
Technische Universität München
TUM School of Computation, Information and Technology

Fail-Operational Decentralized System

Architectures

Philipp Weiß

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr.-Ing. Gerhard Rigoll

Prüfer*innen der Dissertation:
1. Prof. Dr. Sebastian Steinhorst
2. apl. Prof. Dr.-Ing. Walter Stechele

Die Dissertation wurde am am 21.06.2023 bei der Technischen Universität
München eingereicht und durch die TUM School of Computation, Information and
Technology am 16.10.2023 angenommen.

iii

Abstract

To make autonomous driving feasible, it’s vital to have a system that can continue to
function even in the event of a failure. With no driver present to take over in such a
scenario, relying solely on fail-safe methods is insufficient. Fail-operational systems must
be in place to ensure critical functions remain safe and operational even if hardware fails.
However, including additional hardware components to ensure redundancy is an expen-
sive proposition. Combined with the increased resource demands of autonomous driving
functions, the hardware costs for automotive manufacturers would rise substantially.

Simultaneously, the automotive sector is facing growing customer demands and expec-
tations. Customers will require the most up-to-date functionality through over-the-air
software updates, and as a result, automotive software systems will become highly cus-
tomizable. Automotive manufacturers will need to integrate an increasing number of
applications into their Electrical/Electronic (E/E) architecture, and each system will be
made up of a distinct and personalized configuration.

To handle the rising complexity of software, upcoming software will be designed with a
modular approach, as opposed to the current monolithic Electronic Control Unit (ECU)
software. Modular software design enables the dynamic movement of software compo-
nents between ECUs cores, such as activating and deactivating components on different
ECUs cores. This perspective provides new possibilities for implementing fail-operational
systems. A system-wide software platform can manage redundancy and fail-operational
behavior at run-time.

In our system model, software applications consist of interconnected tasks executed
on ECU cores and messages sent over Ethernet links to enable communication between
tasks. We consider failure scenarios where ECUs are assumed to be faulty, including the
loss of any tasks mapped to the corresponding ECU. To keep safety-critical applications
operational in such a scenario, redundancy is required.

Instead of using active redundancy, where a task replica is actively executed, or con-
ventional passive redundancy, where a backup task instance is activated on failure, we
propose to use graceful degradation. With traditional passive redundancy, the system
has to be oversized to make sufficient resources available once a passive task is started.
With graceful degradation, system resources are dynamically repurposed at run-time to
ensure adequate resources are available for critical applications. Resources allocated by
non-critical applications are a backup guarantee for critical applications. As a result,
non-critical functionality might have to be shut down in a failure scenario to keep critical
functionality operational. Therefore, by applying graceful degradation, fail-operational
requirements can be fulfilled while lowering the hardware demand at the cost of risking
the loss of non-critical functionality in a failure scenario.

v

Abstract

State-of-the-art design-time methods are not applicable to achieve this functionality as
the system needs to react and recover dynamically on failures and events. Furthermore,
software functionality might change on demand, so the system has to respond flexibly
to changes. To cope with the high amount of such possible configurations, we need to
make the system self-aware, which can be enabled by applying agent-based strategies.
In an agent-based system, the system’s control is decentralized, which has the advantage
that there is no single point of failure and thus makes the control itself fail-operational
when adequately designed. In dynamic mapping, an agent is responsible for finding the
mapping of a single application or task at run-time. However, the main challenge when
designing such a system is to achieve predictable behavior and to find bounds within
which a safe and dynamic operation is possible.
For this purpose, this thesis proposes an agent-based fail-operational approach uti-

lizing graceful degradation. It addresses challenges in timing analysis, checkpointing,
and reliability analysis to achieve a more predictable behavior. Our contributions are
outlined in the following.
First, we introduce and analyze the effectiveness of an agent-based approach that finds

application mappings at run-time, ensures the fail-operational behavior of safety-critical
applications by using graceful degradation, and reconfigures itself after ECU failures.
Our results indicate that the number of tolerated ECU losses until a safety-critical appli-
cation fails can be significantly improved without adding redundant hardware resources.
We then present a performance analysis that can analyze timing constraints of fail-
operational distributed applications using graceful degradation. Our method can verify
that even during a critical ECU failure, a backup solution that adheres to end-to-end
timing constraints is always available. Furthermore, we present a dynamic decentralized
mapping procedure that performs constraint solving at run-time using our analytical ap-
proach combined with a backtracking algorithm. In our experimental setup, our graceful
degradation approach can fit about double the number of critical applications on the
same architecture compared to an active redundancy approach.
While our approach ensures a behavior within timing constraints before and after a

failure, an application might produce no output for a specific time during a failover.
Here, it also has to be ensured that a failover within the Fault Tolerant Time Interval
(FTTI) can be guaranteed. For this purpose, we analyze the impact of failover on the
timing behavior of distributed fail-operational applications and derive an upper bound
for the worst-case failover time. Instead of performing time-consuming experiments,
our formal analysis can be used to evaluate whether a mapping would meet the failover
timing constraints or not such that an evaluation at run-time is possible. We support our
formal analysis by conducting experiments on a hardware platform using a distributed
fail-operational neural network. Our randomly generated worst-case results are as close
as 6.0% below our analytically derived exact bound.
Another major challenge is that most applications have a state that might get lost

during a failure such that a recovery might be impossible. Thus, in a system with passive
redundancy, periodic checkpointing with rollback recovery can send the state to another
ECU, where the application can be restarted after a failure. Here, the challenge is to find
a suitable checkpointing period such that network and processing overhead caused by

vi

sending the checkpoint is minimized but to ensure that application-specific constraints
are still met. We present an approach to derive the maximum checkpointing period
analytically by giving an upper bound on the number of missed computational steps
due to failure effects. As the implications of the state data age are application-specific,
we use a Simultaneous Mapping and Localization (SLAM) algorithm, an application
commonly used in autonomous systems such as robots or self-driving cars, as a real-
world example to determine the effects on the quality of the application. The worst-case
results of our case study using a SLAM application are consistent with our analytically
derived exact bound. Overall, using our approach, a maximum achievable checkpointing
period can be determined to reduce network overhead to achieve a cost-efficient and safe
behavior of autonomous systems.
Last, we investigate the impact of graceful degradation on the reliability of critical and

non-critical applications. As resources are shifted dynamically, non-critical applications
not directly affected by an ECU failure might get shut down to free resources for restart-
ing critical tasks. Thus, with a graceful degradation approach, the reliability of critical
applications is increased at the cost of a decrease in the reliability of non-critical appli-
cations. To design such a system efficiently, it is essential to quantify and understand
the effect of a graceful degradation approach on critical and non-critical applications to
increase predictability. Therefore, we present an in-depth trade-off analysis of a graceful
degradation approach where we analyze the resource consumption and the impact of
graceful degradation on the reliability of critical and non-critical applications.
Overall, our fail-operational approach enables a dynamic and safe behavior of automo-

tive applications. Our analytical approaches help developers to create more cost-efficient
and predictable systems. By following our methodologies, developers can efficiently an-
alyze the impact of graceful degradation and meet a trade-off according to their system
requirements. Our findings confirm that using graceful degradation can tremendously re-
duce cost compared to conventional redundancy approaches with no negative impact on
the reliability of critical applications if a reliability reduction of non-critical applications
is acceptable.

vii

Deutsche Kurzfassung (German
Abstract)

Um autonomes Fahren zu ermöglichen, ist die Gewährleistung eines fail-operational Ver-
haltens der Software und E/E-Architektur entscheidend. Da beim autonomen Fahren
ein Fahrer als Rückfallebene in einem Ausfallszenario fehlt, reicht es nicht aus fail-
safe Ansätze zu verwenden. Fail-operational Systeme müssen den sicheren Betrieb von
kritischen Anwendungen auch bei Hardwareausfällen gewährleisten. Eine einfache Er-
weiterung von Hardwarekomponenten zur Gewährleistung der Redundanz ist eine kost-
spielige Lösung. In Verbindung mit dem erhöhten Ressourcenbedarf der autonomen
Fahrfunktionen würden die Hardwarekosten für die Automobilhersteller daher erheblich
steigen.

Gleichzeitig sieht sich die Automobilindustrie mit einer zunehmenden Anzahl von
Kundenbedürfnissen und -anforderungen konfrontiert. In Zukunft wird Software im
Auto in hohem Maße anpassbar sein, und Kunden werden die neuesten Funktionen durch
Over-the-Air-Software-Updates verlangen. Daher müssen Automobilhersteller immer
mehr Anwendungen in ihre E/E-Architektur integrieren, wobei jedes System aus einer
einzigartigen und maßgeschneiderten Konfiguration bestehen wird.

Um die zunehmende Komplexität zu bewältigen, wird zukünftige Software im Gegen-
satz zur aktuellen monolithischen Steuergerätesoftware modular aufgebaut sein. Ein
modulares Softwaredesign ermöglicht die dynamische Verschiebung von Softwarekom-
ponenten zur Laufzeit, einschließlich der Aktivierung und Deaktivierung von Kompo-
nenten auf verschiedenen Steuergeräten. Diese Perspektive ermöglicht neue Strategien
zur Implementierung von fail-operational Systemen. Hier können Redundanz und fail-
operational Verhalten von einer systemweiten Softwareplattform zur Laufzeit verwaltet
werden.

In unserem Systemmodell bestehen Softwareanwendungen aus miteinander verbunde-
nen Tasks, die auf ECU-Kernen ausgeführt werden, und Nachrichten, die über Ethernet-
Verbindungen gesendet werden, um die Kommunikation zwischen den Tasks zu
ermöglichen. Wir betrachten Ausfallszenarien, bei denen ganze ECUs als fehlerhaft
angenommen werden, was den Verlust aller Tasks einschließt, die auf den entsprechen-
den ECU ausgeführt wurden. Um sicherheitskritische Anwendungen in einem solchen
Szenario betriebsbereit zu halten, ist Redundanz erforderlich.

Anstelle von aktiver Redundanz, bei der eine zweite Instanz einer Anwendung ak-
tiv ausgeführt wird, oder passiver Redundanz, bei der im Falle eines Ausfalls eine
Backup-Instanz aktiviert wird, schlagen wir die Verwendung von graceful degradation
vor. Bei der herkömmlichen passiven Redundanz muss das System so überdimensioniert

ix

Deutsche Kurzfassung (German Abstract)

sein, dass genügend Ressourcen verfügbar sind, sobald eine passive Backup-Instanz ges-
tartet wird. Bei graceful degradation hingegen werden die Systemressourcen während
der Laufzeit dynamisch umverteilt, um sicherzustellen, dass genügend Ressourcen für
kritische Anwendungen zur Verfügung stehen. Ressourcen, die von nicht-kritischen An-
wendungen genutzt werden, werden als Backup-Garantie für kritische Anwendungen
eingesetzt. Infolgedessen müssen nicht-kritische Anwendungen in einem Ausfallszenario
möglicherweise abgeschaltet werden, um kritische Funktionalität am Laufen zu halten.
Durch die Anwendung von graceful degradation können daher die Anforderungen an die
ein fail-operational Verhalten erfüllt werden, während der Hardwarebedarf gesenkt wird.
Jedoch entsteht dabei das Risiko in einem Ausfallszenario nicht-kritische Funktionalität
zu verlieren.
State-of-the-art Methoden, die zur Entwurfszeit laufen, sind nicht geeignet, um diese

Funktionalität zu erreichen, da das System dynamisch auf Ausfälle und Ereignisse
reagieren muss. Außerdem muss das System jederzeit an Kundenwünsche anpassbar
sein, so dass das System flexibel auf Änderungen reagieren muss. Um die große Anzahl
möglicher Konfigurationen zu bewältigen können agentenbasierte Strategien eingesetzt
werden die zur Laufzeit eine Lösung finden. In einem agentenbasierten System ist die
Steuerung des Systems dezentralisiert, was den zusätzlichen Vorteil hat, dass es keinen
Single-Point-of-Failure gibt und somit die Steuerung selbst fail-operational wird. Im
Bereich des dynamischen Mappings hat ein Agent die Aufgabe, das Mapping einer einzel-
nen Anwendung oder eines Tasks zur Laufzeit zu finden. Die größte Herausforderung
beim Entwurf eines solchen Systems besteht jedoch darin, ein berechenbares Verhal-
ten zu erreichen und Grenzen zu finden, innerhalb derer ein sicherer und dynamischer
Betrieb möglich ist.
Zu diesem Zweck schlagen wir in dieser Arbeit einen agentenbasierten fail-operational

Ansatz vor, der graceful degradation nutzt. Dabei befassen wir uns mit Herausforderun-
gen bei der Timing-Analyse, dem Checkpointing und der Zuverlässigkeitsanalyse, um
ein berechenbares Verhalten unseres Ansatzes zu erreichen. Im Folgenden stellen wer-
den unsere Beiträge dargestellt.
Zunächst stellen wir einen agentenbasierten Ansatz vor, der zur Laufzeit Anwendun-

gen Ressourcen zuordnet. Dieser Ansatz gewährleistet das fail-operational Verhalten
sicherheitskritischer Anwendungen durch die Nutzung von graceful degradation rekon-
figuriert das System nach ECU-Ausfällen neu indem notwendige Redundanz wieder-
hergestellt wird. Unsere Ergebnisse zeigen, dass die Anzahl der tolerierten ECU-Ausfälle
bis zum Ausfall einer sicherheitskritischen Anwendung erheblich erhöht werden kann,
ohne dass redundante Hardware-Ressourcen hinzugefügt werden müssen. Anschließend
erweitern wir den Ansatz und präsentieren eine Performanceanalyse, die in der Lage ist,
zeitliche Einschränkung von verteilten fail-operational Anwendungen in unserem Sys-
tem zu analysieren. Unsere Methode stellt sicher, dass selbst während eines kritischen
ECU-Ausfalls immer eine Backup-Lösung zur Verfügung steht, die die Ende-zu-Ende-
Zeitvorgaben einer Anwendung einhält. Darüber hinaus stellen wir ein dynamisches,
dezentrales Mapping-Verfahren vor, das mit Hilfe unseres analytischen Ansatzes zur
Laufzeit Lösungen innerhalb aller aufgestellten Bedingungen findet. In unserem Ver-
suchsaufbau kann unser graceful degradation Ansatz im Vergleich zu einem aktiven Re-

x

dundanzansatz etwa doppelt so viele kritische Anwendungen auf der gleichen Architektur
unterbringen.
Während dieser Ansatz ein Verhalten innerhalb der zeitlichen Grenzen vor und nach

einem Ausfall gewährleistet, könnte eine Anwendung während eines failovers für eine
bestimmt Zeit lang keinen output erzeugen. Hier muss sichergestellt werden, dass ein
failover innerhalb der FTTI garantiert werden kann. Zu diesem Zweck analysieren
wir die Auswirkungen eines failovers auf das zeitliche Verhalten von verteilten, ausfall-
sicheren Anwendungen und leiten eine obere Schranke für die worst-case-failover-Zeit
her. Anstatt zeitaufwändige Experimente durchzuführen, kann unsere formale Analyse
verwendet werden, um zu bewerten, ob ein Mapping die failover -Zeitbeschränkungen
erfüllt oder nicht, so dass sogar eine Bewertung zur Laufzeit möglich ist. In unseren
Experimenten stellen wir das fail-operational Verhalten eines verteilten, neuronalen Net-
zes sicher und untersuchen dieses um die worst-case-failover-Zeit zu ermitteln. Unsere
zufällig generierten Ergebnisse liegen bis zu 6, 0% unter unserer analytisch abgeleiteten
Grenze.
Eine weitere große Herausforderung besteht darin, dass die meisten Anwendungen

einen Status haben, der bei einem Ausfall verloren gehen kann, so dass eine Wieder-
herstellung dieses Zustands unmöglich wird. In einem System mit passiver Redun-
danz kann daher ein Ansatz mit periodischem checkpointing und rollback recovery ver-
wendet werden, um den Zustand an einen anderen ECU zu senden, wo die Anwen-
dung nach einem Ausfall neu gestartet werden kann. Hier besteht die Herausforderung
darin, eine geeignete checkpointing-Periode zu finden, so dass der durch das Senden
des checkpoints verursachte Netzwerk- und Verarbeitungsaufwand minimiert wird. Gle-
ichzeitig muss aber sichergestellt werden, dass anwendungsspezifische Anforderungen
weiterhin erfüllt werden. Wir stellen einen Ansatz vor, um die größtmögliche check-
pointing-Periode analytisch herzuleiten, indem wir eine Obergrenze für die Anzahl der
verpassten Berechnungsschritte aufgrund von Fehlern analysieren. Da die Auswirkungen
des Alters der Zustandsdaten anwendungsspezifisch sind, verwenden wir einen SLAM-
Algorithmus, eine Anwendung, die häufig in autonomen Systemen wie Robotern oder
selbstfahrenden Autos verwendet wird, als realistisches Beispiel, um die Auswirkun-
gen auf die Anwendung zu bestimmen. Die Ergebnisse unserer Fallstudie stimmen
mit unserer analytisch abgeleiteten Schranke überein. Insgesamt kann mit unserem
Ansatz eine größtmögliche checkpointing-Periode bestimmt werden, um den Netzwerk-
und Verarbeitungs-Overhead zu minimieren und so ein kosteneffizientes und sicheres
Verhalten von autonomen Systemen zu erreichen.
Abschließend untersuchen wir die Auswirkungen unseres graceful degradation Ansatzes

auf die Zuverlässigkeit von kritischen und nicht-kritischen Anwendungen. Da Ressourcen
dynamisch zur Laufzeit verschoben werden, können nicht-kritische Anwendungen, die
selber nicht direkt von einem Ausfall betroffen sind, trotzdem abgeschaltet werden, um
Ressourcen für den Neustart kritischer Anwendungen freizugeben. Mit unserem grace-
ful degradation Ansatz wird also die Zuverlässigkeit kritischer Anwendungen erhöht auf
Kosten einer niedrigeren Zuverlässigkeit nicht-kritischer Anwendungen . Um ein solches
System effizient zu gestalten, ist es wichtig, die Auswirkungen unseres graceful degrada-
tion Ansatzes auf kritische und nicht-kritische Anwendungen zu quantifizieren und zu

xi

Deutsche Kurzfassung (German Abstract)

verstehen, um die Berechenbarkeit unseres Systems zu erhöhen. Deshalb präsentieren
wir eine tiefgehende trade-off-Analyse unseres graceful degradation Ansatzes, in der wir
den Ressourcenverbrauch und die Auswirkungen von graceful degradation auf die Zu-
verlässigkeit von kritischen und nicht-kritischen Anwendungen analysieren.
Insgesamt ermöglicht unser agentenbasierter fail-operational Ansatz ein dynamisches

und sicheres Verhalten von Automobilanwendungen. Unsere analytischen Ansätze helfen
Entwicklern, kosteneffizientere und berechenbarere Systeme zu erstellen. Mithilfe un-
serer Methoden können Entwickler die Auswirkungen von graceful degradation effizient
analysieren und einen trade-off entsprechend ihrer Systemanforderungen finden. Unsere
Ergebnisse bestätigen, dass der Einsatz von graceful degradation die Kosten im Vergle-
ich zu konventionellen Redundanzansätzen enorm senken kann, ohne die Zuverlässigkeit
kritischer Anwendungen zu beeinträchtigen, wenn eine Verringerung der Zuverlässigkeit
unkritischer Anwendungen akzeptabel ist.

xii

Contents

Abstract v

Deutsche Kurzfassung (German Abstract) ix

Acronyms xv

Nomenclature xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Development in E/E Architectures and Software Platforms 3
1.3 Fail-Operational Systems . 8
1.4 Research Challenges . 12
1.5 Contributions . 13
1.6 List of Publications . 16
1.7 Outline . 17

2 Fail-Operational Automotive Architecture 19
2.1 Introduction . 19
2.2 System Model . 21
2.3 Agent-Based Graceful Degradation . 26
2.4 Predictable Timing Behavior . 40
2.5 Limitations . 70
2.6 Conclusion . 71

3 Worst-Case Failover Timing Analysis 73
3.1 Introduction . 73
3.2 System Model Adaptations . 74
3.3 Worst-Case Failover Timing Behavior . 75
3.4 Evaluation . 80
3.5 Conclusion . 82

4 Checkpointing Period Optimization 83
4.1 Introduction . 83
4.2 Related Work . 85
4.3 Checkpoint Optimization . 86
4.4 Case Study: SLAM Application . 89
4.5 Conclusion . 94

xiii

Contents

5 Reliability Analysis 95
5.1 Introduction . 95
5.2 Related Work . 96
5.3 Introduction to Reliability Analysis . 98
5.4 Formal Reliability Analysis of Gracefully Degrading Systems 99
5.5 Evaluation . 103
5.6 Conclusion . 111

6 Conclusions and Future Work 113
6.1 Conclusions . 113
6.2 Future Work . 115

Bibliography 117

xiv

Acronyms

2oo2DFS Two-out-of-Two Diagnosis Fail-Safe.

API Application Programming Interface.
ASIL Automotive Safety Integrity Level.
ATD Asynchronous Time Division.

BDD Binary Decision Diagram.

CAN Controller Area Network.
CDF Cumulative Distribution Function.
CPU Central Processing Unit.

DCC Duplex Control Computer.

E/E Electrical/Electronic.
ECC Error Correcting Code.
ECU Electronic Control Unit.
EKF Extended Kalman Filter.

FTTI Fault Tolerant Time Interval.

ISO International Organization for Standardization.

LIN Local Interconnect Network.

MCU Microcontroller Unit.
MPSoC Multiprocessor-System-on-a-Chip.
MTTF Mean Time to Failure.
MTU Maximum Transmission Unit.

NoC Network-on-Chip.

OTA Over-the-Air.

PFC Primary Flight Computer.

xv

Acronyms

RAM Random-Access Memory.
RR Round-Robin.

SLAM Simultaneous Mapping and Localization.
SoC System-on-a-Chip.
SOME/IP Scalable service-Oriented MiddlewarE over IP.

TCP Transmission Control Protocol.
TDM Time-Division Multiplexing.
TDMA Time-Division Multiple Access.
TMR Triple Modular Redundancy.

WCET Worst-Case Execution Time.

xvi

Nomenclature

AN Set of non-critical applications.
AS Set of safety-critical applications.
AN,f Set of of operational non-critical applications after

the f -th failover.
AS,f Set of of operational critical applications after the

f -th failover.
A Set of applications.
BW Bandwidth budget of a link.
B The search space of a passive task instance.
CLinter Worst-case communication interference latency.
CLtrans Worst-case transmission latency.
CL Worst-case communication latency.
C CPU budget of an ECU.
E Set of Electronic Control Units.
F Set of failed ECUs.
Ga Application instance graph.
L Set of Ethernet links.
MTTFAV G,active,nc Average MTTF of non-critical applications of the ac-

tive redundancy approach.
MTTFAV G,deg,nc Average MTTF of non-critical applications of our

graceful degradation approach.
MTTFAV G The averaged Mean Time to Failure.
MTTFreduction,nc Percental MTTF reduction of non-critical applica-

tions of our degradation approach compared to the
active redundancy approach.

MTTF Mean Time to Failure.
Ma Set of active message instances.
Mb Set of backup message instances.
Na Total amount of applications.
Nc Total amount of critical applications.
Nf Number of failed ECUs.
Nt Number of failed application executions.
NSI,ar Total number of service intervals on an ECU that are

both allocated and reserved.
NSI,a Total number of service intervals on an ECU that are

exclusively allocated.

xvii

Nomenclature

NSI,r Total number of service intervals on an ECU that are
exclusively reserved.

NSL,a Total number of slots on a link that are exclusively
allocated.

NSL,r Total number of slots on a link that are exclusively
reserved.

Ne,c Number of exploration of a critical applications.
Nl,wc Worst-case number of lost application executions.
Nm,wc Worst-case number of missed application executions.
Nnc Total amount of non-critical applications.
Nt,wc Worst-case number of failed application executions.
PL Path latency.
PS Share of critical applications in the total number of

applications.
Pa Application period.
Pc Checkpointing period.
Pc,d Default checkpointing period.
Pc,max Optimal checkpointing period.
P Probability of a proper working system.
QoSN Percentage of operational non-critical applications af-

ter a failure.
QoSS Percentage of operational safety-critical applications

after a failure.
Rsavings Percental resource savings of our degradation ap-

proach over the active redundancy approach.
R Reliability.
SIa Set of service intervals allocated for active task in-

stances.
SIr Set of service intervals reserved for passive task in-

stances.
SImax Maximum number of available service intervals.
SI Service interval.
SLa Set of slots allocated for active message instances.
SLr Set of slots reserved for backup messages.
SLmax Maximum number of available slots.
SL Scheduling slot.
SO Total amount of occupied slots in a system.
Se Slot capacity of an ECU.
St Total slot capacity of the system.
SO,active Total number of consumed slots of the active redun-

dancy approach.
SO,deg Total number of consumed slots of our degradation

approach.

xviii

Nomenclature

SO,no Total number of consumed slots when using no re-
dundancy.

SOH,active Slot overhead introduced by the active redundancy
approach.

SOH,deg Slot overhead introduced by our degradation ap-
proach.

TLexec Worst-case task execution latency without interfer-
ence.

TLinter Worst-case task interference latency.
TL Worst-case task latency.
Ta Set of active task instances.
Tc Set of critical task instances.
Tp Set of passive task instances.
T r
ta Set of tasks of critical applications where a passive

task instance has reserved a slot that is allocated by
the task instance ta.

T Set of all task instances.
W Worst-case execution time.
∆Otol Maximum tolerated output delay.
∆O Time difference between two application outputs.
α Binding function of active task instances.
β Binding function of passive task instances.
δ Application deadline.
λ Failure rate.
E Application graph edges.
Fwc Worst-case application failover time.
F Application failover time.
Li End-to-end application latency of a single execution

run i.
Lbc Best-case end-to-end application latency.
Lwc Worst-case end-to-end application latency.
V Application graph vertices.
ρ Routing function of active message instances.
σ Routing function of backup message instances.
τd Worst-case failure detection time.
τr Worst-case task recovery time.
τSI Service interval time.
τSL Slot interval time.
τoff Worst-case offering time.
τstep Time step size in the simulation.
τsub Worst-case subscription time.
τtrans Transmission time over one link.
τ A specified amount of time.
φ Structure function.

xix

Nomenclature

a Application.
bwalloc Amount of reserved bandwidth.
bw Bandwidth requirement of a message.
calloc Amount of allocated CPU resources.
c CPU consumption of a task.
dmax Maximum tolerable data age.
dwc Worst-case data age.
d Data age.
e Electronic Control Unit.
f Failed ECU.
g A boolean function.
l Ethernet link.
m A message instance.
pf Probability function.
p A preceding task instance in the application graph.
s Switch.
t A task instance.
u Function which translates a boolean variable z which

is dependent on the state of a task instance to a
boolean variable y which is dependent on the state
of an ECU.

x A boolean variable.
y Function which indicates the operational status of an

ECU.
z Function which indicates the operational status of a

task instance.
∆ē Average difference between the error before and after

a failure.
∆ewc Difference between the worst-case error after a failure

compared to the average error before the failure.

xx

1 Introduction

Contents

1.1 Motivation . 1

1.2 Development in E/E Architectures and Software Platforms 3

1.2.1 E/E Architectures . 4

1.2.2 Software Platform . 5

1.2.3 Consequences of E/E and Software Changes 6

1.2.4 New Possibilites for Fail-Operational Strategies 7

1.3 Fail-Operational Systems . 8

1.3.1 Fail-Operational Concepts . 9

1.3.2 Graceful Degradation . 10

1.4 Research Challenges . 12

1.5 Contributions . 13

1.5.1 Fail-Operational Automotive Architecture 13

1.5.2 Worst-Case Failover Timing Analysis 15

1.5.3 Checkpointing Period Optimization 15

1.5.4 Reliability Analysis . 15

1.6 List of Publications . 16

1.7 Outline . 17

1.1 Motivation

With the advent of autonomous driving, safety requirements for automotive systems are
strongly increasing. In the past, a fail-safe behavior was often sufficient where automotive
functions were brought into a safe state or shut down completely as a driver was always
available as a backup solution to steer the car. Without any driver, automotive systems
must be able to mitigate any hardware or software failures and ensure a fail-operational
behavior. At the same time, automotive manufacturers are required to offer over-the-air
software updates so that customers get the latest functionality and can customize their
cars. Automotive companies have to integrate more and more applications into their
E/E architecture while each system will have a unique and customized configuration.
These drivers lead to major changes in automotive hardware and software architectures.

1

1 Introduction

In the past, automotive vendors added a new ECU for each new functionality in
the vehicle with software that was tightly coupled to the hardware. Today, cars often
consist of more than 100 ECUs to control functions in domains such as infotainment,
chassis, powertrain, or comfort [1]. Now the automotive industry is moving towards
zonal or more centralized architectures to cope with software development’s complexity
and reduce wiring and hardware components.
While, initially, the development of the centralization of hardware might appear con-

tradictory to a decentralized software approach, the changes to the software architecture
enable new decentralized fail-operational strategies. In the past, software applications
were hardwired to a unique ECU in the system. Now, the centralization and homogeniza-
tion of ECUs with a common software platform allows software execution on different
ECUs. Our system model assumes that the architecture consists of a few powerful ECUs.
New software platforms and virtualization techniques decouple hardware and software
to allow a separate development. Furthermore, they enable a more dynamic behav-
ior and the installment of software updates and new applications over-the-air with the
help of service-oriented architectures and middleware solutions. Although this requires
changes on both software and hardware levels, it also presents new opportunities for
optimization.
The trend to centralized E/E architectures and more modular software design leads to

more cross-domain systems with applications from different domains and different real-
time and safety requirements running on the same hardware [1]. Here, composability is
required to isolate software from each other to meet timing and safety-related constraints.
Instead of finding a new deployment for all applications after each software update or
redesigning the system manually, an automated isolated examination of each application
is required to enable customized solutions.
Furthermore, a software platform has to enable a safe and dynamic fail-operational be-

havior by design. A system-wide, reproducible fail-operational approach could reduce the
effort spent on validation and integration. One of the main challenges here is that a fail-
operational behavior requires redundancy. With the already increasing computational
demand by software, replicating the expensive hardware multiple times would increase
hardware costs significantly. In other industries with fail-operational requirements such
as aviation, static redundancy with triple-triple redundancy is used [2]. However, the
automotive industry is much more cost-sensitive and requires frequent software updates
with unique configurations. Therefore, state-of-the-art static redundancy approaches
can not fulfill the requirements for a cost-sensitive and adaptable solution. Here, new
approaches are required to achieve a dynamic, safe, and cost-efficient behavior.
A modular software design allows the dynamic shifting of software components at

run-time, including the activation and deactivation of components on different ECUs.
Combined with the possibility of running safety-critical and non-critical applications
together on the same hardware platform, this perspective opens new strategies to im-
plement fail-operational systems. Here, a system-wide software platform can manage
redundancy and fail-operational behavior at run-time. Hardware costs can be reduced
by applying graceful degradation and prioritizing safety-critical applications in a fail-
ure scenario. For example, if a critical application for autonomous driving is affected

2

1.2 Development in E/E Architectures and Software Platforms

directly by an ECU failure, it could be restarted on another ECU while shutting down
non-critical functionality from the infotainment domain to free resources. This approach
has the advantage that resources already used in the car are repurposed instead of with-
holding resources specifically for this scenario that would be otherwise unused.

State-of-the-art design-time methods are not applicable to achieve this functionality as
the system needs to react and recover dynamically on failures and events. Furthermore,
software functionality might change on demand, so the system has to react flexibly to
changes. To cope with the high amount of such possible configurations, we need to make
the system self-aware, which can be enabled by applying agent-based strategies. In an
agent-based system, the system’s control is decentralized, which has the advantage that
there is no single point of failure and thus makes the control itself fail-operational when
adequately designed. In the field of dynamic mapping, an agent has the responsibility
to find the mapping of a single application or task at run-time. However, the main
challenge when designing such a system is to achieve predictable behavior and to find
bounds within which a safe and dynamic operation is possible.

This thesis aims to investigate the feasibility of implementing graceful degradation in
automotive systems with decentralized and dynamic control, intending to achieve sig-
nificant resource savings and higher flexibility to react on failures compared to static
redundancy approaches while maintaining the same reliability for critical applications.
We present an approach to dynamically achieve a graceful degrading system behavior us-
ing an agent-based approach and introduce methodologies to achieve a more predictable
system design and to analyze non-functional properties with a focus on timing behavior,
state recovery and reliability analysis.

In the following, we give an overview of recent and future development in E/E archi-
tectures and software platforms (Section 1.2). Afterward, we introduce fail-operational
systems and the concept of graceful degradation (Section 1.3). Then, we discuss the re-
search challenges that arise when applying graceful degradation to automotive systems
(Section 1.4) and present our contributions to address these challenges (Section 1.5).
Finally, we list our publications (Section 1.6) and the remaining outline of the thesis
(Section 1.7).

1.2 Development in E/E Architectures and Software
Platforms

The automotive industry sees itself confronted with increasing customer needs and re-
quirements, forcing a change in E/E and software platforms. In the near future, software
systems will be highly customizable and customers will demand the latest functionality
by over-the-air software updates. To cope with complexity, automotive companies in-
tegrate applications on a few powerful ECUs. Fast and stable connections over mobile
networks are required to achieve increased connectivity. In the distant future, mobile
connections might even be used to run automotive services in the cloud. The interest
in over-the-air software updates is also driven by automotive vendors which are exper-

3

1 Introduction

imenting with new business models, where functions are sold via subscription or where
software updates can be purchased after buying a car.
With the advent of autonomous driving, automotive companies also see themselves

confronted with highly increased computational demands by applications. More and
more data produced by different types of sensors require high-speed in-car connections.
Additionally, autonomous systems have to be fail-operational to fulfill increased safety
requirements. This results in even higher hardware costs as redundancy is required to
achieve a safe fail-operational behavior.
As a consequence and to cope with increasing costs and complexity, applications are

being integrated into more powerful multicore control units (Subsection 1.2.1). This
leads to a consolidation of existing ECUs and a more centralized E/E architecture [1].
New software platforms decouple hardware and software, allowing a more dynamic sys-
tem behavior to enable software updates (Subsection 1.2.2).
These changes lead to many new challenges for software’s safe and dynamic inte-

gration in a mixed-critical system (Subsection 1.2.3). As automotive companies need
to reduce costs, fail-operational architectures must be as resource-efficient as possible.
Here, the changes on E/E and software platforms also open new strategies to achieve a
fail-operational behavior on the system level (Subsection 1.2.4).

1.2.1 E/E Architectures

In the past, automotive vendors often added a new ECU for each new functionality in the
vehicle. The BMW 7 series in 2007 contained around 270 functions, which were deployed
over 67 embedded platforms [3]. This leads to a heterogeneous mixture of many different
ECUs and bus systems [4]. Now, cars often consist of more than 100 ECUs to control
functions in the domains such as infotainment, chassis, powertrain or comfort [1]. Figure
1.1 depicts the current and future development of automotive E/E architectures. To-
day, domain-specific functions are integrated into domain controllers (Figure 1.2). The
domain controllers are connected via high-bandwidth Ethernet over a central gateway,
which allows increased routing complexity and throughput. Furthermore, the controllers
are connected via network systems such as Controller Area Network (CAN), Local In-
terconnect Network (LIN), FlexRay, and Ethernet to specialized ECUs, controllers and
actuators. The central gateway is the only connection for external communication and
enables secure over-the-air software updates.
This trend of centralization and integration is believed to continue. The automotive

industry is aiming towards zonal or more centralized architectures for the future. Some
vendors such as Tesla prefer a centralized architecture, where most functions are executed
on a single ECU such as the Full Self-Driving Computer of Tesla [6]. Bosch is developing
a vehicle-centralized, zone-oriented E/E architecture with a few centralized, powerful
vehicle computers integrating cross-domain functionality similar as shown in Figure 1.3
[5, 7]. These vehicle computers are connected to actuators and sensors via zone ECUs.
This reduces the required wiring and weight in vehicles but also system complexity.
Centralized architectures as propositioned by Bosch have been presented in research

[8]. The RACE research project developed an architecture with a central computer

4

1.2 Development in E/E Architectures and Software Platforms

Distributed E/E
Architecture

Modular

Integration

Vehicle Computer

Centralization

Domain Fusion

Vehicle Cloud Computing

Each function has its ECU

Vehicle functions
in the cloud

Functional Integration

Central Domain ECUs

Vehicle Computer and pot.
Zone Oriented Architecture

Central Cross Domain ECUs(Cross) Domain
centralized E/E

architecture

Vehicle centralized E/E
architecture

To
m

or
ro

w
To

da
y

Fu
tu

re

Figure 1.1: Roadmap for the development of E/E architectures. [5]

platform [9]. The platform comprises five Duplex Control Computers (DCCs) connected
via an Ethernet network ring. Each DCC has two ECUs which can be used for executing
applications redundantly or in parallel.

Figure 1.1 presents the development of automotive E/E architectures and shows the
trend moving from distributed systems consisting of ECUs with single functionalities to
more centralized architectures. In the future, more and more in-vehicle functionality is
expected to be offloaded to the cloud. We presented a hybrid cloud architecture using
onboard and cloud resources in [10]. The advantages of the offloading process could be
reduced onboard energy consumption and more computational power. Yet there are still
many open challenges regarding strict real-time requirements and network availability
that have to be met by future mobile networks.

1.2.2 Software Platform

The continuous integration on fewer controllers also requires new software platforms that
support new functionalities such as Over-the-Air (OTA) updates. In the past, functional-
ity was tightly coupled with the hardware. Once the vehicle was built, changing software
was difficult, and introducing new features impossible.

Today abstraction layers and virtualization techniques allow a decoupling of software
and hardware at least on domain and central controllers [11]. The AUTOSAR Adaptive
Platform, a standard based on POSIX operating systems, allows a more flexible E/E
architecture [12, 13]. Adaptive ECUs allow an extension of applications and adds new
software functionality. Furthermore, this allows us to develop applications independently

5

1 Introduction

Advanced Gateways
Increased routing and
communication throughput

Communication Network
Higher bandwidth, felxible
communication mechanism
(GBit Ethernet)

Integration Platform
Integration platform for
superposed software components
(Hypervisor)

Connected Car
Open E/E architecture with

external communication, secure
connection and SW download.

(FOTA/SOTA)

Domain ECUs
Powerful controller as

integration platform for cross
domain software components,

high performance platform
(non-automotive µP)

Embedded System ECUs
Focusing on deep

system specific functionalities

Figure 1.2: Domain-centralized E/E architecture consisting of a few domain ECUs which are
interconnected via GBit Ethernet to a central gateway. [5]

from each other and without determining on which hardware the software will run [14].
Next to hardware abstraction a software platform typically handles communication,
persistent storage of data, and encryption amongst others, and offers various services to
user applications (Figure 1.4).

To allow software updates, automotive companies are also moving toward service-
oriented architectures. Scalable service-Oriented MiddlewarE over IP (SOME/IP) is a
middleware solution described in multiple AUTOSAR standards [15]. This middleware
includes a decentralized service discovery to dynamically find services in the system and
a publish/subscribe scheme to publish and subscribe to events at run-time. Furthemore,
it takes care of serialization and allows remote procedure calls and messaging.

1.2.3 Consequences of E/E and Software Changes

The trend to centralized E/E architectures and more modular software design leads to
more heterogeneous systems [1]. Applications from different domains, with different
real-time requirements and safety criticalities, will run on the same ECUs [16]. Here,
composability is required to enable regular software updates and reduce the integration
complexity. Instead of redesigning the entire software system and the application map-
pings on the hardware platform after each update, the validation of the system has to
be done on board. Therefore, finding a mapping and ensuring requirements are isolated
from other applications would be beneficial to allow a simple and fast integration. As it
is crucial to fulfill timing and safety requirements, applications have to be isolated from
each other to prevent interference and to enable a separate analysis [17]. A software
platform has to enable portability and composability by design to allow safe and dy-
namic integration of safety-critical and non-critical applications [1]. Temporal isolation
allows an independent timing analysis such that timing constraints can be verified in-

6

1.2 Development in E/E Architectures and Software Platforms

Zone Front Right

Zone Front Left

Zone Door FR Zone Door RR

Zone Door FL Zone Door RL

Zone Rear Left

Zone Rear Right

Zo
ne

 F
ro

nt

Zo
ne

 R
ea

r

Zone Roof Front

Zone Driver

Zone Front Passenger
Zone Rear Roof

Zone Rear Passenger
Coompartment

Cross domain Zone ECUs as
zone specific I/O masters

which act as a neutral
network for central ECUs

Cross Zone Communication
High bandwidth communication

with Ethernet backbone

Vehicle Computer/Central ECUs as
central calculation units (brains) and

information provider

Figure 1.3: Vehicle centralized E/E architecture consisting of central vehicle computers and
cross domain zone ECUs. [5]

dependent from other application execution times. Overall, isolation and composability
reduce design complexity, allowing faster integration and avoiding critical failures.
The trend towards autonomous driving increases safety requirements enormously. As

the system has to cope with software and hardware failures independently without hu-
man interaction, it must be designed fail-operationally. Subsection 1.3 will further detail
the development from fail-safe to fail-operational approaches. As redundancy is required
to enable a fail-operational behavior, hardware costs will increase tremendously. Finding
a resource-efficient solution to reduce costs could be a pivotal factor in remaining com-
petitive for automotive vendors. Furthermore, validation of safety requirements requires
a lot of expertise and effort. A system-wide, reproducible fail-operational approach could
reduce the effort spent on validation and integration.

1.2.4 New Possibilites for Fail-Operational Strategies

While the trend to a more centralized E/E architecture might appear contradictory to a
decentralized software approach at first glance, future software platforms will decouple
hardware and applications further and enable a more dynamic behavior. An entirely
centralized solution always bears the risk of a single point of failure. A modular soft-
ware design will allow dynamic shifting of software components at run-time, including
activation and deactivation of components on different ECUs. This perspective opens
new strategies to enable fail-operational behavior. We believe that future software plat-
forms have to offer fail-operational capabilities and be able to automatically distribute
safety-critical applications on the system with appropriate redundancy and failure detec-
tion measures. Furthermore, this platform must be able to cope with frequent software
updates, and feature upgrades, and dynamically react to events such as software or
hardware failures. Here, isolation techniques and composability are essential to reduce

7

1 Introduction

Time Synchronization Diagnostics State ManagementRESTful

Persistency Platform Health
Management Log & Trace Network Management

Execution Management Identity Access
Management Cryptography

Update and
Configuration
Management

Core Types

Communication
Management

User Application

Operating System Interface

(Virtual) Machine / Container / Hardware

User Application

Communication
Management

RESTful Time Synchronization Diagnostics

Log & TracePlatform Health
ManagementPersistency

Core Types Execution Management Identity Access
Management

Communication
Management

RESTful Time Synchronization Diagnostics

Log & TracePlatform Health
ManagementPersistency

Core Types

Figure 1.4: Depiction of the AUTOSAR Adaptive Platform and its functional clusters. [12]

design complexity, allow faster integration times, and avoid critical failures. Addition-
ally, a system-wide, reproducible fail-operational approach could reduce the effort spent
on validation and integration.

1.3 Fail-Operational Systems

Automotive systems always had high safety requirements. Most safety-critical applica-
tions in cars today show a fail-safe behavior. In a fail-safe solution, the system would
detect a failure and switch it to a safe state where the functionality is often shut down
to avoid interference with other applications [18]. This behavior is sufficient for support
functions such as steering assistance, where a driver can maintain control. By contrast, a
system is fail-operational if it can continue operation without changing its performance
or objectives even if a single failure occurs [19]. As more and more functionality is
being automated, the demand for fail-operational requirements increases as failures are
more likely to cause hazardous situations [20] (Figure 1.5). To achieve a fail-operational
behavior, redundancy is required. In the following, we present well-known redundancy
concepts to achieve a fail-operational behavior on ECU and Microcontroller Unit (MCU)
level (Subsection 1.3.1).
As these methods significantly increase hardware costs, finding more resource-efficient

solutions is essential. Furthermore, validation of safety requirements requires a lot of ex-
pertise and effort. A system-wide, reproducible fail-operational approach could reduce
the effort spent on validation and integration. While these concepts are often imple-
mented directly in hardware they could also be entirely controlled and implemented by
software. In the work at hand, we present an agent-based approach, which dynamically
applies redundancy on a software level using graceful degradation. However, a software-
based fail-operational approach always requires hardware support to detect failures,

8

1.3 Fail-Operational Systems

Driver
Only Assisted Partial

autom.

Condi-
tional

autom.

High
autom.

Full
autom.

Fail-safe Fail-operational

Figure 1.5: Development of fail-operational requirements with an increasing level of automa-
tion.

monitor the system, or use additional redundancy on the hardware level. Next to re-
dundancy concepts, hardware systems provide essential functionality to detect, monitor,
and cope with failures or faults. Typically, this includes a segregation of applications
by memory and access permission or a control of storage elements protected with Er-
ror Correcting Code (ECC) [21]. Semiconductor companies such as Infineon develop
microcontrollers such as the AURIX product family offering several safety and security
features specifically addressed to automotive safety requirements [22].

1.3.1 Fail-Operational Concepts

In the following, we present the two widely known fail-operational concepts Triple Mod-
ular Redundancy (TMR) and Two-out-of-Two Diagnosis Fail-Safe system. These are
general concepts to achieve a fail-operational behavior which could be implemented in
hardware, software, or in a composition of both.

1.3.1.1 Triple Modular Redundancy

TMR is a well-known redundancy technique to achieve a fail-operational behavior (Fig-
ure 1.6) [23]. The inputs are forwarded to three redundant computational units. A
majority voter compares and validates the results. In case one result differs, the other
results overrule the faulty result. This concept can be implemented in software or hard-
ware and the units can be implemented using diverse redundancy to reduce common-
cause failures. Separated power supplies eliminate the risk of shutting down all units in
case of a power outage.

As an example, TMR has been applied to the fly-by-wire system of the Boeing 777
consisting of the computing system, power systems, and all communication paths (Fig-
ure 1.7) [2]. The triple redundant Primary Flight Computers (PFCs) each contains
triple redundant components such as power supplies, microprocessors, and interfaces.
As the costs of a plane are four to five orders of magnitude higher than the costs of
a car, the additional hardware costs are only a minor factor of the total costs. The
automotive industry differs as it is much more cost-sensitive regarding hardware compo-
nents. Therefore, new solutions are required to reduce the need for additional hardware
components.

9

1 Introduction

Unit 1

Unit 2

Unit 3

Is
ol

at
io

n M
aj

or
ity

Vo
te

r 1
M

aj
or

ity
Vo

te
r 2

Supply Unit 1

Supply Unit 2

Supply Unit 3

Inputs

Supply Voter 1

Supply Voter 2

Figure 1.6: Architecture of a TMR system, with three identical modules providing redundant
computation and voting logic for increased reliability. [21]

1.3.1.2 Two-out-of-Two Diagnosis Fail-Safe System

A 2oo2DFS system consists of two subsystems which each have error detection capabil-
ities and which can switch into a fail-safe mode (Figure 1.8) [21]. The systems monitor
each other so that only correct output is being forwarded in a failure scenario. The two
subsystems usually have independent power supply and communication interfaces. In a
symmetric setup, the subsystems are identical, so the full functionality is preserved in
a failure scenario. In an asymmetric setup, the second controller could be less power-
ful and only execute safety-critical functionality or a degraded version of safety-critical
functions. For example, a fail-safe behavior within each subsystem can be achieved with
a lock-step architecture within an MCU.

1.3.2 Graceful Degradation

Graceful Degradation is the ability of a system to maintain functionality when parts of
the system malfunction [24]. In a failure scenario, a minimum of functionality is guar-
anteed to be operational. This implies that some functionality is prioritized by design
to maintain operation over other functionality. In literature functional degradation is
sometimes referred to as switching to a function with only the most essential features.
In our context, we distinguish between safety-critical and non-critical applications and
examine graceful degradation on a system level instead of a functional level. A system
with applications of different criticality levels running on the same hardware platform is
known as a mixed-critical system in literature [16].
To guarantee a fail-operational behavior, the system’s survivability must be ensured

at a lower performability, and this can be achieved through graceful degradation [25, 26,
27]. Instead of only guaranteeing the execution of critical functionality, our approach
presented in this thesis also allows the active shutdown of non-critical applications to

10

1.3 Fail-Operational Systems

Power
Supply

Micro-
processor

ARINC 629
Interface

Micro-
processor

Micro-
processor

ARINC 629 Buses

Left PFC

Center PFC Right PFC

Lane 1 Lane 2 Lane 3

L
C
R

Figure 1.7: The three PFCs of the Boeing 777 with triple redundant computational
channels.[2]

Unit 1

Unit 2 Comparison
disable

Unit 1

Unit 2

Comparison
disable

Isolated
Comm.

Supply 1

Supply 2

Redundant
Inputs

Figure 1.8: The architecture of a Two-out-of-Two Diagnosis Fail-Safe (2oo2DFS) system ac-
cording to [21].

save critical applications if sufficient resources are unavailable. If a critical application
for autonomous driving is affected directly by an ECU failure it could be restarted
on another ECU while shutting down non-critical functionality from the infotainment
domain to free resources. This approach has the advantage that resources already used in
the car are repurposed instead of withholding resources that would be otherwise unused
for this scenario.

Instead of using active redundancy, where a task replica is actively executed, or con-
ventional passive redundancy, where a backup task instance is activated on failure, we
propose to use graceful degradation. With conventional passive redundancy, the system
has to be oversized to make sufficient resources available once a passive task is started.
With graceful degradation, system resources are dynamically repurposed at run-time to
ensure sufficient resources are available for critical applications. Resources allocated by
non-critical applications are used as a backup guarantee for critical applications. As
a result, non-critical functionality might have to be shut down in a failure scenario to
keep critical functionality operational. Therefore, by applying graceful degradation, fail-

11

1 Introduction

operational requirements can be fulfilled while lowering the hardware demand at the cost
of risking the loss of non-critical functionality in a failure scenario. However, to apply
such an approach many research challenges have to be solved which we address in the
next section.

1.4 Research Challenges

The trend toward a more homogeneous hardware and software architecture opens excit-
ing possibilities for exploring new fail-operational strategies. In this context, the main
research goal of this thesis is to explore a more cost-efficient and dynamic fail-operational
solution such that the system can react more flexibly compared to static redundancy ap-
proaches. As anticipated, we explore graceful degradation as a redundancy approach to
achieve these goals. This raises many research challenges, which we list in the following:

• In a safety-critical automotive system, unpredictable system behavior can not be
tolerated. Therefore, a gracefully degrading system has to be designed in a way
such that the degradation outcome for any failure can be predicted and that suf-
ficient resources are available for re-starting critical applications. Furthermore,
timing constraints must be respected even after the system switches to a new con-
figuration. Correspondingly, the gracefully degrading system has to be designed
so that the timing behavior can be analyzed. The configurations have to be found
and pre-validated before any failure occurs. There is not enough time to find a new
configuration and distribute the tasks after a failure. Here, the question arises of
how new configurations can be found at run-time using only in-car resources such
that the system can be reconfigured after a failure or when the system is updated.
The corresponding control of resources and the mechanism to find new mappings
has to be fail-operational by design.

• After a failure, the system has to switch to a new configuration and passive task
instances must be re-started first. Here, the question arises if a gracefully degrading
system could perform the failover and degradation process quickly enough to reach
a new system configuration within the FTTI. New methodologies are required to
evaluate this failover behavior.

• Many tasks in the automotive domain have a state that would be lost in a failure
scenario. If redundant tasks are not actively executed, a solution must ensure they
receive this state on time so the system can operate again within the FTTI.

• Last, the question arises of how a graceful degradation approach can be prop-
erly evaluated and compared to existing approaches. It is to be expected that
graceful degradation negatively impacts non-critical applications. Here, a solution
is required to quantitatively evaluate the impact of graceful degradation on the
reliability and resource consumption of critical and non-critical applications.

12

1.5 Contributions

1.5 Contributions

To address these research challenges we make the following contributions, which are
described in further detail in the following subsections, and reference our associated
publications connected to this thesis:

• We contribute our fail-operational architecture in Chapter 2. Here, we present our
graceful degradation approach based on our new resource allocation and reserva-
tion system. We introduce an agent-based backtracking approach to set up our
gracefully degrading system and find suitable resource allocations and reservations
at run-time. Utilizing the composable architecture of our fail-operational system,
we present a performance analysis for gracefully degrading systems that can verify
that even during a critical ECU failure, a backup solution is always available that
adheres to end-to-end timing constraints. [28, 29]

• To guarantee that the system can switch to a pre-validated configuration during
a failover within the FTTI, we present our worst-case failover timing analysis in
Chapter 3. [30]

• To save the state of a task we present our approach to periodic checkpointing with
rollback recovery in Chapter 4. Here, the state of a task is periodically sent to
another ECU so that the task can be restarted after a failure. Our approach allows
us to derive a maximum achievable checkpointing period analytically to achieve a
cost-efficient and safe behavior of automotive systems. [31]

• We investigate the impact of graceful degradation on the reliability of critical and
non-critical applications in Chapter 5. Here, we also evaluate our graceful degra-
dation approach based on resource costs and compare it to an active redundancy
approach. [32]

1.5.1 Fail-Operational Automotive Architecture

The contributions to our fail-operational automotive architecture can be divided into
three topics graceful degradation, agent-based decentralized control, and predictable
timing behavior. These are presented in more detail in the following three subsections.

1.5.1.1 Graceful Degradation

In this thesis we present a graceful degradation approach based on a new resource allo-
cation and reservation system [28, 29]. Here, individual resources can be allocated and
reserved at the same time. A reservation indicates that a resource might be used by a
critical application after a failover leading to the resource withdrawal from a non-critical
application. This design of our graceful degradation approach allows a predictable out-
come of the degradation process for any failure in the system. Furthermore, it enables
an isolated timing analysis of applications and allows a quick failover process. For the

13

1 Introduction

allocation and reservation of resources, we present three new strategies [29]. The Ran-
dom strategy randomly allocates and reserves resource slots without considering existing
allocations and reservations. The FreeFirst strategies aim at allocating and reserving
resource slots that are not allocated or reserved yet. By contrast, the FreeLast strate-
gies aim at allocating and reserving resource slots first which are already allocated or
reserved leading to increased degradation effects. Our graceful degradation approach
is evaluated based on resource savings and the impact on reliability. Furthermore, we
compare it to active redundancy to conclude its efficiency.

1.5.1.2 Agent-Based Decentralized Control

To find application mappings at run-time we present an agent-based mapping approach
and a decentralized control of resources [28, 29]. Here, resources are managed in a de-
centralized way by each component. This approach and the decentralized control of
resources enable a dynamic and adaptable behavior and a fail-operational control by
eliminating any single point of failure. Our agent-based mapping approach ensures that
active and redundant passive task instances are created and resources are allocated and
reserved accordingly to ensure a gracefully degrading behavior. Our mapping approach
also takes non-functional properties such as a predictable timing behavior into account
[29]. A backtracking approach explores different mapping solutions. In a failure scenario,
the decentralized resource control ensures a quick failover to a new resource configura-
tion. Our approaches ensure a fail-operational behavior and a predictable gracefully
degrading outcome for any ECU failure. After an immediate and quick failover to pas-
sive task instances which ensures the continuous operation of all critical applications,
the redundancy has to be re-established to ensure a fail-operational behavior. A recon-
figuration can be performed during a safe halt as running tasks have to be migrated
to new ECUs. We evaluate our approaches based on an in-house developed simulation
environment.

1.5.1.3 Predictable Timing Behavior

It is an essential aspect of a fail-operational automotive architecture to guarantee a
predictable timing behavior. A composable architecture design has to be considered
during the design of the gracefully degrading system to allow an isolated timing analysis
of individual applications. In the field of predictable timing analysis, we present a
performance analysis that can analyze timing constraints of fail-operational distributed
applications using graceful degradation [29]. Our method can verify that even during
a critical ECU failure, a backup solution is always available that adheres to end-to-end
timing constraints. Embedded in our mapping approach timing constraints can be solved
a run-time. In our experimental setup, we compare the successful chance of finding a
valid mapping and resource impact with an active redundancy approach and analyze
the number of required exploration steps.

14

1.5 Contributions

1.5.2 Worst-Case Failover Timing Analysis

While our approach to predictable timing ensures a behavior within timing constraints
before and after a failure, an application might produce no output for a certain period
during a failover. Here, it also has to be ensured that a failover within the FTTI can be
guaranteed. For this purpose, we analyze the impact of failover on the timing behavior
of distributed fail-operational applications and derive an upper bound for the worst-
case failover time [30]. Instead of performing time-consuming experiments, our formal
analysis can be used to evaluate whether a mapping would meet the failover timing
constraints or not such that an evaluation at run-time is possible. We support our
formal analysis by conducting experiments on a hardware platform using a distributed
fail-operational neural network.

1.5.3 Checkpointing Period Optimization

Another major challenge is that most applications have a state that might get lost during
a failure such that a recovery might be impossible. Thus, in a system with passive
redundancy, periodic checkpointing with rollback recovery can send the state to another
ECU, where the application can be restarted after a failure. Here, the challenge is to find
a suitable checkpointing period such that network and processing overhead caused by
sending the checkpoint is minimized but to ensure that application-specific constraints
are still met. We present an approach to analytically derive the maximum checkpointing
period by giving an upper bound on the number of missed computational steps due to
failure effects [31]. As the implications of the state data age are application-specific, we
use a SLAM algorithm, an application commonly used in autonomous systems such as
robots or self-driving cars, as a real-world example to determine the effects on the quality
of the application. Overall, using our approach, a maximum achievable checkpointing
period can be determined to reduce network overhead to achieve a cost-efficient and safe
behavior of autonomous systems.

1.5.4 Reliability Analysis

Last, we investigate the impact of graceful degradation on the reliability of critical
and non-critical applications [32]. As resources are shifted dynamically, non-critical
applications not directly affected by an ECU failure might get shut down to free resources
for restarting critical tasks. Thus, with a graceful degradation approach, the reliability
of critical applications is increased at the cost of a decrease in reliability of non-critical
applications. To design such a system efficiently, it is crucial to quantify and understand
the effect of a graceful degradation approach on critical and non-critical applications to
increase predictability. Therefore, we present our approach to formally analyze the
impact of graceful degradation on the reliability of critical and non-critical applications.
We then quantify the effect of graceful degradation in distributed automotive systems
and compare the achieved cost reduction with conventional redundancy approaches.

15

1 Introduction

In summary, our agent-based fail-operational approach enables dynamic and safe be-
havior in automotive applications. Our analytical approaches help developers to create
more cost-efficient and predictable systems. By following our methodologies, developers
can efficiently analyze the impact of graceful degradation and meet a trade-off accord-
ing to their system requirements. Our findings confirm that using graceful degradation
can tremendously reduce cost compared to conventional redundancy approaches with no
negative impact on the redundancy of critical applications if a reliability reduction of
non-critical applications is acceptable.

1.6 List of Publications

Overall, the research that has led to this thesis has resulted in the following relevant
publications:

• [28] P. Weiss, A. Weichslgartner, F. Reimann, and S. Steinhorst. Fail-Operational
Automotive Software Design Using Agent-Based Graceful Degradation. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe (DATE),
pages 1169–1174, 2020. doi:10.23919/DATE48585.2020.9116322

• [33] P. Weiss, S. Nagel, A. Weichslgartner, and S. Steinhorst. Adaptable Demon-
strator Platform for the Simulation of Distributed Agent-Based Automotive Sys-
tems. In 2nd International Workshop on Autonomous Systems Design (ASD 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:10.4230/OASIcs.

ASD.2020.3

• [29] P. Weiss and S. Steinhorst. Predictable Timing Behavior of Gracefully De-
grading Automotive Systems. Design Automation for Embedded Systems, pages
1–36, 2023. doi:10.1007/s10617-023-09271-x

• [30] P. Weiss, S. Elsabbahy, A. Weichslgartner, and S. Steinhorst. Worst-Case
Failover Timing Analysis of Distributed Fail-Operational Automotive Applica-
tions. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE), pages 1294–1299, 2021. doi:10.23919/DATE51398.2021.9473950

• [31] P. Weiss, E. Daporta, A. Weichslgartner, and S. Steinhorst. Checkpointing
Period Optimization of Distributed Fail-Operational Automotive Applications. In
2021 24th Euromicro Conference on Digital System Design (DSD), pages 389–395,
2021. doi:10.1109/DSD53832.2021.00066

• [32] P. Weiss, A. Younessi, and S. Steinhorst. Reliability Analysis of Gracefully
Degrading Automotive Systems. Preprint on arXiv, 2023. doi:10.48550/arXiv.
2305.07401

16

http://dx.doi.org/10.23919/DATE48585.2020.9116322
http://dx.doi.org/10.4230/OASIcs.ASD.2020.3
http://dx.doi.org/10.4230/OASIcs.ASD.2020.3
http://dx.doi.org/10.1007/s10617-023-09271-x
http://dx.doi.org/10.23919/DATE51398.2021.9473950
http://dx.doi.org/10.1109/DSD53832.2021.00066
http://dx.doi.org/10.48550/arXiv.2305.07401
http://dx.doi.org/10.48550/arXiv.2305.07401

1.7 Outline

1.7 Outline

This thesis is organized as follows. We first introduce our fail-operational automotive
architecture in Chapter 2. Here, we present our system model which we use throughout
this thesis. Afterwards, we present our approach to fail-operational automotive software
design using agent-based graceful degradation. As it is critical for a fail-operational
architecture to guarantee a predictable timing behavior, we apply our concept of graceful
degradation to a scheduling approach and present a formal analysis to derive worst-
case timing estimations for gracefully degrading systems. We extend the agent-based
mapping approach to include a backtracking approach and respect time constraints
at run-time. For our experiments we conduct simulations on our in-house developed
simulation platform and compare our approach to active redundancy. In Chapter 3 we
present an analytical approach to derive the worst-case failover time and perform failover
experiments with a distributed neural network on a hardware platform. In Chapter 4 we
apply graceful degradation to stateful applications and investigate the effect of the state
data loss. Furthermore, we present an approach to determine an optimal checkpointing
period to reduce networking and processing overhead. Afterwards, we perform a case
study with a SLAM application and conduct experiments on our distributed hardware
platform. In Chapter 5 we present a formal analysis to derive the reliability of critical and
non-critical applications in a gracefully degrading system. Here, we analyze the effects
of graceful degradation and our allocations and reservation strategies on the reliability
of critical and non-critical applications. In our experiments, we further analyze the
resource consumption of the approaches and compare it to active redundancy. Last, we
conclude our findings and propose further research directions for future work in Chapter
6.

17

2 Fail-Operational Automotive
Architecture

Contents

2.1 Introduction . 19

2.2 System Model . 21

2.2.1 Architecture . 21

2.2.2 Criticality . 22

2.2.3 System Software . 22

2.2.4 Failures . 24

2.3 Agent-Based Graceful Degradation . 26

2.3.1 Related Work . 26

2.3.2 System Model Additions . 32

2.3.3 Agent-Based Degradation . 32

2.3.4 Evaluation . 36

2.3.5 Summary . 39

2.4 Predictable Timing Behavior . 40

2.4.1 Related Work . 41

2.4.2 Performance Analysis . 43

2.4.3 Performance Analysis of Gracefully Degrading Systems 47

2.4.4 Agents - Finding Feasible Solutions at Run-Time 52

2.4.5 Evaluation . 61

2.4.6 Summary . 69

2.5 Limitations . 70

2.5.1 Scalability . 70

2.5.2 Reconfiguration Time . 71

2.6 Conclusion . 71

2.1 Introduction

In numerous applications for self-driving vehicles, achieving a safe state through deacti-
vation and isolation is not feasible. Consequently, the prevailing fail-safe and fail-silent

19

2 Fail-Operational Automotive Architecture

methodologies are inadequate. A fail-safe system ensures a safe shutdown state in the
event of a malfunction, whereas a fail-operational system requires the full operation
of safety-critical functions. To attain fail-operational capabilities, duplication of the
relevant components is indispensable [34]. However, integrating additional hardware
resources to maintain the fail-operational status of safety-critical applications is expen-
sive. When coupled with the predicted resource requirements of autonomous driving
functionalities, hardware expenses would substantially increase.
As a result of the need to manage escalating costs and complexity, applications are

now being integrated into more powerful multicore control units. This has resulted in the
consolidation of existing ECUs and a shift towards a more centralized E/E architecture
[1]. This trajectory is anticipated to persist, with future E/E architectures potentially
comprising just a handful of highly capable central controllers.
On the other hand, when viewed from the software standpoint, this trend results in

decentralization. In contrast to the current, state-of-the-art monolithic ECU software,
the software of the future is expected to adopt a modular approach. This modular
design will enable the dynamic repositioning of software components during runtime,
including the ability to activate and deactivate components across different ECUs. This
perspective allows new strategies to enable fail-operational behavior.
Instead of using active redundancy, where a task replica is actively executed, or passive

redundancy, where the system is oversized such that sufficient resources are available once
a passive task is started, graceful degradation can be applied. Here, passive redundant
tasks with higher priority can reuse the allocated resources of tasks with lower priority.
Once a passive task with higher priority is started, lower priority tasks are disabled to
free resources. This way, the non-critical functionality of an automotive system can be
degraded in a failure scenario to keep safety-critical functionality [35]. The advantage of
such an approach is that existing hardware resources in the system can be repurposed
at run-time to lower the hardware costs.
State-of-the-art design-time methods presented in [35] are not applicable for highly

customizable automotive systems as they require a re-evaluation for every change in the
software system. Furthermore, a configuration for optimal mapping and task activation
must be evaluated and stored for each single failure combination. With customizable
and frequently updated software, considering every unique system configuration is im-
possible.
Thus, dynamic resource management, which maps applications at run-time as part

of the software platform, is required. Dynamic resource management allows integrating
new applications at run-time with unique solutions for an individual mix of applications.
Furthermore, it enables a gracefully degrading system behavior and allows the system
to react to unplannable changes, such as the defect of a hardware unit.
In the following, we introduce our fail-operational architecture which consists of a

graceful degradation approach to allocate and reserve resources. We present our decen-
tralized agent-based approach to find a valid application mapping. In an agent-based
system, the system’s control is decentralized, so there is no single point of failure, and the
system can still act after any ECU failure. In dynamic mapping, an agent is responsible
for finding the mapping of a single application or task at run-time. In our work, we com-

20

2.2 System Model

bine graceful degradation with an agent-based system. Furthermore, our fail-operational
architecture ensures a predictable timing behavior of real-time applications by using our
performance analysis for gracefully degrading systems to evaluate mappings.

This chapter is structured as follows. First, we introduce our system model in Section
2.2, which applies to all chapters in this thesis. In some sections, we make some additions
to the model that are only relevant to the corresponding section. Then, we present our
agent-based graceful degradation approach in Section 2.3 to dynamically find application
mappings while enabling a gracefully degrading system behavior. Afterward, we extend
our graceful degradation approach in Section 2.4 to a scheduling approach as a basic
module to enable a further timing analysis of the system. Based on this approach, we
present our performance analysis of a gracefully degrading system, which evaluates if an
application with a given mapping adheres to timing constraints and considers passive
task instances. This ensures that in any single ECU failure scenario, a valid mapping
is available that respects the timing constraint of the application. Furthermore, we
extend our agent-based approach such that a backtracking algorithm is applied if the
performance analysis of a mapping evaluates negatively. While this approach solves
the mapping problem reasonably, we discuss shortcomings and limitations regarding
scalability and reconfiguration time in Section 2.5. Last, we conclude our findings about
our fail-operational architecture in Section 2.6.

2.2 System Model 1

In the following, we introduce our system model used throughout this chapter which
builds the base system model for the remaining chapters. This system model is slightly
expanded in some sections, but these additions remain only valid for the correspond-
ing chapter or section. We first introduce our hardware architecture and motivate our
reasoning for the decision in Subsection 2.2.1. Afterwards, we define our classification
system with two criticality levels in Subsection 2.2.2. In Subsection 2.2.3 we introduce
our application model consisting of tasks and message instances. Last, we present our
failure and failover model in Subsection 2.2.4.

2.2.1 Architecture

In the past, automotive vendors added a new ECU for each new functionality in the
vehicle. Today, cars often consist of more than 100 ECUs to control functions in the
domains such as infotainment. Now the automotive industry is aiming towards zonal or
more centralized architectures. Some vendors such as Tesla prefer a centralized architec-
ture, where most functions are executed on a single ECU such as the Full Self-Driving
Computer of Tesla [6]. Bosch is developing a vehicle-centralized, zone-oriented E/E ar-
chitecture with a few centralized, powerful vehicle computers integrating cross-domain
functionality similar to [5, 7]. These vehicle computers are connected to actuators and

1Major parts of this section have been published in [29].

21

2 Fail-Operational Automotive Architecture

sensors via zone ECUs. This reduces the required wiring and weight in vehicles but also
system complexity.
In our work, we focus on deploying bigger applications on a future system architecture

consisting of a set of a few ECUs e ∈ E which are interconnected via switches and a set
of Ethernet links l ∈ L. The ECUs and Ethernet links use Time-Division Multiplexing
(TDM) scheduling with pre-determined time slices which can be allocated or reserved.
We implemented a middleware based on SOME/IP [36], an automotive middleware
solution to dynamically activate, deactivate, and move tasks on the platform at run-time.
This middleware includes a decentralized service discovery to dynamically find services
in the system and a publish/subscribe scheme to publish and subscribe to events.

2.2.2 Criticality

In our work, we are exploring graceful degradation methodologies. Here, critical appli-
cations, e.g., for autonomous driving can be restarted after a failure on another ECU.
Instead of exclusively reserving resources for this scenario, non-critical applications, e.g.,
from the infotainment domain can be shut down to free resources.
According to the ISO 26262 standard, applications can be assigned one of four Auto-

motive Safety Integrity Levels (ASILs) (A to D) [37]. However, we do not differ between
criticality levels of critical applications in our work as there is no justification in shut-
ting down applications with an assigned ASIL of A for an application with an assigned
ASIL of B as the failure of any critical application can have safety-critical consequences.
Instead, it has to be ensured that all safety goals are met for any critical application.
Therefore, we only distinguish between critical and non-critical applications. In our
work, we assume that each critical application has fail-operational requirements. This
means that the application has to remain operational even if a failure occurs that affects
this application.

• Critical application: An application that has fail-operational requirements. To
ensure a fail-operational behavior passive redundancy on task level is applied. All
critical applications have the same priority.

• Non-critical application: An application without specific safety requirements. Non-
critical applications can be shut down to free resources for critical applications even
if they are not directly affected by a failure.

2.2.3 System Software

Our system software consists of a set of applications a ∈ A which can be subdivided
into a set of safety-critical applications AS and a set of non-critical applications AN :
AS ∪ AN ⊆ A. Applications are executed periodically with a period Pa and we assume
each application has to meet a deadline δ, with the period Pa being at least as long
as the deadline δ. We assume that the Worst-Case Execution Time (WCET) W (t) is
known for every task.

22

2.2 System Model

We model each application a by an acyclic and directed application graph GA(V,E).
Safety-critical applications must fulfill fail-operational requirements and, thus, must re-
main operational even during critical ECU failures. Therefore, we assume that redun-
dant passive task instances are required for our safety-critical applications. The vertices
V = Ta ∪ Tp of the application graph GA(V,E) are composed of the set of active task
instances Ta and the set of passive task instances Tp.

• Active task instance: A task instance of a critical or non-critical application. This
is the default task instance actively executing any workload. A binding α : T → E
assigns an active task instance t ∈ T to an ECU α(t) ∈ E.

• Passive task instance: A backup instance t ∈ Tp of an active task instance which
is part of a critical application. The passive task instance is only activated if its
active counterpart is affected by a failure. The binding β : T → E assigns a passive
task instance t ∈ Tp to an ECU β(t) ∈ E.

The edges E = Ma ∪Mb of the application graph GA(V,E) are composed of the set
of active messages Ma and the set of backup messages Mb.

• Active message instance: A routing is required for each active message instance
m ∈Ma which is part of a critical or non-critical application. A routing ρ : M → 2L

assigns each message m ∈ Ma to a set of connected links L′ ⊆ L that establish a
route ρ(m).

We use the shortest path routing obtained through Dijkstra’s algorithm such that
there is only one route between two ECUs e available [38].

• Backup message instance: For critical applications three backup message instances
m ∈Mb are required of which one will get activated after an ECU failure depending
on which passive task instances get activated. A routing σ : M → 2L assigns each
backup message m ∈ Mb to a set of connected links L′ ⊆ L that establish a route
σ(m).

The application graph of non-critical applications consists only of active task instances
t ∈ Ta and active messages m ∈Ma.
Figure 2.1 presents a non-critical and a critical application according to our system

model. The non-critical application consists of two tasks and one message being sent
between the two tasks. The graph also includes two passive task instances and three
backup message instances for the safety-critical application. Three backup message in-
stances are required to ensure that communication between two task instances is always
possible regardless of which task instances are affected by a failure. The message in-
stances m0,ab and m0,ba are required if only one active task instance fails. In contrast, the
message instance m0,bb is required if both active task instances are affected by a failure,
e.g., because they are mapped onto the same failing ECU.
Figure 2.2 shows the binding α of the active task instances t ∈ Ta and the binding β

of the passive task instances t ∈ Tp onto a system architecture. The routing ρ of the
active message instance m ∈ Ma and the routings σ of the backup message instances
m ∈Mb are also marked by colored arrows.

23

2 Fail-Operational Automotive Architecture

m0,aa

m0,ab

t0,a

m0,ba

m0,bb

t0,b

t1,a t1,b

m0

t0

t1

Figure 2.1: An exemplary application graph GA(V,E) of a non-critical application (left) and
a critical application (right). The application graph of the critical application
consists of two active task instances t0,a, t1,b ∈ Ta and two passive task instances
t0,b, t1,b ∈ Tp. Furthermore, it contains one active message instance m0,aa ∈ Ma

and three backup message instances m0,ab,m0,ba,m0,bb ∈ Mb, which are required
to ensure there is always a communication path between the tasks instances
available.

2.2.4 Failures

This work and our experiments focus on mitigating ECU failures detected by watchdogs
and heartbeats. Here, we follow the definitions of [37] and [39], distinguishing between
the terms fault, error, and failure. A fault is the cause of an error, which might poten-
tially manifest as a failure. It can appear for a short period (transient), intermittently,
or permanently. A fault is an abnormal system condition that can only be detected by
the system when it causes an error. An error describes a discrepancy between actual and
theoretically correct values. An error may become intolerable and result in failure. In
this thesis, we focus on mitigating random hardware failures and failures caused by phys-
ical and permanent faults. Our approach could also mitigate failures caused by transient
faults if hardware or software supports the corresponding failure detection mechanisms,
e.g., through a lock-step architecture. If possible, a failure caused by transient faults
should be handled locally. Our solution is intended to be used as a last resort, as the
isolation of an ECU and a failover could lead to the shutdown of non-critical applications
when graceful degradation is applied.

We define a failure f ∈ F with F ⊆ E, where f identifies the failed ECU. Our graceful
degradation approach ensures that safety-critical applications can keep running after an
ECU failure while there is no guarantee for non-critical applications. As redundancy
is used for all safety-critical tasks, the system could withstand any single ECU failure
and perform failover for affected task instances. After a failover, any critical application
can remain operational such that any hazards can be avoided. After a time-critical
failover, fail-operational capabilities must be re-established with a new mapping process.
Applications might have to be stopped temporarily if active task instances have to be

24

2.2 System Model

s2s1

t0,a t0,b

t1,a

s0

ρ(m0,aa)

σ(m0,ab)
m0,aa

m0,ab

t0,a

m0,bb

m0,bb

t0,b

t1,a t1,b

α(t0,a)

α(t1,a)

β(t1,b)

β(t0,b)

σ(m0,ba)

t1,b

σ(m0,bb)

Figure 2.2: Exemplary mapping of a safety-critical application onto a hardware architecture
consisting of four ECUs e0, e1, e2, and e3, and three switches s0, s1, and s2. The
green arrows indicate the active bindings of tasks t0 and t1, while the dashed
yellow arrows indicate the passive task bindings. The same arrow color and style
indicate the routings of the message instances as in the application graph.

remapped such that a safe mapping can only be performed during a halt. Methods such
as those proposed in [40] to perform a safe real-time task migration could be applied
to prevent this. While our approach considers that redundant message instances are
required to ensure communication is possible after a failover, mitigating network or
switch failures is out of the scope of this work. We recommend the work of [41] on this
topic for the interested reader.

In the case of an ECU failure we consider that the current application execution
might not finish if an active task instance is affected directly by the failure and that
application execution might be interrupted for a specific time interval. Here, it is vital
that a failover within the FTTI can be guaranteed [42]. We cover the topic of failover
timing analysis in Chapter 3. To save critical application states, checkpoints can be
periodically transmitted from active to passive task instances to save essential state
data covered in Chapter 4. After the failure recovery computation can be continued
with the latest transmitted checkpoints. Now, that we have introduced our system
model we present our fail-operational architecture in the following two sections.

25

2 Fail-Operational Automotive Architecture

2.3 Agent-Based Graceful Degradation 2

After presenting our system model in Section 2.2, we introduce our agent-based graceful
degradation approach. While we introduce our basic degradation approach in this sec-
tion, we extend it in Section 2.4 to a scheduling approach and adjust our agent-based
approach to handle mappings that do not respect timing constraints. In this section, we
make the following contributions:

• We analyze related work in the domains of fail-operational systems, graceful degra-
dation, and dynamic mapping approaches in Subsection 2.3.1 and identify that
combining graceful degradation and dynamic mapping approaches have not been
considered in literature yet.

• Based on our additions to the system model introduced in Subsection 2.3.2, we
present our agent-based approach, which is depicted in Figure 2.3, to find task map-
pings and activations at run-time in Subsection 2.3.3. The fail-operational require-
ments of safety-critical applications can be satisfied by using graceful degradation.
Here, the dynamic nature of the agent-based system allows an easy reconfiguration
to re-establish the fail-operational behavior after ECU failures.

• We use our in-house developed simulation framework to evaluate the approach in
Subsection 2.3.4 and summarize our findings in Subsection 2.3.5.

2.3.1 Related Work

The related work for our approach can be mainly separated into the three domains of fail-
operational systems, graceful degradation, and dynamic mapping approaches. To our
knowledge, no other work in literature combines graceful degradation with a dynamic
agent-based approach.

2.3.1.1 Fail-Operational Systems

Ensuring fail-operational behavior is crucial in emerging automotive systems to meet
safety requirements. This importance is amplified by the ongoing trend in automotive
technology towards autonomous driving, where there may be no human driver to take
over in the event of a failure. Consequently, relying solely on fail-safe and fail-silent
approaches, which aim to minimize disruption in the event of a failure, is no longer
adequate. Traditionally, achieving fail-safe behavior involves continuous system moni-
toring, hardware redundancy (resource replication), or implementing specific shutdown
procedures, as discussed in reference [43]. However, with the shift towards autonomous
driving, more advanced fail-operational strategies are essential to ensure the safety and
reliability of these systems.
The solutions mentioned earlier, come with trade-offs in cost, required physical space,

and manufacturing complexity. These trade-offs primarily arise due to the need for

2Major parts of this section have been published in [28].

26

2.3 Agent-Based Graceful Degradation

additional hardware components and redundancy, as discussed in [44]. To address these
trade-offs and provide a comprehensive understanding of fault tolerance in automotive
systems, the authors [18] offer an overview of diverse fault-tolerant designs. These
designs aim to achieve varying levels of fail-operational, fail-silent, and fail-safe systems
by employing different degrees of redundancy, particularly in the context of drive-by-
wire systems. This research helps explore a spectrum of fault tolerance options to strike
a balance between system reliability and associated costs.

In [34], the authors provide an overview of existing fail-operational hardware ap-
proaches and introduce concepts for implementing a multi-core processor. This work
focuses on hardware-based fault tolerance strategies. On the other hand, in [45], the
authors review common fault-tolerant architectures in System-on-Chip (SoC) solutions,
including lock-step architectures, loosely synchronized processors, and triple modular
redundancy. They conduct a trade-off analysis to assess the strengths and weaknesses
of these architectures. These detection and mitigation mechanisms presented in both
references serve as a foundation for enabling dynamic fail-operational solutions at the
software level. However, it’s important to note that these approaches primarily address
fail-operational aspects at the device level and may have limitations in terms of flexibil-
ity and system-wide implementation. In contrast, our system-wide graceful degradation
approach goes beyond the device level. It leverages the ability to restart applications and
utilize non-critical application resources to reduce resource overhead introduced by re-
dundancy. This approach offers a more comprehensive and flexible solution for achieving
fail-operational behavior at a system-wide scale.

The RACE project represents a significant attempt in the development of fault-
tolerant software and system architectures designed specifically for future electric ve-
hicles. This architecture was not just a theoretical concept but was practically imple-
mented in two prototype vehicles, highlighting its real-world applicability. Within the
project, a centralized computation architecture was proposed, as detailed in [46]. This
architecture is based on a cross-domain system topology and incorporates a Runtime
Environment that executes real-time applications of mixed-criticality. The primary ob-
jective is to enable fail-operational behavior, ensuring the continued operation of critical
vehicle functions even in the presence of faults, failures, or errors, as discussed in [47].
The assumption made by these authors, and similarly by us, is that applications are
executed on a limited number of powerful and homogeneous ECUs within a mixed-
critical environment. This approach streamlines the design and management of complex
automotive systems, with a focus on ensuring reliable and fault-tolerant operation.

In [48], a method outlines a hardware architecture designed to comply with the rig-
orous functional safety standards of IEC61508 and ISO26262. This method achieves
its goal by incorporating a pre-certified hardware fault supervisor, which helps opti-
mize costs and streamline the certification process. However, it’s worth noting that this
approach primarily concentrates on the hardware aspect of functional safety and fault
tolerance. It may not fully address the growing complexity of functions and applications
running on these ECUs. As automotive systems become increasingly sophisticated, en-
suring safety and reliability requires not only robust hardware but also comprehensive

27

2 Fail-Operational Automotive Architecture

strategies for managing software complexity and fault tolerance, which may extend be-
yond the hardware level.
Approaches like the ones outlined in [49] and [50] adopt a dual lock-step architecture

that employs two identical Central Processing Units (CPUs) to execute the same soft-
ware tasks. This architecture serves as a fault tolerance mechanism. In this setup, the
first CPU operates in a live mode and is responsible for controlling the system during
normal operational conditions when no fault is present. Simultaneously, the second CPU
continuously monitors the status of the first CPU at every clock cycle. This monitoring
ensures that potential faults or discrepancies in the first CPU’s behavior are promptly
detected. The authors propose a trade-off between system performance and fault cover-
age. This dual lock-step architecture can function as two fail-silent channels, ensuring
that any faults are handled in a way that does not disrupt the system’s operation. Al-
ternatively, it can be configured as a single fail-operational unit, allowing the system to
continue functioning even in the presence of faults.
In [51], the authors introduce a coded processing approach that operates by coding

both data and instructions within a computing system. This approach is designed to
enhance fault tolerance. In a system employing this technique with two coded channels,
both channels are simultaneously active on either different partitions of a core or, in the
case of a multi-core system, on multiple cores. This redundancy ensures that even if one
channel experiences a failure, the service or application can seamlessly continue running
on the other channel. The approach described in [51] offers notable improvements in
Mean Time to Failure (MTTF), which represents the system’s reliability.
Another approach, as presented in [52] and later extended by [53], adopts a simplex

architecture to ensure system safety. A simplex architecture achieves safety at the ap-
plication level by simplifying complexity, following the principle of ”using simplicity to
control complexity” [54]. In this architecture, two key subsystems are employed: a safety
controller subsystem and a high-performance control subsystem. During regular system
operation, the high-performance subsystem is utilized to maximize system performance.
However, in the event of a fault or failure, the system can switch to using the safety
subsystem to ensure stability and reliability. Using the simplex architecture, the authors
propose a hardware/software approach that guarantees fail-operational behavior and a
fault-tolerant system. This method is capable of handling logical application-level faults
and faults in dependent layers, including real-time operating systems.
In [55], the authors introduce a system-level simplex architecture designed to ensure

the fail-operational behavior of applications while safeguarding the underlying operating
system, middleware, and microprocessor from failures. In this architecture, a complex
subsystem takes charge of driving the system as long as no failure is detected. A safety
subsystem and a decision controller run on a dedicated microcontroller to provide fault
tolerance. Similarly, authors in [56] present a fail-operational simplex architecture and
address the challenge of inconsistent states in CAN controllers during a failover. To re-
solve this issue, they employ an atomic function that stores the state and sends messages
to prevent inconsistencies, particularly in communication with peripherals. Their work
demonstrates that dynamic reconfiguration of a set of functions at the system level is
feasible, and redundancy in safety-critical functions with dynamic reconfiguration can

28

2.3 Agent-Based Graceful Degradation

reduce the hardware redundancy required in E/E architectures. While these approaches
bring fail-operational capabilities to the system level, they do have limitations in terms
of flexibility and cost. The inclusion of a dedicated hardware component is necessary,
which can add to the overall system expenses.
In [41], researchers address the automatic optimization of redundant message routings

within automotive Ethernet networks to enable fail-operational communication. Their
work primarily focuses on enhancing communication component redundancy to ensure
reliable network operation. In contrast, our approach concentrates on mitigating ECU
failures rather than communication component failures. Within our methodology, re-
dundant tasks are distributed across the system, and redundant communication routes
are established. This ensures that when a task is restarted, there is always at least one
communication path with preceding and succeeding tasks.
Overall, hardware components with failure detection and mitigation mechanisms are

the base for enabling a dynamic fail-operational solution on a software level. However,
the presented approaches lack flexibility and do not deal with the problem of providing
a dynamic fail-operational behavior for an entire system consisting of many applications
distributed over multiple ECUs.

2.3.1.2 Graceful Degradation

Graceful degradation, also known as functional degradation, is a strategy that involves
suspending the execution of less critical applications within a system to ensure the
continued functionality of more important applications, as described in [57]. In this
approach, critical applications are prioritized and kept operational, while non-critical
applications may be temporarily halted or slowed down. One of the key advantages
of graceful degradation over other redundancy approaches, such as active redundancy,
is its potential to reduce hardware costs significantly. By strategically managing the
allocation of resources and prioritizing critical functions during fault or failure conditions,
graceful degradation can help maintain system functionality while minimizing the need
for redundant hardware components.
In [58] and [59], the authors present an architectural framework for reliable au-

tonomous vehicles, which includes mechanisms for fault tolerance and degradation. The
SAFER architecture achieves fault tolerance through various redundancy strategies, such
as cold standby slaves, hot standby slaves, and task reruns. They also consider a form
of degradation that involves reducing processor utilization by extending the execution
period of tasks, resulting in less frequent task execution and a potential decline in quality
of service. In contrast, our degradation approach differs in its focus. We emphasize the
complete shutdown of non-critical applications to free up system resources for critical
applications. Our approach does not specifically address the degradation of functionality
within a single application by extending task execution periods. Instead, it prioritizes the
availability and performance of critical applications over non-critical ones by releasing
resources when necessary.
The SafeAdapt project, as described in [60], introduces a generic adaptation mecha-

nism as a functional safety concept to enable fail-operational capabilities in automotive

29

2 Fail-Operational Automotive Architecture

systems. This mechanism involves deploying redundant application instances as hot-
standby and cold-standby versions. In the event of a failure, the system can switch from
a functional primary version to a simplified, degraded version to maintain functionality.
Additionally, in [43], the authors propose a meta-modeling technique for describing ar-
chitectural patterns for fail-operational systems. They introduce a graceful degradation
pattern based on patterns from [61] and integrate it into a pattern meta-model library.
Comparatively, our approach differs in several aspects. We consider degradation at a
system level, allowing for resource optimization by reallocating resources from less crit-
ical applications to critical ones. In contrast, the approach presented in [60] requires
exclusive resource allocation for standby versions. Moreover, our approach could be in-
tegrated into a pattern meta-model library, similar to [61], to provide developers with a
broader set of options for designing fail-operational systems. This flexibility allows for
more efficient resource utilization and enhanced fault tolerance.
There are similar concepts in the literature that focus on degrading the performance

of an application in the event of a failure rather than shutting down non-critical ap-
plications, as discussed in [62] and [63]. Additionally, in [64], the authors propose a
reconfiguration strategy based on the available hardware resources following a failure.
This approach involves adapting the system’s configuration to make the best use of the
remaining resources after a failure occurs, ensuring continued operation.
In [65], the author provides a formal definition of graceful degradation by specifying

a comprehensive set of system constraints that outline the tasks a system can perform
based on these constraints. This formal definition helps establish what a system can
achieve while degrading gracefully under specified conditions. On the other hand, [25]
introduces a method for calculating the utility of a system by decomposing it into feature
subsets, which can be defined by various functional or non-functional attributes. This
decomposition enables an analysis of the system’s utility in different degradation modes,
providing insights into how the system’s performance or capabilities can vary under
different conditions. However, it’s important to note that neither of these works proposes
a specific approach for designing a system with graceful degradation behavior. Instead,
they contribute to the formalization and analysis of graceful degradation concepts and
metrics, which can be valuable for assessing and understanding system behavior under
different conditions.
In [66], the authors introduce a degradation-aware reliability analysis that considers

different degradation modes for tasks of varying safety levels. They use design space
exploration to optimize the reliability of these degradation modes. At runtime, an al-
gorithm monitors resource states and selects appropriate task mappings based on the
observed conditions. On the other hand, [35] presents a design-time analysis focused
on finding valid application mappings in mixed-critical systems. In this context, ap-
plications can have multiple redundancies based on their fail-operational level, and the
system can be degraded by shutting down optional software components. Contrasting
with both of these approaches, our method prioritizes re-establishing lost redundancy
after a failover, rather than relying on a predetermined level of redundancy. We dy-
namically adapt to fault conditions, optimizing resource utilization to maintain critical
functions. While the approaches in [66] and [35] use design-time analysis, our approach

30

2.3 Agent-Based Graceful Degradation

provides more flexibility for highly customized automotive systems by adapting to run-
time conditions and resource availability.

2.3.1.3 Dynamic Mapping

There has been a lot of work on dynamic mapping approaches. In [67], the authors
introduce a decentralized mapping algorithm for Network-on-Chip (NoC) architectures.
This algorithm involves predecessor tasks mapping tasks and considers constraints such
as computational capacities. It optimizes routing based on a chosen goal function. Their
approach uses a best-neighbor strategy that focuses on the closest search space around
a task.
The work in [68] presents an agent-based runtime mapping approach for heteroge-

neous NoC architectures. The system employs global agents that contain system state
information and cluster agents responsible for assigning resources. The primary motiva-
tion here is to reduce computational effort and global traffic when mapping distributed
applications.
The authors in [69] introduce a centralized run-time mapping approach for reduc-

ing network load in NoC based Multiprocessor-System-on-a-Chip (MPSoC) systems. In
their approach, a dedicated manager processor takes responsibility for initially mapping
tasks of each application to specific clusters within the MPSoC. As the workload dy-
namically changes, subsequent tasks are mapped at runtime based on communication
requests. To efficiently distribute tasks and communication across the system, the au-
thors propose and evaluate multiple heuristics that consider the channel load within
the NoC architecture. They argue that using greedy algorithms is reasonable, as these
algorithms can quickly provide mapping solutions, even if they do not explore the entire
search space exhaustively. The authors conclude that, compared to static optimization
methods, the moderate overhead associated with solutions found through dynamic meth-
ods is acceptable, considering the increased flexibility gained from dynamic mapping to
adapt to runtime conditions.
In addition to purely dynamic approaches, hybrid mapping schemes, combining design-

time analysis and run-time reconfiguration, have been explored in research. One example
is presented by the authors in [70], where they consider task migration as part of their
approach. This involves allocating resources at runtime to migrate tasks as needed.
However, in contrast to reactive schemes, the authors in [71] propose a proactive ap-
proach, where task mappings are changed at runtime to prevent imminent hazards.
In our approach, we focus on finding task mappings to establish passive redundancy,
enabling us to react to failures as they occur.
The state-of-the-art approaches discussed have limitations, especially when applied

to highly customized automotive systems due to their reliance on design-time analysis.
Additionally, centralized approaches, such as in [69], introduce single points of failure
into the system. Furthermore, these approaches do not consider fail-operational or
timing requirements, and none of the existing dynamic or hybrid mapping approaches
have built-in support for graceful degradation. As a result, they are not suitable for
efficiently achieving fail-operational behavior in safety-critical applications.

31

2 Fail-Operational Automotive Architecture

2.3.2 System Model Additions

In the following, we assume that each of the ECUs e ∈ E has a CPU budget C(e). Each
bi-directional link l ∈ L, that connects an ECU e with the gateway, has a bandwidth
budget BW (l). Furthermore, we assume that the resource consumption of the CPU c(t)
per task is known. Similarly, we assume the bandwidth requirement bw(m) of a message
m as given.

2.3.3 Agent-Based Degradation

To cope with the high number of customized configurations in future automotive archi-
tectures, we investigate the effectiveness of applying agent-based strategies on the task
level to achieve gracefully degrading system behavior.

In contrast to active redundancy, where redundant tasks would actively run and use
CPU resources, passive redundant tasks only reside in the memory. Only when they
are activated and replace a failed task, will they require the same amount of resources.
Thus, it has to be ensured that sufficient resources are available on the startup of the
passive redundant task. Instead of allocating the required resources without using them,
graceful degradation can deactivate other less critical tasks to free the required resources.
With this approach, the system loses some of its non-critical functionality. On the other
hand, this allows us to save costs as our graceful degradation approach completely avoids
the computational overhead that active redundant tasks would induce.

The FTTI describes the time that a fault can be present in the system before a
hazard could occur and has to be determined for each safety goal according to the
International Organization for Standardization (ISO) 26262 [37]. We assume that all
tasks can be restarted within their assigned FTTI and, thus, focus on the aspect that
sufficient resources must be provided once a passive redundant task is activated to ensure
a predictable system behavior. We address the issue of failover timing analysis in Chapter
3. From a timing perspective, to achieve the restart within the FTTI, it is necessary for
a redundant task to operate on the same data as the active task. For passive redundant
tasks, a checkpointing approach has to provide the active task’s status in a periodic
fashion such that a restart within the FTTI can be ensured. We present a checkpointing-
based approach in Chapter 4.

2.3.3.1 Agent-Based System

With our agent-based methodology on task level we provide a way to ensure that all
safety-critical tasks in the system have a passive redundancy and, once they are started,
sufficient resources are provided to execute the task. Furthermore, the approach main-
tains communication with preceding and succeeding tasks. To mitigate multiple failures,
the system can reconfigure and re-establish the redundancy of safety-critical tasks. The
system has a predictable behavior as the mapping ensures the reservation of sufficient
resources for the passive redundant tasks, such that they can start in a failure scenario
by disabling non-critical tasks.

32

2.3 Agent-Based Graceful Degradation

ts1tn2tn1

e2
tn2,a

e3
ts1,a

e1
tn1,aIV-B: Allocation

IV-C: Reservation
e1

tn1,a
e2

ts1,ptn2,a
e3

ts1,a

e2
ts1,atn2,d

e3
ts1,a

e1
tn1,aIV-D: Degradation

e2
ts1,atn2,d

e3
ts1,aIV-E: Reconfiguration

e1
tn1,a ts1,p

Figure 2.3: The safety-critical task ts1 and the two non-critical tasks tn1 and tn2, each being
part of a distinct application, is deployed on three ECUs using our agent-based
approach as will be described in Subsection 2.3.3. The task states are depicted
in green (active), yellow (passive), and red (failed/deactivated).

In our approach, both active and passive tasks are wrapped with an agent, which is in
the following referred to as a passive or active task agent. The task agents are responsible
for the proper execution of their respective tasks and for fulfilling their fail-operational
requirements. The task agents themselves are always active and able to react to failures.
We also use the task agents to find a valid mapping for both the active and the passive
tasks. To achieve a dynamic behavior, the task agents can move on the system from one
ECU to another.

Furthermore, each of the ECUs is running an ECU agent, which starts the task agents
on startup. In addition, they handle the requests from task agents to start a new
redundant task agent or to move to the corresponding ECU. Note that, in contrast to
a design-time optimization, agent-based approaches can dynamically and continuously
optimize the mapping concerning metrics such as link load at run-time.

The flow of our agent-based approach to finding task mappings and activations at
run-time is depicted in Figure 2.3 and includes the following steps:

• Allocation 2.3.3.2: In the initial mapping process the active task agents allocate
resources to find a valid mapping.

33

2 Fail-Operational Automotive Architecture

• Reservation 2.3.3.3: The task agents reserve resources at other agents, determining
how the system will be degraded.

• Degradation 2.3.3.4: As an immediate failure reaction passive tasks are started
and the system is degraded.

• Reconfiguration 2.3.3.5: By repeating the reservation process, the fail-operational
behavior can be re-established.

2.3.3.2 Resource Allocation

Initially, the ECU agents start all task agents depending on a configuration. On startup,
the active task agents send requests to the ECU agents to allocate CPU resources and
link resources for their incoming messages. The amount of allocated CPU resources
calloc(t, e) and link resources bwalloc(m, l) is stored at the corresponding ECU agent. If it
is impossible to allocate sufficient resources for mapping on the current ECU, the task
agents will request other available ECU agents. When a valid mapping can be found, a
task agent moves to the corresponding ECU and starts its task. Succeeding task agents
wait on their predecessors to find a valid mapping to allocate the correct link resources
for their incoming messages. This allocation process ensures that the allocated CPU
resources of all tasks in the system do not exceed the CPU budget of any ECU:

∀e ∈ E :
∑
a∈A

∑
t∈Ta

calloc(t, e) ≤ C(e) (2.1)

Similarly, it is ensured that the allocated bandwidth of all messages does not exceed
the bandwidth budget of any link:

∀l ∈ L :
∑
a∈A

∑
m∈Ma

bwalloc(m, l) ≤ BW (l) (2.2)

2.3.3.3 Resource Reservation

Any safety-critical task agent will start a redundant passive task agent on a different
ECU. The responsibility of the passive task agents is to ensure that sufficient resources
are freed in case the task has to be activated. For that, task agents can reserve resources,
that have been previously allocated, at non-critical task agents or so far unused resources
at ECU agents. The agents at which the resources are reserved promise to free the
resources if requested. If a passive task agent has to activate its task, it claims the
reserved resources at the corresponding agents. Once a promising agent frees the claimed
resources, it deactivates its task. Similar to the allocation process succeeding passive
task agents wait on their predecessors to find a valid mapping and allocate a route.
Furthermore, active task agents must reserve a second route to preceding passive task

agents (next to the allocated routes to the preceding active task agents) to ensure that
a valid route is available at any time. On the other hand, assuming that only one ECU
fails at a time, passive task agents only have to reserve one route to either the preceding

34

2.3 Agent-Based Graceful Degradation

Figure 2.4: Simulation framework performing simulation of the example described in Figure
2.3. The plots show the CPU utilization of the three ECUs e1 (red), e2 (green),
and e3 (blue). The table on the right displays the situation at the end of the
simulation. After the failure of ECU e3 at 8000ms, task ts1 restarted on ECU e2,
leading to the shutdown of tn2. As ts1 requires slightly fewer resources than tn2,
the change can be examined in the plot.

passive or the preceding active task agents. If the active task agent and the preceding
active task agent have the exact mapping, they would both fail simultaneously. In this
case, the passive task agent must only reserve a route to the preceding passive task agent.
If the active task agent and the preceding active task agents have different mappings,
only one can fail simultaneously. Thus, if the active task agent fails, the passive task
agent only needs to reserve a route to the preceding active task agent.

2.3.3.4 Degradation

Once an ECU failure is detected, passive task agents, that lost their active task agent,
immediately claim their resources, update the allocation status at the ECU agent, and
start their task. Promising task agents, whose resources are being claimed, free the
resources and deactivate their tasks. In addition, the allocation and reservation status
at all task agents and ECU agents is updated, so the allocated or reserved resources of
failed agents are not lost.

2.3.3.5 Reconfiguration

The procedure from Subsection 2.3.3.3 can be repeated for any task agent that lost its
redundant counterpart or a resource reservation. Here, the advantage of the agent-based
approach is that no additional algorithm is required.
With this approach, the task agents ensure the fail-operational behavior of their ap-

plication. The task-based reservation of resources has two specific advantages. First,
deciding which tasks are shut down in a degradation scenario does not have to be met

35

2 Fail-Operational Automotive Architecture

in the time-critical phase after a failure. Second, this approach allows us to predict
the system’s behavior if all passive task agents of an application reserve the required
resources, a fail-operational behavior can be guaranteed.

2.3.3.6 Example

In our example in Figure 2.3, a safety-critical and two non-critical tasks are deployed on
three ECUs using our agent-based approach. After each task agent finds an ECU and
allocates the resources, the safety-critical task agent responsible for ts1,a starts a passive
task agent on e2. This passive task agent reserves the required resources at the task
agent responsible for tn2,a. After the failure of ECU e3, the passive task ts1,p on ECU e2
is immediately started and its task agent claims its resources at the task agent of tn2,a,
who deactivates its task. In the last step, the fail-operational behavior of task ts1,a is
re-established by starting another passive task agent on e1 and repeating the reservation
process.

2.3.4 Evaluation

We have implemented the approach described in Subsection 2.3.3 in our in-house devel-
oped time-discrete and event-based simulation environment. The framework has been
developed to simulate an automotive hardware architecture and system software accord-
ing to our model as described in Subsection 2.3.2. We use this framework to evaluate
our agent-based approach from Subsection 2.3.3.

2.3.4.1 Simulation Framework

The system parameters describing the hardware architecture and system software can
be provided by a specification that uses the XML schema for specifications from the
OpenDSE framework [72]. For the simulation environment, we chose a process-based
Discrete-Event Simulation architecture based on the SimPy framework [73].
To dynamically activate, deactivate, and move tasks on the platform at run-time, we

implemented a middleware based on SOME/IP [36], an automotive middleware solution.
This middleware includes a decentralized service discovery to dynamically find services
in the system and a publish/subscribe scheme to publish and subscribe to events. In
addition, this middleware allows remote procedure calls. All tasks in the system com-
municate via this middleware and are modeled as clients and/or services. Tasks that
have outgoing edges in our application graph Ga are offered as a service to the system,
which also publishes their messages as subscribable events. Tasks with ingoing edges
behave as clients requesting the corresponding services and subscribing to the events.
This service-oriented approach allows a dynamic reconfiguration of the system software
at run-time, such that tasks can be restarted on other ECUs and still be found by their
subscribers.
Hardware access to a CPU or Ethernet link is managed by interchangeable schedulers.

For the simulation, a static-priority preemptive scheduler was used for access to CPUs

36

2.3 Agent-Based Graceful Degradation

and a static-priority non-preemptive scheduler for access to Ethernet links. Tasks in the
system are triggered periodically if they are the anchor task of an application otherwise
on the arrival of incoming messages. Once a task is triggered, it is scheduled for execution
on the CPU. After it has been granted access to the resource, it keeps the resource busy
and sends out its messages as soon as it has finished execution. The unicast messages
are put on the link and forwarded by the central switch. On arrival at its destination,
succeeding tasks waiting for the message are triggered.
Furthermore, we implemented the proposed agent-based system from Subsection 2.3.3

in our simulation framework. The agents use the same middleware and network interface
for communication as the tasks in our system. The significant load the agents impose
onto the system occurs during the initialization phase when all agents allocate and re-
serve resources. Furthermore, the size of the agent messages is relatively small, mainly
consisting of a few bytes, compared to the message size of typical automotive applica-
tions. During the normal execution phase, the agents do not impact the system. They
are only triggered by ECU failures, where the system has to immediately react to the
failure and be reconfigured. With example applications implemented, a more detailed
analysis of the overhead imposed by the agents on the system is possible.
To simulate ECU failures, the framework offers the possibility to shut down ECUs .

ECU failures are detected with periodic heartbeats and watchdogs. Each ECU has a run-
ning service to offer its heartbeat, whose periodic event is subscribed by the watchdogs
of other ECUs.
Figure 2.4 shows our simulation framework performing the simulation of the example

from Figure 2.3, which has been described in Subsection 2.3.3.6. From the CPU uti-
lization on the three ECUs and the status information shown, it can be observed that
tn2 was shut down on ECU e2 and instead ts1 has been restarted, which was formerly
running on ECU e3.

2.3.4.2 Results

To evaluate our agent-based approach we used a simulation setup of 6 ECUs and 25
applications, of which each consisted at least of ten tasks. We used the OpenDSE
framework [72] to generate synthetic applications with workloads based on typical auto-
motive applications. All applications had a period of 10 ms and the message sizes were
set to 1500 bytes. The link speed of all links was set to 100 Mbit/s. To obtain feasible
mappings in the initial mapping process, the combined CPU usage of all applications
was set to 90% of the available system resources. We equalized the sum of required
computational resources c(t) within each application to obtain a better comparison. Al-
though the actual workload is varied with a random distribution at run-time, we use
the required computational resources c(t) as the worst-case estimation for our allocation
and reservation process.
Each configuration was run 50 times and the results (Figure 2.5 and Figure 2.6) show

the corresponding mean values and standard deviation. We conducted the simulations
with an Intel Xeon Gold 6130 CPU consisting of 16 cores running at 2.1 GHz and
128 GB of Random-Access Memory (RAM). The simulations were run for a simulation

37

2 Fail-Operational Automotive Architecture

0 1 2 3 4 5 6
0

20

40

60

80

100

Number of failed ECUs Nf

Q
oS

S
[%

]
@
P
S
=

24
%

None Deg Deg+Rec

Figure 2.5: Simulated results with |A| = 25, ∀a ∈ A : |Ta| ≥ 10, |E| = 6, PS = 24% and 50
runs per configuration. Our agent-based approach using both degradation and
reconfiguration significantly improves the percentage of operational safety-critical
applications QoSS and the amount of ECU failures tolerated by the safety-critical
applications.

time of 6000 ms. To simulate the failures we successively shut down a random ECU
every 1000 ms. On average a single simulation run with a setup of 6 ECUs and at least
250 tasks took about 119.7 s on one of the cores.

For our evaluation we define the metric

QoSS(f) =
|AS,f |
|AS|

, f ∈ [0; |E| − 1] (2.3)

where AS,f is the set of safety-critical applications which are running after the failure f
and QoSS(f) the percentage of operational safety-critical applications after the failure f .

Similar, we use the notation AN,f and QoSN(f) =
|AN,f |
|AN | for the non-critical applications.

Furthermore, we define PS = AS

A
as the percentage of safety-critical applications in the

system.

Our simulation results show that the amount of tolerated ECU failures increases sig-
nificantly with our agent-based approach using both degradation and reconfiguration
(Figure 2.5). In this scenario, the first degradation of the safety-critical system occurs
in the majority of the cases after the fifth ECU failure compared to one failure toler-
ated by the approach without reconfiguration and zero failures tolerated without any
replication.

Furthermore, we can observe that with an increasing percentage PS of safety-critical
applications in the system, fewer failures can be tolerated until a safety-critical appli-
cation fails (Figure 2.6a). This is plausible as an increasing amount of safety-critical
applications have to share the same amount of resources. It can be also noticed that
configurations with higher PS reach a QoSS close to 0% earlier while there would still
be resources available. This comes from the fact that with more safety-critical tasks in
the system, less passive task agents are able to reserve resources. Once a passive task

38

2.3 Agent-Based Graceful Degradation

0 1 2 3 4 5 6
0

20

40

60

80

100

a) Number of failed ECUs Nf

Q
oS

S
[%

]

PS = 24% 32% 40% 48%

0 1 2 3 4 5 6
0

20

40

60

80

100

b) Number of failed ECUs Nf

Q
oS

N
[%

]

Figure 2.6: Simulated results with |A| = 25, ∀a ∈ A : |Ta| ≥ 10, |E| = 6 and 50 runs
per configuration. With an increasing percentage of safety-critical applications
PS in the system, the percentage of operational safety-critical applications QoSS

decreases earlier, and fewer ECU failures can be tolerated by the safety-critical
system. There is no measurable impact of PS on the percentage of operational
non-critical applications QoSN .

agent is unable to reserve sufficient resources it is shut down and will not be restarted.
Thus, even if resources would become available with the shutdown of other safety-critical
applications after the next ECU failure, no new passive task agents are started.
There is no observable impact of PS on the percentage of operational non-critical

applications QoSN (Figure 2.6b) as the curves behave relatively similarly. We explain
this with the fact that the tasks of an application are distributed in the system and that
an ECU failure leads to a high probability of the shutdown of multiple applications. This
effect overlaps the number of applications that are being shut down due to degradation.
We conclude that in a system with highly distributed tasks, the degradation has little
impact on QoSN(f) as the non-critical applications would fail nevertheless.
Overall, the results indicate that our presented approach is able to significantly im-

prove the tolerance of safety-critical applications against ECU failures. This improve-
ment depends on the percentage of resources allocated by all safety-critical applications
in the system.

2.3.5 Summary

In this section we have introduced an agent-based approach utilizing graceful degrada-
tion to ensure the fail-operational behavior of safety-critical automotive applications.
The system finds task mappings and activations at run-time and is able to predict if
the fail-operational behavior of an application can be guaranteed. Furthermore, the
agent-based system is able to reconfigure itself after ECU failures and re-establish fail-
operational behavior. In an experimental evaluation, we have shown that the number of
tolerated ECU failures until a safety-critical application fails, can be improved signifi-
cantly without using additional hardware resources. In the following section, we extend
this approach to scheduling algorithms to allow a performance analysis of the system
such that timing guarantees can be given to applications.

39

2 Fail-Operational Automotive Architecture

2.4 Predictable Timing Behavior 3

The main challenge for a dynamic and decentralized system, as presented in Section 2.3,
is to achieve a predictable system behavior. Most safety-critical applications have to
meet real-time requirements, where a complete application execution has to finish within
a deadline. Therefore, it is essential for a fail-operational architecture to ensure that
timing constraints are respected not only by the actively running part of the application
but also by the backup solution to which the system will switch during a failover.

However, no approach yet ensures a predictable timing behavior of gracefully degrad-
ing systems where passive task instances are activated after a failure. To achieve a
fail-operational behavior, the timing constraints must be met under any circumstance.
Finding a new task binding after a failure is unrealistic as the backup solution must be
available immediately. Thus, an application binding can only be considered feasible if
the deadline can be met after restarting any passive task instances and a viable backup
solution is available for any possible failure.

In this section, we extend our graceful degradation approach from Section 2.3 to a
scheduling approach to enable a further timing analysis of the system. To provide real-
time guarantees, performance analysis has to be based on a composable system such that
the interference between applications can be bounded [17]. The composable architecture
allows us to estimate an upper bound of the execution time for active and passive tasks
once they are started. Based on this approach, we present our performance analysis of
a gracefully degrading system, which evaluates if an application with a given mapping
adheres to timing constraints and considers passive task instances. Furthermore, we
extend our agent-based approach such that a backtracking algorithm is applied if the
performance analysis of a mapping evaluates negatively. Our approach includes passive
task instances in the mapping search such that a backup solution is available that fulfills
the real-time constraints under any ECU failure.

The mapping approach is intended to be performed while the car is not actively in use
such that most system resources are available for the search. Once the system is stable
and running, the agents do not perform any action, putting no additional strain on the
system resources. Heartbeat messages and watchdogs are monitored during run-time to
detect ECU failures. The solutions found by the mapping approach include valid backup
solutions for critical applications to which a fast failover can be performed after a failure
has been detected. Here, we follow our central hypothesis: a safe state can be reached
when the failure occurs with minimal communication and computation. While we cover
the topic of timing behavior in this section, a failover scenario is a unique scenario
during which the system has to switch to a new, stable, and valid state. We cover the
analysis of the failover time during which no application output might be produced in
Chapter 3. After a failover has been performed, safety-critical applications can remain
operational. However, the fail-operational behavior must be re-established to ensure a
safe continuation. Depending on the remaining resources, re-mapping the applications
could be performed during a safe halt in a parking space.

3Major parts of this section have been published in [29].

40

2.4 Predictable Timing Behavior

In this section, we make the following contributions:

• We analyze related work in Subsection 2.4.1 and provide an overview of related
approaches in the field of predictable timing behavior. We conclude that no work
allows a predictable timing or failover analysis of distributed gracefully degrading
systems.

• We introduce and adapt a state-of-the-art performance analysis based on compos-
able scheduling in Subsection 2.4.2.

• We present our performance analysis for fail-operational systems, which supports
a gracefully degradable system behavior in Subsection 2.4.3. This analysis also
considers backup solutions and can evaluate whether the worst-case end-to-end
application latency can still meet the deadline after switching to a backup solution
during a failover. Furthermore, we introduce our gracefully degrading scheduling
scheme.

• We present our agent-based run-time mapping procedure in Subsection 2.4.4 using
our performance analysis to find feasible mappings that meet real-time require-
ments. Our approach includes passive tasks in the search to ensure that all backup
solutions meet the real-time constraints. Here, we also introduce three strategies
that can strongly influence the degradation behavior. The system can be reconfig-
ured after any failure to re-establish the fail-operational behavior of safety-critical
applications.

• We evaluate our graceful degradation approach in our simulation framework in
Subsection 2.4.5. Here, we compare our approach to active redundancy by mea-
suring the success rate and resource utilization over multiple experiments. Fur-
thermore, we evaluate and discuss our three allocation and reservation strategies.
Results show that around twice as many critical applications can be mapped onto
the same architecture when using our graceful degradation approach compared to
active redundancy approaches. We conclude that graceful degradation can signifi-
cantly increase the success rate in scenarios where resources are limited if the risk
of losing non-critical functionality in a failure scenario is acceptable.

2.4.1 Related Work

As our work combines aspects from various research areas, we organized the related work
section into four subsections. The topics of fail-operational systems, graceful degrada-
tion, and dynamic mapping are covered in Subsection 2.3.1. In the following, we focus
on existing approaches to predictable timing behavior and failover timing analysis in
literature.
The authors of [17] describe the concepts of predictability and composability, which

can be used to reduce complexity and verify real-time requirements. In composable
systems, applications are isolated to not influence each other, allowing us to verify their

41

2 Fail-Operational Automotive Architecture

timing behavior independently. Furthermore, using formal analysis, lower bounds on
performance can be guaranteed. The work of [74] uses hybrid application mapping to
combine design-time analysis with run-time application mapping. The spatial and tem-
poral isolation techniques and performance analysis are based on the concepts from [17].
At design time, a design space exploration with a formal performance analysis finds
Pareto-optimal configurations. A run-time manager then searches for suitable mappings
of these optimized solutions. In contrast to their work, we extend the scheduling tech-
niques and include passive tasks and messages in the performance analysis to enable
graceful degradation. Furthermore, our application mapping is performed entirely at
run-time with an agent-based approach.
In the real-time mixed-criticality systems community, work has guaranteed reduced

service to low-criticality tasks after switching to a safety mode when a critical task can
not meet its deadline [75]. By contrast, we do not switch between two modes in our
work but only shut down tasks if their resources have been reserved and are claimed by
a critical task. Furthermore, the approaches in the literature mainly do not focus on
distributed systems and do not consider fail-operational aspects.
The authors in [58] present a worst-case timing analysis for hot and passive standby

tasks. However, the topic of graceful degradation is not addressed in this work.
Related to this topic, authors in [70] and [40] have analyzed the timing behavior

of task migration at run-time if a new mapping has to be found. Their deterministic
mapping reconfiguration mechanism identifies efficient migration routes and determines
the worst-case reconfiguration latency. Run-time mechanisms combine offline design
space exploration to find new application mappings and transition predictably to new
configurations. In our work, we do not migrate the tasks to optimize the mapping but
assume that the tasks are already deployed redundantly, making a direct failover possible.
However, our approach ensures that new configurations meet timing constraints, and we
analyze recovery time and failover effects on the timing behavior. In [76], the same
authors and others present a general overview of hybrid application mapping techniques
and composable many-core systems.
In [77], a fail-operational function-specific E/E architecture for brake and steering con-

trol is introduced that supports dynamic configuration. Several simulations are executed
to derive the requirements for failure detection and fault reaction time, against which
the presented architecture is tested. The authors further developed their approach in
[56] by adding a hardware extension to prevent state loss that relies on CAN messages to
communicate its state. They then integrate the architecture into a service-oriented ar-
chitecture. Similarly to this approach, our architecture relies on communication through
a service-oriented middleware. However, we do not rely on extra hardware and use pe-
riodic Ethernet heartbeat messages to detect the state of operation of the hardware
devices.
In [78], the authors target distributed real-time embedded systems and aim to provide

an automated design process for software reconfiguration. To approach this task, they
define several ”mode structures” characterized by a set of structured component types,
each comprising several configuration instances. The transitions from one example to
another are triggered by events related to system constraints or variations in the infras-

42

2.4 Predictable Timing Behavior

tructure. Our work goes beyond the system reconfiguration scope and covers the timing
behavior analysis.
Overall, there has not been any work in predicting timing behavior that considers a

gracefully degrading system architecture. Furthermore, none of the work discussed con-
cerning the timing properties of safety-critical embedded systems has yet covered the
topic of failover timing analysis. For this purpose, we build mainly upon our previous
work in Section 2.3 and the result from [74] to create, for the first time, a comprehensive
approach that enables a safe and efficient fail-operational behavior of time-critical ap-
plications in distributed systems by predictably analyzing the execution time behavior
and allowing a gracefully degrading system behavior.

2.4.2 Performance Analysis

In this subsection, we contribute our concept of performance analysis for distributed
applications based on the work from [74] and [17]. Using this performance analysis, we
present our performance analysis of gracefully degrading systems in Subsection 2.4.3.
Instead of targeting NoC architectures as in [74], we target a distributed electronic
system consisting of multiple ECUs, which are connected via switches and Ethernet
links. The goal of the performance analysis is to find an upper bound for the end-to-
end application latency such that it can be verified whether a mapping adheres to a
timing constraint. Here, we formally introduce the end-to-end application latency in
Subsection 2.4.2.1 and present our derived analytical formulas for the distributed and
composable system. Afterward, we present composable scheduling with our adapted
analytical formulas for task and message scheduling in Subsection 2.4.2.2. Compared
to the work in [74], we chose TDM instead of a Round-Robin (RR) scheme for task
scheduling. The disadvantage of RR scheduling is that the execution latency depends
on the number of other tasks in the schedule. The execution latency might change once
tasks are added to the schedule later. By contrast, when using a schedule based on
TDM, an upper bound of service intervals that tasks can allocate is already predefined,
which can be used for a worst-case estimation of the execution latency. For message
scheduling, we also use time-division multiplexing, where we design the system such
that precisely one Ethernet frame can be sent per slot and assume that all messages
can be sent within one frame. If messages can be split into multiple slots, we refer the
interested reader to [79] and [74].

2.4.2.1 End-to-End Application Latency

For time-critical applications, a mapping can only be considered feasible if the worst-case
end-to-end application latency Lwc(α, ρ) does not exceed a given deadline δ such that
the following constraint has to be met:

Lwc(α, ρ) ≤ δ. (2.4)

A distributed application’s end-to-end latency is influenced by executing computa-
tional tasks t and sending messages m between the tasks. However, task execution and

43

2 Fail-Operational Automotive Architecture

message transmission times will differ between each iteration. This highly depends on
the paths in a program and interference caused by other applications executed concur-
rently in the system. The interference time is mainly influenced by the scheduling and
admission algorithms used for the CPU, the network infrastructure, and other shared
resources. The worst-case end-to-end execution latency Lwc(α, ρ) is determined by the
critical path as

Lwc(α, ρ) = max
∀path∈paths(GA(V,E))

PL(path, α, ρ), (2.5)

where the critical path is the path through an application with the highest aggregated
latency. The path latency PL(path, α, ρ) itself can be calculated as

PL(path, α, ρ) =
∑

∀t∈path∩T

TL(t, α(t)) +
∑

∀m∈path∩M

CL(m, ρ(m)), (2.6)

by summing up all task latencies TL(t, α(t)) and communication latencies CL(m, ρ(m))
of tasks and messages which lie in this path. To predictably calculate these worst-case
task latencies TL(t, α(t)) and worst-case communication latencies CL(m, ρ(m)), it is re-
quired to analytically determine an upper bound. To reduce complexity, composability
is required to ensure that applications have only a bounded effect on each other. Well-
known scheduling approaches such as RR or TDM temporally isolate task execution or
message transmission on a resource.
Figure 2.7 presents an exemplary mapping of a non-critical application with annotated

worst-case task and communication latencies. The path latencies for the two paths
p0 = (t0 −m0 − t1) and p1 = (t0 −m1 − t2) in the application graph can be calculated
as PL(p0, α, ρ) = 30 ms and PL(p1, α, ρ) = 35 ms. The critical path p1 leads to a
worst-case end-to-end application latency of Lwc(α, ρ) = 35 ms. With a deadline of
δ = 40 ms, Equation 2.4 would be still fulfilled.

2.4.2.2 Composable Scheduling

Using a weighted RR scheme, the processing time of a CPU can be partitioned into
service intervals SI with a fixed time duration τSI . In a RR schedule, each task is
executed for the same amount of time and is put at the end of a waiting queue after
the execution such that every task gets an equal amount of time for execution. An
additional weight would then determine how many service intervals a task is executed,
but tasks would still be put back at the end of the waiting queue after the execution.
This approach has the slight disadvantage that the interference time changes with the
number of tasks scheduled on the CPU. Adding another task to a schedule would increase
the waiting time for the tasks already in the schedule. Therefore, an analysis of the
worst-case end-to-end latency would be only possible if the binding of all applications
is known. However, we would like to allow a partitioned analysis, where applications
can be mapped and analyzed independently. Instead, defining a maximum available
number of service intervals SImax beforehand would provide a guaranteed bound for the
time a task would spend in the waiting queue. Using a limited number of time slots is

44

2.4 Predictable Timing Behavior

TL(t0,α) = 10ms

TL(t1,α) = 10ms

TL(t2,α) = 10ms

CL(m0,ρ) = 10ms
CL(m1,ρ) = 15ms

s2s1

e0 e3

e1

s0

e2

t0

t1

m0

t0

t1

L(α,ρ)

t2

m1

t2

α(t0)

α(t1)

α(t2)

Figure 2.7: Exemplary mapping of a non-critical application onto a hardware architecture
consisting of four ECUs e0, e1, e2, and e3, and three switches s0, s1, and s2. The
green arrows indicate the binding of a task to an ECU. The message routings are
marked in the color of the corresponding message in the application graph. There
are two paths p0 = (t0−m0− t1) and p1 = (t0−m1− t2) in the application graph.
Taking the task and communication latencies from the figure, the path latencies
can be calculated as PL(p0, α, ρ) = 30 ms an PL(p1, α, ρ) = 35 ms. With p1 as
the critical path, the worst-case end-to-end application latency can be calculated
as Lwc(α, ρ) = 35 ms. With a deadline of δ = 40 ms, the constraint in Equation
2.4 would be met.

the same principle as in TDM scheduling with an Asynchronous Time Division (ATD),
where messages would be guaranteed several time slots but not a fixed time slot, as [74]
has used for communication scheduling.

Task Scheduling In general, the task latency TL(t, α(t)) consists of the actual task
execution time TLexec(t, α(t)) and the task interference time TLinter(t, α(t)), which a
task spends waiting e.g. due to scheduling:

TL(t, α(t)) = TLexec(t, α(t)) + TLinter(t, α(t)). (2.7)

Thus, the worst-case task execution time without interference TLexec(t, α(t)) is a mul-
tiple of the service interval time τSI such that we can calculate it using the WCET
W (t, α(t)) as

45

2 Fail-Operational Automotive Architecture

TLexec(t, α(t)) = ⌈
W (t, α(t))

τSI
⌉ · τSI . (2.8)

Given a number of service intervals SIa(t) that are allocated for a task t and a defined
maximum number of service intervals SImax we can determine the worst-case interference
time TLinter(t, α(t)) as

TLinter(t, α(t)) = ⌈
W (t, α(t))

|SIa(t)| · τSI
⌉ · (SImax − |SIa(t)|) · τSI . (2.9)

Here, SImax − |SIa(t)| reflects the number of service intervals a task would have to
wait until it is executed again. The first factor represents how often the task would have
to wait until its turn in the worst case. An exemplary task schedule with the derivation
of the worst-case task latency TL(t, α(t)) is presented in Figure 2.8.

t0

|SIa(t0)|

SImax - |SIa(t0)|

(a) Task schedule with allocation.

t0t0

Trigger

TLinter(t0,α) = 8τSI

TL(t0,α) = 10τSI

TLexec(t0,α) = 2τSI

(b) Derivation of the worst-case task latency.

Figure 2.8: Example of a task schedule with a maximum amount of allocatable service in-
tervals of SImax = 5. One service interval |SIa| = 1 is allocated for the task t0.
With a WCET of TLexec(t0, α) = W (t0, α) = 2τSI , two full execution cycles are
required in the worst case for the task to finish execution. With the correspond-
ing worst-case task interference time of TLinter(t0, α) = 8τSI , the worst-case task
latency can be calculated as TLinter(t0, α) = 10τSI .

Message Scheduling We assume that messages are sent over ethernet links instead
of the work of [74], where smaller links connect multiple processing elements on a NoC
architecture. For the worst-case communication latency, we can proceed likewise as for
the task scheduling by using an ATD schedule to calculate the worst-case communication
latency CL(m, ρ) with the worst-case message transmission time CLtrans(m, ρ) and the
worst-case communication interference time CLinter(m, ρ):

CL(m, ρ(m)) = CLtrans(m, ρ(m)) + CLinter(m, ρ(m)) (2.10)

For the message scheduling, we use the notation SL to describe the time frame of a
slot interval. We design the system so that one ethernet frame with a maximum frame
size of 1518 bytes can be sent in one time slot. We assume that message sizes do not
exceed the Maximum Transmission Unit (MTU) of an ethernet frame such that only

46

2.4 Predictable Timing Behavior

one slot has to be allocated per message. Using this, we can calculate the transmission
time of a message over one ethernet link CLtrans(m, l) as

CLtrans(m, l) = τSL. (2.11)

To calculate the interference time of a message over one link CLinter(m, l), we assume
that a maximum number of slots SLmax is defined. As the transmission of the message
requires only one slot, a message has to wait one transmission round in the worst case:

CLinter(m, l) = (SLmax − 1) · τSL. (2.12)

Combining these two worst-case latencies, we can calculate the worst-case communi-
cation latency CL(m, l) of a message m over one link l as

CL(m, l) = CLtrans(m, l)+CLinter(m, l) = (SLmax−1) ·SL+SL = SLmax ·τSL. (2.13)

This approach allows us to analyze the worst-case communication latency over each
link individually as

CL(m, ρ(m)) =
∑

∀l∈ρ(m)

CL(m, l) (2.14)

Under the assumption that all links in the system are designed equally, the communi-
cation latency only depends on the number of links that the message m is passing on its
route ρ, further denoted as hops(ρ(m)), which allows us to further simplify the formula
to

CL(m, ρ(m)) = hops(ρ(m)) · SLmax · τSL. (2.15)

Our formulas are based on the assumption that a message requires exactly one slot to
be transmitted. If the system should be designed granularly such that a message could
require multiple slots for transmission, we refer the interested reader to [79] and [74].

2.4.3 Performance Analysis of Gracefully Degrading Systems

Using a state-of-the-art analysis presented in Subsection 2.4.2 it is possible to analyze
whether a configuration of an application consisting of active tasks is meeting a deadline
δ. However, we need to ensure that critical applications can still continue full operation
after any ECU failure without violating Equation 2.4. Here, we add passive tasks as a
backup solution that are started once the active task is affected by a failure. Furthermore,
we are enabling a gracefully degrading behavior such that resources allocated by non-
critical applications can be used by critical applications if required. The advantage of
using our passive backup solution compared to active redundancy is that no overhead is
added regarding the required computational power during operation.

47

2 Fail-Operational Automotive Architecture

Theoretically, searching for a new valid configuration that satisfies the timing con-
straint would be possible after an ECU failure occurred. However, this approach would
have multiple disadvantages accompanied by highly unpredictable behaviors. First, it
can not be guaranteed that sufficient resources are available for task computations and
message transmissions after a failure, even if a degradation approach is used. The ECU
failure reduces the system-wide resource pool such that not every application can find
sufficient resources. Even if the system was over-designed, the subsequent failure would
increase the uncertainty further. Second, even if sufficient resources were still available,
it is uncertain if a mapping could be found that would satisfy the timing constraint.
Third, finding a valid solution could take a lot of time. Even if a valid solution was
available, finding one could take an unknown amount of time. Although the unavail-
ability of an application might be tolerable for a certain amount of time (FTTI) during
a failover, it would not be predictable how long it would take to find a solution, and
most likely it would not be found in time. Fourth, it would be unpredictable which
non-critical applications would be shut down due to degradation as this would be only
decided after the occurrence of the failure. Most importantly, it is uncertain if a solution
can be found in time yet if one exists, which is unacceptable for safety-critical appli-
cations. Furthermore, it would be at least desirable to also allow a more predictable
degradation behavior of non-critical applications.
Therefore, improving uncertainty and achieving a more predictable behavior is neces-

sary. To bypass having to find new solutions after an ECU failure, we have to ensure
that a suitable backup solution is already available for any ECU failure in the system. To
ensure this, we add redundant tasks such that there is at least one instance of each task
available after an ECU failure that has sufficient resources to continue operation and to
communicate with other tasks. Here, we present our performance analysis of gracefully
degrading systems to verify that these backup solutions always meet timing constraints
in Subsection 2.4.3.1. This solution allows predictable system behavior as it is known as
a valid backup solution that meets resource and timing constraints before any failure is
available and allows a quick switch to this backup solution. Last, we present our com-
posable scheduling of gracefully degrading systems in Subsection 2.4.3.2, allowing us to
independently derive worst-case latencies while enabling a gracefully degrading system
behavior. This solution also allows us to predict in which failure scenario a non-critical
application will be shut down due to graceful degradation.

2.4.3.1 End-to-End Application Latency

A valid binding needs to ensure that the deadline δ is not only met by the active part
of the application but also in case any backup solutions have to be used in a failure
scenario. Activating passive task instances could lead to a new critical path in the
application, which might not meet the deadline δ. The worst-case end-to-end application
latency Lwc(α, β, ρ, σ) considers not only the worst-case end-to-end application latency
Lwc(α, ρ) of currently active task instances but also of any possible future configurations,
where passive task instances are activated. To achieve a fail-operational behavior, a valid
mapping of a safety-critical application has to fulfill the following constraints:

48

2.4 Predictable Timing Behavior

Lwc(α, β, ρ, σ) ≤ δ. (2.16)

As any activation of a passive task instance could potentially lead to a violation of
this constraint, any path through the instance graph GB(V,E), including passive task
instances t ∈ Tb and backup messages m ∈Mb, has to be considered. Therefore, we can
define the worst-case end-to-end application latency Lwc(α, β, ρ, σ) as the critical path
through the instance graph GB(V,E), which also includes all possible backup solutions:

Lwc(α, β, ρ, σ) = max
∀path∈paths(GB(V,E))

PL(path, α, β, ρ, σ), (2.17)

The path latency PL(path, α, β, ρ, σ) depends not only on the worst-case latency of
active task instances TL(t, α(t)) and the worst-case communication latency of active
messages CL(m, ρ(m)), but also on the potential worst-case latency of passive task in-
stances TL(t, β(t)) and the possible worst-case latency of backup messages CL(m,σ(m)),
such that it can be calculated as

PL(path, α, β, ρ, σ) =
∑

∀t∈path∩Ta

TL(t, α(t)) +
∑

∀t∈path∩Tb

TL(t, β(t))+∑
∀m∈path∩Ma

CL(m, ρ(m)) +
∑

∀m∈path∩Mb

CL(m,σ(m)).
(2.18)

can From this formula, it can be observed that it is also necessary to find a bound on
the potential worst-case latency of passive task instances TL(t, β(t)) and the potential
worst-case latency of backup messages CL(m,σ(m)).
For illustration, let us assume that a deadline δ = 35 ms is given for the safety-critical

application as presented in Figure 2.9. When disregarding passive task and message
instances and using the annotated worst-case latencies from the figure, state-of-the-art
performance analysis as presented in [74] would conclude a worst-case end-to-end appli-
cation latency of Lwc(α, ρ) = 30ms which would meet the deadline δ = 35ms. However,
in a failure scenario where t0,a is affected by a failure and t0,b activated, the deadline
can no longer be met, leading to a configuration that violates the timing constraint.
By contrast, our performance analysis takes passive task and messages instances into
account and, therefore, can identify the highlighted critical path p2 = (t0,b−m0,ba− t1,a)
with a worst-case path latency of PL(p2, α, β, ρ, σ) = 40 ms. A violation of the timing
constraint with a worst-case end-to-end application latency of Lwc(α, β, ρ, σ) = 40 ms
and the deadline δ = 35 ms is visible. Here, our performance analysis can quickly
evaluate different configurations and help design automation algorithms to find a valid
configuration.

2.4.3.2 Composable Scheduling of Gracefully Degrading Systems

We extend state-of-the-art scheduling, such as presented in [74] by introducing the con-
cept of graceful degradation. For our analysis and experiments, we apply graceful degra-

49

2 Fail-Operational Automotive Architecture

TL(t0,a,α) = 10 ms

TL(t1,a,α) =
10 ms

CL(m0,bb,σ) = 15 ms

CL(m0,ba,σ) = 20 ms
CL(m0,aa,ρ) =

10 ms

s2s1

t0,a t0,b

t1,a

s0m0,aa

m0,ab

t0,a

m0,bb

m0,bb

t0,b

t1,a t1,b

α(t0,a)

α(t1,a)

β(t1,b)

β(t0,b)

t1,b

TL(t0,b,β)= 10 ms

TL(t1,b,β)= 10 ms

CL(m0,ab,σ) =
 15 ms

δ = 35 ms
L(α,ρ) = 30 ms
L(α,β,ρ,σ) = 40 ms

L(α,ρ) < δ
L(α,β,ρ,σ) > δ

Figure 2.9: Exemplary mapping of a safety-critical application onto a system architecture
with annotated worst-case latencies. When using state-of-the-art performance
analysis and disregarding the passive task and message instances, the worst-
case end-to-end application latency Lwc(α, ρ) = 30 ms would meet the deadline
δ = 35 ms. However, in a failure scenario where t0,a was affected by a failure
and t0,b activated, the deadline could no longer be met, leading to a configuration
that violates the timing constraint. Our performance analysis takes the high-
lighted critical path p2 = (t0,b −m0,ba − t1,a) with a worst-case path latency of
PL(p2, α, β, ρ, σ) = 40 ms into account leading to a worst-case end-to-end appli-
cation latency of Lwc(α, β, ρ, σ) = 40 ms. A timing constraint violation with the
deadline δ = 35 ms can be identified here. Therefore, our performance analysis
can quickly evaluate different configurations and help design automation algo-
rithms to find a valid configuration.

dation to CPU resources, although the concept can also be used to link resources. Ap-
plied to our composable schedules, service intervals can be allocated and reserved for a
task. A reservation indicates that the corresponding service interval is currently not in
use but might be used and turned into an allocation once the backup instance is used.
Service intervals that can be reserved are empty service intervals that have not been allo-
cated yet or service intervals already allocated by non-critical applications. The alloca-
tion of slots works the other way; non-critical applications can allocate service intervals
that are free or that are already reserved by critical applications. On the other hand,
critical applications can only allocate completely free service intervals. The graceful
degradation approach is applied if a non-critical application allocates a service interval
and is also reserved by a critical application. In case there is a failure in the system and
critical passive task instances have to be started to mitigate a failure, the reservation of
the resources will be turned into an active allocation, and any non-critical tasks which
formerly held an allocation of the corresponding slots are shut down. Depending on

50

2.4 Predictable Timing Behavior

the application, it could then be decided if the degraded non-critical application keeps
running in a degraded mode or is completely shut down.

tn

|SIr(t0,b)|

SImax - |SIr(t0,b)|

t0,b

(a) Task schedule with reserva-
tion and allocation.

sched
tn

|SIr(t0,b)|

SImax - |SIr(t0,b)|

t0,b

(b) Non-critical task tn being
shut down.

t0,b

|SIa(t0,b)|

SImax - |SIa(t0,b)|

(c) Reservation turned into an
allocation.

Figure 2.10: Example of a task schedule with a maximum amount of allocatable (lower)
and reservable (upper) service intervals of SImax = 5. One service interval
|SIr| = 1 is reserved for the critical task instance t0,b. The same service interval
is allocated by the non-critical task instance tn. In a failure scenario where t0,b
has to be activated, tn is shut down in the first step. Afterward, t0,b takes over
the allocation of the service interval.

For the latency analysis of the backup solutions, it is not relevant whether a reserved
slot is also allocated and graceful degradation is applied as the reservation will be turned
into an allocation. This procedure allows us to predict before the occurrence of any
failure if a valid backup solution can be found but also allows a predictable behavior of
the graceful degradation approach. Furthermore, we can reuse our analytical formulas
from Subsection 2.4.2.2 to calculate TL(t, β(t)) based on the number of reserved service
intervals SIr(t) and the binding of the passive task instance β(t):

TL(t, β(t)) = TLexec(t, β(t)) + TLinter(t, β(t)), (2.19)

TLexec(t, β(t)) = ⌈
W (t, β(t))

τSI
⌉ · τSI , (2.20)

TLinter(t, β(t)) = ⌈
W (t, β(t))

|SIr(t)| · τSI
⌉ · (SImax − |SIr(t)|) · τSI . (2.21)

To calculate the worst-case communication latency CL(m,σ(m)) of backup message
instances, under the same assumptions as in Subsection 2.4.2.2, we can reuse Equation
2.15 based on the routing of the backup message instances σ:

CL(m,σ) = hops(σ(m)) · SLmax · τSL. (2.22)

Figure 2.10 presents an exemplary task schedule with reservations and allocations. The
upper service intervals indicate a reservation, while the lower service intervals indicate

51

2 Fail-Operational Automotive Architecture

an allocation of the same service interval. In this example, the first service interval is
allocated by the non-critical task tn and reserved by the critical task instance t0,b. In a
failure scenario where the task instance t0,b is activated to serve as a backup solution, the
non-critical tn first loses its allocation and, thus, is degraded. Afterward, the reservation
of the task instance t0,b is turned into an active allocation such that this resource can
now be used exclusively by the critical task instance.
The decision of which service interval should be allocated or reserved is not straight-

forward. When a completely free service interval is always taken first, then the schedule
might run out of service intervals earlier, so insufficient resources might be left for other
tasks. On the other hand, when trying to overlap service intervals as much as possible
but with more than sufficient service intervals being available for all tasks, an avoidable
degradation might occur in a failure scenario. We present and discuss three different al-
location and reservation strategies in Subsection 2.4.4.4 and evaluate them in Subsection
2.4.5. Before that, we introduce our agent-based mapping approach and the components
required to implement such a gracefully degrading behavior at run-time in the following
section.

2.4.4 Agents - Finding Feasible Solutions at Run-Time

We use a dynamic agent-based approach to perform mapping and constraint checking at
run-time. In the following, we describe the components involved in the mapping process
and the algorithms used by the agents. Each agent controls one task instance and is
responsible for allocating resources and meeting constraints. Together, the agents enable
a decentralized control without a single point of failure. This concerns both active and
passive task instances. The agents can communicate in a predefined order with each
other to manage the mapping process of all task instances of an application. To dynam-
ically activate, deactivate, and move tasks on the platform at run-time, we implemented
a middleware based on SOME/IP [36]. This middleware includes a decentralized service
discovery to dynamically find services in the system and a publish/subscribe scheme to
publish and subscribe to events.
We assume that most system resources are available for the search and that the map-

ping approach is performed while the car is not actively used. Once a stable mapping
is found, the agents do not perform any action and, thus, do not require any additional
resources. As backup mappings are already found and readily available, we follow our
central hypothesis. When the failure occurs, a safe state can be reached with a mini-
mum amount of communication and computation. After a failover, the fail-operational
behavior has to be re-established to ensure safe travel, as further failures could lead to
potential hazards. A re-mapping of the applications has to be performed during a safe
halt.
Our system to find feasible mappings at run-time consists mainly of agents and re-

source managers. Resource managers manage the resources associated with an ECU or
switch. The resource managers handle the allocation or reservation requests and assign
the corresponding service intervals or slots. By assigning a slot, a resource manager
implicitly decides how the system will be degraded in a failure scenario and which task

52

2.4 Predictable Timing Behavior

instances will lose resources. Therefore, changing the algorithm for assigning the slots
can impact the degradation behavior and the success rate of finding a mapping. An
agent is responsible for finding a suitable mapping for its task that meets all mandatory
constraints by allocating and reserving resources at the resource manager or moving to
another ECU. Furthermore, each agent verifies if an application-wide constraint, such
as the end-to-end application latency, is still met. As a sequential mapping order is
required to fulfill or verify these constraints, agents can communicate with each other
to synchronize the mapping flow.

In the following, we first provide an overview and formalize the constraints that have
to be solved to consider a given mapping as a valid solution in Subsection 2.4.4.1.
We then present a solution for evaluating the timing constraints at run-time using our
performance analysis in Subsection 2.4.4.2. Afterward, we present the mapping process
of an application using agents in Subsection 2.4.4.3. Here, we first detail in which order
the agents find a mapping for their task to meet all constraints. Afterwards, we present
a code listing and describe how the search space is searched for a valid solution by the
agents, which solves all constraints using a backtracking algorithm. Furthermore, we
describe the rAfterwardole of resource managers in Subsection 2.4.4.4 responsible for
performing allocations and reservations by choosing the corresponding service intervals.
We also present our allocation and reservation strategies that can be used by a resource
manager, which has a direct effect on how the system will be degraded. Last, we describe
the recovery and reconfiguration process with the immediate failure reaction to ensure
a safe fail-operational behavior in Subsection 2.4.4.5.

2.4.4.1 Constraints

The following constraints must be respected to consider any found mapping a valid
solution. Agents or resource managers respect these constraints at run-time as described
below.

C.1 The application-wide worst-case end-to-end application latency must meet the
deadline δ:

Lwc(α, β, ρ, σ) ≤ δ (2.23)

C.2 An active task instance ta and its corresponding passive task instance tb may not
be mapped onto the same ECU as this would contradict our fail-operational goal:

α(ta) ̸= β(tb). (2.24)

C.3 The number of allocated service intervalsNSI,a(e), reserved service intervalsNSI,r(e)
and service intervals with both allocation and reservation NSI,ar(e) of an ECU e
must not exceed the number of maximum available service intervals SImax:

NSI,a(e) +NSI,r(e) +NSI,ar(e) ≤ SImax (2.25)

53

2 Fail-Operational Automotive Architecture

C.4 The number of allocated slots NSL,a(l), reserved slots NSL,r(l) of a link l must not
exceed the number of maximum available slots SLmax:

NSL,a(l) +NSL,r(l) ≤ SLmax (2.26)

C.5 Service intervals that are allocated by a critical task t must not be allocated or
reserved by any other task:

∀SI ∈ SIa(t) ∧ ∀t′ ∈ T : SI ̸∈ SIa(t
′) ∧ SI ̸∈ SIr(t

′) (2.27)

C.6 Service intervals which are reserved by a critical task t must not be allocated or
reserved by another critical task but may be allocated by a non-critical task:

∀SI ∈ SIr(t) ∧ ∀t′ ∈ Tc : SI ̸∈ SIa(t
′) ∧ SI ̸∈ SIr(t

′) (2.28)

C.7 Service intervals which are allocated by a non-critical task t must not be allocated
by any other task but may be reserved by a critical task:

∀SI ∈ SIa(t) ∧ ∀t′ ∈ T : SI ̸∈ SIa(t
′) (2.29)

C.8 Slots which are allocated or reserved by a message m must not be allocated or
reserved by another message:

∀SL ∈ SLa(m) ∧ ∀m′ ∈M : SL ̸∈ SLa(m
′) ∧ SL ̸∈ SLr(m

′) (2.30)

∀SL ∈ SLr(m) ∧ ∀m′ ∈M : SL ̸∈ SLa(m
′) ∧ SL ̸∈ SLr(m

′) (2.31)

Subsection 2.4.4.2 describes how solutions that respect Constraint C.1 can be solved
at run-time by splitting the validation problem into smaller sub-problems the agents
solve. Constraint C.2 is respected by constraining the mapping order of the agents and
by limiting the search space accordingly, as described in Subsection 2.4.4.3. Constraints
C.3 to C.8 are implicitly respected by the resource manager when assigning service
intervals and slots to task and message instances as described in Subsection 2.4.4.4.

2.4.4.2 Run-Time Timing Constraint Solving

As described in Subsection 2.4.3.1, the application graph’s critical path must be identified
to verify whether Constraint C.1 can be met. Instead of verifying the timing constraint
once all task instances are mapped, we continuously evaluate whether the application
meets the timing constraint with the task instances mapped thus far. This is done
at run-time as the mapping of task instances and their predecessors is not known at
design time. We split the bigger problem of verifying every single path into smaller sub-
problems solved by the agents such that the constraint is continuously being verified, and
the search can be interrupted earlier if the mapping process is running into a dead-end.

54

2.4 Predictable Timing Behavior

As only the critical path is of interest, each agent calculates and stores the worst-case
path latency to its task Lwc(t, α, β, ρ, σ) as

Lwc(t, α, β, ρ, σ) = max
∀tp∈pred(t)

(Lwc(tp, α, β, ρ, σ) + CL(mtp−t, ρ, σ)) + TL(t, α(t), β(t)).

(2.32)
Here, an agent requires only the worst-case path latencies Lwc(tp, α, β, ρ, σ) of its

predecessor tasks tp and the corresponding worst-case communication latencies to its
own task CL(mtp−t, ρ, σ)) together with the worst-case task latency TL(t, α(t), β(t)).
The maximum of all paths from preceding tasks tp to this task t is then the worst-case
path latency to task Lwc(t, α, β, ρ, σ). Accordingly, instead of verifying Constraint C.1
once all tasks are mapped, each agent can verify the following constraint on its own:

Lwc(t, α, β, ρ, σ) ≤ δ (2.33)

This has the advantage that if multiple sink tasks exist in an application graph, each
agent can verify the constraint independently. Furthermore, suppose any tasks can
not meet the constraint during the mapping process. In that case, the process can be
stopped, and a backtracking algorithm can be applied, saving the agents from evaluating
invalid solutions.

2.4.4.3 Agent

In our work, each task instance is assigned to an agent responsible for finding a mapping
by allocating and reserving resources at resource managers and coordinating the mapping
process with other agents. In the following, we present a pre-defined mapping order in
which the agents of an application find a mapping. Afterward, we describe the search
space exploration of an agent using a code listing. Last, we present the backtracking
approach agents require to explore different solutions.

Mapping Order For the mapping process of the tasks onto the ECUs, a predefined
mapping flow is required to ensure that constraints are met and only valid mappings are
generated. Theoretically, it would be preferable to map all tasks in parallel. However,
there are limitations to the level of parallelism due to constraints and their verification
at run-time. To adhere to Constraint C.2, a sequential mapping flow between active and
passive task instances is required to avoid mapping both task instances onto the same
ECU. Therefore, we define that active task instances must be mapped before passive
task instances. Second, to allocate and reserve resources for communication, the routing
from a predecessor task to its successor has to be known. We decided that the succeeding
tasks allocate and reserve the resources for all incoming messages. Consequently, a task
instance can only be mapped onto an ECU once all preceding task instances are mapped.
This sequential mapping order is also required to perform the run-time constraint solving
described in Subsection 2.4.4.2.

55

2 Fail-Operational Automotive Architecture

t0,a t0,b

t1,a t1,b t2,a t2,b

t3,a t3,b

(a) Task instance graph.

t0,a

t0,b

t1,a

t1,b

t2,a

t2,b

t3,a

t3,b

(b) Mapping flow.

Figure 2.11: An exemplary task instance graph with the corresponding mapping flow. Passive
task instances are mapped after active task instances. Active task instances have
to wait until the passive task instances of their predecessors are mapped. As the
task instances of t1 and t2 do not depend on each other, they can be mapped in
parallel. However, the active task instance of t3 has to wait for both branches
to finish to continue with the mapping process.

Figure 2.11 shows the mapping flow of an exemplary task instance graph consisting
of four tasks. The mapping process starts with the active task instance of the source
task t0,a. All other task instances are initially waiting until they receive a message from
all their mapping predecessors. Once the active task instance has found a mapping,
it will inform its passive counterpart t0,b that it found a valid mapping. The passive
task instance t0,b that has been waiting then finds a mapping itself. It ensures that the
ECU to which the active task instance is mapped is removed from the search space of
the passive task instance. Afterward, the passive task instance informs all active task
instances of directly succeeding tasks. In the example t0,b informs t1,a and t2,a about
a successful mapping. Active task instances might have to wait not only for one but
multiple passive task instances of their preceding tasks depending on the dependencies
in the application graph. In the figure t3,a has to wait for both t1,b and t2,b to finish.
By contrast, neighboring tasks with shared predecessors can search for a mapping in
parallel as they have no direct dependency and open a new branch, as is the case for
the task instances of t1 and t2 in the example. Any task instances belonging to different
branches can also work in parallel. Therefore, the level of parallelism in the mapping
search is bound by the number of branches or the width of the application graph. Tasks

56

2.4 Predictable Timing Behavior

with predecessors in multiple branches reduce the level of parallelism and represent a
bottleneck.

Agent Mapping Once an agent turns to find a mapping, it is its responsibility to
evaluate the mapping options and ensure that resources are allocated and reserved ac-
cordingly. Listing 2.1 shows the pseudo-code for the mapping process of an agent. Each
agent starts in the Wait() function (Line 1), waiting until all predecessors send a signal
that they found a mapping and transmitting their worst-case latencies and mappings.
Afterward, the agent becomes active and is searching for a mapping. At first, the search
space is set up consisting of all available ECUs in the system (Line 6). Then, in case
a passive task instance tb is being mapped, the ECU to which the corresponding ac-
tive task instance ta is mapped is removed from the search space B(tb) to adhere to
Constraint C.2 (Lines 7 and 23):

B(tb) = {e ∈ E|e ̸= α(ta)} (2.34)

To find the most suitable solution, the different options for mapping the task are
evaluated (Lines 8 and 28). Here, the worst-case path latency Lwc(t, e) for each available
ECU e ∈ E is calculated. Afterward, the search space can be filtered for invalid solutions
that do not adhere to Equation 2.4.4.2 and, therefore, would violate Constraint C.1
(Lines 9 and 34). Using a heuristic, the possible solutions are sorted and calculated by
an increasing worst-case latency (Line 10). The agent then tries to allocate resources
for the most fitting solution by sending allocation and reservation requests to resource
managers (Lines 11 and 40). Here, service intervals have to be allocated or reserved
for the executing tasks, and slots allocated or reserved for all incoming messages on the
links on the corresponding routing paths. The resource managers request an agent to
give or reserve a certain amount of service intervals for CPU resources or slots for a
link. The resource manager then executes the allocation or reservation and answers the
agent whether the allocation or reservation could be performed successfully or not. The
resource manager also implicitly decides how the system will be degraded by choosing
the corresponding service intervals for the agent. However, this behavior is entirely
transparent to the agent, and it does not know whether the activation of its passive task
instance will lead to a degradation of another task and vice versa. Multiple strategies of
the resource manager for allocating and reserving resources are described in Subsection
2.4.4.4. Suppose all resources could be successfully allocated and reserved. In that case,
a valid solution has been found such that the agent can update the binding for its task,
move to the corresponding ECU, and inform all succeeding agents about its success
(Lines 18-21).

1 Wait () :
2 α, β,Lwc(tp)← WaitForPredecessors ()
3 FindMapping (α, β,Lwc(tp))
4
5 FindMapping (α, β) :

57

2 Fail-Operational Automotive Architecture

6 E ← GetSearchSpace ()
7 E ← RemoveActiveBindingFromSearchSpace (α ,E)
8 Lwc ← EvaluateSearchSpace (α, β,Lwc(tp), E)
9 E ← Fi l t e rSea rchSpace (Lwc, E)

10 E ← SortSearchSpaceByLatency (Lwc, E)
11 ϵ← TrySolut ions (E)
12
13 i f ϵ == ∅
14 f o r tp in pred (t) :
15 tp . Backtrack ()
16 Wait ()
17 e l s e :
18 UpdateBindings (α, β, ϵ)
19 Lwc(t)← Lwc(t, ϵ)
20 MoveToECU(ϵ)
21 In fo rmSucces sor s (α, β,Lwc(t))
22
23 RemoveActiveBindingFromSearchSpace (E) :
24 i f t ∈ Tb :
25 E . remove (α(t))
26 re turn E
27
28 EvaluateSearchSpace (α, β,E) :
29 f o r ϵ ∈ E :
30 ρ, σ ← GetRoutings (α, β, ϵ)
31 Lwc(t, ϵ) = max∀tp∈pred(t) (Lwc(tp) + CL(mtp−t, ρ, σ)) + TL(t, ϵ)

32 re turn Lwc, E
33
34 F i l t e rSea rchSpace (Lwc, E) :
35 f o r ϵ ∈ E :
36 i f Lwc(t, ϵ) > δ :
37 E . remove (ϵ)
38 re turn E
39
40 TrySo lut ions (E) :
41 whi l e ϵ ∈ E and not ζ :
42 E . remove (ϵ)
43 ζ ← AllocateAndReserveResources (ϵ) :
44
45 i f not ζ :
46 re turn ∅
47 e l s e :
48 re turn ϵ
49
50 Backtrack () :
51 FreeResources ()
52 I nva l i d a t eSu c c e s s o r s ()
53 FindMapping ()
54
55 Inva l i d a t eSu c c e s s o r s () :
56 f o r ts in succ (t) :
57 ts . I n va l i d a t e ()

58

2.4 Predictable Timing Behavior

58
59 Inva l i d a t e () :
60 FreeResources ()
61 I nva l i d a t eSu c c e s s o r s ()
62 Wait ()

Listing 2.1: Code listing of our agent-based mapping approach.

Backtracking In case either all solutions in the search space have been filtered out
or not sufficient resources could be allocated or reserved for any of the solutions, the
mapping algorithm ran into a dead end. Here, a backtracking algorithm is performed.
The agent informs its predecessor in the mapping flow that no solution could be found
and then goes back into its initial waiting status (Lines 14-16 and 49). The informed
agent then frees all resources it had previously allocated or reserved and the ECU to
which it is currently mapped is removed from the search space. Afterward, this agent has
to in turn inform all other succeeding agents in the mapping flow that its mapping has
been invalidated. This prohibits the succeeding agents in other branches from wasting
time and unnecessarily occupying resources. Even if the other branches were to find a
valid solution, the solution would be based on a mapping of their predecessor that is
no longer valid. Furthermore, they are informed that they have to wait again for their
predecessor in the mapping flow. After invalidating its successors the backtracking agent
tries to find another valid solution (Line 53) and will then again inform its predecessors
about the success. If there is no valid solution left or no other solution can be found, it
will start the backtracking process of its own predecessors.

2.4.4.4 Resource Manager

In the following we describe how an allocation and reservation request of an agent is
performed by a resource manager. Furthermore, we introduce the three allocation and
reservation strategies Random, FreeFirst, and FreeLast and describe their respective
advantages and disadvantages over each other. These three strategies are evaluated in
detail in Subsection 2.4.5.

Resource Allocation and Reservation The resource managers receive a request from
an agent to allocate or reserve a certain amount of service intervals for CPU resources
or slots for a link. It is the job of the corresponding resource manager to execute
the allocation or reservation and to answer whether the allocation or reservation could
be performed successfully or not. During this process, the resource manager decides
which exact service intervals or slots will be allocated or reserved. Here, it ensures that
constraints C.3 to C.8 are met as it is programmed to only operate within these bounds.
This allocation and reservation process also decides how the system will be degraded
in a failure scenario. Subsection 2.4.3.2 describes in detail how a degradation would be
performed on the level of service intervals. Suppose a service interval is reserved by a
critical passive task instance and allocated by a non-critical task instance. In that case,

59

2 Fail-Operational Automotive Architecture

the service interval is automatically assigned to the critical task instance once a failure
occurs. In our system, a critical agent can pass the information in which failure scenarios
this activation should occur. A watchdog then informs the resource manager about any
failures occurring in the system so that it can immediately react. This behavior is
entirely transparent to the agent, and it does not know whether the activation of its
passive task instance will lead to a degradation of another task.

Strategies In the following, we discuss the three strategies we developed to allocate and
reserve resource slots. By default, the resource managers use the Random strategy, which
randomly chooses the service intervals assigned to an allocation or reservation request.
Changing this algorithm can impact the degradation behavior and the success rate of
finding a mapping. In the following, we propose two alternative strategies FreeFirst and
FreeLast for assigning service intervals.
The FreeFirst strategy aims at minimizing the overlap between reservations and al-

locations by assigning service intervals first that have not been allocated or reserved.
Only if no free service interval is available, the algorithm will allocate or reserve other
service intervals. The algorithm has the advantage of reducing the degradation effect as
allocations and reservations overlap as little as possible. The downside is that in sce-
narios where resources are constrained, the algorithm might lead to lower success rates
of finding mappings as fewer free service intervals will be available. On the other hand,
in more relaxed scenarios, it uses all available resources to reduce the degradation effect
with little effect on the success rate.
The FreeLast strategy aims to utilize resources more efficiently by assigning service

intervals that have already been allocated or reserved, maximizing the overlap between
reservations and allocations. The advantage is that even in resource-constrained sce-
narios, the resources are used efficiently so that the success rate of finding mappings is
increased. On the other hand, as the overlap between reservations and allocations is
maximized, there will be a stronger degradation effect in case of a failure scenario. In
scenarios where resources are less constrained, reservations and allocations will overlap
even if additional free service intervals are available, leading to avoidable degradation
effects.
When choosing one of the two opposing strategies, a trade-off must be made between

degradation effect, success rate, and resource efficiency. The FreeLast strategy can lead
to lower resource utilization and higher success rates in scenarios where degradation is
desired or tolerated. In scenarios where many resources are available and degradation
should be avoided as much as possible, the FreeFirst strategy maximizes resource utiliza-
tion to minimize degradation impact. We continue this discussion with our experimental
results in Subsection 2.4.5, which gives further insights into these three strategies.

2.4.4.5 Recovery and Reconfiguration

In a failure scenario with a critical application, an immediate failure reaction and failover
to the backup solution are required to keep the application operational. Failures can be
detected via watchdogs and heartbeats. In Chapter 3, we will present a formal analysis to

60

2.4 Predictable Timing Behavior

derive the worst-case application failover time for distributed systems. Here, we analyze
the impact of failure detection and recovery times on the timing behavior of distributed
applications. This analysis guarantees an upper bound on the time an application would
take to generate a new output after the failover of one or multiple task instances. The
work in this section can be used as a base for the analysis in Chapter 3 as our system
provides an upper bound on task execution and message transmission times.
In case an active task instance of a critical application is affected by the failure, the

watchdogs notice a timeout and notify both the resource manager and the agent of the
passive task instance. The resource manager immediately turns the agent’s reservation
into an allocation and performs a degradation if required. The agent of the passive task
instance then starts its task. As we use a service-oriented middleware with a publish/-
subscribe pattern, this task instance has to subscribe to its predecessor task instances
to receive the corresponding messages. In case the preceding task instances have been
affected by the failure, they first have to advertise their service before succeeding task
instances can subscribe to them. If a passive task instance of a critical application is
affected by a failure, no immediate failure reaction is required. If a failover has been per-
formed by a preceding task instance, it also has to wait until the corresponding service
is offered until it can re-subscribe to it.
If a task instance of a non-critical application is affected by a failure, no immediate

reaction is required. If a non-critical task instance is affected by a degradation, the agent
is automatically notified. The degraded non-critical task can run in a degraded mode
with fewer available resources or completely shut down.
After the immediate failover, which ensures a safe fail-operational behavior of critical

applications, the system can be reconfigured. During this reconfiguration, resources can
be freed by shutting down task instances of failed non-critical applications. Furthermore,
it is essential to re-establish the fail-operational behavior of critical applications. Here,
the agent of the source task invalidates the mapping of all its successors in the mapping
order, which in turn also informs all their successors. Afterward, the mapping process
can be repeated until a valid configuration is found.

2.4.5 Evaluation

We evaluate our performance analysis and our agent-based approach using our in-house
developed simulation framework. The framework has been developed to simulate au-
tomotive hardware architectures and the execution and communication of the system
software according to our system model. On top of the simulation framework, we imple-
mented the agents, resource managers, and strategies as described in Subsection 2.4.4.
For the simulation framework, we chose a process-based Discrete-Event Simulation ar-
chitecture based on the SimPy framework [73]. The hardware architecture and system
software are described in a specification file using the XML schema from the OpenDSE
framework [72]. The simulation framework supports any hardware architecture consist-
ing of ECUs, switches, and links. To allow a dynamic behavior where tasks and agents
are moving between ECUs at run-time, we use a communication middleware based on
the SOME/IP standard [36]. The middleware consists of a service discovery that dy-

61

2 Fail-Operational Automotive Architecture

e0 e1 e2 e3

e4

e5

e9 e8 e7 e6

s4

s0 s1

s3

s2

Figure 2.12: The simulated hardware architecture used in our experiments. Ten homogeneous
ECUs e ∈ E are connected in pairs via ethernet links l ∈ L to one switch s ∈ S,
forming a ring architecture. Messages are routed using Dijkstra’s algorithm [38].
In the worst case, four hops are required to enable communication between two
ECUs. Using ethernet links with a data rate of 1 Gbit/s, a maximum slot
number of SLmax = 1000 and a slot interval of τSL = 12.5 µs, the worst-case
communication latency for sending a message m over one link is CL(m, l) =
12.5ms.

namically finds services at run-time. Communication participants are either modeled as
clients or services. Furthermore, the middleware supports remote procedure calls and in-
cludes a publish/subscribe scheme. The framework also offers the possibility to simulate
ECU failures by shutting down ECUs. ECU failures are detected via heartbeats that
are periodically sent between all ECUs. Once a watchdog does not receive the heartbeat
within a specific timeout interval it reports the corresponding ECU failure.

2.4.5.1 Setup

The hardware architecture that we use in our experiments, depicted in Figure 2.12
consists of ten homogeneous ECUs connected in pairs to one switch. The switches are
connected in a ring architecture, resulting in a maximum hop count of four between
each ECU. We use shortest path routing based on Dijkstra’s algorithm for routing the
messages [38]. For our experiments, we use applications synthetically generated by the
OpenDSE framework using the TGFF algorithm [72, 80]. All applications consist of
exactly ten tasks with a WCET of W (t, α(t)) = 2.5ms and the requirement to allocate
or reserve five service intervals. We design the system so that one ethernet frame with
a maximum frame size of 1518 bytes can be sent in one time slot. Using ethernet links
with a data rate of 1 Gbit/s, we can calculate the transmission time over one link l as

62

2.4 Predictable Timing Behavior

τtrans =
1518 byte

1 Gbit/s
= 12.144 µs. (2.35)

Rounding this value, we design our slot interval as τSL = 12.5 µs. Thus, we can
calculate the transmission time of a message over one ethernet link CLtrans(m, l) as

CLtrans(m, l) = τSL = 12.5 µs. (2.36)

Choosing SLmax = 1000, we can calculate the worst-case communication latency
CL(m, l) over one link according to Equation 2.13 as

CL(m, l) = SLmax · τSL = 12.5ms. (2.37)

The resource managers on the ECUs are managing access to a schedule with SImax =
250 service intervals and a service interval time of τSI = 0.5ms resulting in a total
number of 2500 service intervals.

2.4.5.2 Experiments

We set the deadline δ for the worst-case end-to-end application latency to 1200ms,
creating scenarios with tight and relaxed timing constraints for the randomly generated
applications. For the experiments, we chose 20 non-critical applications and deviated
the number of critical applications Nc between 10 and 30 to construct scenarios where
resources are constrained and scenarios where the resource situation is relaxed. Results
present the average values of 500 runs per configuration. For each single run, a new
set of applications was synthetically generated. As the search process could take a lot
of time in cases with tight timing constraints or where resources are limited, we set an
upper bound of 10,000 backtrack operations as a stopping criterion. Cases that hit this
upper bound are considered as failed. We conducted the simulations on a server with an
Intel Xeon Gold 6130 CPU with 16 cores running at 2.1 GHz and 128 GB of RAM. Each
simulation run was assigned a single CPU and 8 GB of RAM. Simulation runs finished
within a few minutes in the majority of cases. In the worst case, it took 76 minutes to
complete the simulation.

In the following, we present the mapping success rates of our constraint-solving ap-
proach over a deviating number of critical applications. We compare these results to
our graceful degradation approach from Section 2.3, where no timing constraints are
considered and to an active redundancy where no degradation is applied. Afterward,
we evaluate the success rate of our three allocation and reservation strategies from
Subsection 2.4.4.4. Then, we further analyze one scenario by presenting Cumulative
Distribution Functions (CDFs) over the number of explorations performed for both the
successful and failed cases. Furthermore, we present the number of free service intervals
and the number of overlapping service intervals for all our three strategies and compare
these results to an active redundancy approach. Last, we summarize all findings from
these experiments about the difference in our allocation and reservation strategies be-

63

2 Fail-Operational Automotive Architecture

10 15 20 25 30

50

60

70

80

90

100 • Invalid solutions

Nc

S
u
cc
es
s
ra
te

[%
]

Resource Availability [28] Constraint Solving Active Redundancy

Figure 2.13: Experimental results presenting the average mapping success rate of criti-
cal applications for deviating numbers of critical applications Nc. Using our
constraint-solving approach with graceful degradation (blue curve with square
marks), the success rate is significantly higher than active redundancy (orange
curve with star marks). When not considering timing constraints and only
taking resource availability (black curve with triangle marks) into account, as
presented in Section 2.3, only invalid solutions would be found, which is not an
option.

tween each other and draw a conclusion about the importance of graceful degradation
compared to state-of-the-art approaches.

Success Rate - Constraint Solving vs. State-of-the-Art Figure 2.13 presents the
average success rate of the application mapping processes of critical applications for a
deviating number Nc of critical applications. We compare our constraint-solving ap-
proach (blue curve with square marks) to our approach in Section 2.3, where timing
constraints are not considered and only resource availability is considered. Furthermore,
we conducted experiments where constraint solving is applied, but no degradation is al-
lowed (orange curve with star marks), representing approaches with active redundancy
or where passive redundancy is used, but resources are allocated exclusively to one task.
While the approach based only on resource availability (black curve with triangle marks)
can map applications with a success rate of 100% in cases where the resource situation
is relaxed, the success rate steadily decreases with an increasing amount of critical ap-
plications down to a success rate of 69.7% at a number of Nc = 30 critical applications.
Looking at our run-time constraint-solving approach, the success rate is lower even in
scenarios with a relaxed resource situation, as some timing constraints are too tight to
find a valid solution. With an increasing number of critical applications Nc, the resources

64

2.4 Predictable Timing Behavior

10 15 20 25 30

60

70

80

90

100

Nc

S
u
cc
es
s
ra
te

[%
]

Random FreeFirst FreeLast

Figure 2.14: Experimental results presenting the average mapping success rate of critical
applications of our strategies for different numbers of critical applications Nc.
The FreeLast heuristic (green curve with circle marks) leads to increased success
rates compared to the random constraint solving (blue curve with square marks),
while the FreeFirst heuristic (red curve with diamond marks) leads to lower
success rates. With lower numbers of critical applications, the heuristics have
no impact on the success rate, which is visible as sufficient resources are available
to allocate and reserve all required service intervals. With an increasing number
of critical applications, resources become more constrained, and the advantages
and disadvantages of heuristics become more visible.

become the more limiting factor such that the success rate decreases further but also
comes closer to the resource availability curve. These results confirm that an approach
based only on resource availability would find mappings that would violate timing con-
straints in many cases in this setup. The active redundancy approach has a similar
success rate to our constraint-solving approach with a number of Nc = 10 critical appli-
cations. However, with increasing critical applications, the success rate drops steadily
with significantly worse results than our constraint-solving approach with degradation.
It is visible that graceful degradation can greatly increase the success rate in scenarios
where resources become more limited. While the approach based on resource availability
appears to have a higher success rate, it mainly generates invalid solutions, which is not
an option.

Success Rate - Strategies We also evaluate our strategies for allocating and reserving
resources presented in Subsection 2.4.4.4. Figure 2.14 presents the success rates of critical
applications of the default Random strategy (blue curve with square marks) and our
two heuristics FreeFirst (green curve with circle marks) and FreeLast (red curve with

65

2 Fail-Operational Automotive Architecture

diamond marks). For non-resource-constrained cases with 10 and 15 critical applications,
the values of all three algorithms are close to each other. Afterward, in scenarios where
resources become more limited with an increasing number of critical applications, the
success rate decreases for all three strategies. However, the three curves diverge, with
the FreeLast strategy having the highest success rates and the FreeFirst strategy leading
to the lowest success rates. In resource-relaxed scenarios, the FreeLast heuristic is not
advantageous as there are sufficient resources available to reserve and to allocate for
both the Random and the FreeFirst algorithms. In more resource-constrained scenarios,
the advantage of the FreeLast strategy regarding the more efficient use of resources
becomes visible, while the FreeFirst heuristic leads to sub-optimal results. We discuss
in Subsection 2.4.5.2 that there can be scenarios in which the FreeFirst strategy can
have advantages.

Random FreeFirst FreeLast

0 0.2 0.4 0.6 0.8 1

·105

70

80

90

Ne,c

C
D
F
[%

]

(a) Successful mappings.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

0

10

20

30

Ne,c

C
D
F
[%

]

(b) Failed mappings.

Figure 2.15: CDFs of the number of total number of epxlorations of the critical applications
Ne,c in the scenario with Nc = 25 critical applications for both the successful
cases (Subfigure 2.15a) and the failed cases (Subfigure 2.15b). Most applications
that successfully found a mapping require clearly less than 500 explorations, with
only a few exceptions requiring more explorations. Applications that could not
find a mapping within the upper limit of 10,000 backtracking operations often
required more than 500 explorations.

Cumulative Distribution Function To allow a more fine-grained analysis of these three
strategies we present the CDFs of the number of explorations Ne,c tested per critical
application for the scenario with Nc = 25 critical applications split up into successful
and failed mapping cases in Figure 2.15. The number of explorations Ne,c defines how
many times the agents of critical applications have explored a mapping by sending
allocation and reservation requests for a potential solution. In a best-case scenario,
every agent finds a mapping on the first try. In the worst-case scenario, mappings are
tested until our stopping criteria of 10,000 backtrack operations is reached. It can be

66

2.4 Predictable Timing Behavior

observed that in the case of successful mappings, almost all mappings are found with less
than 500 allocation or reservation requests and only a few outliers. For applications that
could not find a mapping within the upper limit of 10,000 backtrack operations many
could confirm within 500 explorations that no mapping can be found. This implies that
applications started backtracking relatively early in the search process as tasks that are
further up in the application graph could not find a mapping due to limited resources
such that it can be confirmed relatively quickly that no mapping can be found. However,
for many applications it frequently took more than 500 explorations up to around 16,000
explorations. In these cases, many task instances were already mapped until running into
a shortage of resources or a violation of a timing constraint such that many explorations
would have to be performed to confirm that no solution exists. The curves of the
FreeFirst and the FreeLast strategies appear to have a similar trend as the curve of the
Random strategy with a positive or negative offset. In the case of failed mappings, this
means for the FreeFirst strategy that more cases are counted as failed after relatively few
explorations implying that mappings could not be found due to resource constraints. On
the other hand, in the case of the FreeLast strategy, this implies that more applications
could find a mapping compared to the other two strategies as applications did not run
as often into resource constraints. Therefore, these results further confirm the findings
that the FreeLast strategy has an increased success rate due to utilizing service intervals
more efficiently, while the FreeFirst strategy runs into resource constraints more often.

Service Interval Utilization Figure 2.16 presents the number of free service intervals
and the number of overlapping service intervals of the experiments with a deviating
number of critical applications Nc. It can be observed that the curves are running
almost parallel to each other with an offset until a minimum close to zero is hit. In
most cases, some service intervals remain unoccupied. However, not all applications can
be mapped as the remaining service intervals are distributed over multiple ECUs and
might only be a fraction of the service intervals required to map an application. The
FreeLast strategy has the most free service intervals for the scenarios with fewer critical
applications. In comparison, the FreeFirst algorithm leads to fewer free service intervals
than the Random strategy. The active redundancy approach leads to the lowest number
of freely available service intervals. Comparing Subfigure 2.16a to Figure 2.13 and Figure
2.14 we can see that the success rate always starts to decrease when the curve hits a
low in the number of freely available service intervals. This observation confirms our
previous findings that the number of available resources limits the success rate.

However, this advantage is bought with a likely more reduced functionality of non-
critical applications after a failover scenario. In the case of active redundancy, no service
intervals overlap as no degradation is performed at all. The other three strategies lead
to increasingly more overlapping service intervals with an increasing number of critical
applications, with the FreeLast resulting in the most overlapping service intervals and
the FreeFirst strategy resulting in the lowest number of overlapping service intervals.
The more service intervals overlap, the more likely a non-critical application will be
degraded if the corresponding service interval is required by a passive task instance

67

2 Fail-Operational Automotive Architecture

Random FreeFirst FreeLast Active Redundancy

10 15 20 25 30
0

250

500

750

1,000

1,250

1,500

1,750

Nc

S
er
v
ic
e
in
te
rv
al
s

(a) Average number of free service intervals.

10 15 20 25 30
0

250

500

750

1,000

1,250

1,500

1,750

Nc

S
er
v
ic
e
in
te
rv
al
s

(b) Average number of overlapping service inter-
vals.

Figure 2.16: Experimental results of the average numbers of free and overlapping service in-
tervals with a total number of 2500 service intervals distributed over ten ECUs.
The results are consistent with success rates from Figure 2.14. A higher number
of free service intervals is better, allowing for mapping more applications and
increasing the success rate. A higher number of overlapping service intervals
directly increases the number of free service intervals, increasing the success
rate. The FreeFirst heuristic occupies more service intervals than the default
service intervals distribution algorithm, while the FreeLast heuristic occupies
fewer service intervals leading to higher success rates. On the other hand, the
FreeLast heuristic has a higher number of overlapping allocations and reserva-
tions, leading to a higher degradation impact. In comparison, the number of
overlapping service intervals is lower for the FreeFirst heuristic. The active re-
dundancy approach requires the most service intervals and does not result in
overlapping service intervals.

performing a failover. The number of overlapping service intervals also explains the
difference in free service intervals between the three strategies. The FreeLast strategy
overlaps service intervals whenever possible, keeping a maximum of free service intervals
available, which can be used to map further applications. The FreeFirst strategy instead
avoids overlapping service intervals as much as possible leading to less freely available
service intervals and thus limiting the amount of applications that can be mapped.
This means at the same time that the FreeLast strategy is more likely to result in a
degradation in a failover scenario while the FreeFirst minimizes this risk. In scenarios
with constrained resources, the FreeLast strategy can use the resources more efficiently
by overlapping service intervals, resulting in higher success rates of finding mappings and
significantly higher degradation effects on non-critical applications. In scenarios with
relaxed resource situations, the FreeLast heuristic does not use the plentiful available
resources and might result in degradation scenarios that could be avoided when using
all resources. On the other hand, the FreeFirst heuristic has the disadvantage of having

68

2.4 Predictable Timing Behavior

a lower success rate in resource-constrained scenarios as overlapping service intervals are
avoided as far as possible. In more relaxed situations, it uses all available resources to
prevent degradation as much as possible, leading to more optimal solutions.

2.4.6 Summary

In summary, in this section, we presented an agent-based approach that enables, for
the first time, graceful degradation for real-time automotive applications. Our approach
guarantees predictability for end-to-end timing constraints and enables a graceful sys-
tem degradation while ensuring the fail-operational requirements of critical applications.
The advantage is that resources can be utilized more efficiently in mixed critical systems
if a reduced functionality of non-critical applications after a failover can be accepted.
We first introduced state-of-the-art predictable timing analysis for composable schedul-
ing to enable this behavior and adapted it to our system model. Then, we extended
this predictable timing analysis for fail-operational systems to include backup solutions
to ensure that there is always a solution that fulfills the end-to-end application latency
constraint. Furthermore, we introduced our composable scheduling of gracefully degrad-
ing systems, which allows critical backup solutions to reserve service intervals allocated
by non-critical applications. In a failure scenario, once a vital backup solution has to
be started, it can take over the resources such that the system is being degraded in
an intended way. Compared to active redundancy, the advantage of using our passive
backup solution is that almost no overhead is added regarding the required computa-
tional power. We also presented our agent-based approach, which uses our run-time
constraint-solving approach to find solutions that meet resource and timing constraints.
Here, a pre-defined mapping order of the tasks is required to ensure that constraints can
be met. If the mapping search runs into a dead end, backtracking is applied to explore
other possible solutions. Resource managers receive requests from agents to allocate
and reserve resources and decide which service intervals will be assigned. Here, we in-
troduced three new strategies Random, FreeLast, and FreeFirst, for the assignment of
the resources which heavily influence how the system will be degraded. We performed
multiple experiments on our simulation platform to evaluate our approach.
Summarizing our observations and findings from our experimental results, we have

shown that it is necessary to use our constraint-solving approach as approaches based
only on resource availability would result in solutions violating timing constraints. Addi-
tionally, our assumptions about the advantages and disadvantages of the three allocation
and reservation strategies Random, FreeFirst, and FreeLast from Subsection 2.4.4.4 have
been confirmed. All results together provide a clear picture that the FreeLast strategy
results in higher success rates by overlapping service intervals as far as possible, thus
leaving more free service intervals to map other applications. While this strategy leads
to increased success rates in resource-constrained scenarios, there is an increased degra-
dation effect that could be avoided in scenarios with a relaxed resource situation. The
FreeFirst strategy leads to lower success rates by avoiding overlapping service inter-
vals as far as possible, leading to less freely available service intervals and, thus, fewer
applications that can be mapped. While this strategy reduces the degradation effect

69

2 Fail-Operational Automotive Architecture

in scenarios with plentiful resources, it results in significantly lower success rates than
the other two strategies in resource-constrained scenarios. Overall, the FreeLast maxi-
mizes the graceful degradation effect while the FreeFirst strategy minimizes it with all
accompanying advantages and disadvantages for both.
Most importantly, our experiments have confirmed that graceful degradation strongly

increases the success rate of finding a mapping for critical applications compared to
an active or passive redundancy approach without degradation in resource-constrained
scenarios. When using the FreeLast strategy more than double the number of critical
applications can fit onto the system architecture in our setup compared to an active
redundancy approach before an effect on the success rate becomes observable. Our
experiments have shown that graceful degradation can significantly increase the success
rate in scenarios where resources are limited if the risk of losing non-critical functionality
in a failure scenario is acceptable. In summary, by enabling graceful degradation for
real-time applications with our predictable timing analysis and agent-based approach,
resources can be utilized more flexibly and efficiently while guaranteeing a safe and
dynamic behavior of automotive systems.

2.5 Limitations

In the following we address the limitations on scalability and the reconfiguration time
of our fail-operational approach.

2.5.1 Scalability

Proving whether a valid mapping and scheduling solution exists is an NP-complete
problem that would take exponential time in the worst case [81, 76, 67]. Our approach
assumes that the problem is solved on a few powerful ECUs interconnected by high-speed
Ethernet and that most of the resources are available for the mapping process. The
mapping process itself is not performed during a time-critical phase and only while the
car is safely parked such that longer search times might be acceptable. Our simulation
times on a single CPU with 8 GB of RAM typically ranged from a few minutes up
to 76 minutes. For an in-car implementation and the given problem size, we would
assume that in the worst case, 18 messages (1 for the CPU, 8 for the links, two-way)
are sent per exploration over 4 hops. With a transmission time of CLtrans(m, l) =
12.5 µs and the maximum number of around Ne,c = 160000 explorations (see Figure
2.15b) measured, the time taken to send all monitoring messages of a critical application
would equate to τ = 18 ∗ 4 ∗ 12, 5 µs ∗ 160000 = 144s. Please note that the time
required to find a mapping is usually smaller by multiple orders of magnitude. For our
given problem size, we would assume these transmission times are acceptable. However,
to address scalability issues and in-car resource limitations of our approach there is
exciting research on hybrid mapping methods such as presented in [81]. Here, meta-
heuristic optimization approaches are used to find multiple Pareto-optimal solutions at
design time. Run-time backtracking approaches then perform constraint solving. In

70

2.6 Conclusion

[81] the backtracking approach finds a solution for a comparable problem size within
a few milliseconds. However, it has to be assumed that communication within a NoC
architecture is faster than on the system level. Future work could include a hybrid
mapping approach with the pre-computation of possible mappings at design time such
that new mappings after failover are found faster.

2.5.2 Reconfiguration Time

Another limitation of our approach is that after a failover has been performed, no safe
operation of the critical applications can be guaranteed, as another critical failure could
lead to potentially hazardous situations. Here, the car has to stop and start a re-
mapping process to re-establish the fail-operational behavior. Adding another layer
of redundancy could potentially resolve this issue but would increase the problem’s
complexity significantly as the communication between all redundant instances would
need to be ensured. Hybrid mapping approaches could greatly reduce the time spent
on finding a new mapping. Additionally, there is research on performing real-time task
migrations [40]. Using such an approach a new mapping could be applied while the car
is actively driving.

2.6 Conclusion

In this chapter, we have presented our fail-operational architecture, which consists of an
agent-based graceful degradation approach. With our graceful degradation approach,
resources allocated by non-critical applications can be utilized by critical applications as
a backup reserve. With our reservation approach, we enable graceful degradation while
preventing an overestimation of the remaining resources such that it can be predicted
if sufficient resources are available to withstand another failure. The decentralized ap-
proach ensures that no single point of failure can affect the system’s control. As it is
crucial for a fail-operational architecture to respect timing constraints, we extended our
base approach such that timing guarantees can be given to safety-critical applications.
This approach also ensures that a valid backup solution is available after any single ECU
failure which also respects timing constraints.

Using our reconfiguration approach, we have shown that our agent-based graceful
degradation approach can significantly increase the number of tolerated failures without
adding hardware resources to the system. In a system with timing constraints, our
graceful degradation approach could fit double the number of critical applications on
the same platform before influencing the success rate of finding a mapping compared to
state-of-the-art approaches such as active redundancy. Furthermore, significantly fewer
service intervals were required by our graceful degradation approach. Our FreeLast
strategy further enhances the graceful degradation effect by overlapping as many service
intervals as possible. In contrast, the FreeFirst strategy reduces the graceful degradation
by avoiding overlapping service intervals.

71

2 Fail-Operational Automotive Architecture

In summary, graceful degradation can be a powerful methodology that uses resources
more efficiently than common redundancy approaches and can enormously increase the
number of applications mapped onto the same system architecture while providing the
same fail-operational capabilities, however, when designing a system it has to be consid-
ered that more non-critical functionality is lost due to degradation in a failover scenario.
Suppose the tasks of non-critical applications are widely distributed in the system. In
that case, the functionality might be lost anyway due to a direct failure impact, lowering
the amount of non-critical applications lost due to a degradation effect. Nonetheless, a
trade-off between degradation impact, mapping success rate, and resource availability
has to be carefully evaluated. We further address the impact of graceful degradation on
non-critical functionality and evaluate resource utilization in more detail in Chapter 5.
As presented in this chapter, one of the main challenges when designing a dynamic fail-

operational system is to achieve a predictable behavior and to find bounds within which a
safe and dynamic operation is possible. Therefore, we investigate further non-functional
properties such as timing, checkpointing, and reliability to increase the predictability of
our approach in the following chapters.

72

3 Worst-Case Failover Timing Analysis
of Distributed Fail-Operational
Automotive Applications 4

Contents

3.1 Introduction . 73

3.2 System Model Adaptations . 74

3.2.1 Application Model . 74

3.2.2 Failover Model . 75

3.3 Worst-Case Failover Timing Behavior . 75

3.3.1 Application Failover Time . 76

3.3.2 Worst-Case Application Failover Time 77

3.3.3 Worst-Case Task Recovery Time 78

3.3.4 Single Task Failover Scenario . 78

3.3.5 Multi Task Failover Scenario . 79

3.4 Evaluation . 80

3.4.1 Setup . 80

3.4.2 Experiments . 81

3.5 Conclusion . 82

3.1 Introduction

In Chapter 2.4 we presented an approach to determine if timing constraints are respected
and if valid application mappings are readily available as a backup that also adhere to
these timing constraints in the case of an ECU failure. In a failure scenario, the system
can switch to these pre-validated backup mappings without searching or verifying them
in the time-critical phase of a failover. However, it is also important that these new
mappings are applied quickly and that all applications are operational again on time.
This chapter covers the critical time phase during a failover until the system has switched
to the pre-validated mappings. In this context, it is important that a failover within the

4Major parts of this chapter have been published in [30].

73

3 Worst-Case Failover Timing Analysis

FTTI can be guaranteed [42]. Failing to perform a failover within the FTTI will lead to
unpredictable application behavior with potentially hazardous consequences.
In this work, we analyze the impact of failover on the timing behavior of distributed

fail-operational applications and derive an upper bound for the worst-case failover time.
The work that we present can be used to evaluate and verify the worst-case failover
timing behavior of fail-operational distributed applications. Instead of performing time-
consuming experiments, our formal analysis can be used to assess whether a mapping
would meet the failover timing constraints or not such that an evaluation at run-time is
possible. Therefore, we make the following contributions:

• Based on the application and failover model presented in Section 3.2, we intro-
duce a formula to derive the application failover time in Section 3.3. Here, we
analyze worst-case scenarios to derive an upper bound for the failover time. Our
upper bound can be used to achieve a predictable fail-over behavior and to verify
application requirements on failover constraints.

• We support our formal analysis by conducting failover experiments on our demon-
strator platform using a fail-operational distributed neural network in Section 3.4.

3.2 System Model Adaptations

In the following, we present minor adjustments and additions to our system model,
which we presented in Section 2.2. Here, we mainly assume that a system with valid
mappings as described in Section 2.4 is already given such that it can be analyzed.

3.2.1 Application Model

For our analysis, we assume that each node in the application graph GA(V,E) has, at
maximum, one predecessor and one successor such that the application graph builds a
task chain.
We assume a valid binding α : T → E is already given, which assigns each active task

instance t ∈ T to an ECU α(t) ∈ E. For our safety-critical applications a, we assume
that a redundant passive task instance is available in the system. Here, we assume a
binding β : T → E is given, which assigns each passive task instance t ∈ T to an ECU
β(t) ∈ E. Furthermore, we assume that a routing ρ : M → 2L is given, which assigns
each message m ∈M to a set of connected links L′ ⊆ L that establish a route ρ(m). As
the routing will also change after a failover, up to three passive routes are required, of
which one will become activated depending on which tasks are affected by the failover.
We use the notation Li(a) to define the end-to-end application latency of a single

iteration i. Using composable task and communication scheduling, the interference
between tasks and messages can be bounded [17, 74], such that a worst-case Lwc(a) and
best-case application latency Lbc(a) can be obtained. Similarly, we define Lbc(t) and
Lwc(t) as the best-case and worst-case latency from the application start until task t
has finished execution. We assume that the application is periodically executed with

74

3.3 Worst-Case Failover Timing Behavior

the period Pa and that the application might operate in a pipeline such that Pa can be
smaller than the worst-case application latency Lwc(a).

3.2.2 Failover Model

We define a failure f ∈ F with F ⊆ E, where f identifies the failed ECU. To describe the
bindings after the j-th failure, we use the notation αj(t) and βj(t), with α0(t) and β0(t)
being the initial bindings. A failover is required once an ECU e fails to which at least one
active task instance of a safety-critical application a has a binding: ∃t ∈ T : αj(t) = e.
In a failover scenario, we assume that affected task instances are lost and that tasks are
restarted using the passive task instances such that the active binding of the affected task
instances is changed to the former passive task binding: αj+1(t) = βj(t). Furthermore,
a new binding for the passive task instance βj+1(t) has to be found. In a scenario where
only a passive task instance is lost, no restart is required such that the binding of the
active task instance remains the same, and only a new binding for the passive task
instance has to be found. Similarly, one of the passive routing paths between the new
active task instances has to be activated. The new active routing path ρj(m) depends
on which tasks are affected by the failover and is being implicitly updated. To identify
the application latencies after a failure f we use the notations Li(a, f), Lwc(a, f) and
Lbc(a, f).

3.3 Worst-Case Failover Timing Behavior

With dynamic resource management that meets mapping decisions at run-time, verifying
every system constraint at design-time is no longer possible. The timing behavior of
applications is heavily influenced by timing interference from other applications, which
is unknown at design time and can change once applications are updated and new
functionality is added to the system.

It is crucial to automatically verify critical system aspects at run-time to enable dy-
namic resource management for safety-critical applications. In this context, an auto-
mated worst-case failover timing analysis is essential, which allows the setting of bounds
on the dynamic system behavior when meeting mapping decisions to achieve a deter-
ministic and predictable system behavior. Although our research focuses on automating
the failover analysis to achieve dynamic system behavior, our equation can also be used
to automatically evaluate the failover timing behavior at design time such that multiple
mapping configurations can be explored.

To achieve such a predictable failover timing behavior, we first define the application
failover time F(a, f) in Subsection 3.3.1. Afterward, we present an upper bound and
approach to derive the worst-case application failover time Fwc(a, f) in Subsection 3.3.2.
Step by step, we first introduce the worst-case recovery time in Subsection 3.3.3, which
significantly influences the worst-case application failover time. Then, we analyze a single
task failover scenario in Subsection 3.3.4 until we finally derive a generalized formula for

75

3 Worst-Case Failover Timing Analysis

∆O(a)
∆Otol(a)

∆O(a)
∆Otol(a) F(a,f)

0 1 2 3

Figure 3.1: Depiction of the application failover time: The vertical lines indicate the output
time of the corresponding iteration, while the dashed vertical lines depict the
latest output time that would be tolerated.

the worst-case application failover time in Subsection 3.3.5, where multiple tasks might
be affected by the failover.

3.3.1 Application Failover Time

In a flawless operation mode, an application will periodically produce output data with
the period Pa. Since the application latency is not constant and might differ between two
consecutive iterations i and i + 1, we can calculate the output time difference between
two application outputs in a failure-free operation as ∆O(a) = Pa + (Li+1(a) − Li(a)),
where Li+1(a) and Li(a) are the corresponding end-to-end application latencies of the
iterations i and i+ 1.

Therefore, the maximum delay that can be tolerated after an iteration i would be if
it took the worst-case latency Lwc(a) to execute iteration i+ 1 such that the maximum
tolerated output delay for the current iteration i can be calculated as

∆Otol(a) = Pa + (Lwc(a)− Li(a)). (3.1)

However, when a task failure occurs, the application might take longer to produce a
valid output, such that we define ∆O(a, f) as the output delay during a failover scenario
with

∆O(a, f) = Pa +Nt(a, f) · Pa + Li+1(a, f)− Li(a). (3.2)

Here, Nt(a, f) · Pa describes the additional time delay due to iterations that are lost or
missed due to failure and recovery time effects as the application is not able to operate
during the downtime. Furthermore, Li+1(a, f) is the application latency of the following
valid iteration i+ 1 after the failover with the new active task bindings.

With this we can define the application failover time F(a, f) as the time window
between the point in time where a delay under a failure-free operation would not be
tolerated anymore until the point in time where a new output is available after the
recovery:

F(a, f) = ∆O(a, f)−∆Otol(a). (3.3)

From Equation 3.3 it can be observed that if ∆Otol ≥ ∆O(a, f), the failover time F(a, f)
might be masked by ∆Otol and not observable at the application output at all. Putting

76

3.3 Worst-Case Failover Timing Behavior

Equations 3.1 and 3.2 into Equation 3.3 we obtain the failover time:

F(a, f) = Nt(a, f) · Pa + Li+1(a, f)− Lwc(a). (3.4)

Figure 3.1 depicts the relation between the application failover time F(a, f), the
output delay ∆O(a), and the maximum tolerated output delay ∆Otol(a). Here, a failure
occurs after iteration 2, such that one frame is missed, causing the output delay to
exceed the tolerated delay.

3.3.2 Worst-Case Application Failover Time

Our goal is to derive an upper bound for Equation 3.4 to achieve a predictable failover
behavior of the application. In a worst-case scenario Li+1(a, f) from Equation 3.4 would
be equal to the worst-case latency Lwc(a, f). Furthermore, we have to identify the worst-
case number of iterations Nt,wc(a, f) that are lost during the failover, such that we can
calculate the worst-case application failover time as

Fwc(a, f) = Nt,wc(a, f) · Pa + Lwc(a, f)− Lwc(a). (3.5)

Using this equation, we can observe that a change to a lower worst-case latency
Lwc(a, f) after a failure can have a positive effect on the worst-case failover time as
the next iteration after a failure would be able to propagate faster through the complete
task chain and, therefore, reach the output earlier than expected beforehand.

For the total number Nt,wc(a, f) of lost frames, we distinguish between the iterations
Nl,wc(a, f) that are lost immediately as they were currently held by a task that was
affected directly by the failover and the iterations that are missed Nm,wc(a, f) due to the
system recovering too slow such that the tasks miss potential inputs:

Nt,wc(a, f) = Nl,wc(a, f) +Nm,wc(a, f). (3.6)

However, before we can deriveNt,wc(a, f), we have to introduce the worst-case recovery
time τr(t, f) which is responsible for the number of iterations Nm,wc(a, f) that will be
missed due to task recovery. Afterward, we present an analysis to calculate Nt,wc(a, f)
in a simplified scenario where only a single task is affected directly by the failover and
then generalize the formula for multiple recovering tasks.

τr(t, f) =


0 αj+1(t) = αj(t) ∧ αj+1(p(t)) = αj(p(t))

τd + τsub αj+1(t) = βj(t) ∧ αj+1(p(t)) = αj(p(t))

τr(p(t), f) + τoff + τsub αj+1(t) = αj(t) ∧ αj+1(p(t)) = βj(p(t))

τr(p(t), f) + τoff + τsub αj+1(t) = βj(t) ∧ αj+1(p(t)) = βj(p(t))

(3.7)

77

3 Worst-Case Failover Timing Analysis

3.3.3 Worst-Case Task Recovery Time

We define τr(t, f) for a failover f as the worst-case time frame that it takes from the
occurrence of a failure until a task t is ready to receive and process the following input
after recovery. Our definition of the recovery time is based on our system, which uses a
service-oriented middleware with a publish/subscribe pattern. Here, we make the case
distinctions as presented in Equation 3.7, which can be found below.
For a task t, it holds that τr(t, f) = 0 if neither its active task binding nor the active

task binding of its predecessor is affected by the failover.
If a task is affected directly by the failure and has to be restarted, the passive task

instance has to detect the failure. In the following, we assume that the worst-case failure
detection time τd is equal for every failure and every ECU. After detecting the failure,
the task has to subscribe to its predecessor to receive its message, where we assume a
worst-case subscription time τsub resulting in τr(t, f) = τd + τsub.
In case a predecessor task p(t) is affected by the failover and not the task itself, the

active task instance has to wait until the preceding task has restarted and sent a message
to offer the service, while the task itself has to wait to detect the failure until it can
finally subscribe. τr(t, f) = max(τr(p(t), f) + τoff , τd) + τsub.
If a predecessor task p(t) and the task t itself are affected by the failover, the task

has to detect the failure and wait until the offer service message has arrived until it can
subscribe, just as in the previous case. With τr(p(t), f) + τoff > τd, we can then further
simplify the formula for the last two cases to τr(t, f) = τr(p(t), f)+ τoff + τsub. With the
worst-case recovery time, it is now possible to derive the worst-case number of iterations
lost during a failover.

3.3.4 Single Task Failover Scenario

In a scenario where only a single task is affected directly by a failure, the worst point
in time where most iterations are lost is when the affected active task instance has just
finished the execution and the frame l0 is lost together with the task such that for a
single failing task Nl,wc(t, f) = 1.
If the passive task instance that is being started can recover on time τr(t, f) before

the following frame m0 has reached p(t), no additional frame will be missed. Otherwise,
at least one other frame m0 will be missed depending on how fast the task can recover
τr(t, f).
To calculate the earliest point in time τm0 where m0 would reach the predecessor at

the end of the predecessor p(t) of task t, we have to know how far the next frame m0

was behind the lost frame l0. The frames start with a time difference of exactly Pa.
In the worst case, it took the lost frame l0 the worst-case latency Lwc(tl) to reach the
output of the task, such that the following frame m0 had the most time to minimize the
time distance between them. In turn, m0 would in the worst case propagate with the
best-case latency Lbc(p(t)) such that we can calculate τm0 as

τm0 = Pa + Lbc(p(t))− Lwc(t). (3.8)

78

3.3 Worst-Case Failover Timing Behavior

We assume that in the worst case, every following frame mi would propagate with the
best case latency and therefore be exactly behind by Pa to the previous frame mi−1:

∀i > 0 : τmi
= τmi−1

+ Pa (3.9)

With this, we can make the following case distinction for the worst-case number of
missed frames:

Nm,wc(t, f) =

{
0 τm0 > τr(t, f)

1 + ⌊ τr(t,f)−τm0

Pa
⌋ τm0 ≤ τr(t, f)

. (3.10)

If the frame m0 would reach the end of p(t) before the task t has recovered with the
worst-case recovery time τr(t, f), then m0 will be missed. As the following frames follow

m0 by Pa in the worst case, an additional number of ⌊ τr(t,f)−τm0

Pa
⌋ frames will be missed

until the recovery is completed.

3.3.5 Multi Task Failover Scenario

For a scenario where multiple tasks must recover, more than one frame might get lost
immediately due to the failure if the application uses pipelining. In the following, we
denote task tl as the last task and tf as the first task in the chain to recover. We assume
that any frames that at the point of failure were between the predecessor task p(tf) of
tf and tl are immediately lost. In the worst case, at least one frame l0 is lost at tl,
which just has completed execution with the corresponding frame. To understand how
many other frames between p(tf) and tl are lost, we must make similar considerations
as in Subsection 3.3.4. Most frames are lost if the frame l0 at tl is propagated with the
worst-case latency, and the following frames are propagated with the best-case latency.
Therefore, if l1 propagated faster to p(tf) with Pa+Lbc(p(tf)) than it took for l0 to reach
the end of tl with Lwc(tl), at least one additional frame is immediately lost during the
failure. Therefore, we define

τl1 = Pa + Lbc(p(tf))− Lwc(tl) (3.11)

as the time where l1 would reach the end of execution at p(tf). Similar as before, all
following frames li are following their predecessor by Pa:

∀i > 1 : τli = τli−1
+ Pa (3.12)

If τl1 is positive, which means l1 reached p(tf) after the failure event, no other frame
than l0 is lost. Otherwise, l1 and possibly other frames are lost. Thus, we can calculate
the number of lost frames as

Nl(a, f) =

{
1 τl1 > 0

2 + ⌊−τl1
Pa
⌋ τl1 ≤ 0

(3.13)

79

3 Worst-Case Failover Timing Analysis

We assume that ∀t ∈ T : τsub + τoff < lt,bc(t, α(t, f)) + lc,bc(min, ρ(min, f)), such that
the system is dominated by the failover of the first task tf in the chain that failed. If tf
has recovered, we assume that all the following tasks in the chain can recover on time
such that no additional frames are lost except the frames Nm(tf , f) missed by tf .

τm0(tf , f) = (Nl(a, f)− 1) · Pa + τl1 (3.14)

Here, we can reuse Equation 3.10 to calculate Nm,wc(tf , f) with τm0(tf , f), such that
we can calculate the worst-case number of missed frames. By combining and simplifying
the complete formula for Nt(a, f) we obtain

Nt(a, f) = ⌊
τr(t, f) + Lwc(tl)− Lbc(p(tf))

Pa

⌋+ 1. (3.15)

By putting Equation 3.15 into Equation 3.5, we can finally derive the generalized
formula to calculate the worst-case application failover time.

3.4 Evaluation

In the following, we present the results of our experiments conducted on a demonstrator
setup to support our worst-case failover analysis using a fail-operational distributed neu-
ral network. In a usual system setup, we assume that multiple distributed applications
run simultaneously. Here, our analysis can be applied for each application individually
as long as worst-case and best-case latencies can be determined.

3.4.1 Setup

For our experiments, we use a setup consisting of 3 Rasperry-Pi 4B devices, with 8 GB
RAM and a quad-core Cortex-A72 with a maximum frequency of 1.5 GHz. We chose
a YOLOv3-tiny neural network implementation as our test application, simplifying the
object detection structure described in [82]. The neural network runs on Tensorflow-CPU
as a backend and uses the Keras Application Programming Interface (API). We split
the neural network between the layers into five different tasks, with extra tasks for pre-
and postprocessing adding up to 7 tasks in total. By splitting the neural network and
introducing it into our framework, a pipeline for the application arises, which improves
the overall throughput of the neural network by adding more computational power. We
use a star-topology network with a switch and Transmission Control Protocol (TCP)
Ethernet connections to communicate between the devices. Our analysis can also be
applied to more complex architectures as long as the latencies for the message routings
can be determined, which we assume is given for our approach. The Raspberry-Pis uses
a service-oriented communication middleware based on the SOME/IP standard with a
publish/subscribe pattern [36]. Our framework allows us to simulate ECU failures by
shutting down the framework instances on a Raspberry Pi. Failures are detected via
heartbeats and timeouts.

80

3.4 Evaluation

3.4.2 Experiments

For our experiments we obtain the application failover time F(a, f) by measuring the
output delay ∆O(a, f) during a failover, while the tolerated output time interval ∆Otol(a)
can be calculated. Figure 3.2 presents the failover time of multiple experiments with a
randomly varying application period Pa of a single task failure scenario (Figure 3.2a)
and a multi-task failure scenario (Figure 3.2b). Experiments with a random failure time
are marked with a green circle. Furthermore, we provoked worst-case scenarios by shut-
ting down the ECU at the worst-case point in time, where results are marked with blue
triangles. Some factors that cause the failover time to fluctuate are the varying recov-
ery time and application latencies. A negative failover time implies that the failover
occurred within the tolerated output interval ∆Otol(a), so no negative impact on the
application timing behavior is observable. We used our worst-case analysis from Section
3.3 to obtain a strict upper bound plotted as the red curve.

6 8 10 12 14 16

−4
0
4
8
12
16
20
24
28

Pa[s]

F
(a
,f

)[
s]

(a) Failover scenario with failure of t2.

6 8 10 12 14 16

8
12
16
20
24
28
32
36
40

Pa[s]

F
(a
,f

)[
s]

(b) Failover scenario with failures of t2 and t7.

Figure 3.2: Experimental results with Lwc(a) = 16.5s, Lwc(a, f) = 19s, τr(t, f) = 7.5s.
Measurements with a random failure time are marked with green circles, while
the worst-case failover measurements are marked with blue triangles. The red
curve representing our worst-case analysis is a strict bound that is not exceeded
by any measurement. The results are as close as 6.0% below our analytically
derived exact bound.

Most importantly, we can observe that none of the measurements exceed the upper
bound.
Our randomly generated worst-case results are as close as 6.0% below our analytically

derived exact bound. Note that by conducting more experiments, the measurements
would come even closer. Furthermore, it can be observed that the blue worst-case
measurements also result in higher failover times than the random measurements marked
in green. Comparing Figure 3.2a with Figure 3.2b, we can examine that a failure, where
multiple tasks are affected, overall leads to a higher failover time as intuitively expected.
Another interesting examination is that the upper bound builds a sawtooth-like curve

81

3 Worst-Case Failover Timing Analysis

with a decreasing slope with every step. With an increasing period Pa, the worst-case
failover time increases linearly with a slope determined by the total number of lost
iterations as described in Equation 3.5. However, as the system gains more time to
recover with an increasing Pa, it will at one point lose one iteration less, causing a
step and a decreased slope. Consequently, a slight period offset close to a step might
significantly impact the worst-case failover time.
Overall, the results show that our prediction of the worst-case failover time has ade-

quately estimated an upper bound for the failover time experienced by the system.

3.5 Conclusion

In this chapter we have introduced a formal analysis to derive the worst-case failover
time for fail-operational distributed automotive applications. Our upper bound allows
us to conduct an automated worst-case analysis to evaluate mappings at run-time. This
way, unfeasible mappings can be identified and excluded such that a safe operation
of safety-critical software within the bounds of the fault-tolerant timing interval can
be guaranteed. We conducted experiments with a distributed fail-operational neural
network on our hardware setup using an agent-based software platform, where we pro-
voked worst-case failure scenarios to measure the failover time. Our randomly generated
worst-case results are as close as 6.0% below our analytically derived exact bound.
Future work could extend our analysis for applications with parallel paths in the

application graph. Furthermore, an agent-based mapping mechanism could conduct
automated mapping decisions at run-time using the worst-case failover analysis. Sum-
marized, our presented worst-case failover timing analysis allows us to perform an auto-
mated analysis at run-time to verify that the system operates within the bounds of the
failover timing constraint such that dynamic and safe behavior of autonomous systems
can be ensured.

82

4 Checkpointing Period Optimization
of Distributed Fail-Operational
Automotive Applications 5

Contents

4.1 Introduction . 83

4.2 Related Work . 85

4.3 Checkpoint Optimization . 86

4.3.1 Checkpointing Period . 86

4.3.2 Data Age . 87

4.3.3 Worst-Case Data Age . 87

4.3.4 Maximum Checkpointing Period 88

4.4 Case Study: SLAM Application . 89

4.4.1 SLAM Application . 89

4.4.2 Quality Analysis . 90

4.4.3 Failover Experiments . 91

4.5 Conclusion . 94

4.1 Introduction

In previous chapters, we assumed that most applications are stateless without worrying
about the loss of information in the case of an ECU failure. However, a significant
challenge is that many applications have a state that might get lost during a failure
such that a recovery might be impossible. Thus, in a system with passive redundancy,
periodic checkpointing with rollback recovery can send the state to another ECU, where
the application can be restarted after a failure. Here, the challenge is to find a suitable
checkpointing period such that application-specific constraints on the state data age
are met and the network and processing overhead caused by sending the checkpoint is
minimized. However, as it might take the system some time to recover from the failure,

5Major parts of this chapter have been published in [31].

83

4 Checkpointing Period Optimization

System	architecture

t0

m0

t1

t0 t0

t1t1

Application	graph

link	l

ECU	e

Pa

Pc

Figure 4.1: Representation of our system model with an example application and system
architecture. The green circles indicate the active bindings of tasks t0 and t1,
while the yellow circles indicate the passive task bindings. The message m0 is
sent periodically with the period Pa. A checkpoint is sent from the active task
instance of t1 to its passive task instance with the checkpointing period Pc.

the state data also ages during the downtime such that the worst-case state data age
can not only be determined by the checkpointing period.
As the implications of the state data age are application-specific, we use a SLAM

algorithm, an application commonly used in autonomous systems such as robots or
self-driving cars, as a real-world example to determine the effects on the quality of the
application. Using the SLAM algorithm, a moving object creates a global map of its
current environment and uses this map to navigate or deduce its position and orientation.
We refer to automotive terminology in the following, although the work also applies to
other safety-critical autonomous systems. The approach presented in this chapter can be
used to determine the maximum checkpointing period at which a safe operation within
the bounds of the maximum allowed state data age is still possible. Therefore, we make
the following contributions:

• We analyze related work in the field of checkpointing approaches in Section 4.2.

• We present our checkpointing approach in Section 4.3. Here, we formally introduce
the checkpointing period and the achievable overhead reduction. By identifying
components that influence a task’s data age, we derive an upper bound for the
worst-case data age. Using a state data age constraint, we derive the maximum
possible checkpointing period that minimizes our network and processing overhead.

• In a case study, we show the dependency between state data age and accuracy
of a SLAM algorithm as a real-world example in Section 4.4. Furthermore, we

84

4.2 Related Work

show the applicability of our formal analysis by conducting failover experiments
on our demonstrator setup with an agent-based software platform using the fail-
operational distributed SLAM algorithm. The worst-case results of our randomized
experiments are consistent with our analytically derived exact bound.

4.2 Related Work

Related work in the fields of predictable timing analysis has been covered in Section
2.4.1, and related work in the field of fail-operational systems, graceful degradation, and
dynamic mapping has been covered in Section 2.3.1. The following provides a literature
overview covering task migration and checkpointing approaches.
The authors in [40] propose a predictable task migration mechanism by implementing

a migration timing analysis and a feasibility test for real-time applications. Here, the
goal is to enable dynamic resource management to adapt the mapping of tasks at run-
time. Our work does not migrate the tasks to optimize the mapping but periodically
sends a checkpoint containing state information.
The study presented in [83] introduces a lightweight architecture to minimize ex-

cessive redundancy and tackle the problem of establishing a verifiable, fail-safe safety
implementation for trajectory planning. In contrast to their example, which involves
low-level prediction models applied to a real-world scenario, our work showcases the
integration of an Extended Kalman Filter (EKF)-SLAM algorithm within our platform.
In [56], the authors explore the concept of dynamical reconfiguration and propose a

hardware extension integrated into the architecture to ensure that the system retains
its state during communication with peripherals. However, their approach does not
encompass restarting entire backup tasks on other ECUs. In contrast, our work operates
under the assumption that applications can withstand variations in the age of their state
data, allowing for the adjustment and optimization of the checkpointing period.
In [84], a solution is presented to minimize checkpoint overhead by adapting the

checkpoint interval based on failure probability rather than employing fixed periodic
checkpoints. Simultaneously, in [85], authors propose reducing message losses during
server failures by optimizing checkpointing, rollback, and overall time overheads as-
sociated with fixed checkpoint intervals. However, neither of these methods includes
checkpoint interval optimization based on worst-case recovery time analysis. In con-
trast, our approach ensures that the maximum permissible data age of checkpointed
data is never exceeded and optimizes the checkpoint process accordingly. Violating this
data age constraint could result in unsafe system behavior.
In the work presented by [86], an approach is introduced for synthesizing fault-tolerant

hard real-time systems tailored to safety-critical applications. This approach leverages
checkpointing with rollback recovery and active replication as fundamental techniques.
Nevertheless, it does not consider altering the checkpoint intervals, an aspect where our
method could be complementary.
In summary, although the literature has considered alternating the checkpointing pe-

riod, none has used a worst-case analysis of the failure and recovery time to obtain

85

4 Checkpointing Period Optimization

an optimal checkpointing period. Thus, existing approaches are unsuitable to ensure a
fail-operational behavior within safe bounds when optimizing the checkpointing period.

4.3 Checkpoint Optimization

Since distributed systems are susceptible to failure, techniques to add reliability and high
availability were developed. Checkpoints are a technique to ensure the fail-operational
behavior of safety-critical applications in autonomous vehicles. By sending checkpoints
over the network in distributed systems, states of the process can be saved during the
failure-free execution. These checkpoints can be used after a failure and reloaded on
another ECU to continue the execution of safety-critical tasks. Restarting the compu-
tation of tasks from an older saved state is called rollback recovery. A system recovers
correctly when its internal state is consistent with its observable behavior before the
failure [87]. In the following, we use the notation Pc(t) to describe the checkpointing
period of a task t that periodically transfers its state from an active task instance to a
passive task instance residing on another ECU. Figure 4.1 depicts the application and
system model with an exemplary application consisting of a task chain with two tasks.
We make the same assumptions for the remaining system model as introduced in Section
3.2.
The proper checkpoint period is a trade-off between network and processing overload

and fail-safe recovery. Generating a checkpoint after every computational step ensures a
higher probability of recovering from a failure properly. On the other hand, this would
not only cause an overload of the network by forwarding the checkpoints to the passive
tasks scheduled on the associated ECUs but also occupy processing resources. Therefore,
increasing the checkpointing period is desirable to minimize both network and processing
overhead. To obtain the maximum achievable checkpointing period Pc,max(t), we are first
introducing a formal definition of the checkpointing period and the possible overhead
reduction in Subsection 4.3.1. Afterwards, we present the data age in Subsection 4.3.2.
By analyzing components that influence the data age, we derive an analytical bound for
the worst-case data age in Subsection 4.3.3. Based on this upper bound, we present the
formula to derive the maximum checkpointing period Pc,max(t) in Subsection 4.3.4.

4.3.1 Checkpointing Period

We define the default checkpointing period as Pc,d = Pa, in which case a checkpoint
is taken after every computation and sent to a passive backup task. Furthermore, we
define that the checkpointing period Pc can only be a multiple n ∈ N of the default
checkpointing period Pc = n ·Pc,d, which corresponds to a checkpoint taken after each n-
th computation. Increasing the checkpointing period as much as possible would minimize
the computational and networking effort spent taking and sending the checkpoint to the
passive backup task. Increasing the checkpointing period by the factor n generally results
in an overhead reduction of n−1

n
as the checkpoint is only sent every n-th application

period Pa. As an example, when increasing the default checkpointing period from Pc =

86

4.3 Checkpoint Optimization

Pc,d to Pc = 5·Pc,d, a reduction of 80% of the networking and processing overhead caused
by checkpointing can be achieved.

4.3.2 Data Age

However, the checkpointing period can not be increased indefinitely; otherwise, no check-
point would be required. If a failure occurs in the system and a passive backup task
starts computing with the checkpoint data, the state data has already aged. We define
the data age d(t) ∈ N as the number of computational steps that the data is behind
when computing the subsequent output. Under normal operating conditions, a task
would compute the following result using its internal state data, updated after every
execution such that d(t) = 1. Using a checkpoint instead, the data is, in the worst case,
behind by n computational steps, resulting in a data age of d(t) = n.

4.3.3 Worst-Case Data Age

The state data age d(t) can increase with an increasing checkpointing period due to
failure and recovery time effects. After the failure of an active task, the passive backup
task can not immediately start the following computation. The failure detection takes
time, and the task might have to perform recovery steps until it can continue computing
as usual. Our system setup uses heartbeats combined with timeouts to detect failures.
Here, we assume that the worst-case failure detection time τd is equal for every ECU
failure. For the remaining recovery, the tasks might have to re-publish their data and
re-subscribe to preceding tasks in the application tree using the service-oriented mid-
dleware. An upper bound for the detection or subscription time can be found using a
composable system, which is well-described in related work [17, 74]. In the following,
we refer to τr(t, f) as the worst-case recovery time that it takes from the occurrence of a
failure f until a task t is ready to receive and process the following input after recovery,
which includes the worst-case failure detection time and publish and subscription times.
During the downtime of a task represented by the recovery time, it might miss one

or multiple periodic inputs. In the worst case, the active task instance just finished
processing but cannot send out the checkpoint in time, which causes the data at the
passive task instance to be behind by an additional computational step. Afterward, the
passive task instance might take some time to recover until it can receive and process
the following input. During this time, it might miss additional inputs such that the
data ages even further. In the worst case, at least one additional computational step
will always be missed when the active task instance has just finished the execution and
is about to send the next checkpoint. In chapter 3, we presented an analysis to derive
the worst-case failover time for distributed applications. We can re-use the upper bound
Nt(a, f) for the missed computational steps for a scenario where multiple tasks of an
application a are affected at once by the failure f of an ECU, which is calculated as

Nt(a, f) = ⌊
τr(t, f) + Lwc(tl)− Lbc(p(tf))

Pa

⌋+ 1. (4.1)

87

4 Checkpointing Period Optimization

This bound considers the worst-case recovery time τ(r, f), but also the worst-case
latencies Lwc(tl) and best-case latencies Lbc(p(tf)) of latencies of the affected tasks. The
formula also directly reflects that losing at least one iteration is unavoidable in the worst
case. By repurposing this analytical bound, we can calculate the worst-case data age of
a task after a failover as follows

dwc(t) =
Pc

Pc,d

+Nt(a, f) = n+Nt(a, f). (4.2)

We are using this formula to evaluate the effect of the checkpointing period and the
application period on the data age of a SLAM application in Subsection 4.4.3. We can
observe that the n linearly influences the worst-case data age, while Nt(a, f) is an offset
for a given system architecture and task mappings.

4.3.4 Maximum Checkpointing Period

The question that arises and which plays a significant role in finding an optimal check-
pointing period is which worst-case data age dwc(t) can be tolerated by a task t. In the
following, we refer to dmax(t) as the maximum data age that a task t can tolerate. This
maximum data age is highly application-dependent and has to be found individually for
each application and task, as it directly influences the functionality of the underlying
algorithms. We will derive such an exemplary data age constraint dmax(t) in our case
study using application-specific metrics in Subsection 4.4.2.

Using the number of computational steps Nt(a, f) that will be missed in the worst-
case due to the failure and recovery effects together with a data age constraint dmax(t),
we can obtain the maximum achievable checkpointing period Pc,max(t), which is the goal
of this work, as

Pc,max(t) = (dmax(t)−Nt(a, f)) · Pc,d. (4.3)

This period minimizes the network and processing overhead caused by the checkpoint
messages as it exhausts the available data age limit dmax(t) under consideration of the
failure and recovery time effects. It can be observed that an increase in the checkpointing
period is only possible if the tasks can tolerate the missed computational steps due to the
effects of failure and recovery time. In case dmax(t) < Nt(a, f), the system setup would
already violate the data age constraint with the default checkpointing period. Therefore,
fast failure detection and recovery are critical when optimizing the checkpointing period.
We are using Equation 4.3 to calculate the maximum achievable checkpointing period on
our demonstrator setup in Subsection 4.4.3 for the data age constraint dmax(t) obtained
in Subsection 4.4.2.

88

4.4 Case Study: SLAM Application

4.4 Case Study: SLAM Application

To evaluate the applicability of our checkpoint optimization approach introduced in Sec-
tion 4.3, we present a case study using a SLAM application as a representative real-world
application from the domain of the autonomous system. Determining a suitable upper
bound for the data age is always application-dependent. It should also consider the
impact on the safety of the application, e.g., by assuming application-specific metrics.
We first introduce the SLAM application in Subsection 4.4.1 and present the effect of a
successful and a faulty recovery. Afterward, we examine the dependency between state
data age and accuracy by defining our metrics in Subsection 4.4.2. Using a quality anal-
ysis, we define an exemplary upper bound for the data age dmax(t) that should not be
exceeded. Furthermore, we perform failover experiments and calculate the correspond-
ing worst-case data age dwc(t) as an upper bound in Subsection 4.4.3. Using dmax(t)
as a constraint, we analytically derive the maximum achievable checkpointing period
Pc,max(t) on our demonstrator setup.

4.4.1 SLAM Application

SLAM is a fundamental robotics and autonomous systems. Its primary goal is to enable
a robot or device to explore an unknown environment while constructing a map of that
environment and determining its position within that map, all in real-time.
A SLAM algorithm typically comprises two fundamental steps: a prediction step,

driven by a motion model, and an update step, guided by an observation model. These
steps work in tandem to continually refine the car’s estimate of its location and the map
of its environment. This learning process involves iteratively reconciling the car’s state
with its sensor measurements, resulting in an increasingly accurate representation of the
environment. One of the most common learning methods employed in SLAM is the
Kalman Filter. The Kalman Filter assumes a uni-modal distribution, which models the
state and measurements based on a single, most likely estimate. In our work, we utilize
a simulation of an EKF SLAM application, which is available in the repository [88].
Figure 4.2a presents simulation results that compare the desired trajectory (depicted

in blue) with the trajectory calculated by the EKF-SLAM approach (shown in red). The
simulation progresses in discrete time steps denoted by τstep. Additionally, it demon-
strates a successful recovery process, where the green triangle signifies the last checkpoint
recorded before a failure occurs. In this representation, the red data point marks the
moment of the failure, and the blue square signifies the first calculation after the recovery
using the old checkpoint data. Notably, the initial data point after recovery estimates
a position further behind the actual position. However, the red curve rapidly converges
to regular operation as subsequent operations unfold. This behavior highlights the al-
gorithm’s capability to recover and re-establish accurate positioning after a temporary
deviation caused by a failure event.
Figure 4.2b illustrates an example of a faulty recovery scenario in which a landmark

is re-detected after the recovery process. The algorithm uses a threshold to distinguish
points in the environment. During a recovery event following a failure, previously de-

89

4 Checkpointing Period Optimization

P
os
it
io
n

y

Position
x

(a) With an ideal recovery, no large impact on the
deviation of the estimated trajectory to the
real trajectory can be observed.

P
os
it
io
n

y

Position
x

(b) A faulty re-detection of an already recognized
landmark after recovery leads to a high devi-
ation of the estimated trajectory to the real
trajectory.

Figure 4.2: Ideal and non-ideal recovery after a failure in a simulation run with the EKF-
SLAM algorithm. The blue curve is the real trajectory starting at (0,0), while the
red curve is the trajectory estimated by the EKF-SLAM algorithm. Black stars
represent accurate obstacle positions, while green crosses represent the estimated
object position. The green triangle corresponds to the last checkpoint taken
before the failure, the red circle to the failure time, and the blue square to the
first computation after recovery using the checkpoint as the last recorded position.
The first computation after recovery has a more significant deviation, so the
algorithm jumps a bit backward.

tected landmarks may end up lying beyond this threshold radius, resulting in a false
re-detection as a new landmark. This false re-detection can lead to a persistent devia-
tion from the actual trajectory. In the example given, the algorithm incorrectly believes
that there are two obstacles at position (15, 30) instead of one. This situation arises
when the recovered position differs significantly from the actual position, causing a tem-
poral gap between the car’s position derived from the landmarks and the previously
saved position.

4.4.2 Quality Analysis

We introduce two metrics to assess how data age affects the algorithm’s quality. The
first metric, labeled ei, measures the Euclidean distance between computed points on
the two curves at computational step i. We can evaluate the algorithm’s performance
before and after a simulated failure by averaging these errors. To establish these metrics,
we adopt the following definitions:

90

4.4 Case Study: SLAM Application

ē(bf) =
1

n

n∑
i=1

e
(bf)
i , (4.4)

ē(af) =
1

n

n∑
i=1

e
(af)
i , (4.5)

e(af)wc = max
∀i∈[1...n]

e
(af)
i , (4.6)

with ē(bf) being the average error before the failure, ē(af) being the average error after
the failure and e

(af)
wc being the worst-case error after the failure. We define ∆ē as the

difference of the average of all calculated points before ē(bf) and after ē(af) a simulated
failure event has occurred::

∆ē = ē(af) − ē(bf). (4.7)

We define ∆ewc as the worst-case deviation e
(af)
wc compared to the average ē(bf) as follows

∆ewc = e(af)wc − ē(bf). (4.8)

The data presented in Figure 4.3 is derived from a simulation with a fixed discrete
time step of τstep = 2.0s and stationary landmark positions. To assess the influence of
data age, experiments were conducted with data ages set to 2, 5, 9, 12, or 19. Smaller
values indicate that the checkpoint was taken more recently before a failure occurred,
allowing the use of more recent data for position calculation at the recovery point. Some
data points with a data age of 19 deviate significantly and are not shown in the plot.

Subfigure 4.3b distinguishes between simulation runs where successful recovery was
achieved and runs where a landmark was erroneously detected. Older checkpoints lead to
larger average errors and notably more significant worst-case errors. Taking into account
the impact of data age on both the average deviation ∆ē, the worst-case deviation ∆ewc,
and the number of incorrect detections, we establish a data age limit of dmax(t) = 12 as
a representative upper bound with acceptable deviations. In the following subsection,
we utilize the EKF-SLAM application presented here to conduct failover experiments,
demonstrating the applicability of the analysis from Section 4.3. Additionally, we employ
the upper bound dmax(t) = 12 as an example to determine the maximum achievable
checkpointing period.

4.4.3 Failover Experiments

We use 3 Raspberry-Pi 4B devices for our failover experiments, with 8 GB RAM and a
quad-core Cortex-A72 with a maximum frequency of 1.5 GHz. We use a star-topology
network with a switch and Ethernet links to communicate between the devices. Our
framework on each Raspberry Pi uses a service-oriented communication middleware with
a publish/subscribe pattern. It simulates ECU failures by shutting down the framework
instances. Failures are detected via heartbeats and timeouts. Passive task instances

91

4 Checkpointing Period Optimization

0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

∆ewc

∆
ē

d(t) = 2 5 9 12 19

(a) Simulation results for the data ages 2, 5, 9, 13
and 19 showing the average deviation ∆ē and
the worst-case deviation ∆ewc.

0 0.5 1 1.5 2

0

0.25

0.5

0.75

1

∆ewc

∆
ē

correct detection wrong detection

(b) Red marks correspond to a faulty landmark de-
tection, while green marks indicate that all land-
marks have been detected correctly.

Figure 4.3: The simulated failover results for the EKF-SLAM application are obtained using
a discrete time step τstep = 2.0s with varying data ages. In most cases, the
data points corresponding to data ages 2, 5, 9, and 12 tend to cluster closely
together. However, the data points associated with a data age of 19 stand out
distinctly, having a direct negative impact on both the average deviation ∆ē
and the worst-case deviation ∆ewc. Additionally, the probability of incorrectly
detecting landmarks experiences a significant increase in this scenario.

subscribe to the checkpoints of active task instances. If an active task instance is affected
by a failure, the passive task instance is restarted using the last successfully transmitted
checkpoint. We divided the complete application into four tasks:

• t1: Simulation task

• t2: Pre-processing task

• t3: Observation task

• t4: EKF-SLAM algorithm task

For the failover measurements presented in Figure 4.4, the tasks t1, t2, and t3 are
active on e1 and t4 are active on e2, while all passive tasks are mapped to e3. We shut
down e2 at random time points during the experiments and measured the data age d(t4)
after the recovery process . This allowed us to assess the effectiveness of the failover
mechanism and its impact on the age of the data associated with task t4.
Figure 4.4a presents the data age obtained by our experiments with an application

period of Pa = 2s and a varying checkpoint period Pc(t4). We carried out ten mea-
surements for each variable setup of Pc(t4). The red curve corresponds to the upper

92

4.4 Case Study: SLAM Application

Measurements Analytical bound dmax(t4) Pc,max(t4)

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

n = Pc(t4)
Pc,d

d
(t

4
)

(a) Results with an application period Pa = 2s
and a varying checkpointing period Pc(t4).
For a given data age constraint, the maxi-
mum checkpointing period can be obtained
graphically by finding the intersection point
with the red curve. The black dashed line
marks the data age constraint dmax(t4) ob-
tained through the quality analysis in Sub-
section 4.4.2. The cyan dotted line marks
the corresponding maximum checkpointing
period Pc,max(t4) obtained through Equation
4.3.

0 400 800 1,200 1,600 2,000
0

10

20

30

40

50

Pa[ms]

d
(t

4
)

(b) Results for a fixed checkpointing period of
Pc(t4) = 5 · Pc,d and a varying application pe-
riod Pa.

Figure 4.4: Results of the random failover experiments presenting the data age d(t4) at
the backup task instance of t4 after successful recovery with τr(t, f) = 11.82s,
Lbc(p(t4)) = 0.0548s and Lwc(t4) = 0.238s. None of the measurements exceed the
upper bound obtained through Equation 4.2, here marked as the red curve. The
worst-case results of our experiments are consistent with our analytically derived
exact bound, as some measurements lie directly on the curve.

bound dwc(t4) obtained through Equation 4.2 for a given checkpointing period Pc(t4).
For the experiments depicted in Figure 4.4b, a fixed checkpoint period of Pc = 5 · Pc,d

was selected, while the application period Pa was varied.

Most importantly, it can be observed that none of the measurements exceed the upper
bound obtained through Equation 4.2. Some worst-case measurements lie directly on
the bound, so the experiments are consistent with our analytically derived exact bound.
In Figure 4.4a, the worst-case data age increases linearly with the checkpointing period
Pc(t4), while the worst-case number of lost iterations Nt(a, f) adds a constant offset. In
Figure 4.4b, the worst-case data age decreases exponentially with an increasing appli-
cation period Pa and an offset of the checkpointing period Pc(t4) = 5 · ·Pc,d. Once Pa

doubles, about half of the iterations will be lost as the worst-case recovery time remains

93

4 Checkpointing Period Optimization

the same. Note that we define the data age in iterations and not in absolute time, which
could be obtained by multiplying the data age d(t4) with the application period Pa.
Following the quality analysis from Subsection 4.4.2, we use an exemplary data age

constraint dmax(t4) = 12, which is depicted as a black dashed line in Figure 4.4a. The
resulting maximum achievable checkpointing period of Pc,max = 5 ·Pc,d is marked with a
green dotted line. By increasing the default checkpointing period from Pc(t4) = 1 · Pc,d

to Pc,max(t4) = 5 ·Pc,d, the networking and processing overhead caused by checkpointing
can already be reduced by 80% in this example.
In summary, our case study and experiments have confirmed the applicability of our

approach. We have shown the application-specific dependency between state data age
and the accuracy of an EKF-SLAM application. We analytically derived the maximum
achievable checkpointing period using a data age constraint obtained by the quality
analysis. By performing additional failover experiments, we have confirmed that the
worst-case results of our randomized experiments are consistent with our analytically
derived exact bound. To apply our approach to other applications, a safe upper bound
for the data age has to be found by using application-specific metrics and safety consider-
ations. This maximum data age constraint can be used for our application-independent
analysis to find a suitable maximum achievable checkpointing period. Overall, when de-
signing the checkpointing period, a trade-off between the impact on algorithmic behavior
(in our example on the average deviation ∆ē and the worst-case deviation ∆ewc) and the
overhead reduction has to be made. However, our approach might not apply to appli-
cations where the loss of any state can not be tolerated. An active redundant approach
might be required in these scenarios, such that the state is continuously computed in
parallel on the redundant component.

4.5 Conclusion

In this chapter, we have presented an analysis to calculate the maximum achievable
checkpointing period for distributed fail-operational automotive applications. We an-
alyzed the effects of the recovery time on the data age. We determined a worst-case
number of computational steps that will be missed during the downtime to obtain the
maximum possible checkpointing period. Furthermore, we presented a detailed case
study of a SLAM application as a representative real-world application from the auto-
motive domain. Here, we analyzed the dependency between state data age and accuracy
and derived an exemplary state data age constraint. In addition, we conducted failover
experiments on our demonstrator setup using an agent-based software platform to show
the applicability of our worst-case analysis. The worst-case results of our randomized
experiments are consistent with our analytically derived exact bound. In summary,
our approach can be used to reduce network and processing overhead caused by send-
ing checkpoints to achieve a cost-efficient and safe behavior of stateful distributed fail-
operational applications.

94

5 Reliability Analysis of Gracefully
Degrading Automotive Systems 6

Contents

5.1 Introduction . 95

5.2 Related Work . 96

5.3 Introduction to Reliability Analysis . 98

5.4 Formal Reliability Analysis of Gracefully Degrading Systems 99

5.4.1 Derivation of Structure Functions 99

5.4.2 Derivation of Reliability . 100

5.4.3 Formal Reliability Analysis of Critical Applications 100

5.4.4 Formal Reliability Analysis of Non-Critical Applications 101

5.5 Evaluation . 103

5.5.1 Experimental Setup . 104

5.5.2 Graceful Degradation vs. State of the Art 104

5.5.3 Allocation and Reservation Strategies 107

5.5.4 Exposure Reduction . 109

5.5.5 Summary . 111

5.6 Conclusion . 111

5.1 Introduction

The main challenge for our graceful degradation approach, presented in Chapter 2,
is achieving a predictable behavior. In previous chapters, we have addressed issues
related to the predictability of timing behavior and the loss of state data. In this
chapter, we focus on the reliability and the impact of graceful degradation on non-critical
applications. The presented scheduling approach in Section 2.4 supports a gracefully
degrading behavior such that resources of non-critical applications might be taken from
re-starting critical applications. As in our gracefully degrading system, resources are
shifted dynamically, and non-critical applications not directly affected by an ECU failure
might get shut down to free resources for restarting critical tasks. Thus, with a graceful

6Major parts of this chapter have been published in [32].

95

5 Reliability Analysis

degradation approach, the reliability of critical applications is increased at the cost of
a decrease in the reliability of non-critical applications. Here, it is crucial to quantify
and understand the effect of a graceful degradation approach on critical and non-critical
applications to increase predictability.
Furthermore, it is important to compare graceful degradation to active redundancy

based on reliability and resource consumption such that a reasonable trade-off can be
made. There has not been any work in literature that analyzes the trade-off between
additional resource consumption and impact on the reliability of graceful degradation or
compares it to approaches such as active redundancy. Therefore, we make the following
contributions:

• We present related work in the fields of reliability analysis in Section 5.2 and
conclude that there is a lack of work on reliability analysis of graceful degradation
approaches.

• After giving a brief overview of reliability analysis in Section 5.3, we introduce our
approach to formally analyze the impact of graceful degradation on the reliability
of critical and non-critical applications in Section 5.4. This approach considers that
scheduling slots of non-critical applications can be reserved by critical applications,
effectively reducing reliability.

• We perform experiments in our in-house developed simulation framework, simu-
lating the agent-based approach on a virtual architecture in Section 5.5. Here, we
present, for the first time, an in-depth trade-off analysis of a graceful degradation
approach where we analyze the resource consumption and the impact of graceful
degradation on the reliability of critical and non-critical applications. In our ex-
periments, we evaluate our three allocation and reservation strategies and compare
them to active redundancy. Additionally, we present experimental results of our
Predecessor Heuristic, which aims to reduce the individual applications’ exposure
to failure sources.

• We conclude in Section 5.6 that graceful degradation can be a powerful method-
ology that reduces resource consumption compared to active redundancy while
providing the same reliability to critical applications as an active redundancy ap-
proach. However, this is bought with reduced reliability of non-critical applica-
tions.

5.2 Related Work

While relevant work in the field of fail-operational systems and graceful degradation
approaches has been covered in Section 2.3.1, we provide an overview of the literature
in the field of reliability analysis in the following.
Numerous approaches to designing reliable embedded systems have been introduced

in research. An overview of these methods is provided by the authors in [89].

96

5.2 Related Work

Conventional reliability analysis approaches typically prioritize the design and imple-
mentation of the system initially, followed by conducting reliability analysis to ensure
compliance with particular requirements. If the reliability criteria are not met, sys-
tem redesign may be necessary, as described in reference [90]. Reliability can serve as
a metric within an optimization problem, enabling the discovery of Pareto-optimized
solutions that simultaneously address various design objectives, including aspects like
area or performance, during the process of design space exploration. Solutions aimed at
maximizing reliability during design are presented by the authors in [91], [92], and [93].
Reliability can be used as a metric in an optimization problem to find a Pareto-

optimized solution and multiple other design objectives, such as area or performance,
when performing a design space exploration. The authors in [91], [92], and [93] propose
solutions to maximize reliability at design time. In [94], the author incorporates relia-
bility as an optimization objective during system-level design. In this context, hardware
redundancy is employed as a means to handle faults, although it notably leads to a
substantial cost increase.
In [90], the authors introduce an automated method for system synthesis with a focus

on reliability considerations. They present a multi-objective synthesis approach that
takes into account various parameters, including area, costs, and reliability, enabling
the generation of reliable embedded systems. This approach utilizes data flow and
resource graphs to model different architectural implementations. Additionally, related
research, as presented in [95] and [96] suggests a symbolic reliability analysis of self-
healing networks with self-reconfiguration and routing. This proposed analytical solution
takes performance and memory constraints into consideration and demonstrates the
maximum achievable reliability metrics for a given system, specifically the MTTF.
While these approaches present a design time synthesis, our agent-based system finds

feasible application mappings at run-time. Using reliability as an optimization objective
directly in the mapping process in future work could be interesting. However, this
would require finding optimized solutions at design time and then finding a feasible
mapping at run-time as presented in hybrid mapping approaches such as in [74]. Instead
of optimizing reliability, our work focuses on the reliability and resource consumption
analysis of a graceful degradation approach.
In [66], the authors utilize reliability as a metric to optimize an embedded system that

features multiple degradation modes. With multiple degradation modes, a constraint
is imposed, requiring higher modes to possess greater reliability than lower ones. In
contrast, our work offers an analysis of a system where mappings are determined dy-
namically during runtime, and individual applications are evaluated separately, rather
than grouping them into degradation modes. Additionally, the authors in [66] do not
provide an analysis of the resource consumption associated with their approach, making
it challenging to draw conclusions about potential resource savings compared to an ac-
tive redundancy approach. Nevertheless, this aspect is crucial when designing a system
to strike the right balance between resource conservation and its impact on reliability.
Our base system differs from existing work, using an agent-based approach that finds

application mappings at run-time. Here, applications can independently allocate and
reserve resources. Our work examines the impact of graceful degradation on the relia-

97

5 Reliability Analysis

bility of a highly distributed system consisting of critical and non-critical applications.
This has not been considered and analyzed in the literature yet.

5.3 Introduction to Reliability Analysis

In this section, we are giving a short introduction to reliability analysis. Afterward,
we present our approach to formally analyze the impact of graceful degradation on the
reliability of critical and non-critical applications. For a specified duration, a system’s
reliability, denoted as R(τ) represents the likelihood that the system can maintain con-
tinuous operation without encountering failures [97, 98].

The system’s reliability is defined within a time interval spanning from zero to t,
where t can represent any predetermined duration in the future, extending to infinity.
The system’s reliability is the complement of its failure rate, denoted as λ(τ):

λ(τ) = 1−R(τ) (5.1)

Reliability is frequently represented as a distribution function. Electronic components
and systems typically follow an exponential distribution function for their failure rate,
denoted as λ(τ). The reliability of an exponential system can be expressed as follows::

R(τ) = e−
∫ τ
0 λ(θ)dθ (5.2)

The failure rate λ(τ) of a sample of independent components can be represented with
the bathtub curve [89]. In most cases, it is conventional to assume that the system is
free from faults at the initial time, indicating that λ(0) = 1. This further reduces the
reliability equation to:

R(τ) = e−λτ (5.3)

For a given time τ , the only factor we need to consider is the failure rate, which we
denote as λ. In our system, each component (ECU) has a constant failure rate which
we assume is identical for all components. In our experiments, we set the component
failure rate to λ = 0.01.

Equation 5.3 represents the reliability distribution function for an individual ECU
in our system. We use this reliability function to derive the MTTF which serves as a
metric for assessing the reliability of both critical and non-critical applications. The
MTTF signifies the average duration a component or system typically operates from its
installation until a failure takes place. The MTTF can be calculated as:

MTTF (τ) = e−
∫∞
0 λ(θ)dθ =

1

λ(τ)
. (5.4)

98

5.4 Formal Reliability Analysis of Gracefully Degrading Systems

5.4 Formal Reliability Analysis of Gracefully Degrading
Systems

In the following, we assume a mapping process has been performed as introduced in
Section 2.4, including the allocation and reservation. The mapping of the tasks and
the information on which specific slots have been allocated and reserved for each task
are required to determine the structure function φ for each application. While the
derivation of the structure function φ is more straightforward for critical applications, it
is more complex for non-critical applications as the degradation process also influences
the reliability. We assume that an application is still operational as long as there is at
least one task instance of each task available and can communicate.

5.4.1 Derivation of Structure Functions

To describe the behavior of our applications, we use boolean functions represented by a
structure function φ, which is encoded in a Binary Decision Diagram (Binary Decision
Diagram (BDD)) [90]. A BDD is a rooted, directed, and acyclic graph that consists
of multiple decision nodes and two terminal nodes that determine the outcome of the
boolean function [99]. The maximal size of a BDD encoding a formula on n variables is
2n/n [100]. As described below, the complexity of automatically generating our structure
functions is linear in the number of tasks.

In a system with n components, the state of each component i can be encoded in a
boolean variable xi, which evaluates to 1 if the component is operational and 0 if the
component is defective. A structure function φ(x) = φ(x1, x2, ..., xn), which represents
the system’s state, evaluates to 1 if the system is operational and 0 if not.

In the following, we denote z : V− > {0, 1} as a function, which translates the task
instances into a binary variable with 1 indicating a proper operation of the task in-
stance. We define that φ(z) = φ(z(t0,a), z(t0,b), ...z(tn,a), z(tn,b)) represents the structure
function of an application a. To derive the reliability, we translate these boolean vari-
ables dependent on the state of the task instances into boolean variables only dependent
on the state of the ECUs. Therefore, we denote y : E− > {0, 1} as a function that
translates ECUs into a binary variable with 1 indicating a proper operation of the ECU.
Furthermore, we define u : V → E as a function which translates a boolean variable
z(t) dependent on the state of a task instance t to a boolean variable y(e) which only
depends on the state of ECU e, such that u(z(t)) = y(e), where α(t) = e for active task
instances and β(t) = e for passive task instances. As an example, if a task instance
t0,a is bound to an ECU α(t0,a) = e1, the function z(t0,a) only evaluates to 1 as long
as the function y(e1) is indicating a proper operation. The resulting structure func-
tion φ(u(z)) = φ(y) = φ(y(e0), ...y(en)) is then only dependent on a set of independent
variables indicating the status of the ECUs.

99

5 Reliability Analysis

5.4.2 Derivation of Reliability

In our experiments, we use the JRELIABILITY framework to evaluate the MTTF [99].
Here, a Shannon-decomposition-based algorithm is applied to the structure function to
calculate the reliability [90]. The complexity of this algorithm is linear in the size of the
BDD [100].

A BDD allows us to calculate the probability of the root event of the tree using
Shannon’s decomposition if the probabilities of the leaves are given as follows:

pf (g) = pf (x = 1) · pf (gx=1) + pf (x = 0) · pf (gx=0), (5.5)

with pf being the probability that is calculated, g being a function and x a variable
occurring in g [100].

Using the probability function pf (φ, τ) as the probability p being calculated and the
structure function φ as the function f being evaluated, the likelihood of a working system
can be calculated as [101]:

pf (φ, τ) = pf (y(e) = 1, τ) · pf (φy(e)=1, τ) + pf (y(e) = 0, τ) · pf (φy(e)=0, τ). (5.6)

With a homogeneous set of ECUs and the assumption that the same reliability function
R(φ) is applied to each ECU, this can be further simplified to:

pf (φ, τ) = R(τ) · pf (φy(e)=1, τ) + (1−R(τ)) · pf (φy(e)=0, τ), (5.7)

resulting in the desired reliability function R(φ, τ) = pf (φ, τ) describing the proba-
bility of a proper working application. Finally, using equations 5.3 and 5.4, the MTTF
can be derived from R(φ, τ).

5.4.3 Formal Reliability Analysis of Critical Applications

Critical applications in our system model are required to have double redundancy which
means every active task instance has a passive counterpart. As the active task instance
and passive tasks instances are mapped onto different ECUs, a critical application would
always remain operational in the event of a single ECU failure. However, if two or more
ECUs had a critical failure and both task instances of a task are affected by it, then the
critical application fails.

For example, a critical application consisting of two active and two passive task in-
stances is mapped onto four ECUs in Subfigure 5.1a. One slot has been allocated or
reserved for the active and passive task instances. If both the active and passive task
instances t0,a and t0,b or t1,a and t1,b are affected by ECU failures then the application
would be considered as failed, resulting in the structure function:

φ(z) = (z(t0,a) ∨ z(t0,b)) ∧ (z(t0,a) ∨ z(t1,b)). (5.8)

100

5.4 Formal Reliability Analysis of Gracefully Degrading Systems

s2s1

t0,a t0,b

t1,a

s0

ρ(m0,aa)

σ(m0,ab)

t0,a t0,b

t1,a

m0,aa

t1,b

m0,bb

α(t0,a)

m0,ab

α(t1,a)

β(t1,b)

m0,bb

β(t0,b)

σ(m0,ba)

t1,b

σ(m0,bb)

t0,b

t1,b

t1,a

t0,a

(a) Mapping example.

α(t0,a)

β(t0,b)

α(t1,a)

0 1

β(t1,b)

(b) BDD.

Figure 5.1: An example mapping of a critical application onto four ECUs and the correspond-
ing BDD. The slot allocation and reservation are indicated right of the ECUs. The
BDD represents the boolean structure function φ(y) = (y(α(t0,a)) ∨ y(β(t0,b))) ∧
(y(α(t0,a))∨ y(β(t1,b))). If both task instances of any task were affected by ECU
failures, then the application would fail.

The resulting structure function φ(y) dependent on the operational status of the ECUs
is:

φ(y) = (y(α(t0,a)) ∨ y(β(t0,b))) ∧ (y(α(t0,a)) ∨ y(β(t1,b))) (5.9)

Subfigure 5.1b shows the corresponding BDD, with all possible paths leading either
to a failure (0) or to success (1). Each decision node in the BDD has two outgoing
edges that correspond to the variable being 0 (dashed arrow) or 1 (normal arrow). Each
variable assignment that results in 1 means that the application is still operational, while
the paths leading to 0 represent a failed application.
Generalizing the structure function φ(z) for critical applications, if for all tasks t ∈ V

either the active task instance ta or the the passive task instance tb is working, then the
critical application is operational:

φ(z) =
∧
t∈V

z(ta) ∨ z(tb). (5.10)

5.4.4 Formal Reliability Analysis of Non-Critical Applications

As we assume that no redundancy is used, a non-critical application is not operational
anymore if any of the tasks is affected by a failure. However, not only a direct ECU failure
can lead to an application failure but also degradation effects. Suppose a slot allocated by
a non-critical task is reserved by a critical application’s passive task instance of a critical
application. In that case, a degradation occurs if that passive task instance is activated.

101

5 Reliability Analysis

s2s1

e0

e1

s0

t2,a

t3,a

m2,aa

α(t3,a)

α(t2,a)

t2,a

t0,b
t2,a

t3,a
t3,a

t1,b

ρ(m2,aa)

t1,a

t0,a

(a) Mapping example.

α(t2,a)

α(t0,a)

0 1

α(t1,a)

α(t3,a)

(b) BDD.

Figure 5.2: An example mapping of a non-critical application onto the system and the cor-
responding BDD. The slot allocation and reservation are indicated right of the
ECUs. The passive task instances of the critical example from the previous ex-
ample also reserve the slots allocated by the task instances. The BDD represents
the boolean structure function y(α(t2,a))∧y(α(t0,a))∧y(α(t3,a))∧y(α(t1,a)). The
non-critical application would immediately fail if any task instances were affected
by an ECU failure. Furthermore, a degradation effect has to be considered as the
slots of the task instances are reserved by passive task instances of the critical
application, If any of the active task instances of the critical applications were
affected by a failure, the corresponding passive task instance would get activated,
and the task instance of the non-critical application would be degraded.

Activation of this passive task instance would only happen if the corresponding active
task instance were affected by an ECU failure. This means that the loss of an ECU to
which none of the tasks of a non-critical application are mapped can indirectly lead to
a failure of that application through degradation.

As an example, Subfigure 5.2a presents the mapping of a non-critical application
consisting of the task instances t2,a and t3,a onto the system. In this example, we assume
the critical application from the previous example in Subfigure 5.1a is still mapped onto
ECUs. The two task instances allocated a slot each. However, both of these slots are
also reserved by the critical application’s passive task instances t0,b and t1,b. Here, if
either the ECU of the task instance t0,a or the ECU of the task instance t1,a of the
critical application failed, then the corresponding passive task instance t0,b or t1,b would
be activated. This would then lead to a degradation of either t2,a or t3,a and, therefore,

102

5.5 Evaluation

to an indirect shutdown of the non-critical application. The structure function φ(z) is:

φ(z) = z(t2,a) ∧ z(t0,a) ∧ z(t3,a) ∧ z(t1,a) (5.11)

The resulting structure function φ(y) is is also represented as a BDD in Subfigure
5.2b:

φ(y) = y(α(t2,a))∧y(α(t0,a))∧y(α(t3,a))∧y(α(t1,a)) = y(e2)∧y(e1)∧y(e3)∧y(e0) (5.12)

Overall, this means that the failure of any ECU in this example would lead to a loss of
the non-critical application. In exchange, the critical application can remain operational
if only one ECU is affected by a failure. Therefore, through passive redundancy and
graceful degradation, the reliability of the critical application is increased at the cost of
reducing the reliability of the non-critical application.

The generalized structure function φ(z) for non-critical applications is:

φ(z) =
∧
t∈V

(z(ta) ∧
∧

tr∈T r
ta

z(tra)). (5.13)

The first part of the equation corresponds to the direct failure of the ECU α(ta) to
which the task ta is mapped. The second part of the equation includes the indirect
shutdown through degradation. Here, we define that tr ∈ T r

ta consists of all tasks tr of
critical applications where a passive task instance has reserved a slot allocated by the
task ta. The failure of any ECU α(tra) would lead to an activation of the corresponding
passive task instance trb and a shutdown of the task ta.

Using the reliability function 5.3 and the structure functions 5.10 and 5.13, the reli-
ability function and MTTF of each critical and non-critical application can be finally
obtained. We are using these functions and the MTTF to evaluate the impact of graceful
degradation on non-critical applications in Section 5.5.

5.5 Evaluation

In the following, we analyze the impact of graceful degradation on the reliability of crit-
ical and non-critical applications using our in-house developed simulation framework.
We first introduce our experimental setup in Subsection 5.5.1. Afterward, we present
the experimental results of our graceful degradation approach and compare it to ac-
tive redundancy in Subsection 5.5.2. Then, we analyze the effect of our allocation and
reservation strategies, which we initially introduced in Subsection 2.4.4.4, on the relia-
bility in Subsection 5.5.3. In Subsection 5.5.4, we present and analyze results obtained
with the Predecessor Heuristic, which aims to reduce the application’s failure exposure.
Last, we summarize all findings from these experiments and draw a conclusion about
the importance and impact of graceful degradation in Subsection 5.5.5.

103

5 Reliability Analysis

5.5.1 Experimental Setup

Our simulation framework has been developed to simulate automotive hardware archi-
tectures and the execution and communication of the system software according to our
system model. On top of the simulation framework, we implemented the agents, resource
managers, and strategies as described in Chapter 2.4. For the simulation framework,
we chose a process-based Discrete-Event Simulation architecture based on the SimPy
framework [73]. The hardware architecture and system software are described in a spec-
ification file using the XML schema from the OpenDSE framework [72]. The simulation
framework supports any type of hardware architecture consisting of ECUs, switches, and
links. To allow a dynamic behavior where tasks and agents are moving between ECUs
at run-time, we use a communication middleware based on the SOME/IP standard
[36]. The middleware consists of a service discovery that dynamically finds services at
run-time. Communication participants are either modeled as clients or services. Further-
more, the middleware supports remote procedure calls and includes a publish/subscribe
scheme. The framework also offers the possibility to simulate ECU failures by shutting
down ECUs. ECU failures are detected via heartbeats that are periodically sent between
all ECUs. Once a watchdog does not receive the heartbeat within a specific timeout in-
terval, it reports the corresponding ECU failure. We use shortest path routing based
on Dijkstra’s algorithm for routing the messages [38]. Our experiments use applications
synthetically generated by the OpenDSE framework using the TGFF algorithm [72, 80].

After each application has been mapped successfully, our framework generates the
structure functions according to equations 5.10 and 5.13. Afterward, we use the JRELI-
ABILITY framework [99] to evaluate the structure functions and to obtain the MTTF
as our evaluation metric. In the following, we calculate and present the average MTTF
of the critical and non-critical applications as

MTTFAV G =

∑n
i=1MTTFi

n
, (5.14)

where n is the number of critical or non-critical applications. All experiments use a
hardware architecture consisting of ten ECUs. Each ECU has a capacity of Se = 175
slots that can be allocated and reserved by critical and non-critical tasks, resulting in
St = 1750 slots overall supplied by the architecture. In each setup, the overall number
of applications Na mapped onto the architecture was set to 40 applications consisting
of five tasks each. In the experiments, the amount of critical Nc and non-critical Nnc

applications is varied to evaluate scenarios where resources are sufficiently available and
limited.

5.5.2 Graceful Degradation vs. State of the Art

Subfigure 5.3a presents the average MTTFAV G separated for non-critical and critical
applications for a scenario with no redundancy and a scenario with our solution where
redundancy and graceful degradation is applied. In this example, we used the Random
strategy for allocating and reserving slots as the default solution. Other strategies are

104

5.5 Evaluation

0 10 20 30

20

40

60

Nc

M
T
T
F
A
V
G

Graceful degradation - Critical
Graceful degradation - Non-critical

Active Redundancy - Critical
Active Redundancy - Non-critical

No Redundancy

(a) Reliability

0 10 20 30

1,000

1,200

1,400

1,600

1,800

Nc

S
O

Graceful Degradation
No Redundancy

Active Redundancy
Upper Limit Degradation
Lower Limit Degradation

(b) Consumed resources

Figure 5.3: Experimental results presenting the MTTFAV G and number of consumed slots
SO of our graceful degradation approach (blue plot lines with square marks), an
active redundancy approach (orange plot lines with asterisk marks) and no redun-
dancy (brown plot lines with pentagram marks) scenario over an increasing num-
ber of critical application Nc. Our graceful degradation approach significantly
reduces resource consumption compared to an active redundancy approach while
guaranteeing the same reliability to critical applications. In this example, it is
possible to fit five more critical applications onto the same hardware platform
with our graceful degradation approach compared to active redundancy.

evaluated in the following experiments. In the case of no redundancy (brown dotted plot
line with pentagram marks), the average MTTFAV G is constant over all experiments for
both critical and non-critical applications. With an active redundancy approach (orange
plot lines with asterisk marks) it can be observed that the MTTFAV G more than doubles
for critical applications compared to no redundancy while the value remains constant
for non-critical applications. However, it was impossible to evaluate a scenario with
Nc = 35 critical applications here as the resource limit was reached with Nc = 30 critical
applications. Using our approach with passive redundancy and graceful degradation
(blue plot lines with square marks) the same MTTFAV G for critical applications as with
an active redundancy approach could be reached. As the approach is more resource-
saving than active redundancy it is also possible to fit Nc = 35 critical applications on
the same hardware platform. However, in the case of non-critical applications a steady
decline of the MTTFAV G with an increasing amount of critical applications can be

105

5 Reliability Analysis

observed. With more critical applications on the same hardware architecture resources
become more limited leading to an increased chance that slots allocated by non-critical
tasks are also reserved for critical tasks. This means there are more possible scenarios
where in a failure scenario non-critical applications are shut down to save a critical
application resulting in reduced reliability for non-critical applications compared to the
cases of no redundancy and active redundancy.

This becomes more obvious when looking at Subfigure 5.3b which presents the re-
source consumption as the total number of occupied slots SO of all applications. Next
to the three scenarios, graceful degradation, active redundancy, and no redundancy, the
plot also shows the analytically derived lower and upper limits for the resource consump-
tion of our graceful degradation solution. The resource consumption of all applications
without any redundancy remains constant at SO = 1000 slots. The resource consump-
tion for active redundancy follows the upper limit until the maximum available resource
of SO = 1750 slots on the platform is hit at Nc = 30 critical applications. The resource
consumption of our graceful degradation solution increases steadily with an increasing
amount of critical applications reaching the maximum amount of SO = 1750 possible
slots, which is the maximum capacity of the hardware architecture, at Nc = 35. If the
number of critical applications were increased further not all applications could fit onto
the platform. It can be observed that our solution is located approximately in the middle
between the upper and the lower limit.

To further compare our graceful degradation approach with active redundancy we
introduce two metrics. We define

MTTFreduction,nc = −
MTTFAV G,active,nc −MTTFAV G,deg,nc

MTTFAV G,active,nc

, (5.15)

as the percental MTTF reduction of non-critical applications of our degradation ap-
proach compared to the active redundancy approach with MTTFAV G,active,nc represent-
ing the average MTTF of non-critical applications for the active redundancy approach
and MTTFAV G,deg,nc representing the average MTTF of non-critical applications for our
graceful degradation approach. For the resource consumption we define SOH,deg as the
slot overhead introduced by the degradation approach as SOH,deg = SO,deg − SO,no, with
SO,deg being the total number of consumed slots of the degradation approach and SO,no

being the total number of consumed slots when using no redundancy. Furthermore, we
define SOH,active = SO,active − SO,no as the slot overhead introduced by the active redun-
dancy approach, with SO,active being the total number of consumed slots of the active
redundancy approach. Now we can define

Rsavings =
SOH,active − SOH,deg

SOH,active

, (5.16)

as the percental resource savings of our degradation approach over the active redun-
dancy approach.

Figure 5.4 presents our two metrics over the data points obtained through our experi-
ments. It can be observed that the percental resource savings Rsavings of our degradation

106

5.5 Evaluation

approach declines with an increasing number of critical applications. The potential for
percental cost savings decreases as with more critical applications and a more constrained
resource situation fewer slots for allocation from non-critical applications become avail-
able. This leads to a higher allocation of non-occupied slots and adds more resource
overhead. The MTTFreduction,nc sinks over time until it reaches a minimum of −55.6%
at Nc = 30. With an increasing number of critical applications more slots that are
allocated by non-critical applications are also reserved for critical applications leading
to the reduction.

0 5 10 15 20 25 30 35

−50

0

50

Nc

%

Rsavings

MTTFreduction,nc

Figure 5.4: Experimental results presenting the resource savings Rsavings (dashed olive plot
line with square marks) and the MTTF reduction MTTFreduction,nc of the non-
critical applications(solid cyan plot line with asterisk marks) of our graceful degra-
dation approach compared to an active redundancy approach.

Overall the advantage of our graceful degradation approach becomes visible. Our ap-
proach consumes significantly fewer resources than an active redundancy approach while
still being able to maintain the same MTTF for critical applications. In this example, it
is also possible to map five more critical applications onto the same architecture before
the resource capacity is reached. This advantage is bought by the decreased reliability
of non-critical applications. Consequently, our graceful degradation methodology can
significantly reduce resource consumption and costs if a decreased reliability of non-
critical applications can be tolerated while guaranteeing the same reliability to critical
applications as active redundancy approaches.

5.5.3 Allocation and Reservation Strategies

In this subsection we are evaluating and comparing the MTTF and resource costs of the
three allocation and reservation strategies Random, Free-Last and Free-First, which were
first introduced in Subsectionwhich we initially introduced in Section 2.4.4.4. Subfigure
5.5a presents the MTTF for all three strategies separated into critical and non-critical

107

5 Reliability Analysis

0 10 20 30

20

40

60

Nc

M
T
T
F
A
V
G

Random - Critical
Random - Non-critical
FreeFirst - Critical

FreeFirst - Non-critical
FreeLast - Critical

FreeLast - Non-critical

(a) Reliability

0 10 20 30

1,000

1,200

1,400

1,600

1,800

Nc

S
O

Random
FreeFirst
FreeLast

Upper Limit Degradation
Lower Limit Degradation

(b) Consumed resources

Figure 5.5: Experimental results presenting the MTTFAV G and number of consumed slots
SO of our three allocation and reservation strategies Random (blue plot lines with
square marks), FreeFirst (red plot lines with diamond marks) and FreeLast (green
plot lines with circle marks) over an increasing number of critical application
Nc. The FreeFirst strategy maximizes the use of available resources in order
to reduce the degradation effect on non-critical applications but also increases
the resource consumption. By contrast, the FreeLast strategy uses the resources
most efficiently reducing the consumption of hardware resources at the cost of a
reduced reliability of non-critical applications.

applications. The Random strategy has already been evaluated in the previous experi-
ment in Subsection 5.5.2.

It can be observed that the allocation and reservation strategy does not change the
average MTTF of critical applications (dotted plot lines). However, the plot lines for
the MTTF of the non-critical application differ from each other. The Free-First strategy
(red dashed plot line with diamond shapes) keeps a significantly higher MTTF with an
increasing number of critical applications and starts dropping later in the plot compared
to the other two strategies. By contrast, the MTTF of Free-Last strategy (green dashed
plot line with circle shapes) drops even earlier than with the Random strategy (blue
dashed plot line with square shapes). The Free-First strategy allocates and reserves first
any slots that have not been occupied and, therefore, reduce the number of overlapping
slots and by that the degradation impact on non-critical applications. However, as soon

108

5.5 Evaluation

as resources become more limited, finding free slots becomes more difficult resulting in
a reduced MTTF for non-critical applications. Conversely, the Free-Last strategy tries
to achieve a maximum overlap of slots by choosing occupied slots first. It only allocates
or reserves free slots if not otherwise possible. This also results in a maximum possible
degradation effect on non-critical applications and on average a lower MTTF.
Subfigure 5.5b presents the resource costs of the three strategies as the total number

of slots occupied by all applications on the platform. The plot line of the Free-First
strategy (red plot line with diamond shape) remains at the upper limit while the plot
line of the Free-Last strategy remains at the lower limit (green plot line with circle
shape).
These results confirm that Free-First strategy maximizes the use of the available

resources to reduce the degradation effect, but might increase the resource costs. There-
fore, for a given amount of resources, the strategy avoids unnecessary degradation by
using up the resources as far as possible. By contrast, the Free-Last strategy uses the
resources most efficiently reducing the consumption of hardware resources at the cost
of reduced reliability of non-critical applications. Overall these experiments show that
Free-First strategy minimizes the degradation effect while Free-Last strategy maximizes
it.

5.5.4 Exposure Reduction

In previous experiments, the ECU of a task instance was chosen randomly by the agent
and the task was mapped to the next ECU with available resources. This led to scenarios
where both critical and non-critical applications were highly distributed over the whole
hardware platform. This would mean that more ECU failures could lead to the failure
of an application. However, it would be preferable regarding reliability to reduce the
exposure to different failure sources. Therefore, we introduce the Predecessor Heuristic
where agents do not choose ECUs randomly but prefer ECUs to which preceding task
instances are already mapped to concentrating the task instances on a smaller number
of ECUs.
Figure 5.6 presents the results for the three allocation and reservation strategies Ran-

dom, FreeFirst, and FreeLast as well the results for the case with no redundancy. Com-
paring the scenario without redundancy (brown plot line with pentagon marks) to Sub-
figure 5.3a, the MTTF increased from around 25 to almost 100. Here, the tasks of one
application are almost always mapped to only on ECU, while previously applications
were scattered around 4.1 ECUs on average. The MTTF is even exceeding the MTTF
of critical applications from Subfigure 5.3a. Although the critical applications had a
double redundancy, they were distributed around 6.5 ECUs on average which increased
the exposure to failure significantly.
In Figure 5.6 the plot lines for the critical applications of all three strategies (dotted

plot lines) are similar. The MTTF starts around 152 until it hits a low around an MTTF
of 115 at Nc = 35. Initially, agents of critical applications manage to distribute the task
instances mostly on two ECUs (at least two ECUs have to be involved to ensure double
redundancy). However, as resources become more limited, the chance to map all task

109

5 Reliability Analysis

0 5 10 15 20 25 30 35

20

40

60

80

100

120

140

160

Nc

M
T
T
F
A
V
G

Random - Critical
Random - Non-critical
FreeFirst - Critical

FreeFirst - Non-critical
FreeLast - Critical

FreeLast - Non-critical
No Redundancy

Figure 5.6: Experimental results presenting the MTTFAV G of our three allocation and reser-
vation strategies Random (blue plot lines with square marks), FreeFirst (red plot
lines with diamond marks) and FreeLast (green plot lines with circle marks) us-
ing our Predeccesor Heuristic over an increasing number of critical application
Nc. Compared to previous experiments, the MTTFAV G of both critical and
non-critical applications increased significantly as the exposure of applications to
different failure sources was reduced. The MTTFAV G decreases with an increas-
ing number of critical applications Nc as resources become more limited and the
chance to map all task instances on the same two ECUs decreases, distributing
the critical application more on the hardware platform.

110

5.6 Conclusion

instances on the same two ECUs decreases, distributing the critical application more on
the hardware platform. This effect is not visible in Subfigure 5.3a as the ECUs were
already chosen randomly.
The general course of the plot lines of non-critical applications of all three strategies

(dashed plot lines) is similar as in Subfigure 5.5a but there are a few differences. Overall
the MTTF starts at slightly below 100 until it hits a low around an MTTF of 20 at
Nc = 35. Here, the degradation has a much more significant impact on the MTTF than
in the previous example. The reason is that the MTTF starts with a high value where
applications are mostly mapped to only one ECU and, thus, only the failure of one ECU
can cause an application failure. When resources become more limited, more slots for
non-critical tasks are reserved from many different critical applications, which themselves
are also getting more distributed on the platform. Overall this increases the exposure
of non-critical applications to about 5 ECUs on average. This experiment has shown
that while redundancy can significantly increase reliability, reducing the exposure of
applications to different failure sources is a leverage that should not be underestimated.

5.5.5 Summary

Overall our experiments have shown that graceful degradation significantly reduces re-
source consumption while maintaining the same reliability as an active redundancy ap-
proach for critical applications. Furthermore, it is possible to fit more applications onto
the same hardware platform as resources are used more efficiently. The decreased re-
liability of non-critical applications buys this advantage. Additionally, we evaluated
the three allocation and reservation strategies Random, FreeFirst, and FreeLast. The
FreeFirst strategy maximizes the use of available resources and reduces the degradation
effect on non-critical applications but also increases resource consumption. By contrast,
the FreeLast strategy minimizes resource consumption at the cost of reduced reliability
of non-critical applications. Last we evaluated our Predecessor Heuristic where tasks
preferred ECUs to which already other tasks of the same application were mapped.
Here, the reliability of both critical and non-critical applications increased significantly
as the exposure of applications to different failure sources was reduced. In summary,
graceful degradation can be a powerful methodology that uses resources more efficiently
than common redundancy approaches and can enormously increase the number of ap-
plications that can be mapped onto the same system architecture while providing the
same fail-operational capabilities.

5.6 Conclusion

In this chapter we presented a reliability analysis of our gracefully degrading automotive
systems which we introduced in Chapter 2. With a graceful degradation approach, the
reliability of critical applications is increased at the cost of a decrease in the reliabil-
ity of non-critical applications. To quantify and understand the effect that a graceful
degradation approach has on both critical and non-critical applications we gave a short

111

5 Reliability Analysis

overview of state-of-the-art reliability analysis. We introduced our approach to formally
analyze the impact of graceful degradation on the reliability of critical and non-critical
applications. We performed multiple experiments on our in-house developed simulation
platform to evaluate our graceful degradation approach. Compared to active redun-
dancy, graceful degradation can significantly reduce resource consumption while main-
taining the same reliability for critical applications. However, this advantage is bought
with a reduced reliability of non-critical applications. In resource-constrained scenarios,
the graceful degradation approach can map more applications on the same hardware
platform than an active redundancy approach. Our experiments also showed that the
FreeFirst strategy maximizes the use of available resources and reduces the degradation
effect on non-critical applications but also increases resource consumption. By contrast,
the FreeLast strategy minimizes resource consumption at the cost of reduced reliability
of non-critical applications. The experimental results with the Predecessor Heuristic
showed that the reliability of critical and non-critical applications could be increased
significantly as the exposure of applications to different failure sources was reduced.
Summarized, our results confirm that graceful degradation can be a powerful method-
ology that significantly reduces resource consumption compared to active redundancy
while providing the same fail-operational capabilities to critical applications.

112

6 Conclusions and Future Work

To enable autonomous driving a fail-operational behavior of safety-critical applications
has to be ensured. This is a significant challenge for automotive manufacturers as
a fail-operational behavior requires redundancy, which would increase hardware costs
enormously. Furthermore, they must enable frequent over-the-air software updates and
offer configuration possibilities for customers, leading to unique and customized software
solutions. State-of-the-art static redundancy approaches can not fulfill the requirements
for a cost-sensitive and adaptable solution. Therefore, new techniques are required to
achieve a dynamic, safe, and cost-efficient behavior.
To cope with the complexity of software development, the industry is already moving

towards more integrated E/E architectures with decoupled hardware and software. Soft-
ware platforms open new possibilities for more cost-sensitive and dynamic
fail-operational approaches. Dynamic graceful degradation is a promising approach
where resources are re-distributed after a failure at run-time from non-critical to crit-
ical applications to ensure the fail-operational behavior of critical applications. The
main challenges of achieving such a dynamic fail-operational approach are to ensure
predictable behavior and to find bounds within which a safe and dynamic operation is
possible.

6.1 Conclusions

In this thesis, we presented an approach to dynamically achieve a gracefully degrading
system behavior using an agent-based approach in automotive systems. We introduced
methodologies to achieve a more predictable system design and analyze non-functional
properties, focusing on timing behavior, state recovery, and reliability analysis.
We contributed a graceful degradation approach based on a resource allocation and

reservation system that is, by design, composable. This design of our graceful degra-
dation approach allows a predictable outcome of the degradation process for any ECU
failure in the system. Furthermore, it enables an isolated timing analysis of applications
and allows a quick failover process.
We presented an agent-based backtracking approach to set up our gracefully degrading

system and find suitable resource allocations and reservations at run-time. This approach
and the decentralized control of resources enable a dynamic and adaptable behavior
and fail-operational management by eliminating any single point of failure. Our first
experiments showed that using this approach to reconfigure the system, the number of
sustained ECU failures increases significantly until a critical application is affected by a
loss directly.

113

6 Conclusions and Future Work

Utilizing the composable design of our graceful degradation approach, we then pre-
sented a timing analysis that allows us to verify quickly at run-time if a binding of a
critical application (including passive task instances) can meet its timing constraint be-
fore and after any possible failover. Furthermore, we embedded this timing analysis in
our agent-based approach to find feasible bindings that respect the timing constraint.
This further increases the predictability of our approach as this ensures that a valid solu-
tion is available for any failure scenario to which a quick failover can be performed. Our
experimental results confirmed that graceful degradation strongly increases the success
rate of finding a valid mapping for critical applications compared to an active redundancy
approach in resource-constrained scenarios. Furthermore, resource utilization could be
significantly reduced.
Afterward, we presented a formal analysis to derive the worst-case failover time, en-

suring that a failover can be performed within the FTTI. Our analytical exact bound
allows us to verify at run-time if a binding respects a failover timing constraint. We
conducted experiments with a distributed fail- operational neural network, where we
provoked worst-case failure scenarios to measure the failover time. Our randomly gener-
ated worst-case results are as close as 6.0% below our analytically derived exact bound.
Overall, this approach increases timing predictability in failover scenarios.
To extend our work to stateful applications, we presented a checkpointing and rollback

recovery approach. Instead of taking and sending a checkpoint with the application pe-
riod, we presented an approach to analytically derive the maximal checkpointing period
to reduce network and processing overhead. We used a SLAM application to analyze
the dependency between state data age and the algorithm’s accuracy. Further failover
experiments showed that the worst-case results of our randomized experiments were
consistent with our analytically derived exact bound.
Last, we evaluated our graceful degradation approach based on resource consumption

and the impact on reliability. For this purpose, we presented a formal reliability analy-
sis to derive the reliability of critical and non-critical applications. We compared three
allocation and reservation strategies and an active redundancy approach for our evalu-
ation. Our experimental results showed that graceful degradation significantly reduces
resource consumption while still maintaining the same reliability as an active redundancy
approach for critical applications. Furthermore, it is possible to fit more applications
onto the same hardware platform in resource-constrained scenarios using graceful degra-
dation compared to active redundancy. However, the advantages of graceful degradation
are purchased with a reliability decrease of non-critical applications. Our FreeFirst al-
location and reservation strategy minimized the negative impact on the reliability of
non-critical applications but also resulted in minimal to no resource savings compared
to active redundancy. Our FreeLast strategy maximized the graceful degradation effect
with the highest reliability decrease for non-critical applications but also resulted in the
highest resource savings. Furthermore, in experiments for our predictable timing analy-
sis, the FreeLast strategy resulted in the highest success chance to find valid mappings,
especially in more resource-constrained scenarios. On the other hand, the FreeFirst
strategy resulted in the lowest success rate. The FreeLast strategy maximizes the grace-
ful degradation effect while the FreeFirst strategy minimizes it with all accompanying

114

6.2 Future Work

advantages and disadvantages. Our experimental results confirmed that graceful degra-
dation can be a powerful methodology that significantly reduces resource consumption
compared to active redundancy while providing the same fail-operational capabilities to
critical applications if a reliability decrease of non-critical applications is acceptable.
Overall, we contributed an approach that combines graceful degradation with a de-

centralized system control. Compared to conventional redundancy approaches, this ap-
proach is more resource-efficient. It allows a dynamic behavior while eliminating any
single point of failure for the system control and offering the same fail-operational ca-
pabilities to critical applications.

6.2 Future Work

Our proposed approaches can be further improved and extended. In the following, we
propose further research directions and future work.

Benchmark We need a new benchmark suite for autonomous automotive systems to
ease the evaluation and comparison of synthesis approaches. This benchmark suite
should contain applications from various automotive E/E domains such as infotainment,
chassis, powertrain, comfort, or autonomous driving. The data should have a graphical
representation of the applications and run times on a few typical hardware elements.
Critical applications could be classified regarding their safety requirements, such as
a required level of redundancy or reliability and requirements on the FTTI. Further
information could include the size and type of state data. Standardized run times and
requirements approved by the research community and automotive experts could help
create a common communication basis and ease the comparison of synthesis approaches.

Hybrid Mapping Approaches While our proposed agent-based approach can find map-
pings at run-time, there are open questions about the scalability of the approach. Future
work could address this issue by evaluating hybrid mapping approaches for our gracefully
degrading system. Here, operation points could be pre-computed using meta-heuristic
design space exploration approaches in the car or the cloud. Afterward, the resulting
constraint graphs can be used to find a feasible mapping for an application at run-
time. As time is less limited at design time than after a failover, application mappings
can also be optimized, e.g., regarding their energy consumption. An interesting and
open question is which time frame would be considered reasonable to perform an in-car
reconfiguration after a failover.

Real-Time Migration In our current approach, cars must stop after a failover to safely
perform a reconfiguration and re-establish redundancy for critical applications. Another
interesting research question would contain the real-time migration of safety-critical
tasks from one ECU to another. A reconfiguration could be performed without stopping
the car if this can be achieved safely and within an application’s operation conditions.
In this scenario, a passenger would ideally not even notice the incident.

115

Bibliography

[1] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf. Future Automo-
tive Systems Design: Research Challenges and Opportunities: Special Session. In
Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis, pages 1–7, 2018. doi:10.1109/CODESISSS.2018.8525873.

[2] Y. Yeh. Safety Critical Avionics for the 777 Primary Flight Controls System.
In 20th DASC. 20th Digital Avionics Systems Conference (Cat. No. 01CH37219),
volume 1, pages 1C2–1, 2001. doi:10.1109/DASC.2001.963311.

[3] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner. Software engineering for
automotive systems: A roadmap. In Future of Software Engineering (FOSE’07),
pages 55–71, 2007.

[4] S. Fürst. Challenges in the design of automotive software. In 2010 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE 2010), pages 256–258,
2010. doi:10.1109/DATE.2010.5457201.

[5] M. Lunt. E/E-Architecture in a Connected World. URL:
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=

148b5052945a466cacfe8f31c44eb22509d5aad1.

[6] WikiChip. Tesla FSD Computer, 2019. URL: https://en.wikichip.org/wiki/
tesla_(car_company)/fsd_chip.

[7] Bosch. Vehicle-Centralized, Zone-Oriented E/E Architecture with Vehi-
cle Computers, 2022. URL: https://www.bosch-mobility-solutions.

com/en/mobility-topics/ee-architecture/?gclid=

Cj0KCQjwgO2XBhCaARIsANrW2X1FfP3bQFfM4NWaTRZBagYqA9gVQ91v9oIriWyb38Xm_

ntCPErQgoQaAmO9EALw_wcB.

[8] C. Buckl, A. Camek, G. Kainz, C. Simon, L. Mercep, H. Stähle, and A. Knoll.
The software car: Building ICT architectures for future electric vehicles. In 2012
IEEE International Electric Vehicle Conference, pages 1–8, 2012. doi:10.1109/

IEVC.2012.6183198.

[9] M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl, M. Armbruster,
A. Marek, A. Zirkler, C. Klein, and A. Knoll. An Automated Electric Vehicle
Prototype Showing New Trends in Automotive Architectures. In 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, pages 1274–1279,
2015. doi:10.1109/ITSC.2015.209.

117

http://dx.doi.org/10.1109/CODESISSS.2018.8525873
http://dx.doi.org/10.1109/DASC.2001.963311
http://dx.doi.org/10.1109/DATE.2010.5457201
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/?gclid=Cj0KCQjwgO2XBhCaARIsANrW2X1FfP3bQFfM4NWaTRZBagYqA9gVQ91v9oIriWyb38Xm_ntCPErQgoQaAmO9EALw_wcB
https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/?gclid=Cj0KCQjwgO2XBhCaARIsANrW2X1FfP3bQFfM4NWaTRZBagYqA9gVQ91v9oIriWyb38Xm_ntCPErQgoQaAmO9EALw_wcB
https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/?gclid=Cj0KCQjwgO2XBhCaARIsANrW2X1FfP3bQFfM4NWaTRZBagYqA9gVQ91v9oIriWyb38Xm_ntCPErQgoQaAmO9EALw_wcB
https://www.bosch-mobility-solutions.com/en/mobility-topics/ee-architecture/?gclid=Cj0KCQjwgO2XBhCaARIsANrW2X1FfP3bQFfM4NWaTRZBagYqA9gVQ91v9oIriWyb38Xm_ntCPErQgoQaAmO9EALw_wcB
http://dx.doi.org/10.1109/IEVC.2012.6183198
http://dx.doi.org/10.1109/IEVC.2012.6183198
http://dx.doi.org/10.1109/ITSC.2015.209

BIBLIOGRAPHY

[10] P. Weber, P. Weiss, D. Reinhardt, and S. Steinhorst. Energy-Optimized Elastic
Application Distribution for Automotive Systems in Hybrid Cloud Architectures.
In 2020 23rd Euromicro Conference on Digital System Design (DSD), pages 455–
462, 2020. doi:10.1109/DSD51259.2020.00078.

[11] R. Schneider, A. Kohn, K. Schmidt, S. Schoenberg, U. Dannebaum, J. Harnisch,
and Q. Zhou. Efficient Virtualization for Functional Integration on Modern Micro-
controllers in Safety-Relevant Domains. Technical report, SAE Technical Paper,
2014.

[12] AUTOSAR. AUTOSAR Adaptive Platform. URL: https://www.autosar.org/
standards/adaptive-platform/.

[13] P. S. Börge Schmelz, Martin Böhner. Over-the-air updates – what advantages does
the AUTOSAR Adaptive Platform offer? URL: https://www.elektrobit.com/
trends/ota-updates-with-adaptive-autosar/.

[14] M. Lukasiewycz, S. Steinhorst, S. Andalam, F. Sagstetter, P. Waszecki, W. Chang,
M. Kauer, P. Mundhenk, S. Shanker, S. A. Fahmy, et al. System architecture and
software design for electric vehicles. In Proceedings of the 50th Annual Design
Automation Conference, pages 1–6, 2013. doi:10.1145/2463209.2488852.

[15] AUTOSAR. SOME/IP Protocol Specification R19-11. URL: https:

//www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/

AUTOSAR_PRS_SOMEIPProtocol.pdf.

[16] A. Burns and R. I. Davis. Mixed Criticality Systems - A Review. 2022. URL:
https://eprints.whiterose.ac.uk/183619/.

[17] B. Akesson, A. Molnos, A. Hansson, J. A. Angelo, and K. Goossens. Composability
and Predictability for Independent Application Development, Verification, and
Execution. In Multiprocessor System-on-Chip, pages 25–56. Springer, 2011. doi:
10.1007/978-1-4419-6460-1_2.

[18] R. Isermann, R. Schwarz, and S. Stolzl. Fault-Tolerant Drive-by-Wire Systems.
IEEE Control Systems Magazine, 22(5):64–81, 2002. doi:10.1109/MCS.2002.

1035218.

[19] M. Blanke, M. Staroswiecki, and N. E. Wu. Concepts and methods in fault-
tolerant control. In Proceedings of the 2001 American control conference.(Cat. No.
01CH37148), volume 4, pages 2606–2620, 2001. doi:10.1109/ACC.2001.946264.

[20] C. Temple and A. Vilela. Fehlertolerante Systeme im Fahrzeug-Von Fail Safe zu
Fail Operational. Elektronik automotive, pages 1614–0125, 2014.

[21] A. Kohn, R. Schneider, A. Vilela, A. Roger, and U. Dannebaum. Architectural
Concepts for Fail-Operational Automotive Systems. Technical report, SAE Tech-
nical Paper, 2016. doi:10.4271/2016-01-0131.

118

http://dx.doi.org/10.1109/DSD51259.2020.00078
https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.elektrobit.com/trends/ota-updates-with-adaptive-autosar/
https://www.elektrobit.com/trends/ota-updates-with-adaptive-autosar/
http://dx.doi.org/10.1145/2463209.2488852
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/19-11/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://eprints.whiterose.ac.uk/183619/
http://dx.doi.org/10.1007/978-1-4419-6460-1_2
http://dx.doi.org/10.1007/978-1-4419-6460-1_2
http://dx.doi.org/10.1109/MCS.2002.1035218
http://dx.doi.org/10.1109/MCS.2002.1035218
http://dx.doi.org/10.1109/ACC.2001.946264
http://dx.doi.org/10.4271/2016-01-0131

BIBLIOGRAPHY

[22] Infineon Technologies AG. AURIX™ 32-bit Microcontrollers for Automo-
tive and Industrial Applications. URL: https://www.infineon.com/dgdl/

Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=

5546d4625d5945ed015dc81f47b436c7.

[23] R. E. Lyons and W. Vanderkulk. The Use of Triple-Modular Redundancy to Im-
prove Computer Reliability. IBM Journal of Research and Development, 6(2):200–
209, 1962. doi:10.1147/rd.62.0200.

[24] O. González, H. Shrikumar, J. A. Stankovic, and K. Ramamritham. Adaptive
fault tolerance and graceful degradation under dynamic hard real-time scheduling.
In Proceedings Real-Time Systems Symposium, pages 79–89, 1997. doi:10.1109/
REAL.1997.641271.

[25] C. P. Shelton, P. Koopman, and W. Nace. A Framework for Scalable Analysis and
Design of System-wide Graceful Degradation in Distributed Embedded Systems.
In Proceedings of the 8th Int. Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS), pages 156–163, 2003. doi:10.1109/WORDS.2003.1218078.

[26] J. C. Knight and K. J. Sullivan. On The Definition Of Survivability. Technical re-
port, University of Virginia, Department of Computer Science, 2000. URL: https:
//www.cse.msu.edu/~cse870/Materials/FaultTolerant/john.dsn.pdf.

[27] Meyer. On Evaluating the Performability of Degradable Computing Systems.
IEEE Transactions on Computers, C-29(8):720–731, 1980. doi:10.1109/TC.

1980.1675654.

[28] P. Weiss, A. Weichslgartner, F. Reimann, and S. Steinhorst. Fail-Operational
Automotive Software Design Using Agent-Based Graceful Degradation. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe (DATE),
pages 1169–1174, 2020. doi:10.23919/DATE48585.2020.9116322.

[29] P. Weiss and S. Steinhorst. Predictable Timing Behavior of Gracefully Degrading
Automotive Systems. Design Automation for Embedded Systems, pages 1–36, 2023.
doi:10.1007/s10617-023-09271-x.

[30] P. Weiss, S. Elsabbahy, A. Weichslgartner, and S. Steinhorst. Worst-Case Failover
Timing Analysis of Distributed Fail-Operational Automotive Applications. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe (DATE),
pages 1294–1299, 2021. doi:10.23919/DATE51398.2021.9473950.

[31] P. Weiss, E. Daporta, A. Weichslgartner, and S. Steinhorst. Checkpointing Period
Optimization of Distributed Fail-Operational Automotive Applications. In 2021
24th Euromicro Conference on Digital System Design (DSD), pages 389–395, 2021.
doi:10.1109/DSD53832.2021.00066.

119

https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
https://www.infineon.com/dgdl/Infineon-TriCore_Family_BR-ProductBrochure-v01_00-EN.pdf?fileId=5546d4625d5945ed015dc81f47b436c7
http://dx.doi.org/10.1147/rd.62.0200
http://dx.doi.org/10.1109/REAL.1997.641271
http://dx.doi.org/10.1109/REAL.1997.641271
http://dx.doi.org/10.1109/WORDS.2003.1218078
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/john.dsn.pdf
https://www.cse.msu.edu/~cse870/Materials/FaultTolerant/john.dsn.pdf
http://dx.doi.org/10.1109/TC.1980.1675654
http://dx.doi.org/10.1109/TC.1980.1675654
http://dx.doi.org/10.23919/DATE48585.2020.9116322
http://dx.doi.org/10.1007/s10617-023-09271-x
http://dx.doi.org/10.23919/DATE51398.2021.9473950
http://dx.doi.org/10.1109/DSD53832.2021.00066

BIBLIOGRAPHY

[32] P. Weiss, A. Younessi, and S. Steinhorst. Reliability Analysis of Gracefully De-
grading Automotive Systems. Preprint on arXiv, 2023. doi:10.48550/arXiv.

2305.07401.

[33] P. Weiss, S. Nagel, A. Weichslgartner, and S. Steinhorst. Adaptable Demon-
strator Platform for the Simulation of Distributed Agent-Based Automotive Sys-
tems. In 2nd International Workshop on Autonomous Systems Design (ASD 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:10.4230/OASIcs.

ASD.2020.3.

[34] A. Kohn, M. Käßmeyer, R. Schneider, A. Roger, C. Stellwag, and A. Herkers-
dorf. Fail-Operational in Safety-Related Automotive Multi-core Systems. In 10th
IEEE International Symposium on Industrial Embedded Systems (SIES), pages
1–4, 2015. doi:10.1109/SIES.2015.7185051.

[35] K. Becker and S. Voss. Analyzing Graceful Degradation for Mixed Critical Fault-
Tolerant Real-Time Systems. In 18th International Symposium on Real-Time Dis-
tributed Computing (ISORC), pages 110–118, 2015. doi:10.1109/ISORC.2015.

10.

[36] Scalable service-Oriented MiddlewarE over IP (SOME/IP), 2021. URL: http:
//some-ip.com/.

[37] International Organization for Standardization. ISO 26262, Road vehicles - Func-
tional Safety - Part 1-9, 1st edition, 2011.

[38] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959. doi:https://doi.org/10.1007/BF01386390.

[39] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE transactions on dependable
and secure computing, 1(1):11–33, 2004. doi:10.1109/TDSC.2004.2.

[40] B. Pourmohseni, F. Smirnov, S. Wildermann, and J. Teich. Real-Time Task Mi-
gration for Dynamic Resource Management in Many-Core Systems. In Workshop
on Next Generation Real-Time Embedded Systems (NG-RES 2020), volume 77
of OpenAccess Series in Informatics (OASIcs), pages 5:1–5:14. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2020.

[41] F. Smirnov, F. Reimann, J. Teich, Z. Han, and M. Glaß. Automatic Optimization
of Redundant Message Routings in Automotive Networks. In Proceedings of the
21st International Workshop on Software and Compilers for Embedded Systems,
pages 90–99, 2018. doi:10.1145/3207719.3207725.

[42] T. Frese, T. Leonhardt, D. Hatebur, I. Côté, H.-J. Aryus, and M. Heisel. Fault
Tolerance Time Interval: How to define and handle. Neue Dimensionen der
Mobilität: Technische und betriebswirtschaftliche Aspekte, pages 559–567, 2020.
doi:10.1007/978-3-658-29746-6_45.

120

http://dx.doi.org/10.48550/arXiv.2305.07401
http://dx.doi.org/10.48550/arXiv.2305.07401
http://dx.doi.org/10.4230/OASIcs.ASD.2020.3
http://dx.doi.org/10.4230/OASIcs.ASD.2020.3
http://dx.doi.org/10.1109/SIES.2015.7185051
http://dx.doi.org/10.1109/ISORC.2015.10
http://dx.doi.org/10.1109/ISORC.2015.10
http://some-ip.com/
http://some-ip.com/
http://dx.doi.org/https://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1145/3207719.3207725
http://dx.doi.org/10.1007/978-3-658-29746-6_45

BIBLIOGRAPHY

[43] D. Penha, G. Weiss, and A. Stante. Pattern-Based Approach for Designing Fail-
Operational Safety-Critical Embedded Systems. In 2015 IEEE 13th International
Conference on Embedded and Ubiquitous Computing, pages 52–59, 2015. doi:

10.1109/EUC.2015.14.

[44] H. Seebach, F. Nafz, J. Holtmann, J. Meyer, M. Tichy, W. Reif, and W. Schäfer.
Designing Self-healing in Automotive Systems. In International Conference
on Autonomic and Trusted Computing, pages 47–61, 2010. doi:10.1007/

978-3-642-16576-4_4.

[45] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, and
S. Pezzini. Fault-Tolerant Platforms for Automotive Safety-Critical Applica-
tions. In Proceedings of the 2003 International Conference on Compilers, Ar-
chitecture and Synthesis for Embedded Systems, CASES ’03, pages 170–177,
2003. URL: https://doi-org.eaccess.ub.tum.de/10.1145/951710.951734,
doi:10.1145/951710.951734.

[46] S. Sommer, A. Camek, K. Becker, C. Buckl, A. Zirkler, L. Fiege, M. Armbruster,
G. Spiegelberg, and A. Knoll. Race: A centralized platform computer based archi-
tecture for automotive applications. In 2013 IEEE International Electric Vehicle
Conference (IEVC), pages 1–6, 2013. doi:10.1109/IEVC.2013.6681152.

[47] K. Becker, J. Frtunikj, M. Felser, L. Fiege, C. Buckl, S. Rothbauer, L. Zhang,
and C. Klein. RACE RTE: a runtime environment for robust fault-tolerant vehicle
functions. In CARS Workshop, 11th European Dependable Computing Conference-
Dependability in Practice, 2015.

[48] R. Mariani, T. Kuschel, and H. Shigehara. A Flexible Microcontroller Architecture
for Fail-Safe and Fail-Operational Systems. In 2nd HiPEAC Workshop on Design
for Reliability (DFR’10), 2010. URL: http://www.ece.ucy.ac.cy/labs/easoc/
dfr10/Papers/mariani_kuschel_shigehara_dfr2010_final.pdf.

[49] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, and
S. Pezzini. Fault-Tolerant Platforms for Automotive Safety-Critical Applications.
In Proceedings of the 2003 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, pages 170–177, 01 2003. doi:10.1145/

951710.951734.

[50] T. Fruehling. Delphi Secured Microcontroller Architecture. SAE Transactions,
pages 317–328, 2000. doi:10.4271/2000-01-1052.

[51] J. Braun and J. Mottok. Fail-Safe and Fail-Operational Systems Safeguarded
with Coded Processing. In Eurocon 2013, pages 1878–1885, 2013. doi:10.1109/
EUROCON.2013.6625234.

[52] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha. The
System-Level Simplex Architecture for Improved Real-Time Embedded System

121

http://dx.doi.org/10.1109/EUC.2015.14
http://dx.doi.org/10.1109/EUC.2015.14
http://dx.doi.org/10.1007/978-3-642-16576-4_4
http://dx.doi.org/10.1007/978-3-642-16576-4_4
https://doi-org.eaccess.ub.tum.de/10.1145/951710.951734
http://dx.doi.org/10.1145/951710.951734
http://dx.doi.org/10.1109/IEVC.2013.6681152
http://www.ece.ucy.ac.cy/labs/easoc/dfr10/Papers/mariani_kuschel_shigehara_dfr2010_final.pdf
http://www.ece.ucy.ac.cy/labs/easoc/dfr10/Papers/mariani_kuschel_shigehara_dfr2010_final.pdf
http://dx.doi.org/10.1145/951710.951734
http://dx.doi.org/10.1145/951710.951734
http://dx.doi.org/10.4271/2000-01-1052
http://dx.doi.org/10.1109/EUROCON.2013.6625234
http://dx.doi.org/10.1109/EUROCON.2013.6625234

BIBLIOGRAPHY

Safety. In 2009 15th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 99–107, 2009. doi:10.1109/RTAS.2009.20.

[53] F. Bapp, T. Dörr, T. Sandmann, F. Schade, and J. Becker. Towards Fail-
Operational Systems on Controller Level Using Heterogeneous Multicore SoC Ar-
chitectures and Hardware Support. Technical report, SAE Technical Paper, 2018.
doi:10.4271/2018-01-1072.

[54] L. Sha. Using Simplicity to Control Complexity. IEEE Software, 18(4):20–28,
2001. doi:10.1109/MS.2001.936213.

[55] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha. The
System-Level Simplex Architecture for Improved Real-Time Embedded System
Safety. In 15th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, pages 99–107, 2009. doi:10.1109/RTAS.2009.20.

[56] F. Oszwald, P. Obergfell, M. Traub, and J. Becker. Reliable Fail-Operational
Automotive E/E-Architectures by Dynamic Redundancy and Reconfiguration. In
2019 32nd IEEE International System-on-Chip Conference (SOCC), pages 203–
208, 2019. doi:10.1109/SOCC46988.2019.1570547977.

[57] B. Randell, P. Lee, and P. C. Treleaven. Reliability Issues in Computing System
Design. ACM Comput. Surv., 10(2):123–165, 1978. doi:10.1145/356725.356729.

[58] J. Kim, G. Bhatia, R. Rajkumar, and M. Jochim. Safer: System-Level Architecture
for Failure Evasion in Real-Time Applications. In 2012 IEEE 33rd Real-Time
Systems Symposium, pages 227–236, 2012. doi:10.1109/RTSS.2012.74.

[59] J. Kim, R. Rajkumar, and M. Jochim. Towards dependable autonomous driving
vehicles: a system-level approach. ACM SIGBED Review, 10(1):29–32, 2013. doi:
10.1145/2492385.2492390.

[60] A. Ruiz, G. Juez, P. Schleiss, and G. Weiss. A safe generic adaptation mechanism
for smart cars. In 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE), pages 161–171, 2015. doi:10.1109/ISSRE.2015.7381810.

[61] T. Saridakis. Design patterns for graceful degradation. Transactions on
Pattern Languages of Programming I, pages 67–93, 2009. doi:10.1007/

978-3-642-10832-7_3.

[62] O. González, H. Shrikumar, J. A. Stankovic, and K. Ramamritham. Adap-
tive Fault Tolerance and Graceful Degradation under Dynamic Hard Real-Time
Scheduling. In Proceedings Real-Time Systems Symposium, pages 79–89, 1997.
doi:10.1109/REAL.1997.641271.

[63] K. G. Shin and C. L. Meissner. Adaptation and Graceful Degradation of Control
System Performance by Task Reallocation and Period Adjustment. In Proceedings

122

http://dx.doi.org/10.1109/RTAS.2009.20
http://dx.doi.org/10.4271/2018-01-1072
http://dx.doi.org/10.1109/MS.2001.936213
http://dx.doi.org/10.1109/RTAS.2009.20
http://dx.doi.org/10.1109/SOCC46988.2019.1570547977
http://dx.doi.org/10.1145/356725.356729
http://dx.doi.org/10.1109/RTSS.2012.74
http://dx.doi.org/10.1145/2492385.2492390
http://dx.doi.org/10.1145/2492385.2492390
http://dx.doi.org/10.1109/ISSRE.2015.7381810
http://dx.doi.org/10.1007/978-3-642-10832-7_3
http://dx.doi.org/10.1007/978-3-642-10832-7_3
http://dx.doi.org/10.1109/REAL.1997.641271

BIBLIOGRAPHY

of 11th Euromicro Conference on Real-Time Systems (Euromicro RTS’99), pages
29–36, 1999. doi:10.1109/EMRTS.1999.777447.

[64] W. Nace and P. Koopman. A Graceful Degradation Framework for Distributed
Embedded Systems. 2001. doi:10.1184/R1/6620663.v1.

[65] M. P. Herlihy and J. M. Wing. Specifying graceful degradation. IEEE Transactions
on Parallel and Distributed Systems, 2(1):93–104, 1991. doi:10.1109/71.80192.

[66] M. Glaß, M. Lukasiewycz, C. Haubelt, and J. Teich. Incorporating Grace-
ful Degradation into Embedded System Design. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe, pages 320–323, 2009. doi:

10.1109/DATE.2009.5090681.

[67] A. Weichslgartner, S. Wildermann, and J. Teich. Dynamic Decentralized Map-
ping of Tree-Structured Applications on NoC Architectures. In Proceedings of
the Fifth ACM/IEEE International Symposium, pages 201–208, 2011. doi:

10.1145/1999946.1999979.

[68] M. Faruque, R. Krist, and J. Henkel. ADAM: Run-Time Agent-Based Dis-
tributed Application Mapping for On-Chip Communication. In Proceedings of
the 45th Annual Design Automation Conference, pages 760–765, 2008. doi:

10.1145/1391469.1391664.

[69] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes. Dynamic Task
Mapping for MPSoCs. IEEE Des. Test, 27(5):26–35, 2010. doi:10.1109/MDT.

2010.106.

[70] B. Pourmohseni, S. Wildermann, M. Glaß, and J. Teich. Predictable Run-Time
Mapping Reconfiguration for Real-Time Applications on Many-Core Systems. In
Proceedings of the 25th International Conference on Real-Time Networks and Sys-
tems, pages 148–157, 2017. doi:10.1145/3139258.3139278.

[71] E. Rambo et al. The Information Processing Factory: A Paradigm for Life Cycle
Management of Dependable Systems. In Proceedings of the International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS).
IEEE, 2019.

[72] F. Reimann, M. Lukasiewycz, M. Glaß, and F. Smirnov. OpenDSE - Open Design
Space Exploration Framework, 2021. URL: http://opendse.sourceforge.net/.

[73] T. SimPy. SimPy Discrete Event Simulation Library for Python, Version 4.0.1,
2021. URL: https://simpy.readthedocs.io.

[74] A. Weichslgartner, S. Wildermann, D. Gangadharan, M. Glaß, and J. Teich. A
Design-Time/Run-Time Application Mapping Methodology for Predictable Ex-
ecution Time in MPSoCs. ACM Trans. Embed. Comput. Syst., 17(5), 2018.
doi:10.1145/3274665.

123

http://dx.doi.org/10.1109/EMRTS.1999.777447
http://dx.doi.org/10.1184/R1/6620663.v1
http://dx.doi.org/10.1109/71.80192
http://dx.doi.org/10.1109/DATE.2009.5090681
http://dx.doi.org/10.1109/DATE.2009.5090681
http://dx.doi.org/10.1145/1999946.1999979
http://dx.doi.org/10.1145/1999946.1999979
http://dx.doi.org/10.1145/1391469.1391664
http://dx.doi.org/10.1145/1391469.1391664
http://dx.doi.org/10.1109/MDT.2010.106
http://dx.doi.org/10.1109/MDT.2010.106
http://dx.doi.org/10.1145/3139258.3139278
http://opendse.sourceforge.net/
https://simpy.readthedocs.io
http://dx.doi.org/10.1145/3274665

BIBLIOGRAPHY

[75] Z. Guo, K. Yang, S. Vaidhun, S. Arefin, S. K. Das, and H. Xiong. Uniproces-
sor mixed-criticality scheduling with graceful degradation by completion rate.
In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 373–383, 2018.
doi:10.1109/RTSS.2018.00052.

[76] B. Pourmohseni, M. Glaß, J. Henkel, H. Khdr, M. Rapp, V. Richthammer,
T. Schwarzer, F. Smirnov, J. Spieck, J. Teich, et al. Hybrid Application Map-
ping for Composable Many-Core Systems: Overview and Future Perspective.
Journal of Low Power Electronics and Applications, 10(4), 2020. doi:10.3390/

jlpea10040038.

[77] F. Oszwald, J. Becker, P. Obergfell, and M. Traub. Dynamic Reconfiguration
for Real-Time Automotive Embedded Systems in Fail-Operational Context. In
2018 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), pages 206–209, 2018. doi:10.1109/IPDPSW.2018.00039.

[78] F. Krichen, B. Hamid, B. Zalila, and B. Coulette. Designing Dynamic Reconfig-
uration for Distributed Real Time Embedded Systems. In 2010 10th Annual In-
ternational Conference on New Technologies of Distributed Systems (NOTERE),
pages 249–254, 2010. doi:10.1109/NOTERE.2010.5536671.

[79] J. Heisswolf, R. König, M. Kupper, and J. Becker. Providing Multiple Hard La-
tency and Throughput Guarantees for Packet Switching Networks on Chip. Com-
put. Electr. Eng., 39(8):2603–2622, 2013. doi:10.1016/j.compeleceng.2013.

06.005.

[80] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs for free. In Proceedings
of the Sixth International Workshop on Hardware/Software Codesign. (CODES/-
CASHE’98), pages 97–101, 1998.

[81] T. Schwarzer, S. Roloff, V. Richthammer, R. Khaldi, S. Wildermann, M. Glaß,
and J. Teich. On the complexity of mapping feasibility in many-core architec-
tures. In 2018 IEEE 12th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), pages 176–183, 2018. doi:10.1109/MCSoC2018.
2018.00038.

[82] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. arXiv, 2018.

[83] S. Vom Dorff, B. Böddeker, M. Kneissl, and M. Fränzle. A Fail-Safe Architecture
for Automated Driving. In 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 828–833, 2020. doi:10.23919/DATE48585.2020.

9116283.

[84] S. M. A. Akber, H. Chen, Y. Wang, and H. Jin. Minimizing Overheads of
Checkpoints in Distributed Stream Processing Systems. In 2018 IEEE 7th In-
ternational Conference on Cloud Networking (CloudNet), pages 1–4, 2018. doi:

10.1109/CloudNet.2018.8549548.

124

http://dx.doi.org/10.1109/RTSS.2018.00052
http://dx.doi.org/10.3390/jlpea10040038
http://dx.doi.org/10.3390/jlpea10040038
http://dx.doi.org/10.1109/IPDPSW.2018.00039
http://dx.doi.org/10.1109/NOTERE.2010.5536671
http://dx.doi.org/10.1016/j.compeleceng.2013.06.005
http://dx.doi.org/10.1016/j.compeleceng.2013.06.005
http://dx.doi.org/10.1109/MCSoC2018.2018.00038
http://dx.doi.org/10.1109/MCSoC2018.2018.00038
http://dx.doi.org/10.23919/DATE48585.2020.9116283
http://dx.doi.org/10.23919/DATE48585.2020.9116283
http://dx.doi.org/10.1109/CloudNet.2018.8549548
http://dx.doi.org/10.1109/CloudNet.2018.8549548

BIBLIOGRAPHY

[85] T. Aung, H. Y. Min, and A. H. Maw. Coordinate Checkpoint Mechanism on Real-
Time Messaging System in Kafka Pipeline Architecture. In 2019 International
Conference on Advanced Information Technologies (ICAIT), pages 37–42, 2019.
doi:10.1109/AITC.2019.8921392.

[86] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design Optimization of Time- and Cost-
Constrained Fault-Tolerant Embedded Systems With Checkpointing and Repli-
cation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
17(3):389–402, 2009. doi:10.1109/TVLSI.2008.2003166.

[87] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Algo-
rithms, and Systems. Cambridge University Press, 2011.

[88] AtsushiSakai. EKF-SLAM. https://github.com/AtsushiSakai/

PythonRobotics/blob/master/Localization/extended_kalman_filter/

extended_kalman_filter_localization.ipynb.

[89] A. Birolini. Reliability Engineering: Theory and Practice. Engineering
online library. Springer Berlin Heidelberg, 4 edition, 2010. doi:10.1007/

978-3-642-14952-8.

[90] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and J. Teich. Reliability-
Aware System Synthesis. In 2007 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 1–6, 2007. doi:10.1109/DATE.2007.364626.

[91] R. Karri and A. Orailoglu. Transformation-Based High-Level Synthesis of Fault-
Tolerant ASICs. In DAC, pages 662–665, 1992. doi:10.1109/DAC.1992.227803.

[92] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Y. Xie. Reliability-Centric
High-Level Synthesis. In Design, Automation and Test in Europe, pages 1258–
1263, 2005. doi:10.1109/DATE.2005.258.

[93] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Reliability-
Aware Co-Synthesis for Embedded Systems. The Journal of VLSI Signal Pro-
cessing Systems for Signal, Image, and Video Technology, 49(1):87–99, 2007.
doi:10.1007/s11265-007-0057-6.

[94] A. Jhumka, S. Klaus, and S. A. Huss. A Dependability-Driven System-Level
Design Approach for Embedded Systems. In Design, Automation and Test in
Europe, pages 372–377, 2005. doi:10.1109/DATE.2005.10.

[95] M. Glaß, M. Lukasiewycz, F. Reimann, C. Haubelt, and J. Teich. Symbolic Re-
liability Analysis of Self-Healing Networked Embedded Systems. In International
Conference on Computer Safety, Reliability, and Security, pages 139–152, 2008.
doi:10.1007/978-3-540-87698-4_14.

125

http://dx.doi.org/10.1109/AITC.2019.8921392
http://dx.doi.org/10.1109/TVLSI.2008.2003166
https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb
https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb
https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb
http://dx.doi.org/10.1007/978-3-642-14952-8
http://dx.doi.org/10.1007/978-3-642-14952-8
http://dx.doi.org/10.1109/DATE.2007.364626
http://dx.doi.org/10.1109/DAC.1992.227803
http://dx.doi.org/10.1109/DATE.2005.258
http://dx.doi.org/10.1007/s11265-007-0057-6
http://dx.doi.org/10.1109/DATE.2005.10
http://dx.doi.org/10.1007/978-3-540-87698-4_14

BIBLIOGRAPHY

[96] D. Koch, T. Streichert, S. Dittrich, C. Strengert, C. D. Haubelt, and J. Teich. An
Operating System Infrastructure for Fault-Tolerant Reconfigurable Networks. In
International Conference on Architecture of Computing Systems, pages 202–216,
2006. doi:10.1007/11682127_15.

[97] N. Medvidovic and R. N. Taylor. Software architecture: foundations, theory,
and practice. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 2, pages 471–472, 2010. doi:10.1145/1810295.
1810435.

[98] P. Koopman. Better embedded system software. Drumnadrochit Education, 2010.

[99] M. Glaß. The JRELIABILITY Tutorials, 2008. URL: http://jreliability.
org/tutorial/tutorial.pdf.

[100] A. Rauzy. New algorithms for fault trees analysis. Reliability Engineering & System
Safety, 40(3):203–211, 1993. doi:10.1016/0951-8320(93)90060-C.

[101] M. Glaß, M. Lukasiewycz, C. Haubelt, and J. Teich. Towards scalable system-level
reliability analysis. In Proceedings of the 47th Design Automation Conference,
pages 234–239, 2010. doi:10.1145/1837274.1837334.

126

http://dx.doi.org/10.1007/11682127_15
http://dx.doi.org/10.1145/1810295.1810435
http://dx.doi.org/10.1145/1810295.1810435
http://jreliability.org/tutorial/tutorial.pdf
http://jreliability.org/tutorial/tutorial.pdf
http://dx.doi.org/10.1016/0951-8320(93)90060-C
http://dx.doi.org/10.1145/1837274.1837334

	Abstract
	Deutsche Kurzfassung (German Abstract)
	Acronyms
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Development in E/E Architectures and Software Platforms
	1.2.1 E/E Architectures
	1.2.2 Software Platform
	1.2.3 Consequences of E/E and Software Changes
	1.2.4 New Possibilites for Fail-Operational Strategies

	1.3 Fail-Operational Systems
	1.3.1 Fail-Operational Concepts
	1.3.2 Graceful Degradation

	1.4 Research Challenges
	1.5 Contributions
	1.5.1 Fail-Operational Automotive Architecture
	1.5.2 Worst-Case Failover Timing Analysis
	1.5.3 Checkpointing Period Optimization
	1.5.4 Reliability Analysis

	1.6 List of Publications
	1.7 Outline

	2 Fail-Operational Automotive Architecture
	2.1 Introduction
	2.2 System Model
	2.2.1 Architecture
	2.2.2 Criticality
	2.2.3 System Software
	2.2.4 Failures

	2.3 Agent-Based Graceful Degradation
	2.3.1 Related Work
	2.3.2 System Model Additions
	2.3.3 Agent-Based Degradation
	2.3.4 Evaluation
	2.3.5 Summary

	2.4 Predictable Timing Behavior
	2.4.1 Related Work
	2.4.2 Performance Analysis
	2.4.3 Performance Analysis of Gracefully Degrading Systems
	2.4.4 Agents - Finding Feasible Solutions at Run-Time
	2.4.5 Evaluation
	2.4.6 Summary

	2.5 Limitations
	2.5.1 Scalability
	2.5.2 Reconfiguration Time

	2.6 Conclusion

	3 Worst-Case Failover Timing Analysis
	3.1 Introduction
	3.2 System Model Adaptations
	3.2.1 Application Model
	3.2.2 Failover Model

	3.3 Worst-Case Failover Timing Behavior
	3.3.1 Application Failover Time
	3.3.2 Worst-Case Application Failover Time
	3.3.3 Worst-Case Task Recovery Time
	3.3.4 Single Task Failover Scenario
	3.3.5 Multi Task Failover Scenario

	3.4 Evaluation
	3.4.1 Setup
	3.4.2 Experiments

	3.5 Conclusion

	4 Checkpointing Period Optimization
	4.1 Introduction
	4.2 Related Work
	4.3 Checkpoint Optimization
	4.3.1 Checkpointing Period
	4.3.2 Data Age
	4.3.3 Worst-Case Data Age
	4.3.4 Maximum Checkpointing Period

	4.4 Case Study: SLAM Application
	4.4.1 SLAM Application
	4.4.2 Quality Analysis
	4.4.3 Failover Experiments

	4.5 Conclusion

	5 Reliability Analysis
	5.1 Introduction
	5.2 Related Work
	5.3 Introduction to Reliability Analysis
	5.4 Formal Reliability Analysis of Gracefully Degrading Systems
	5.4.1 Derivation of Structure Functions
	5.4.2 Derivation of Reliability
	5.4.3 Formal Reliability Analysis of Critical Applications
	5.4.4 Formal Reliability Analysis of Non-Critical Applications

	5.5 Evaluation
	5.5.1 Experimental Setup
	5.5.2 Graceful Degradation vs. State of the Art
	5.5.3 Allocation and Reservation Strategies
	5.5.4 Exposure Reduction
	5.5.5 Summary

	5.6 Conclusion

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

