX2 connect to
programmable networking devices. Each port consists of two fibers (in/out). The figure left (Initial)
shows the initial circuits. The other three parts show the reconfiguration cases: Simplex, Duplex and
Simplex All Con.

receiver of the new circuit need to synchronize their clocks so that the receiver can correctly recover
the signal [53]. Then, they communicate link connectivity to higher layers and ultimately to the
(forwarding) application. Eventually, the controller updates forwarding rules or configuration of
the programmable devices. The exact process depends on the specific firmware and operating
system of the device.

This study focuses on the optical switching part. Reconfiguration delays due to forwarding rule
updates are out of scope here. Similarly to previous proposals [45, 54], the model contains two
components for the end-to-end reconfiguration delay: data plane downtime 𝑟𝑑 and control plane
delay 𝑟𝑐 . Since processing on the control plane happens before the data plane is interrupted, the
sum of both provides the total delay:

𝑟 = 𝑟𝑑 + 𝑟𝑐 . (4.1)

The reconfigurations can vary in several dimensions with potential impacts on the reconfigura-
tion delay. Influence factors can be all attributes of a reconfiguration command that the controller
can modify. Candidates are the number of modified ports 𝑛 and the distances 𝑑 between the
ports, which are reconfigured.

Moreover, the data plane downtime might depend on the used devices 𝑥 (categorical variable).
The review of related work has shown that two classes of devices are being used: host-based
and switch-based interfaces (cf. Figure 4.1 left and right). Many proposed designs conceptually
rely on a (programmable) ToR switch as an aggregation point towards the circuit-switched fabric,
e.g., [45, 54, 191]. Interestingly, directly connecting an OCS to the end-hosts can provide benefits
in certain situations, e.g., for DML [219].
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Since the deployed transceivers are bidirectional, i.e., use two circuits, there are three ways of
reconfiguration: Simplex (SI), Duplex (DU), and Simplex All Con. (SAC) (Figure 4.2). The ports
TX, RX1 and RX2 connect to bidirectional optical transceivers, e.g., as shown in Figure 4.1. SI
changes only the circuit, which carries the traffic to RX2. This represents the case of setting
unidirectional links, a widely adopted model in theoretic work [187]. Moreover, it is the least
demanding reconfiguration at the OCS as it requires only one change. Thereby, TX always receives
optical power on its receiver, also during the reconfiguration. Consequently, link establishment
or failure routines defined by IEEE 802.3 are not triggered on TX. However, since RX1 no longer
receives light, some NICs might run these routines at RX1, leading to unintended behavior. For
instance, shutting off the transmitter of RX1 results in a loss of signal at TX which in turn stops
transmitting [45]. To avoid such disconnects, DU configures both circuits to RX2. This is also
a natural choice if traffic is transmitted bidirectionally. Finally, SAC constructs a ring over all
involved transceivers with the same intention as DU, i.e., to avoid triggering link failure routines.
It creates unidirectional circuits and, thereby, provides more flexibility [45]. The reconfiguration
type 𝑐 is the fourth impact factor.

In summary, we hypothesize as relation for the data plane downtime:

𝑟𝑑 = 𝐷(𝑛, 𝑑, 𝑥, 𝑐). (4.2)

The control plane delay might also depend on the number of modified ports 𝑛. Moreover,
COTS OCSs usually come with a number of control plane protocols 𝑝 (categorical), e.g., TL1 [220]
or Netconf [221]. We obtain for the control plane delay:

𝑟𝑐 = 𝐶(𝑛, 𝑝). (4.3)

4.3 Measuring End-to-end Reconfiguration Delay of Programmable
Optical Links

This section describes the procedures as well as the testbed components for measurements to
evaluate the hypothesized relationships above.

4.3.1 Data plane measurements

To assess the hypothesized relations for the data plane downtime, a single measurement follows
the process shown in Figure 4.3. A traffic source sends a continuous stream of packets over an
existing optical link from TX to RX1. The packet stream samples the state of the OCS, i.e., the port
that packets are received on (RX1 or RX2) directly shows the established circuit. The controller
sends a command to reconfigure the circuit to another receiving port (RX2) at time 𝑡𝑐𝑚𝑑. The data
plane downtime is given as

𝑟𝑑 = 𝑡RX2 − 𝑡RX1 (4.4)

where 𝑡RX1 is the time of the last packet received by RX1 and 𝑡RX2 is the time of the first packet
received by RX2.

4.3.2 Control plane measurement

The measurement of the control plane delay uses a similar approach as the data plane downtime
one. It excludes any timings needed to calculate the new configuration, e.g., for collecting demand
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Figure 4.3 Conceptual timeline of the reconfiguration delay measurement. Characteristic duration of
reconfiguration (red braces). RX1 and RX2 are the ports between the circuit is changed.

statistics or executing optimization algorithms. Accordingly, 𝑟𝑐 is defined, as shown in Figure 4.3,
from sending the command message 𝑡CMD to the OCS until reception of the last packet on RX1:

𝑟𝑐 = 𝑡RX1 − 𝑡CMD. (4.5)

4.3.3 Testbed

The testbed is built around a Polatis Series 6000n OCS [222] with 32 in- and 32 out-ports. The
OCS runs firmware version 6.7.5.34. All evaluated devices use FS.com 10GBASE-LR SFP+ 1310nm
(SMF) transceivers [223]. The measurements compare two classes of data plane devices: pro-
grammable NICs deployed in hosts and programmable switches. For the host-based cases, there
are three NICs with different expected levels of programmability (from low to high): a regular
NIC (Intel X710-DA4 [224]) with Data Plane Development Kit (DPDK) [225] support, a SmartNIC
(Agilio CX 2x10G [226]) with support for P4 and DPDK and an FPGA (NetFPGA-SUME [227])
with prepared support for P4 and the full programmability of FPGAs.

The switch-based measurements are conducted using two OpenFlow-based switches, Pica
P3297 [228] and Dell S4048-ON [229], and one Layer 2 switch, EdgeCore AS5835-54X [230],
running SONiC [231]. The switches run in the default configuration and only make simple for-
warding decisions. The exact settings of the measurement cases are detailed later (Section 4.4.1.1
for host-based and Section 4.4.1.2 for switch-based).

Traffic and packet dumps are generated on two servers running Ubuntu 18.04 (4.15.0-47-generic
kernel) with 128 GB of RAM and an Intel Xeon Silver 4114@2.2 GHz (20 cores). The traffic-
generating server also runs the controller of the OCS, which connects via a dedicated management
network. It uses iPerf 2.0.10 [232] to generate a single UDP flow consisting of 1000 B packets at
a rate of 2 Gbps (≈ 250 Kpps). This translates to a packet inter-arrival time of ≈ 4 µs and
determines the lower bound of the measurement range of the reconfiguration delay. Since the
reconfigurations are expected to be in the order of milliseconds, this provides a sufficient temporal
resolution.2 The presented results contain 30 runs with traffic running at least 2 s before and
after the reconfiguration. The OCS controller is implemented in Python and uses the available
programming interfaces of the OCS. If not stated otherwise, it uses the Netconf interface.
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Figure 4.4 Testbed setups of the host-based measurements: Setups consist of a traffic generator, which
includes also the OCS controller, and a measurement server. The measurement server hosts the NICs
under test. Arrowheads indicate the direction of optical light and packets. Red arrows indicate the packet
streams that are to be measured.

4.4 Evaluating Data Plane Downtime

We start with evaluating the data plane component. After introducing the detailed configurations,
results for the data plane devices are compared, and potential influence factors from Section 4.2
are analyzed.

4.4.1 Detailed Setups

The settings to measure data plane reconfiguration behavior in the host-based and switch-based
cases vary slightly due to the capabilities of the considered devices. The general assumption is
that the links are homogeneous, i.e., that both endpoints use the same device model. Combining
different devices makes attributing effects harder and is left for future work. Overall, this leads
to three setups:

4.4.1.1 Host-based scenarios

The two data plane programming abstractions DPDK and P4 provide sufficient precision for
time measurements in the order of milliseconds [233, 234]. However, neither DPDK nor P4
is supported by all the devices under test. Hence, this section proposes two approaches and
evaluates the impact of using DPDK or P4 on the measurements. The SmartNIC supports both
technologies, which helps to put the obtained results into relation.

DPDK The first approach (Figure 4.4a) uses a custom DPDK application to measure the data
plane downtime. The application consists of two threads. Each thread polls bursts of packets
from its assigned port, i.e., RX1 or RX2. When the application receives packets, it reads the current
cycle count (from the central processing unit (CPU)) and saves it as the last packet reception time.
Similarly, the application stores the timestamp of the first received packet per port. The data
plane downtime is directly calculated from these collected timestamps. The DPDK application
uses the available poll mode driver of the NICs. It is available for the Intel NIC and the SmartNIC.

2Specifically, the data sheet of the OCS states a switching delay of 25 ms.
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However, it relies on software timestamping since the used Intel NIC does not support hardware
timestamping.

P4 The second approach uses P4 as the mean of programmability. Thus, it is limited to the
NetFPGA and the SmartNIC. A simple P4 application forwards packets from the traffic generator
onto the dynamic link. The setups differ between these two due to the different number of ports
of the cards. The setup with the NetFPGA leverages all four ports of the device (Figure 4.4b). The
traffic generator connects via one of the physical ports, and the NetFPGA forwards the traffic to
the OCS. For the SmartNIC (Figure 4.4c), the traffic generator runs on the end-host that is one
of the link endpoint and directly connects to the OCS. In both cases, packets received on either
RX1 or RX2 are forwarded to a virtual port that is exposed to the operating system. Since this
setup hides the link reconfiguration from the operating system (all traffic is received on the single
virtual port), the packets are marked with the information of the receive port. Specifically, the
P4 application sets the IP type of service field (ToS) to 1 when the packet is received on RX2. In
addition, the application adds an in-band network telemetry (INT) header containing the time of
the packet reception. The precision of the timestamp is 5 ns on the NetFPGA3 and 20 ns on the
SmartNIC4. Finally, the packets are collected using tcpdump.

This setup provides two ways to obtain the downtime: from the timestamps in the INT data and
from the timestamps in the packet trace. The downtime is given as the difference in the timestamp
of the first packet with IP.ToS = 1 and the timestamp of the last packet with IP.ToS = 0. If not
stated otherwise, we use the INT data.

4.4.1.2 Switch-based scenarios

Figure 4.5 shows the setup for the switch-based scenarios. It follows a similar idea to that of the
P4-based measurements with NetFPGA. The traffic generator sends traffic to the switch under
test. The switch forwards the packets without modification on another port (TX) to the OCS.
The OCS loops back to a third port (RX1) or fourth port (RX2). For packets received on RX2, the
switch sets IP.ToS = 1. Independent of the receive port, packets are forwarded to the initial port
that connects to the traffic generator. The outgoing direction of this port connects to a fiber tap
and eventually to an Endace DAG 10X4-S measurement card to dump the packets. P3297 and
S4048-ON implement this forwarding using OpenFlow rules, whereas the AS5835-54X uses a
Virtual LAN (VLAN) header to indicate the receive port.

4.4.2 Comparing devices and reconfiguration cases

This section first presents the results for the host-based settings followed by the switch-based
ones.

4.4.2.1 Host-based

Figure 4.6a illustrates the data plane downtime for the host-based devices and the different
measurement approaches. It further compares the three reconfiguration cases SI, SAC, DU,

3The value was retrieved from https://github.com/NetFPGA/P4-NetFPGA-public/wiki/

Workflow-Overview#p4-netfpga-extern-library.
4This value was received via correspondence with Netronome.

https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview#p4-netfpga-extern-library
https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview#p4-netfpga-extern-library
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Figure 4.5 Testbed setup for the switch-based measurements: It consists of the switch under test, a traffic
generator, which includes also the OCS controller, and a measurement server. Arrowheads indicate the
direction of optical light and packets. Red arrows indicate the packet stream that is dumped by an Endace
DAG 10X4-S.

which results in 12 settings. The figure shows violinplots across the 30 runs. Purple circles
indicate the median values. We first observe that only SmartNIC provides consistent values of
≈ 7.5 ms for all three reconfiguration settings and also has low variance across the measurement
runs. If only one circuit is modified (SI), the Intel NIC loses connectivity, i.e., no packets are
received on RX2. Hence, the downtime cannot be calculated. SmartNIC and NetFPGA have
median downtimes in the order of 10 ms. However, NetFPGA’s behavior is hardly predictable. It
shows high variability with values > 100 ms.

In the DU case, all candidates manage the reconfiguration. SmartNIC achieves around 7.6 ms,
while NetFPGA is around 11.8 ms. For SmartNIC, the difference between the INT-based and
DPDK-based results is about 0.5 ms on average. Thus, both measurement approaches are viable
here. For the Intel NIC, the average and median downtime is around 292 ms. This is significantly
larger than the expected 25 ms of the OCS and compared to the other devices. An explanation
might be given by the specific firmware or driver, e.g., with slow implementations of link setup
routines.5

4.4.2.2 Switch-based

Figure 4.6b shows violinplots of the data plane downtimes for the switch-based measurements.
Again, the purple circles indicate the median values. We note that the SI case does not succeed
for any switch. The switches turn off RX1 and subsequently also TX so that no more packets are
transmitted after the reconfiguration has finished. For SAC and DU, P3297 and S4048-ON show
a data plane downtime > 1 s on average and in the median. While for P3297 both timings are
around ≈ 1.1 s, S4048-ON has larger downtimes for DU (≈ 1.5 s) than SAC (≈ 1.2 s). AS5835-54X

5For verification, the measurements were repeated with a different firmware version and Intel was contacted to obtain
explanations about this behavior, however without any success.
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Figure 4.6 Violinplots of the data plane downtime. Comparison of the six devices, the reconfiguration
cases (SI,DU,SAC), and measurement approaches (P4, DPDK). Only SmartNIC shows low downtimes of
≈ 7.5 ms and low variance. All switches show downtimes > 0.4 s. SI does not succeed for the switches and
the Intel NIC (no values).

has smaller data plane downtimes of 0.442 s for SAC and 0.629 s for DU in the median and on
average. Also, here, we observe the prolonged interruption for the DU case. The behavior is
consistent over all runs, but the reasons could not be clarified.

The conclusions for 𝑟𝑑 in the switch-based scenarios are negative. Data plane downtimes above
400 ms translate to either large reconfiguration periods or extreme losses of network capacity
over time, hindering COTS packet switches on the edge of a circuit-switched or hybrid fabric.
These observations confirm the ones from previous work [45, 54]. As suggested by [45] and also
confirmed in discussions with two industry partners, this behavior is not related to the switching
ASIC but roots in the firmware of PHY and MAC layer components, e.g., stems from the tuning
of physical link parameters during link setup.

4.4.3 Analyzing Influence Factors

After evaluating the reconfiguration behavior of the six networking devices, this section focuses on
how the number of modified circuits and the port distance impact the data plane downtime. We
use the SmartNIC for the following analysis since it performed best in the previous measurements.

4.4.3.1 Number of modified circuits

Figure 4.7 shows violinplots of the data plane downtime against the number of modified circuits.
The green circles indicate the median. The number of circuits ranges up to 32, which marks the
maximum number of circuits that can be set simultaneously with a 32x32 OCS. The values of data
plane downtime range from 7.5 ms to 8 ms. Moreover, the median value decreases slightly with
the number of modified circuits. Fitting the following linear model

𝐷(𝑛) = 𝛿 + 𝛾 · 𝑛 (4.6)

shows a slope of 𝛾 = −8.39 · 10−7 and an intercept of 𝛿 = 0.0076s with 𝑝 = 0.0032, which
is significant for 𝛼 = 0.05. However, the slope value is below the temporal resolution of the
measurement setup, which is ≈ 4 µs according to the packet sending rate. Thus, this decrease has
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Figure 4.7 Violinplots of the data plane downtime against the number of modified circuits. The setup uses
SmartNIC (P4), SI case. No significant impact is observable.
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Figure 4.8 Schematic view of the definition of the port distance. The distance is defined using the physical
embodiment of the OCS. The distance is given by the indicated numbers for RX2.

to be considered as measurement noise, and the conclusion is that there is no significant impact
of the number of modified circuits on the data plane downtime of a single link.

4.4.3.2 Port Distance

A second parameter that can impact the downtime is the (physical) distance between the ports
RX1 and RX2 at the OCS. Intuitively, one would assume a linear relationship between distance 𝑑

and the data plane downtime:

𝐷(𝑑) = 𝛿 + 𝛾 · 𝑑. (4.7)

Figure 4.8 indicates RX2with increasing distance to RX1 (1, 3, 5...). The distances are given as the
number of ports between RX1 and RX2 on the horizontal axis from an outside view of the OCS.

The results (Figure 4.9) show no clear pattern. The major part of the values lies between 7 and
8 ms. For most configurations, the variance is low (< 0.01 ms). Exceptions are distances of 7 and
11 ports, for which some outliers exist. Fitting the model gives a slope of 𝛾 = 6.81 · 10−6 with
𝑝 = 0.273, which is not significant. Thus, we cannot conclude if the port distance linearly affects
the data plane downtime. A deeper analysis, also considering the internal structure of the OCS,
is left for future work.
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Figure 4.9 Violinplots of the data plane downtime against the port distance. Downtime is measured with
SmartNIC (P4), SI case. Port distance is viewed from an outside perspective. No clear pattern is visible.
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Figure 4.10 Circuits and fibers configured during the shoe-lace measurement. Black lines indicate fibers.
Colored arrows are circuits. The optical link uses all ports of the OCS. The figure shows a sub-set of ports
due to readability.

4.4.3.3 Chaining reconfigurations

Besides traversing a single OCS, an optical link might also span multiple OCSs. This is not only a
common situation in WANs but might also become more common in DCNs, e.g., when scaling to
larger topologies. The sizes of COTS OCSs are currently limited to several hundred ports which
may in turn lead to multi OCS-layer network designs.

In order to assess the reconfiguration behavior in such a scenario, a setup similar to the shoelace
proposed in [215] is used. Figure 4.10 illustrates the circuits before and after reconfiguration. The
other components are the same as for the SmartNIC setup in Figure 4.4c. TX is connected to the
traffic generator, and RX1 and RX2 are connected to the respective ports of the SmartNIC on the
measurement host. The idea is to redirect the signal through multiple ports of the OCS with fiber
loopbacks. The controller requests to reconfigure all these ports simultaneously with a single
command. This represents the centrally coordinated reconfiguration of such a link. Specifically,
this kind of measurement provides the time between the first port being disconnected and the
last port being connected.

Figure 4.11 shows violinplots for the data plane downtime against the number of chained
circuits, i.e., the length of the shoelace. In order to rule out an increase of the reconfiguration
time due to lower receive power at the receivers, the figure shows two series of violinplots. The
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Figure 4.11 Violinplots of the dataplane downtime against the number of chained circuits in the shoelace
setup. Downtime is measured with SmartNIC (P4), SI case. Downtime increases with the number of
chained circuits.

“reference” measurement considers the same length of chained circuits but reconfigures only the
last one. The “all” series reconfigures all circuits.

The variance is low for all settings, which implies a deterministic behavior given the number of
changed circuits. Moreover, the data plane downtime of the reference measurements is relatively
stable. Its median values vary between 6.7 ms and 8.8 ms.

However, for changing all circuits in the chain (“all”), an increase of the data plane downtime
with the number of chained circuits is evident. Specifically, for chaining only three circuits, the
average value is 11.1 ms, while the value is 15.3 ms for chaining 15 circuits — an increase of more
than 25% compared to the reference case. While exact reasoning needs a deeper investigation,
we conclude that the length of the reconfiguration chain should be considered when modeling
end-to-end reconfiguration delay.

Takeaway: Data plane devices react differently to OCS reconfigurations. While the NICs achieve
small downtimes, the tested switches with default configurations are less suited for such scenar-
ios. The considered influence factors do not significantly impact the data plane downtime. The
data plane component is considered constant. However, we note that chaining multiple reconfig-
urations increases downtime significantly.

4.5 Evaluating Control Plane Delay

While the downtime of the data plane affects the actual resource usage, it is also important to
consider the behavior of the OCS’s control plane. Slow reactions here lead to the delayed setting
of the new circuits or require issuing the command ahead of time so that changes are in place at
the right time. After detailing the setup, this section presents results for a single reconfiguration
and then for a sequence of multiple reconfigurations.
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Figure 4.12 Testbed setup for the measurement of the control plane delay. The setup is the same as for the
SmartNIC case. In addition, the control plane traffic is tapped and dumped.

4.5.1 Detailed Setup

The measurements of the control plane delay use the same setup as the P4-based measurements
with the SmartNIC. In addition to the data plane, also the control plane traffic is captured using a
1G network tap and tcpdump (Figure 4.12). As described in Section 4.3.2, the control plane delay
can directly be calculated from the timestamps in the packet trace. Comparing measurements of
the SmartNIC showed only a small difference (< 1%) between the values obtained from tcpdump’s
timestamps and those from the P4 program. The evaluated control plane protocols are TL1 [220],
a widely used management protocol for the optical domain, and the more generic network
management protocols Netconf [221] and Restconf [235].

4.5.2 Single (one-shot) Reconfiguration

First, we consider a single reconfiguration to identify the impact of the used control plane protocol
as well as the size of the reconfiguration command, i.e., the number of modified circuits.

4.5.2.1 Control Plane Protocols

Figure 4.13 shows the empirical CDFs of the control plane delays for the three control plane
protocols. It also compares the results for running the OCS for > 180 days and for running it only
a few days (< 5 days). In both cases, TL1 reacts significantly faster than Netconf and Restconf.
After the restart of the OCS (< 5 days), TL1 takes 85 ms on average to apply the changes, while
Netconf and Restconf take 245 ms and 257 ms. These values are in the same range as observed in
prior studies [45]. Netconf and Restconf obtain almost the same timings. This is because both use
the YANG data model of the OCS and apart from the connections, ssh for Netconf and HTTPS for
Restconf, are handled by the same code in the OCS’s firmware. All control plane interfaces show
low standard deviations of 16.6 ms for TL1, 57.7 ms for Netconf, and 37.6 ms for Restconf.

Comparing the two temporal cases, there is a strong software aging behavior of the OCS: over
180 days of operation, the control plane delay increases by one order of magnitude. While this is
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Figure 4.13 cumulative distribution function (CDF) of control plane delay for three control plane protocols.
TL1 performs significantly better than Netconf and Restconf.

mainly a quality management issue, operators need to account for or monitor such aspects when
deploying DA RDCNs [236].

4.5.2.2 Number of Modified Circuits

As for the data plane considerations, the number of modified circuits might also impact the
control plane delay. Figure 4.14 shows boxplots of the control plane delay against the number
of modified circuits. Note that the number of modified circuits correlates to the control plane
message size. For TL1, the mean values indicate a steady increase in the delay from around 84 ms
for only one modified circuit to around 102 ms when 32 circuits are changed. The behavior seems
to be linear, leading to the following hypothesized relationship:

𝐶(𝑛) = 𝛿 + 𝛾 · 𝑛. (4.8)

Performing linear regression results in values 𝛾 = 0.000561 and 𝛿 = 0.086393 with 𝑝 = 0.00341,
which is significant for 𝛼 = 0.05. For Netconf, similar behavior is observable. The obtained
parameters from the linear regression are 𝛾 = 0.01779 and 𝛿 = 0.279702 with 𝑝 < 10−10. This
relationship seems to be intuitive. However, knowing how the control plane behaves opens new
possibilities for scheduling reconfigurations and for using available resources more efficiently.
Moreover, there are some severe outliers in the data. These indicate unpredictable behavior, which
might hinder the application of today’s commercially available OCS for frequent reconfigurations.
The following part evaluates this in more detail.

4.5.3 Multiple reconfigurations

The obtained models for the control plane delay provide a lower bound on the reconfiguration
period possible with the evaluated OCS. However, up to here, the reconfigurations have been
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Figure 4.14 Boxplots of the control plane delay against the number of modified circuits. For TL1 and
Netconf a linear relationship is observable.

performed in a “one-shot” style. Thus, the question arises whether the OCS behaves consistently
with periodic reconfigurations, i.e., under constant load.

To assess this, the OCS is stressed with 20 consecutive reconfigurations via the TL1 interface
with inter-reconfiguration periods between 0.2 s and 3.0 s. The evaluation focuses on two aspects.
First, if reconfigurations are successful, that is, if the number of reconfigurations observed in the
trace files matches the number of issued commands to the OCS.

Figure 4.15 illustrates control plane delays (boxplots) and the fraction of successful reconfig-
urations (line). First, we observe that for low reconfiguration periods, a significant number of
reconfigurations is unsuccessful, i.e., not observed in the trace. The average fraction across the
runs is below 80% for a reconfiguration period ≤ 0.5 s. In addition, it exhibits a high variance.
The fraction of successful reconfigurations steadily increases, whereas the variance over the runs
reduces for higher reconfiguration periods.

For large reconfiguration periods, the control plane delay is in the expected range from the
single-shot measurements, around 100 ms. With decreasing reconfiguration period, the delay and
also the number of outliers, i.e., values exceeding 1.5 times the inter-quartile range, increase. Thus,
stable operation with low reconfiguration periods is hardly possible with the current firmware of
the OCS.

Takeaway: The control plane component of the reconfiguration delay is less deterministic than
the data plane one. We observe a significant influence of the command parameterization on the
control plane delay. Furthermore, the measurements have larger variances and show a significant
number of outliers. Putting modest stress on the control plane results in a loss of reconfigurations.
The behavior is explainable with the reliance on software for processing.

4.6 Flexible framework for Experimentation with Reconfigurable
Networks (ExReC)

ExReC is a flexible framework for building and evaluating different hybrid reconfigurable topolo-
gies. It generally follows the TMT model (cf. Section 3.6 considering a two-layer leaf-spine
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Figure 4.15 Control plane delay against reconfiguration period. For each period, 20 consecutive reconfig-
urations of one circuit are executed. TL1 is used. The success ratio decreases with the reconfiguration
period. At the same time, the control plane delay increases.

structure. The spine layer is constituted by 𝑘𝑑𝑜 DO and 𝑘𝑑𝑎 DA switches which connect to all leaf
nodes.

ExReC is designed to prefer COTS equipment for implementing the DO and DA switches.
However, it can fall back to emulations of the circuit switching behavior if components are not
commercially available or do not meet the requirements for frequent reconfigurations [11], e.g.,
when varying the reconfiguration delay. In its current embodiment, ExReC uses emulation for the
DO switches. This section first presents an overview of the whole framework and then describes
the emulation of DO switches and the integration of DA switches.

4.6.1 Design Overview

Figure 4.16 shows how ExReC emulates a setup with 𝑁 racks and ToRs (leafs) and 𝑘 = 𝑘𝑑𝑜 + 𝑘𝑑𝑎

spine switches. It implements this setup with 𝑀 + 1 physical servers (blue boxes), an EPS, and
a COTS OCS (grey boxes). 𝑀 of the servers emulate the ToRs (red boxes), such that each server
emulates 𝑥 = 𝑁

𝑀 ToRs and racks.
The servers have enough physical ports to connect to the EPS that emulates 𝑘𝑑𝑜 DO switches

and to the OCS that implements the DA topology part with up to 𝑘𝑑𝑎 switches. An additional
control server runs two controller processes: one for the DO and one for the DA switch. The DA
process controls the OCS; the DO process sends messages to the ToRs to control the DO links.
The control server connects via a dedicated management network.

ExReC uses QEMU/KVM [237] to spawn virtual machines (VMs) that represent the racks
(white boxes). Hosts inside the racks are abstracted: the racks can run either traffic generators
like MoonGen [234] and iPerf [232] or applications such as the DML framework Horovod [73]
(yellow box “App”). All traffic leaving or entering the VMs is dumped for later analysis. ExReC
relies on two design decisions to flexibly evaluate different topology configurations: (1) emulating
circuit switching using labels and (2) scheduling traffic directly on the physical servers.
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Figure 4.16 Overview of the ExReC framework. An EPS emulates 𝑘𝑑𝑜 DO switches whereas a COTS OCS
realizes 𝑘𝑑𝑎 DA switches. 𝑁 ToRs are emulated using DPDK on 𝑀 physical servers. An additional server
hosts the controllers.

Label-based routing: COTS equipment for dynamic topologies is hard to obtain. Either it does
not meet requirements for reconfiguration times [11], or it is not available, e.g., in the case of DO
switches [48]. ExReC can emulate a flexible number of DO switches among one or many EPSs.
Other examples update forwarding entries on OpenFlow-capable EPSs to emulate circuits [51,
191]. However, such switches can behave unpredictably under frequent reconfigurations [215].
Therefore, ExReC emulates the DO component with a label-based forwarding approach to achieve
correct forwarding with low reconfiguration times. The servers add a label that indicates the
destination when sending a packet. The EPS is not reconfigured, which reduces complexity.

Server-based scheduling: DO topologies rely on buffering and scheduling logic. Implementing
such logic is not possible with today’s COTS (programmable) switches, to the best of our knowl-
edge. Therefore, ExReC moves these tasks to the servers: Each server runs a DPDK application
emulating the ToRs. The application fetches traffic from the VMs and schedules it on the links to
the DO and DA switches.

4.6.2 Implementation Details

Figure 4.17 illustrates the structure of the DPDK application. Each server runs 3 · 𝑥 + 1 threads
(rounded rectangles) where 𝑥 is the number of emulated ToRs per server. For every emulated
ToR, there is one TX1, one TX2, and one RX thread. All ToRs on a physical server share one Sync
thread. The application uses the DPDK vhost library to receive and send packets from and to the
VMs. The details of the forwarding process for both switch types are described in the following.
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Figure 4.17 Overview of the DPDK-based ToR emulation. Several threads forward packets from and to
the VMs and the ports of a ToR. A dedicated thread synchronizes the state of the DO switches across the
network.

4.6.2.1 Emulating DO switches:

The transmission via DO switches orients at the design of RotorNet [48]. RotorNet introduces
two sets of destination-based queues per ToR to drain packets from after the scheduler ran. Such
queueing is not available in COTS switches, another reason for emulation. The DPDK application
buffers packets leaving the rack in the “local” queues (TX1:2b). For indirect forwarding, packets
that are received but are not destined for the ToR (RX:2b), i.e., for which the ToR is an intermediate
hop, are put to the “non-local” queues.

The label-based routing uses VLAN tags. When sending, the DPDK application first reads per-
queue and per-DO link budgets (TX2:1). The budgets indicate per DO link how many packets of
each queue can be sent. Then, the thread pulls packets from the corresponding queues (TX2:2b)
and adds a VLAN tag that indicates the active matching (TX2:3b). On the EPS, pre-installed
static rules resemble the matchings of the DO switches. The EPS matches the VLAN tag and the
incoming port and forwards the packet to the corresponding outgoing port. This source routing-
based approach eliminates the need for updating rules on the switch and, thereby, reduces the
achievable slot size of the DO emulation. Upon packet reception (RX:1), the DPDK application
forwards the packets to the connected racks based on the incoming port of the packet and the
active matching (RX:2a). If the packet is not destined to the rack, it is put into the respective
non-local queue (RX:2b).

The DO Controller is responsible for cycling through the matchings. It is implemented on top
of MoonGen [234]; this provides an easy adaptation of slot sizes and emulated reconfiguration
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times. The DO Controller sends the next active VLAN id to all servers. This way, all ToRs use
the same VLAN id for packets to be sent during a slot.

The Sync thread reads VLAN ids from the DO Controller’s packets (S:1) and updates the
active matchings of the ToRs. This, in turn, triggers a recalculation of the budgets (S:2). Modifying
the budget calculation can realize different forwarding policies, such as forwarding only directly
or performing Valiant load balancing (VLB) [48]. The current state does not synchronize the
remaining capacities across the ToRs.

This VLAN-based approach results in little reconfiguration time with respect to the achieved
slot size. Therefore, a dedicated VLAN id indicates the reconfiguration of the DO switches. When
this VLAN id is received, the application sets all budgets to 0, i.e., stops sending until it receives
a VLAN id for a valid matching. Each server runs only one instance of DPDK application which
handles the traffic for all emulated ToRs with separate queues and threads. This reduces the jitter
of the synchronization method.

4.6.2.2 Integrating DA switches

While DO switches are not yet commercially available, OCSs for realizing DA switches are. Several
ports on each NIC can connect via fiber to a commercial, full crossbar OCS. Such an OCS can
change the connectivity between the ToRs at run-time: it provides bidirectional links that are
reconfigured on-demand in approximately 𝑟𝑑𝑎 ≈ 25 ms [222]. The DA Controller activates the
optical links at run-time and then updates the DA flows inside the DPDK application via control
plane messages (S:3). DA flows are matched using Layer 3 (source and destination IP addresses)
and Layer 4 (source and destination ports) information. Their packets are put into dedicated
queues per DA switch (TX1:2a). Dividing the queues between DA and DO switches avoids head
of line blocking in the queues of the DO links. Once packets are enqueued for the DA switch
(in the corresponding queue), even if there would be an upcoming matching on DO switches,
packets cannot be sent to a DO switch anymore. TX2 fetches the packets from the queues and
forwards them accordingly (TX2:2a). All DA queues are served in a round-robin fashion, i.e., TX2
fetches a limited number of packets from each queue. Baseline measurements using MoonGen
confirm that this mechanism is enough to saturate the DA switch. Moreover, ExReC assures that
no other bottlenecks besides the network occur, e.g., by CPU shaping between links in the DPDK
application.

Note that ExReC uses a COTS OCS since it is available. Moreover, using available components
generally adds credibility to the measurements. However, in principle, the DA switch could also
be emulated similarly to the DO switches.

4.7 Validation & Evaluation

In order to show the operation of ExReC, this section first gives details on our testbed and the
considered settings. Then, it demonstrates (1) validation of our control mechanism, (2) evaluation
of different traffics, and (3) an application example using DML training.

4.7.1 Testbed & Settings

The testbed consists of four servers running Ubuntu 18.04 (5.15.0-47-generic kernel) with 128 GB
of RAM and Intel Xeon Silver 4114 @ 2.2 GHz (20 cores), which emulate the ToRs. All servers
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(c) 1 DO and 1 DA switches.
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(d) 1 DO with indirect forwarding.

Figure 4.18 Throughput over time for four configurations. Comparison between 1 DO (a), 2 DO (b), 1 DO
and 1 DA (c), and 1 DO with indirect forwarding (d) for two flows to the same destination. A full cycle of
the DO switches completes after 7 matchings, i.e., 35 ms.

have two Intel X710-DA4 4x10G NICs [224] and two 1G Intel onboard-NICs (eight 10G ports
and two 1G ports). In principle, this allows exploring configurations from fully DO (four DO
switches) to fully DA (four DA switches). For DO emulation, the testbed contains a Dell S4048-
ON OpenFlow-capable switch [229], and for DA switches, a Polatis Series 6000n 32x32 OCS [222].
The demand-aware Controller and the Clock run on a dedicated machine. Based on intensive
measurements, the most stable achieved inter-arrival time of control messages is≈ 0.5 ms. Hence,
to obtain a duty cycle of 90%, all scenarios use a slot duration of 5 ms composed of an active time
of 𝑠 = 4.5 ms and an artificial reconfiguration delay of 𝑟𝑑𝑜 = 0.5 ms for DO switches.6

4.7.2 Validation of Topology Components

First, a deterministic scenario verifies the behavior of DO and DA switches using four settings:
1 DO switch, 2 DO switches, 1 DO and 1 DA switch, and 1 DO with indirect forwarding.
In particular, for DO switches, this demonstrates how the flow rates behave over time when
connections between ToRs exist only when matchings are available (cf. Section 3.3.4). For
applications that are constantly sending traffic, packets are buffered if the current matchings do
not connect the flow’s source and destination. The setups consider 8 ToRs so that there are 7
matchings to be cycled through denoted as M1,. . . ,M7.

6No cross traffic affects the separated management network; however, slight variances in our clock due to hardware
or software interference on the controller machine or switch are possible.
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Two MoonGen instances generate two packet streams with a constant rate of 1.25 Gbps. They
originate at two different ToRs but have the same destination ToR. Figure 4.18 shows the through-
put of the two flows for 60 ms from the steady-state phase. White areas indicate the slots for DO
topology. The matchings per DO switch are shown at the top (M1 - M7). Grey-shaded areas are
periods of reconfiguration.

With one DO switch (Figure 4.18a), the matching M3 serves the red flow between 35 to 39.5 ms
and 70 to 74.5 ms with 10 Gbps. The flow saturates the link for roughly the whole duration of
the slot. During the other 6 matchings and the reconfiguration times, packets sent by the source
are buffered. The data accumulates to 1.25 Gbps · (6+ 1) · 5 ms = 43.75 MBit. This approximately
matches the data that can be sent within one slot (10 Gbps · 4.5 ms = 45 MBit). Thus, when M3 is
active, the slot is almost fully utilized at 10 Gbps.

After six slots, the red flow sends again with 10 Gbps for the whole slot duration. This shows
(1) that DO emulation allows applications to send within the available slots and (2) that while
there is no connection available, traffic is buffered — the desired behavior. The blue flow has the
same behavior as the red flow; however, sending when M1 is active.

With the second DO switch (Figure 4.18b), the time until a pair of ToRs has a direct connection
again is approximately halved. Again, M3 serves the red flow. During this time, all traffic is sent
at 10 Gbps until the buffers are empty. Then, the rate drops to 1.25 Gbps, the rate of the traffic
source. The red flow is served from 35 to 39.5 via DO 1 (upper row), from 55 to 59.5 ms via DO 2,
and from 70 to 74.5 ms via DO 1 again. From 39.5 to 55 ms, traffic is buffered during three slots
(plus the duration of reconfigurations). Between 59.5 and 70 ms, traffic is buffered only during
two slots. These different levels of buffer occupancy reflect in the utilization. The rate of the red
flow is longer > 1.25 Gbps during the matching from 55 to 59.5 ms. Again, the blue flow shows
a similar, shifted behavior.

Figure 4.18c illustrates the effect of having one DO and one DA switch. The DO switch serves
the blue flow as expected: traffic is received only when a matching (M1) is established. In contrast,
the DA switch serves the red flow via a direct link between the source and destination. The flow
sends at a constant rate of 1.25 Gbps, which is the configured traffic rate.

Figure 4.18d visualizes 1 DO switch with indirect forwarding. Here, the flows are generated
with 1.5 Gbps so that the buffered traffic over a cycle exceeds the capacity of a single slot. The
budget policy is configured to dedicate 20% of the remaining volume of a slot to send traffic
indirectly. As a result, both flows are served in all slots and use only 20% of the slots when sent
indirectly. There are two behaviors evident while sending indirect traffic. First, simultaneous
sending (M1, M3) and second, sequential sending (M2, M4, M5, M6, M7). In the former case,
the flows initially share the rate due to the round-robin-based serving across all queues. After
the indirect traffic has been received, the direct traffic uses the full link rate. The effect of
sequential matching comes from how packets are stored on the intermediate ToRs. Both flows
are received sequentially in the order that packets have been added to the non-local queue
of the intermediate ToR. This order varies depending on the active matching. Overall, this
demonstrates that the budget calculation function can implement different forwarding policies.
A full re-implementation of RotorLB [48] is out-of-scope.
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Figure 4.19 Comparison of demand completion time (DCT) (a) and flow completion time (FCT) (b) for
three configurations. Vertical lines indicate ideal transmission times via DO (small flows) and DA switch
(large flows).

4.7.3 Measuring & Evaluating Complex Traffic

The subsequent evaluation focuses on more complex traffic scenarios with different traffic inten-
sities and three topology settings (2 DO, 3 DO, and 2 DO & 1 DA) with 8 ToRs. For each traffic
scenario, it considers two types of flows: small flows and large flows. The small flows have a size
of 6.25 MB. Source and destination of the flows are sampled uniformly from the 8 ToRs. These
flows should be sent via the DO switches since scheduling on a DA switch does not amortize
due to its larger reconfiguration time. Besides, each experiment has 4 large flows with a size of
at least 250 MB. With ideal traffic management, these flows should be transmitted via DA switch
connections. We vary the arrival rate of all flows and the size of the large ones to increase the
load while keeping the ratio between the volume of small and large flows at 2 : 1.

Figure 4.19a shows the DCT (finishing all flows). The figure shows the average value with
95%-confidence intervals against the load. The load is normalized by the maximum stable load.
DCTs are relative to the result for 3 DO and the smallest load (0.43). For all settings, the DCT
increases with increasing load. Adding one DO to the 2 DO case (3 DO) almost halves the DCT
for all loads. Moreover, 2 DO and 1 DA switch, where the DA switch specifically serves the large
flows, further reduces the DCT by 25% compared to 3 DO switches.

Figure 4.19b shows the individual FCTs for a normalized network load of 0.43. The CDFs are
separated by flow size, i.e., small flows are the lines on the left, large flows are on the right. As
expected, small flows finish all faster than large flows. Using a DA switch improves the FCT of
large flows. Note the following detail when comparing 3 DO to 2 DO & 1 DA. The topology
impacts both flow classes, but the effects are different. For the large flows, 2 DO & 1 DA performs
best providing a constant rate for them. For the small flows, 3 DO switches perform best. Here,
the additional DO switch reduces the waiting time between the slots of a ToR pair from ≈ 17 ms
(2 DO) to ≈ 12 ms, i.e., by one slot. This may be significant for delay-sensitive flows.

4.7.4 Real Application Traffic: Distributed ML

ExReC can run real applications like the industry-standard DML framework Horovod [73].7 Each
server has only one Nvidia Tesla T4 GPU [238]; hence, this setup considers only 4 ToRs. It

7Chapter 2 gives more details on the expected traffic patterns.
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Figure 4.20 Relative impact of configuration on the batch completion time (BCT). Bars indicate mean and
90% confidence intervals. 1 DO & 2 DA and 3 DA have the lowest BCT. These configurations can form a
ring for the large flows.

evaluates four machine learning (ML) models of different sizes: DenseNet121 (DN121), ResNet50
(RN50), VGG16, and VGG19 with different topology configurations for 50 batches (training steps)
and report the BCT in Figure 4.20. The values are normalized per trained model to the 3 DA case,
which is a full-meshed network, i.e., optimal here.

The observations across the models are consistent. 3 DA obtains the lowest BCT. It is closely
followed by 1 DO, 2 DA, which uses the DA links to form a ring that matches the observed traffic
pattern of Horovod (cf. Figure 2.4a). All large flows are forwarded via this ring of DA links and
hence, efficiently served. With 2 DO, 1 DA, this ring cannot be formed. Here, the BCT is ≈ 22%
larger for the smallest model, DenseNet121, compared to the ideal case. Finally, for 3 DO, the BCT
is lower again. With 3 DO, the full-meshed is created again in every slot. However, interruptions
due to reconfiguration lead to higher batch durations. The average is increased by ≈ 5 − 10%.

4.8 Summary

This chapter provides a deeper understanding of the first characteristic of reconfigurable topolo-
gies, the reconfiguration delay. To this end, this chapter studies the modeling, measurement,
and emulation of end-to-end reconfiguration delays of programmable optical links using COTS
equipment. It presents a measurement methodology and investigates the behavior of five pro-
grammable networking devices. The measurements reveal varying performance across the de-
vices with mixed conclusions. In particular, the observed reconfiguration delays from the pro-
grammable switches allow only reconfigurations at a low frequency. Furthermore, the analyses
show that the specific reconfiguration request impacts the delay on the control plane. Inter-
estingly, many theory-oriented works neglect this variability, i.e., rely on the assumption that
end-to-end reconfigurations of optics are deterministic. The measurement results report that re-
configuration times are predictable but not constant — a fact that should be considered in future
work.
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In addition, this chapter introduces ExReC, a flexible framework for building reconfigurable
networks, which only relies on COTS hardware. ExReC can assess the performance of different
topologies combining DO and DA switches. It can flexibly run different combinations of DO
and DA topologies, going from all DO to all DA with the same testbed setup. Moving the
flow scheduling complexity to the physical servers allows controlling the reconfiguration delay.
Moreover, it enables the implementation of various forwarding policies for the DO part.

A label routing-based emulation replaces DO switches that are not commercially available.
In principle, this approach can also be applied to the DA topology. However, using available
components as far as possible reduces the assumptions underlying the measurements. This
chapter evaluates ExReC for 8 ToRs only. However, ExReC can evaluate larger settings, e.g.,
by adding more physical servers or ports on the servers and switches. Higher link rates are
constrained by the performance of the CPU.

The evaluation hints at the benefits of different reconfiguration classes for different flows. We
will analyze and explore these benefits more in detail in Chapter 7.
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Chapter 5

Leveraging Multi-layer Reconfigurability for
Flexibility in WANs

Internet Service Provider (ISP) networks form a critical backbone of the digital society. Given
the popularity of data-centric applications related to health, science, social networking, business
and entertainment, it is expected that the traffic carried by these networks will continue to
grow explosively, especially to and from datacenters (DCs) [239, 33]. The COVID-19 pandemic
has further emphasized the need for an efficient and reliable communication infrastructure.
Over the last years, researchers and service providers have innovated at several layers of the
networking stack to improve the efficiency of such infrastructures. The proposals render networks
more flexible and demand-aware and allow exploiting the specific spatio-temporal structure in the
demand. For instance, ad-hoc traffic engineering in wide area networks (WANs) has been replaced
with software-defined centralized controllers (e.g., Google B4 [240] and Microsoft SWAN [241]),
commodity hardware load-balancers have been replaced with software load-balancers [242, 243],
and switch vendors’ management APIs have been replaced with in-house switch stacks [41, 231].
With each such technology investment, providers are improving the performance and cost-of-
ownership of networks by adding reconfigurability to individual components.

Recently, these innovations also include the (optical) topology layer. As Chapter 3 elaborates,
emerging optical technologies allow reconfiguring the network topology in a demand-aware (DA)
manner within hours, minutes, or even seconds [57, 58, 244, 131]. This, in principle, may
further improve the efficiency of networks: by providing “shortcuts” between more frequently
communicating sites, the overall traffic may be reduced even in the short term, saving resources
and improving latency [60, 245, 58, 62].

However, only little is known today about the potential benefits (e.g., related to performance,
energy consumption, capital expenditures (CAPEX), quality of service (QoS)) and limitations of
more adaptive optical networks, jointly optimizing reconfigurations on multiple layers and hence
also accounting for topological flexibility.

This chapter investigates the potential benefits of using reconfigurations on multiple, jointly
optimized layers, thereby targeting the second characteristic of reconfigurable topology. In
particular, it considers the use case of an eyeball WAN which serves content delivery network
(CDN) traffic. The study of CDN traffic is interesting for two reasons: (1) its enormous volume,
the traffic of a few so-called hyper-giants [13] constitutes the majority of the ISP’s workload today,
and (2) hyper-giants increasingly interconnect with eyeball networks through multiple locations,
which introduces an optimization opportunity to handle this traffic efficiently.
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In this context, this chapter analyzes the benefits of exploiting the reconfiguration flexibilities
for an adaptive and demand-aware re-optimization along three fronts: IP topology, routing, and
the CDN end-user mapping. Optimization of these layers or of combinations of two layers has
already been evaluated in prior works. In contrast, this chapter studies to what extent and how
a reconfigurable optical network topology can be combined with a clever request mapping to
optimize hyper-giant traffic routing in an ISP network.

Therefore, it contributes an optimization framework that, given the point of presences (PoPs)
of the hyper-giants and the end-users’ demands, jointly optimizes and adapts the mapping from
end-users to the hyper-giants’ PoPs, the IP layer topology and routing, and the routing in the
optical domain. The joint optimization is empirically compared against baselines that optimize
only two layers, using empirical data from a large European ISP. The evaluation provides
insights into the required amount and frequency of re-optimizations, the predictability of the
required reconfigurations, as well as the benefits of adaptive reconfigurations during special
events such as the COVID-19 pandemic (2019-2023) [246], under single link failures, and its
robustness under less structured demands. Since the analysis is optimistic in that it assumes a
cooperative environment, the chapter concludes with a discussion on deployment scenarios and
presents avenues for a possible system design.

Content and Outline Section 5.1 describes the scenario and challenges that come from hyper-
giant-dominated workloads and elaborates on the opportunities in today’s increasingly flexible
networks. Section 5.2 briefly reviews the related work. Section 5.3 introduces the framework
for joint optimization of multi-layer reconfigurability. The performance of the joint optimization
in comparison to existing approaches is evaluated using real data from a large European ISP in
Section 5.4. Section 5.5 elaborates on trends that support the deployment of the joint optimization
approach in CDNs’ and ISPs’ infrastructures and presents a possible system design. Finally,
Section 5.6 summarizes the chapter.

This chapter builds on two prior publications. Specifically, the empirical analysis in Section 5.1.2
re-uses findings presented in a previous conference publication [13, Section 3.2]. The remaining
sections in [13] are contributions from the co-authors. The rest of the chapter bases on the journal
publication [1]. To foster future work, the framework implementation has been made publicly
available at https://github.com/tum-lkn/hypergiant-isp-optimization.

5.1 Motivation

This section first introduces more details on the considered scenario. Then, it describes the
challenges, opportunities, and enablers for the joint optimization.

5.1.1 Detailed Scenario Description

Figure 5.1 illustrates the considered scenario for a single hyper-giant. It shows three layers. The
ISP operates a reconfigurable Optical Network (ON) (bottom) to configure an IP topology and
routing (middle). The IP topology and routing connect the ISP’s customers (“Users”) to the
hyper-giant peering (PNI) at multiple locations (top). The ONs are usually shared using Dense
Wavelength Division Multiplexing (DWDM) systems that contain reconfigurable optical add-
drop multiplexers (ROADMs). The ROADMs, in turn, provide connectivity between two nodes

https://github.com/tum-lkn/hypergiant-isp-optimization
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Figure 5.1 Schematic view of the layers of in an ISP-CDN environment. ISPs operate a reconfigurable
Optical Network (ON) to connect their customers to content providers such as CDNs. Large CDNs can
connect at multiple peering points, which allows the ISP to optimize traffic steering along three dimensions:
ON topology, IP layer, and peering point selection.

in the optical topology, by switching/routing lightpaths through the fibers (cf. Section 3.2.2).
IP routers connect to the ON via the ROADMs. For every lightpath (solid purple line) that
connects two IP routers, a transceiver/port must be available at both ends of the path. A single
lightpath provides a fixed capacity. Multiple lightpaths can be aggregated to provide a single
IP link with the accumulated capacity of the single lightpaths. By combining multiple IP links,
the ISP can build a topology that routes traffic. The traffic enters or leaves the network through
the aggregation network towards end-users, or via peerings or internet exchanges towards other
networks.

Since large CDNs connect at multiple peering points (green triangles), in principle, operators
can optimize the hyper-giants’ traffic in the ISP’s network through clever peering point selection
(i.e., mapping end-users to the “best” ingress point) [13]. Assuming a cooperative environment of
CDNs and ISPs, this chapter evaluates how CDN peering point selection can jointly be optimized
with the ISP network and be adapted towards changing end-user demands over time.

Data source: Tier-1 ISP network. To understand the benefits of jointly leveraging reconfigura-
bility on multiple layers, this chapter provides motivational analyses and evaluations of the
algorithms on empirical data from a Tier-1 ISP. The ISP has > 15 million fixed lines and > 30
million mobile users and serves over 50 PB of daily traffic. Its infrastructure features more than
10 PoPs in its home country and overall contains more than 1000 backbone routers. More details
on the ISP’s profile can be found in [13].

5.1.2 The Challenge: Hyper-giant Traffic

Today, traffic in ISP networks is dominated by a few CDNs or content provider networks. In a
previous study [13], we confirm this claim using data from the ISP. We show that traffic of so-
called hyper-giants makes ≈ 75% of the total traffic in the ISP network. Following the definition in
our previous work [13], this chapter defines a hyper-giant “as any organization that meets the two
following conditions: (1) it sends at least 1% of the total traffic delivered to broadband customers
in the ISP’s network, and (2) publicly identifies itself as a CDN, or is registered as a ’content’ or
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Figure 5.2 Cumulative number of hyper-giants with at least one change in their private network interconnects
(PNIs) (number of PoPs or capacity). All the top-10 hyper-giants increase their capacity within one year
and five of them also increased their number of presences.

’enterprise network’ in the public database PeeringDB” [13, p. 83]. In the empirical data of the
ISP, this definition applies to the traffic of the 10 largest organizations. Moreover, the analysis
of traffic from ≈ 2 years of operation shows that the share of hyper-giant traffic stays constant
meanwhile, the total ingress traffic increases by ≈ 60%. This observation is also confirmed in
other studies [239].

Given their size and the critical role hyper-giants play today, the efficient delivery of their end-
user traffic has become a primary concern of ISPs [247]. An efficient delivery, i.e., providing a
good service while keeping network loads low, is in the interest of the hyper-giants too, which aim
to offer low latency and high quality of experience (QoE) to their customers. Moreover, hyper-giant
traffic is one of the main reasons for ISPs to upgrade their infrastructures [13].

Today, hyper-giants and ISPs often leverage direct connections between their autonomous sys-
tems (so-called PNIs), which gives them full control over the links [248]. In fact, to inject traffic
into the ISPs network closer to the end-users, ISPs and hyper-giants typically connect at multiple
geographic locations [249, 248]. Hyper-giants can control the ingress point to be used for specific
end-users, which introduces steerability of the traffic and distinguishes hyper-giant traffic from
other traffic. The latter is henceforth called background traffic. Although background traffic can
be much more volatile and exhibit more dense connectivity, the large volume of hyper-giant traffic
often dominates in ISP networks.

Reconfiguration of ISPs’ topology and routing to accommodate diurnal patterns of background
traffic has been shown to be feasible [58]. However, the diversity of ingress points introduces
the challenge of mapping end-users to the “best” ingress point and adds a new dimension to the
problem [250, 251, 13]. The volume and spatial distribution of end-user demands significantly
vary over time, not only due to regular diurnal patterns but also because of large events, e.g., [252,
253, 38] or the COVID-19 pandemic [254, 32]. Moreover, also the PNIs themselves evolve over
time.

Figure 5.2 illustrates this evolution. It shows the cumulative number of the top-10 hyper-giants
with changed connectivity (i.e., adding PNIs) and capacity within a year. In order to identify
capacity changes, the analysis uses data from the ISP’s SNMP system that was aggregated to the
median value per month. The value of March 2018 serves as a reference. We observe that all of
the top-10 hyper-giants increase their peering capacity with the ISP. In addition, five of them also
add new presences, i.e., interconnects with the ISP. It becomes evident that ISP and hyper-giants
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continuously invest in the infrastructure, diversifying their interconnection and resulting in more
options when optimizing the end-user mapping.1

Overall, however, while a fixed user-to-ingress point mapping may work well at one point in
time, it can lead to congested peerings or network paths at a different time. On the one hand,
due to its sheer volume, a suboptimal topology and routing for hyper-giants’ traffic results in
large overheads for ISPs, e.g., in terms of resource efficiency. On the other hand, the deployed
IP topology of the ISP affects the shortest paths between end-users and the hyper-giants. Hence,
end-user mappings, the ISP’s IP topology, and the routing interact, which motivates a joint
optimization approach accounting for reconfiguration.

5.1.3 Opportunity: Demand-Aware Re-Optimization

Re-optimizations accounting for the changing demand can be beneficial at different time scales.
A first opportunity concerns diurnal traffic patterns in large eyeball networks. Typical traffic
patterns show a large difference between the total traffic volume during the peak hour (typically
in the evening) and the hour with the smallest amount of traffic (typically at night). An analysis
of the traffic volumes arising at the ISP reveals that the difference can be as large as a factor of
7. An interesting use case for more adaptive networks hence regards the joint re-optimization
of CDN-user-to-ingress-point mapping and the ISP’s IP topology. Re-optimizing the topology
frees up capacities on the fibers, enabling the ISP to offer additional, time-of-day-based services.
One option is to temporally sell bare lightpaths to customers that want to directly connect their
sites during low traffic hours (𝜆-service), e.g., for synchronization. Additional benefits may
arise in terms of energy consumption: transceivers may be switched off, and potentially also IP
nodes [129].

A second opportunity for potential savings for the ISP and better performance for end-users
stems from joint re-optimization on larger scales, e.g., monthly. To accommodate growing de-
mands, both hyper-giants and ISPs continuously invest in server, network, and peering infras-
tructure (cf. Figure 5.2). Besides a simple upgrade of the capacity at already existing PoPs, this
also includes interconnecting at new locations. While hyper-giants’ mapping systems usually
try to leverage these new ingress points, joint re-optimization including topology and routing
introduces also cost savings for the ISP, e.g., by using available transceivers and fibers more
efficiently.

5.1.4 Enablers: Operational Flexibilities

Four trends that are arising in ISP networks and provide operational flexibility foster the proposed
joint reconfiguration:

1. Flexible IP topology. The operation and deployment of lightpaths induce costs for the ISP
(e.g., CAPEX for the required transceivers or energy costs for the operation of the lightpaths).
Hence, ISPs typically aim to deploy as few lightpaths as possible while serving all demands and
accounting for additional requirements, e.g., related to resilience or business policies. Changing
the IP topology on a long timescale, e.g., for maintenance or to accommodate organic traffic-
growth, is already a common operation (cf. [13, Section 3.3]). Recent developments in optical

1A more detailed analysis of the dynamics observed in the ISP’s network is given in [13].
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switching and advances in software defined networkings (SDNs) in the optical domain render
not only long-term but also short-term (re-)deployment of lightpaths feasible [255, 256].

However, the time required for changing IP links is still in the order of minutes as multiple steps
are necessary: First, the correct paths, including wavelengths, in the optical domain must be set
up. Whereas setting the configuration on a single ROADM is doable within a few seconds [244],
setting an entire path (in production settings) can take several minutes [57, 58].2 Afterwards,
interfaces on the IP routers have to be set up, and eventually, updated link characteristics are
communicated to the routing entity, e.g., the Path Computation Element (PCE) [257]. Overall,
this process can happen on the scale of minutes [58] and results in a first optimization opportunity:
A programmable network controller can be used to reconfigure the IP topology throughout the
day to optimize it for the changing demands.

2. Flexible traffic engineering. On top of the established IP topology, ISPs typically perform
traffic engineering using IP or MPLS routing to avoid congestion in the backbone [258]. Recently,
novel source-based routing approaches emerged in the context of Segment Routing (SR). Here,
each node and adjacency is assigned a unique label (Segment ID). The edge routers push a
stack of Segment IDs to forwarded packets which are then used to successively forward the
packet [259]. Deployment of SR policies to the edge routers is often done using PCE [257]. This
allows adaptable IP routing without propagating updates through the network and results in
reconfiguration delays in the order of seconds [260]. In particular, using Adjacency Segment IDs
to describe the path removes the need for re-convergence of the Interior Gateway Protocol (IGP)
due to IP topology changes. Reachability information or shortest paths are not maintained on the
routers in this case. The central controller configures Segment IDs for added or removed links
and can update rules on the edge routers accordingly.

3. Flexible user mapping. Many hyper-giants employ clever schemes to map end-user requests to
the desired ingress point/server, e.g., [261, 262, 263, 264], often using domain name system (DNS).
The hyper-giant’s DNS system returns different IP addresses to end-users to route them via a
specific peering. Thereby, they can optimize, e.g., the requests’ latency or the load of the servers.
The benefits of flexible mappings that automatically adapt to the state of the network have been
shown to significantly reduce latency for end-users as well as the backbone traffic load for ISPs,
especially in CDN-ISP collaboration systems such as PaDIS [250] or FlowDirector [13].

The reconfiguration delays of these mapping systems depend not only on the agreed channel
between hyper-giant and ISP, e.g., fully automated using Application-Layer Traffic Optimization
(ALTO) [265] but also on the time until DNS changes are propagated to the end-users. Recent
analyses show that this can be in the order of minutes [266]. This control over the ingress point
describes the third enabler for short-term reconfigurability.

4. Centralized control for joint optimization. While the enablers discussed above are promising,
the highest benefit can be obtained by joint optimization along all three interacting layers, as
this chapter later elaborates in the evaluation. For example, changing the user mapping without
sufficient capacity on the network path may lead to congestion. The SDN paradigm, which is also

2Recently, Hall et al. [131] illustrated avenues to reduce this reconfiguration delay to the order of seconds. However
their study is limited to a lab environment.
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Table 5.1 Overview of related work on capacity planning and CDN-ISP collaboration.

IP topology IP routing/grooming Demand Reconfigure over time
[147, 148] ✓ ✓ ✗ ✓

[166, 267, 268] ✓ ✗ ✓ ✗

[62, 63] ✓ ✓ ✗ ✓

[167] ✓ ✗ ✓ ✗

[151, 269] ✓ ✓ ✗ ✗

[270, 271, 272,
273, 274, 250,

13]
✗ ✗ ✓ ✓

This study ✓ ✓ ✓ ✓

emerging in ISP networks [58, 256], is the fourth enabler: with its centralized control, a globalized
view of all layers of the network is available, and this problem can be overcome.

5.2 Related Work

This study of how reconfigurable topologies can be used to improve CDN traffic routing in ISP
networks builds upon several important existing results in the area of optical networks, CDN-ISP
collaboration, and network resource optimization. Table 5.1 summarizes them by indicating the
layers considered for joint (re-)optimization. These will be discussed in the following.

Capacity planning and routing in optical networks. Capacity planning is a classic problem in
optical networks, and there already exists a large body of literature also accounting for multi-
layer aspects (cf. Section 3.4). Much existing related work on optical network optimization
revolves around the impact of optical network reconfiguration on the routing stability [147, 148],
the reconfiguration and adaption of virtual topologies that overlay optical networks to changing
traffic demands [61], issues related to incremental deployment [245, 275], as well as regenerator
placement problems (i.e., computing ROADM locations) [276]. All these works consider the
demand given by source-destination pairs and do not shape it via optimizing end-user mappings
like the approach presented in this chapter does.

Another path of research focuses on content-oriented and application-aware optical network
optimization [166, 267] and multi-layer resource allocation [62, 63], e.g., in the context of the
Facebook network [268]. A case study related to CDNs is conducted in [167], however, without
considering reconfigurations. In particular, these works consider optimizations on the demand
level but optimize only 2-layers neglecting the flexibility of IP grooming [267, 167], and they
do not adapt over time [166, 267, 268]. Adaptive operation is provided by [62, 63] along with
the integration of application requirements such as latency constraints. However, demand is
provided again by fixed source-destination pairs and is not steerable. While several efforts exist
to render operations of optical wide-area networks more adaptive [151, 269], there is no related
work on optimizing ISP networks along all three dimensions arising in the context of CDNs:
topology, routing, and end-user mapping. In particular, the few existing 2-layer solutions which
account for multiple mapping locations, such as [267], do not support IP grooming.

Existing proposals from the DC scenario are not applicable here since the constraints in DCs
are fairly different from the ones in ISPs (e.g., in terms of routing [141], availability of wireless
channels [47], and concerning workloads [34]).
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CDN-ISP collaboration. There is interesting work on how collaborations between CDNs and
ISPs can be improved. Such work, however, mainly focuses on traffic engineering (TE), neglecting
the potential of topology modification. For related work on joint content placement and TE in
this context, see [277, 270, 271, 272, 273, 274]. All this work is limited to user mapping and TE
but ignores adaptive optimization of the ISP’s topology. A recent case study considers the joint
content distribution and TE of adaptive videos in telco-CDNs [278], assuming a caching system
where CDNs can deploy media objects.

In contrast, this chapter considers a scenario where requests are handed over at peerings to the
CDN. The works closest to this scenario in the context of CDN-ISP collaboration are PaDIS [250]
and FlowDirector [13]. Both systems collect topology and routing information from the ISP
network to create a ranked mapping between the IPs of the ISP’s users and the CDN’s servers,
e.g., based on geographical distance or the number of hops in the network. The ranked mapping
is an additional input to the CDN’s mapping system to improve content delivery by serving via
servers at closer locations and shorter paths. PaDIS and FlowDirector, aid the CDNs’ mapping
systems but only collect information from ISP’s network and do not adapt it.

Optimization and resource allocation. The optimization problem considered in this thesis is
related to the virtual network embedding problem, which has been studied in the context of
optical networks as well [159, 160, 161, 158, 162, 163, 164]. See [157] for an overview of existing
solutions in this context. In virtual network embedding, both virtual nodes and virtual links are
to be allocated. However, in the present case, node allocations are already given (namely, the
end-user locations and the hyper-giant’s peering locations). Only the topology is flexible, i.e., to
be allocated. This link-only embedding problem boils down to routing, but does not support
selecting multiple (content) locations. That said, the approaches in [159, 161, 162] for supporting
the addition and removal of IP links could be reused in the CDN-ISP setting; however, these
approaches do not consider re-embedding of virtual links, which maps to re-routing of demands.
Finally, also works on mapping service function chains on optical networks, e.g., [279], are
different from the CDN-ISP scenario as the optimization regards the mapping, not the topology.

5.3 Joint Optimization Framework

In order to study the potential benefits of re-optimizing reconfigurable networks on multiple
layers, this section formulates a joint optimization framework. Given the hyper-giant and back-
ground traffic, the goal is to find assignments of end-users to hyper-giant peering locations, the
routing on the IP layer, the capacities of the IP links, and their routing in the optical domain. The
objective is to minimize the network capacity and to account for re-configurations. This is subject
to fulfilling all demands without violating capacities of peering, IP or optical (wavelengths on
fibers) links. The presented approach combines optimizations on single layers and jointly solves
the following sub-problems: (1) assignment of end-user nodes to hyper-giants’ ingress PoPs, (2)
design of the IP topology (connectivity & capacity), (3) selection of optical paths for the IP links,
and (4) routing of hyper-giants’ and background demands in the IP topology. This modeling can
leverage the flexibility of the three layers, e.g., demand can be routed via a dedicated IP link and
optical path, or can use multi-hop IP routing to reduce resource fragmentation. In general, the
optimization provides a solution for a single time instance 𝑡.
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This section starts by describing the general joint optimization framework (Section 5.3.1). It
then presents a greedy algorithm for the end-user mapping (Section 5.3.2). Finally, it introduces
the specific optimization algorithms which come in different flavors, highlighting various aspects
relevant in our evaluation (Section 5.3.3).

5.3.1 Mathematical Model

Table 5.2 summarizes the sets and functions, Table 5.3 the constants, and Table 5.4 the decision
variables. In the following, the time index 𝑡 is ommitted for sake of readability if it is not needed.

Sets and mappings. The topology consists of two sets of nodes, IP nodes (or routers) (𝒩 IP) and
optical nodes (𝒩Opt). They are collocated and connected via optical transceivers. The mapping
from IP node to an optical node is fixed and given by 𝑜 : 𝒩 IP → 𝒩Opt , 𝑒 → 𝑜(𝑒). Multiple IP
nodes can be collocated with one optical node. For instance, there can be one IP node for peering
with hyper-giants and another one for end-user connectivity. The demand layer is described by
the set of hyper-giants (ℋ ) which, in turn, are specified with a set of end-user nodes (𝒰ℎ) and
peering nodes (𝒫ℎ ⊂ 𝒩 IP). The mapping from end-user nodes to IP nodes is fixed and given by
𝑖 :

⋃
ℎ∈ℋ 𝒰ℎ → 𝒩 IP , 𝑢 → 𝑖(𝑢). An IP node can provide connectivity for end-users or peering

nodes but not for both, i.e., {𝑒 ∈ 𝒩 IP : 𝑖(𝑢) = 𝑒 ∃𝑢𝒰ℎ} ∩ 𝒫ℎ = ∅ ∀ℎ ∈ ℋ . The set of pre-
calculated equal-cost candidate paths between IP nodes 𝑒 and 𝑓 in the optical domain is denoted
by 𝑃𝑒 , 𝑓 . 𝑃𝑒 , 𝑓 already implicitly considers the mapping from IP to optical nodes.

Constants. The constant 𝑑𝑢ℎ denotes the demand of end-user node 𝑢 toward hyper-giant ℎ.
Different to others, e.g., [267], this model does not differentiate between up- and down-link
demands (request and reply). The hyper-giants are modeled as super-sources (abstract nodes). An
actual peering between the ISP and a hyper-giant is modeled with a link between a peering node
and the super-source. The peering capacity between the ISP and hyper-giant ℎ at peering node
𝑝 ∈ 𝒫ℎ is 𝑐ℎ𝑝 . The constant 𝑑𝑏𝑔

𝑎𝑏
indicates the amount of background traffic between 𝑎, 𝑏 ∈ 𝒩 IP.

All three values are given as rates (in Gbps). Each IP router supports a maximum number of
transceivers 𝑡𝑚𝑎𝑥

𝑒 which each provides a capacity of 𝐶. The optical system restricts the number of
lightpaths (wavelengths) on a fiber between 𝑚 and 𝑛 ∈ 𝒩Opt to 𝑤𝑚𝑛 . The constant 𝑙𝑝 denotes the
length of a lightpath 𝑝 ∈ 𝑃𝑒 , 𝑓 in kilometers. In order to allocate some headroom of capacity on
the IP links for sudden (small) demand variations, 𝑢𝑚𝑎𝑥 defines the maximum link utilization. 𝜌
is the fraction of IP links that may be reconfigured between two optimizations with respect to the��𝒩 IP

��2.

Variables. The binary variable �̂�𝑢,𝑝ℎ indicates if demand 𝑢 from hyper-giant ℎ traverses peering
node 𝑝 ∈ 𝒫ℎ , i.e., it represents the end-user mapping. Another set of variables 𝑜ℎ

𝑢,𝑒 𝑓
indicates the

routing of a hyper-giant’s demand in the IP layer (𝑒 , 𝑓 ∈ 𝒩 IP). If the demand 𝑢 from hyper-giant
ℎ flows over an IP link between 𝑒 and 𝑓 the value is 1. Similarly, 𝑜𝑏𝑔

𝑎𝑏,𝑒 𝑓
indicates if background

demand from 𝑎 to 𝑏 traverses IP link from 𝑒 to 𝑓 . The optimization considers single path routing.
Hence, all these groups of variables are binary valued.

The number of lightpaths that connect IP routers 𝑒 and 𝑓 while using path 𝑝 ∈ 𝑃𝑒 , 𝑓 is given
by 𝑦𝑒 𝑓 ,𝑝 . By integrating the path 𝑝, 𝑦𝑒 𝑓 ,𝑝 already determines the routing in the optical domain.
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Table 5.2 Sets and Functions.

Notation Description
𝒩 IP IP nodes (routers): At every PoP, there is at least one IP router.
𝒩Opt Optical nodes (ROADM): At every PoP, there is one optical node which is

connected to the IP router at that PoP.
𝑜(𝑒) 𝒩Opt →𝒩 IP, mapping between IP and optical nodes.
ℋ Hyper-giants: Entities that are responsible for the majority of the traffic.
𝒰ℎ End-user demands of hyper-giant ℎ.
𝒫ℎ ⊆ 𝒩 IP Hyper-giants’ peering locations: IP nodes where the ISP connects via PNIs to the

hyper-giants.
𝑖(𝑢) ⋃

ℎ∈ℋ 𝒰ℎ →𝒩 IP, mapping between end-user demand and IP nodes.
𝑃𝑒 , 𝑓 (Pre-calculated) Equal-cost paths between 𝑒 , 𝑓 ∈ 𝒩 IP over the ON.

Table 5.3 Constants.

Notation Description
𝑑𝑢ℎ Hyper-giant demand volume: Aggregated demand from end-user node 𝑢 (enter-

ing at IP node 𝑖(𝑢)) towards ℎ ∈ ℋ in Gbps.
𝑐ℎ𝑝 Peering Capacity: Bandwidth of the PNI between ISP and ℎ at 𝑝 ∈ 𝒫ℎ in Gbps.
𝑑
𝑏𝑔

𝑎𝑏
Background demand: Demand between IP routers 𝑎, 𝑏 ∈ 𝒩 IP in Gbps.

𝑡𝑚𝑎𝑥
𝑒 Number of transceivers at IP router 𝑒 ∈ 𝒩 IP.
𝐶 Capacity of a lightpath in Gbps
𝑤𝑚𝑛 Fiber capacity: number of lightpaths that can be allocated on fiber between

𝑚, 𝑛 ∈ 𝒩Opt.
𝑙𝑝 Length of path 𝑝 ∈ 𝑃𝑒 , 𝑓 in km.
𝑢𝑚𝑎𝑥 ∈ [0, 1]Maximum allowed IP link utilization.
𝜌 Fraction of allowed reconfigurations.

Thus, specific variables for optical routing are not required. Variables 𝑟𝑒 𝑓 indicate if capacity of
link 𝑒 , 𝑓 ∈ 𝒩 IP changed compared to the previous timestamp.

Constraints. The optimization is subject to several constraints which address flow conservation,
demand fulfillment and capacity limitations on three layers. Besides, limitations in the number
of transceivers per IP node as well as bi-directionality of IP links and maximum link utilization
are considered: ∑

𝑝∈𝒫ℎ

�̂�𝑢,𝑝ℎ = 1 ∀ℎ ∈ ℋ , 𝑢 ∈ 𝒰ℎ (5.1)

∑
𝑓 ∈𝒩 IP: 𝑓≠𝑝

(
𝑜ℎ
𝑢,𝑝 𝑓

)
− �̂�𝑢,𝑝ℎ = 0 ∀𝑝 ∈ 𝒫ℎ , 𝑢 ∈ 𝒰ℎ , ℎ ∈ ℋ (5.2)

∑
𝑓 ∈𝒩 IP: 𝑓≠𝑒 , 𝑓 ∉𝒫ℎ

𝑜ℎ
𝑢,𝑒 𝑓
− 𝑜ℎ

𝑢, 𝑓 𝑒
= 0 ∀𝑒 ∈ 𝒩 IP : 𝑒 ≠ 𝑢 ∧ 𝑒 ∉ 𝒫ℎ , 𝑢 ∈ 𝒰ℎ , ℎ ∈ ℋ (5.3)
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Table 5.4 Variables

Notation Description
�̂�𝑢,𝑝ℎ = 1 if demand 𝑢 to ℎ flows over peering node 𝑝 ∈ 𝒫ℎ to hyper-giant ℎ.
𝑜ℎ
𝑢,𝑒 𝑓

= 1 if demand from 𝑢 to ℎ flows over IP link 𝑒 , 𝑓 . ∀𝑒 , 𝑓 ∈ 𝒩 IP.
𝑜
𝑏𝑔

𝑎𝑏,𝑒 𝑓
= 1 if demand from 𝑎 to 𝑏 flows over IP link 𝑒 , 𝑓 . ∀𝑒 , 𝑓 ∈ 𝒩 IP.

𝑦𝑒 𝑓 ,𝑝 IP trunk capacity: 𝑦𝑒 𝑓 ,𝑝 ∈ ℕ indicates the number of lightpaths between 𝑒 , 𝑓 ∈
𝒩 IP using path 𝑝 ∈ 𝑃𝑒 , 𝑓 and thereby the capacity ( · 𝐶) of the trunk.

𝑟𝑒 𝑓 =1 if capacity of IP link changed in comparison to value from previous instance
(𝑦𝑡−1

𝑒 𝑓
).

∑
𝑓 ∈𝒩 IP: 𝑓≠𝑢

𝑜ℎ
𝑢,𝑖(𝑢) 𝑓 − 𝑜ℎ

𝑢, 𝑓 𝑖(𝑢) = −1 ∀𝑢 ∈ 𝒰ℎ , ℎ ∈ ℋ (5.4)

∑
𝑢∈𝒰ℎ

�̂�𝑢,𝑝ℎ · 𝑑𝑢ℎ ≤ 𝑐ℎ𝑝 ∀𝑝 ∈ 𝒫ℎ , ∀ℎ ∈ ℋ (5.5)

Equations 5.1 through 5.4 describe the flow conservation for hyper-giant demands and thereby
address sub-problems (1) and (4). Specifically, Equation 5.1 sets the fractions of routed demand
per hyper-giant-end-user pair to be equal to 1, i.e., all demands from hyper-giants (super-source)
to end-users must be served. At all IP nodes where neither the end-users nor the peering
are connected, ingressing and egressing flow of one demand must be equal (Equation 5.2 and
Equation 5.3). At the destination node of a demand, it must sink (Equation 5.4). Equation 5.5
limits capacity of peerings, i.e., the edges from the peering nodes to the super-source node of the
respective hyper-giant. ∑

𝑓 ∈𝒩 IP: 𝑓≠𝑎

𝑜
𝑏𝑔

𝑎𝑏,𝑎 𝑓
= 1 ∀𝑎, 𝑏 ∈ 𝒩 IP (5.6)

∑
𝑓 ∈𝒩 IP: 𝑓≠𝑒

𝑜
𝑏𝑔

𝑎𝑏,𝑒 𝑓
− 𝑜

𝑏𝑔

𝑎𝑏, 𝑓 𝑒
= 0 ∀𝑎, 𝑏, 𝑒 ∈ 𝒩 IP , 𝑒 ≠ 𝑎, 𝑒 ≠ 𝑏 (5.7)

∑
𝑒∈𝒩 IP: 𝑒≠𝑏

𝑜
𝑏𝑔

𝑎𝑏,𝑒𝑏
= −1 ∀𝑎, 𝑏 ∈ 𝒩 IP (5.8)

Equations 5.6 through 5.8 are similar flow conservation constraints for background demands.
They ensure that flows originate at the sources, terminate at the sinks and that ingressing and
egressing flows at intermediate nodes are the same.

∑
ℎ∈ℋ

∑
𝑢∈𝒰ℎ

𝑜ℎ
𝑢,𝑒 𝑓
· 𝑑𝑢ℎ +

∑
𝑎,𝑏∈𝒩 IP

𝑜
𝑏𝑔

𝑎𝑏,𝑒 𝑓
· 𝑑𝑏𝑔

𝑎𝑏
(5.9)

≤ 𝐶 · 𝑢𝑚𝑎𝑥 ·
∑

𝑝∈𝑃(𝑒 , 𝑓 )

𝑦𝑒 𝑓 ,𝑝

∀𝑒 , 𝑓 ∈ 𝒩 IP : 𝑒 ≠ 𝑓

𝑦𝑒 𝑓 ,𝑝 = 𝑦 𝑓 𝑒 ,𝑝 ∀𝑒 , 𝑓 ∈ 𝒩 IP , 𝑝 ∈ 𝑃𝑒 , 𝑓 (5.10)
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∑
𝑓 ∈𝒩 IP

∑
𝑝∈𝑃(𝑒 , 𝑓 )

𝑦𝑒 𝑓 ,𝑝 ≤ 2 · 𝑡𝑒 ∀𝑒 ∈ 𝒩 IP (5.11)

Equation 5.9 ensures that the demand flowing via IP link 𝑒 , 𝑓 does not exceed the given maximum
IP link utilization and thereby, addresses sub-problem (2). It considers only the edges adjacent to
𝑒. Equation 5.10 and 5.11 account for bidirectionality of IP links, a lightpath is required for each
direction, and limit the number of available transceivers per IP node (degree bound) respectively.∑

𝑒 , 𝑓 ∈𝒩 IP

∑
𝑝∈𝑃𝑒 , 𝑓 :(𝑚,𝑛)∈𝑝

𝑦𝑒 𝑓 ,𝑝 ≤ 𝑤𝑚𝑛 ∀𝑚, 𝑛 ∈ 𝒩Opt (5.12)

Equation 5.12 limits the number of lightpaths that can be routed over a fiber and thereby addresses
sub-problem (3). Note that the set of relevant paths, i.e., paths which use the optical edge 𝑚, 𝑛,
can be pre-calculated.

∑
𝑓 ∈𝒩 IP


∑
ℎ∈ℋ

∑
𝑢∈𝒰ℎ :𝑖(𝑢)= 𝑓

𝑑𝑢ℎ

𝐶 · 𝑢𝑚𝑎𝑥

 ≤
∑

𝑒 , 𝑓 ∈𝒩 IP

∑
𝑝∈𝑃𝑒 , 𝑓

𝑦𝑒 𝑓 ,𝑝 (5.13)

Equation 5.13 provides a lower bound for the objective to reduce the run-time of the solver. In
the ideal case, i.e., with minimum resource fragmentation, an IP node with end-user demands is
directly connected via a single link to a peering node which is able to serve all these demands.
The necessary capacity of such a link is given by summing the demands of all hyper-giants at that
IP node and accounting for the maximum IP link utilization. Since the optimization is subject to
resource fragmentation and requires connectivity to several peerings of the hyper-giants, the sum
of the capacities of all these ideal links provides a lower bound for the total capacity.∑

𝑝∈𝑃(𝑒 , 𝑓 )

𝑦𝑒 𝑓 ,𝑝 − 𝑦𝑡−1
𝑒 𝑓
≤ 𝑟𝑒 𝑓 · 𝑄 ∀𝑒 , 𝑓 ∈ 𝒩 IP (5.14)

𝑦𝑡−1
𝑒 𝑓
−

∑
𝑝∈𝑃(𝑒 , 𝑓 )

𝑦𝑒 𝑓 ,𝑝 ≤ 𝑟𝑒 𝑓 · 𝑄 ∀𝑒 , 𝑓 ∈ 𝒩 IP (5.15)

1��𝒩 IP
��2 · ∑

𝑒 , 𝑓 ∈𝒩 IP

𝑟𝑒 𝑓 ≤ 𝜌 (5.16)

Equations 5.14-5.16 limit the number of reconfigurations in terms of increased or decreased
capacity per IP link. Equation 5.14 pushes 𝑟𝑒 𝑓 up if the capacity increases in comparison to the
capacity of the previous timestamp 𝑦𝑡−1

𝑒 𝑓
. Similarly, Equation 5.15 addresses capacity decreases.

Equation 5.16 limits the total reconfigurations over all IP links.

Objective. The main objective is to minimize the total deployed capacity which is given by the
sum of capacities of all IP links:

min
∑

𝑒 , 𝑓 ∈𝒩 IP

∑
𝑝∈𝑃(𝑒 , 𝑓 )

𝑦𝑒 𝑓 ,𝑝 . (5.17)

This objective function serves as a proxy for operational expenditures (OPEX) such as power
consumption and CAPEX (e.g., transceivers to buy in long term). Additionally, it hints at the
utilization of the optical topology that might in turn be used to operate 𝜆-service during low
traffic hours.
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5.3.2 Greedy End-user Mapping

The Mixed Integer Program (MIP) presented in the previous section solves the sub-problems
(1) – (4) simultaneously. In order to quantify the benefits of this joint optimization, we separate
problem (1) and solve it with a greedy algorithm. The resulting end-user mapping is used as input
for the MIP which solves sub-problems (2) – (4). This study limits the evaluation to the separation
of sub-problem (1) since it splits along the boundary between CDN and ISP. Moreover, this split
first makes the demand more specific by fixing the source-destination-pairs for the hyper-giant
demands and then optimizes the ISP’s network. Other splits, e.g., optimizing the IP topology
first, would counteract the demand-aware nature of the approach.

Algorithm 1 shows a greedy assignment procedure for a single hyper-giant based on the shortest
path length between end-users and peering PoPs in the optical topology. The algorithm starts by
sorting the end-users PoPs of this hyper-giant ℎ by their demand volumes in non-increasing order
(l. 1). For every end-user node 𝑢, it iterates over the peering nodes of this hyper-giant sorted by
their distance to the end-user node in question (l. 4f). If the peering node 𝑝 has enough remaining
peering capacity and the number of transceivers at suffices to accommodate the total assigned
demand, 𝑢 is assigned to 𝑝, i.e., �̂�𝑢,𝑝ℎ = 1 (l. 6). Otherwise, the next peering node is evaluated.
The algorithm fails if not all demands can be assigned. Algorithm 1 is repeated for all hyper-giants.

Algorithm 1 Greedy end-user mapping for a single hyper-giant ℎ.

Input: 𝑐ℎ𝑝 , 𝑑𝑢ℎ ∀𝑢 ∈ 𝒰ℎ , 𝑝 ∈ 𝒫ℎ

Output: �̂�𝑢,𝑝ℎ

1: sort 𝑢 ∈ 𝒰ℎ by their demand volume 𝑑𝑢ℎ in non-decreasing order
2: 𝑎𝑙𝑙𝑜𝑐𝐷𝑒𝑚𝑎𝑛𝑑[𝑝] ← 0 ∀𝑝 ∈ 𝒫ℎ

3: for 𝑢 ∈ 𝒰ℎ do
4: sort 𝑝 ∈ 𝒫ℎ by distance to 𝑢 in non-decreasing order
5: for 𝑝 ∈ 𝒫ℎ do
6: if 𝑎𝑙𝑙𝑜𝑐𝐷𝑒𝑚𝑎𝑛𝑑[𝑝] + 𝑑𝑢ℎ ≤ 𝑐ℎ𝑝 ∧

⌈
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝐷𝑒𝑚𝑎𝑛𝑑[𝑝]+𝑑𝑢ℎ

𝐶

⌉
≤ 1

2 𝑡𝑝 then
7: �̂�𝑢,𝑝ℎ ← 1
8: 𝑎𝑙𝑙𝑜𝑐𝐷𝑒𝑚𝑎𝑛𝑑[𝑝] ← 𝑎𝑙𝑙𝑜𝑐𝐷𝑒𝑚𝑎𝑛𝑑[𝑝] + 𝑑𝑢ℎ

9: else
10: �̂�𝑢,𝑝ℎ ← 0

5.3.3 Optimization Flavors

Considering reconfigurability on different layers, i.e., for the sub-problems (1)–(4), results in four
different optimization flavors which are later compared in the evaluation. Note that each flavor
requires some adaptation of the MIP, i.e., to fix certain decision variables:
Baseline uses end-user mapping, IP layer topology and routing from the ISP’s real data, without
performing any additional optimization; it determines the capacity of the IP links to serve all
demands. Note that the topology and routing might include some requirements for particular
links due to business policies of the ISP.
ISP-only uses the end-user mapping extracted from the real data and optimizes the IP topology
and routing with fixed end-user mapping. This ISP-only approach reflects a scenario where either
no ISP topology-aware end-user mapping system is in place or the CDNs are not cooperating.
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2-step optimizes the end-user mapping using Algorithm 1. In a second step, it optimizes IP
topology and the routing using the MIP given the greedy end-user mapping. Thus, CDNs are
cooperative but optimization is done separately in two steps.
Joint jointly optimizes all three layers, end-user mapping, IP topology and routing, using the
exact approach from Section 5.3.1.

5.4 Evaluation

This section empirically answers the fundamental question: can we leverage reconfigurable
topologies to improve ISP traffic steering and resource management? To do so, it first outlines the
attributes of the optical infrastructure, the traffic, and the optimization approaches (Section 5.4.1).
It then assesses to what extent we benefit from reconfigurations – if at all – and what frequencies
of reconfigurations are needed (Section 5.4.2). Further, it complements this analysis by evaluating
the benefit of jointly optimizing along all available dimensions (Section 5.4.3) and dissects the
costs in terms of observed reconfigurations concerning the topology’s recurrence and stability
(Section 5.4.4). The evaluation concludes by considering how the results generalize to specific
scenarios. To this end, it investigates the approach in the context of the traffic during the COVID-19
pandemic, a scenario with randomized demands, and a scenario with link failures (Section 5.4.5-
Section 5.4.7).

5.4.1 Settings

This section details the settings for the empirical evaluation. It first describes the physical
infrastructure, followed by the demands and the assessed optimization approaches.

ISP infrastructure. The network considered for the evaluation bases on the structure and data
from the production network of a Tier-1 ISP (cf. Section 5.1.1). The ON of the ISP consists of
< 20 nodes and < 30 edges.3 Each edge has an optical capacity with 𝑤𝑚𝑛 = 𝑊 = 100 lightpaths
(wavelengths). The access routers of the end-users have a fixed connection to the core routers,
i.e., the ON can only be reconfigured in the core part of the network. Hence, the access routers
are aggregated into the corresponding core routers. This reduces the original set of IP routers
(> 1 k) to the core routers and the largest peering routers resulting in < 30 IP routers in total.
While this reduction roots in the capabilities of the network, it also makes the optimization more
tractable. At some PoPs, multiple IP nodes are connected to the optical node. Every IP node can
support 𝑡𝑚𝑎𝑥

𝑒 = 100 transceivers. Each transceiver can create a single lightpath with a capacity of
C = 100 Gbps. Moreover, the maximum IP link utilization is limited to 𝑢𝑚𝑎𝑥 = 50%. This shall
provide slack capacity in the network to accommodate traffic in cases of failures. The hyper-giants’
peering locations and capacities are also extracted from the ISP’s data.

Traffic (Demands). We create the demands using real traffic data from the FlowDirector sys-
tem [13]. FlowDirector gathers > 45 billion NetFlow records per day at the border routers of
the ISP. Using the IP addresses and the associated autonomous systems, the traffic data is dif-
ferentiated into two types of demand samples: HT and BT. HT contains only flows belonging
to the top-10 hyper-giants in the ISP’s network. It makes > 75% of the total traffic in the ISPs’s

3Exact numbers cannot be provided due to data privacy.
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Figure 5.3 Total deployed capacity with reconfigurations on a monthly basis for HT-only. Red triangles
indicate events at which the peering of at least one of the hyper-giants changed. Joint optimization
consistently deploys the least capacity.

backbone network. In order to create the input for the optimization, the flows are aggregated.
HT is aggregated based on the hyper-giant, the origin peering router, and destination core router
of the flows (as IP node of the end-users). Background traffic (BT) does not belong to any of
the top-10 hyper-giants. Here, flows are aggregated based on their origin and destination core
IP routers. In addition, the demands are split and aggregated in the temporal domain. As a
first step, the average rate per demand and hour is calculated. Finally, the maximum value of
all hourly averages in a time window, e.g., two hours or one day, is used as demand value in the
optimization. Section 5.4.2 provides more details on the chosen time windows. The evaluation
uses either HT-only or AllTraffic, the combination of HT and BT, as input to the optimization.
The scenario that only optimizes BT is out of scope of this study.

Optimization approaches. The main performance objective is the deployed capacity in the
IP topology which serves as a proxy for OPEX (e.g., power consumption) and CAPEX (e.g.,
transceivers to buy). The evaluation examines the optimization approaches from Section 5.3.3
and a theoretical lower bound (Theo. min.). The lower bound is the deployed capacity for the
case where all end-user nodes are directly connected to only one peering node, building a star
topology. Such a star topology requires that there are PoPs with sufficient capacity where all
hyper-giants peer with the ISP. An assumption that does not generally hold as the set of peering
locations usually differs among the hyper-giants [13]. Moreover, Theo. min. ignores capacity limits
of the fibers and number of transceivers per router.

If not stated otherwise, each optimization determines all components of the solution (end-user
mapping, IP topology and IP routing). We use the Python API of IBM ILOG CPLEX 12.9 [280] to
implement the MIP. The solver time limit is set to 1 hour.

5.4.2 Reconfiguration Intervals

The evaluation starts by analyzing the impact of the reconfiguration interval on the performance
relation between the proposed joint optimization and the baselines.
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Figure 5.4 Total deployed capacity with reconfigu-
rations on daily basis for HT-only.
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Figure 5.5 Sustained (off-peak) time windows
when re-optimizing once per day/week with full
knowledge about peak hour. Bars indicate frac-
tion of time windows where the day’s/week’s peak
hour solution is feasible.

5.4.2.1 Monthly-based reconfigurations

According to a previous study, the collaboration between CDNs and ISPs is carried out on a daily
to monthly basis [13]. Hence, investigating reconfigurations on a monthly basis is a good starting
point. In this case, the re-optimization is performed once per month on maximum values of the
weekly peak-hour demands of that month. We investigate the traffic from April 2018 to April
2019 and focus on HT-only.

Figure 5.3 shows the total capacity normalized to the value of Joint at March 2018. The gray
vertical lines indicate dates when the peering of at least one of the hyper-giants changed, i.e.,
peering capacity increased or decreased, or its location changed. Here, we might see whether
re-optimization benefits both hyper-giants and ISPs.
Reconfiguration leads to capacity savings. For all algorithms, the trend of the total capacity
increases over time. Baseline performs significantly worse (≈ 35%) on average than all other
algorithms. It is followed by ISP-only and 2-step. Joint performs best. ISP-only changes
IP link capacities more aggressively and adapts the IP routing in contrast to Baseline. This
flexibility already results in the observed performance gain. Adding another layer of reconfig-
urability, i.e., jointly including the end-user mapping into the optimization, Joint saves up to
15% in comparison to ISP-only. 2-step, which performs a greedy mapping, saves only 5−10%.
This comparison reveals the benefits of joint optimization. Inspecting the evolution of the de-
ployed capacity over time, we observe no clear trend of benefiting from peering changes for all
approaches. In summary, introducing monthly reconfigurations leads to substantial savings in
infrastructure upgrades. However, the question remains whether such optimization can really
sustain all traffic changes within a month: for instance, events can lead to severe traffic changes
at specific locations, which might be obscured by the aggregation with the global maximum. We
look into this by considering the traffic demands of a week.

5.4.2.2 Weekly-based and daily-based reconfigurations

In order to make the optimization tractable, a week is divided into four-hour-long time windows.
The maximum demand hour within a time window serves as input to the optimization. For the
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(a) HT-only.
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(b) AllTraffic.

Figure 5.6 Total deployed capacity for re-optimization on bi-hour-scale. Shaded area indicates total
traffic volume normalized to maximum value from AllTraffic. Capacity savings due to re-optimization
throughout the day are observable. Joint deploys the least capacity.

initial optimization, we select the peak hour per day/week from these four-hour windows. This
assumes that knowledge of the peak hour can be retrieved in advance.

Figure 5.4 illustrates the total deployed capacity when running the optimization for the per-day
peak hours. The values are normalized with Joint on D1. We observe a similar relationship
for the three algorithms as for the monthly reconfigurations. All three optimization algorithms
perform better than Baseline, for which only the result on D4 is shown as reference. Again,
Joint consistently outperforms 2-step and ISP-only by 3% and 12% respectively.

To answer whether the peak hour’s solution sustains all traffic patterns of the respective day or
week, we run three optimizations per obtained day or week peak hour demand: Joint, 2-step,
ISP-only. We then evaluate whether the obtained solutions can also serve the traffic in the off-
peak hours. Specifically, the MIP’s feasibility with fixed variables (with values from the solutions)
is checked. If the outcome is positive, the peak hour solution can sustain the traffic, otherwise
not. Figure 5.5 visualizes the fraction of time windows sustained by the peak hour solutions.
Coarse reconfiguration intervals do not sustain traffic. The overall result, however, is negative:
for all three week-peak hour-based solutions (group on the right), the fractions are < 100%,
i.e., there is at least one point in time when the solution cannot satisfy the end-user demands.
Similarly, the results for daily re-optimizations are shown. The result is again negative. There are
several days of the week for which daily re-optimization is not sufficient. This demonstrates the
need for reconfigurations on smaller time-scales.

5.4.2.3 Hourly-based reconfigurations

Figure 5.6 shows the total deployed capacity throughout a day for HT-only and AllTraffic.
Optimization is performed periodically every two hours based on the traffic maximum of the
considered time-window. The gray area contrasts the total traffic volume. The lines and markers
indicate the values of the best integer solutions found within the time-limit of the solver. The
values are normalized to the maximum values from the AllTraffic case, i.e., maximum value
of Baseline for capacity values and maximum value of traffic volume for total traffic.
Intra-day reconfigurations save up 44% of capacity over time. As before, all three algorithms
save consistently more than 30% of capacity in comparison to Baseline. Moreover, they have
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Figure 5.7 Violinplots showing the distribution of normalized IP link capacities and normalized number
of links (dashed line).

a consistent order throughout the day: Joint performs best with an average gap of 3% to Theo.
min. followed by 2-step and ISP-only with gaps of 11% and 25%. Thus, jointly optimizing
ingress PoPs, routing, and topology can save non-negligible fractions of capacity.

In addition to the savings compared to Baseline, reconfiguration on a bi-hourly-bases also
opens the possibility to exploit the diurnal demand patterns: The ratio between peak hour
(around 20:00) and the deepest valley (around 02:00) is ≈ 7 for both traffic cases. This variance is
also reflected in the deployed capacity for all algorithms. Re-optimizing the network saves 44 %
of the summed capacity over the day. This directly translates to reduced OPEX, e.g., by energy
savings, or freed fiber capacity that can be re-used for other services. Hence, there is a need for
reconfiguration on an hourly-basis in order to efficiently operate the network.

5.4.3 Need for Joint Optimization and Reconfigurations

This section answers the question of how joint re-optimization of reconfigurations on multiple
layers (the IP topology, routing and end-user mapping) can serve ISPs and hyper-giants. Further, it
provides insights into the costs in terms of reconfigurations. This section considers both HT-only
and AllTraffic, i.e., it always highlights the differences between both traffic types.

5.4.3.1 The benefits of the ISP and the hyper-giants

Whereas the previous section showed that we can generally save capacity when considering
hyper-giant traffic, this section takes a deeper look into the impact also on the BT. BT accounts for
≈ 25% of the traffic volume in the ISP infrastructure (cf. Figure 5.6a vs. Figure 5.6b). Baseline
does not experience a significant rise in the total deployed capacity. The differences are in the
range of 3− 9%. The other approaches, account for this increase in traffic. The deployed capacity
increases on average by 45% for Joint, 48% for 2-step and 30% for ISP-onlywhen comparing
HT-only and AllTraffic. In particular for the off peak hour, the deployed capacity increases
by more than 80% for all of the algorithms. Moreover, the differences between them diminish:
Joint still achieves the best performance, but 2-step and ISP-only come closer. Nevertheless,
re-optimization still exhibits 15 % (in contrast to 30% for HT-only) better performance than
Baseline. We conclude that reconfigurations can still lead to significant savings for ISPs.
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Figure 5.8 Comparison of average path length (normalized distance) in arbitrary distance unit and average
number of hops for HT (solid) and BT (dashed). Differences between the algorithms vary depending on
the hour of the day.

To deepen the analysis of the differences among the optimization flavors, we now look at
the attributes of the solutions. Specifically, the following part analyzes their link capacities, the
average path lengths, and the average number of IP hops.

Joint optimization creates smaller topologies. Figure 5.7 compares the number of IP links and
the distribution of their capacities for all algorithms with HT-only and AllTraffic. The figure
shows violinplots of the distributions for the sample at 18:00. The markers indicate the mean
(triangle) and median value (star). All datapoints are normalized by the largest occurring value
across both traffic scenarios.

For HT-only, significant differences between the algorithms are visible: 2-step deploys the
smallest number of links followed by Joint and ISP-only. But it has significantly larger link
sizes (the maximum capacity is almost twice as that of ISP-only). Moreover, ISP-only has the
largest number of very small links as indicated by the shape of the violin. This is inefficient from
the capacity point of view as it results in large excess capacities for the increase in connectivity.
Joint is between these two.

For AllTraffic, the differences in numbers reduce, as for all algorithms the number of links
significantly increases. However, the medians of the capacity distributions (star) drop for all
algorithms which means that the added links have mainly small capacities; they add the necessary
connectivity for BT. The reduced number of links for Joint results in shorter paths for HT as
described in the following.

Joint optimization decreases mean path length. One primary goal of hyper-giants is an efficient
delivery of their traffic towards end users. This does not only manifest in high throughput, but
also in small latency values. The average path length measured either in IP hops or real distance
(arbitrary unit) are two ways to assess this aspect: for instance, the shorter the paths, the lower
the expected latency.

Figure 5.8 contrasts the mean path lengths for the AllTraffic scenario using two metrics:
the geographical path length and the number of hops in the IP layer. The figure also separates
HT and BT. Figure 5.8a compares the average geographical path length of HT and BT. The values
are normalized to an arbitrary unit. We observe that HT is consistently routed via shorter paths
(average lengths of 0.3) than BT (average lengths of 0.45). The algorithms themselves do not clearly
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Figure 5.9 Number of used CDN PoPs by each approach (a), degree of IP nodes by each approach (b).
Optimization scenarios: HT-only (white area) and AllTraffic (gray area). 2-step and Joint aggregate
the end-user mappings and, thereby, they can reduce the IP node degrees.

impact the average path lengths: for instance, 2-step has sometimes shorter and sometimes
longer paths than Joint.

In contrast, when looking at the average number of IP hops (Figure 5.8b), Joint shows a
superior solution: it always has the least IP hops on average for the HT. This reduces the total
required capacity in the network (bandwidth tax). Here, ISP-only suffers from the end-user
mapping strategy; the average path lengths are ≈ 50% higher — a clear benefit of the joint
optimization. As elaborated later, ISP-only has a very diverse end-user mapping which results
in longer path to reduce the deployed capacity. On the other hand, Joint is able to determine
such an end-user mapping that most traffic flows via direct links. For BT, the differences among
the algorithms are less strong.

In order to understand how the ”designed” topologies look like, the following part compares
the approaches with respect to the used CDN PoPs and the IP node degrees. For the used PoPs,
we look at each end-user node and determine the number of PoPs this end-user node receives
traffic from. For the degree of the IP nodes, we determine the number of links to other IP nodes.
Aggregated end-user mappings reduce IP node degrees by 10%. Figure 5.9a shows violinplots
of the fraction of peering locations (CDN PoPs) that are used by the end-user connecting IP nodes.
The fraction is calculated regardless of the hyper-giants as follows:

𝜔𝑒 =

∑
ℎ∈ℋ

∑
𝑢∈𝒰ℎ :𝑖(𝑢)=𝑒 �̂�𝑢,𝑝ℎ

∥∪ℎ∈ℋ𝒫ℎ ∥
. (5.18)

The solid lines separate the violins of the three algorithms, and the dashed lines separate HT-only
(white background) and AllTraffic (gray background). For each such subgroup of violins, the
figure shows a medium load (14:00, left violin), the peak (20:00, middle violin) and valley (02:00,
right violin) times of the traffic. Note that the labels on the abscissa are redacted for readability.
The three times shown for each algorithm and traffic are the same. The purple star indicates the
mean values.
ISP-only uses the end-user mappings from the ISP’s data. It shows that most end-user facing

PoPs (IP nodes) have hyper-giant demands routed via almost all CDN PoPs (≈ 70% on average and
in the median), i.e., demands are less aggregated. The behavior is consistent for HT-only and
AllTraffic. For 2-step and Joint, the fractions of used PoPs are smaller on average and have
higher variance. The rational behind this is that both algorithms try to group the demands and
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Figure 5.10 Traffic distributions over peering locations. Optimization scenarios: HT-only (white area) and
AllTraffic (gray area). 2-step performs the most aggregation of traffic to a single PoP.

route them via the same peering PoP and path in the IP topology to reduce fragmentation of IP
capacity. Whereas the behavior of 2-step is again consistent between HT-only and AllTraffic,
Joint shows differences between the two traffic scenarios and some variance throughout the day.
As the size of the demands increases towards the peak hour and peering capacities are limited,
mappings have to be adapted, become more distributed and more PoPs are used during the
peak hour. For AllTraffic, Joint shows similar values as ISP-only. As observed before, this
scenario results in more links to provide connectivity for the BT. Hence, aggregating demands to
few peerings is not as beneficial.

Figure 5.9b illustrates that the previously observed behavior leads to reduced nodal degrees
of the end-user nodes. Recalling the ideal situation, where all traffic of the end-user node is
routed via a single link, this is the desired behavior and the potential that is exploited by the joint
optimization. For AllTraffic, the differences in node degree are smaller as also observed for
the total deployed capacity (cf. Figure 5.6b).

5.4.3.2 Are there any drawbacks for hyper-giants?

The optimization in this chapter focuses on cost reductions for ISPs. Although this leads to
shorter distances between hyper-giants and their end-users, it might affect the utilization of the
resource provisioning of hyper-giants. Hence, we look at the traffic share of the hyper-giants’ PoPs,
a potential indicator for the peering utilization. The assumption is that hyper-giants rather prefer
evenly and constantly utilized peerings (better load distribution and fewer changes over the day).

Utilization of peerings is unbalanced. Figure 5.10 shows the allocated traffic share over the
peering locations of the hyper-giants. It uses the same grouping and datapoints as Figure 5.9a.
For ISP-only, the load distribution values are similar for both HT-only and AllTraffic. This
is an expected behavior, as the hyper-giant demands and the end-user mapping do not change for
both optimization scenarios. However, it proves the operation of the optimization approaches.
Similar observations hold for 2-step. However, the overall traffic share is lower on average (0.1
compared to 0.14 for ISP-only) and for the majority of PoPs as the shape of the violins suggests.
In order to sustain all demands, 2-step uses a PoP with a high traffic share, as shown by the high
extreme value reaching above a value of 0.3 (highlighted by hatched box). Baseline is left out
as it has the same results as ISP-only.
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Figure 5.11 Pareto plot of reconfigurations vs. transceiver (TX)-hours (both normalized); traffic is HT-only.
Jointwith reconfiguration limit can trade-off the reconfigurations against the deployed capacity.

In contrast to ISP-only and 2-step, Joint shows more changes in distribution and variability
during the day. Values range from 0.1 to 0.35. Specifically, for HT-only, there are some high
outliers similar to 2-step. For AllTraffic, the range is smaller. As a consequence, hyper-giants
might have to adapt their peering capacities, and potentially also their routing towards peering
points, over the day more frequently – a potential trade-off for hyper-giants between operational
efforts and lower latency values.

5.4.4 Reconfigurations: Analyzing Topological Impact

So far, the conclusion is positive: joint reconfigurations on multiple layers help to reduce the
needed network capacity for the ISPs and shorten the path length from end-users to hyper-
giants. On the other side, operators have been (and still are) reluctant to use frequent, short-term
reconfigurations in their network. Accordingly, this section analyzes (1) the impact of the total
number of reconfigurations needed and (2) which type of reconfigurations drive the benefits of
joint reconfiguration. Based on such insights, operators can better trade off the costs in terms of
reconfigurations and capacity gains according to their preferences.

5.4.4.1 Trade-off between reconfigurations and capacity deployment

As a first simple solution, this part studies the impact of longer reconfiguration periods on the
total capacity; the different periods are 1, 2, 4 and 8 hours. As in Section 5.4.2, the optimization
uses the peak demands of the time windows.

Large optimization periods reduce reconfigurations. Figure 5.11 shows a Pareto plot between
the normalized number of reconfigurations (as defined by the left hand side of Equation 5.16 and
accumulated over one day) and the transceiver (TX) hours for HT-only. TX hours represent the
integral of the deployed capacity over one day, normalized by Theo. min. As expected, longer
reconfiguration periods reduce the amount of reconfigurations, but they increase TX hours.
Among the algorithms, ISP-only performs worst in both dimensions. 2-step results in less
reconfigurations compared to Joint at the cost of more TX hours which indicates one way to
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Figure 5.12 Details on reconfigurations by type, algorithm and affected entities for HT-only. Joint, which
deploys the least capacity in the network, requires more, and more evolved types of reconfigurations.

trade off both objectives. The savings in reconfigurations reduce with increasing periods between
re-optimizations.

Considering Joint, we observe significant savings (≈ 45%) in reconfigurations when re-
optimizing every two hours (0.097) instead of every hour (0.177), while the TX hours increase
only by ≈ 10% (from 1.77 for 1 hour periods to 1.95 for 2 hours). For 8 hours, Joint has the
least reconfigurations but also a significantly higher capacity (increase by 22%). This describes
the landscape where operators can trade off the TX hours savings against reconfigurations.

Consequently, an additional constraint limiting reconfigurations (cf. Equation 5.16) can make
Joint a credible alternative for 2-step. The figure shows that optimizing every 2 hours and
limiting the number of reconfigurations to 15 % (triangle pointing up) can provide better results in
terms of reconfigurations and TX hours than 2-step: they are reduced by 3% and 6% respectively.
In summary, the proposed model does not only demonstrate the benefit of joint optimization of
IP topology, routing, and PoP assignment, but also provides flexibility to adjust results based on,
e.g., provider policies. The following part investigates the different types of reconfiguration more
in detail.

5.4.4.2 Impact of different reconfiguration types

Figure 5.12 presents a breakdown of the topological reconfigurations into their types: IP links
added, IP links removed, IP link capacity increased, and IP link capacity decreased. It compares
the three algorithms and Joint with 15% reconfigurations allowed for three different times of a
day.

Adjacency changes impact only small share of the traffic. Figure 5.12a shows the normalized
number of reconfigurations for all types for bi-hourly re-optimization and HT-only. While≈ 50%
of the topological reconfigurations for Joint and ISP-only are adjacency changes, the share is
smaller for 2-step. Also Joint in combination with the reconfiguration limit mainly impacts
link sizes. Here, the algorithm avoids changes to the adjacency matrix of the IP topology and
adaptations are mostly facilitated by changes in capacities. Note, however, that capacity savings
cannot be achieved without any link addition or removal. Comparing the three time instances, we
observe that the number of reconfigurations peaks at the busy hour of the traffic for all algorithms.
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Figure 5.13 Reconfigurations of end-user PoP assignment and IP routing. The behavior of the algorithms
varies. Joint heavily uses reconfigurations of the end-user mappings to achieve the capacity savings.

Moreover, the share of link removals and capacity decreases is larger for the time instance at 04:00.
This seems to be intuitive as the total traffic is low at this time and traffic can be groomed on fewer
links.

Assessing the size of the modified links, Figure 5.12b illustrates the link capacities before the
change (and after the change for additions) for the sample at 20:00. The values are normalized
to the observed maximum. While there is no clear pattern among the algorithms for scaling
the capacity of links, link additions and removals are restricted to relatively small links. We
particularly observe this for ISP-only and 2-step but also to a smaller extend for the Joint
variants. This suggests, that these changes affect only minor fractions of the traffic, and hints
towards a stable topology structure.
End-user re-mappings foster capacity savings. Figure 5.13 visualizes reconfigurations on the
higher layers. It shows the changes in the end-user mapping and, in the case that the CDN
PoP for a demand does not change, the IP routing. Again the numbers are normalized with
respect to the total number of demands, i.e., the maximum number of possible reconfigurations.
Three of the four compared algorithms reconfigure either the end-user mapping or the IP routing
for at least 25% of the demands. The only exception is 2-step. It has the smallest number
of reconfigurations 13% at 20:00. Comparing the timestamps no clear pattern is evident. The
observed benefits in Section 5.4.3.1 results in high numbers of end-user mapping reconfigurations
and according routing changes for the demands for Joint without (∞) and with limit (15%) on
the reconfigurations which represent another factor to trade-off for the reduced capacity. 2-step
and ISP-only show almost static end-user mappings but apply many changes in the routing of
the demands. Given the superior performance of Joint, we conclude that reconfigurations of
the end-user mapping foster the capacity savings.

5.4.4.3 Stability of topology

Motivated by the observation that the re-optimization mainly adds and removes low capacity
links (cf. Figure 5.12b), this section examines to what extent there is a persistent structure in
the topologies. Therefore, it defines a link to be persistent if the link exists throughout multiple
optimization periods.
Large fraction of traffic is routed via persistent links. Figure 5.14 visualizes the fraction of links
(Figure 5.14a) and their carried traffic (Figure 5.14b) for persistent parts of the topology. The
carried traffic is given by the minimum share of traffic that the link carried in the time window.
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Figure 5.14 Comparison of the stability of the topology. (a) compares the occurrence of unique links over
one day and one week. (b) shows the share of traffic over persistent links. All approaches rely on few
stable links that carry a large amount of the traffic.

The figures evaluate two time windows for persistence: per day and per week. For 2-step and
ISP-only, the fraction of adjacencies that exists over the whole day is consistently > 10 % and
carries between 70−90% of traffic. For Joint, the lower stability in the links on a day-by-day basis
(5− 10% of the links) which aligns with the observations of reconfigurations of larger links. Also
the fraction of carried traffic over this stable topologies is smaller but with 40% still significant.
Considering the span of a week, for Joint, less than 5% of the links exist all the time. For
2-step and ISP-only, the fractions are still > 10% and the links carry > 60% of the traffic. These
observations underline that most reconfigurations affect only small fractions of the traffic and
that a significant share of the traffic is routed via stable parts of the topology that are only scaled
up and down. Moreover, setting a stable topology on a daily basis and temporarily adding small
links upon short term spikes, allows maintaining higher operational confidence while gaining
from reconfigurability.

5.4.5 Special Event COVID-19

So far, this study considers “normal” traffic conditions. As a first step to assess the robustness of
the presented approach, this section evaluates the benefits of jointly reconfiguring multiple layers
in situations with increased and changed traffic patterns. As a case study, it uses data collected
during the COVID-19 pandemic. The samples are aggregated from 4 hour windows on three
different days. Before is a day in the week just before the major lock-down in the country of the
ISP, After 1 and After 2 are the same weekday in the two subsequent weeks.

Figure 5.15a shows the deployed capacity during peak traffic hour for the case of unlimited
reconfigurations. The values are normalized with Joint and Before. For all algorithms, the
deployed capacity increases for After 1 and After 2 in comparison to Before by ≈ 13% and ≈ 4%
respectively. This is in line with the increase in traffic volume observed as indicated by the dashed
line and also confirmed by other work [254, 281, 32]. The decrease of deployed capacity and traffic
volume for After 2 aligns with the decrease of video streaming quality by two hyper-giants [282].
The already observed behaviors of the algorithms from the sections before are not significantly
affected by the traffic increase with Joint being ≈ 10% better than ISP-only and ≈ 2% better
than 2-step.



Chapter 5 Leveraging Multi-layer Reconfigurability for Flexibility in WANs

102

Before After 1 After 2

1.0

1.2

1.4

1.6

D
ep

lo
ye

d
C

ap
ac

it
y

Joint 2-step ISP-only Baseline

0.95

1.00

1.05

1.10

1.15

Tr
af

fic
vo

lu
m

e
(d

as
he

d)

(a) Deployed capacity during peak hour (normalized to
Joint- Before).

04
-0

8
08

-1
2

16
-2

0
04

-0
8

08
-1

2
16

-2
0

04
-0

8
08

-1
2

16
-2

0

Transition

−50

0

50

100

D
iff

.c
ap

ac
it

y
ch

an
ge Joint 2-step ISP-only

Positive Negative

(b) Diff. total capacity change between After 1 and
Before.

Figure 5.15 Impact of traffic during COVID-19 on deployed capacity and reconfiguration behavior. The
relation among the algorithms persists but the reconfiguration behavior throughout the day changes in
response to the changed demands.
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Figure 5.16 Cumulative distribution function (CDF) of relative difference in deployed capacity between
optimization flavors for randomized demands. The observed relations between the optimization flavors
persist also for the randomized demands.

Events impact reconfiguration behavior. Figure 5.15b contrasts the changes in capacity between
After 1 and Before for several transitions throughout the day, namely from 04:00 to 08:00, from
08:00 to 12:00 and from 16:00 to 20:00. The capacity changes are grouped into “positive”, i.e.,
all link additions and capacity increases, and “negative”, i.e., all link removals and capacity
decreases. The figures shows the differences of the summed capacity changes. For all algorithms,
After 1 has higher capacity increase from 04:00 to 08:00 compared to Before (difference > 0),
while the capacity added in the transition from 08:00 to 12:00 is lower (difference < 0). The
differences in negative capacity changes are small for ISP-only and 2-step. Only for Joint, we
also observe higher differences in the amount of removed capacity. This indicates more changes
in connectivity. Thereby, Joint can use the ISP’s optical infrastructure and the CDNs’ peerings
more efficiently.
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Figure 5.17 Restoration success ratio (a) and reconfigurations by type (b) for single IP link failures. Traffic
is HT-only. Joint can restore up to 80% of single IP link failures but relies on reconfigurations of both
end-user mapping and IP routing. The dashed line in (a) shows Jointwith fixed end-user mappings.

5.4.6 Randomized Demand Patterns

As a second step to evaluate the robustness of the joint reconfiguration on multiple layers, this
section assesses the generalization of the results to randomized demand patterns. As described
in Section 5.4.1, the input data has a specific structure, and hence, it is challenging to generate
randomized demands that are feasible. For instance, given the peering capacities of the hyper-
giants, uniform sampling of demands can lead to situations where demands exceed the available
capacity of the peerings, or where a feasible routing cannot be found. Therefore, to avoid
infeasible problem instances, the existing input data is scrambled along the spatial dimension. A
preprocessing step shuffles the assignment of IP end-user nodes and peering nodes to the optical
nodes. Thereby, the relations between peering capacities and demand sizes are preserved. This
evaluation uses the input data from Figure 5.6a and randomizes it with 30 seeds – 360 samples in
total.

In order to account for the high variance in the total traffic volume, Figure 5.16 shows the
relative differences between the algorithms by means of the cumulative distribution functions.
For instance, “ISP-o.-J” is the difference between ISP-only and Joint.
Joint (“ISP-o.-J”) and 2-step (“ISP-o.-2-step”) both perform better than ISP-only. For Joint,

all differences are > 0 with an average of 0.2, i.e., Joint improves by 20%. 2-step gains 11%
on average compared to ISP-only on the randomized data. Moreover, the difference between
2-step and Joint (“2-step-J”) is ≥ 0 for all samples. In 75% of the instances, Joint can save
more than 5% of deployed capacity compared to 2-step, and 40% of the instances show savings
≥ 10%. Overall, this demonstrates that the gains of joint re-optimization generalize to less
structured demand patterns.

5.4.7 Failures

Although the presented approach does not directly optimize the network for resilience, this
section provides an outlook on its ability to restore from single failures out of the 25 largest IP
links of the topology. Such a scenario reflects failures of transceivers. To evaluate the worst case
scenario, it assumes that 100% of the link capacity becomes unavailable. To start with, restoration
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possibilities are limited to two layers: IP routing and end-user mapping. That is, when re-running
the algorithms for restoration, the IP topology is fixed.

Joint IP routing and user mapping restoration increases robustness upon IP link failures.
Figure 5.17a compares the ratios of successful restorations of the three algorithms against the
allowed link utilization. While Joint shows increasing restoration success with more relaxed
link utilization and eventually can restore 80%, 2-step and ISP-only saturate quickly around
only 50%. The distribution of the IP link capacities (Figure 5.7) reveals that ISP-only deploys
more links, but the single links’ capacity is smaller. This in turn leaves only little headroom to
allocate traffic in case of re-routing. On the other hand, 2-step deploys few large links, which
carry high traffic volumes. Failures of those IP links require high excess capacity for restoration,
making it less flexible.

To complement this analysis, the dashed line shows the success ratio for Joint with fixed
end-user mappings from the pre-failure solution, i.e., only the ISP reacts to the failure. In this
case (dashed line), the success ratio is zero for almost up to 80% allowed link utilization. For 90%
and 100% only ≈ 4% of the failures can be restored. The reason for this negative result becomes
evident from the reconfigurations during restoration (Figure 5.17b). The figure shows violinplots
of the normalized number of reconfigured end-user mappings and IP routes if the mapping stays
constant. For each pair, the left violin shows 𝑢𝑚𝑎𝑥 = 0.7 and the right one 𝑢𝑚𝑎𝑥 = 1.0. We observe
two differences for Joint compared to ISP-only and 2-step. First, it reconfigures more IP
routes. The values are larger for both 𝑢𝑚𝑎𝑥 . Second, it makes use of changes in the end-user
mapping reconfiguring around 40% of them.

In summary, the study of failures shows mixed results. While most of the failures can be
restored when allowing reconfigurations on two layers, limiting reconfigurations to only one
layer leads to almost zero success. A more detailed consideration of resilience is left for future
work.

5.5 Discussion: Reaping the Potential Benefits

The evaluations based on data from a large ISP reveal a significant potential of a joint optimization
and adaptation of and for hyper-giants’ traffic – for the ISP in terms for reduced costs or increased
resource efficiency, and for the hyper-giants in terms of reduced latency. This section discusses
limitations and avenues on how these benefits may actually be reaped.

5.5.1 Generalization and Scalability

Although they contain an initial assessment of the robustness, the evaluations consider only one
ISP topology, a limitation of this study that stems from the lack of publicly available data for other
topologies (cf. Section 5.4.6). Nevertheless, the results are expected to generalize to other ISP
networks as well since those networks share important properties, at least to those of comparable
size. First, similar traffic patterns like the diurnal pattern and dominance of hyper-giants’ traffic
in ISP networks have been observed for other ISPs too [283]. Further, traffic demands increase
and patterns might change, as observed during the COVID-19 pandemic [32]. The sensitivity
analysis with randomized demands confirms the observations and provides further confidence
in the robustness of the results.



5.5 Discussion: Reaping the Potential Benefits

105

A second aspect of the generalization is whether the optimization is tractable on other ISPs.
The mathematical modeling results in an NP-complete problem which might lead to run-time
problems on larger problem instances. Limiting the solver run-time to 1 hour has provided
results close to the optimum in our case but might not be sufficient on other topologies or even
faster reconfiguration cycles. Hence, designing more tailored algorithms might be necessary for
real deployments. Alternatively, machine learning (ML)-based solutions as e.g., [14, 284] could
provide means to speed up the optimization and may be explored in future work.

5.5.2 Business-related Trends

Emerging cooperation. Many inefficiencies related to how ISP networks today deliver CDN
traffic, are due to the lack of information. While ISPs have detailed knowledge of their network
topology (the two lower layers in Figure 5.1), their knowledge of the demand of content and the
distribution flexibilities is usually very limited (upper layer in Figure 5.1); and vice versa for the
hyper-giant [285, 286, 250]. Several recent studies presented promising approaches to improve
information sharing and cooperation [250, 273, 277, 13, 270, 287]. Moreover, it has been shown
that major players adopt such approaches for information exchange [13], which can and should
be extended to account for topological flexibilities too.
Hyper-giants acting as ISPs and vice versa. In addition to emerging collaborations, we can
already note that some hyper-giants become ISPs and provide connectivity for end users. Either on
traditional fixed line access [288] or via less established interconnects such as satellite links [289].
Similarly, ISPs started to provide content services, e.g., [290, 291]. There is an increasing number
of entities unifying ISP and hyper-giant. Hence, the approach of joint optimization is becoming
more relevant.

5.5.3 Technological Trends

From a technical perspective, the joint optimization on multiple layers largely benefits from
the increasing adoption of softwarization and centralized control approaches in ISP networks,
e.g., [58]. In particular, there are two major aspects to implement the envisioned system.
Centralized data collection and operation. The joint optimization relies on detailed knowledge
of the current state of topology and routing, and particularly on information about the future
demands. Systems that implement such data collection in a highly scalable way are already in
operation at the ISP, e.g., [13], using widely deployed protocols such as BGP or IS-IS for routing
data and NetFlow or IPFIX for collection of demand data. Prediction of future demands based
on the collected ones is already possible with deployed systems [57] and fostered by omnipresent
advances in machine learning. Also data from the CDNs, e.g., server loads or content availability,
is already being collected by CDNs to implement their user-mapping systems [261]. Besides the
centralized database, also the control and decision-making has to operate on a global level to
leverage the joint optimization. Large ISPs and hyper-giants have shown that centralized control
entities are feasible already today, cf. [240, 241, 58]. Depending on the particular situation, i.e.,
CDN-ISP cooperation or implemented by one party, detailed integration of all parts into one
system is necessary. However, further work to integrate control over the three layers is still
necessary.
Deploying configurations. Finally, configurations have to be communicated to the network
equipment in case of IP topology and routing or to the mapping systems for content requests.
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Run-time reconfigurations of network devices have strongly been fostered with the continuing
trend of softwarization and programmability of networks. Most devices offer programmable
interfaces to change configurations and the state of the network. For instance, in the optical
domain, NetConf and TL1 are prominent examples for such interfaces. But often the specifics are
vendor-dependent potentially posing a challenge for system integration. Note that while such
interfaces offer easy triggering of changes, actual realization by the device might still be limited
by other technological aspects. For the deployment of user mappings, approaches depend on
the involved entities. For CDN-ISP collaboration, communication between the parties should
happen in a reliable and automated way. ALTO [265] has already been adopted by some players
to achieve this [13]. Other approaches might include custom APIs between mapping system
and centralized control, e.g., in the case of converged roles of CDN and ISP. Reconfigurations
can lead to interruptions or additional overhead, e.g., if states have to be synchronized over the
network or if IGP has to re-converge. A specific detail here is the scheduling of reconfigurations
to reduce service interruptions and to guarantee correctness of the networking state during
reconfigurations, e.g., using a make-before-break strategy [292]. The specific costs depend on the
actual system design. A deeper analysis particularly for reconfiguring on all three layers is subject
to future work.

5.6 Summary

This chapter studies the benefits of joint optimization of reconfigurations on multiple layers,
the second characteristic of reconfigurable topologies. Motivated by emerging reconfigurable
network infrastructures in CDN-ISP environments, it presents an optimization framework to
improve the delivery of hyper-giant traffic across ISP networks, leveraging short-term reconfig-
urability along three dimensions: IP topology, routing, and end-user mapping. Using extensive
empirical analyses in collaboration with a large ISP, it finds that such joint optimization is indeed
worthwhile, and can benefit both the ISP and the hyper-giant. The observed benefits of consider-
ing reconfigurations multiple layers are two-fold. First, it reduces required backbone capacity by
15% and second, it shortens path lengths by 30%, both on average and during the critical peak
hour. The assessment of the reconfigurations indeed demonstrated that these benefits stem from
leveraging the flexibility on multiple layers, and how operators can trade off reconfigurations and
deployment cost savings. Moreover, the evaluation shows that infrastructure re-optimizations
can be leveraged in specific situations too, for example during the COVID-19 pandemic or under
link failures.

This chapter is a first step to render flexible topologies not only demand- but also reconfiguration-
aware along the considered networking layers. Such layers might include, the demand allocation,
the IP routing and the IP (logical) topology. Besides, the approach opens several interesting di-
rections for future research. First, the current approach assumes a fixed grid optical transport
network. A natural extension is to model elastic optical networks (EONs). In addition, while a
more efficient use of the physical infrastructure benefits OPEX (e.g., in terms of fewer deployed
lightpaths and reduced power consumption), it will be interesting to further evaluate the benefits
for quality-of-experience of specific applications. Finally, while the chapter focuses on a large
ISP, it would also be interesting to study whether similar benefits can be obtained even in smaller
ISPs, and at higher reconfiguration granularity.
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Chapter 6

Designing High-Throughput RDCN with Local
Routing and Control

We have already observed in Chapter 3 that there are various reconfigurable datacenter net-
works (RDCNs) in prior work that come with overheads and limitations. A comparison of
existing RDCN architectures reveals that they are restricted in their routing, require complex
buffering mechanisms, and come with non-standard requirements for transport layer protocols.
Specifically, communication on the (dynamic) optical topology is often limited to one or two hops.
This constrains the possible path diversity, and hence capacity, of the optical network [207, 47,
53, 66]. Furthermore, a large fraction of the existing RDCNs features a static topology part to
provide a basic connectivity between the nodes, e.g., [47, 51, 191]. In such topologies, routing is
usually segregated: flows are either only forwarded along the static or the dynamic topology, but
not a combination of both [47, 51]. The restriction to segregated routing also entails overheads as
it requires significant buffering while the reconfigurable links are not available.

In order to close this gap, this chapter introduces and evaluates Duo, a high-throughput RDCN
architecture. Duo realizes seamless routing between static and dynamic links and, thereby,
provides work-conserving forwarding. That is, a normal store-and-forward operation is possible,
packets are processed upon arrival, and no external (time-based) trigger, such as in RotorNet [48],
is needed. This approach has the potential to avoid long buffering times and hence delays: if
a reconfigurable link is unavailable, packets can directly be forwarded to the other available
(static) links. However, going beyond segregated and 1- or 2-hop routing requires a novel
control plane: traditional routing protocols based on shortest paths are not designed for highly
dynamic topologies, and the frequent recomputation of routes can become (computationally)
infeasible [293]. Furthermore, to keep update costs low and provide high scalability, it is desirable
to have small forwarding tables. To achieve this, Duo uses a de Bruĳn-graph-based topology,
in which static links are enhanced with opportunistic links. This particular structure allows
local and greedy integrated routing, i.e., forwarding rules only depend on local information. It
operates a receiver-based approach for the efficient detection of elephant flows as well as the local
and collision-free scheduling of demand-aware (DA) links. This can significantly reduce control
plane overheads during topological reconfiguration, maintaining a simple routing, buffering, and
control, and is hence well-suited for highly dynamic networks. Moreover, the de Bruĳn structure
can be implemented with IP-based logical addressing, and Duo does not need any specialized
transport layer protocol. Due to its simplicity, Duo is well-suited to be implemented, e.g., using
the Sirius [53] architecture, which was originally designed to be demand-oblivious (DO), but can
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Table 6.1 Recent (R)DCN designs and their properties. (S: standard; NS: non-standard). Red shaded cells
indicate deficiencies in the properties. All existing designs have deficiencies in at least one of the desired
properties. (Note that the term work conserving has to be interpreted in a store-and-forwarding sense, i.e.,
this property indicates if external (time-based) triggers are required to start packet transmission.)

Xpander [211] Sirius [53], Opera [49] ProjecToR [47] Gemini [66] Duo

Topological Re-
configurability

Demand-
aware

No No Yes Yes Yes

Update rate None Fast Fast Slow Fast

Network Layer

Integrated
Multi-hop

Yes 2-hops 1 hop 2-hops Yes

Work
conserving

Yes No No Yes Yes

Routing
mechanism

IP NS IP IP IP

Transport Layer
Congestion
control

TCP NS TCP TCP TCP

potentially support DA link scheduling. Its control plane can be realized using centralized or
distributed algorithms.

This chapter evaluates Duo using extensive packet-level simulations and empirically finds that
Duo provides a higher throughput compared to state-of-the-art static and dynamic, networks.
Furthermore, Duo’s properties allow us to use IP & transport control protocol (TCP) out-of-the-
box, without the need to develop new network or transport protocols. We further report on a
proof-of-concept implementation of the control and data plane of Duo that demonstrates the
feasibility of Duo with standard network stacks. The implementation builds around a single P4
switch, which we use to emulate a scenario with 16 top-of-racks (ToRs).

Content and Outline This chapter is based on and re-uses contents from a previous journal
publication [2]. The claim, the theorem and the corresponding proof sketches in Section 6.2.1.3
as well as the specific implementation of the sketch-based large flow detection (Section 6.4.2.2)
are contributions of the co-authors but introduced in this chapter for completeness.

In the following, this chapter first compares Duo against related work (Section 6.1). Using the
ToR-Matching-ToR (TMT) model, the chapter describes the details of the topology structure, the
forwarding approach, and the DA link scheduling (Section 6.2). Finally, the chapter evaluates
Duo using extensive packet-level simulations covering multiple traffic patterns and compares
Duo against state-of-the-art datacenter networks (DCNs) (Section 6.3). In order to demonstrate
the feasibility of Duo, this section finishes with a proof of concept implementation (Section 6.4)
and is summarized in Section 6.6. The implementation of Duo has been made publicly available
at https://github.com/tum-lkn/duo-simulator.

6.1 Related Work

This section summarizes important properties of recent DCN architectures in Table 6.1 and,
thereby, elaborates the motivation for Duo. The second part gives a short overview of prior
applications of de Bruĳn graphs.

https://github.com/tum-lkn/duo-simulator
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6.1.1 Putting Duo into Perspective to RDCNs

Table 6.1 shows three categories of properties of DCNs: topological reconfigurability, network
layer, and transport layer. For topological reconfigurability, the table indicates if the system uses
a DA topology and the supported update rate of the topology (unless it is static). Regarding the
network layer, it indicates (1) if the routing is fully integrated multi-hop (IMH) or only 1 or 2 hops,
(2) if the packet scheduling is work conserving, and (3) if the routing can support (legacy) IP.
The term work conserving refers to the ability to use standard store-and-forward implementations
(as available in commercially off-the-shelf (COTS) switches and network interface cards (NICs)).
Non-work conserving RDCNs require external (time-based) triggers to initiate forwarding decisions
and packet transmission, e.g., as in RotorNet [48] or Sirius[53]. Finally, regarding the transport
layer, the table shows if the design supports standard (S), e.g., TCP or NDP, or non-standard (NS)
congestion control. The table does not compare the performance of the different designs but their
main design choices.

The first example is Xpander [211], a state-of-the-art static and demand-oblivious topology for
DCN, which is based on expander graphs. It supports routing over multiple (> 2) hops and,
due to its static nature, provides work-conserving forwarding using IP and standard congestion
control. While Xpander has many attractive properties, according to recent results (including
those in this section), RDCNs are expected to provide better performance, and particularly higher
throughput [53, 294].

The second representatives are Sirius [53] and Opera [49], recent proposals of dynamic and
demand-oblivious designs for RDCNs. Such topologies are very effective with respect to through-
put and flow completion time, but still have several potential deficits. First and foremost, they
do not feature DA links: while the exact role and use of DA topology components in future
datacenters (DCs) is generally still subject to ongoing discussions, empirical studies show that
demand-awareness can improve throughput under today’s typically skewed workload distribu-
tions [191, 66]. Furthermore, current dynamic and DO designs are limited to at most 2-hop
routing on dynamic links and are not work-conserving. There are also open questions regarding
the complexity of the control plane, the routing scheme, and the transport layer of these systems.

Next, we consider dynamic and demand-aware systems. Systems like ProjecToR [47] use a combi-
nation of DA optical and electric switches, but do not support IMH routing (ProjecToR uses only
1-hop on DA links), are not work-conserving, and their control complexity is not fully determined.
Gemini [66] and [64], two recent proposals by authors from Google, make a case for DA links in
production-level datacenters. Both implement only infrequent topology updates (about once a
day). They provide work-conserving routing that supports IP but are limited to 2-hop routing.1

Summary: Unlike all the above systems, Duo features all the desired properties listed in Table 6.1.
It supports IMH routing as Xpander, uses demand-aware links as ProjecToR, is work-conserving as
Gemini, enables fast topology updates as in Opera and Sirius, and is based on simple control and
IP-based routing. Its properties, especially work-conservation, allow us to use standard TCP in
Duo, as demonstrated by the packet-level simulation and the prototype implementation.

1Gemini optimizes using a global view of the network which requires a centralized collection of the network’s state
and hinders high frequency topology updates. Moreover, its topology and routing updates might affect multiple
devices across the whole network adding complexity to the control plane and further limitations to the update
rate. Gemini operates on pod-to-pod level, while Duo is a ToR-to-ToR level topology. Lastly, not all algorithmic
details are available. So a closer comparison is not possible.
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Figure 6.1 TMT network example for Duo with eight ToR switches and four spine switches. Each spine
switch has eight input and output ports. Two of the spine switches are static matchings and two are
dynamic matchings, which can be reconfigured in a DA manner.

6.1.2 Applications of de Bruijn graphs

De Bruĳn graphs have been applied in networking before. The first example is distributed hash
tables like Koorde [295] that are used in peer-to-peer networks. Koorde improves upon the
general design of Chord [296] by introducing a routing that requires 𝑂(log 𝑛) hops to reach a
node. Besides, one major stream of work revolves around the design of networks-on-chips. For
instance, Hosseinabady et al. [297] propose such an architecture. They compare it to mesh and
torus architectures and stress the low energy consumption of their proposal as one of the main
advantages. Another example is given by Chen et al. [298], who present a 3-dimensional network
design and demonstrate its superiority over mesh-based architectures. A second stream considers
the design of reliable, static networks for wide area networks (WANs) and DCs. Examples are,
among others, [299, 300, 301]. The presented topologies are evaluated with respect to their
throughput and delay performance. The work closest to Duo is [302]. The author presents a de
Bruĳn-graph-based static DCN. He demonstrates how greedy forwarding can be translated to
longest prefix match (LPM) forwarding rules. The performance is evaluated using emulations and
packet-level simulations and compares several routing schemes, showing a higher throughput of
the de Bruĳn-based solution.
Summary: In contrast to the works above, this thesis is the first study to show the benefits of a
de Bruĳn graph in the context of reconfigurable and DA datacenter networks.

6.2 The Duo RDCN Design

Duo bases on the TMT model from Section 3.6. In particular, Duo is hybrid. The first part of
the topology is static and DO, using 𝑘𝑠 static spine switches (i.e., static matchings). The second
part is dynamic and DA, using 𝑘𝑑𝑎 reconfigurable spine switches (i.e., dynamic matchings), and
𝑘 = 𝑘𝑠 + 𝑘𝑑𝑎 . The number of DO switches is 𝑘𝑑𝑜 = 0.

Figure 6.1, illustrates an embodiment of the TMT model for Duo with 𝑛 = 8 ToR switches
and 𝑘 = 3 spine switches, from which 𝑘𝑠 = 2 are static and 𝑘𝑑𝑎 = 1 is dynamic. Each ToR-spine
link in the figure represents one directed uplink and one directed downlink. It is important to
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Figure 6.2 Example of a𝐷𝐵(2, 3) static & directed de Bruĳn graph with eight ToRs and its two corresponding
matchings (colored in green and blue). Each port (edge) is labeled 0 or 1 according to the performed shift
operation.

note that abstractly, the model uses 𝑘 spine switches, each implementing an 𝑛 × 𝑛 matching, but
each matching can be split across a set of several smaller switches, like in Sirius [53] where spine
switches have

√
𝑛 ports.2

In order to maximize performance, Duo uses dynamic, DA links to provide shorter paths for
elephant flows, while other flows are transmitted via the combined (static + dynamic) topology.
A key feature of Duo is that it supports integrated multi-hop routing across both switch types. This
is different to previous works that rely on segregated and single-hop forwarding for DA links [47,
45]. A namely exception is cp-Switch which, however, assumes that capacities of static (electrical)
and dynamic (optical) links are different [128].

Moreover, the routing in Duo is efficient. It relies on logical addressing and a local control
plane to implement a greedy routing strategy. Thus, links can always be used immediately, with
a work-conserving scheduler. To detect elephant flows, Duo leverages a simple sketch, sampling
the flow sizes and then adjusting the dynamic links accordingly. The following sections present
the different components of Duo in detail.

6.2.1 The Hybrid Topology

The two topology components of Duo form an augmented de Bruĳn network [303]:

• Static and demand-oblivious de Bruĳn topology (backbone): The static topology of Duo relies
on a de Bruĳn graph. It is formed by 𝑘𝑠 static optical circuit switches (OCSs) or patch panels.

• Dynamic and demand-aware topology: The static topology is enhanced by 𝑘𝑑𝑎 reconfigurable
matchings, also implemented with OCSs. The demand-aware (DA) links add shortcuts on top
of the static de Bruĳn topology.

We first discuss the static de Bruĳn topology. The choice of the de Bruĳn topology is based on
two main properties: (1) It can be built from a small number of matchings (already two matchings
suffice in contrast to, e.g., hypercubic topologies that require log 𝑛 matchings), and (2) it enables

2Note that a smaller number of ports might affect the performance but this is left for future study.
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IP-based greedy forwarding also when additional shortcuts are added to the topology, which in
turn enables fast and low-overhead topology reconfigurations.3

6.2.1.1 The Static de Bruijn Topology

We start with formally defining the de Bruĳn topology [304]. For 𝑖 ∈ ℕ, let [𝑖] = {0, 1, . . . , 𝑖}.

Definition 1 (de Bruĳn topology). For integers 𝑏, 𝑑 > 1, the 𝑏-ary de Bruĳn graph of dimension 𝑑,
𝐷𝐵(𝑏, 𝑑), is a directed graph 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉 | = 𝑏𝑑 nodes and 𝑚 = |𝐸 | = 𝑏𝑑+1 directed edges.
The node set 𝑉 is defined as 𝑉 = {𝑣 ∈ [𝑏 − 1]𝑑}, i.e., 𝑣 = (𝑣1 , . . . , 𝑣𝑑), 𝑣𝑖 ∈ [𝑏 − 1], and the directed edge
set 𝐸 is:

{𝑣, 𝑤} ∈ 𝐸⇔ 𝑤 ∈ {(𝑣2 , . . . , 𝑣𝑑 , 𝑥) : 𝑥 ∈ [𝑏 − 1]} (6.1)

Note that the directed neighbors of node 𝑣 are determined by a left shift operation on the
address of 𝑣 and entering a new symbol 𝑥 ∈ [𝑏 − 1] as the right most (least significant) symbol.
The de Bruĳn topology has the following properties [304]:

1. Considering self-loops, 𝐷𝐵(𝑏, 𝑑) is a 𝑏-regular directed graph.

2. Each de Bruĳn graph of dimension 𝑑 is the line graph of 𝐷𝐵(𝑏, 𝑑 − 1).

3. Each de Bruĳn graph is Eulerian and Hamiltonian.

4. 𝐷𝐵(𝑏, 𝑑) supports greedy routing with paths of length at most 𝑑.

As a consequence of Property (1) above and Hall’s theorem [307], we obtain the following
observation:

Observation 1. A 𝐷𝐵(𝑏, 𝑑) topology can be constructed from the union of 𝑏 directed perfect matchings.4

It essentially means that Duo can be build using the TMT. Figure 6.2 illustrates the 𝐷𝐵(2, 3) de
Bruĳn topology with 8 = 23 nodes (ToRs) and two matchings (colored in blue and green). Each
node in the topology has two outgoing and two incoming directed links (including self-loops).
The figure shows the labeled version of the graph where each edge (or outgoing port) is labeled
with 0 or 1 according to the shift operation implied by Equation 6.1.

It follows from Observation 1 that we can build a 𝐷𝐵(𝑘𝑠 , 𝑑) topology with 𝑘𝑠 static spine
switches. From Property 4, it follows that when 𝑛 is a perfect power of two, we can build a
topology for 𝑛 ToRs and with a diameter log 𝑛 with 𝑘𝑠 = 2.

6.2.1.2 Greedy and LPM Routing in the de Bruijn Topology

Due to its structure, the de Bruĳn topology supports greedy routing from a source 𝑠 to a destina-
tion 𝑡 based solely on the address of 𝑡. That is, to choose the next-hop toward 𝑡, each node on the
route needs to know the address of 𝑡 and the addresses of its neighbors. The next-hop is chosen
as the neighbor which minimizes the de Bruĳn distance to 𝑡. The de Bruĳn distance between

3In principle, other approaches that enable greedy routing are possible alternatives to the de Bruĳn topology like
hypercube and Butterfly networks [304], small world networks [305] or distributed hash tables networks such as
Chord [296] or Kademlia [306]. The de Bruĳn topology provides the best tradeoff between their low degree, the
network diameter and IP integration. Future work may consider other alternatives.

4A perfect matching of a graph is a matching in which every vertex is incident to exactly one matching edge.
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Algorithm 2 Building the DB Forwarding Table

Function BuildTable (at node 𝑣)
1: for each neighbor 𝑧1𝑧2 , 𝑧3 at port 𝑝 do
2: Add the following entries to the table

Prefix Port Path-length
𝑧3 ∗ ∗ 𝑝 3
𝑧2𝑧3∗ 𝑝 2
𝑧1𝑧2𝑧3 𝑝 1

3: Reduce the forwarding table according to LPM rules

Prefix Port Path-len
0 ∗ ∗ 0 3
10∗ 0 2
110 0 1

Prefix Port Path-len
1 ∗ ∗ 1 3
11∗ 1 2
111 1 1

Prefix Port Path-len
0 ∗ ∗ 0 3
10∗ 0 2
110 0 1
111 1 1
011 Local 0

(a) Neighbor 110 on port 0 (b) Neighbor 111 on port 1 (c) Reduced Table for ToR 011

Figure 6.3 The results of building the forwarding table (Algorithm 2) of ToR 011 with neighbors 110 and
111 in the static 𝐷𝐵(2, 3) de Bruĳn graph.

two nodes 𝑣, 𝑤, denoted as distDB(𝑣, 𝑤), is the minimum number of shift operations needed to
transform 𝑣’s address to 𝑤’s address, i.e., the length of the shortest path. The main observation
is that each such shift implies a directed edge and the next-hop in the routing. Considering the
example in Figure 6.2, the de Bruĳn distance between nodes 𝑠 = 011 and 𝑡 = 001 is distDB(𝑠, 𝑡) = 3.
The route from 𝑠 to 𝑡 in 𝐷𝐵(2, 3) is 011 → 110 → 100 → 001. Note that each hop reduces the
distance to 𝑡 by 1.

Routing on the de Bruĳn topology can be realized via a simple forwarding table that is based
on a LPM [302]. This results from the fact that the de Bruĳn distance from a node 𝑣 = (𝑣1 , . . . , 𝑣𝑑)
to all other nodes can be compactly represented using 𝑑 entries and LPM. For example, the de
Bruĳn distance between 𝑣 and all nodes whose address has a LPM to rule (𝑣3 , 𝑣4 , . . . , 𝑣𝑑−2 , ∗, ∗) is
two. Namely, two shift operations suffice to transform 𝑣’s address to the address of a node that
matches the above rule.

Building the forwarding table for a node 𝑣 only requires knowledge of the address of each
neighbor 𝑤 and the respective outgoing port 𝑝 that connects to it. Algorithm 2 describes the
generation of a forwarding table (for simplicity only for the 𝐷𝐵(2, 3) case) and Figure 6.3 shows
the forwarding table of node 011 and how it is built from its two neighbors 110 and 111. Note
that in this example rules 1 ∗ ∗ and 11∗, are removed from the forwarding table of ToR 011 in the
table reduce process since they will never be used (there will always be a longer matching prefix
for these rules).

Considering Algorithm 2, we can state the following about the size of the forwarding table of
each node in the de Bruĳn topology [302]:

Observation 2. The LPM forwarding table of each node in a 𝐷𝐵(𝑏, 𝑑) topology has at most 𝑏𝑑 =

𝑂(𝑏 log𝑏 𝑛) entries.
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Prefix Port Len
0 ∗ ∗ 𝐷𝐴 3
00∗ 𝐷𝐴 2
100 𝐷𝐴 1

Prefix Port Len IP
0 ∗ ∗ {0, 𝐷𝐴} 3 10.0.0.0/9
00∗ 𝐷𝐴 2 10.0.0.0/10
10∗ 0 2 10.128.0.0/10
100 𝐷𝐴 1 10.128.0.0/11
110 0 1 10.192.0.0/11
111 1 1 10.224.0.0/11
011 Local 0 10.96.0.0/11

(a) ToR 011 with new DA link to 100. (b) Entries from 100. (c) Reduced table on ToR 011.

Figure 6.4 The new forwarding tables of ToR 011 after the establishment of the DA-link from 011 to 100.

Having understood the forwarding in a fully static de Bruĳn-based topology, we can now
discuss the DA links and how they are merged into the hybrid topology.

6.2.1.3 The Dynamic Demand-aware Topology

The simplicity of Duo relies on the observation that adding shortcuts to the static de Bruĳn
topology is easy and maintains the ability for greedy and LPM routing. Recall that there are 𝑘𝑑𝑎

reconfigurable switches which means 𝑘𝑑𝑎 matchings of size 𝑛 for DA links. For now, we consider
these 𝑘𝑑𝑎 · 𝑛 DA links as arbitrary links. Later we discuss how to choose these links based on the
demand.

Let 𝐺 = 𝐷𝐵(𝑏, 𝑑) be a de Bruĳn topology over the node set 𝑉 . Let 𝑀 be a directed matching on
𝑉 ×𝑉 . Let 𝐻 = 𝐺∪𝑀 be the union of the directed graphs 𝐺 and 𝑀 with the same set of nodes 𝑉 .

Figure 6.4 (a) demonstrates this case and shows 𝐻, the union of a 𝐷𝐵(2, 3) topology with a
single DA matching (showing for readability only one DA link from 011 to 100). Figure 6.4 (b) and
(c) present the new forwarding entries for the added DA link and the reduced table at node 011.
Similar to the fully static case, the forwarding table is constructed using Algorithm 2 but now
considering an additional neighbor from the DA link. If we consider as before the route from
𝑠 = 011 to 𝑡 = 001 it will now be shorter 011→ 100→ 001. In fact, all packets that reach node 011
with destination addresses with LPM 00∗will use the new DA port for forwarding. Note also that
routes toward addresses with LPM 0 ∗ ∗, like 010, have now two equal length routes (of length
three), for example, 011 → 100 → 001 → 010 or 011 → 110 → 101 → 010. More generally, we
can claim the following about 𝐻.

Claim 1. Let 𝐻 be the union of a de Bruĳn 𝐷𝐵(𝑏, 𝑑) topology and a single directed matching over the
same set of nodes. If we perform Algorithm 2 on each node in 𝐻, then 𝐻 supports integrated, multi-hop,
and greedy LPM routing with forwarding table size of (𝑏 + 1)𝑑.

Proof sketch. First we can show that 𝐻 supports greedy routing, since in each node 𝑣 and for each
destination 𝑡 the next-hop will be the neighbor of 𝑣 in 𝐻 with the shortest de Bruĳn distance to 𝑡.
While greedy routing on the static topology 𝐷𝐵(𝑏, 𝑑) reduces the de Bruĳn distance in each hop
by exactly one, DA links can reduce it by more than one. So the distance is strictly decreasing
in each hop until the destination. From the greedy routing it is clear that LPM forwarding will
work and that the path is integrated in a multi-hop manner. The forwarding table size is at most
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(𝑏 + 1)𝑑 since each node has at most (𝑏 + 1) neighbors (𝑏 static and one from the DA matching)
and for each it needs 𝑑 entries to represent its de Bruĳn distance to destinations.5

Following Claim 1, we can extend the single matching case to more than one matching
and support 𝑘𝑑𝑎 DA matchings. Formally, for integers 𝑘𝑠 , 𝑘𝑑𝑎 , 𝑥 ≥ 2 and 𝑛 = (𝑘𝑠)𝑥 , we de-
note by Duo(𝑛, 𝑘𝑠 , 𝑘𝑑𝑎) the Duo topology with 𝑘 = 𝑘𝑠 + 𝑘𝑑𝑎 spine switches, backbone network
𝐷𝐵(𝑘𝑠 , log𝑘𝑠

𝑛), and 𝑘𝑑𝑎 DA switches. We can state the following about the hybrid topology of
Duo.

Theorem 1. The Duo(𝑛, 𝑘𝑠 , 𝑘𝑑𝑎) topology with 𝑛 ToRs and 𝑘 = 𝑘𝑠 + 𝑘𝑑𝑎 spine switches (𝑘𝑑𝑎 , 𝑘𝑠 ≥ 2)
supports integrated, multi-hop, greedy, LPM routing with forwarding table size of 𝑂(𝑘 log𝑘𝑠

𝑛) and
diameter 𝑑 ≤ log𝑘𝑠

𝑛.

Proof sketch. The proof extends Claim 1 to 𝑘𝑑𝑎 demand-aware matchings. Since the additional
links can only reduce distances the diameter of Duo(𝑛, 𝑘𝑠 , 𝑘𝑑𝑎) is at most the diameter of
𝐷𝐵(𝑘𝑠 , log𝑘𝑠

𝑛)which is log𝑘𝑠
𝑛.6

6.2.2 Scheduling of Demand-Aware Links

Duo relies on a control plane which can use centralized or decentralized scheduling of the
DA links. The centralized scheduling benefits from the global view, while the decentralized
scheduling supports fast reaction.

Sirius’ [53] reconfiguration model serves as basis for DA links: spine switches use passive
gratings while (sending) ToR switches rely on tunable lasers which determine the link to set
up in the corresponding switch (matching). This property is useful for the distributed version
of the scheduling where the receivers provide permissions to senders to reconfigure links. All
algorithms use the command ‘Set DA-link (𝑥, 𝑦, 𝑖)’ which means that sender ToR 𝑥 tunes its laser
on (egress) port 𝑖 to establish a direct link to ToR 𝑦 via switch 𝑖. Recall that each ToR has 𝑘 egress
and 𝑘 ingress links toward the 𝑘 spine switches, so egress or ingress port 𝑖 can be mapped to
switch 𝑖.

6.2.2.1 Centralized scheduling of DA-links

The centralized scheduling uses a greedy heuristic to add shortcuts (i.e., DA links) to the backbone
de Bruĳn network. It periodically, every update period 𝜌, determines the new DA-links based on
an estimate of the accumulated demand or a measurement of the traffic in the network until the
current time. This estimation is described by a demand matrix 𝐷. The algorithm sorts the demands
in 𝐷 by their size in non-increasing order and for each demand (𝑠, 𝑡 , 𝑑𝑠,𝑡) in 𝐷, it tries to add a DA
link to the network. In case the algorithm decides to set a DA link, the link is not available for use
during the reconfiguration delay 𝑟𝑑𝑎 , unless it was already setup previously. Thus, the (worst-case)
slot length is 𝑠 = 𝜌 − 𝑟𝑑𝑎 . This results in a duty cycle of 𝜖 = 𝑠

𝑠+𝑟𝑑𝑎 . The algorithm is repeated
until no new DA link has been added, potentially iterating several times over the list of demands.
Moreover, remaining free, i.e., unmatched, ingress and egress ports are matched. If possible, the
matchings are in parallel to links of the static de Bruĳn topology, otherwise, a random matching
is applied.

5Claim and proof have been contributed by co-authors of [2]
6Theorem and proof have been contributed by co-authors of [2]
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Algorithm 3 Centralized (Greedy) DA links setting

Function Greedy-DA-links (𝐷 - Demand Matrix, 𝑘𝑑𝑎 - number of DA switches)
1: Δ = {(𝑠, 𝑡 , 𝑑𝑠,𝑡) ∈ 𝐷 : 𝑑𝑠,𝑡 > 𝑣𝑡ℎ}, sorted by volume 𝑑𝑠,𝑡

2: for all (𝑠, 𝑡 , 𝑑𝑠,𝑡) ∈ Δ from large to small do
3: for all 𝑖 ∈ 1 . . . 𝑘𝑑𝑎 do
4: if 𝑠, 𝑡 have available ports in DA switch 𝑖 then
5: Set DA-link (𝑠, 𝑡 , 𝑖) and break loop.

Algorithm 4 Distributed DA-link scheduling receiver-side
Function DistDaRx () at destination 𝑡

1: Upon detection of elephant flow from source 𝑠

2: if 𝑡 has available DA ports then
3: Send PortRequest(ports) to node 𝑠

4: if 𝑠 reply with PortApprove(i) then
5: DA-link (𝑠, 𝑡 , 𝑖) is set (with timeout)

Algorithm 3 shows the centralized algorithm, Greedy-DA-links. The algorithm is a simple
version of greedy 𝑘-matchings (known also as 𝑏-matching for undirected graphs [308]). The
algorithm iterates over requests (𝑠, 𝑡 , 𝑑𝑠,𝑡) ∈ 𝐷 that are larger than a threshold 𝑣𝑡ℎ in non-increasing
order and only connects a direct link between 𝑠 and 𝑡 if they have unmatched ports on the same
DA switch 𝑖. The shortcuts added by Greedy-DA-links support IMH. The following presents a
similar version of this algorithm that is easier to implement in a distributed way.

6.2.2.2 Distributed scheduling of DA-links

Algorithms 4 and 5 show the distributed scheduling algorithm, DistDA, for the receiving and
the sending ToR. The algorithms combine similar approaches as presented in ProjecToR [47]
and Sirius [53]. They implement a distributed, threshold-based greedy 𝑘 matchings algorithm.
The destination ToR runs an elephant flow detection which in turn triggers Algorithm 4. For
instance, the elephant flow detection can be implemented in P4 using sketches [309] as discussed
in more details later. If any of the destinations (ToR) detects a source(-ToR) as elephant it checks
if it has available DA-ports. If available, the destination sends an offer, PortRequest(𝑝𝑜𝑟𝑡𝑠), to the
elephant source ToR via the static topology part where 𝑝𝑜𝑟𝑡𝑠 is a list of available ingress ports at
the destination. Upon reception, the source/sender checks for an available egress DA-port on its
side. If a port is available, it acknowledges the request via a PortApprove(𝑖) message and sets the
link on port 𝑖. If no DA-port is available at the source, the request is declined. The destination
ToR continues to generate PortRequests for other elephants. An agreed DA-link, i.e., the ports
at sending and receiving ToR, is reserved for fixed period of time 𝜌. Afterwards, the ports can
be assigned to new requests and the circuit might be reconfigured. However, the circuit is not
pro-actively torn down but kept alive until an appropriate request arrives.

While the distributed scheduler is simple, it is effective as we will see next. The study of more so-
phisticated schedulers (e.g., based on distributed stable matchings [47] or online algorithms [310])
is left for future work.
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Algorithm 5 Distributed DA-link scheduling sender-side
Function DistDaTx() at source 𝑠

1: Upon PortRequest(ports) from destination 𝑡

2: if 𝑠 has available DA ports in 𝑝𝑜𝑟𝑡𝑠 then
3: Send PortApprove(i) to node 𝑡

4: Set DA-link (𝑠, 𝑡 , 𝑖) (with timeout)
5: else
6: Send DeclineRequest

6.2.3 Implementation and Practical Aspects

This section discusses some implementation-related and practical aspects of Duo.

6.2.3.1 Implementation and Cost

While not being limited to specific features of it, Duo is envisioned to be implemented using the
Sirius architecture [53]. Sirius is captured by the TMT model, but one of its great advantages is
that instead of spine switches, Sirius uses a single layer of 𝑘 arrayed waveguide grating (AWG)
routers. AWG routers are simple and passive without moving parts and do not consume power
(Chapter 3). Still, each grating diffracts (“forwards”) incoming light from input to output ports
based on the wavelength and thereby, abstractly creates an matching. Reconfiguration is then
performed by a physical-layer ToR switch (or directly on servers) equipped with 𝑘 transceivers
containing tunable lasers that can change the wavelength used to carry the data toward the
gratings through an optical fiber.

Sirius has been presented as a DO architecture which provides fast end-to-end reconfiguration,
due to a pre-determined, static schedule that specifies the connectivity at any given fixed-size
timeslot. However, the Sirius architecture is in principle also well-suited for DA scheduling, with
slower end-to-end reconfigurations.

As Duo differs from Sirius only in the scheduling and routing, the cost and power consumption
of Duo are comparable to Sirius. In [53], the authors show that Sirius’ power and cost are about
25% of an electrically switched Clos network. That said, unfortunately, a direct comparison of the
performance of Duo and Sirius is currently not possible as Sirius’ simulation code is not available.
Therefore, the empirical evaluation concentrates on the comparison to Opera [49] which is similar
in the DO nature as Sirius. Additionally, the evaluation compares to static expander topologies
which are also state-of-the-art datacenter networks [211].

6.2.3.2 IP Addressing and LPM Forwarding

Section 6.2 states that Duo builds around LPM. In fact, the (logical) de Bruĳn addresses in Duo
can be embedded into the network hosts’ IP addresses rendering Duo feasible on available (COTS)
hardware. The approach presented in the following uses IPv4 but can also be implemented using
IPv6. Depending on the number of ports per ToR, a single symbol of the de Bruĳn address takes
one or multiple bits of the IP address: 𝑞 =

⌈
log2(𝑏)

⌉
. Thus, the full de Bruĳn address occupies

𝑞 · 𝑑 bits of the IP address. In order to use LPM to implement the forwarding, the IP address is
partitioned into three parts. The first 𝑝 bits mark the base network that is assigned to Duo. The
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following 𝑠′ = 𝑠 · 𝑑 bits identify the ToR by means of the de Bruĳn address. The remaining ℎ bits
identify the host/VM inside the rack, i.e., each ToR is assigned a /(𝑝 + 𝑠′) prefix.

For the example of Figure 6.4(a), the de Bruĳn address can directly be mapped to an IP
address/prefix and occupies only 3 address bits. Figure 6.4(c) shows an exemplary forwarding
table for ToR 5 = 011 with 10.0.0.0/8 as the base IP prefix. In this case, the IP 10.160.32.15 is
decomposed as

10.160.32.15 = 00001010︸     ︷︷     ︸
𝑝

. 101︸︷︷︸
𝑠′

00000.00100000.00001111︸                           ︷︷                           ︸
ℎ

. (6.2)

Following Algorithm 2, each node can build its IP forwarding table locally based on its ToR
neighbors’ addresses. In particular, when a new DA link is established for a node’s port and the
node knows the ToR address of the new neighbor, the forwarding table can be updated locally
(without recomputing the shortest paths).

Transport Layer In general, Duo does not require a customized transport protocol nor complex
flow scheduling. It performs well with existing protocols “out of the box", for instance with TCP or
NDP [172]. However, handling small and large flows differently, e.g., by using different transport
protocols and separating them into different queues, can significantly improve performance
further, and reduce flow completion times of the small flows drastically. Thus, similar to previous
approaches such as Opera [49], Duo classifies flows according to a fixed threshold 𝑓𝑡ℎ into low
latency and bulk traffic. In order to improve the performance for low latency flows, NDP [172] was
identified as a promising candidate [49]. As we observe later, it also shows good performance in
Duo. For large flows (> 𝑓𝑡ℎ), Duo uses TCP for congestion control and re-transmissions.

Each port of a ToR (static and DA) in Duo provides three queues of different, fixed priorities.
In order to avoid interference on congestion feedback, TCP acknowledgements and NDP header
packets (i.e., acknowledgements or packets that have been stripped) are always forwarded via
the high priority queue. NDP data packets use the medium priority queue and TCP data packets
use the low priority queue. Packets residing in the queues of a DA-link that is reconfigured are
dropped. This is a radical approach but the imposed re-transmissions have been found to impact
Duo’s performance only marginally. Forwarding these packets via the new DA-link resulted in
lower throughput.

6.3 Evaluation

This section uses and extends htsim to evaluate Duo. htsim is a packet-level simulator which
has also been used in previous works, e.g., [49, 172]. With the simulations, this section answers
the question of how Duo fares against state-of-the-art topologies such as more common DA
topologies, expander-based networks, and Opera [49]. It further explores how Duo behaves
under varying traffic conditions and assesses the impact of several topology configurations.

6.3.1 Methodology

The following part describes the simulation settings and traffic patterns more in detail.
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Settings The evaluation considers topology configurations with 𝑛 = 64, 128, and 256 racks.
Each ToR has 16 ports which are divided into 8 downlink ports for the hosts, and 8 uplink ports
towards other ToRs. Since Duo implements a directed topology, the uplinks are split into 8
ingress and 8 egress ports. All links have a capacity of 10 Gbps (as in previous work [49]). So the
considered topologies have total uplink capacities of 5.12 Tbps, 10.24 Tbps and 20.48 Tbps.

Unless stated differently, the reconfiguration delay is 𝑟𝑑𝑎 = 100 µs for DA links. This delay
includes both computation and link setup. The active period of an DA link, i.e., the slot duration,
is 𝑠 = 9.9 ms, i.e., the DA links are updated every 10 ms (if needed). Overall, this setting has a
duty cycle of 99%. The reconfiguration delay for DO links in Opera is 10 µs and following the
default configuration yields a duty cycle of 98% [49]. The packet size is 1500 B. Unless stated
differently, each simulation runs for 10 s of simulation time.

Traffic and Flow Size Distributions The evaluation considers an online traffic scenario in which
flows arrive according to a Poisson process. It assesses the following four traffic scenarios:
Permutation. The flow sizes are fixed to 500 kB and the spatial communication pattern follows
a rack-to-rack permutation matrix. The permutation matrix was shown to be the worst case traffic
for expander and dynamic DO (rotor-based) topologies like Opera [294, 3].
Hadoop, Websearch and Datamining. In each case, the flow sizes are sampled from the
respective flow size distribution as reported in the literature [193, 311, 34]. They are similar to a
power law distribution, but with different average and maximum flow sizes. Consequently, most
of the flows are small, but the majority of the traffic belongs to large flows.

The arrival rate is adapted in order to create load values in the range from 10% to 80% with
respect to the total uplink capacity of the hosts. A load of 100% means that all hosts are sending
at full line rate.

Topologies The evaluation compares Duo to three combinations of topologies and resource
management, i.e., DA link configuration and routing, algorithms, representing the state-of-the-
art.
Duo. Our proposal uses Duo (𝑘𝑠 = 2, 𝑘𝑑𝑎 = 6) and configures the DA links using the centralized
greedy, one-hop approach shown in Algorithm 3 with 𝑣𝑡ℎ = 10 MB. For all flows that are
present in the system when the algorithm is called, it has knowledge of the remaining volume
to be transmitted. Upon establishment of a circuit, it updates the routing information (locally)
to incorporate the new DA link using Algorithm 2. In addition, it ensures that only equal cost
(length) paths according to the greedy de Bruĳn routing are used.
Segregated. The first baseline (Segr) has the same topology configuration and DA link scheduling
algorithm as Duo but can only use segregated routing similar to ProjecToR [47]. It routes flows via
a DA link only if the link directly connects the source and the destination of the flow. Otherwise,
flows are routed on the static topology according to the greedy de Bruĳn routing.

Note that de Bruĳn graphs serve as the backbone topology for this baseline since a good
expander with such a small degree (𝑘 = 2) cannot be constructed and a higher degree expander
would result in an unfair comparison as the number of DA links is smaller.
Expander. The second baseline (Exp) is a static 𝑘 = 8-regular directed Expander topology that
is built from 𝑘 static matchings (similar to [211]). For flow allocation, it uses a 𝑘-shortest path
routing where flows are randomly assigned one of the 𝑘 paths upon their arrival.
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(d) Datamining.

Figure 6.5 Total received volume within 10s against total offered load. The dashed line indicates the offered
load. Duo outperforms the baselines Segr, Exp, and Opera.

All three systems use the priority queueing described in Section 6.2.3.2. Each port has a low
priority queue which can hold 50 data packets and medium and high priority queues of the
same size. Flows ≤ 𝑓𝑡ℎ use the NDP [172] implementation and large flows (> 𝑓𝑡ℎ) use the TCP
implementation available in htsim. If not stated otherwise, the threshold is 𝑓𝑡ℎ = 1MB.
Opera. The third baseline is Opera [49], a state-of-the-art dynamic, DO topology. Opera period-
ically cycles through a set of matchings maintaining an expander graph at every time instance.
This thesis uses the available implementation in htsim and the default configuration as provided
with the original paper [49]. Flows < 15MB are sent using NDP [172] via the expander part,
whereas large flows use the RotorLB (RLB) transport protocol and rate allocation algorithm.
There are two queues per port on the ToRs. The first (low priority) queue can hold 8 data packets
and the second (high priority) queue has the same size for header packets. Note that in addition,
Opera makes heavy use of packet queueing on the hosts and its transport protocol is not standard.

6.3.2 Empirical Results

The empirical evaluation revolves around the following main takeaways:

6.3.2.1 Duo increases system throughput

Figure 6.5 presents the total received (RX) volume throughout one simulation run. It compares
Duo, Segr, Opera, and Exp for the four traffic patterns. The abscissa shows the offered data relative
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of the 99%-ile of the flow completion time (FCT)
by flow size. The relations between the algorithms
change depending on the flow size.
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Figure 6.7 CDF of the difference between received
and expected segment sequence number as mea-
surement of packet reordering. Duo has less packet
reordering than the other solutions.

to the uplink capacity of the ToRs and the simulation duration. The offered data describes the
goodput (dashed line), i.e., it does not account for transport layer effects. The RX volume directly
correlates with the throughput of the network. Naturally, it increases with the offered data but
saturates when the throughput of the network is reached. Recall that Duo, Segr, and Exp use
TCP for large flows so the received data is ordered while for Opera the packets mostly arrive out
of order due to the oblivious scheduling of the next hop link.

For three of the traffic patterns, Duo improves over all baselines. Only for Permutation
(Figure 6.5a), it is on par with Segr. Duo and Segr saturate beyond 70% offered load which
corresponds to the ratio of the DA link capacity to the total link capacity (= 6/8 = 0.75). In this case,
the DA links are used to exactly match the traffic pattern, i.e., the permutation matrix. Thereby,
the network provides paths of minimal length and serves the traffic efficiently. Opera saturates
around 50% which corresponds to the upper bound for the throughput that has previously been
derived in theory.7 Exp starts to saturate already around 20% offered load.

For Hadoop (Figure 6.5b), Websearch8 (Figure 6.5c) and Datamining (Figure 6.5d), the dif-
ferences between the topologies are smaller. First, we note that Opera and Exp align and start
saturating both around 40% for Hadoop and around 30% for Websearch and Datamining. More-
over, the RX volume of Opera drops for loads > 30% with Websearch. This is in line with the
original paper of Opera which also observes decreasing throughput when the load of Websearch
traffic increases [49, Figure 10]. The volume of latency sensitive traffic (flows < 15 MB) exceeds
the capacity of Opera’s expander part.

Second, Duo successfully transmits ≈ 15% more data on average across the load values in
comparison to Opera and Exp. For instance, Duo successfully transmits 2.75 TB for 50% offered
load from Datamining while Exp achieves only 2.27 TB and Opera 2.24 TB. Compared to Segr,
Duo transmits 8% more data for high loads on average across the three workloads. This illustrates
the benefit of the IMH routing provided by Duo. Since the results until here are structurally similar
for the traffic distributions and for the sake of readability, the remainder of the evaluation focuses
on the Datamining workload.

7Opera is only evaluated up to 60% load due to computation constraints.
8Websearch is simulated only for 3 s due to the significantly larger number of flows.
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6.3.2.2 Duo preserves competitive flow completion times

Besides throughput, the FCT is an important performance indicator. Figure 6.6 illustrates the
99%-ile of the FCT per flow size for 40% load. The dashed line indicates the minimum FCT under
ideal conditions. For small flows (< 1 MB), Duo slightly outperforms the other topologies. For
instance, it achieves FCTs around 13 µs followed by Opera (18 µs) and Segr (20 µs). Exp gives the
worst FCTs, approximately one order of magnitude larger compared to Duo.

The advantage of Duo persists until 𝑓𝑡ℎ , i.e., a flow size of 1 MB is reached. Here, Opera starts
to perform better. The curves separate before they converge again for flows > 15 MB. The major
reason for these differences is that Duo trades off the lower FCT for small flows against increased
FCTs for medium sized flows. The choice of 𝑓𝑡ℎ to define low latency flows controls this trade-off
(cf. Section 6.3.2.5). We note, that Duo consistently performs better than Segr across all flow
sizes. Overall, Duo effectively trades off the higher throughput and slightly better FCTs for small
flows against the FCTs of medium flows.

6.3.2.3 Duo has a moderate amount of packet reordering

Figure 6.7 visualizes the difference of the received and the expected sequence number per packet
arrival at the destination. The figure shows the empirical cumulative distribution function. The
abscissa is broken into two parts. The two data points in the left part (< 0 and 0) denote the
fraction of packets where the difference was negative and equal to 0. The right part visualizes
the samples > 0 with a log-scaled abscissa. A negative difference means that a packet is a bad
(unnecessary) re-transmission. The values are below 0.5% for all systems. The observations vary
when the difference is ≥ 0. Opera receives only a small fraction of around 5% of the packets
in correct order (= 0). For 80% of the received packets, the difference of the sequence numbers
lies between 4001 and 20k. While this is a direct consequence of RLB’s packet indirection, it
still illustrates the complexity that Opera imposes on the receiving hosts. For Exp, ≈ 93% of the
packets arrive in order while it is ≈ 97% for Duo and Segr. In conclusion, in spite of the DA link
and routing reconfigurations, Duo’s does not lead to an increased amount of packet re-ordering.

6.3.2.4 Duo path characteristics

To shed light on how Duo’s traffic allocation differs from Segr, Exp, and Opera, Figures 6.8–6.10
show several aspects of the resource utilization and routing characteristics. Figure 6.8 shows the
(weighted) average path length in hops calculated based on the traffic allocation. It weighs each
path length with the fraction of traffic that arrived at the destination and used a path of this
length. Lower values are better and indeed we observe that Duo reduces the path length for all
evaluated load values compared to Exp and Opera. However, compared to Segr, it only provides
shorter paths for loads up to 40%. The advantage compared to Exp and Opera decreases with
higher load, when Duo starts to route flows via IMH paths that use both DA and static links.
For 20%, Duo has an average path length < 1.25 hops. This is slightly smaller than Segr (1.3
hops) but a 37% reduction compared to Opera and Exp which are ≥ 2 hops. For 80% load, Duo
uses only 1.63 hops on average, still a 15% improvement to Exp and Opera but 15% larger than
Segr (1.42 hops). However, as we observed before in Figure 6.5d, Segr does not benefit from the
shorter average path lengths.
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Figure 6.8 Comparison of the traf-
fic weighted average path length
against the offered load.
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Figure 6.10 Comparison of Duo
paths’ characteristics against the
offered load: IMH vs. 1-hop DA.

To understand this more in detail, Figure 6.9 shows two assessments of the average link
utilization from the steady state of a simulation run. The colored bars are the raw average
link utilization. The black bar next to a colored bar is the respective normalized link utilization.
The normalized link utilization �̃� is defined as the ratio between average link utilization 𝑢 and
average path length 𝑝, i.e., �̃� = 𝑢

𝑝 . It gives an indication for the throughput.

For 20%, 𝑢 varies for the networks. Duo has the lowest raw link utilization with 0.25 followed
by Segr (0.27), Opera (0.41) and Exp (0.45). This is in line with the order for the average path
lengths. The normalized link utilization is around 0.2 for all topologies. This means that all
topologies can serve the load as also seen in Figure 6.5d. In this case, a lower link utilization
means more efficient operation and hence, is favorable. The observations change for 60% load.
Here, Segr has a lower raw link utilization (0.64) than Duo (0.79). The order for Exp (0.85) and
Opera (0.82) remains the same. Also the normalized link utilizations behave differently. In line
with the observations in Figure 6.5d, Duo has the highest value (0.5) followed by Segr (0.44), Exp
(0.43), and Opera (0.41). The lower link utilization of Segr is not an indicator for more efficient
transmission here. Since Segr is restricted to 1-DA hop paths, it is not able to utilize the available
capacity as effectively as Duo. Moreover, it routes more flows via the static de Bruĳn topology
which increases congestion. As a result, Segr provides lower throughput (cf. Figure 6.5d). This
confirms that Duo sets DA links that are usable by the greedy routing.

Figure 6.10 provides more details on the path characteristics. It shows the fraction of traffic
that uses a single hop, DA link (1 hop DA) and the fraction of traffic that traverses integrated
multi-hop (IMH) paths, i.e., paths which use both static and DA links, so their length is at least two
hops. With higher load, the share of 1 hop DA traffic decreases, while the fraction of IMH paths
increases. This can be explained with the properties of the traffic. For low load, the DA links
can support most of the traffic, but as load increases more ToR pairs have demand for shortcuts,
and multi-hop paths are needed to enable higher throughput. For these paths, due to its greedy
routing, Duo also can use the DA links and the share of IMH traffic increases. Specifically, we
observe rather large values for the fraction of 1-DA hop traffic (> 0.9) for loads below 40%. It
decreases to ≈ 0.56 with 80% offered load. In contrast, the share of IMH traffic starts < 0.1
and increases towards 0.28 for high load. This demonstrates the importance of the IMH paths
property of Duo. Without this property, the throughput would be lower, as the results for Segr
show (cf. Figure 6.5).
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Figure 6.11 Impact of period 𝜌 and duty cycle on
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Figure 6.12 Impact of the small flow threshold 𝑓𝑡ℎ

on the 99%-ile of the FCTs by flow size. 0 B classifies
all flows as large. Besides the flows whose classi-
fication changes, a higher threshold also increases
the FCT of the small flows.

6.3.2.5 Sensitivity analysis

Next, the evaluation focuses on how Duo’s performance depends on the algorithm configuration.
Figure 6.11 approaches this question on two different dimensions: the optimization period 𝜌

(= 𝑠 + 𝛿) and the duty cycle 𝜖. The values are normalized to the result for 𝜌 = 10 ms, 𝛿 = 100 µs
which gives 𝜖 = 99% and is used in the rest of the analysis.

Overall, the impact of the configuration is small. The values range from 0.92 to 1.0. The
received volume increases with the duty cycle since less time is spent during reconfigurations.
For instance, 𝜌 = 1 ms increases from 0.98 at 𝜖 = 50% to 0.99 with 𝜖 ≥ 98%. The 𝜌 = 50 ms
shows the largest gain due to an increase of the duty cycle. Here the normalized RX volumes
grows from 0.92 to 1.0. Finally, we note that the relation between the three optimization periods
is moderated by the duty cycle. While 𝜌 = 1 ms is dominating for the duty cycle 𝜖 = 50% with
𝜌 = 50 ms being the worst, the opposite is the case for 𝜖 = 99%; this effect can mainly be deduced
to the absolute value of the reconfiguration delay with low duty cycles.

Another parameter is the flow classification threshold 𝑓𝑡ℎ . Its impact on the total RX volume is
< 0.1% except for 𝑓𝑡ℎ = 15 MB which has 3% less RX volume. Figure 6.12 illustrates the impact
of 𝑓𝑡ℎ on the 99%-ile of the FCTs for 40% offered load. We observe the impact of 𝑓𝑡ℎ in two
aspects: 1) using the medium and high priority queues for small flows improves their FCT. For
instance, flows of size 180 B have FCTs of ≈ 1.4 ms without priority queuing ( 𝑓𝑡ℎ = 0 B). The
values are reduced with 𝑓𝑡ℎ = 15 MB to ≈ 67 µs and to ≈ 12 µs with 100 kB and 1 MB. Reducing
𝑓𝑡ℎ , i.e., considering fewer flows as small, results in lower FCTs for small flows. 2) the “jump“ of
the FCT values moves as expected. Flows that are classified as large have around two orders of
magnitudes larger FCTs compared to their classification as small flows.

6.3.2.6 Duo has low complexity

Figure 6.13 illustrates the wall clock time for the simulations against the load. Intuitively, the
run-times increase with the load. However, Duo, Segr, and Exp have a slower increase in run-time
compared to Opera which frequently runs a costly rate allocation.
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Figure 6.13 Simulation wall clock time against the
offered load. Duo has lower runtimes than Opera
which hints at lower complexity.
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(b) Path characteristics.

Figure 6.15 Total RX volume and fraction of traffic forwarded via IMH paths for skewed connectivity
patterns. The observed gains and behavior from the uniform pattern persist also in skewed settings.

We acknowledge that the simulation run-time does not reflect hardware implementation char-
acteristics but is a first indicator for the computational effort and the complexity of the load
balancing protocol (RLB) in Opera.

6.3.2.7 Duo’s performance gains persist for larger topologies

This section evaluates Duo on topologies with 𝑛 = 128 and 𝑛 = 256 racks. The traffic is generated
based on the Datamining distribution and offers a load of 60% relative to the topology size.
Figure 6.14 illustrates the RX volume after 5 s of traffic and simulation. The results are normalized
to Duo with 𝑛 = 64. The simulations runs are shorter than 10 s due to scalability. We focus only on
Duo, Segr and Exp in this comparison since Opera’s simulations do not scale well. All topologies
have 𝑘 = 8 uplinks. Comparing the RX volume across the topology sizes, the difference between
Duo and Exp increases from 0.21 with 64 racks to 1.1 with 256 racks. For Segr, it increases from
0.07 to 0.27 respectively. This result validates that Duo can provide a higher capacity topology
also at larger scales.
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6.3.2.8 Performance under skewed connectivity patterns

The previous evaluation of Duo covered only uniform connectivity patterns. In order to com-
plement the analysis, we now consider skewed connectivity patterns in which only a fraction of
the ToRs communicate. The communicating (active) ToRs are selected randomly from all ToRs
and a uniform communication pattern is used inside this subset of ToRs. On average, each of
the active racks generates traffic at full rate using flow sizes from the Datamining distribution
(similar to [211]).

Figure 6.15 shows the total RX volume for Duo, Exp and Opera as well as the path characteristics
for Duo. For the total RX volume (Figure 6.15a), we first observe that Exp performs worse than
Opera and Duo for all levels of skewness (percentages of active racks). Second, Opera performs
similar as Duo until the total load in the networks approaches the performance limits of Opera
that were observed previously, i.e., 50% active racks. At this point, Duo starts to transmit more
volume than Opera.

Taking the path characteristics into account (Figure 6.15b, similar representation as in Sec-
tion 6.3.2.4), we note that strongly skewed communication patterns result in only little IMH
traffic as the amount of DA-links suffices to serve almost the whole traffic via 1 hop DA paths.
With the pattern becoming more uniform, the share of IMH traffic grows. In conclusion, Duo
performs similar as the baselines in skewed communication patterns but is able to outperform
them as the pattern becomes more uniform as it can utilize IMH paths.

6.4 Proof-of-Concept

To demonstrate feasibility, this section presents and evaluates a proof-of-concept implementation
of Duo. It starts by describing the testbed (Section 6.4.1) and detailing the implementation of
data and control plane (Section 6.4.2). Finally, it presents measurement results from two traffic
patterns (Section 6.4.3).

6.4.1 Testbed

We first introduce the components and structure of the testbed and then, provide details on the
packet forwarding to emulate multiple ToRs.

6.4.1.1 Components and structure

The proof-of-concept uses a WEDGE 100BF-32QS Barefoot Tofino 3.2 Tbps switch and the P4
language to implement Duo’s data plane logic and to emulate a 16 ToR scenario. Figure 6.16
overviews the testbed (the figure shows an 8 ToR version for readability). The switch (gray box)
connects to four servers (blue boxes) with 128 GB of RAM and Intel Xeon Silver 4114 @ 2.2 GHz
(20 cores). All servers run Ubuntu 18.04 (5.15.0-47-generic kernel). Each server emulates four
servers in four racks (green boxes). Therefore, it has four NICs that connect via a 4x10G breakout
cable to the switch. For each rack, it generates and sends traffic via one of the four links. The
logical separation is realized using Linux network namespaces. The Tofino switch emulates the data
plane of the ToR switches and the spine layer with its static and dynamic matchings. The round
boxes inside the switch indicate the QSFP ports; the white squares inside show the individual
SFP+ lanes. Eight loopback cables (double headed arrows) represent the links between different
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Figure 6.16 Conceptual overview of Duo’s proof-of-concept implementation in an eight ToR testbed setup.
The shown setup uses two servers, one switch with Tofino ASIC and one dedicated controller machine.
Note that the measurements later are conducted with 16 ToRs, so use twice the number of servers and
ports at the Tofino.

switching elements; the QSFP ports are operated in breakout mode (4x10G). The lower row of
QSFP ports connects to the servers, whereas the upper row is used to create the matchings on
the spine switches. The “upper” row of ports on the spine layer corresponds to Static ports, the
lower row is used for the dynamic matchings. In the following, the term “port” refers to a single
SFP+ (10G) lane.

The setup is operated by a single external controller. The controller deploys forwarding rules
to the switch to separate the racks’ traffic and forward it according to the greedy routing. It also
mimics the behavior of the distributed control plane.

6.4.1.2 ToR emulation concept

Generally, the emulation considers the two directions of each (10 Gbps) link as separate directed
links, hence, ingress and egress directions can be assigned to different ToRs. For instance, in
Figure 6.16, the egress direction of the port next to the 3 is used by the green rack (small box);
the port next to it is used by the orange rack. The assignment of the ingress direction is visualized
by the color of the surrounding box, e.g., ToR1 (green) is assigned to the upper left group of
ports.9

Static Packet Forwarding vs DA Forwarding Example. Rack 1 intends to send a packet to Rack 6;
this forwarding goes along a 2-hop path (ToR1→ ToR3→ ToR6). First, it sends a packet on the
NIC 1 . The Tofino receives the packet 2 and forwards it internally on an outgoing port of ToR1
3 . Please note here how the emulation exploits the differentiation of ingress and egress of the

Tofino switch; the outgoing port of ToR1 is not located physically on the same QSFP port where
the ingress happens. ToR4 receives the packet via the loopback cable 4 and then sends it out to

9The decision to grouping ports (SFP+) by their QSFP port was done deliberately for readability. From an implemen-
tation point of view other groupings are possible too.
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ToR6 5 . After receiving the packet on ToR6 6 , it is forwarded to Rack 6 7 and finally received
8 . Using DA links, the packet initially travels on the same path as before 1 2 but ToR1 3

can directly transmit the packet to ToR6 4 . This saves one hop. With the flexible P4-based ToR
emulation, this setup can emulate static and DA de Bruĳn DCNs.

6.4.2 Data & Control Plane Implementation

The P4 pipeline consists of two major parts, forwarding and elephant flow detection, which are
described in the following.

6.4.2.1 Forwarding

A crucial aspect of emulating multiple ToRs on a single Tofino is to identify the location of
the incoming packets in the emulated network, i.e., at which ToR they arrive. The prototype
implements this by a first table lookup which exactly matches the ingress port of the packet and
adds the ToR id to a metadata header. The actual de Bruĳn forwarding uses a second table that
combines the ToR id in the metadata header as an exact key along with an LPM on the packet’s
destination IP address.

The addressing used in the emulated network follows the approach that is presented in Sec-
tion 6.2.3.2. Since the testbed can emulate a maximum of 16 ToRs, four bits are needed for the
de Bruĳn node ids. The 12 most significant bits are the base prefix, and the remaining 16 bits
identify the hosts.

6.4.2.2 Elephant flow detection

The elephant flow detection algorithm always runs when a packet arrives at its destination ToR.
If this packet belongs to an elephant flow, the data plane notifies the control plane using a digest,
unless it is listed as an already reported flow.
Per-flow statistics. The prototype defines a flow as the aggregate traffic on the ToR-to-ToR level.
Thus, for a small number of ToRs, it is feasible to keep track of the individual flows’ statistics.
The Tofino Native Architecture provides built-in functionalities for low pass filters that can be
leveraged to estimate flow rates. Considering a maximum of 16 racks and ToR-to-ToR level flows,
256 individual low pass filters are needed to monitor every possible flow. For larger numbers of
ToRs, probabilistic approaches such as sketches can be used.
Elephant flow threshold and detection. Using the per-flow statistics, the prototype classifies a
flow as elephant if the number of packets sent in a given time interval exceeds a given threshold.
To avoid the reverse direction of flows (the acknowledgements) and to reduce the efforts for
parameter tuning, only packets larger than 255 B are included in the statistics. Note that both
threshold and time interval are configurable and might benefit from optimizing for different
traffic scenarios.
Preventing control plane flooding. The prototype features introduce a simple filtering mecha-
nism to avoid flooding the control plane with digests. After an elephant flow is detected, it sets
a reported_elephants register value from 0 to 1000 for this flow. As long as the threshold
is exceeded, each subsequent packet from this flow decreases reported_elephants by 1. The
data plane does not report the flow until this value reaches 0 again. Additionally, there is a
known_elephants table with exact matching on the source and destination addresses. Upon
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detection, the control plane inserts a matching entry and thereby, mutes the digests for this flow.
The initial value of the flow’s reported_elephants register can be tuned to give enough time
for the control plane to create the table entry.

6.4.2.3 Control plane implementation

The Duo prototype uses a Python-based centralized controller. The controller ignores the avail-
able global knowledge and implements the distributed DA link scheduling as presented in Al-
gorithm 4 and 5 in a sequential way. That is, a single central processing unit (CPU) processes
the elephant flow notifications from the switch. The controller maintains a list of the currently
connected neighbors per-ToR. This list in turn is used to derive the forwarding tables with
Algorithm 2.

When bootstrapping the network, the controller populates the tables for matching ingress traffic
to the correct ToR and installs the forwarding entries following the greedy routing on a static de
Bruĳn topology. It then starts listening for elephant flow notifications.
Processing notifications. Upon reception of an elephant flow notification, the controller extracts
the sending ToR’s id 𝑡 (destination of the elephant flow) and the flow’s source ToR id 𝑠. In order
to disable transmission of further notifications, it adds the flow to the known_elephants table.
Afterward, it runs DistDaRX (Algorithm 4) with the state of the destination 𝑡 to get the port
request. The request is passed to DistDaTX (Algorithm 5) along with the state of the source 𝑠. If
the request accepted, the controller obtains the DA link to create and mark the DA ports in 𝑠 and 𝑡

as reserved. Finally, the controller checks if any elephant flow has passed its cooldown period and
removes it from the known_elephants table on the switch and resets the reported_elephants
register to 1000.
Setting DA links. The emulation implements DA links by (re-)assigning egress directions of ports
to ToRs and, consequently, adding the needed forwarding rules (cf. Figure 6.16). Specifically,
since the ingress ports of a ToR are fixed, the controller first infers the egress port that belongs
to the loopback cable that connects to the ingress port of the DA link’s destination ToR. Then,
it updates the forwarding table of the DA link’s starting ToR following Algorithm 2 and using
this egress port (i.e., colors of DA ports in Figure 6.16 change over time). The current version
does not emulate reconfiguration delay but can implement this by delaying the forwarding table
updates. In case other DA links must be removed first, the forwarding tables of the involved ToRs
are updated accordingly beforehand.

6.4.3 Measurement Results

The following part validates the behavior of the proof-of-concept implementation and thereby,
demonstrates the feasibility of Duo.

6.4.3.1 Settings and traffic input

The validation study considers a scenario with 16 ToRs and two configurations: Duo (4,0) and
Duo (2,2). The rate on the ToRs’ up-links, i.e., the ports that are connected via the loopback cables,
is limited to 2.5 Gbps using traffic shapers available on the Tofino switch. The reconfiguration
delay is 𝑟𝑑𝑎 = 0 ms and DA links are reserved for 𝜌 = 200 ms. Moreover, the threshold for elephant
flows is 90 Mbps windowed over 0.5 s. This value turned out to be sufficient to separate the data
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Figure 6.17 Measurements of throughput over time. Results from measurements in a 16 ToR testbed with
two bursts (matrices) of flows arriving. The colors compare Duo’s configurations and linestyles distinguish
the arriving matrices. The upper figures show two flows selected from the matrices, the lower figure shows
the overall throughput. Transmission over Duo (2,2) finishes before Duo (4,0) since it can utilize the Da
links.

streams from the flow of TCP acknowledgements. The cooldown time for elephant flows is set to
200 ms. During this period the data plane does not send elephant flow notifications to the control
plane. The servers generate traffic according to two (different) permutation matrices which arrive
with 2 s inter arrival time. Each matrix element corresponds to one TCP flow of 2 GB size. Note
that the acknowledgements of the TCP flows can take different paths than the main data. The
first matrix is constructed in such a way that all flows must use at least two hops on the static de
Bruĳn topology. The second matrix is randomly generated.

6.4.3.2 Analysis

Figure 6.17 compares the achieved throughput for the two configurations of Duo. Figure 6.17a
focuses on the throughput per flow over time. For each configuration, it shows the two flows
from both matrices which originate at Rack 2. The flow of the first matrix is shown in the left
column, the one of the second matrix in the right column. The upper row is Duo (2,2), the lower
one Duo (4,0).

For Duo (4, 0), we observe that the two flows share at least one link, after the second flow has
arrived in 𝑡 = 2s. Neither of the two flows reaches the full link rate and, hence, both have a
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transmission duration of 24.22 s and 14.33 s respectively – significantly longer than the theoretic
optimum of 6.4 s. In particular, the first flow suffers from interference with other flows. Even
after the second flows has finished, its rate remains around 1 Gbps which hints at additional
congestion on another link. In contrast, Duo (2, 2) uses the elephant detection to identify large
flows and establishes DA links for each flow. In the figure, the vertical, red dashed line indicates
when the DA link for the respective flow is set up. As a result, both flows send at link rate and,
hence, finish earlier at 8.6 s and 10.73 s. This demonstrates that Duo reacts appropriately to the
elephant flows it detects.

Taking a broader perspective, Figure 6.17b compares the aggregated throughput per permuta-
tion matrix (here a set of 16 flows). The dotted and solid lines discriminate the matrices (solid:
first matrix, dotted: second matrix), whereas markers and colors indicate Duo’s configuration.
Compared to Duo (4, 0), Duo (2, 2) achieves higher throughput of ≈ 30 Gbps per matrix by set-
ting DA links. The vertical, red dashed line indicates when the transmission with Duo (2, 2)
finishes. The overall demand completes ≈ 54% earlier than for Duo (4, 0). For Duo (4, 0), the
throughput for the first matrix (green, solid) decreases when the second matrix arrives. Overall
this demonstrates that Duo is realizable and underlines the benefits of DA reconfigurations.

6.5 Discussion of shortcomings and open questions

This section discusses several important open questions that this study leaves for future research
to improve Duo.

Classification of flows. Duo assumes that an a priori classification into latency sensitive and
throughput sensitive flows is available, based on which the transport protocol and queue priority
is chosen (similar to Opera [49]). This classification can be done using application-level informa-
tion but for the sake of this thesis, the flow size is considered. Obtaining the size of a flow in
advance is still considered a challenging problem in the community and several methods such as
aging or machine learning have been proposed [312]. In general, a mis-estimation of the flow size
can impact the performance of Duo. Namely, sending large flows via the high priority queues
will block latency sensitive traffic, as also illustrated by the sensitivity analysis of 𝑓𝑡ℎ .

Scalability of existing networks. Since Duo builds around a de Bruĳn graph, the ability to scale-
out the network, i.e., add nodes, is somewhat limited. First, all spines switches are connected to
all ToRs, i.e., their size must potentially be increased. Second, recall that a 𝑏-ary de Bruĳn graph
of dimension 𝑑 has 𝑏𝑑 nodes. Adding nodes can either be achieved by adding static switches
(increase 𝑏) or increasing the dimension 𝑑. In both cases, the forwarding tables and potentially
also the static matchings have to be updated.

Failures. Duo is in general expected to have good connectivity in case of failures. Considering
link failures, de Bruĳn networks are known to provide good robustness properties. Moreover,
a failed static link can be replaced by a DA-link to maintain connectivity in the static de Bruĳn
topology (failed DA-link can simply not be used anymore). For switch failures, a static switch can
be fully replaced by a dynamic one to maintain the connectivity. Nevertheless, while connectivity
can be maintained using the dynamic links and switches, some capacity will be lost during failure.
We leave a detailed empirical study for future work.
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6.6 Summary

Many of the existing proposals for RDCNs come with limitations and overheads. To address
these, this chapter presents Duo, a high-throughput topology that features a flexible architecture
with static and DA links which supports integrated multi-hop routing. Duo builds around the
structural properties of de Bruĳn topologies that essentially allow performing updates of the
nodes’ forwarding tables with local information only.

This chapter presents both a centralized and a distributed algorithm for the scheduling of
DA links and provides details on a possible implementation. The simulation-based evaluation
demonstrates the benefits of Duo under various traffic conditions and illustrates that the per-
formance gains indeed stem from the use of integrated multi-hop routing. As shown by the
simulations and the prototype implementation, Duo does not require complex buffer manage-
ment schemes as related state-of-the-art designs but can be implemented using available COTS
equipment.

Duo can be seen as a next step towards more practical DA RDCNs. It opens several opportunities
for future work. First, presented design and evaluation focus on the performance of Duo but leave
aside resilience to failures. Moreover, while the performance with standard TCP was explored
thoroughly the behavior and possible, further performance improvements with more specialized
transport protocols may be an interesting aspect to explore. Also, it might be interesting to explore
other network topologies that support greedy routing.

Finally, although the evaluation covers already some traffic patterns, it neglects the special
requirements of applications exhibiting uniform communication patterns as they are explored in
the course of the next chapter.
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Chapter 7

Designing Topology Reconfiguration-aware
Networks for Datacenters

This chapter addresses the third characteristic of reconfigurable networks with programmable
topologies, the class of reconfiguration. As concluded in Chapter 3, there are two major classes
of topological reconfiguration in prior work, demand-aware (DA) and demand-oblivious (DO)
reconfigurations. Whereas there are only DA solutions for the wide area network (WAN) use
case, there are examples of both classes for reconfigurable datacenter networks (RDCNs). Hence,
this chapter focuses on the datacenter network (DCN) use case.

The traffic in DCNs is not only growing explosively as an aggregate but also embodies complex
traffic patterns that come in many flavors with different performance requirements [37, 35, 34].
We have already investigated one example of such traffic in Chapter 2. The distributed machine
learning (DML) applications presented there use the all-reduce communication primitive that
results in ring- or tree-like traffic patterns. Other applications, such as Hadoop, exhibit all-to-all
traffic patterns [34], and short query traffic has been shown to have a skewed pattern [311]. High-
performance proposals for new DCN architectures must simultaneously satisfy all the different
requirements (e.g., low latency or high throughput) from these traffic patterns.

At the same time, there exist several fundamentally different optical datacenter (DC) topologies
using different switching technologies (cf. Chapter 3 and [119]). Besides the classification in static
and dynamic, i.e., reconfigurable topologies, we can distinguish them by their reconfiguration-
class (DO and DA). Using these two dimensions, the large number of examples of RDCNs in
prior work has condensed into three major groups: (1) static and DO topologies resemble the
traditional architectures like clos and expander graphs [211, 42, 313, 314, 44]. The second group
is given by dynamic and DO topologies such as [48, 49, 53, 173] (cf. Chapter 3). Finally, there are
dynamic and DA topologies [176, 315, 177, 46, 47, 175].

However, it must still be explored how these designs compare for specific traffic types. In
particular, this chapter is motivated by the observation that a topology built from a representative
of a single group is not suited for all traffic patterns. For example, small (mice) flows (e.g., from
short queries) are latency-sensitive and should not be transmitted on dynamic topologies to avoid
waiting times due to reconfigurations. Hence, they should use a static topology. Conversely, large
(elephant) flows benefit from short paths or even direct connections, as provided by dynamic DA
topologies. Here, the reconfiguration time is small compared to the (ideal) flow transmission
time and can be amortized by higher throughput. Lastly, it has been shown that dynamic and DO
topologies with periodic direct connectivity between all rack pairs are particularly well suited for
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traffic with all-to-all patterns [48, 49, 53]. In summary, the best achievable network performance
depends on the topology and the present traffic. Moreover, the current state-of-the-art lacks
RDCN designs that introduce reconfiguration-awareness, at least on a macroscopic level, i.e., DA
vs. DO.

Motivated by the identified inefficiencies resulting from a mismatch between traffic and topol-
ogy, this chapter presents a hybrid RDCN architecture containing multiple classes of reconfig-
urable (sub-)topologies suited for different traffic types.

Specifically, the novel architecture Cerberus1 facilitates serving traffic on the topology part
that best matches the traffic’s characteristics. For example, latency-sensitive mice flows can be
transmitted via static switches, all-to-all traffic via dynamic DO switches, and elephant flows via
DA switches. An initial evaluation using flow-level simulation shows that Cerberus outperforms
alternative architectures by achieving higher throughput [316].

Afterward, this chapter explores how to implement such a hybrid RDCN in more detail.
Therefore, it presents Trio, an end-to-end system design for Cerberus, including a data plane
architecture and integrating Duo for the static and DA topology part. Moreover, the final design
contains an alternative scheduling algorithm for the DO topology part that reduces the communi-
cation overhead and comes with network and transport layer designs to facilitate the adaptation
of the sub-topologies toward evolving traffic. Trio is evaluated using packet-level simulation
to demonstrate the benefits of matching traffic and topology, even over time, rendering RDCNs
reconfiguration-aware on a macroscopic level. Specifically, this chapter shows that Trio achieves
higher throughput than state-of-the-art topologies as well as competitive flow completion times.

Content and Outline The content of this chapter is based in parts on one previous journal
publication [3] and one other publication currently under submission [4]. The first work [3]
is also part of another dissertation. Hence, only parts of it are presented here. While the
motivation and the design are part of both theses (with equal contribution of both authors), this
thesis contributes the simulative analysis. The parameter optimization and the derivation of the
analytical performance bounds are part of the other thesis. From the second work [4], this thesis
presents the design and packet-level simulative evaluation. Again, the analytical evaluation is
part of of the other thesis.

Specifically, Section 7.1 presents a more detailed motivation for this chapter re-using our
previous analysis from [3, Section 3]. Section 7.2 gives an overview of related work and is an
addition of this thesis. Section 7.3 presents the Cerberus concept. Therefore, it first introduces
the topology components and the needed algorithm and, finally, shows initial evaluations. This
section re-uses contents from [3, Section 4 and 6]. Finally, Section 7.4 takes Cerberus’ idea further
and presents and evaluates an integrated end-to-end design called Trio. This last section builds
on [4, Sections 3, 4, A and B], which is currently under review. Finally, Section 7.5 summarizes
the chapter.

The implementation of Cerberus has been made publicly available at https://github.com/
tum-lkn/cerberus.

1In Greek mythology, Cerberus is a dog with three heads (corresponding to our three topology parts).

https://github.com/tum-lkn/cerberus
https://github.com/tum-lkn/cerberus
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7.1 Motivation

The main motivation for introducing macroscopic reconfiguration-awareness, and with this for
Cerberus, is the observation that specific topologies are better suited for some traffic classes than
others. To investigate this more in detail, we consider the end-to-end throughput in a fluid-level
model as the main performance metric since it is of high interest to DCN operators [316, 43]
and also hints at a topology’s resource efficiency and flexibility [43]. This section recapitulates
the analytical expressions (upper bounds) for the throughput of three representative DCNs
(and thereby, the different classes of reconfigurations) that have been derived in our previous
work [3, Section 2] but are part of a different thesis. The expressions hint at how these topologies
perform for different traffic patterns. There are two representatives for DO topologies: expander-
based topologies (expander-net) like [211, 314] for static and RotorNet [48] (rotor-net) for dynamic
topologies. A fully reconfigurable DA topology built only from 𝑘 DA switches serves as the
representative for DA RDCNs (demand-aware-net) like [188, 47]. It allows the creation of any
𝑘-regular directed graph. The following recapitulates the main findings from [3] about their
throughput.

The analysis uses the throughput definition for fluid-flow systems from [316]. It defines the
throughput for a demand matrix 𝑇 𝜃(𝑇) as the largest scaling factor such that there is a feasible
multi-commodity flow assignment that obeys link capacities and flow conservation. [316].2 Con-
sidering a DCN with 𝑛 racks and the respective amount of top-of-racks (ToRs), the demand can
be represented by an 𝑛 × 𝑛 demand matrix 𝑇 = [𝑡𝑢𝑣]whose entries are given as rates in bps. Each
ToR has 𝑘 links of rate 𝑅 connected to other switches and 𝑘 links connected to servers in its rack.
Further, consider the hose model [316] and assume for now that 𝑇 is saturated, i.e., the sum of
rates in each row and column of the demand matrix is 𝑘𝑅. �̂� is the demand matrix in bits for one
second, Total(�̂�) denotes the total number of bits in �̂�, and DCT(�̂�) is the total demand completion
time (DCT) of �̂� with a feasible multi-commodity network flow.

In this scenario, the following two relations between DCT and throughput have been proven [3]:
i) If DCT(�̂�) ≥ 𝑥 for every feasible DCT of �̂�, then: 𝜃(𝑇) ≤ 1

𝑥 , ii) if there exist a feasible network
flow s.t. DCT(�̂�) ≤ 𝑦, then 𝜃(𝑇) ≥ 1

𝑦 .
These results help to obtain the following theorems about the throughput of expander-net,

rotor-net, and demand-aware-net, respectively:

• For an expander-net formally defined as 𝐺(𝑘), a (random) 𝑘-regular expander with 𝑛 nodes,
the throughput is upper bounded by 𝜃∗ ≤ 1

epl(𝐺(𝑘)) , where epl(.) is the expected (average) path
length of 𝐺(𝑘).

• For a rotor-net with reconfiguration delay 𝑟𝑑𝑜 and slot time 𝑠, the throughput is bounded
by 𝜃∗ ≤ 𝑛

2𝑛−1
𝑠

𝑟𝑑𝑜+𝑠 . For a given demand matrix 𝑇, 𝜃(𝑇) ≤ 1
2−𝜙(�̂�)

𝑠
𝑟𝑑𝑜+𝑠 , where 1

𝑛 ≤ 𝜙(�̂�) ≤ 1
is the traffic skewness of 𝑇. Informally, 𝜙 denotes the fraction of bytes in rotor-net which is
sent through a single hop and 1− 𝜙 is the fraction which is sent via two hops using Valiant
routing [48].

• For a demand-aware-net with reconfiguration delay 𝑟𝑑𝑎 of the individual links that can be
reconfigured independently if both source and destination have an available port, the

2Note that this definition does not capture propagation or queuing delay of individual flows as it targets on a
macroscopic performance value for the topology. These delays will be captured by the empirical evaluations in
Section 7.4.2.
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throughput can be bounded by 𝜃(𝑇) ≥ 𝑘∑𝑚
𝑗=1(𝑟𝑑𝑎+

𝑤𝑗

𝑅 )
. Here it is assumed that the demand

matrix 𝑇 is a union of 𝑚 permutation matrices 𝑇 𝑗 each of which can have a different weight
𝑤 𝑗 . Formally, 𝑇 =

∑
𝑇 𝑗 .

Starting with expander-net, we observe that the upper bound is inversely proportional to epl.
Hence, the throughput reduces due to multi-hop routing, the so-called bandwidth tax. For rotor-
net, the throughput is reduced by 𝜙(�̂�) and 𝑟𝑑𝑜 . The latter indicates a dependence on the latency
tax. As elaborated in [3], also 𝜙(�̂�) can serve as a proxy for the bandwidth tax as it indicates how
much traffic is sent via 1- or 2-hop paths. It equals 1 for the all-to-all demand matrix (uniform
demand), which results in the maximum throughput. Thus, the throughput bound strongly
depends on the demand 𝑇 ranging 𝜃∗ ≤ 𝜃(𝑇) ≤ 𝑠

𝑟𝑑𝑜+𝑠 where the worst matrix is the permutation
matrix and the best matrix is the uniform matrix.

For demand-aware-net, the reconfiguration time (latency tax) is critical for the throughput. More-
over, the throughput can change significantly as a function of 𝑇. In contrast to rotor-net, the best
case for demand-aware-net is when 𝑇 is an arbitrary, single permutation matrix. In this case, only
one reconfiguration is needed, and hence, the throughput is close to one ( 1

𝑟𝑑𝑎+1 ). A static network
could potentially deal with a single permutation matrix𝑇 optimally if it is known a priori. Demand-
aware-net will deal with any such 𝑇 optimally, even when it is unknown a priori. The worst case for
demand-aware-net is when 𝑇 is the uniform matrix and built from a collection of 𝑛 permutations
matrices of low weight, i.e., each of weight 𝑘𝑅

𝑛 . Plugging this value of 𝑤 𝑗 into the expression will
give us a lower bound of 𝑘

𝑛𝑟𝑑𝑎+𝑘 , and the throughput can be close to zero. Overall, the throughput
is bounded by 𝑘

𝑛𝑟𝑑𝑎+𝑘 ≤ 𝜃(𝑇) ≤ 1
𝑟𝑑𝑎+1 .

The main observation from the previous recapitulation is that different existing DC topologies
can have different advantages and disadvantages depending on the scenario. This motivates the
presented novel RDCN design that is tailored toward the specific setting and traffic it serves.
The design mainly builds around the hypothesis that throughput in DCNs can be significantly
improved if the network topology matches the demand. The following discussion elaborates on the
potential inefficiencies arising from a mismatch of traffic patterns and topologies. In particular,
using an empirical example provides more intuition on how “taxes” can be used to quantify
inefficiencies.

Figure 7.1 visualizes the different flow size distributions for Websearch [311], Datamining [193],
and Hadoop [34] applications. Flow sizes and their distribution can vary widely across and within
applications. For instance, in the case of Datamining, about 75% of the traffic belongs to flows
of sizes above 100 MB, whereas all flows are smaller than 40 MB in Websearch. Considering
an ideal situation (e.g., a dedicated link per flow), the flow size translates directly into the flow
transmission time. The top abscissa (x-axis) in Figure 7.1 shows the ideal flow transmission time
on a 40 Gbps link. We observe that it can range from microseconds for small flows up to seconds
for elephant flows.

Influence factors for the flow transmission time (and hence, the throughput) are not only the
flow size and the links speed but also the optical switching technology used. In particular, the
reconfiguration delay present in dynamic topologies has a major impact. While the exact values
depend on the specific technology, the reconfiguration delays of DA topologies (like [45, 191])
are likely higher than those of DO topologies (like [53, 48, 49]).3 Whether a flow can profit from
reconfigurations depends on the ratio between its size (i.e., transmission time) and the latency

3See also the elaborations on related work in Chapter 4.
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Figure 7.1 Cumulative distribution function (CDF) of the number of bytes transmitted according to various
flow size distributions. The top x-axis shows the ideal flow transmission time on a 40 Gbps link. The figure
is partitioned into three parts (Static, DO, DA) based on the reconfiguration delay of DO (rotor) and DA
switches. The partition indicates the “best” topology (reconfiguration class) for flows of the the respective
size.

tax. For example, an elephant flow has a large transmission time compared to the reconfiguration
delay. Hence, the reconfiguration can be amortized and may pay off in the long run.

As summarized above, static topologies do not introduce any latency tax but a bandwidth
tax [48]: since flows potentially must traverse multiple hops to reach the destination, additional
network capacity is consumed. Dynamic, DO topologies can reduce the bandwidth tax by
providing temporary single-hop paths between node pairs and avoiding multi-hop forwarding.
Such approaches perform particularly well for uniform all-to-all traffic patterns [48, 49]. However,
they are not optimal for elephant flows, which usually make the majority of the traffic volume
rendering their optimization critical (cf. Datamining in Figure 7.1). Indirect routing approaches
like Valiant load balancing (VLB) [171] can improve the performannce of DO RDCN for elephant
flows but again introduce bandwidth tax (cf. the upper bound for rotor-net). In contrast, DA
reconfigurations facilitate setting up direct shortcuts that serve the elephant flows. To conclude,
DO topologies are better suited for uniform demands, whereas DA reconfigurations should be
preferred for skewed demand with large flows that can amortize latency taxes

Figure 7.1 provides an example of the observations above. The dashed vertical lines show the
reconfiguration delays of (rotor) switches (10 µs) and DA switches (15 ms) and partition the figure
in three areas, which indicate the best topology for the respective flow sizes. Elephant flows
are in the right part of the figure (DA) starting at 15 ms. The flows in this area are can amortize
this latency tax, e.g., the tax for a flow of 500 MB whose ideal transmission takes 100 ms is 15%.
Creating a direct link for such flows will reduce the bandwidth tax to a minimum. The middle
part (DO) of the figure belongs medium-sized flows that benefit from DO reconfigurations. If
we consider a reconfiguration delay of 10 µs and a slot time of 100 µs (91% utilization) a cycle
through all possible links is still fast and in the order of the flow transmission times that range
between 10 µs to 15 ms. In addition, the medium-sized flows are the vast majority of flows in
the probability distribution. If the source-destination pairs are sampled uniformly, the resulting
traffic resembles an all-to-all pattern which is particularly suited for the rotor switch’s connectivity
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Table 7.1 Overview of related (R)DCN designs and their properties.

Name Static DO DA Reconfiguration delay Granularity
Xpandr [211] ✓ - -
Jellyfish [314] ✓ - -
Hypercubic [313, 317] ✓ - -
RotorNet [48] ✓ ✓ ✗ µs -
Opera [49] (✓) ✓ ✗ µs -
Sirius [53] ✗ ✓ ✗ ns -
Helios [45] ✓ ✗ ✓ ms Matrix (Matching)
OSA [46] (✓) ✗ ✓ ms Matrix (Matching)
Mordia [52] ✓ ✗ ✓ µs Matrix (Schedule)
Eclipse [188] ✓ ✗ ✓ n.d. Matrix (Schedule)
ProjecToR [47] (✓) ✗ ✓ µs Flow
C-Through [56] ✓ ✗ ✓ ms Matrix (Matching)
MegaSwitch [54] ✓ ✗ ✓ ms Matrix (Matching)
xWeaver [191] ✓ ✗ ✓ ms Matrix (Matching)
ReNet [318] ✗ ✗ ✓ n.d. Flow

pattern. Finally, the left area (Static) shows small flows. These flows would suffer if exposed to
reconfiguration, but since their cumulative volume is small, accumulating bandwidth tax from
multi-hop forwarding is not critical for the overall resource efficiency. For example, they can be
forwarded via a static expander topology with a short average path length, therefore, enabling
low-latency forwarding. The exact flow size thresholds for making forwarding decisions can be
computed analytically as summarized in Section 7.3.3.

7.2 Related Work

Section 3.5 provides a broad overview of prior work in the realm of RDCNs. In order to discuss
more in detail how Cerberus and Trio differentiate from these, this section focuses on the included
reconfiguration classes and control plane complexities.

Table 7.1 summarizes the characteristics of major prior work. It lists the used reconfiguration
classes, the achieved reconfiguration periods, and granularity. As a reference, the first part shows
examples of static topologies which are widely deployed, such as Clos topologies and multi-
rooted fat-trees. Such designs have recently also been complemented by modular hypercubic
networks [313, 317] as well as expander-based solutions [314, 211]. These topologies use a
single topology type without reconfigurations and typically rely on multi-hop routing to provide
connectivity between all nodes.

The second group revolves around dynamic, DO topologies. RotorNet [48] is a first example
that provides high bandwidth by emulating a full-mesh network over time. Its DO nature
restricts the reconfiguration granularity to ToR-to-ToR level but allows reconfiguration periods
in the order of microseconds. The follow-up work, Opera [49], improves the idea of RotorNet.
It features a deterministic reconfiguration scheme that ensures connectivity between the nodes
at any time. Therefore, it implements an expander graph that changes over time to temporarily
provide single-hop paths between all ToRs. Effectively, this results in a hybrid design in which
the DO topology part is complemented by a static network to serve low-latency traffic. Sirius [53]
employs a similar idea of a DO topology as RotorNet. However, Sirius’ implementation differs as
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it reconfigures by adjusting the sending wavelength on the transmitting node. The passive core
built from arrayed waveguide grating (AWG) routers guides the light to the respective receiving
node. This approach enables reconfigurations in the order of nanoseconds.

Considering DA RDCN, we first observe that there are differences in the granularity of recon-
figurations. Two of the listed solutions, Eclipse [188] and Mordia [52], are more coarse-granular.
They rely on a (predicted) traffic matrix to schedule a sequence of DA configurations. In contrast,
more fine-granular designs such as OSA [46], C-Through [56], xWeaver [191], MegaSwitch [54],
or Helios [45] determine a single configuration for the predicted matrix. Finally, ReNet [318] and
ProjecToR [47] are the most fine-granular solutions. They set up DA links on a per-flow basis,
also in combination with decentralized reconfigurations [47].

Due to the increased reconfiguration time experienced in DA RDCNs, many of these solutions
additionally rely on a static topology part for control plane and or low-latency traffic. This part
might either be realized explicitly by means of additional electronic packet switches (EPSs) or
implicitly by fixing the configuration of specific links (or changing them more slowly). Examples
of the former approach are Helios [45], C-Through [56], xWeaver [191], and Flexspander [175].
The type of the static topology may vary, e.g., expanders or Clos topologies. Examples of solutions
that provide the static topology part implicitly are ProjecToR [47], OSA [46], and MegaSwitch [54].
The former always maintains a “base mesh” of connected links that can handle low-latency traffic.
In contrast, OSA and MegaSwitch allow reserving some circuit-switch ports specifically to ensure
connectivity for low-latency traffic.

In contrast to the previous work, this chapter combines and integrates three types of topologies
and thereby, multiple reconfiguration classes and studies the consequences of mismatching traffic
to specific network types using a unified model.

7.3 Cerberus: The Power of Choices

This section describes and evaluates Cerberus a RDCN design that combines multiple reconfigu-
ration classes. First, this section introduces the topology components more in detail (Section 7.3.1)
and presents a flow assignment algorithm (Section 7.3.2). It then summarizes how to obtain a
meaningful parametrization (Section 7.3.3) and finally, evaluates Cerberus using flow-level sim-
ulations (Section 7.3.4).

7.3.1 Cerberus’ Topology Components

Cerberus uses the ToR-Matching-ToR (TMT) model described in Section 3.6. It combines three
sub-topologies belonging to different reconfiguration classes: a static part, a DO part, and a DA
part. These sub-topologies may either be implemented by different switch technologies (e.g., rotor
switches for DO and full crossbar optical circuit switches (OCSs) for DA), or by a single switch
technology that supports multiple modes of operation. The former may be more cost-effective (e.g.,
static topologies are cheaper), while the latter is more flexible.

Following the TMT, we can describe the three sub-topologies by a collection of spine switches.
Each spine switch type is defined by a 4-tuple 𝑠𝑤 = (𝑚,ℳ , 𝑠 , 𝑟) whereℳ is the specific set or
sequence of the 𝑚 matchings the switch can support; 𝑠 is the minimal circuit-hold time a switch
needs to remain in a matching that contains a specific link before switching to the next matching
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which does not contain this link; 𝑟 is the reconfiguration delay. The three sub-topologies can be
formalized as follows:

• Demand-aware topology (Da): The DA sub-topology consists of a collection of 𝑘𝑑𝑎 Da recon-
figurable switches that are all described by the tuple 𝑠𝑤 = (𝑛!,ℳ , 𝑆, 𝑟𝑑𝑎). DA switches can
reconfigure to any of the 𝑚 = 𝑛! possible directed (perfect) matchings. The DA switch can be
implemented using commercially off-the-shelf (COTS) 3D MEMS technology with reconfigu-
ration delay in the order of tens of milliseconds. This section assumes 𝑟𝑑𝑎 = 15 ms which is
the typical reconfiguration delay of a 3D MEMS switch [222, 122]. The circuit-hold time 𝑠 can
change during the operation of the DA switch. While in this case the minimal time is zero, as
a rule of thumb 𝑠 ≫ 𝑟𝑑𝑎 for the reconfiguration to be worthwhile. Otherwise, the utilization of
the link would be small as most of the time is spent on reconfiguration.

• Demand-oblivious (rotor) topology (Dobl): The DO sub-topology consists of the union of
𝑘𝑑𝑜 rotor switches, henceforth called Dobl switches. Each switch is described by the tuple
𝑠𝑤 = (𝑛−1,ℳ , 𝑠 , 𝑟𝑑𝑜): a Dobl switch cycles through 𝑛−1 matchings specified byℳ, emulating
a fully-connected network (i.e., complete graph) and, hence, providing high bandwidth to all-
to-all traffic. The Dobl switch is a slight generalization of the original rotor switches [48].
The present model uses 𝑛 − 1 matchings and not 𝑛

𝑘
matchings as proposed originally.4 The

reconfiguration delay for the Dobl switch is in the order of microseconds. This section assumes
𝑟𝑑𝑜 = 10 µs as in [49, 48]. The slot time of an Dobl is tunable. A reasonable setup is at least
𝑠 = 9𝑟𝑑𝑜 = 90 µs to reach 90% amortization of the reconfiguration delay [49, 48]. Note that the
bounds recapitulated in Section 7.1 hold for any setting of 𝑟𝑑𝑜 and 𝑠.

• Static topology (Static): The static topology is a union of 𝑘𝑠 static matchings, where each
matching can be implemented, e.g., using an optical patch panel or even static electrical
connections. A static switch can be represented by: 𝑠𝑤 = (1,ℳ ,∞, 0). ℳ = {𝑀}, i.e., it
has a single (𝑚 = 1) predefined matching that does not change over time (𝑠 = ∞, 𝑟 = 0).
The static switches are cost-effective components to create regular graphs, such as expander
graphs, providing low latency for short flows using multi-hop routing. Prior work has shown
that good expanders can be obtained by taking the union of a few matchings [319].

Let (𝑘𝑠 , 𝑘𝑑𝑜 , 𝑘𝑑𝑎) denote a TMT network consisting of 𝑘𝑠 Static switches, 𝑘𝑑𝑜 Dobl switches, and
𝑘𝑑𝑎 Da switches. This section will refer to a network with only Static switches, i.e., (𝑘, 0, 0), as
static-net. The static topology component of Cerberus specifically relies on expander graphs, and
hence, this network will be referred to as expander-net. Further, a network consisting of only Dobl
switches, (0, 𝑘, 0), is referred to as rotor-net, and a demand-aware-net is a topology consisting only
of Da switches, i.e., (0, 0, 𝑘). On the contrary, Cerberus uses a mix of switch types, (𝑘𝑠 , 𝑘𝑑𝑜 , 𝑘𝑑𝑎),
where 𝑘 = 𝑘𝑠 + 𝑘𝑑𝑜 + 𝑘𝑑𝑎 .

With these specific sub-topologies, the TMT network can model many existing systems. Exam-
ples of rotor-net are RotorNet [48], Opera [49] and Sirius [53], which rely on pre-defined periodic
sequences of matchings. Networks like ProjecToR [47], Eclipse [188], or Helios [45] can be mod-
elled as demand-aware-net. ProjecToR additionally uses a static electric network, which in the TMT
model can also be described using an expander-net. The TMT also applies to static topologies like
Xpander [211], which can be modelled as an expander-net (even though it is based on electrical
switches).

4We explain why this generalization improves the performance of RotorNet in [3, Appendix B]
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Algorithm 6 Cerberus flow assignment

1: Switch depending on flow size
2: Case small flow: {latency-sensitive flow}
3: send to Static {multi hop}
4: Case medium flow:
5: send to Dobl topology {using 1 or 2 hops}
6: Case large flow:
7: If a direct link is available to reconfigure:
8: send to Da topology {single hop}
9: Else {Under-provisioned demand-aware}

10: send to Dobl topology {using 1 or 2 hops}

7.3.2 Cerberus’ Flow Assignment Algorithm

Given a (𝑘𝑠 , 𝑘𝑑𝑜 , 𝑘𝑑𝑎) network, this part describes the high-level flow assignment algorithm. Cer-
berus assigns flows to the three topology parts based on three categories: small (𝑠), medium (𝑚)
and large (ℓ ) flows. The flow size thresholds to discriminate flows into these categories are denoted
by 𝑡𝑚 and 𝑡ℓ . Namely, small flows are of a size less than 𝑡𝑚 , medium flows are of size more than
𝑡𝑚 and less than 𝑡ℓ , and large flows are of size larger than 𝑡ℓ . The next section summarizes how to
obtain the exact values for these thresholds.

Algorithm 6 describes how Cerberus distributes the traffic classes among the three switch
types: small, latency-sensitive flows are forwarded via a static expander built from 𝑘𝑠 Static
switches; large flows are transmitted via the 𝑘𝑑𝑎 Da switches in the system; and the remaining
(medium) flows describing, e.g., all-to-all traffic which is not latency-sensitive, are routed via the
𝑘𝑑𝑜 Dobl switches. Cerberus manages the large flows using an approach that can be seen as a
distributed link cache: when a new DA link needs to be established, an existing link must be
replaced or “evicted.” While this introduces interesting optimization opportunities, this section
focuses on a simple strategy. When a large flow should be sent to the Da switches, but there
are no available ports to serve it (the related source/destination ports already serve other flows),
Cerberus greedily transmits the large flow via the Dobl switches. When Cerberus forwards large
flows continuously via the Dobl switches, the Da switches are under-provisioned. The next section
describes how to obtain the optimal number of Da switches 𝑘∗

𝑑𝑎
to match the topology to the

demand and, thereby, maximize the throughput.

7.3.3 Throughput Analysis and Parametrization

This section summarizes how Cerberus’ logic calculates the size of each sub-topology (Static,
Dobl, and Da) and the flow assignment thresholds for each topology.5 It also lists expressions
for the throughput and DCT of the system as a whole. To do this, we first describes the general
traffic generation model that the analytical results hold for.

5Note that these contributions are part of another thesis but are summarized here to provide a description of the
whole system to the reader.
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7.3.3.1 Traffic Generation Model and Metrics

In the considered traffic generation model, flows arrive over time according to a sequence 𝜔 =

( 𝑓1 , 𝑓2 , . . .). The 𝑓𝑖 are the individual flows which are described by their source (𝑠𝑖 ∈ 𝑁) and
destination rack (𝑑𝑖 ∈ 𝑁), their volume 𝑣𝑖 (bytes), and their arrival time 𝑡𝑖 : 𝑓𝑖 = (𝑡𝑖 , 𝑠𝑖 , 𝑑𝑖 , 𝑣𝑖). Note
that although servers originally generate the flows, the model employs a rack-level perspective.
More formally, let 𝒯 (𝑥, 𝐿,𝒟) be a traffic generation model where 𝑥 ∈ [0, 1] is the fraction of active
ToRs, 𝐿 ∈ [0, 1] is the load of each active ToR, and𝒟 is a flow size distribution.

Specifically, 𝒯 generates traffic by first selecting a subset of 𝑥 · 𝑁 ToRs as active, where 𝑥 is
the fraction of active ToRs. Then, for every active ToR, it generates traffic at an average rate of
𝐿 · 𝑘 · 𝑅. The source-destination pairs are sampled uniformly at random out of the set of active
ToRs. Flow sizes are independently sampled from the considered flow size distribution 𝒟. The
flow arrivals follow a Poisson process, i.e., the inter-arrival times are sampled from a negative
exponential distribution. The average arrival rate depends on the load 𝐿, the link rate 𝑅 and the
flow sizes. Accordingly, this model generates a total traffic of (𝑥𝑁) · (𝐿 · 𝑘 · 𝑅) bits per second.

As stated before, Cerberus maximizes the end-to-end throughput in a fluid model. The used
definition is similar to the one from [316] but has been extended from a demand matrix to the
general traffic generation model above and dynamic network topologies in [3]. Note that this
definition focuses on the network topology and ignores packet-level effects such as ramp-up times
from congestion control.

For the traffic generation model𝒯 (𝑥, 𝐿,𝒟) and a given fraction of active racks 𝑥, the throughput
of a system is the maximum load 𝐿 that the system can still serve. That is, the largest 𝐿 for which
a feasible solution of the multi-commodity flow problem exists that routes the flows generated by
𝒯 subject to flow conservation and link capacities. Using Theorem 1 in [3], this condition can be
reformulated in dependence on the DCT: The system has throughput of at least 𝐿 for 𝑥, if the DCT
of the demand matrix �̂� that is built from the flows arriving in one second, is DCT(�̂�) <≤ 1 [3].

7.3.3.2 Cerberus’ Throughput and Optimal Parametrization

Using the observation in the previous section, expressions for the throughput and the parametriza-
tion of the topology can be obtained. This part focuses on the case of 𝑥 = 1. This section only
briefly recapitulates the main expressions as the more detailed derivation and proof are part of a
different thesis [3]. There, the author also shows the throughput proportionality of Cerberus.

In order to understand the expressions, the following notation is introduced: �̂�(𝐿) is the accu-
mulated demand matrix built from the flows generated by𝒯 (1, 𝐿,𝒟) in one second. The DCT of a
system 𝑠𝑦𝑠 ∈ {expander-net, rotor-net,Cerberus} is denoted as DCT(𝑠𝑦𝑠, �̂�(𝐿), 𝑘), where we recall
that the systems can be specified in terms of the TMT model as expander-net = (𝑘, 0, 0), rotor-net =
(0, 𝑘, 0) and Cerberus = (𝑘𝑠 , 𝑘𝑑𝑜 , 𝑘𝑑𝑎). The symbol 𝜏 ∈ {𝑠, 𝑚, ℓ } denotes the category of a flow
and �̂�(𝐿, 𝜏) is the expected number of bytes from flows in �̂�(𝐿) belonging to category 𝜏. 𝜙(�̂�) is
the expected traffic skewness of �̂� resulting from the flow size distribution𝒟. 𝜙 can be interpreted
as the fraction of packets (or bytes) subject to single hop transmission in rotor-net, and 1 − 𝜙 is
the fraction of packets (or bytes) that are sent over two hops using VLB [48]. The skewness can
be approximated using the variation distance from the uniform distribution. More details are
provided in [3].
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Having this additional notation, the following expressions have been derived [3]: The expected
throughput of Cerberus for a given 𝑇 is

𝜃(𝑇) = �̂�(1, ℓ )
𝑛𝑘∗

𝑑𝑎

(
𝑟𝑑𝑎𝔼

[
1
| 𝑓 |

]
+ 1

𝑅

)
(7.1)

where the expectation of the reciprocal flow sizes considers only large flows and 𝑘𝑑𝑎∗ is the
optimal number of Da switches. In order to obtain the throughput, the threshold for the size of
medium flows is

𝑡𝑚 = 𝑠𝑅 (7.2)

which is the number of byte that can be transmitted in a flow on the Dobl switches. The threshold
for large flows is

𝑡ℓ ≥
𝑟𝑑𝑎 · 𝑡𝑚 · 𝑅

(2 − 𝜙) · 𝑅 · (𝑟𝑑𝑜 + 𝑠) − 𝑡𝑚
(7.3)

The ratio between the optimal number of Da switches, 𝑘∗
𝑑𝑎

, to the optimal number of Dobl
switches, 𝑘∗

𝑑𝑜
is given by:

𝑘∗
𝑑𝑎

𝑘∗
𝑑𝑜

=
�̂�(1, ℓ )

�̂�(1, 𝑚)/𝑡𝑚
·

𝑟𝑑𝑎𝔼
[

1
| 𝑓 |

]
+ 1

𝑅

(2 − 𝜙𝑚)(𝑟𝑑𝑜 + 𝑠) (7.4)

where 𝜙𝑚 is the traffic skewness of the medium size flows. Setting 𝑘𝑠 to some constant value,
𝑘∗
𝑑𝑎
+ 𝑘∗

𝑑𝑜
is known, and 𝑘∗

𝑑𝑎
can be computed from Equation 7.4. The key observation behind

these expressions (that is also used to derive the optimal throughput) is that Cerberus achieves
optimal throughput when the sub-topologies achieve the same DCT for a given load and their
assigned traffic. That is, the utilization of the sub-topologies is balanced [3].

7.3.4 Initial Evaluation

In order to evaluate Cerberus, this section presents results obtained from flow-level simulations.
The section first introduces the methodology and gives details on the compared configurations
and then illustrates the results.

7.3.4.1 Methodology

This initial evaluation uses a custom event-based flow-level simulator written in Python. In
contrast to a packet-based simulator, a flow-level simulator assigns end-to-end rates to flows. No
packet buffering or switch processing latency occurs.

The considered network setup consists of 𝑛 = 64 ToRs, 𝑘 = 16 spine switches, 𝑟𝑑𝑜 = 10 µs, 𝑟𝑑𝑎 =
15 ms, 𝑠 = 90 µs and a rate 𝑅 = 40 Gbps. The generated traffic corresponds to 16 hosts per
ToR (1024 hosts in total) with 40 Gbps uplinks. The total host uplink capacity of the topology
is 40.96 Tbps, which is at a comparable scale as other studies such as Sirius [53] (51.2 Tbps),
Opera [49] (51.84 Tbps), or MegaSwitch [54] (63.36 Tbps). MegaSwitch’s and Sirius’ simulations
operate in a similar range as this study; however, their implementations are not publicly available.
In addition, the number of flows per simulation (200K with a mean flow size of 100KB) indicates
that only very short periods, < 1 𝑠, were evaluated for Sirius. The main evaluation of Opera
focuses on a scenario with much smaller topologies (only 6.48 Tbps) and lower load levels than
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this chapter. For larger scales [49, Figure 12], the details regarding flow generation are missing
so that they cannot be judged.

The complexity of the centralized rotor-net implementation prohibits scaling to larger networks.
The allocation of indirect traffic (2-hop routing) requires evaluating each source-destination rack
pair. The scale of this operation is quadratic in the number of ToRs and executed for every slot. An
optimized, centralized rotor-net algorithm is left for future work. For brevity, only the algorithms
used in the simulation are described in the following.

7.3.4.2 Flow Assignment Algorithms

Three systems are compared: expander-net, rotor-net and Cerberus:
expander-net. expander-net uses a greedy single path routing on the expander graph built from the
union of 𝑘 matchings. First, all flows in the system are grouped by their source-destination ToR
pair. For each pair of ToRs, the flows are sorted by their size in increasing order. The algorithm
then iterates over the pairs and tries to allocate greedily as many flows as possible.
rotor-net. In contrast to the original distributed rotor-net algorithm implementation, the flow-
based algorithm implementation uses a centralized control plane. It performs flow allocations
on a ToR-by-ToR and switch-by-switch basis with a fixed, deterministic order. More advanced
approaches are left for future work.
Cerberus. Generally, Cerberus uses the algorithms rotor-net and expander-net for each dedicated
topology part. Following Algorithm 6, the algorithm first greedily searches for available circuits
on the Da topology for the large flows. If no path can be found, the algorithm tries to allocate
large flows on the Dobl part. Otherwise, the flows have to wait until capacity becomes available,
in which case the algorithm tries again to (1) allocate flows on the Da or (2) on the Dobl part.

Note that these algorithms do not obtain optimal solutions, e.g., in contrast to solving a multi-
commodity flow problem [294] or upper bounds described before. Rather they trade off the
tractability of simulations at the desired scale and performance.

7.3.4.3 Traffic and Flow Size Distribution

Traffic is generated for an online scenario with the traffic model described in Section 7.3.3 using
the Datamining [193] flow size distribution. The flow size distribution has an average size of
7.86 MB and 𝜙 = 0.45. All ToRs are active (𝑥 = 1). The resulting flow size threshold for large
flows is 𝑡𝑙 ≥ 103.85 MB which leads ≈ 79% of the bytes coming from large flows. The inter-arrival
times of the flows follow an exponential distribution with mean values depending on the loads.
The smaller the inter-arrival times, the higher the load. Note that the algorithms do not know
when flows will arrive but have perfect knowledge of the flow sizes.

7.3.4.4 Results

Given the parameters setup of the simulation, the (maximum) throughput of each system can be
computed from the respective expressions is: it is 0.79 for Cerberus, 0.64 for rotor-net, and 0.57
for expander-net.

In order to validate this result, Figure 7.2a presents the accumulated traffic (in bits) served by
each system as a function of the simulation time for traffic generated for load 𝐿 = 0.7. The dashed
line illustrates the total incoming (or generated) traffic. From the analytical expressions, Cerberus
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Figure 7.2 Served traffic over time (a) and throughput (b) from flow-level simulations for Datamining [193].
In (a), the dotted lines represent the arrived traffic and in (b), the maximum throughput according to the
analytical expressions. Cerberus outperforms expander-net and rotor-net.

should be able to support this rate while rotor-net and expander-net do not. We can observe that
initially, all systems are unstable as flows start arriving. Around 𝑡 = 0.3s, the systems become
more stable and are able to process the incoming traffic at a constant rate. This processing rate,
or the slope of the accumulated served traffic, shows the system’s throughput for the given traffic
load.

For 𝑡 > 0.3s, the lines representing Cerberus (green, squares) and the arriving traffic (dotted)
are parallel. Cerberus is able to support this load and maintains the same rate (slope) as the
incoming traffic. This means that the unserved traffic volume, i.e., the distance between the
lines for the offered traffic and Cerberus, stays constant. Moreover, it means that the achievable
throughput of Cerberus is above 0.7, as we analytically calculated above. Note that the specific
values and a deeper analysis of the unserved traffic are out of scope here since, to some extent,
they depend on the simulation model and the implementation. In contrast, the rates (slopes) of
rotor-net and expander-net are lower than 0.7, which means that the unserved traffic volume grows
infinitely with time, and their throughput is lower than 0.7, which we also observed from the
analytical expressions.

Figure 7.2b extends Figure 7.2a and shows the normalized throughput of each system (i.e.,
the processing rate of incoming traffic) for different traffic loads (solid lines). Cerberus achieves
higher throughput for higher loads compared to the other systems. For loads from 𝐿 = 0.1 to 0.4,
there is no significant difference between Cerberus and rotor-net since both systems can support
the incoming load. Only for loads higher than 0.5, Cerberus achieves higher throughput than
rotor-net: for instance, for 𝐿 = 0.6, Cerberus achieves 0.1 higher throughput (normalized unit),
which translates to 4 Tbps higher throughput (i.e., 0.1 · 16 · 40 Gbps · 64).

Additionally, the figure shows the analytical bounds for each system’s (maximum) throughput
as computed from the equations above (dotted lines). Cerberus, rotor-net and expander-net have
a throughput of 0.79, 0.64 and 0.57, respectively. It is important to note that these bounds are
computed for the accumulated demand matrix, so they present an upper bound for the online
traffic generation process. Nevertheless, all systems approach the theoretical bound, preserving
the rank between them and the relative improvements.
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The simulation results also confirm the benefit of having DA topology components. This
benefit becomes visible especially at higher loads, which are an interesting operational region for
datacenter operators aiming to efficiently utilize their infrastructure resources.

7.3.5 Takeaways

Cerberus is a RDCN that combines multiple classes of reconfigurations, namely DA and DO, as
well as integrates a static topology part for latency sensitive flows. Whereas the analytical results
from prior work and the simulative evaluation in this section demonstrate its superiority over
existing RDCN designs, the presented concept is still in an early stage. The next section elaborates
more in detail on potential implementation and improvements of the individual sub-topologies.

7.4 Trio: An integrated, multi-class reconfigurable DCN

After having understood and evaluated, the general idea of Cerberus, this section presents
Trio, a more in-depth end-to-end design. Trio employs the three-headed structure of Cerberus
and uses the de Bruĳn graph-based static topology from Duo (Chapter 6) that already allows
easy integration of DA links. Moreover, Trio features a simple, rack-local packet scheduling
for the DO topology part. Compared to the schedulers from RotorNet, Opera or Sirius, the
presented scheduler does not require high synchronization effort between ToRs before sending
traffic indirectly. Instead, it relies on the static and DA topology part to relieve temporal overload
from ToRs. This offloading is enabled by a label-based source routing scheme which does not
require updating forwarding entries on the ToRs for offloading traffic. Moreover, the source
routing scheme prepares Trio for runtime adjustments of the sub-topologies’ sizes — adding a
new dimension of demand-awareness.

This section first presents the overall architecture, the simplified scheduler, and the data and
control plane design (all Section 7.4.1). It then evaluates Trio using packet-level simulations on a
range of traffic configurations (Section 7.4.2). Since the core idea is the same as in Cerberus, the
evaluation compares Trio against two extreme points of the topology configuration: Duo and
Opera. Moreover, it particularly focuses on the impact of different traffic patterns to highlight
the benefits of the integrated design and demonstrate the superiority of matching traffic and
topology.

7.4.1 The System Design of Trio

This subsection first presents the general architecture and topology components. Then, it de-
scribes in more detail the de Bruĳn-based Da sub-topology and the packet scheduler for the Dobl
sub-topology. The last part illustrates how integrated forwarding can be implemented in practice
and presents the transport layer of Trio, supporting its fast reconfigurations.

7.4.1.1 Architecture

Figure 7.3 overviews Trio’s architecture. Trio relies on a two-layer leaf-spine optical topology
that can be described with the TMT model (cf. Section 3.6). The leaf layer consists of 𝑛 ToR
switches 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑛). Each ToR has 𝑘 up- and 𝑘 downlink ports of rate 𝑟. The latter ones
connect to end-hosts so that there are ℎ = 𝑛 · 𝑘 hosts in total in the network. Since the uplinks



7.4 Trio: An integrated, multi-class reconfigurable DCN

147

ToR 1

Passive Grating Passive Grating Passive Grating 
...

Work conserving

 Static  Demand-
aware  Rotor

Dynamic partition

... ToR i ToR nLe
af

S
pi

ne

Figure 7.3 Overview of Trio’s architecture. The solid lines indicate bidirectional links. ToR switches
connect in a two layer leaf-spine topology to AWGRs. A tuneable laser at the transceivers can adjust the
wavelength to select an egress port. There are three laser scheduler classes (Static, Da, Dobl) that ports at
the ToRs can be assigned to.

are bi-directional, we can further separate them into 𝑘 unidirectional ingress and 𝑘 egress ports.
In contrast to Cerberus and the original TMT model with 𝑘 active optical spine switches, the
spine layer consists of 𝑘 passive gratings connecting to the ports at the ToRs. The reconfiguration
mechanism works as proposed and demonstrated in Sirius [53]: Tunable lasers in each port of
the ToR switches adjust the laser wavelength to select the egress port of the grating and, by that,
change a (logical) topology link. Properly configuring the laser wavelengths at each time slot
creates a directed multi-hop topology that is based on a set of 𝑘-directed matchings between the
ToRs, i.e., the 𝑖-th ports in the ToRs are connected to the 𝑖-th grating, creating the 𝑖-th matching.
Abstractly, this is exactly the structure as proposed in the TMT model.

In turn, the 𝑘 matchings are partitioned into three link scheduling classes6: Static, Dobl, and
Da. The sizes of the classes are 𝑘𝑠 , 𝑘𝑑𝑜 , 𝑘𝑑𝑎 , respectively, keeping the constraint 𝑘 = 𝑘𝑠 + 𝑘𝑑𝑜 + 𝑘𝑑𝑎 .
A partition to three classes is implemented by assigning the 𝑘 ports in each ToR to one of the three
link schedulers (Static, Dobl, and Da) in a consistent and symmetric way. In all ToR switches,
the same 𝑘𝑠 ports use the Static link scheduler, the same 𝑘𝑑𝑜 ports use the Dobl link scheduler,
and the same 𝑘𝑑𝑎 ports use the Dobl link scheduler. Each different link scheduling class creates
a different sub-topology, and the three sub-topologies are described in the following:

• Static sub-topology (Static): The 𝑘𝑠 static ports do not reconfigure the links over time. The
resulting topology can be described as the union of 𝑘𝑠 static matchings. The static ports
provide basic connectivity between the ToRs. They can be used to create regular graphs, such
as expander graphs, providing low latency for short flows using multi-hop routing. Specifically,
Trio relies on de Bruĳn graphs [304] for the Static topology component, which are described
in more detail in Section 6.2.

• Demand-aware sub-topology (Da): The DA topology consists of a collection of 𝑘𝑑𝑎 Da recon-
figurable ports per ToR. They can flexibly be reconfigured to any possible 𝑘𝑑𝑎-regular directed
graph between the ToRs and change it over time. For example, these ports can be used to
create direct connections between ToR pairs with high communication demand. The laser’s
pure reconfiguration delay is in the order of nanoseconds [53]. However, reconfiguring the Da
ports requires coordination between the ToRs (e.g., for data collection and decision-making).

6Denoted as spine switch types in the TMT model.
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Figure 7.4 An example of Trio’s backbone sub-topology with eight ToRs: A de Bruĳn topology established
by two Static ports with and an additional Da port. The right half shows the two matchings for the Static
ports and the additional matching of the Da ports (for clarity, drawing only two links in the topology).

The reconfiguration delay of a DA port used in this chapter and denoted by 𝑟𝑑𝑎 , accounts for this.
The default value is 𝑟𝑑𝑎 = 1𝑚𝑠, but the evaluation in Section 7.4.2 also considers other values.
The circuit-hold time after each reconfiguration is dynamic (not constant) during the operation
of a Da port. As a rule of thumb, it should be much larger than 𝑟𝑑𝑎 for the reconfiguration to
be worthwhile. Otherwise, most of the time is spent on reconfigurations, and the utilization
of the link would be small.

• Demand-oblivious sub-topology (Dobl): The last sub-topology is formed by the set of 𝑘𝑑𝑜

dynamic, Dobl ports per switch. Similar to the original rotor switches [48], each Dobl port
cycles through 𝑛−1 predefined matchings, emulating a fully-connected network (i.e., complete
graph) over time. Each one of the 𝑘𝑑𝑜 Dobl ports cycles through the same 𝑛 − 1 matchings
but using a different time offset. This synchronization provides an average cycle time of 𝑛−1

𝑘𝑑𝑜

slots to complete a single emulation of a complete graph between all ToRs. The symmetry
between the ports’ link scheduling enables a flexible way to add/remove Dobl ports since the
only difference between the ports is the time offset. The slot time of the Dobl link scheduling
class is defined by a circuit-hold time, denoted as 𝑠, plus a reconfiguration delay denoted as
𝑟𝑑𝑜 , which includes the physical link reconfiguration (wavelength change) and additional quiet
time to empty active links. The duty cycle is the fraction of the time traffic can be sent in a
slot (i.e., 𝑠

𝑠+𝑟𝑑𝑜 ). The slot time is tuneable and depends on 𝑟𝑑𝑜 , where a reasonable setup is to
achieve a duty cycle above 90% as in [48, 53]. This chapter assumes a duty cycle of about 98%,
as in [49].

Since the partition of sub-topologies is determined by the link scheduling classes of the ports but
not by the underlying infrastructure, the assignment of ports to link scheduling classes can change
over time and, by that, change the sub-topologies’ sizes. In contrast to Cerberus (Section 7.3),
this adds a new dimension of demand-awareness to Trio where 𝑘𝑠 , 𝑘𝑑𝑎 , and 𝑘𝑑𝑜 can dynamically
adapt. For instance, a Da port can become a Dobl port if the traffic pattern has changed such
that the Dobl sub-topology component is under-provisioned. While this feature can generally be
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Figure 7.5 High-level comparison of Opera/RotorNet (RotorLB) and Trio packet scheduling (LocalLB) on
the Dobl topology. LocalLB relies on offloading the non-local traffic to the Static and Da sub-topologies
to remove the need for a global synchronization.

used for all three classes, Trio limits the dynamic partitioning of the topology to the Da and Dobl
topology components.

The three sub-topologies have different properties for the packet forwarding behavior: For ex-
ample, Static and Da can utilize work-conserving forwarding (in the sense of store and forward),
whereas for Dobl to transmit packets successfully, it requires a packet scheduling algorithm to
handle the periodic link changes. Both parts are introduced in the subsequent sections.

7.4.1.2 Static and Da Topology

In order to implement the topology part with a work-conserving forwarding, 7 Trio augments
a de Bruĳn graph-based static topology built from the Static ports with dynamic connections
(short-cuts) on the Da ports. It closely re-uses the concepts from Duo (Chapter 6). In particular,
and in contrast to previous proposals [47] and also Cerberus, Duo supports integrated multi-hop
routing across links from both the Static and Da topology parts, i.e., a single packet can traverse
both sub-topologies to reach the destination. Moreover, the structural properties of the de Bruĳn-
graph allow leveraging (IP-based) greedy routing using small forwarding tables. Lastly, the update
cost of a forwarding table upon a Da link change is small and can be performed locally with the
new neighbors.

Figure 7.4 shows an example of such a hybrid de Bruĳn topology with eight ToRs, two Static
ports per ToR, and one Da port. The node IDs are in binary representation. The topology is,
therefore, a union of three matchings, two Static and demand-oblivious, and one dynamic and
Da. The matchings are shown in the right half of the figure. For details on this sub-topology, the
reader is referred to Chapter 6, which presents Duo. While the Duo topology has many benefits
that are also implemented in Trio, it does not have a Dobl sub-topology which the next part
discusses.

7.4.1.3 Packet Scheduler for Dobl Topology

As in previous work [53, 48, 49], a non-work-conserving packet scheduling algorithm is needed to
transmit packets via the highly dynamic Dobl sub-topology successfully. Recall that in this sub-
topology, links between ToRs are constantly and systematically changing, emulating a complete
graph between the ToRs over time while being oblivious to the demand. Therefore, packets
potentially need to be stored while waiting for their next-hop link to be reconfigured. In Trio,
similar to previous work, packets are buffered at the end hosts when they need to be delayed (and
not at the ToR switch) and forwarded to the ToR switch based on a ToR-host synchronization and
the packet scheduler.

7For the definition of “work-conserving” in this context please refer to Section 6.1.1
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Algorithm 7 Trio Offloading (from Dobl to Static & Da) at host 𝑣

1: for dest 𝑢 = 1 . . . ℎ, (𝑣 and 𝑢 not in same rack) do
2: if 𝐷 𝑙

𝑣,𝑢 > 𝐶
𝑘

then
3: Offload 𝐷𝑛

𝑣,𝑢 to backbone topology
4: else
5: if 𝐷 𝑙

𝑣,𝑢 + 𝐷𝑛
𝑣,𝑢 > 𝐶

𝑘
then

6: Offload 𝐷 𝑙
𝑣,𝑢 + 𝐷𝑛

𝑣,𝑢 − 𝐶
𝑘

from 𝐷𝑛
𝑣,𝑢 to backbone

The state-of-the-art approach for this challenging task is the RotorLB (RLB) scheduling pro-
posed with RotorNet and Opera [53, 49]. It considers both direct (single hop) and indirect (of at
most two-hops) routes and uses Valiant-based routing [171] (via a random intermediate helper
node) to achieve load balancing.8 This approach was shown to provide high throughput. RLB
has for each host a set of virtual buffers for each destination, both for local traffic that is generated by
the host and for non-local traffic where the host acts as an intermediate node. Unfortunately, RLB
introduces a significant control plane overhead, in particular since intermediate buffers cannot
easily handle overflows, and a tight sender-receiver flow control mechanism needs to be imple-
mented. At the beginning of every slot, hosts (in different racks) negotiate the amount of traffic
that can be sent indirectly to prevent overflow. In contrast, Trio implements a simpler packet
scheduler (for the Dobl topology), LocalLB (LLB), that does not require such global synchroniza-
tion. The decisions of what to send indirectly are made (rack-)locally. In case of an overload of
a specific rack/host, i.e., if non-local traffic accumulates, Trio can rely on its efficient backbone
topology (Static and Da) to forward long waiting traffic to the destination. A second difference is
the capacity per source that is reserved. Opera assumes a uniform distribution of the traffic and,
therefore, a priori, applies an equal share of the slot capacity across all (source) hosts in a rack.
The initial sending capacity assigned to each host is 𝐶

ℎ
where 𝐶 is the slot capacity and ℎ is the

number of hosts. Trio does not make such an assumption but allows a more flexible distribution
of the resources within a rack.

High-level Scheduling Process. Figure 7.5 visualizes the scheduling process at the beginning
of a slot for Opera and Trio. Table 7.2 summarizes the used notation of constant values. Table 7.3
defines the input (sizes of the local and non-local buffers) and output data structures (allocated
volumes from local and non-local to the destination and from local to an intermediate host).

First, each host in Trio checks if non-local traffic demand must be offloaded from the Dobl sub-
topology to the backbone sub-topology (which supports work-conserving forwarding, and the
traffic can immediately be sent to the ToR switch). The offloading (Algorithm 7) follows a simple,
greedy logic. Each host 𝑣 checks for each destination 𝑢 (that is not in the same rack) whether
the local demand 𝐷 𝑙

𝑣,𝑢 exceeds what can be sent in a single slot and a single path, assuming
all-to-all traffic and fair-share, i.e., 𝐶

𝑘
. If so, all the non-local traffic to 𝑢, 𝐷𝑛

𝑣,𝑢 is offloaded to the
de Bruĳn-based backbone. If the local demand to 𝑢 fits in a single slot, the algorithm compares
the total demand from 𝑣 to 𝑢. If it exceeds the fair-share capacity, the excess demand is offloaded
(from the non-local traffic) to the backbone. Note that Trio offloads only non-local demand to
the backbone.

8For short, time-sensitive packets, Opera [49] uses longer multi-hop paths routing, but these packets capture only a
small fraction of the total traffic.
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Table 7.2 Constants used by Trio’s packet schedul-
ing.

Variable Description
𝑛 Total number of ToRs.
𝑘 Total number of spines
𝑘𝑑𝑜 Total number of Dobl spines
𝑇𝑖 ToR i, 1 ≤ 𝑖 ≤ 𝑛

𝑅𝑖 Dobl switch i, 1 ≤ 𝑖 ≤ 𝑘𝑑𝑜
ℎ = 𝑛 · 𝑘 Total number of hosts
𝐶 = 𝑟 · 𝛿 Slot active capacity (volume to send)

𝑟 Link rate
�̄� =

𝐶·𝑘𝑑𝑜
𝑘

host ToR Dobl switch capacity
ℎ𝑖 , 𝑗 Host i on ToR j (can be translated to an inte-

ger for indexing)
𝑢𝑖 , 𝑗 Uplink i on ToR j, (1 ≤ 𝑖 ≤ 𝑘𝑑𝑜)
𝑇𝑢𝑖 , 𝑗 ToR connected on uplink i on ToR j

Table 7.3 Input and output data structures of Trio’s
packet scheduling.

Variable Description
Input
𝐷 𝑙
𝑖 , 𝑗

Current local demand from host i to host j.
𝐷𝑛
𝑖,𝑗

Current non-local demand from host i to
host j.

Output
𝑆𝑙𝑑
𝑖, 𝑗

Direct local volume to send from host i to j.
𝑆𝑛
𝑖,𝑗

Non-local volume to send from host i to j.
𝑆𝑙𝑖
𝑖 , 𝑗 ,𝑘

Indirect local volume to send from host i to
j with final destination k.

Next, the non-local demand is scheduled. The procedure is the same for Opera and Trio,
using a fair-share (FS) algorithm over source and destination hosts. The same procedure is
applied for local direct demand. After this step, Opera creates offers to be exchanged between
connected ToRs, thereby synchronizing demand information across the network to perform flow
control (red). In Trio, this step is not necessary, saving complexity. For allocating new indirect
traffic, Opera uses a fair-share approach again to distribute the remaining capacity across the
source hosts and, in particular, the destinations per host. In contrast, Trio follows a more greedy
approach since it can handle buffer overloads (GS, see next paragraph). Each host selects the
destination with the largest demand and then distributes the remaining capacity in the slot to all
hosts with remaining local demand again greedily: The source hosts within a rack are sorted by
their largest destination, and capacity is assigned starting with the smallest. If the demand of
the currently considered source host exceeds the remaining slot capacity, the capacity is equally
shared among all hosts with demand. Otherwise, it is assigned as much as needed. The process
is repeated until all demands are served or the remaining capacity has been used.

Detailed Algorithm. This section provides a detailed description of the algorithms underlying
Trio’s packet scheduling. Algorithm 8 is a sub-routine used by LLB. The routine is summarized
in pseudo-code from prior work (the code base) from Opera [49]. Given a matrix 𝐼 of demand
to be sent, it applies a 2-dimensional fair share over the sending and receiving capacities (given
as vectors). Therefore, it repeats sweeping the rows (l. 5f) and then the columns (l. 7f) until the
output values converge.

Algorithm 9 is the whole packet scheduling algorithm with the major steps as described before.
It takes a per ToR perspective (the algorithm runs on ToR 𝑡); all data structures are rack-local, but
the algorithm listing partially uses global indices to simplify notation.

In lines 3-7, the algorithm allocates the second hop non-local traffic and local traffic that can be
sent directly to the destination. For each buffer type (non-local (n) and local (l)), it iterates over the
Dobl ports and collects the per-port demand information (local or non-local respectively) of all
source and destination hosts that are connected by the port. Then, it allocates the demand using
the 2-dimensional fairshare (FS2D, l. 6). The second part (lines 9-25) allocates traffic to be sent
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Algorithm 8 2-dimensional fair share (from Opera’s implementation [49]).

1: 𝐼 ∈ R𝑁×𝑀 , 𝑐0 ∈ R𝑁 , 𝑐1 ∈ R𝑀

2: Initialize output: 𝑂 ∈ R𝑁×𝑀

3: Count elements > 0 in 𝐼 as 𝑛+

4: while 𝑛+ > 0 and max iterations not reached do
5: for 𝑖 = 1 . . . 𝑁 do
6: 𝑡[𝑖] = 1-dimensional fair share on 𝐼[𝑖]with capacity 𝑐0[𝑖] −∑𝑗=1...𝑀 𝑂[𝑖 , 𝑗]
7: for 𝑗 = 1 . . . 𝑀 do
8: 𝑡2 = 1-dimensional fair share on 𝑗-th column of 𝑡 with capacity 𝑐1[𝑗] −∑𝑖=1...𝑁 𝑂[𝑖 , 𝑗]
9: Update 𝑡 with 𝑡2

10: Update 𝐼, 𝑂 with 𝑡

11: Zero out rows 𝐼[𝑖]where 𝑐0[𝑖] = 0
12: Zero out columns 𝐼[𝑗]where 𝑐1[𝑗] = 0
13: Count elements > 0 in 𝐼 as 𝑛+

via an intermediate host. Again, the algorithm iterates over the Dobl ports. Per port, it iterates
over the hosts in the destination rack (with the order changing in a round-robin fashion between
calls of the packet scheduling). For each such candidate intermediate host, it searches for the
destination with the highest demand per source host (lines 13-17). Then, it iterates over these
demands in non-decreasing order. If a demand 𝑧𝑖 exceeds the remaining capacity in the slot to the
intermediate host, the equal-share of the remaining capacity is given to all remaining demands
> 0 (lines 19-22). If the demand does not exceed the remaining capacity to the intermediate host,
it is greedily allocated (l. 20f). Note that the algorithm does not evaluate the capacity of the
slot from the intermediate node to the actual destination (the second hop) but relies on Trio’s
offloading (Algorithm 7) to compensate for overloads.

7.4.1.4 Technical & Implementation Details

Trio’s architecture with three sub-topologies comes with several challenges regarding integration
and synchronization. This section presents more details on the implementation of Trio. It first
covers flow classification and feasible transport protocols and components of data and control
plane. Afterward, it describes how packets are forwarded and the synchronization between hosts
and ToRs.

Flow classification. Trio requires a mechanism to classify flows and to separate traffic onto
the three sub-topologies. One option is to estimate the flows’ sizes to classify them as done in
Opera [49], Cerberus [3], and Duo. Trio uses this method to distinguish Static and Da traffic,
for instance, using approaches such as flow aging communicated from the application. However,
the Dobl sub-topology is particularly suited for uniform traffic patterns, such as flows that belong
to the shuffle phase of a map-reduce job. Therefore, Trio additionally relies on application-level
information for traffic classification. That is, either a shim layer between the application and the
network stack on the host is added to insert additional tags to the packet headers identifying Dobl
traffic, or alternatively, transport layer ports are used to identify the applications with uniform
communication patterns and mark Dobl traffic accordingly.
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Algorithm 9 Trio Packet-Scheduling (LocalLB) for ToR 𝑡

1: 𝐶𝑇𝑋
𝑖
← �̄�, 𝐶𝑅𝑋

𝑖,𝑏
← 𝐶

𝑘
,∀𝑖 = 1 . . . 𝑘,∀𝑏 = 1 . . . 𝑘𝑑𝑜

2: //Allocate Non-local (n) on the 2nd hop and local (l)

3: for x ∈ {𝑛, 𝑙} do
4: for 𝑏 = 1 . . . 𝑘𝑑𝑜 do
5: 𝑊𝑖 , 𝑗 ← 𝐷𝑥

ℎ𝑖 ,𝑡 ,ℎ 𝑗 ,𝑇𝑏,𝑡
∀𝑖 = 1 . . . 𝑘, 𝑗 = 1 . . . 𝑘

6: 𝑆𝑥 ← 𝐹𝑆2𝐷(𝑊, 𝐶𝑇𝑋 , 𝐶𝑅𝑋)
7: Update 𝐶𝑅𝑋 , 𝐶𝑇𝑋 , 𝐷𝑥

8: // Allocate new indirect traffic on the remaining capacity

9: for 𝑏 = 1 . . . 𝑘𝑑𝑜 do
10: // Iterate over all hosts in ToR connected via 𝑏

11: for ∀𝑎 ∈
{
ℎ 𝑗 ,𝑇𝑏,𝑡 , 𝑗 = 1 . . . 𝑘

}
, order RR over slots do

12: //Find largest demand per source host capped by remaining sending

capacity

13: 𝑉𝑖 ,𝑚 ← 𝐷 𝑙
ℎ𝑖 ,𝑡 ,ℎ𝑚

∀𝑖 = 1 . . . 𝑘, 𝑚 = 1 . . . 𝑛𝑘
14: 𝑣𝑖 ,𝑚 = 𝑣𝑖 ,𝑚 − 𝐶

𝑘
and zero all < 0

15: 𝑦𝑖 ← arg max𝑚 𝑣𝑖 ,𝑚 ,∀𝑖 = 1 . . . 𝑘
16: 𝑧𝑖 ← min{𝑣𝑖 ,𝑦𝑖 , 𝐶𝑇𝑋

𝑖
}

17: 𝑛𝑧 ← number of 𝑧𝑖 > 0
18: for ∀𝑖 where 𝑧𝑖 > 0 in non-decreasing order of 𝑧𝑖 do
19: if 𝑧𝑖 > 𝐶𝑅𝑋

𝑎,𝑏
then

20: Allocate
𝐶𝑅𝑋
𝑎,𝑏

𝑛𝑧
for all 𝑖 with 𝑧𝑖 > 0

21: Update 𝐶𝑇𝑋 , 𝐶𝑅𝑋 , 𝐷 𝑙

22: Break
23: else
24: Allocate 𝑧𝑖 for 𝑖 and update 𝐶𝑇𝑋 , 𝐶𝑅𝑋 , 𝐷 𝑙

25: Decrement 𝑛𝑧

Transport protocols. Trio uses different transport protocols for the three sub-topologies. Latency-
sensitive (small) flows run via the Static topology with NDP [172], which has shown good per-
formance for such traffic. Flows that are transmitted via the Dobl part are sent according to the
schedules determined by LLB (Section 7.4.1.3). Throughput-sensitive flows use standard TCP for
transmission on the Static and Da ports to efficiently share the available resources.

Data and Control Plane Components. Trio uses label-based source routing and priority queue-
ing to forward the flows onto the different topology classes and to turn the decisions of LLB into
action. Figure 7.6 visualizes the involved components on the hosts and the ToRs. The example
considers a Trio configuration with one Dobl (R0), one Da (D0), and two Static ports (S0, S1)
on the ToR switch. All three flow classes share the up-link from the host to the ToR. In order to
reduce interference, Trio uses priority queues on hosts and ToR switches. Static flows are given
the highest priority, followed by Dobl and Da. Note that queues for Static and Da traffic are not
needed on Dobl ToR uplink ports, but the queue for Dobl traffic is needed on both Static and



Chapter 7 Designing Topology Reconfiguration-aware Networks for Datacenters

154

1
2
...

h

Host

Medium

ToR Switch

Queues

FIB

R0

D0

S0

S1

Clock / Sync

1

2 3

4

1 2

3

1

2

1
2
...

h

Local Non-Local

Host-to-
ToR Sync

3

Host
agent

ToR
Agent

Low

High

Application

Figure 7.6 Overview of Trio’s data- and control plane components on hosts and ToRs. Each link has three
queues of different priorities to separate traffic for the three sub-topologies. Packets from the application
are tagged with a label. The FIB matches on this label to identify the sub-topology or active slot on the
DO topology. Host and ToR agent synchronize the demand and assigned resources as well as the active
slot on the Dobl sub-topology.

Da ports to enable the offload from Dobl topology to the de Bruĳn backbone. Besides the port
queues, four more entities are involved:

• The Local and Non-local buffers store packets for transmission via the Dobl part. Similar to
RotorNet and Opera, each of them features a dedicated virtual queue per destination in the
network [48, 49].

• Host agent runs on every host and sends the individual sizes of the Local and Non-local buffers
to a rack-local coordinator (ToR agent). It waits for pull messages from the ToR agent to send
packets from the buffers. The pull messages contain the volume to be sent per destination.
When sending a packet for the Dobl topology, the host adds a slot label that either indicates the
active Dobl matching or is 0 if the packet is to be sent via Static or Da ports.9

• ToR agent coordinates the Dobl packet transmission of all hosts in a rack. It can run on of the
ToRs or on one of the hosts. It receives demand information from the Host agents and runs
LLB. The outcome is sent to the hosts along with the slot label to be used (pull messages).

• FIB is a single forwarding table on the ToR for all three sub-topologies. Besides the destination
IP address, the FIBmatches the slot label to obtain the egress port. Thereby, forwarding to Dobl
or Da and Static can be differentiated. The entries for the Dobl links can be pre-computed
and do not change over time (unless the number of Dobl ports changes). Forwarding entries
for Da and Static might be updated if the Da links change.

The following part describes how these components interact and synchronize to effectively
forward packets over the three sub-topologies.

Packet forwarding. Figure 7.6 illustrates the major steps taken when forwarding packets in Trio.
Packets from applications that should be sent via the Dobl are put to the corresponding Local

9Every Dobl port cycles through 𝑛 − 1 configurations. The slot label indicates the currently active configuration. At
every point in time, all hosts use the same slot label.
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destination queue 1 . If packets are offloaded from Dobl to the Static and Da sub-topologies, the
Host agent takes packets from the queue and directly sends them 2 . In this case, the 0 slot label
is added to the packet. Otherwise, the packets are sent according to the calculated schedule (cf.
Section 7.4.1.3) with the slot label as provided by the ToR agent. Packets that are sent indirectly
via the Dobl part are encapsulated with the address of the intermediate host. On the ToR, the
packet is matched in the FIB 3 and forwarded using the medium priority queue 4 .

Packets from applications to be sent via Static or Da (Non-Rotor) are tagged with slot label
0 and then sent out to the ToR 1 . Here, they are again matched in the FIB 2 and forwarded
accordingly 3 . Traffic received on the ToR’s uplinks is forwarded to the destination host 1
2 . When a host receives indirect Dobl traffic, it adds the packets to the corresponding non-local
queue 3 . Packets received on the final destination (host) are forwarded to the application. On
the ToR, all packets are matched in the FIB, the slot label is popped, and the packet is sent to the
egress port.

FIB Example. To illustrate the content of ToRs’ FIBs, we consider a network with eight ToRs. We
consider a point in time at which Static and Da ports are connected according to the scenario
depicted in Figure 7.4. In addition to the ports shown there, each ToR has one Dobl port. The IP
addressing scheme in this example follows the description in Section 6.2.3.2. Bits 22-24 encode the
de Bruĳn node addresses. The lower 21 bits can be used to address hosts inside the rack. The rules
match on a combination of exact match (for the slot label) and longest prefix match (LPM) (for the
destination address). To give an example, Table 7.4 shows the FIB for node 100. The upper part
shows the forwarding rules for the Static and Da part. They essentially match the forwarding
rules from Duo (cf. Section 6.2) .10 The only addition is an exact match on the slot label to be
0. The lower part of the FIB shows the rules for the Dobl forwarding. Here, the matching value
of the slot label depends on the active slot. The match also considers the destination address to
perform forwarding if multiple Dobl ports are present. Packets that do not match any rule are
dropped.

Dobl Synchronization. Trio requires two types of synchronization for the Dobl sub-topology.
First, ToRs need to synchronize their configuration state (i.e., the slot) globally across the network.
This can be achieved using a global (broadcast) clock signal (red triangle in Figure 7.6).

Second, Trio needs synchronization between hosts and ToRs to put the decisions of LLB into
effect. Therefore, Trio considers a similar approach to RotorNet and Opera. Packets are primarily
buffered on the hosts. Demand information is pushed once per slot from the Host agent to the
ToR agent, e.g., with Remote Direct Memory Access (RDMA) messages [48]. After having
calculated the number of packets to send with LLB, the ToR agent pulls traffic from the host, i.e.,
notifies the Host agent about how much to send. This can be done again using RDMA messages.
Other approaches might be possible as well. For instance, for its rack-based deployment, Sirius
can operate with the buffers on the ToRs to implement the needed local queues. The authors refer
to Credit-based flow control mechanisms as available in InfiniBand to avoid buffer explosions on
the ToR. However, Sirius negotiates the scheduling almost on a packet-by-packet basis. While this
approach reduces the buffer requirements, it comes at the cost of high inter-ToR synchronization
effort. Although Trio comes with several challenges regarding the integration of the three sub-

10The rules are not sorted. Their order does not necessarily reflect the order in memory/the order of the lookup.
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Table 7.4 Forwarding table on ToR 100 following the Static and Da topologies in Figure 7.4 with one
additional Dobl port. Rows 1-7 forward on the de Bruĳn sub-topology, rows 8-14 on the Dobl topology,
and row 15 drops incorrectly tagged packets.

# Slot Label Dst. Addr. Port
1 0 10.192.0.0/10 𝐷𝐴

2 0 10.160.0.0/11 {1, 𝐷𝐴}
3 0 10.96.0.0/11 {1, 𝐷𝐴}
4 0 10.64.0.0/11 1
5 0 10.32.0.0/11 1
6 0 10.0.0.0/11 0
7 0 10.128.0.0/11 Local
8 1 10.96.0.0/19 {Dobl }
9 2 10.128.0.0/19 {Dobl }
10 3 10.160.0.0/19 {Dobl }
11 4 10.192.0.0/19 {Dobl }
12 5 10.224.0.0/19 {Dobl }
13 6 10.0.0.0/19 {Dobl }
14 7 10.32.0.0/19 {Dobl }
15 * * drop

topologies, all the described aspects in this section illustrate the feasibility of Trio. Moreover,
they describe an avenue toward an implementation that is partially explored and evaluated in
the following section.

7.4.2 Empirical Evaluation

This section evaluates Trio with packet-level simulations using htsim [172]. It compares Trio
to Opera and Duo, across a range of traffic patterns that build on available empirical flow size
distributions and synthetic patterns. The evaluation focuses on goodput, which accounts for
re-transmissions and re-ordering, as the main performance metric but also investigates flow
completion times and the efficiency of the resource usage.

7.4.2.1 Settings

We consider topologies with 𝑛 = 64 ToRs. Each ToR has 16 bi-directional ports which are equally
split into up- and downlinks (𝑘 = 8). All links have a capacity of 10 Gbps. This results in a total
uplink capacity of 5.12 Tbps, which is comparable to previous works [49, 53].

The reconfiguration periods are chosen such that the duty cycles in both dynamic topology parts
are around 98%, similar to prior work [49]. Unless stated otherwise, the physical reconfiguration
delay is 100 ns for Dobl switches and 1 ms for Da switches. On the Dobl part, there is a 1.7 µs
guard period to empty the fibers before reconfiguration, similar to the settings in [49].

Topologies. The three systems are described in detail in the following:

• Trio uses the hybrid, multi reconfiguration-class topology presented in Section 7.4.1. Through-
out the evaluation, the proportions of the sub-topologies are denoted by the tuple (𝑘𝑠 , 𝑘𝑑𝑜 , 𝑘𝑑𝑎).
Scheduling of the Da links is greedy according to the size of the demands using the central-
ized algorithm presented in Section 6.2.2. For both packet scheduling on the Dobl part and
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(a) 𝐿 = 35%
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(b) 𝐿 = 40%
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(c) 𝐿 = 45%
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(d) 𝐿 = 50%

Figure 7.7 Goodput averaged over 1 s of simulation. The heatmap compares topology configurations and
traffic mixes. Each cell shows the average of 10 simulation runs. The values are normalized to the offered
traffic. Black rectangles indicate the best value per traffic mix (column). Since the goodput of the elements
that are far away from the anti-diagonal in the heatmap are expected to be low (cf. Figure 7.7b), they are
omitted for 𝐿 = 35%, 45% and 50% (white cells). For loads ≥ 40%, adjusting the sizes of the sub-topologies
to the respective traffic share increases the goodput.

scheduling of Da links, the system has full knowledge of the flows’ sizes at any point in time;
an assumption also made in prior work [49]. The allocation of flows to the scheduling classes
(i.e., the sub-topologies) relies on two criteria. First, this evaluation assumes that there is
application-level information to identify traffic for the Dobl part (see also the traffic descrip-
tion later). Second, a size threshold of 1 MB is used to separate traffic for the only Static part
(using NDP) and traffic for the Da part (using TCP).

• Duo (Chapter 6) is a specific configuration of Trio with 𝑘𝑑𝑜 = 0. As in Chapter 6, this evaluation
considers a configuration with 𝑘𝑠 = 2 and 𝑘𝑑𝑎 = 6. The Da links are scheduled greedily based
on the remaining demand volume between the ToR pairs Algorithm 3. The threshold for
the Da link scheduling is 10 MB. The algorithm has full knowledge of the flows’ sizes upon
their arrival. The routing uses the properties of de Bruĳn-based greedy routing, i.e., paths
combining Static and Da links are possible. Similar to Trio, flows < 1 MB use NDP and
larger flows use TCP as transport protocols. Queues in the two systems above can hold 50 data
packets of size 1500 B.

• Opera [49] is a demand-oblivious, dynamic topology and serves as the second baseline. It
periodically cycles through a set of matchings that are generated so that it maintains an
expander graph at every time. Opera also splits the flows into low-latency and bulk traffic.
Low-latency traffic is forwarded via the temporarily static expander part of the topology with
NDP as the transport protocol. Bulk traffic is scheduled and sent with the RotorLB protocol
and scheduling [48, 49]. The evaluation considers the default configuration for queue sizes
(8 · 1500 B) and the threshold for bulk traffic of 15 MB.

Traffic. The evaluation considers an online traffic scenario where flows arrive over time accord-
ing to a Poisson process. To demonstrate that Trio is particularly suited for traffic patterns that
mix skewed demands with uniform patterns, generated traces contain traffic from two distribu-
tions and varying shares of the two traffic patterns (skewed and uniform). The variable 𝑥 denotes
the share of the skewed traffic. For the skewed traffic component, connection pairs are sampled
uniformly at random. The flow sizes are sampled from distributions similar to Datamining [193],
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Figure 7.8 Gain in goodput when using Trio against the fraction of skewed traffic. The sub-figures compare
different load values (a) and flowsize distributions for the skewed traffic (b & c). The reference topology is
indicated in the sub-caption.

Hadoop [34], and Websearch [311]. Specifically, the distributions have been super-sampled by
a factor of 5 to increase the number of distinct flow sizes. The uniform pattern is composed of
demand matrices with one flow of size 112.5 KB for each host pair in different racks. The flows
of a matrix arrive over time, and the arrival rate of the generated matrices controls the share of
skewed traffic. The load 𝐿 is controlled via the arrival rates of the flows. We assume that all
three systems can identify traffic belonging to the uniform traffic pattern using application-level
information or special tags. Hence, they are configured so that they forward flows belonging to
the uniform traffic via the Dobl sub-topology (regardless of the threshold for large flows). The
results report on mean values of 10 runs per setting.

7.4.2.2 Goodput analysis

We start with evaluating the goodput of Trio in various scenarios.

A matched topology configuration increases goodput. Figure 7.7 visualizes the average good-
put over 1 s of simulation for different topology configurations and traffic mixes. The values are
normalized to the offered load in the respective run. A value = 1 means the topology can fully
serve the offered traffic. The skewed traffic is sampled from Datamining. Comparing the different
loads (sub-figures), we note that the normalized values decrease slightly with increasing load.
For 𝐿 = 35% (Figure 7.7a) the number of cells = 1 is highest, whereas for 𝐿 = 50% (Figure 7.7d),
none of the configurations can fully sustain the offered traffic. This is expected as the congestion
in the topologies increases.

Looking at the individual heatmaps (for instance, Figure 7.7b), the performance of the topology
configurations varies with the traffic mix. That is, for each share, there is one best configuration.11

For instance, for 𝑥 = 70% (70% Datamining and 30% uniform traffic), Trio with (2, 2, 4) achieves
the highest goodput, i.e., the normalized values are closest to 1. This effect is weaker for low load
(𝐿 = 35%). Moreover, topology configurations with a small number of Dobl links serve better
traffic mixes with higher 𝑥. This aligns with the conclusions made in Section 7.3 (and more in
detail in [3]). The share of Dobl links approximately corresponds to the share of the traffic in
the uniform matrix. For instance, configuration (2, 2, 4) dedicates 75% of the resources to Static
and Da and performs best for 𝑥 = 70% ,in which 70% of the traffic uses these sub-topologies.

11For demonstration, only the heatmap for 𝐿 = 40% is complete. The white regions in the other heatmaps are similarly
off from the offered load.
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Here, the normalized goodput is 0.999, compared to 0.892 and 0.875 for 𝑥 = 55% and 𝑥 = 85%
respectively. Overall, over-provisioning the Dobl component reduces the goodput more than
over-provisioning the Da part.

Compared to Trio, Opera performs worse for all considered traffic mixes (and load levels).
For instance, for 𝐿 = 40%, it achieves approximately 6% lower goodput than Trio. Duo, which
resembles a special case of Trio (with (2, 0, 6), performs the best for the high 𝑥. Here, the purely
DA topology better matches the highly skewed traffic. Choosing the correct configuration for
Trio is important for maximizing its performance. If not stated otherwise, the following analyses
use 𝐿 = 40% and 𝑥 = 70% sampled from Datamining.

Trio’s gains persist for other loads & other flow size distributions. Figure 7.8 summarizes the
relative gain in goodput when using Trio compared to the indicated reference configuration. The
gain is calculated as 𝐺Trio−𝐺𝑟𝑒 𝑓

𝐺𝑟𝑒 𝑓
. Note that (2, 0, 6) (Duo) is also considered as part of Trio here.

Figure 7.8a illustrates the gain against the share of skewed traffic for different loads. For 𝐿 = 35%,
the gain varies between 0− 4% but does not show a clear trend. For 40% ≤ 𝐿 ≤ 50%, the behavior
is different. For these load values and 40% ≤ 𝑥 ≤ 70%, the gain remains almost constant around
10% – neither the load nor the share of skewed traffic shows an impact here. The only exception
is 𝐿 = 45% and 𝑥 = 40%, with a gain of 14%. This value steps out since at 𝐿 = 45% Opera fails
to serve the traffic. Trio starts to saturate at 𝐿 = 50%, which is observable by the reduced gain.
For a share ≥ 85%, there the load has a clear impact on the gain. It raises from ≈ 10% at 𝐿 = 40%
to ≈ 16% at 𝐿 = 50%. In summary, choosing the correct topology configuration becomes more
important with higher traffic skew and load.

Figures 7.8b and 7.8c illustrate the impact of the flow size distribution of the skewed traffic on
the gain. The reference configurations are Duo (2, 0, 6) and Opera, respectively. First, for Duo
(Figure 7.8b), the gain diminishes for all distributions when 𝑥 increases. For higher shares, the
optimal configuration has smaller 𝑘𝑑𝑜 becomes more similar to (2, 0, 6). In fact, for 𝑥 = 100%,
(2, 0, 6) is the best configuration.

Compared to Opera (Figure 7.8c), Trio shows improvements of up to 10% when skewed traffic
is sampled from the Datamining or Hadoop distribution. The numbers vary depending on
the exact share. For Websearch, the gain strongly grows with 𝑥.12 As observed in Section 6.3
and also in prior work [49], Opera’s throughput (and consequently the goodput) collapses if
the amount of traffic routed via the expander part increases, as is the case with the Websearch
distribution. As a general trend, we observe that the gains decrease with the average flow size
of the distributions (Datamining has the highest (≈ 5.5 MB), followed by Hadoop (≈ 3.66 MB)
and then Websearch (≈ 1.55 MB)). The intuition is that Hadoop and Websearch are per se less
skewed than Datamining, which overall benefits Opera. In summary, the gains from Trio also
persist for other distributions of skewed traffic.

LocalLB preserves competitive goodput at lower complexity. In the previous analyses, Trio
uses LLB as proposed in Section 7.4.1.3. This scheduling can run rack-local, which reduces the
synchronization overhead compared to running Trio with the RLB scheduling [48, Algorithm
1]. To investigate how the two schedulers fare against each other, Figure 7.9 shows the goodput
and runtime of both scheduling approaches. Note that the simulation runtime does not reflect

12The upper end of the figure is cut. The maximum gain is 112% at 𝑥 = 100% Websearch.
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Figure 7.9 Comparison of Trio’s scheduling (LocalLB) and RotorLB scheduling. Load 40%. The goodput is
normalized to the offered traffic, the runtime is normalized to the LocalLB - (2,1,5). The errorbars indicate
the 95%-confidence interval. LocalLB maintains similar performance as RotorLB but has lower runtimes
that hint at lower complexity.
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(a) 𝑟𝑑𝑎 = 10ms
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(b) 𝑟𝑑𝑎 = 100µs

Figure 7.10 Goodput averaged over 1s of simulation. Comparison of reconfiguration times of the Da links
with fixed duty cycle. The heatmap compares topology configurations and traffic mixes. On a high-level,
the reconfiguration delay does not impact the benefits of matching traffix mix and topology configuration.
Inspecting the values individually, we cannot identify a consistent pattern.

the actual synchronization effort, which also depends on hardware characteristics, but can give
a first indication. The figure compares two cases: (1) the topology matching the traffic share,
i.e., (2,1,5) is run with 𝑥 = 85%, (2,2,4) with 𝑥 = 70% etc., and (2) all topology configurations are
run on 𝑥 = 70%. For all configurations, the differences in goodput between LLB and RLB are
< 10%. For the matching traffic, we observe that LLB achieves slightly higher goodput than RLB
and, for the fixed share, the opposite is the case. LLB consistently has lower runtimes than RLB.
The difference increases with the number of Dobl ports and emphasizes the gain of avoiding
inter-ToR synchronization for indirect traffic on the Dobl links.

Trio’s gain persists for other reconfiguration delays Figure 7.10 illustrates similar heatmaps as
in Figure 7.7 for 𝑟𝑑𝑎 = 10ms (Figure 7.10a) and 𝑟𝑑𝑎 = 100µs (Figure 7.10b). The reconfiguration
period is adjusted so that the duty cycle remains constant. The load is 𝐿 = 40%. On a macroscopic
level, the behavior is similar as before: matching the topology configuration to the traffic mix



7.4 Trio: An integrated, multi-class reconfigurable DCN

161

102 103 104 105

Flowsize [bytes]

0

1

2
99

%
-i

le
FC

T
[µ

s]

×102 2,0,6 2,2,4 OPERA

(a) Small flows

105 106 107

Flowsize [bytes]

103

105

99
%

-i
le

FC
T

[µ
s]

2,0,6 2,2,4 OPERA

(b) Medium flows

108 109

Flowsize [bytes]

0

1

2

3

M
ed

ia
n

FC
T

[µ
s]

×106 2,0,6 2,2,4 OPERA

(c) Large flows

Figure 7.11 Comparison of flow completion times (FCTs) against the flow size. Flows are separated into
three groups showing the 99%-ile for small flows (a) and medium flows (b), and the median for large flows
(c). Load is 40%, traffic mix with 70% Datamining and 30% uniform. Trio achieves lower FCT than Opera
for small and large flows. Results for medium-sized flows vary depending on the used topology part.

maximizes the achieved goodput. Comparing the values in detail, no consistent impact of the
reduction of 𝑟𝑑𝑎 (and the implied reduction of the reconfiguration period) is observable. Some
combinations have higher, and some have lower achieved goodput.

7.4.2.3 Individual Flows’ Performance

Besides the goodput, this section evaluates the impact on the individual flows. Therefore, it first
evaluates the FCT of flows of different sizes. The second part investigates packet reordering.

Trio preserves competitive flow completion times. To this end, Figure 7.11 visualizes the FCTs
against the flow sizes for Trio, Duo (2,0,6) and Opera. The flows are separated into three groups
for the sake of readability. The dashed lines indicate the optimal transmission time accounting
for queues and propagation.13 For small flows (≤ 100 KB, Figure 7.11a), we consider the 99%-ile
to better understand how this latency-sensitive traffic is handled. For all sizes, Trio achieves
the smallest FCT. It is followed by Opera and Duo. Recall that small flows use only the static
topology. Compared to Trio, Duo’s performance suffers from traffic belonging to the uniform
traffic that cannot be served well over the Da links and creates congestion on the Static links.

For medium-sized flows (99%-ile, Figure 7.11b), Trio consistently performs better than Duo for
the same reason as for the small flows. Trio also outperforms Opera until Trio starts classifying
flows for the Da part (1 MB). From thereon, flows are using TCP, and there is a strong increase in
the FCT, an effect that has already been observed when evaluating Duo (Section 6.3) and similarly
13Using the calculations provided by [49].
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𝑥 = 70% Datamining share. Overall, matching
the topology configuration with Trio results in
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also for Opera [49] (for flows > 15 MB). A special point of interest are flows of size 112.5 kB,
which arrive according to uniform matrices. All systems show an increased FCT here. Opera is
the best, followed by Trio (with the optimized configuration) and Duo (2,0,6). This steep increase
can be explained by the fact that these flows do not fit in a single Dobl slot and need multiple
cycles of the Dobl sub-topology to be transmitted.

Lastly, the situation changes for the FCTs of large flows (≥ 100 MB, Figure 7.11c). We con-
sider the median value here and observe that Trio performs best, followed by Duo and Opera.
Specifically, the difference between Trio and Duo is smaller than between Trio and Opera; in
fact, the FCTs for Duo (2,0,6) and Trio overlap for most flow sizes. This relates to our previous
observations regarding the achieved goodput.

In summary, integrating Dobl into a purely demand-aware topology improves the FCT for all
flow sizes. Compared to Opera, Trio trades off benefits for the small and large flows against
those of medium-sized and the Dobl flows.

Trio has a moderate amount of packet reordering. To take a different perspective on the impact
on the individual flows, Figure 7.12 illustrates the difference between the expected and received
sequence number of the packets at the receiver. Thereby, it hints at the packet reordering experi-
enced in the different topologies. The abscissa is broken into values < 0 (useless re-transmissions),
= 0 and more fine-grained for values > 0 (reception of reordered packets). Comparing the sys-
tems, we observe that the behavior of (2, 0, 6) (Duo) and (2, 2, 4) is similar. For both, > 80% of
the packets arrive in order. This is fundamentally different for Opera, for which < 20% of the
packets arrive in order. The shape of the remaining curve has a break around 79 packets which
corresponds to the number of packets needed to transmit the flows from the uniform traffic (of
size 112.5 kB). We conclude that Opera requires more effort from the receivers to forward packets
in the right order to the applications.

7.4.2.4 Resource utilization

Figure 7.13 shows the link utilization over time and on average for a single run. For each topology,
the present link types are shown separately (Opera has only Dobl, Duo has only Static and Da,
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Figure 7.14 Goodput over time and average in scenario with varying traffic mix. The dotted vertical lines
indicate changes in the traffic mix (at 1 s and 3 s). The dynamic partitioning that continuously matches the
sizes of the sub-topologies to the traffic mix achieves the highest throughput.

and Trio has all three). After the initial transient phase, the utilizations are stable over time and
vary only a little. For (2, 0, 6), the utilization of Static links is around 90%, whereas Da links
are utilized by 70%. Opera’s Dobl links are ≈ 80% utilized. For (2, 2, 4), Dobl and Da have a
similar utilization of 60%, and Static links are utilized by 80%. We note that Trio has the lowest
utilization on average but achieves the highest goodput, demonstrating the benefits of matching
traffic and topology also in the dimension of resource efficiency.

7.4.2.5 Dynamic partitioning preserves gains for varying traffic mixes

As a last aspect, we assess the benefits of dynamic partitioning in Trio. Figure 7.14 shows the
goodput over time and the average of a simulation in which the traffic mix varies over time.
Specifically, 𝑥 increases from 55% for < 1 s to 70% (1 s ≤ 𝑡 < 3 s) to 85% (≥ 3 s). For each of
the three phases, the figure shows the goodput of the matching configuration (2, 3, 3), (2, 2, 4)
and (2, 1, 5) respectively. For these three static baselines, we see in the period with matching
traffic that they achieve the offered load (after some transient phase) but drop in goodput when
not matching the traffic. For instance, (2, 3, 3) significantly drops after 1 s. In contrast, for the
dynamic partitioning, the achieved goodput aligns with the offered load throughout the run.
The superiority of the dynamic partitioning also becomes evident from the average values as it
achieves the highest value. Note that the shown example is hard-coded and only demonstrates the
benefits of applying the dynamic partitioning. The design of an (online) optimization algorithm
is left for future work.

7.4.3 Takeaways

This section presents Trio, an end-to-end design of an RDCN with macroscopic reconfiguration-
awareness. Like Cerberus, it combines Static, Da, and Dobl sub-topologies into a unified
system. Trio can match the topology configuration and dimensioning of Da, Dobl and Static
sub-topologies over time to the present traffic. Thereby, it improves goodput compared to existing
RDCN designs in various traffic conditions. Moreover, it mainly preserves the completion times
of individual flows. Whereas this evaluation demonstrates the benefits of matching traffic and
topology in static traffic conditions, it also shows that adapting the topology dimensioning during
runtime is possible.
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7.5 Summary

This chapter takes a first step towards topology reconfiguration-aware RDCNs concerning the
reconfiguration class. Therefore, it presents two hybrid RDCNs that combine sub-topologies
with DA and DO reconfigurations with a static base topology. The rational is that depending on
the traffic, other topology reconfiguration mechanisms are beneficial. Cerberus introduces the
idea of matching the sub-topologies to the traffic. Trio presents an end-to-end design of such a
system that is evaluated using packet-level simulations. Besides demonstrating the viability of
this approach, the evaluation also illustrates the advantages of the presented systems in terms
of goodput – up to 15% improvement over purely DA or DO proposals. Moreover, it maintains
and for some traffic even improves the flow completion times. With the introduction of LocalLB,
Trio also advances on a third front: it reduces the synchronization effort for the sub-topology.
Finally, the network and transport layer design of Trio provide means to dynamically adapt the
dimensions of the sub-topologies at runtime, a crucial aspect for matching the traffic over time.

While all these features improve the performance, there are still some points for future work.
This chapter focuses on the performance of the hybrid RDCNs as the most essential aspect. It
mainly revolves around simulation results, a more in depth analytical modeling is provided
in [3, 4] and another thesis. Also more detailed investigations with respect to failures and
detailed cost models are left for future work.14 However, such discussions become only relevant
if a performance benefit can be identified in the first place. Lastly, the design of optimization
algorithms for adapting the sizes of the sub-topologies over time is a natural avenue for future
work.

14Since Trio uses similar topology components as Duo, the failure discussion from Section 6.5 is also applicable here.
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Chapter 8

Conclusion and Outlook

As the traffic demand in today’s communication networks continues to grow, operators face
new challenges for the efficient operation of their networks. Besides the growth in volume,
new application types and more stringent requirements towards latency and reliability challenge
network operators. In the past years, researchers have come up with the idea of topological
reconfigurability at run-time to provide means to address these challenges. The innovation of
optical switching technologies that can quickly change links has led to a wide gamut of different
solutions for both wide area networks (WANs) and datacenter networks (DCNs).

However, while topological reconfigurations, in principle, can help to operate networks more
efficiently, they also introduce new challenges: The link’s capacity is temporarily unavailable, end-
points must establish new links, and network controllers must update their forwarding tables.
Depending on the (type of) equipment in use, reconfiguration delays can vary between minutes,
e.g., for reconfigurable optical add-drop multiplexers (ROADMs) in WANs down to nanoseconds
for the fastest switching equipment in DCNs. Also, the link’s endpoints add to the reconfigura-
tion delay and, in particular here, measurement procedures and a deeper understanding of the
components’ behavior under reconfigurations are needed.

Topological reconfigurations must be optimized in order to obtain the benefits of adaptivity.
This optimization can also include reconfigurations on other layers, such as the IP routing and
the demand, to further increase the benefits. Specifically in WAN environments in which Internet
Service Providers (ISPs) cooperate with content providers (CPs), such a joint optimization and
reconfiguration of three layers adds new potential for efficiency to be explored.

Operation and implementation of reconfigurable topologies require control planes to become
faster. In particular, in reconfigurable datacenter networks (RDCNs), where frequent adaptations
of the topology are considered, obtaining a consistent (global) view of the network as required
by centralized software defined networking (SDN) controllers is hard. For distributed network
controllers, state propagation may become a bottleneck. As a result, dynamic optical links are
often not fully integrated into the routing, i.e., flows are either routed on the static or on the
dynamic topology part.

In the past, several classes of topological reconfigurability have emerged. demand-aware
(DA) reconfigurations optimize the topology toward measurements or estimates of the demand,
whereas demand-oblivious (DO) reconfigurations follow pre-calculated schedules. Both are
most effective for different traffic patterns. Hence, choosing the right reconfiguration class for
the present traffic can further improve the performance of the network. Overall, integrating



Chapter 8 Conclusion and Outlook

166

awareness of the topological reconfigurations in the network is necessary to utilize their potential
fully.

8.1 Summary

This thesis explores approaches adding macroscopic reconfiguration-awareness in DA recon-
figurable networks to improve network efficiency. Therefore, it investigates the characteristics
of reconfigurable network topologies along three characteristics: the reconfiguration delay, the
considered networking layers for reconfigurations (topology, routing, and demand), and the con-
sidered classes of reconfigurations (DA and DO). The contributions of this thesis range from mea-
surement procedures and campaigns over mathematical optimizations to new network designs
that are evaluated using simulations and prototype implementations. This section summarizes
the major points in the following:

Modeling and Evaluation of Topological Reconfigurability. The reconfiguration delay can be a
significant factor for efficiency in reconfigurable topologies, in particular, when the topology
is reconfigured frequently. While existing measurements of topological reconfigurations focus
on singular settings and the reconfiguration time of the physical layer, this thesis takes a more
holistic view of the end-to-end reconfiguration delay of a link. To this end, it evaluates the length
of interruption on the data plane and the delay on the control plane for various reconfiguration
scenarios and commercially off-the-shelf (COTS) data plane devices. The results demonstrate
that there are indeed significant differences between the devices and scenarios.

Moreover, this thesis presents an experimentation framework for exploring the impacts of
reconfiguration classes, namely DA and DO reconfigurations. The proposed solution ExReC
relies only on COTS equipment and can be configured to emulate topologies from all DA to all
DO.

Joint optimization and reconfiguration of topology and demand. Topological reconfigurations
unavoidably lead to reconfigurations on higher networking layers as well. The question arises if
and how the higher layers should be included in the optimization. Therefore, this thesis presents a
multi-layer optimization problem considering joint optimization and reconfiguration of topology,
routing, and demand layer. The evaluation using demand data from a large ISP demonstrates
the benefits of such a joint optimization approach which culminates in up to 15% of deployed
network capacity saved on various time scales. Moreover, we elaborate that such reconfigurations
are feasible using today’s technologies. They mainly lead to small links being modified while
maintaining a stable core topology for most of the traffic.

Design of a High-throughput RDCN facilitating integrated multi-hop routing with local control.
Frequent topological reconfigurations require the control plane to propagate network state up-
dates quickly. As a result, many solutions fall back to segregated routing, which separates traffic
on the static and on the dynamic sub-topologies. To alleviate this and to investigate the poten-
tial of integrated routing over both sub-topologies, this thesis presents Duo, a high throughput
RDCN with local routing and control. Duo utilizes the structure of de Bruĳn-graph as a static
base topology to minimize the effort to update the nodes’ forwarding tables: the updates can be
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calculated with local information. The evaluation using a packet-level simulator demonstrates
the benefits of integrated multi-hop routing in terms of higher throughput and improved flow
completion times. Moreover, it shows the feasibility of Duo by presenting a proof-of-concept
implementation.

Design of Macroscopic Topology Reconfiguration-aware Networks for datacenters (DCs). The
two reconfiguration classes, DA (considering the demand for adapting the topology) and DO (fol-
lowing a pre-calculated scheme for adapting the topology), differ in their performance depending
on the demand in the network. This opens opportunities to increase the network performance
further using the reconfiguration class that is best for the present traffic. Thereby, the topology
becomes reconfiguration-aware on a macroscopic level. This thesis presents two solutions which
consider three sub-topologies (static, DA reconfigurations, and DO reconfigurations) and assign
traffic to the sub-topology that provides the best performance. We present an end-to-end design
of such a hybrid, multi-reconfiguration-class RDCN and evaluates it using packet-level simula-
tions. Moreover, this thesis empirically shows that matching the sizes of the sub-topologies to
the share of the respective traffic is crucial for efficient network operation for throughput and
flow completion times. As the traffic mix may change over time, it further demonstrates that an
adaptation of the topology over time is beneficial and shows avenues for how to achieve this.

8.2 Future Work

This thesis presents the first steps towards reconfiguration-awareness in reconfigurable topolo-
gies. It demonstrates that already a macroscopic perspective, i.e., by differentiating classes of
reconfigurations and the involved layers, increases the performance and efficiency of network
operation. However, there are several avenues for future work:

This thesis focuses on the performance improvements due to macroscopic reconfiguration-
awareness, e.g., in Chapter 5, 6, and 7, but leaves in-depth evaluations of failures and more
detailed cost models like presented in [15] aside. While these additional evaluation aspects
are critical per se, they are only relevant if the proposed systems improve performance, as
demonstrated in this thesis. Thus, they are a intuitive extension for future work.

In addition, some design aspects allow more detailed investigations. For instance, the presented
solutions Duo and Trio use de Bruĳn-graph-based backbone topologies. De Bruĳn graphs
are only one alternative for network topologies that support local routing. The evaluation of
other designs such as hypercube or Butterfly networks [304] or distributed hash tables such as
Kademlia [306] might be beneficial. This also applies to the used transport protocols. While
NDP and TCP are widely deployed and hence, natural choices, more specialized variants, e.g.,
ReTCP [204] or Time division TCP [205], might improve the performance even further.

Section 7.4 sketches the idea of adapting the reconfiguration-classes over time. It presents a
system that can modify the sub-topology sizes by reassigning the switches’ ports to different
scheduler but misses an (online) optimization algorithm. While the packet-level simulation-
based evaluation in Chapter 7 hints at the feasibility of the approach, a proof thereof using an
end-to-end system implementation is still pending. Moreover, this idea can also be applied to the
layers considered for reconfiguration. In principle, this can help to reduce the reconfiguration
cost and the run-time of the algorithm. The latter cost might be particularly interesting to deploy
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the proposed joint optimization approach from Chapter 5. Currently, the algorithm run-time is
not evaluated.

Another stream for future work is to investigate the feasibility and benefits of the microscopic-
perspective. This thesis focuses on the macroscopic classification, but it is still an open question if
a more fine granular optimization or adaptation of reconfiguration classes and the layers brings
further performance improvements. Specifically, this means to formulate models, to design
algorithms and to build systems that optimize reconfigurations on a link by link basis.

Lastly, with the advent of 6G requirements, more stringent requirements toward end-to-end
performance are formulated. This thesis considers reconfigurations in two crucial components
(or domains) of end-to-end connections, the WAN and DCN but separately. To this end, an
extension towards a multi-domain approach that jointly considers the WAN and DCN component
can be a next step. Specifically, answering the questions when to use reconfiguration on which
component and when joint optimization and reconfiguration are feasible and beneficial might
add a new dimension of topological reconfiguration-awareness.
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