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Abstract

Two-wheeled inverted pendulums (TWIPs) offer new possibilities for personal transport
and filming, but also for indoor logistics. Especially for the last two tasks, where au-
tonomous driving might be desired, stable and precise setpoint and tracking control for
TWIPs is essential. Besides the given commercial applications, TWIPs continue to be
used in research to test and verify new algorithms as they are a challenging test bench for
control algorithms. In the last decades, several contributions have proposed numerous
prototypes and models of TWIPs and used them to develop and test different control
schemes.
This thesis presents a holistic concept where a TWIP is built and modeled, and al-
gorithms to perform setpoint and trajectory tracking are developed and evaluated in
simulations and experiments.
A TWIP prototype concept and its building process are presented with a strong focus
on the desired real-time closed-loop control application. This design led to a robust and
lightweight robot with an appropriate choice of sensors delivering high-quality measure-
ment.
A comprehensive model of the TWIP is presented using the Lagrangian framework for
modeling. The proposed approach is less error-prone and has a more well-rounded mod-
eling procedure, as the electrical and mechanical systems are modeled jointly. Moreover,
in the awareness of non-ideal sensors, a model for the onboard sensors is presented to
provide the required congruence to the physical system for simulation-based observer
tuning. Finally, a versatile analysis of the linearized models is provided, and state trans-
formations are introduced to decouple the dynamics into smaller subsystems.
For trajectory generation, a method to compute an energy optimal trajectory offline
is presented. The introduced optimization problem minimizes the input energy of the
TWIP and not only the control input. Moreover, additional analyses are presented to
compare the standard Runge-Kutta (RK) against variational integrator (VarInt) schemes
for discretization.
A novel complete discrete-time control structure for setpoint and trajectory tracking
is introduced to perform stable closed-loop control, even in the presence of significant
control errors. Therefore, the closed-loop system’s limited domain of attraction (DoA)
is estimated by a quadratic Lyapunov function (QLF) and a limiting level set. Using
linear matrix inequalities (LMIs), the maximum DoA is efficiently calculated via convex
optimization.
An innovative state estimation method for the TWIP is proposed, which is able to
incorporate delayed remote measurements properly. In particular, the introduced algo-
rithm requires low computational power and little memory and thus can be executed on
microcontrollers.
Last but not least, a new algorithm to estimate clock parameters online on a low-power
microcontroller with limited memory is presented, which delivers the time information
required by the introduced state estimation algorithm.
To conclude, this thesis presents methods, algorithms, and results connected to stable
and precise setpoint and tracking control for TWIPs ranging from prototype develop-
ment, modeling, trajectory generation, and feedback control to state and clock parameter
estimation.
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Chapter 1

Introduction

1.1 Motivation

The invention of the wheel around 4000 BCE (see Potts [91]) is clearly the foundation for
almost all mobile vehicles in our modern time. Already 2000 BCE two-wheeled chariots
used for transportation (see Kuznetsov [58]) eased people’s daily life. Astonishingly, in
2001 an article by Heilemann [43] in a newspaper titled “Reinventing the Wheel” and
2003 a book with the same title has been published by Kemper [54]. What happened?
Around 1990 Dean Kamen started with the development of the two-wheeled balancing
wheelchair iBOT and in 1999 clinical trials began. Shortly thereafter in 2001, he pre-
sented the Segway: a two-wheeled, self-balancing personal transporter (see Kemper [54]
or Wikipedia [114, 115]). In 2022, more than 20 years later, the enthusiasm faded, and
the prognosticated global change in mobility using two-wheeled, self-balancing personal
transport did not come. The early adopters, guided city tour providers, switched back
from Segways to bicycles. In addition, the police and security staff in many nations
realized, that in most cases they are slower than and not as agile as running and after
the first enthusiastic trials with the Segway, they stopped their campaigns. Moreover,
safety was a clear issue: For instance, famous accidents and falls happened, e.g. with
US President George W. Bush or in 2015 with runner Usain Bolt. Usain Bolt has been
knocked over by a cameraman who crashed with a Segway after he won gold at the world
athletics championships (see ABC News [1]). Together with economic decisions, all this
led to the end of production of the Segway in 2020.
Contrary to this trend, in 2019 the next generation of the iBOT has been released to the
market (see Wikipedia [114]), showing that there still is a need for self-balancing personal
mobility devices, but for a different group of customers. In addition, there are other
applications besides wheelchairs, which have not been addressed by commercial products
yet. Two-wheeled, self-balancing vehicles, also called two-wheeled inverted pendulums
(TWIPs), might be used for autonomous surveillance applications on predefined tracks
around or in buildings. Moreover, at movie sets, where the camera has to be at a specific
position at a defined time with a particular speed an autonomous TWIP equipped with
a camera offers new possibilities. It has to be assumed, that the crash in 2015 with
Usain Bold would not have taken place if instead of a Segway an autonomous TWIP
equipped with modern sensors would have been used, as the accident was clearly caused
by a driving error of the cameraman. In addition, for intralogistics, TWIPs could bring
added value. The iBOT can balance on two wheels or move in a stable mode with four
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2 Chapter 1. Introduction

Figure 1.1: TWIP with markers for an optical tracking system

wheels and the same concept can be used in warehouses. Usually, if the goods have to
be inserted into a high storage rack, the robot needs to have a heavy basement to avoid
toppling over. As the TWIP maintains stability through balancing, such a high mass is
not necessary, and thus less energy is required for motion. So it is conceivable, that the
future belongs to transportation vehicles that are able to operate in an inherent stable
mode on ground with three or four wheels as well as a stabilized, balancing mode on
two wheels. Therefore, besides algorithms for stabilization, methods for precise setpoint
and trajectory tracking are necessary.
Besides the given commercial applications, TWIPs as shown in Figure 1.1 continues to
be used in research to test and verify new algorithms as they are a challenging test bench
for control algorithms. Stein [101] stated, that the inverted pendulum on a cart has been
motivated by the space race as control engineers can learn how to balance rockets based
on this simple experimental setup. The same considerations apply to the TWIP, but
in addition, the system is subject to nonholonomic constraints, making the control task
even more difficult. Contrary to the TWIP, the inverted pendulum on a cart is a pure
research test bench without practical application examples. Finally, the Segway and
TWIPs use sensor setups quite similar to rockets. Therefore, the algorithms presented
for TWIPs might be applied for the control of rockets and missiles or in other domains.
In the last decades, several contributions have proposed numerous prototypes and models
of TWIPs and used them to develop and test different control schemes. Nevertheless, a
complete solution that solves the problem of trajectory tracking has not been proposed
yet and is a non-trivial task. Hence, developing a TWIP prototype to test novel control
structures in real-time would contribute to improving these current solutions. Moreover,
there is a demand for new algorithms to solve the aforementioned tasks like trajectory
generation, stabilization, setpoint and trajectory tracking as well as state estimation.
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1.2 Literature and Prototypes

Ongoing, during the last twenty years several TWIPs have been built and a large number
of papers for design and control have been published. The two surveys by Chan et al.
[15] from 2013 and Romlay et al. [94] from 2019 provide a great overview of the ongoing
research in this area and also categorize the model and control approaches of the different
papers. In addition, Delgado [23], as well as Murdock [78] give a comprehensive literature
overview. Besides the papers listed in the surveys, up to now the activities in this field
did not stop. In the following, publications in relation to this thesis as well as results
recently published are introduced.
One of the early publications presenting a TWIP prototype is Grasser et al. [39]. They
present the small mobile TWIP ‘JOE’ together with a modeling approach and experi-
mental results. The system dynamics of the presented prototype are drastically slowed
down by a large mass placed on top. In particular, they used the Newtonian method
to model the robot and linearized and decoupled the dynamics into two linear models
afterwards. Therefore, a ‘pendulum’ model and a ‘rotation’ model are received, con-
trolled by two state-space controllers, and interfaced via a decoupling unit to the two
DC motors driving the wheels. Hereby, the state-space controllers were designed by
pole placement. Grasser et al. [39] concluded, that the backlash of the gearboxes and
the non-ideal placement of the encoders as well as the maximum torque that can be
transmitted to the ground (grip) prevented that the poles could be moved past a certain
limit.
Pathak et al. [84] proposed one of the first models using the Lagrangian approach for
modeling and they incorporated the nonholonomic constraints into the dynamic model.
Thereupon, a two-level controller structure has been proposed. Based on this, two
different controller types for this structure were designed and evaluated. Firstly, a two-
level controller which makes use of the partial feedback linearization was designed. The
controller stabilizes the TWIP and drives the robot to a given orientation and heading
speed set-points. Afterwards, another two-level controller is proposed which not only
stabilizes the TWIP but also provides setpoint tracking to a point, starting from any
initial configuration. Unfortunately, only simulation results are presented. Moreover,
the authors mention that ‘further work needs to be done to make the controller design
robust with respect to parameter uncertainties’.
Later, Kim and Kwon [56] provided a comparison of the different modeling approaches in
the literature. In particular, they compared the ‘Newtonian method’, the ‘Lagrangian
approach’ and ‘Kane’s method’ (see Kane and Levinson [51]), which is based on the
Newtonian method. Herein the authors reveal modeling errors included in many articles.
Nevertheless, the model proposed by Delgado et al. [22], using the Lagrange-d’Alembert
principle to derive a model which is consistent with the system constraints for the TWIP
does not suffer under such modeling errors. Finally, Gajbhiye et al. [38] revealed symme-
tries in the model of the TWIP. All mentioned works neglect the current dynamics of the
DC motors and assume direct torque control or at least steady-state current dynamics.
Among others, between 2021 and 2022 Jamil et al. [49], Luo et al. [67], Mohamed Gad
et al. [74], Velagić et al. [109], Zhang and Cai [121] published papers presenting proto-
types, and the development of lumped models for simulation and control. Most of them
use small microcontrollers to execute a cascaded PID controller or a linear-quadratic
regulator (LQR) to stabilize the TWIP. In addition, almost all of these controllers are
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experimentally tuned and the benchmark experiments are mostly small output steps,
driving at slow constant speed or only stabilization. Moreover, there are also research
activities applying nonlinear control based on correct dynamic models, e.g. Kim and
Kwon [55] in 2017. Unfortunately, Kim and Kwon [55] presented only experimental
results changing the heading angle and a torque disturbance rejection. Dengler [25] pre-
sented adaptive controllers in the form of function approximators which are applied on
a TWIP and presents experiments for setpoint and trajectory tracking but with large
control errors. Similar to Grasser et al. [39], Dengler [25] placed a large mass (the
battery) on top of his robot to slow down the system dynamics and to ease the con-
trol task. Contrary to the works mentioned, Delgado [23] uses a sophisticated dynamic
model, a nonlinear controller by applying the presented total energy shaping theory for
underactuated systems to the TWIP and presents trajectory tracking in experiments1.
Finally, there is a long list of student theses as well, where TWIPs were built and
controlled. Already in 2003, Ooi [81] built a small TWIP and used pole placement to
stabilize the system, and designed a model-free Kalman filter for sensor fusion. Moreover,
he designed an LQR and compared it with a pole placement controller. One of the last
works is Brandt [11] in 2019 who used a cascaded structure with two PID controllers to
stabilize the system.
Recently, algorithms have been presented to ensure a stable operation during setpoint
and trajectory tracking, which can be applied to the TWIP. Thereby, the stability of
the closed loop system is ensured by the use of a QLF inside the command governor with
a known level set, bounding the estimated stable region. Originally, Buhl and Lohmann
[13] proposed a setpoint command governor for continuous-time systems with one control
input. Based on this, a modification for trajectory tracking and systems with multiple
inputs has been presented by Dessort [27], Pieczona [89], Diepold and Pieczona [28] and
Diepold [31]. In Diepold [31], a command governor for trajectory tracking has been
applied on the single-input-single-output (SISO)-system ‘Inverted pendulum on a cart’
in experiments. All introduced algorithms in these publications consider continuous-
time models, trajectories, and control and hence, neglect the time-discrete execution on
real-time systems in experiments.
While many papers cover the modeling and control of the TWIP, a much smaller num-
ber discuss the sensor modeling, fusion, filtering, and state estimation. Lupian and
Avila [69] presented an Kalman-Bucy estimator to observe all state variables required
for stabilization and developed an LQR feedback strategy. Unfortunately, the resulting
linear-quadratic-Gaussian (LQG) controller has only been tested in simulations. Model
uncertainties and external disturbances are regarded as a lumped perturbation term in
Zhao et al. [122] and are estimated by a fixed-time extended state observer. By the
use of an active disturbance rejection control, the TWIP is stabilized and the estimated
perturbation is compensated. The proposed approach has been tested in experiments.
A method filtering the measurements for the TWIP running on a low–cost measure-
ment system is presented by Laddach et al. [59]. Hereby, deterministic disturbances are
corrected and filtered with Kalman and complementary filters. The performance of the
proposed filtering approach is evaluated experimentally.

1Delgado [23] used the TWIP prototype for experiments which has been developed and built in the
scope of this thesis.
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1.3 Outline of the Thesis

In the author’s opinion, besides Delgado [23] almost all presented results seem to suffer
under at least one of the listed issues:

• Experiments are performed with prototypes having hardware issues, e.g. large
gearbox backlash, disadvantageous sensor placement, insufficient encoder resolu-
tion, faulty encoder evaluation, algorithms are not executed in real-time, wrong
motor drive configuration, highly and strong nonlinear friction.

• Prototypes are used with a large extra mass to slow down the dynamics and thus
to ease the control task such that the proposed controllers are able to stabilize the
system afterwards.

• Models are based on lumped or even wrong modeling approaches. Furthermore,
parameters and friction curves heavily deviate from the prototype ones.

• Only a cascaded PID controller is used, mostly tuned in experiments without any
theoretical stability considerations.

• Presented algorithms are not tested experimentally.

• Algorithms are evaluated with trivial tasks in experiments, e.g. only changing
orientation.

• No model-based state estimation is used to reduce the error of the estimated state
used for control.

In this thesis, a TWIP is built, modeled and algorithms are presented as well as evaluated
to alleviate the conflicts introduced. The presented TWIP can be used to educate control
engineer students and as a research test bench. In particular, it is suited to develop,
implement and evaluate novel control algorithms required to use TWIPs in autonomous
applications.
In the next chapters, construction aspects and thorough mathematical modeling methods
are presented, and approaches to generate energy optimal trajectories are derived. Based
on the TWIP prototype and its mathematical model, new algorithms for setpoint and
tracking control as well as state and parameter estimation are developed, simulated,
implemented, and finally evaluated in experiments. Figure 1.2 depicts the different topics
covered in this thesis, besides the content of the compulsory chapters ‘Introduction’ as
well as ‘Outlook and Achievements’.
Chapter 2 presents the development of a TWIP demonstrator and introduces the ex-
perimental setup used in the consecutive chapters. At first, a brief overview of previous
and recently developed TWIP prototypes is given, revealing issues that affect the func-
tionality of TWIPs. Based on these insights, the design aspects, which have been in
focus during the development of our TWIP are introduced and a description of the
components as well as the firmware is provided. Finally, the experimental setup with a
tracking system and a communication software as well as the structure of the simulation
environment is presented.
The mathematical modeling of the TWIP required for simulation, controller, and ob-
server design is the subject of Chapter 3. Firstly, nonlinear time-invariant models of
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the TWIP in the two-wheeled inverted pendulum mode with and without motor currents
and the wheelchair mode are derived. In addition, alternative system representations are
discussed and the energy contribution and power exchange of the different components
during trajectory tracking are presented. A model of the onboard sensors is also derived.
Moreover, the presented model is evaluated in experiments and the results are reviewed.
Thereupon, linear time-invariant (LTI) models are derived and their properties are dis-
cussed.
In Chapter 4, a procedure is presented to generate an energy optimal trajectory for the
TWIP offline. Moreover, a two-stage initialization is introduced to speed up optimization
and to improve the convergence of the nonlinear optimization problem. Based on the
proposed method, a reference trajectory is generated and used in the following chapters
to evaluate (online) closed-loop control and state estimation algorithms.
A novel discrete-time feedback method is presented in Chapter 5 to stabilize the TWIP
and to perform setpoint or trajectory tracking. Thereby, a full discrete-time treatment
of all elements of the control structure is derived. Firstly, a friction compensation that
reduces the effects of nonlinear mechanical friction is introduced. Afterwards, a guidance
algorithm is introduced to overcome the restrictions arising from the fact, that the
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system underlies nonholonomic constraints. Thereupon, a stabilizing linear constant
feedback controller is designed and the stability of the closed-loop system is ensured
by a command governor utilizing a QLF to estimate the DoA. Besides the theoretical
derivation of the control algorithms, experimental results proof the applicability of the
presented approaches.
A novel state estimation algorithm for the TWIP is introduced in Chapter 6. The
proposed method minimizes the deterioration of the estimated state due to the non-
constant transmission delays of the remote measurements received. In particular, the
presented state estimation is a mixture of a time-variant, nonlinear extended Kalman
filter (EKF) and a time-invariant, linear, optimal state estimator (or stationary Kalman
filter). Contrary to an EKF for the TWIP, the presented algorithm is able to run
on a low-budget and low-power microcontroller. At the beginning, the key problem is
sketched and a deeper look into the nature of the remote measurement delays is taken.
This is done to reveal the need for a novel state estimation algorithm. In consequence,
the developed cascaded quasi-linear Kalman filter (CQLKF) method is presented and
simulation, as well as experimental results, are provided.
To calculate the non-constant transmission delay of each remote measurement arriving,
the clock parameters have to be available for time conversion. Therefore, in Chapter 7
a novel method is proposed to estimate online clock parameters online and efficiently
on a microcontroller. In particular, the introduced algorithm is capable of running with
limited resources.
All algorithms presented in Chapters 4 to 7 are developed to work together like cogs in
a gearbox. Thereby, each is trimmed to be computationally efficient to run on small,
low-power microcontrollers used in mobile robots as the TWIP build in Chapter 2. The
foundation for a high congruence between simulation and experimental results is laid in
Chapter 3 by thoroughly modeling the TWIP.
Finally, in Chapter 8 a summary of the achievements is given together with an outlook,
motivating further research in this area.
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Chapter 2

Two-Wheeled Inverted Pendulum

This chapter presents the TWIP which has been built and used in this thesis in sim-
ulation and experiments to evaluate the proposed control algorithms. The chapter is
structured as follows: first, a short insight into the motivation for the development of
a TWIP at the Chair of Automatic Control is given. In the second section, to put the
contribution of this thesis into context, a brief overview of previous and recently de-
veloped TWIP prototypes is provided, revealing minor and major issues that affect the
functionality of the TWIP. Afterwards, the design aspects, which have been particu-
larly in focus during the development of our TWIP are introduced. Moreover, a detailed
description of the physical components that are used to meet the design requirements
is provided. In the subsequent section, the structure of the programmed firmware is
introduced. During the development and configuration process of the TWIP, possible
pitfalls with regard to the onboard sensors and H-bridges have been identified and are
circumvented. Thus, two sections with remarks regarding these pitfalls are provided to
raise awareness of them. Subsequently, the overall experimental setup with a tracking
system and a communication software used to exchange data with the robot via Blue-
tooth, is presented. Finally, the simulation environment is introduced and the chapter
ends with concluding remarks.

2.1 Motivation

At the Chair of Automatic Control research focusing on real-time control of mechatronic
systems has been carried out over the past years, whose content has been offered to
the students in the several lectures and lab courses, including lab course ‘Controller
Implementation on Microcontrollers’. The idea to build a TWIP has been ignited by
the urgent need for at least six new robots for this lab course, as the robots used were
reaching their end of life. To replace these robots, a new robot was needed, to teach
the students different control concepts and its implementation. In addition, another
central requirement for the new robot was, that the existing control design challenge, the
implementation, and tuning of a flatness-based feedback controller to follow a trajectory
on ground in a wheelchair mode, is also possible with the new robot. Moreover, an
additional and more challenging control task for the students was intended. Due to the
available restricted funding and paired with the requirement to offer each of the lab
course participants a robot, the price of each robot was limited to a couple of hundred
euros.

9
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In parallel, the need for a benchmark system to test recently developed novel control
methods rose at the Chair of Automatic Control. To be more precise, the desired system
has been required to have an input saturation, to be underactuated as well as unstable
but easy to operate. Therefore, the idea was born to combine the development and
build a TWIP, which can be used in a lab course for teaching purposes and research in
a balancing two-wheeled inverted pendulum mode.
As introduced in Section 1.1, several contributions have proposed TWIPs but the authors
reported issues with their prototypes. Hence, developing an improved TWIP prototype
also contributes to revising these solutions.
Based on the intended use in lab courses and to rapidly run experiments with novel
control algorithms, three central requirements stick out. First, since the robot should
be used for lab courses, research experiments as well as in lectures, universal applica-
bility is specified as a requirement. Secondly, the robot should be suitable for extensive
and repeatable experiments which includes the demand for a lightweight setup. This
lightweight setup is needed to reduce the risk of injury to the operator and the robot
itself if stabilization fails or the robot drives against an obstacle at full speed. More-
over, the robot has to be robust to withstand crashes and ideally can be operated on
a desk table. This requirement is condensed as suitability and robustness for scientific
experiments. Last, but not least, the robot has to show a high usability for reliable real-
time closed-loop control applications. This means, a sophisticated choice and placement
of actors and sensors as well as their connection to a real-time capable microcontroller
unit (MCU) is required. Moreover, a software testing and code generation toolchain is
necessary to be able to rapidly test new algorithms in real-time.

2.2 Previously and Recently Developed Prototypes

Existing prototypes previously and recently published, rendered to be unsuitable for the
application motivated in the previous section and the introduced requirements. The
different disadvantages and issues of the presented prototypes are discussed in the fol-
lowing.
Due to the introduced requirements, the robot has to be lightweight with a relatively
small design to conduct experiments rapidly and without any danger. Kim and Kwon
[55] presented a prototype with a weight of 49 kg, followed by Grasser et al. [39] with
12 kg. The recently developed robot from Dengler [25] has already a drastically reduced
weight of only 2 kg but is still considerably heavy. One reason is the solid frame and
housing components out of aluminum, which drives up the total weight and requires
more powerful and heavy motors to drive the robot. Powerful motors, drive electronics
and large batteries thereby contribute an additional danger besides the weight. Another
reason for the high weight is, that some of the robots (e.g. Dengler [25]) are equipped
with powerful computational units, which are energy-hungry and in consequence, require
a large thus heavy battery.
Secondly, most setups placed additional masses as close as possible to the top, to increase
inertia and to slow down the system dynamics but the motivated application requires
a fast and challenging setup. Placing weights to the top might ease the control task
extensively but again at the expense of agility or the required power. This mass place-
ment is done extensively by Grasser et al. [39] by placing large extra weights on the top.
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In consequence, the total robot weight increases as well, which leads to the problems
mentioned in the previous paragraph. Dengler [25] also placed the large battery on top.
Let us derive an estimate of the unstable pole position, based on the assumption that
the robot is an inverted pendulum rotating on the wheel axis. If m is the body mass,
l is the length from the wheel axis to the center of mass, I the inertia of the body,
and g the gravity constant. Then the unstable pole can be calculated by p =

√
mgl

I .
The resulting values are p = 6.1 rad/s for the robot introduced by Kim and Kwon [55],
p = 8.7 rad/s for Dengler [25] and p = 16.5 rad/s for the robot developed in this thesis
with the parameters shown in Table A.1, respectively. The rough estimate given illus-
trates how different the dynamics are already without damping and no interaction with
other components. Moreover, considering damping will only slow down the dynamics
and push the poles closer to the origin.
Finally, Grasser et al. [39] mentioned real-time control performance drawbacks arising
from gearbox backlash. In addition, the results of Dengler [25] show a large limit cy-
cle, which might be caused by an insufficient encoder resolution and high stick-friction.
Grasser et al. [39] claimed that the backlash of the gearbox affects the encoder mea-
surements since the encoders are mounted on the motor shaft and not on the wheels.
Therefore, a similar conclusion can be stated for the robot presented by Dengler [25]
which has the same encoder configuration. Sadly, Kim and Kwon [55] do not provide
any information about the encoders and presented a high-speed spinning motion only,
where stick-slip effects cannot be observed. In consequence, no statement can be made
about possible hardware problems compared to the prototypes discussed above.
To conclude, these robots most likely fulfilled the purposes they have been built for but
do not satisfy the requirements for our applications. For a quick experiment on the desk
table, these robots are far too heavy and if the operation fails they cause even a risk
of crushing fingers or feet1. In addition, hardware issues might degenerate the validity
of the gained results in experiments compared to the results gained in simulations and
might conceal the improvements reached by a novel control method that has been tested.
Therefore, a TWIP has been developed in this thesis, well suited for the motivated
applications and presented in the next section.

2.3 Building the TWIP Prototype

The TWIP build is shown in Figure 2.1. In the following, the development process is
presented accompanied by a discussion of the considered design aspects which were in
focus and how they were realized during construction. Moreover, a detailed description of
the components is provided examining their most important specifications. In addition,
some remarks on hardware details are given, which were found to extensively influence
the system’s performance or are considered to be quite unpleasant pitfalls.
The development process has been supported by several student theses supervised by
the author. Firstly, Hölzle [48] designed the first PCB prototype and contributed an
initial version of the firmware. Leonhardt [62] designed the nicely shaped housing shells
and was able to balance the robot for the first time, even though he used a manually
tuned PID controller and a rod with extra weights to slow down the system dynam-

1Kim and Kwon [55] even motivate the spinning experiment instead of a traveling experiment by
claiming that “high speed and long travel experiments require a large space and carry the risk of accident”
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Figure 2.1: Operation modes of the TWIP

ics. Afterwards, Kaufmann [53] set up the code generation toolchain, identified model
parameters, implemented a model inspired by Pathak et al. [84], and presented first
stabilization results using an LQR.

2.3.1 Design Aspects

The three requirements of universal applicability, suitability and robustness for scientific
experiments, and usability for reliable real-time closed-loop control applications have been
defined and were particularly in the center of attention during the development of the
TWIP. In the following, their influence on the design concept is introduced.
First, the focus was set on the universal applicability of the robot. In consequence, easily
modifiable lightweight parts have been designed with the ability to use the robot in mul-
tiple applications. Thus, most parts are constructed as rapid prototyping parts, which
are easy to change and manufacture, especially the casing shells. All printed parts are
manufactured with selective laser sintering (SLS) and are made out of Polyamide/Ny-
lon 12. This design decision led to lightweight but stiff elements due to the thin shell
thickness with ribs. The circuit board is easily exchangeable with plugged connections
to the motors and encoders. Moreover, two different electronic modules have been de-
signed: a PCB with a 32 bit-MCU with a floating-point unit (FPU) for computationally
intensive control tasks and a simpler, easy to program 8 bit-MCU version for teaching
and education. Two different operation modes of the robot are considered. In the first
mode, the robot drives on ground in a wheelchair mode, supported by a ball caster on
the robot’s top acting as a third omnidirectional wheel. In this mode, a pen holder can
be mounted on the robot, such that a whiteboard marker can be attached to record the
driven path of the robot on ground as shown in Figure 2.1a. On the other hand, the
robot can be used in a balancing two-wheeled inverted pendulum mode as presented in
Figure 2.1b, which is more challenging, since the open-loop systems equilibrium point is
unstable in this configuration.
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Secondly, the requirement suitability and robustness for scientific experiments has been
regarded during the design process. Due to its lightweight and small size, the robot
can be operated in reduced spaces like a desk table without any risk of danger to the
operator. Moreover, the robot has been constructed and tested to withstand crashes
like driving against a wall at full speed or hitting the ground if balancing fails. Even a
drop from a table with a height of 1 m typically leads to no serious damage, even though
clearly this kind of crash should be avoided. The wheels are mounted via two bearings
inside the wheels on a solid wheel axis, which is fixed in the drive mount unit with
the motor and the encoders. The chosen lithium-ion polymer battery (LiPo) provides
enough energy for more than 2 h of continuous operation. Since 20 identical robots2

have been produced, artifacts in experiments, which may arise from a single robot, can
be identified.
Last, but not least, a central design aspect has been the usability for reliable real-time
closed-loop control applications. Related to this requirement, an H-bridge is selected,
which allows one to choose different operation modes, drive forward, drive backward,
brake and coast. On the sensor side, high-resolution codewheels for both wheels have
been selected and directly attached to the wheels, to be able to measure the motion
between the robot body and the wheel without the gearbox backlash, for odometry pur-
poses. For inertial measurements, a gyroscope and accelerometer are mounted directly
on the PCB of the MCU and are accessible via the serial peripheral interface (SPI) bus
and the inter-integrated circuit (I2C) bus with high data rates and low latency. An
important aspect has been, that the configurations of the sensor chips are accessible and
transparent, such that the chosen filter configurations in the inertial sensor chips are
known and can be modeled in the TWIP simulation and may be considered during state
observer tuning if required. Furthermore, the position of the acceleration sensor on the
PCB has been set onto the middle axis of the robot and as close as possible to the robot’s
wheel axis, to avoid centripetal forces during pure heading motion and to reduce them
at tilt motion. To be able to rapidly test control algorithms, a code generation toolchain
has been set up, which enables the user to generate C code out of Simulink for the 32 bit
MCU. The source code is then compiled together with the firmware source code and
transferred to the robot, where the algorithms are executed in real-time. Due to this,
the implemented novel algorithms can be tested in a realistic simulation environment
in Matlab/Simulink first and then rapidly converted, compiled, and run on the robot
afterwards. The algorithms on the robot are executed with a fixed sample time of 5 ms,
triggered by a peripheral timer interrupt. Commands like the desired trajectory or a new
set point can be transmitted via Bluetooth from the personal computer (PC). In addi-
tion, measurement data from external sensors (like an optical tracking system) can be
transferred to the robot. Thus, the robot can deal with local and remote measurements
allowing to reduce the error of the estimated states. In the other direction, a Bluetooth
connection can be used to simultaneously send local measurements and data from the
robot to a PC for signal logging. The firmware itself has been programmed bare-metal in
C without an intervening operating system which might disturb the real-time execution
of the control algorithms or lead to performance drawbacks. Based on the chosen bare-
metal implementation, a fixed and low jitter sampling time of 5 ms is received as well
as a known, deterministic run-time behavior of all software components. Finally, during
the design process, the masses of the robot are placed to receive fast system dynamics

220 robots of the 2nd generation, 13 of 1st version used by Anhalt [5], Delgado [23], Kaufmann [53],
1 prototype used by Leonhardt [62]
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Figure 2.2: TWIP components

in the unstable configuration and thus a challenging but lightweight setup.
In the next section, more details about the outcome of the design process and the chosen
components are presented.

2.3.2 Components

The TWIP has a mass of 336 g (battery included), a height of 195 mm, a width of 103 mm
and a depth of 33 mm. The center of gravity of the body is at 49.5 mm above the wheel
axis, which leads to a highly dynamic and unstable system. Two thin housing shells are
used as a case for the robot. The motors, the two-stage gearboxes, the encoder units as
well as the wheels are assembled in the drive unit which is mounted in the lower housing
shell. The PCB with the MCU and other peripheral chips are clamped between the two
housing shells. For the wheelchair operation mode, a ball caster is placed close to the
top of each shell. The components labeled in Figure 2.2 are presented in the following.
The two brushed 6 W DC motors accelerate the robot to a forward speed of up to 1.1 m/s
or a heading rate of 23.2 rad/s. The motor windings have a resistance of 1.5 Ω and an
inductance of 4 ·10−4 H and the motor has a motor torque constant of 3.76 ·10−3 N m/A.
One two-stage gearbox uses four gears with a module of 0.4. The smaller gears have 11
teeth and the larger gears 78 teeth which leads to the total gear ratio of (78/11)2 ≈ 50.28.
The required energy for the motors and the electronics is provided by a 7.4 V, 2 cell,
1000 mAh LiPo. The motors are wired up to two H-bridge motor drivers DRV8835 from
Texas Instruments, which limit the motor current to a maximum of 3 A for overload
protection. A pulse-width modulation (PWM) with a frequency of 6 kHz and a duty
cycle command from 0 to 100 percent is used to emulate an analog motor terminal
voltage command. The desired duty cycle is quantized into 1000 increments on the
MCU side.
The embedded software for control, state estimation, and communication is executed
on a 32 bit MCU (AT32UC3C1512C from Atmel/Microchip) which runs at 66 MHz.
An integrated FPU in the MCU allows fast execution of single-precision floating point
arithmetic. The MCU has 64 kB static random-access memory (SRAM) for variable
data and 512 kB flash memory to store the firmware. For the MCU clock generation, an
oscillator with a nominal frequency of 20 MHz with a clock frequency error of ±30 ppm
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optical encoder codewheel

Figure 2.3: TWIP encoder unit

is used. Thus, an error in time of ±108 ms/h is possible due to deviations from the
nominal oscillator frequency used for time keeping3.
For odometry, two optical encoders (AEDR-8300 from Agilent Technologies) with re-
flective codewheels of 900 CPR (counts per revolution (CPR)) are built in to measure
the relative angular motion between the body and the left and right wheel as shown
in Figure 2.3. The two 90◦ degrees out-of-phase pulses of each encoder are evaluated
by a peripheral quadrature decoder (QDEC) on the MCU which leads to an effective
resolution of 3600 CPRs.
Two additional sensors are placed on the electronic circuit board for onboard inertial
measurements. The 3-axis accelerometer (ADXL345 from Analog Devices) to measure
the body acceleration and the acceleration due to gravity as well as a 3-axis gyroscope
(ITG-3050 from InvenSense) to measure the angular rates of the robot body. At every
sample step of the MCU program, the measurement data is queried before the control
and estimation algorithms are executed.
A short overview of the sequence of software routines called every sample step is given
in the next section. As the choice and configuration of the onboard sensors have a
deep impact on the achievable performance of the state estimation and thus control,
additional remarks are given afterwards.

2.3.3 MCU Firmware

The firmware running on the MCU is programmed in C and is designed to operate in
real-time. This is done by the use of a hardware timer interrupt, which triggers cyclically
the execution of the software routines to perform a sample step. As the exchange of serial
data with the Bluetooth module, the generation of the PWM signals, and the evaluation
of the encoders are done by peripheral components automatically, the execution of the
routines during one sample step is never interrupted. A flowchart of the software routines
running during one sample step is shown in Figure 2.4.
If the interrupt has triggered the execution of a sample step, the local onboard sensors

3This detail turns out to be important, as the onboard time is required to incorporate time-stamped
remote measurements received for state estimation.
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are read first. This is done to assure, that the time between consecutive sensor reads
is as precise as possible and thus velocities derived through numerical differentiation of
these measurements are not degenerated. Afterwards, the serial data buffer is read. A
time-stamp is provided to the last valid data package received from the PC via Bluetooth
which is used by the subsequent routines. As all required input data is available now,
the control algorithms can be executed. The control algorithm binaries originate from
compiled C code auto-generated from a Simulink model as well as Matlab code. After
the control algorithms are finished, the actors (PWM, LEDs, etc.) are set corresponding
to the control algorithms output. Finally, the last routine is called, which sends out the
data specified for signal logging to the PC via Bluetooth.
The firmware, including all control algorithms presented in this thesis (controller, com-
mand governor, state estimator, clock parameter estimator) require around 51 kB flash
memory and 29 kB are allocated in the SRAM. Moreover, the time required to run the
cyclic algorithms, require always less than the available 5 ms with an average execution
time of 1 ms. To conclude, the chosen MCU is able to handle the algorithms in real-time
but it has also to be said, that the used algorithms have been optimized to run on the
available MCU.

2.3.4 Remarks on Onboard Sensors

Typically, inertial measurement units (IMUs) based on microelectromechanical systems
(MEMS) technology and consist of at least an acceleration sensor and a gyroscope.
Hereby, the quality of the sensors measurements depends on the sensor sensitivity and
resolution and gets degenerated by bias, noise, inter-axis misalignment, cross-axis sensi-
tivity, and temperature sensitivity to mention some of the most imported effects among
others. In general, there is a simple rule: the more money is spent, the better the mea-
surements are. Prices for MEMS IMUs range from a few euros for customer products
up to above thousand Euros for IMUs with ‘tactical grade precision’. Expensive ‘tactical
grade precision’ IMUs include a gyroscope and an accelerometer in a single chip, are
calibrated and effects like temperature and linear acceleration sensitivity are internally
compensated. Due to a limited budget, cheap sensors (< 20 Euro) were bought which
limits the reachable performance of the state estimation and complicates the sensor mod-
eling, due to missing specification values in the datasheets. Last but not least, typically
all IMUs have internal filters to which special attention should be paid, too. Therefore,
it is a good advice to take a close look at the sensor configuration and to choose an
appropriate sampling rate and filter cut-off frequency. If the filter bandwidth frequency
is chosen too small, this might cause bad overall closed-loop performance or even the
stabilization of the robot fails.
Besides the IMU, two encoders are used for velocity measurements and odometry. The
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choice of the codewheel resolution and its evaluation method is crucial for the later
achievable quality of the state estimation and thus closed-loop performance. Thus, it is
quite worth to spend some time on this topic during the design procedure.
Let us focus on the evaluation methods first. A common approach in control applications
is, to count the pulses during a fixed time interval which is typically the sample time
used for the control algorithm. This method is referred to as the M method. It will give
a good approximation of the speed as long as more than a few encoder pulses are counted
per time interval. In the case of the TWIP, this might not always be the case, since the
angular velocity of the wheels is close to zero during balancing at a position and thus
only a few encoder pulses are counted per interval. To conclude, the measurement error
increases with the M method, as the wheels’ speed decreases.
Another approach is, to use a hardware timer and evaluate the timer increments between
two encoder pulses. This approach is called the T method. It has a small error if more
than a few time increments are counted between two encoder pulses. The higher the
timer frequency is, the smaller the error gets. Nevertheless, the error increases with
higher velocities, as the time between two encoder pulses decreases, and thus the error
increases.
A third approach, proposed by Ohmae et al. [80], combines both methods by counting
encoder pulses per time interval and counting timer increments between two consecu-
tive encoder pulses, called the M/T method. Moreover, Ohmae et al. [80] provided a
thorough introduction to the three introduced evaluation methods and provides an accu-
racy analysis of encoder-based speed measurement. Nevertheless, even if the combined
method is used, at low speeds, with less than two encoder pulses per sample step of the
control algorithm, the speed measurement shows a large relative error.
Clearly, the third method is the desirable one but most MCUs offer only pure QDEC
as a peripheral device. QDECs decode the quadrature signals from encoders (two 90
degrees phase shifted pulses) into a total count number which can be interpreted as
a discrete angle measurement of the wheel. The benefit of an MCU with a QDEC
peripheral device is, that no computation time is required on the MCU to detect the
direction and to count the encoder pulses. Unfortunately, an implementation of the
M/T method is not straightforward, as long as the required computational cost has to
be limited. In the focus on the desired real-time operation of the control algorithms,
the design decision has been made to only use the M method to evaluate the wheel
speeds. In consequence, expensive high-resolution codewheels were required. But even
with the high codewheel resolution, the TWIP presented has at forward velocities below
11.5 mm/s less than one increment at a sample step of 5 ms and the relative measurement
error goes up to 100 %. This issue can be reduced by increasing the sampling time or the
codewheel resolution. Experimental results of other prototypes have shown, that even
worse values (e.g. Dengler [25] 36.5 mm/s with 10 ms sample time) can still be used for
control purposes. However, the actual reason why speed control does not completely
fail at low speed is, that the average of the calculated velocities approximates the real
velocity in a window of several sample steps.
To conclude, a selection of a high resolution codewheel combined with an appropriate
choice of the sampling frequency increases the quality of the measurements of the wheel
speed. If available, the M/T evaluation method will reduce the measurement error.
Finally, as already mentioned, to avoid the measurement of gearbox backlash by the
encoders, a placement of the encoder between the body and the wheels is superior to
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encoders mounted on the motor shafts.

2.3.5 Remarks on H-Bridge Operation Modes

In the following, the crucial importance of the correct choice of the operation mode of
the H-bridges is highlighted, as this has a large influence on the control properties of the
system.
At first, the basic setup and functionality of an H-bridge will be introduced. Figure 2.5
shows a typical H-bridge structure, with four switching elements (Q1-Q4) and the motor
wired up to the bridge terminals A and B. In most cases Q1-Q4 are MOSFETs. The
H-bridge itself is connected to a power supply, the robot’s battery with the voltage
uB. DC motors are commonly modeled by three components. An ohmic resistor R, an
inductance L for the rotor windings, and a voltage source uE for the back electromotive
force (back-EMF). uE is usually assumed to be proportional to the rotor speed ω. To
drive the motor in one direction, Q1 and Q4 are driven to low impedance and for the
reverse direction, Q3 and Q2 are activated. If Q1 and Q3 or Q2 and Q4 are enabled, the
motor terminals are shorted and thus the motor is decelerated. The combinations Q1
and Q2 or Q3 and Q4 should be never active since they will shorten the power source
and cause serious damage to the components.
For speed control, in almost all applications a PWM signal is used. There are basi-
cally two different PWM operation modes for an H-bridge. To simplify the following
explanation of the modes, let us focus on one direction and assume Q4 is always enabled.
The first mode is called free-wheeling or coast mode. In this mode, at the high level of
the PWM signal, Q1 is closed and the motor is driven with the battery voltage. Thus,
in the high state, we get uM = uB and a motor current can flow. Contrary, during the
low level of the PWM signal, Q1 is opened and thus we have an open circuit since the
terminal A is high impedance or ‘floating’. In consequence, no motor current can flow
(iM = 0) and the motor terminal voltage is equal to the back-EMF voltage (uM = uE).
The second mode is the break mode. Similar to the coast mode, at the high level of the
PWM signal Q1 is closed and during the low level Q1 is opened. But now, in addition,
Q2 is closed if Q1 is opened. Thus the motor is driven with uM = uB during the high
level of the PWM signal and shorted during the low level forcing uM = 0. As the motor
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terminals are shorted, iM can be different from zero as it is driven by uE and limited by
the windings resistance R.
Let us now discuss the impact of using the different modes in control applications. In
general, the controller output is a desired value ůM for uM between ±uB. Based on the
sign, the direction is chosen and the PWM duty cycle δ is calculated by δ = ůM

uB
. If we

use the break mode the average motor voltage ūM over one PWM period T is then given
by

ūM = 1
T

∫ T

0
uM (t) dτ

= 1
T

(∫ T δ

0
uB dτ +

∫ T

T δ
0 dτ

)
= δuB = ůM (2.1)

and thus, ūM is equal to the desired value ůM .
But what is the result of (2.1) if we use the coast mode instead? In this case, during the
low level of the PWM signal we have uM = uE(ω) and thus uM depends on the rotor
speed of the motor during this phase. The average motor voltage over one period is then

ūM = 1
T

(∫ T δ

0
uB dτ +

∫ T

T δ
uE(ω) dτ

)
= δuB + (1− δ)uE(ω) ̸= ůM (2.2)

which is not equal to the desired value. To solve this issue, the duty cycle δ has to
be calculated based on the measured motor speed and the desired value ůM with δ =
ůM −uE(ω)
uB−uE(ω) . As δ might get negative, the H-bridge direction might have to be inverted to
reach the desired result. Moreover, as during the low level uM = uE(ω) holds, iM has
to be zero and thus the applied torque to the robot is also zero since it is proportional
to the motor current. In consequence, the coast mode is not desirable in most cases.
Kaufmann [53] evaluated the influence of the different modes and PWM frequencies on
the feedforward speed control driving on ground with the TWIP built and his experi-
mental data is plotted in Figure 2.6. Hereby, Kaufmann [53] calculated δ as introduced
for the break mode and used it for both modes. The break mode shows an almost linear
relation between PWM duty cycle in percent and the measured wheel velocity. Further-
more, the PWM frequency seems to have no almost influence on the result. Contrary to
this, the coast mode leads to a high dead-zone and the results depend on the choice of
the PWM frequency. With a frequency of 6 kHz the wheels start to turn at a duty cycle
of 25− 30 %. This undesirable dead-zone even increases with 60 kHz, where the motion
starts around a duty cycle of 55−60 %. Moreover, especially the curve with 6 kHz PWM
frequency is clearly nonlinear.
In conclusion, the choice of the operation mode might have a huge influence on the plant
input. In the case of the TWIP, the coast mode leads to a nonlinear input, which is a
function of the motor speed, whereas the break mode shows a linear input characteristic.
This is an unpleasant pitfall, especially if an ‘off-the-shelf’ H-bridge breakout board
is taken to build up a TWIP and no closer look at the operation mode is taken. In
particular, the mismatch of the calculation of the duty cycle and the operation mode
might then be misinterpreted as a highly nonlinear mechanical friction with a large stick-
friction component. In consequence, awareness of the introduced details on the different
H-bride operation modes and their consequences for closed-loop control performance
should be raised.
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Figure 2.6: Velocity over PWM with different H-bridge operation modes and PWM
frequencies (experimental data from Kaufmann [53])
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Figure 2.7: TWIP tracking system with TWIP

2.4 Tracking System and Communication Software

An optical tracking system, Vicon Tracker with 10 Vera v1.3 cameras covering a tracking
area of 4 m × 6.5 m, provides measurements of the position xB and yB as well as the
orientation θ of the robot. In addition, the lab with the tracking system, the cameras,
the PC, and the robot is shown in Figure 2.7.
The image data processing, to get the position and orientation of the robot, is done by
the tracking software from Vicon running on a PC with Microsoft Windows 10 operating
system which has to be considered not to be real-time. Contrary, the triggering of the
images is done by the Vera cameras in real-time via Ethernet with a sample time of
20 ms. Hereby the images get an incremented index T k, which can be interpreted as a
timestamp.
In parallel, a communication software written in C♯ is executed on the PC, which queries
the last set of tracking data supplied by the tracking software and sends this data set
to the robot via Bluetooth. Besides, the communication software reads the desired
trajectory from an input file and sends it to the robot. Moreover, data received from
the robot for logging is stored in an output file.
As already mentioned, the serial communication between the PC and the microcontroller
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on the robot is done via Bluetooth. In particular, the Windows4 serial port profile (SPP)
driver has to be used for this, which introduces additional delays due to the buffering
done by the Bluetooth/SPP driver. Thus, the measurements from the tracking system
received by the robot via Bluetooth inhibit a time delay, and typically every transmitted
data set has a different time delay. As already said, the time delay is mainly caused by
the scheduling of the operating system and the implementation of its native serial port
driver.

2.5 Overview on the Experimental Setup

Figure 2.8 shows the full setup and illustrates the interconnections of the components of
the robot introduced in Section 2.3 as well as the tracking system and the communication
software presented in Section 2.4.
First, the tracking system including the PC with the tracking software, the communica-
tion software as well as the cameras are shown in the upper part of Figure 2.8. A clock
triggers the recording of a new image every T m = 20 ms and is illustrated inside the
Cam 1. This trigger adds a timestamp (or sample step) T kT , which is included in the
measurement output of the Tracking Software. The Communication Software reads the
measurements from the Tracking Software, which are the computed positions yT,x and
yT,y as well as the orientation yT,θ of the robot. Moreover, the Communication Soft-
ware reads the desired trajectory from an input file and transmits the trajectory data
as well as a data package DT including the measurements from the tracking system to
the robot via Bluetooth. In addition, the data received via Bluetooth from the robot
as well as the measurement data from the tracking system is written into log files by
the Communication Software. With the data stored in the log files, experiments can be
post-processed and analyzed.
In the lower part of Figure 2.8, the robot and the interconnection of the different software
and hardware components is shown. All routines running on the robot’s MCU are started
at every sample step with a sample time of Rm = 5 ms. The received trajectory data
is buffered in the Trajectory Buffer. The Trajectory Buffer supplies the current desired
state x̊ and feed-forward input ů to the Controller & Command Governor subsystem.
Based on x̊ and ů as well as the estimated state x̂ the Controller & Command Governor
calculates the control output u to be applied to the drives of the robot. The robot’s state
is estimated inside the State Estimation block using measurements from local sensors
(encoder, accelerometer, and gyroscope) as well as the remote measurements received
from the tracking system. If a data package DT is received, a timestamp RkR of the
current local time is added and altogether stored in the data package DP . Since the local
and the tracking system clock differ, the measurement timestamps T kT from the tracking
system are converted in the Time Conversion block to the local time T kR before they are
used by the State Estimation. As the offset of the clock is different in every experiment
and the clock sample time are also might vary, the clock parameters T m and T o of
the tracking system are estimated inside the Clock Parameter Estimation5 block and

4Similar experiment indicated, that the serial Bluetooth communication driver on a standard Ubuntu
Linux distribution introduces comparable delays.

5To be precise, the clock parameters of the local robot clock Rm and Ro as well as the tracking
system’s clock parameters T m and T o vary. Nevertheless, to convert the clock time only one clock
parameter set in respect to the chosen reference clock has to be determined.
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are supplied to the Time Conversion. Herein, T m is the sample time (or clock skew),
and the T o clock offset (or initial time offset). The clock parameters are estimated
by the use of the timestamped measurements yT [T kR] from the tracking system, the
gyroscope measurements yG[GkR] as well as the receive timestamps RkR from the robot.
As the data signals of the TWIP which should be logged may change from experiment
to experiment, these signals are not shown. In summary, almost all signals could be sent
via the Bluetooth Transmitter to the PC for logging if required. The blocks colored red,
include the algorithms which are presented in this thesis and are tested on the TWIP in
experiments.

2.6 Simulation Environment

Last but not least, a simulation environment has been set up in Matlab and Simulink, to
test the developed algorithms on a model covering all relevant properties of the physical
system. Only if the simulation model is ‘close’ to the physical system, the simulation
results will give a reliable statement about the control performance on the real system.
The structure of the simulation environment is shown in Figure 2.9. The dynamical
model of the robot, including the mechanical system and the motors as proposed in
Subsection 3.1.6, are included in the TWIP Model block. In addition state and input
constraints, as presented in Subsection 3.1.9, are incorporated.
As sensors never provide ideal measurements, a model of the onboard sensors are in-
cluded in the TWIP Sensors Model block. The sensor model accounts for noise, quan-
tization, and sampling as well as the digital filters included in the sensors as presented
in Section 3.2.
A model of the tracking systems, including the PC and the communication software
is labeled as Tracking System Model. This model includes the sampling of the track-
ing systems measurements and a sloppy transmission model, which approximates the
transmission delays of the data packages found on the real system.
The simulation environment above will be used to tune the controller and the observer
offline. In particular, it is used to optimize the performance of the state estimator in
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Chapter 7. Besides, the simulation is used for fast bug fixing and to investigate the
influence of parameter deviations.

2.7 Concluding Remarks

In this chapter, the conceptual and building process of the TWIP during this thesis has
been presented which is used in the following chapters to evaluate control algorithms
proposed for mobile robots. A strong focus during the design process on the desired
sophisticated real-time closed-loop control application and experiments lead to a ro-
bust and lightweight robot. Furthermore, the appropriate choice of the sensors deliver
high-quality measurement signals required for precise state estimation, and due to the
connection of a tracking system as a remote sensor to the robot, integration errors in
position and heading angle can be compensated. Based on the bare-metal firmware on
the MCU all algorithms can be executed in real-time. A code generation framework
provides fast experimental testing and the simulation environment a valid offline eval-
uation of new algorithms. Due to the improved applicability of the presented TWIP
for control, it has been used for several other research projects and semester, master
and Ph.D. theses, eg. Delgado [23], Anhalt [5], Albert et al. [2]. Moreover, it has been
presented in the 150 year Technical University of Munich (TUM) exhibition and is used
as an illustration example for control in the lectures of the institute frequently. Besides,
the robot has shown its robustness in several lab courses. The developed TWIP can be
considered as one of the most sophisticated TWIP for research and teaching presented
up to now.
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Chapter 3

Modeling

For simulation, controller, and observer design, a model showing a high congruence
with the physical system is required. In Section 2.6 a simulation environment has been
proposed and in this chapter, the different blocks shown in Figure 2.9 are ‘filled’ with
equations. Thus, nonlinear time-invariant models of the TWIP in the two-wheeled in-
verted pendulum mode with and without motor currents and the wheelchair mode are
derived first. In addition, alternative system representations are introduced, which turn
out to ease the controller and estimator design procedures in the following chapters.
Moreover, a short excursion into the energy contribution and power exchange of the
different components is given to evaluate if terms could be neglected which would al-
low to simplify the derived models. Also, a model of the onboard sensors, required to
tune state estimators with simulations is presented. Thereupon, LTI models are derived
for linear control and observer synthesis. Moreover, the properties of the different linear
models are discussed. Afterwards, experimental results are compared with simulation re-
sults obtained with the introduced model. Finally, the chapter is closed with concluding
remarks.
The derivation of the different models has been supported by several student theses su-
pervised by the author. Kaufmann [53] implemented the first model based on Pathak
et al. [84] but in addition, he incorporated a model of the motors and a linear description
of the friction between the wheels and the body. In addition, Kaufmann [53] identified
the motor parameters and mechanical properties based on experiments as well as the
CAD model. Anhalt [5] replaced the linear terms with a nonlinear friction curve, identi-
fied experimentally which increased the model accuracy even further. Even though the
presented sensor model is quite different, the first version of an onboard sensor model
has been proposed by Wunderlich [117].

3.1 Nonlinear Time-Invariant Model

In this section, three different dynamical models of the TWIP are derived. In particular,
a closed treatment of the current dynamics and the mechanical dynamics within the
Lagrangian framework is presented which is novel compared to Delgado [23], Kaufmann
[53], Anhalt [5] and less error-prone. Furthermore, the Lagrangian of the system is
derived which can be used to derive a variational integrator to get a discrete-time model
which preserves system invariants like momentum and energy as presented in Albert

27
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et al. [2].
All models in this section will cover the dynamics of rigid bodies and consider the two DC
motors. Hereby, the voltages of the electric motor’s terminals are defined as model input
and the H-bridge modeling is excluded. In particular, the presented models for the two-
wheeled inverted pendulum mode with and without motor currents and the wheelchair
mode will differ in the choice of configuration and state variables as well as the treatment
of the current dynamics.
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Figure 3.1: TWIP coordinate systems and geometric parameters

A simplified model of the TWIP, as shown in Figure 3.1, consists of three1 rigid bodies:
the robot’s body, the right, and the left wheel. Additionally, to gain a high model
accuracy, terms for the gear’s and motor rotor’s rotational energy are considered which
have not been included in most other publications e.g. Kim and Kwon [56], Pathak et al.
[84], Ha and Yuta [40].

RM LM
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ΣM

uRM uLM

uEMuM
ωM ,τM

ωδ,τδ

dc motor gearbox wheel

Figure 3.2: Diagram of the electronic motor circuit with an illustration of the connection
to a gearbox and a wheel (inspired by Delgado [23])

Furthermore, the motor circuit electronics, shown in Figure 3.2, are incorporated in
the model, instead of assuming a pure torque or current input, as commonly done e.g.
Kim and Kwon [56], Pathak et al. [84], Ha and Yuta [40]. Delgado [23] and Anhalt [5]
applied Kirchhoff’s second law for the mesh ΣM in the electric circuit. While Delgado

1Actually, there are significantly more rigid bodies if the motor rotors and gears are considered as
individual parts. This is discussed in Subsection 3.1.3 in detail.
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[23] neglected the current dynamics afterwards, Kaufmann [53] and Anhalt [5] included
them in the final model. To conclude, both derived the mechanical and electrical model
separately and joined them in consecutive steps by replacing the torque input of the
mechanical system with the torque equations gained by the modeling of the electrical
system. Contrary to this approach, in the following the current dynamics as well as the
mechanical dynamics will be treated within the Lagrangian framework.
Kim and Kwon [56] compared different modeling approaches published and pointed out
errors. Unfortunately, they removed the spatial positions xB and yB by distance driven
d and thus completely lost track of the capability for position tracking in their nonlinear
model. To gain that property back, they will need to extend their system with (3.96)
afterwards.
Finally, the system is subject to nonholonomic constraints that arise due to the assump-
tion of no slipping and pure rolling of the wheels. To account for these nonholonomic
constraints, constraint equations are formulated during the modeling process and incor-
porated into the model as proposed by Pathak et al. [84].

3.1.1 Parameters and Lagrange Equations

Firstly, the parameters and properties of the three rigid bodies are introduced. The
robot’s body has a mass mB with the center of gravity CB at a height lB, measured
from the body-fixed frame origin BO along the Bz axis. The two wheels of radius rW
have a mass of mW each and are mounted on the wheel axis which is aligned with the
coordinate frame axis Ay. Their centers of mass CR and CL are located on the wheel
axis, with a distance of lW from the middle of the robot. Each wheel is able to rotate
independently and is driven by an electric motor via a gearbox stage, assembled in the
robot’s body.
Secondly, a look is taken at the drive electronics and the connection of the motors to
the wheels via the gearboxes. Since both wheels, motors and gearboxes are similar,
only one set of them are discussed. The motor armature is modeled with an ohmic
resistance of the rotor windings RM and their inductance LM connected in series as
shown in Figure 3.2. If the armature rotates with the speed ωM in the magnetic field of
the permanent magnets, the voltage uEM = kEωM is induced in the armature windings.
kE is hereby the back-EMF constant of the motor. In addition, the current iM flowing
through the armature coil causes a torque τM = kMiM where kM is the motor torque
constant. The motor armature shaft is connected to the gearbox. Each stage has a ratio
of nWG and the two build-in stages deliver a total gear ratio of nWM = n2

WG from the
motor shaft to the wheels.
Now, as the required parameters and the robot’s structure are defined, let us proceed
with the modeling. Herein, the goal is to compute a state-space representation of the
model with a desired choice of state variables. In the first step, let us formulate the
Lagrangian L of the TWIP

L(q, q̇) = T (q, q̇)− V (q, q̇) , (3.1)

which is the total kinetic energy T minus the potential energy V where both terms
depend on the configuration variable vector q and its time-derivative q̇. Then, based on
the Lagrangian, the Euler–Lagrange equations (or Lagrange’s equations of the second
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kind)

d
dt

(
∂L

∂q̇

)
− ∂L

∂q
=

∂2T

∂q̇2︸ ︷︷ ︸
M

q̈ + ∂2T

∂q̇∂q
q̇− ∂T

∂q︸ ︷︷ ︸
K

−∂2V

∂q̇2 q̈− ∂2V

∂q̇∂q
q̇ + ∂V

∂q︸ ︷︷ ︸
P

= Fdis + Fext + ATλ , (3.2a)

Aq̇ = 0, (3.2b)

are calculated which gives a constrained second-order representation of the system. For
this, the dissipative Fdis and external forces Fext acting on the system are needed. In
contrast to holonomic systems, additional equations are required for the TWIP, which
enforce the velocity constraints. Therefore, they are included into the model in form of
a matrix-vector product A(q)q̇ = 0, also known as Pfaffian constraint (see Choset [20]).
The vector λ includes the Lagrange multipliers. In this second-order system, M is the
mass matrix, K assembles the terms arising from the kinetic energy and P includes the
terms from the potential energy.
For mechanical systems usually, the potential energy term only depends on q and thus
the terms ∂2V

∂q̇2 , ∂2V
∂q̇∂q in (3.2a) are zero and dropped. Knowing that this, at least for the

second term, is not necessarily the case if the electronic circuit is also modeled within
the Lagrangian-Euler approach, these terms are explicitly included in P . Wellstead
[113] offers a great overview of how to model systems with different, connected physical
domains with the Euler-Lagrangian approach whereas Wells [112] especially introduces
the modeling of coupled electro-mechanical systems.
The motion of the TWIP is restricted by nonholonomic constraints and the admissible
velocities have to fulfill our condition A(q)q̇ = 0. Let us consider

q̇ = S(q)ν (3.3)

as a mapping between the velocities q̇ in generalized coordinates and the velocities ν
in permissible directions. Moreover, let us choose the matrix S such that it lies in the
null space of the matrix A and thus AS = 0 holds. Now the Lagrange multipliers λ are
eliminated by pre-multiplying both sides in (3.2a) by ST. Then substituting (3.3) and
q̈ = Sν̇ + Ṡν leads to the second-order system

ST
(
MSν̇ + MṠν + K + P −Fdis −Fext

)
= 0 (3.4)

without Lagrange multipliers and in minimal coordinates. Finally, (3.4) is rewritten to

ν̇ = −
(
STMS

)−1
ST
(
MṠν + K + P −Fdis −Fext

)
(3.5)

and a first order, nonlinear state space model with the state vector x = (∗, ν)T

ẋ :=

 Srν

−
(
STMS

)−1
ST
(
MṠν + K + P −Fdis −Fext

)
 , (3.6)

can be set up where the matrix Sr(q) defines the integration terms of the state variables
labeled with the placeholder (∗) and is chosen, based on the use case for which the model
should be used as well as the desired control task. The introduced method to remove
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the term ATλ in (3.2a) by the use of a mapping S(q) between generalized velocities and
admissible velocities in minimal coordinates, has been proposed by Pathak et al. [84].
The presented procedure from (3.1) to (3.6) is the same for all presented models of the
TWIP in the subsequent subsections.

3.1.2 Positions and Velocities

To derive (3.1), the kinetic and potential energy terms for each considered component
are needed. The kinetic energy terms of the mechanical components consist of a rota-
tional and a translational velocity energy term. To formulate those, the rotational and
transitional velocity of the center of mass for each rigid body with respect to the inertial
frame are required. A common approach is to describe the transitional velocities of a
body in the inertial frame and the rotational (or angular) velocities in the body-fixed
frame. Let us follow this approach since it eases the formulation of the energy terms and
the inertia matrix with respect to the center of mass is constant. Thus we start with the
modeling of the mechanical system by calculating the absolute velocities of the centers
of mass as well as the body-fixed rotational velocities of the robot’s body, the left and
the right wheel. A rotation around the Iz axis with the heading angle θ results in the
rotation matrix

IRA =


cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.7)

which transforms a position vector defined in the axis-fixed frame A of the robot to the
inertial frame I. A consequent rotation around the Ay axis with the tilt angle α brings
us with the rotation matrix

ARB =


cos(α) 0 sin(α)

0 1 0
− sin(α) 0 cos(α)

 (3.8)

to the orientation of the body-fixed frame B of the body. Multiplying both principal
rotations results in the total rotation matrix

IRB = IRA
ARB =


cos(α) cos(θ) − sin(θ) sin(α) cos(θ)
cos(α) sin(θ) cos(θ) sin(α) sin(θ)
− sin(α) 0 cos(α)

 (3.9)

from frame B to frame I . Let us define the position vector from the inertial frame origin
IO to the center of gravity CB of the body

IpCB
=


xB

yB

rW

+ IRB


0
0
lB

 =


xB + lB sin(α) cos(θ)
yB + lB sin(α) sin(θ)

rW + lB cos(α)

 . (3.10)
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This vector is the sum of the vector from IO to AO = BO and the vector pointing from
BO to CB, transformed with IRB from the frame B to the frame I. Based on (3.10) we
calculate the absolute velocity of CB

IvCB
= d

dt
(IpCB

) (3.11)

=


ẋB + lBα̇ cos(α) cos(θ)− lBθ̇ sin(α) sin(θ)
ẏB + lBα̇ cos(α) sin(θ) + lBθ̇ sin(α) cos(θ)

−lBα̇ sin(α)

 (3.12)

in the frame I. The rotational velocity vector of the robot’s body-fixed frame B in
respect to the inertial frame I, given in frame B, is calculated by

I
Bω̃B = IRT

B

d
dt

(
IRB

)
(3.13)

I
BωB =


−θ̇ sin(α)

α̇

θ̇ cos(α)

 . (3.14)

Since there are three bodies in total, the same steps for the left and right wheel have to be
performed also. Consequently, for each wheel a body-fixed frame has to be introduced.
These frames R and L are rotated by the wheel angles ϕR and ϕL around the axis Ay
and thus we define the rotation matrices

ARR =


cos(ϕR) 0 sin(ϕR)

0 1 0
− sin(ϕR) 0 cos(ϕR)

 , ARL =


cos(ϕL) 0 sin(ϕL)

0 1 0
− sin(ϕL) 0 cos(ϕL)

 (3.15)

from the axis-fixed frame A to the body-fixed frames for the right wheel R and left wheel
L. Again, by the multiplication of the principal rotations, a total rotation matrix from
the inertial frame I to the corresponding frames of right wheel

IRR = IRA
ARR =


cos(ϕR) cos(θ) − sin(θ) sin(ϕR) cos(θ)
cos(ϕR) sin(θ) cos(θ) sin(ϕR) sin(θ)
− sin(ϕR) 0 cos(ϕR)

 (3.16)

and the left wheel

IRL = IRA
ARL =


cos(ϕL) cos(θ) − sin(θ) sin(ϕL) cos(θ)
cos(ϕL) sin(θ) cos(θ) sin(ϕL) sin(θ)
− sin(ϕL) 0 cos(ϕL)

 (3.17)

is obtained. Since the centers of gravity CR and CL of the right and left wheel are aligned
on the Ay axis, only the rotation matrix for frame A is needed to define the position
vectors from IO to CR and IO to CL. Adding the vector from IO to AO to the vectors
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from AO to CR and AO to CL, which are transformed with IRA or IRL respectively, the
position vectors

IpCR
=


xB

yB

rW

+ IRA


0

lW

0

 =


xB + lW sin(θ)
yB − lW cos(θ)

rW

 (3.18)

and

IpCL
=


xB

yB

rW

+ IRA


0
−lW

0

 =


xB − lW sin(θ)
yB + lW cos(θ)

rW

 (3.19)

are calculated for the right and left wheel’s center of gravity. Having defined the position
vectors, we are able to calculate the velocity of the wheel’s centers of gravity given in
the inertial frame with

IvCR
= d

dt
(IpCR

) =


ẋB + lWθ̇ cos(θ)
ẏB + lWθ̇ sin(θ)

0

 (3.20)

for the right wheel and

IvCL
= d

dt
(IrCL

) =


ẋB − lWθ̇ cos(θ)
ẏB − lWθ̇ sin(θ)

0

 . (3.21)

for the left wheel. The rotational velocity vector of the robot’s wheels are calculated in
the corresponding body-fixed frame by

I
Rω̃R = IRT

R

d
dt

(
IRR

)
(3.22)

I
RωR =


−θ̇ sin(ϕR)

ϕ̇R

θ̇ cos(ϕR)

 . (3.23)

for the right wheel and

I
Lω̃L = IRT

L

d
dt

(
IRL

)
(3.24)

I
LωL =


−θ̇ sin(ϕL)

ϕ̇L

θ̇ cos(ϕL)

 . (3.25)

for the left wheel.
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3.1.3 Kinetic and Potential Energy Terms

Let us define the energy terms for the rigid bodies in the next steps. Starting with the
robot’s body, we use the translational velocity and the body mass as well as the angular
velocity of the center of mass of the body together with IB := diag(IBxx, IByy, IBzz) as
the inertia of the body with respect to its center of mass in the body-fixed frame B.
Then, the kinetic energy of the body is defined by

TB = 1
2(mB IvT

CB IvCB
+ I

BωT
B IB

I
BωB) . (3.26)

Analogously, the kinetic energy of the wheels

TW =1
2(mW IvT

CR IvCR
+ I

RωT
R IW

I
RωR) (3.27)

+ 1
2(mW IvT

CL IvCL
+ I

LωT
L IW

I
LωL) , (3.28)

is calculated where IW := diag(IWxx, IWyy, IWzz) is the inertia of the wheels with respect
to their center of mass in the body-fixed frame R or L respectively. Notice from Fig-
ure 3.2, that the rotor of the electric motor and the gears rotate at different angular
speeds compared to the wheels and the body. Therefore, the rotational energy arising
from this has to be calculated in addition. Let us define auxiliary variables for the
relative motion between the body and the wheels as follows:

ωδR = ϕ̇R − α̇ (3.29)

for the relative angular velocity between the body and the right wheel as well as

ωδL = ϕ̇L − α̇ (3.30)

for the relative angular velocity between the body and the left wheel. The kinetic energy
terms of the gears and the rotor then are given by

TG =1
2IM(α̇ + nWMωδR)2 + 1

2IG(α̇− nWGωδR)2 (3.31)

+1
2IM(α̇ + nWMωδL)2 + 1

2IG(α̇− nWGωδL)2, (3.32)

where IM and IG are the inertia of the rotor and the gear about their rotation axis
respectively. One remark regarding the modeling of the gears and the rotor: This is a
simplification of the kinetic energy terms of these four bodies since it has been decided
to avoid the definition of position vectors of the centers of gravity of the gears and the
rotors as well as the calculation of the translational and angular velocities as it has
been done for the body and the wheels. As the mass mB of the body includes the
mass of the gears and the rotor, the corresponding translational energy terms can be
dropped. Furthermore, the inertia IB of the body includes the gears and the rotors as
well. Thus, it has only to been taken care of the energy terms which arise from the
difference between the body angular velocity and the gear and wheel angular velocity.
Due to this, a correction term

TCorr = −IMα̇2 − IGα̇2 (3.33)

is defined and added to the total kinetic energy. This treatment of the motor and gear
energy has also been used in Anhalt [5], Albert et al. [2] and Delgado [23] but in Anhalt
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[5] the coupling terms α̇nWGωδ arising, if TG is expanded, were missed2. This term
compensates the energy terms in (3.31), which are already included by the robot’s body
kinetic energy term in (3.26). The potential energies of the mechanical parts are due to
the gravitational potential of the body and is given by

VB = gmB (rW + lB cos(α)) (3.34)

where g is the earth’s gravity. As the wheels have a constant potential energy, their
derivatives are zero in (3.2a) and thus are not required in the Lagrangian.
To incorporate the DC motors, which drive the wheels via the gearbox, the electric
circuit and the interaction with the mechanical system, shown in Figure 3.2 for each
motor, has to be modeled, too. The Euler-Lagrange approach was mostly developed to
understand the dynamics of mechanical systems but these results can be generalized and
applied to other physical systems as well. Wellstead [113] offers a great overview of how
to model systems in different domains within the Lagrangian framework. Wells [112]
presented, how the Lagrangian equations can be applied to electrical circuits interacting
with mechanical systems and especially in the case of the TWIP, the Lagrangian for-
mulation allows us to connect both subsystems easily and thus let us follow the steps as
proposed by Wells [112]. In electric circuits, capacitors are considered as the potential
energy where as inductors are handled in the kinetic energy terms. Resistors are treated
as dissipative forces and sources can be treated in the potential terms or as external
forces acting on the system. The configuration variables are the charges flowing through
the different branches of the circuit over time. As there is only one branch in each motor
circuit let us define the charges as qR and qL for the right and left motor respectively.
The derivatives of the charges are the motor currents q̇R = iR and q̇L = iL. Therefore,
the kinetic energy terms of motor circuits is determined as

TM = 1
2LM(q̇2

R + q̇2
L), (3.35)

where LM is the armature winding inductance. In addition, the potential energy due to
the back-EMF in the motor circuits is given by

VM = kEnWM (ωδRqR + ωδLqL) (3.36)

where kE is the motor back-EMF constant. To ease in the presentation of how the inputs
act on the dynamical system and the transformation from a second-order model into an
input-affine, first-order state space model, it has been decided to treat the external
voltage source at the motor terminals not with −uRqR− uLqL in the potential term but
including them as external forces in the next subsections.

3.1.4 Dissipative and External Forces

The dissipative forces are friction forces between the robot body and the wheels as well
as ohmic losses in the motor circuit. These forces arise from the gears, the bearing, and

2Based on the trajectory used for energy and power analysis in Subsection 3.1.11, the relative error
of TG due to the missed terms in Anhalt [5] compared to the presented one is calculated. At least for the
trajectory used, the relative error is less than 0.1 % and thus the results in Anhalt [5] could be treated
as valid.
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the losses of the motors due to the resistance of the armature windings. Let us define
the mechanical friction force vector as

Ffric :=

τF R

τF L

 =

dVωδR + dC tanh (d0ωδR)
dVωδL + dC tanh (d0ωδL)

 (3.37)

with the nonlinear friction torques τF R between the right wheel and the body as well as
the torque τF L between the left wheel and the body. The friction losses of the gears and
bearing are obtained by identifying the damping parameters dV, dC and d0 of a typical
Coulomb and viscous friction curve from experimental data (see Anhalt [5]).
The potential drops in the motor circuits due to the resistance RM are assembled in the
dissipative force vector Fres and given by

Fres :=

RMq̇R

RMq̇L

 . (3.38)

for the right and the left motor. The external force Fext applied to the system is the
voltage uM (see Figure 3.2) available to the terminals of the motors. Let uR, uL be the
voltage supplied to the right and the left motor terminals respectively. Let us collect
the external forces applied to the system in

Fext :=

uR

uL

 (3.39)

which is the external forcing vector.

3.1.5 Nonholonomic Constraints

As mentioned before, the mechanical multi-body system is subject to nonholonomic
constraints that arise due to the assumption of no slipping of the wheels. These no-slip
conditions lead to two constraints for each wheel: no lateral sliding and pure rolling
without slipping on the ground. Let (xR, yR) ∈ R2 be the right wheel’s position and
(xL, yL) ∈ R2 be the left wheel’s position on the x − y plane in the inertial coordinates
where the wheels contact the ground as shown in Figure 3.3. Both positions are defined
analogously to the positions and velocities of the centers of mass of the wheels in (3.18),
(3.20) and (3.19), (3.21) but with the distance dW instead of lW with

IpR =


xB + dW sin(θ)
yB − dW cos(θ)

rW

 , IvR := d
dt

(IpR) =


ẋB + dWθ̇ cos(θ)
ẏB + dWθ̇ sin(θ)

0

 (3.40)

for the right wheel and

IpL =


xB − dW sin(θ)
yB + dW cos(θ)

rW

 , IvL = d
dt

(IpL) =


ẋB − dWθ̇ cos(θ)
ẏB − dWθ̇ sin(θ)

0

 (3.41)
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Figure 3.3: Nonholonomic constrains of the TWIP

for the left wheel. This differs from all other published approaches (Pathak et al. [84],
Kim and Kwon [56], Delgado [23], Anhalt [5], Albert et al. [2]): In general the points
R and L with the distance dW where the wheels contact the ground do not have to be
equal to the distance lW of the centers of gravity CR and CL of the wheels. In the wheel
axis-fixed frame A, the direction of the permissible as well as the impermissible velocities
are colinear with the coordinate axes Ax and Ay. Thus, let us transform the velocities
of the points R and L from the inertial frame to the axis-fixed frame with

AvRx

AvRy

AvRz

 = IRT
AIvR =


ẋB cos(θ) + ẏB sin(θ) + dWθ̇

−ẋB sin(θ) + ẏB cos(θ)
0

 (3.42)

for the right wheel and
AvLx

AvLy

AvLz

 = IRT
AIvL =


ẋB cos(θ) + ẏB sin(θ)− dWθ̇

−ẋB sin(θ) + ẏB cos(θ)
0

 (3.43)

for the left wheel. As illustrated in Figure 3.3 the pure rolling motions of the wheels
take place in the direction of the Ax axis and is thus given by

AvRx = ẋB cos(θ) + ẏB sin(θ) + dWθ̇ = rWϕ̇R, (3.44a)

AvLx = ẋB cos(θ) + ẏB sin(θ)− dWθ̇ = rWϕ̇L. (3.44b)

Furthermore, without slip, no motion takes place along the direction of the Ay axis.
Thus, the no side-slip constraints for both wheels are given by

AvRy = −ẋB sin(θ) + ẏB cos(θ) = 0,

AvLy = −ẋB sin(θ) + ẏB cos(θ) = 0,
(3.45)
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which are two equal constraint equations. The no side-slip constraints (3.45) and pure
rolling constraints (3.44) can now be written as a matrix-vector product (3.2b) to include
the nonholonomic restrictions in (3.2a).

3.1.6 Model with Current Dynamics

Based on the results of the previous sections, where the kinetic and potential energy
terms, as well as the nonholonomic constraint equations, have been defined, the model
with current dynamics of the TWIP is derived in the following.
This model will include the full current dynamics and the configuration and state vari-
ables will be chosen in a way, which is commonly used. Since the TWIP stands on the
ground, two of the six degrees of freedom (DoFs) are lost. As the wheels are able to ro-
tate independently around the wheel axis, two DoFs are gained. Thus, six configuration
variables for the mechanical system are required. By including the full current dynamics
of the right and the left motor, two additional variables for them have to be considered.
Altogether, this leads to eight configuration variables in total. For the calculation of
the Lagrange-Euler equation the configuration variables of the TWIP are introduced, in
probably the most intuitive way, as follows:

• (xB, yB) ∈ R2 for the distance to the origin AO of the axis-fixed frame and the
origin BO of the body-fixed frame in the horizontal plane with respect to the
inertial frame origin IO. The lower right index B is added to avoid confusion with
the state vector x of the robot.

• θ ∈ S for the heading (or orientation) angle, defined as the angle between the
Ix-axis of the inertial frame I and the Ax axis of the axis-fixed frame A. This
corresponds to a rotation around the axis Iz.

• α ∈ S for the tilt (or pitch) angle of the body, defined as the angle between the
Az axis of the axis-fixed frame A and the axis Bz of the body-fixed frame B. This
corresponds to a rotation around the axis Ay.

• ϕR ∈ S and ϕL ∈ S for the rotation angle of the left and right wheel around the
Ay axis.

• qR ∈ R and qL ∈ R for the charges on the right and left motor terminals. Their
time derivatives are the currents iR, iL flowing through the right and left electric
motors in the robot’s body to generate torque between the wheels and the body.

Based on this choice, the configuration space of the system is QC := R2 × S × S × S ×
S× R× R, with

qc = (xB, yB, θ, α, ϕR, ϕL, qR, qL)T ∈ QC , (3.46)

as the configuration variables vector. The time derivative of the configuration vector is

q̇c =
(
ẋB, ẏB, θ̇, α̇, ϕ̇R, ϕ̇L, q̇R, q̇L

)T
. (3.47)

As all dynamic components are considered, the total kinetic energy of the system is given
by

T (qc, q̇c) = TB + TW + TG + TM + TCorr. (3.48)
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In the same way, the potential energy of the system

V (qc, q̇c) = VB + VM (3.49)

includes the gravitational potential energy of the body and the potential energy terms
due to the back-EMF in the motor circuits. The dissipative forces are the friction torques
in Ffric between the robot body and the wheels as well as ohmic losses collected in Fres
arising in the motor circuits. As the friction torques are acting on the body and as
counter torque on the wheels also, they enter the α-direction as well as the ϕR- and
ϕL-directions but with different signs. The total dissipative force applied to the system
along the qc-coordinates is then given by

Fdis(q̇c) =



03×1

τF R + τF L

−τF R

−τF L

−RMq̇R

−RMq̇L


=


03×2 03×2

11×2 01×2

−I2×2 02×2

02×2 −I2×2


Ffric

Fres

 . (3.50)

The external force Fext applied to the system is the voltage available to terminals of the
motors. Let uR, uL be the voltage supplied to right and left motors respectively. The
external force applied along the chosen qc-coordinates is given by

Fext(uR, uL) =

06×2

I2×2


︸ ︷︷ ︸

E

uR

uL


︸ ︷︷ ︸

u

(3.51)

with E as the external forcing matrix and u as the system input.
As already mentioned before and can be seen in Fdis, the friction torques act on the
body as well as on the wheels but with the opposite sign. Kim and Kwon [56] pointed
out, that this principle of action and reaction between the body and the wheels has been
disregarded in many other publications, which resulted in bad model accuracy and false
statements about the motion properties.
The no side-slip constraints (3.45) and pure rolling constraints (3.44) can now be as
written as a matrix-vector product

− sin(θ) cos(θ) 0 0 0 0 0 0
cos(θ) sin(θ) dW 0 −rW 0 0 0
cos(θ) sin(θ) −dW 0 0 −rW 0 0


︸ ︷︷ ︸

A(qc)

q̇c = 0 (3.52)

based on the choice of the configuration vector qc and its time derivative q̇c.
As the system dynamics is subject to nonholonomic constraints, a mapping is applied to
the model from generalized coordinates into minimal coordinates without nonholonomic
constraints. For this purpose, let us define two new variables:

vθ = rW
2dW

(
ϕ̇R − ϕ̇L

)
∈ R (3.53)
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for the heading (or orientation) angle velocity around the Iz axis. This equation is a
result of the subtraction of (3.44a) from (3.44a). Furthermore, let us define

vd = rW
2
(
ϕ̇R + ϕ̇L

)
∈ R (3.54)

for the forward velocity vd along the Ax axis. vd is shown in Figure 3.3 and is derived
by taking the average forward speed between the two wheels, calculated with (3.44a)
and (3.44a). Furthermore, to ease the notation and for insight let us define additional
variables:

• vα := α̇ ∈ R for the tilt (or pitch) angle velocity

• iR := q̇R ∈ R and iL := q̇L ∈ R for the right and left currents, flowing through the
respective electric motors.

To define the equations of motion of the system in minimal coordinates without non-
holonomic constraints in (3.2a) the method presented by Pathak et al. [84] is used. Let
us choose the matrix

S(qc) =



0 cos(θ) 0 0 0
0 sin(θ) 0 0 0
0 0 1 0 0
1 0 0 0 0
0 1

rW
dW
rW

0 0
0 1

rW
−dW

rW
0 0

0 0 0 1 0
0 0 0 0 1



(3.55)

such that it lies in the null space of the matrix A(qc) and thus A(qc)S(qc) = 0 holds.
Moreover, (3.55) is a mapping from generalized coordinates into minimal coordinates
and based on our choice of S(q) is given with

νc :=
(
vα, vd, vθ, iR, iL

)T
(3.56)

the velocity vector with the permissible motions. Notice, the choice of S(q) is not unique
and thus there is an infinite number of possible ν. In Subsection 3.1.10 alternative
combinations of S and ν are introduced which also fulfill the condition A(qc)S(qc) = 0.
Finally, let us neglect the kinematics for the states of angles of the wheels (ϕL, ϕR) as well
as the motor terminal charges (qL, qR) in S, since they are commonly not from interest,
at least for control purposes. Thus, let us set up the reduced matrix Sr by removing the
last four rows in S. Using the introduced steps from (3.1) to (3.6) with (3.48) to (3.55),
we get the system dynamics on the reduced space in terms of the new states

xc := (qT
r,c, νT

c )T = ((xB, yB, θ, α), (vα, vd, vθ, iR, iL))T (3.57)

as

ẋc :=


Srνc

−
(
STMS

)−1
ST

MṠνc + K + P −Fdis − Eu︸︷︷︸
Fext


 . (3.58)
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Since

−
(
STMS

)−1
ST (−E) = 1

LM

03x2

I2x2

 (3.59)

is constant, the system dynamics can be split into a state-dependent, nonlinear drift
vector field f(x) and a constant input matrix G:

ẋc =

 Srνc

−
(
STMS

)−1
ST
(
MṠνc + K + P −Fdis

)


︸ ︷︷ ︸
fc(xc)

+ 1
LM


04x2

03x2

I2x2

u

︸ ︷︷ ︸
Gcu

. (3.60)

This model will be called c-model in the following.

3.1.7 Model without Current Dynamics

As could be seen in the previous section, the current dynamics of the motors are treated
by two states and differential equations in the state space model, if they are considered in
the model of the TWIP. Since the current dynamics are quite fast compared to the other
dynamics of the TWIP, as shown later based on the linearized model in Section 3.3, a
common approach is to neglect the current dynamics in the model. Thus, a simplified
derivation of the TWIP model without current dynamics is introduced in the following.
Let us start with the definition of the configuration space, the configuration variables
and the Lagrangian of the TWIP model without the charge variables. Therefore, the
configuration space Qn := R2 × S× S× S× S for the system is defined with

qn = (xB, yB, θ, α, ϕR, ϕL)T ∈ Qn (3.61)

as the configuration variables vector. The time derivative of the configuration vector is
then given as

q̇n =
(
ẋB, ẏB, θ̇, α̇, ϕ̇R, ϕ̇L

)T
(3.62)

and does not include the currents as the derivative of the charges anymore.
Moreover, let us drop the term TM for the kinetic electric energy of the motor to get the
total kinetic energy

T (qn, q̇n) = TB + TW + TG + TCorr (3.63)

as well as total potential energy

V (qn) = gmB (rW + lB cos(α)) , (3.64)

where the electric potential energy term VM of the motor is also not included.
One problem arises now: we lose the input (uR,uL) in the Euler-Lagrange equations as
well as the torques applied by the motors to the robot. Thus, we have to derive the static
current and torque equations and include them as external forces to the Euler-Lagrange
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equations. The straightforward approach is, to apply Kirchhoff’s second law for the
mesh ΣM in the electric circuit of the motors, shown in Figure 3.2. Then, in the next
step d

dt iM is set to zero and the static motor current equation is gained. Since the motor
torque is proportional to the motor current iM with the motor torque constant kM, a
equation from voltage input to motor torque can be formulated which can be included
in the Euler-Lagrange equations as an external force.
Contrary, a different approach is chosen directly based on the Lagrangian of the motor
current and in the same breath it can be shown, that the definition of the electric
kinetic and potential energy in (3.35) and (3.36) as well as the friction forces (3.38) and
external forces (3.39) have been correct. As the equations are similar for both motors, let
us use uM , iM , ωM , τM , ωδ, τδ and drop the specific incidences R and L in the following
derivations.
The Lagrangian of one motor circuit based on (3.35) and (3.36), is given by

LI = 1
2LMq̇2

M︸ ︷︷ ︸
T

− kEnWMωδqM︸ ︷︷ ︸
V

. (3.65)

Let us calculate the Euler-Lagrange equations and include the right-hand side with the
friction forces and external forces based on (3.38) and (3.39) for one motor:

d
dt

(
∂LI

∂q̇M

)
− ∂LI

∂qM
= d

dt
(LMq̇M ) + kEnWMωδ = −RMq̇M + uM . (3.66)

In the next step, (3.66) is rearranged and q̇M replaced with iM . Therefore, the differential
equation

d
dt

iM = −RM
LM

iM −
kEnWMωδ

LM
+ 1

LM
uM (3.67)

is derived for the motor current dependent on ωδ, iM and uM . This differential equation
is equal to the one we would get if we apply Kirchhoff’s second law for the mesh ΣM in
the electric circuit of the motors, shown in Figure 3.2. In the next step, to neglect the
current dynamics, we set d

dt iM = 0 and get the static motor current equation

iM = −kEnWM
RM

ωδ + 1
RM

uM (3.68)

which describes the steady state current of the motor in dependence of the relative
angular velocity between the body and the wheel as well as the terminal voltage. To
include the torques applied by the motors to the body and the wheels, the motor torques
as a function of uM and ωδ are derived in the next steps. The motor torque τM is the
product of the motor torque constant kM and the motor current iM . Let us include the
gear stage ratio nWM to get the torque τδ between the body and the wheel and replace
iM with (3.68), to derive the motor torque formula

τδ = nWMτM = nWMkMiM

= −kEkMn2
WM

RM
ωδ︸ ︷︷ ︸

dissipative

+nWMkM
RM

uM︸ ︷︷ ︸
external

(3.69)

Inspecting the gained motor torque equation, two terms can be recognized: one term
which is dissipative and depends on ωδ as well as an externally forced term by the
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terminal voltage uM of the motor. In the following, uM is replaced by uR and uL as well
as ωδ with ωδR and ωδL to gain torque equations for the right and the left motor.
Similar to the model with current dynamics, the dissipative forces are again friction
forces between the robot body and the wheels as well as ohmic losses in the motor
circuit. Let us sum up the torque terms from (3.69) and the nonlinear friction torque
introduced in (3.37) to get the dissipative torques τDR and τDL on each side of the robot.
Finally, the dissipative torques are used to get the total dissipative force

Fdis(qn, q̇n) =


03×2

11×2

−I2×2


τF R

τF L

+ kEkMn2
WM

RM

ωδR

ωδL


︸ ︷︷ ︸τDR

τDL


. (3.70)

along the qn-coordinates applied to the system. The total external force required for the
Euler-Lagrange equations is given by

Fext (uR, uL) = −nWMkM
RM


03×2

11×2

−I2×2


︸ ︷︷ ︸

E

uR

uL


︸ ︷︷ ︸

u

(3.71)

if the second term in (3.69) is applied along the qn-coordinates for each motor. Herein
E is the external forcing matrix and u the system input. By inspecting the dissipative
force in (3.70) and the external force in (3.71), it can be recognized that the dissipative
terms can be compensated by the external forces through the input u. This offers the
possibility of a full friction compensation as used in Delgado [23] if the current dynamics
of the TWIP are neglected. In Section 5.2 a friction compensation which compensates the
nonlinear elements of (3.37) is introduced to increase the domain with a high congruence
between the linear model and the nonlinear model.
Finally, the no side-slip constraints (3.45) and pure rolling constraints (3.44) can be
formulated with

− sin(θ) cos(θ) 0 0 0 0
cos(θ) sin(θ) dW 0 −rW 0
cos(θ) sin(θ) −dW 0 0 −rW


︸ ︷︷ ︸

A(qn)

q̇n = 0 (3.72)

similar as it has been done modeling the TWIP with current dynamics.
The mapping (3.3) from generalized coordinates in minimal coordinates is then defined
as

νn :=
(
vα, vd, vθ

)T
. (3.73)
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and the matrix

S(qn) =



0 cos(θ) 0
0 sin(θ) 0
0 0 1
1 0 0
0 1

rW
dW
rW

0 1
rW

−dW
rW


(3.74)

is chosen again, such that it lies in the null space of the matrix A(qn). For the model
without current dynamics, the reduced matrix Sr is gained by removing the last two
rows in S for the absolute wheel angles.
Using the introduced steps from (3.1) to (3.6) with (3.63) to (3.64) and (3.70) to (3.74),
the system dynamics on the reduced space in terms of the new state vector

xn := (qT
r,n, νT

n )T = ((xB, yB, θ, α), (vα, vd, vθ))T (3.75)

are derived as

ẋn :=

 Sνn

−
(
STMS

)−1
ST
(
MṠνn + K + P −Fdis − Eu

)
 . (3.76)

Moreover, the system dynamics can be split into a drift and an input term. Contrary to
term (3.59) of the model with current dynamics, now the term(

STMS
)−1

STE = gn(xn) (3.77)

is not constant since it depends on the tilt angle α. Finally, the control-affine, nonlinear
state space model is given as

ẋn =

 Srνn

−
(
STMS

)−1
ST
(
MṠνn + K + P −Fdis

)


︸ ︷︷ ︸
fn(xn)

(3.78)

+
(
STMS

)−1
STE︸ ︷︷ ︸

gn(xn)

u .

but in this case a state-depended, nonlinear drift vector field fn(xn) as well as a state
depended, nonlinear input field gn(xn) is received. This model is called n-model in the
following.

3.1.8 Model on Ground without Current Dynamics

Besides the mode, where the TWIP is balancing, it is also possible to operate the robot
in a lying state on ground. In this case, the robot dynamics are stable and further
simplified, since the state for α and α̇ are not required. Let us derive the TWIP model
on ground without current dynamics, in the following.
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Let us start with the definition of the configuration space, the configuration variables,
and the Lagrangian of the TWIP model without the tilt and charge variables. Therefore,
the configuration space is defined by Qg := R2 × S× S× S for the system with

qg = (xB, yB, θ, ϕR, ϕL)T ∈ Qg (3.79)

as the configuration variables vector. The time derivative of the configuration vector is
then given as

q̇g =
(
ẋB, ẏB, θ̇, ϕ̇R, ϕ̇L

)T
. (3.80)

Let us use the kinetic and potential energy terms as defined in Eqs. (3.26), (3.27)
and (3.31), but we set α = π

2 and α̇ = 0 in all terms and get

T (qg, q̇g) = TB + TW + TG (3.81)

as well as total potential energy

V (qg) = gmBrW = const. . (3.82)

The dissipative forces are set up in the same fashion as in (3.70) for the model without
current, but without the entries for α̇, since we assume the robot to drive on ground
with α = π

2 . They are given with

Fdis(qg, q̇g) =

 03×2

−I2×2

τF R

τF L

+ kEkMn2
WM

RM

ωδR

ωδL

 . (3.83)

along the qg-coordinates. Analogously to the dissipative force, the external force is given
by

Fext (uR, uL) = −nWMkM
RM

 03×2

−I2×2


︸ ︷︷ ︸

E

uR

uL


︸ ︷︷ ︸

u

. (3.84)

Finally, the no side-slip constraints (3.45) and pure rolling constraints (3.44) can be
formulated with

− sin(θ) cos(θ) 0 0 0
cos(θ) sin(θ) dW −rW 0
cos(θ) sin(θ) −dW 0 −rW


︸ ︷︷ ︸

A(qg)

q̇g = 0 (3.85)

similar to what has been done for the balancing TWIP models.
The mapping (3.3) from generalized coordinates in minimal coordinates is defined with

νg :=
(
vd, vθ

)T
. (3.86)
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and the matrix

S(qg) =



cos(θ) 0
sin(θ) 0

0 1
1

rW
dW
rW

1
rW

−dW
rW


(3.87)

is chosen, such that it lies in the null space of the matrix A(qg) and the reduced matrix
Sr is gained by removing the last two rows in S for the absolute wheel angles.
Using the introduced steps from (3.1) to (3.6) with (3.81) to (3.82) and (3.83) to (3.87),
the system dynamics on the reduced space in terms of the new state vector

xg := (qT
r,c, νT

g )T = ((xB, yB, θ), (vd, vθ))T (3.88)
are defined as

ẋg :=


Srνg

−
(
STMS

)−1
ST

MṠνg + K + P −Fdis − Eu︸︷︷︸
Fext


 . (3.89)

Since

−
(
STMS

)−1
ST (−E) = const. (3.90)

is constant, the system dynamics can be split into state-dependent, nonlinear drift vector
field f(x) and a constant input matrix G:

ẋg =

 Srνg

−
(
STMS

)−1
ST
(
MṠνc + K + P −Fdis

)


︸ ︷︷ ︸
fc(xg)

+

 03x2(
STMS

)−1
STE

u

︸ ︷︷ ︸
Ggu

.

(3.91)
This model is called g-model in the following.

3.1.9 State and Input Limitations

The models of the TWIP presented in Subsections 3.1.6 to 3.1.8 cover the nonlinear
dynamics, but physical state and input limits have not been incorporated into the model
yet. This gap will be closed in this section.
Firstly, the tilt angle α is limited by the floor to ±90◦. Furthermore, the motor currents
iR, iL saturate at ±3 A due to the overload protection of the H-bridges. Finally, the
input voltages uL, uR are limited by the battery used. Let us consider, that a voltage
of at least 7.4 V is always available and thus the inputs saturate at ±7.4 V.
These limits are part of the nonlinear model and part of the physics of the TWIP.
Consequently, these limits are also included in the simulation environment introduced in
Section 2.6. In addition, if the limits are reached, they have a drastic effect on the system
dynamics and thus they have to be considered during control design. Moreover, they
also have to be considered during stability analysis in Section 5.5, to avoid trajectories
in the estimated DoA that will violate these constraints.



3.1. Nonlinear Time-Invariant Model 47

3.1.10 Alternative System Representations

The models of the TWIP presented in Subsections 3.1.6 to 3.1.8, use the probably most
intuitive choice of state variables for the nonlinear state space model. Since there is an
infinite number of possibilities of choices of the state variables in the state vector, one
more state representation for the TWIP is presented, which might ease the control and
observer synthesis by unfolding the structural details of the model. For relative motion
between the body and the wheels, the variables ωδR and ωδL are defined in (3.29) and
(3.30). Let us use the equations for vd and vθ, given in (3.53) and (3.54) as well as (3.29)
and (3.30) and propose the state transformation

xω,c =



I4×4 04×1 04×1 04×1 04×2

01×4 1 0 0 01×2

01×4 −1 1
rW

dW
rW

01×2

01×4 −1 1
rW

−dW
rW

01×2

02×4 02×1 02×1 02×1 I2×2


︸ ︷︷ ︸

Tω,c

xc (3.92)

xω,n =


I4×4 04×1 04×1 04×1

01×4 1 0 0
01×4 −1 1

rW
dW
rW

01×4 −1 1
rW

−dW
rW


︸ ︷︷ ︸

Tω,n

xn (3.93)

xω,g =


I3×3 03×1 03×1

01×3
1

rW
dW
rW

01×3
1

rW
−dW

rW


︸ ︷︷ ︸

Tω,g

xg (3.94)

to replace the forward velocity as well as the heading rate by ωδR and ωδL. By applying
the transformation (3.92) to the state space model (3.60), a new state space model with
the state vector

xω,c := ((xB, yB, θ, α), (vα, ωδR, ωδL, iR, iL))T , (3.95)

is derived which is called the ω-c-model. The n-model as well as the g-model can be
transformed analogously and the matrices Tω,n and Tω,g. Delgado et al. [22] also uses
ωδR and ωδL during modeling but applies a transformation into forward and heading
velocities at the end of his derivation. Furthermore, Ha and Yuta [40] uses the relative
angle between the body and the wheels during modeling but then they simplify and
linearize their model and dismiss the former structure. During observer synthesis, the
presented transformation might ease the process, as the encoders directly measure the
differential motion of the wheels in respect to the body and if identical properties of the
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wheels are assumed, the number of design parameters can be reduced. This property
will be used in Section 6.3. In addition, the ω-representations may ease the design of
nonlinear control laws. The transformation reveals the symmetries of the right and the
left wheel and the system inputs. Moreover, the linearized ω-c-model, has an integration
chain uR → iR → ωδR which is (almost) decoupled from the chain uL → iL → ωδL and
both chains show symmetries. The existing weak coupling between the two integrator
chains might be neglected and treated as a disturbance. Based on this, new opportunities
may arise in the application of partial feedback linearization or backstepping. The
exploration of the revealed structure in the ω-representations and how one could benefit
from this representation opens up new opportunities for further research.
Another model can be gained by a simplification of the presented models. The control
design is usually challenging, due to the nonholonomic constraints and the nonlinear
differential equations

ẋB = vd cos(θ) (3.96)
ẏB = vd sin(θ) (3.97)

for the position of the robot. By removing these equations in the state space model and
introducing a new state d =

∫ t
0 vd dτ ∈ R for the distance driven along the Ax axis, a

simplified model is obtained. Based on the c-model the new state vector is defined as

xd,c := ((d, θ, α), (vα, vd, vθ, iR, iL))T . (3.98)

This model will be labeled as d-c-model in the following. The n-model as well as the
g-model can be modified in the same way and are called d-n model and d-g-model
respectively.
Contrary to the ω-models the d-models are gained by a simplification and not by similar-
ity transformation of the state space model. Thus, the d-models have one state less and
ease the control task, since the x−y plane position information has been removed. This
approach is used by e.g. Kim and Kwon [56] and Kim and Kwon [55]. In the case of the
application of linear control, a linearized model of the robot is required. If the model
(3.60) or (3.78) is linearized, the first two differential equations are linear dependent
from each other and the model loses validity if the heading angle changes. Thus, the
first two states xB and yB are replaced after linearization by d commonly. Let’s use the
d-models in the following for linearization to avoid the manual replacement of the first
two states afterwards.

3.1.11 Kinetic Energy and Energy Dissipation

The state space model of the TWIP has been derived using the Lagrange framework.
Therefore, kinetic and potential energy terms, which define the energy-storages of the
system, have been formulated in Subsection 3.1.1. In addition, external forces for dissi-
pation and system input have been considered in Subsection 3.1.4. Let us utilize these
terms to get a physical insight into the interconnection of the different energy-storages
and the dissipation terms in the following, by the use of the trajectory ‘8-Knot and Snail’
introduced in Section 4.3 and shown in Figures 4.1, 4.2, 4.4 and 4.5.
Firstly, let us focus on the input power applied through the motor terminals to the
TWIP and the power dissipation. The input power is defined by

Pin = uRiR + uLiL (3.99)



3.1. Nonlinear Time-Invariant Model 49

and the power dissipated by the mechanical friction

Pdiss,fric = τF R(ωδR)ωδR + τF L(ωδL)ωδL (3.100)

based on (3.37) as well as the power dissipated by the motor armature resistance

Pdiss,res = RM(i2
R + i2

L) (3.101)

according to(3.38).
In addition, the difference between the input power and the dissipated power, which is
‘converted’ and then stored or emitted in kinetic and/or potential energy, is calculated
by

Pconv = Pin − Pdiss,fric − Pdiss,res . (3.102)

The power values over time is shown in Figure 3.4 for the chosen trajectory. It can be
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Figure 3.4: Power flows inside the TWIP

observed in the plot, that the energy exchange over time (which is the work or power
Pconv ) between the system input and the kinetic as well as potential energy storages is
quite small compared to the energy dissipated by the mechanical friction and the motor
armature resistance. In particular, the vast amount of the input power is dissipated by
the mechanical friction of the system. Sloppily speaking, our TWIP is nothing else than
a large, nonlinear mechanical damper, which should be balanced. More seriously it can
be concluded, that increased attention has to be paid during modeling and parameter
identification of the mechanical friction since these terms are dominating based on the
power point of view. Surprisingly, the majority of publications (e.g. Pathak et al.
[84], Kim and Kwon [56]) neglect friction completely in their model or assume simple
viscous friction and concentrate on perfectly accurate modeling of the mechanical kinetic
system instead. Other authors like Delgado [23] propose a full friction compensation and
assume that perfect compensation takes place. As a consequence, all friction terms where
removed from the model used for control synthesis. This is a good approach as long as
an accurate friction model and/or a controller, robust enough to handle uncertainties, is
available. This discussion is based on an exemplary trajectory with the parameters of our
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TWIP. In consequence, if the TWIP is just balanced or a TWIP with a total different
friction parameter is used, the results might not be directly transferable. To conclude,
the author likes to emphasize that the identification and modeling of the mechanical
friction is one of the important keys to gain a model with a high degree of congruence
with the real system, which is the fundament of a successful controller synthesis.
In addition to Figure 3.4, the time derivatives of the terms of the energy storages (ki-
netic and potential energy) given in Subsection 3.1.3 are calculated based on the same
trajectory used in the paragraph above. Only for the derivative of the electrical potential
term a slightly modified power term

V̇M,el = kEnWM (ωδRq̇R + ωδLq̇L) (3.103)

is defined and used for better interpretation. As a result V̇M,el is the electrical power
converted from the motor into mechanical work. In Table 3.1 the root mean square
(RMS)-values and the maximum values of the time derivatives of the different energy
terms in the Lagrange equation are sorted by their RMS-values.

Table 3.1: RMS and maximum power values of the time derivates of the different energy
terms in the Lagrange equation, evaluated on a trajectory

Term Equation Component Type RMS max
in W in W

Pin (3.99) Input – 1.764 2.991
V̇M,el (3.103) Motor – 1.525 2.589

Pdiss,fric (3.100) Friction – 1.522 2.507
Pdiss,res (3.101) Resistance – 2.427 · 10−1 4.052 · 10−1

ṪW (3.27) Wheels rotational 8.725 · 10−2 2.932 · 10−1

ṪG (3.31) Motor rotational 6.578 · 10−2 2.172 · 10−1

ṪB (3.26) Body translational 1.186 · 10−2 3.952 · 10−2

ṪG (3.31) Gears rotational 8.949 · 10−3 2.945 · 10−2

ṪW (3.27) Wheels translational 2.679 · 10−3 8.996 · 10−3

ṪB (3.26) Body rotational 5.699 · 10−4 1.985 · 10−3

V̇B (3.34) Body – 1.829 · 10−4 8.080 · 10−4

ṪM (3.35) Inductance – 4.589 · 10−5 5.445 · 10−4

First of all, the RMS of Pin as well as the maximum is far below the rating of 6 W of each
motor. Thus, based on the power rating of the motors and the trajectory analyzed, there
are enough reserves left for the feedback controller. In addition, it can be recognized,
that the power RMS of the mechanical dissipation dominates all other terms, besides
the total input power.
Secondly, it can be observed that the power RMS value connected to the energy stor-
age of the motor inductance TM is the smallest. This is a strong indication that the
neglection of the current dynamics is a valid approach to reduce the system order and
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complexity. Let us draw a quick connection to port-Hamiltonian systems and model
order reduction. The Lagrangian of a dynamical system can be transformed with the
Legendre transformation into a Hamiltonian system and thus can also be brought into
port-Hamiltonian representation. Polyuga and van der Schaft [90] presented a model
order reduction method for port-Hamiltionian systems, which takes the power flow be-
tween different energy storages into account. In particular, Polyuga and van der Schaft
[90] describe this procedure as “replacing the interconnections to the energy storage,
which carry little power, by zero-power constraints”. In the same spirit, the neglection
of the current dynamics in Subsection 3.1.7 may be justified due to the small power
values linked to the magnetic field of the motor inductance corresponding to Table 3.1.
Contrary to the current dynamics, it is not admissible to simplify the model of the
balancing TWIP by removing the rotational components of ṪB as well as V̇B. Both power
components linked to the body motion are also relatively small but the connected energy
terms include the instabilities of the TWIP and thus cannot be removed. Nevertheless,
if this is done one will end up with the model of the TWIP on ground as introduced in
Subsection 3.1.8.

3.2 Onboard Sensors Model

As introduced in Section 2.3, the TWIP has four onboard sensors: the accelerometer,
the gyroscope, and two optical encoders. In the following subsection, the modeling of
these is presented.
There is always a trade-off between neglecting the effects and dynamics of the sensors
completely or the attempt to capture almost all properties and dynamics. A precise
model strongly depends on the information given in the sensor’s datasheet or requires
additional experiments to identify the properties and parameters. Since the accelerome-
ter and gyroscope are manufactured for low-end customer products, unfortunately only
limited information is available for modeling. Thus, the focus is laid on the most im-
portant inaccuracies and dynamics and uses rough estimates for the uncertainties of the
sensor parameters. For the encoder, also a simple model is proposed.
For control design, it has been decided to neglect the sensor model and thus assume a
perfect state estimate. Also, the state estimation design is based on the TWIP model
without the sensor model but for the tuning procedure of the observer, presented in
Chapter 6, the simulation environment for the TWIP which includes the sensor models
is used. Furthermore, for all simulation studies presented, the model of the TWIP as
well as the sensor models are included.

3.2.1 Accelerometer

The 3-axis accelerometer is soldered on the main PCB as shown in Figure 2.2 and
measures the body acceleration as well as gravity. In the following, an acceleration
sensor model is derived, as illustrated in Figure 3.5.
As shown in Figure 3.6, the accelerometer coordinate system S is rotated around the By
axis by −90◦. This fixed rotation
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Figure 3.5: Structure of accelerometer model
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Figure 3.6: Coordinate systems and geometric parameters of the accelerometer and
gyroscope

BRS =


0 0 −1
0 1 0
1 0 0

 (3.104)

is used, to align the sensor’s coordinate system modeled along with the coordinate system
given in its datasheet. As a result, measurements read from the sensor’s output registers
directly match with the axes for S defined in Figure 3.6. The acceleration ‘felt’ by the
sensors, is the sum of the acceleration of the body and through gravity. Based on the
measurement principle of the accelerometer, gravity is measured with the opposite sign.
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As a result, the acceleration

IaA = d2

dt


xB

yB

rW

+


0
0
g

 = d
dt


vd cos(θ)
vd sin(θ)

0

+


0
0
g

 =


v̇d cos(θ)− vd sin(θ)θ̇
v̇d sin(θ) + vd cos(θ)θ̇

g


(3.105)

would be measured if the sensor is placed in the origin AO of the body and the axis
of S is aligned with A. Due to design limitations, the sensor chip is not placed in the
origin of A but has a fixed position in B with the distance lS along the Bz axis. Thus
a rotation around α to IaA has to be applied and due to this, additional acceleration
terms arise which have to be considered. In the last step, the sum of all accelerations
have to be rotated to the sensor’s coordinate system and we get

SaSx

SaSy

SaSz


︸ ︷︷ ︸

SaS

=BRT
S

IRT
BIaA + I

Bω̇B ×


0
0
lS

+ I
BωB ×

I
BωB ×


0
0
lS





=


−lS(v2

θ sin(α)2 + v2
α) + v̇d sin(α) + g cos(α)

lS(v̇θ sin(α) + 2vαvθ cos(α)) + vθvd

lS(v2
θ sin(α) cos(α)− v̇α)− v̇d cos(α) + g sin(α)

 , (3.106)

which is the acceleration acting on the assigned axes of S. Our result (3.106) is hereby
a function of the state x and it’s derivative ẋ and is thus connected to the TWIP model,
as shown in Figure 2.9.
In the ideal case, the calculated accelerations are the ones received from the sensor’s
measurement output. As always with real devices, this is not the case and measurement
errors, noise, and additional effects, which degenerate the measurements, have to be
considered. Thus, for the measured acceleration the equation

Sa#
S = cS




1 + ϵx mxy mxz

myx 1 + ϵy myz

mzx mzy 1 + ϵz


︸ ︷︷ ︸

MS

SaS +


vSx

vSy

vSz


︸ ︷︷ ︸

vS


(3.107)

is proposed, where cS is the conversion factor from m/s2 to LSB. The measurements
matrix MS is used to model the effects of scale error, sensor misalignment, and cross-axis
sensitivity and vS for noise. Inside MS , the terms ϵi take the scale error into account
while the mij values represent the misalignment and cross-axis sensitivity. A possible
measurement bias is neglected, as experiments have shown that they are negligible in
our case.
Unfortunately, the precise values of MS are unknown and any characteristics as well as
values of vS either. Moreover, some of these values might even change during operation
(e.g. with temperature). Nevertheless, let us try to approximate the effects described as
follows:
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• A maximum nonlinearity of ±0.5 % (percentage of full scale) is specified in the
product datasheet. Thus, let us choose a random value for each ϵi in this bound
for every simulation run.

• The cross-axis sensitivity is specified to be less than ±0.5 % and the inter-axis
alignment error less than ±0.1◦. But since the chip is soldered on the main PCB
and the PCB itself cannot be precisely mounted in the body, this misalignment is
supposed to overlay all the chip imprecisions. Thus let us assume a small rotation
of the matrix diag(1 + ϵx, 1 + ϵy, 1 + ϵz) along all three axes of S. The value of
each of the three rotation angles is chosen as a random value in the range of ±1◦

in each simulation. As a result, we get the off-diagonal values mij in MS .

• For the term vS let us consider an additive zero-mean white Gaussian noise, where
the power spectrum is adjusted manually such that the measurement output yS [k]
of the accelerometer model shows qualitatively the same noise amplitude.

In the last modeling step, let us focus on the data processing inside the sensor. Firstly, the
analog measurement data is sampled and converted into digital values. Unfortunately,
the native sampling frequency of the implemented filter is not given in the datasheet.
To gain a high resolution, the accelerometer is configured to use the full resolution of
3.9 mg/LSB. Thus, the conversion factor is defined by cS = 1

(3.9·10−3·9.81) . Finally, the
measurement data is processed by a digital lowpass filter inside the accelerometer as
shown in Figure 3.5 with a configured bandwidth (−3 dB) of 400 Hz. To account for
this, a first-order FIR filter with the same bandwidth in the ‘Direct form II Transposed’
(see Smith III [100]) is implemented in the sensor model and a sampling frequency of
2 kHz is assumed.
As a result, a sampled measurement output of the accelerometer yS [k] is received, which
is somewhat closer to the real system than just ignoring the sensor effects and dynamics.

3.2.2 Gyroscope

Beside the accelerometer, a 3-axis gyroscope is soldered on the main PCB as shown in
Figure 2.2 and Figure 3.6. Analogously to the accelerometer, a model for the gyroscope
is presented in the following with the structure shown in Figure 3.7.

Gyroscope
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Measurement
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& Hold

Quantization
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x(t)

ẋ(t)
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I
GωG(t)

vGyr(t)

I
Gω#

G (t)

yG[k]

Figure 3.7: Structure of gyroscope model
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The coordinate system G for the gyroscope is rotated around the By axis by −90◦, as
shown in Figure 3.6. By introducing the rotation matrix

BRG =


0 0 −1
0 1 0
1 0 0

 (3.108)

from the coordinate system G to B, the total rotation from G to I

IRG = IRB
BRG =


sin(α) cos(θ) − sin(θ) − cos(α) cos(θ)
sin(α) sin(θ) cos(θ) − cos(α) sin(θ)

cos(α) 0 sin(α)

 (3.109)

can be derived. The gyroscope thus undergoes the relative rotational motion

I
Gω̃G = IRT

G

d
dt

(
IRG

)
(3.110)

I
GωG =


θ̇ cos(α)

α̇

θ̇ sin(α)

 (3.111)

in respect to the inertial system, which is measured solely in the ideal case.
Unfortunately, based on the gyroscope measurement principle, the sensor is sensitive to
linear acceleration. Thus, let us derive the acceleration of the gyroscope analogously to
the acceleration equations of the accelerometer in the next steps. The acceleration the
gyroscope would be exposed to, if it is located at AO, is given with

IaA = d2

dt


xB

yB

rW

−


0
0
g

 = d
dt


vd cos(θ)
vd sin(θ)

0

−


0
0
g

 =


v̇d cos(θ)− vd sin(θ)θ̇
v̇d sin(θ) + vd cos(θ)θ̇

−g

 ,

(3.112)

where the gravity has to be treated with the negative sign, contrary to the accelerome-
ter. The origin G of the gyroscope coordinate system is located with a distance of lGz

along the Bz axis and lGy along the By from the origin of B. Including the additional
acceleration terms, arising from the rotation and translation of G in respect to B the
acceleration acting on the gyroscope axis is given by

GaGx

GaGy

GaGz


︸ ︷︷ ︸

GaG

=BRT
G

IRT
BIaA + I

Bω̇B ×


0

lGy

lGz

+ I
BωB ×

I
BωB ×


0

lGy

lGz





=


−lGyv̇θ sin(α)− lGz(v2

θ sin(α)2 + v2
α) + v̇d sin(α)− g cos(α)

−lGyv2
θ + lGz(v̇θ sin(α) + 2vαvθ cos(α)) + vθvd

lGyv̇θ cos(α) + lGz(v2
θ sin(α) cos(α)− v̇α)− v̇d cos(α)− g sin(α)

 .

(3.113)
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Based on (3.110) and (3.113) the measurement equation

I
Gω#

G = cG


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
vGx

vGy

vGz


︸ ︷︷ ︸

vG


(3.114)

is proposed for the gyroscope, where cG is the conversion factor to from rad/s to LSB.
Similar to the accelerometer measurement equation, the scale error and axis misalign-
ment are accumulated in the measurement matrix MG. Rate measurements due to linear
acceleration are incorporated through KG and noise is included by vG. Let us choose
the parameters as follows:

• The maximum nonlinearity is specified with ±0.2 % (percentage of full scale) in
the gyroscope data sheet and thus we calculate a random value for each ϵi in this
bound for each simulation run.

• The cross-axis sensitivity is specified to be less than ±2 %, the inter-axis alignment
error is not specified. Since the chip is soldered on the main PCB and the PCB
itself cannot be precisely mounted in the body, this misalignment is supposed
to overlay all the chip imprecisions, similar to the accelerometer. Thus, MS is
calculated analogously to the accelerometer with the same range of ±1◦ for the
random rotations.

• The entries of KG are unknown and thus random values for each kij are generated
for each simulation run. Based on the product specification, the values are chosen
in a range of ±0.1 (◦/s)/g.

• For the term vG we considered additive zero-mean white Gaussian noise, where
the power spectrum is adjusted manually such that the measurement output yG[k]
show qualitative the same noise amplitude.

The measurement data processing in the gyroscope is similar to the accelerometer. In
the firmware of the MCU a resolution of 16.4 LSB/(◦/s) is configured for quantization
and thus cG = 16.4180

π . Furthermore, the sampling and FIR filter frequency is configured
to 2 kHz. According to the selected bandwidth in the firmware, the model filter has been
designed with a bandwidth of 256 Hz.
Finally, a sampled measurement output of the gyroscope yG[k] is derived, which includes
the most important effects and dynamics.

3.2.3 Encoder

The TWIP contains two encoders units. Each unit consists of a reflective codewheel
glued on each wheel with 900 CPR and an optical encoder mounted on the opposite side
on the body, as shown in Figure 2.3 for one side. Thus, the encoders measure the angles
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between the body and the wheels

ϕδ =

ϕR − α

ϕL − α

 =
∫ t

0
ωδdτ , (3.115)

which is the integrated relative motion ωδ. Based on its definition in (3.29),(3.30) the
term can be calculated by

ωδ =

ωδR

ωδL

 =

ϕ̇R − vα

ϕ̇L − vα

 =

 1
rW

vd + dW
rW

vθ − vα

1
rW

vd − dW
rW

vθ − vα

 , (3.116)

which is a function of the robot’s state x. The model structure of the encoders is
shown in Figure 3.8. Based on the measurement principle of counting reflective lines
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Figure 3.8: Structure of encoder model

passing by the optical encoder chip, the measured values are already discrete. This is
emphasized by the ‘Quantization’ block in the structure. The ‘Sample & Hold’ stands
for the cyclic reading of the MCU register, with the current counter value. However, the
implementation in the simulation model is similar to the gyroscope and accelerometer
model.
The measurements based on the encoder’s counts degenerated by errors from several
sources, e.g. from a slight variation of the thickness in the reflective lines of the code-
wheels or a misalignment of the center of the codewheel to the rotation axis. Let us
assume, that these errors are negligible in our application but account in the measure-
ment equation for another error, which indirectly affects the measurements, the devia-
tion of the wheel radius from its nominal value rW. Therefore, the encoder measurement
equation

ϕ#
δ = cE

1 + ϵr 0
0 1 + ϵl


︸ ︷︷ ︸

ME

ϕδ , (3.117)

is introduced where cE is the conversion factor to from rad to LSB and ME accounts
for the measurement errors. Hereby, ϵr and ϵl are randomly chosen in a range of ±1 %
for every simulation run. As the codewheel has 900 CPR and is evaluated by a 4×
quadrature decoding module of the MCU, the conversion factor is defined by cE = 3600

2π .

3.3 Model Linearization and Analysis

So far, the nonlinear models describing the dynamics of the TWIP have been derived.
While the nonlinear state space models offer a high accuracy through the whole state
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space, system analysis, as well as control synthesis, are commonly quite challenging.
On the other side, there are strong tools to analyze LTI models as well as for control
synthesis. ‘There is no free lunch’ and thus all results gained with the LTI models
may rapidly lose validity if the region is left around the model has been linearized.
Having this in mind, LTI models are derived by linearizing the nonlinear models from
Section 3.1, analyzed, and compared to get a close insight into the properties of the
linearized dynamics of the TWIP around the equilibrium. This is of particular interest,
as the linear models are used for control and observer synthesis in the next chapters.

3.3.1 Linearization

All TWIP models introduced have a nonlinear friction torque curve with a high dD =
dτD(ωδ)

dωδ

∣∣
ω∗

δ
damping value around ω∗

δ = 0 as can be seen in Figure 3.9. The torque arises
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m
)

full linear nonlinear approximated

Figure 3.9: Dissipative torques forcing the n-model

from the mechanical friction as well as the motor back-EMF and resistance but the
nonlinearity is due to the Coulomb-friction terms. Coulomb-friction or stick-friction is
modeled with an sgn-function. This results in a torque curve that is not smooth around
zero and causes problems, e.g. during numerical integration. Therefore, this term is
commonly replaced by a steep tanh-function. As a result, if the models are linearized
at the origin, the friction will directly be related to the product dCd0 as a result of the
tanh-function in the mechanical friction equation in (3.37). The choice of d0 has no
physical connection to the real system and is a trade-off: On the one hand, it should be
as high as possible to closely approximate the sgn-function and thus the stick-friction.
On the other hand, too high values of d0 will lead to tiny time steps during numerical
integration. Thus d0 should not be too high, ensuring that the differential equations are
not getting too stiff. Concluding, a linearization without modifying the friction torque
term, will result in linear models which include too high damping terms. As a result,
these models will lose rapidly their validity as ωδ leaves the origin.
This problem has been solved in Anhalt [5] and Albert et al. [2] by evaluating the torque
τD at a nominal operating speed ω∗

δ and calculating a viscous friction coefficient dV
which leads to the same torque value. This is illustrated in Figure 3.9 for a value of
ω∗

δ = 2 rad/s. Afterwards the parameters dC in (3.37) is set to zero. The drawback of
this method is, that around the linearization point the gained damping always differs
from the real damping dD = dτD(ωδ)

dωδ

∣∣
ω∗

δ
.
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In this thesis, a different approach for linearization is pursued: It is assumed that the
nonlinear components of the friction torque can be compensated through the plant in-
put. At least for the models without current dynamics, as could be seen in (3.71) and
(3.70) as well as (3.84) and (3.83) this is possible. Contrary, for the model with cur-
rent dynamics it has to be assumed that the current dynamics play a negligible role
to apply a friction compensation. Therefore, a friction compensation is introduced in
Section 5.2 as presented by Delgado [23]. However, herein only the nonlinear compo-
nents are compensated since this will ease the allocation of the limited control input
between the controller and the friction compensation. Based on the assumption, that
the nonlinear components can be compensated, the linear friction torque curve shown
in Figure 3.9 is derived. This leads to a constant friction viscous coefficient dV for all ωδ

and in consequence, the Coulomb-friction coefficient can be set to dC = 0 in (3.37) for
linearization.
To avoid two linearly dependent differential equations for the positions xB and yB, we
will use the d-models with the forward-driven distance for linearization. Based on the
models with only linear friction curves, we are able to linearize the systems. The resulting
A, B matrices for the c-d-model, n-d-model and g-d-model with the parameters listed in
Table A.1 is given in Appendices A.1 to A.3.
The eigenvalues of the linear systems, different choices of the system output, state trans-
formations and a discussion is provided in the next subsections.

3.3.2 Linear Decoupling

The linear models of the TWIP can be decoupled into two separate dynamic systems:
one system describing the forward motion along Ax-axis and a second system describing
the heading motion around the Az axis. Thus the goal is, to find a state transformation
Tx and input transformation Tu, to get the decoupled structureẋF w

ẋHe

 =

AF w 0
0 AHe


︸ ︷︷ ︸

TxAT −1
x

xF w

xHe

+

bF w 0
0 bHe


︸ ︷︷ ︸

+TxBT −1
u

uF w

uHe

 forward dynamics

heading dynamics

(3.118)

of the system, withxF w

xHe

 = Txx (3.119)

where xF w is the state vector of the forward dynamics subsystem and xHe is the state
vector of the heading dynamics subsystem. With Tu, given in (A.7), the input can be
transformed to

uF w = uR + uL (3.120)

for the forward dynamics system and

uHe = uR − uL (3.121)
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for the heading dynamics. Since the c-d-, n-d- and g-d-models differ in the number of
states, different matrices Tx are needed, and in consequence, different transformed state
vectors xF w are received. The Tx matrices are given in (A.8), (A.9) and (A.10) for the
c-d-, n-d- and g-d-models respectively. Finally, based on Tc-d given in (A.8), the state
vectors

xc-F w =
(
d, α, vd, vα, iR + iL︸ ︷︷ ︸

iF w

)T
xc-He =

(
θ, vθ, iR − iL︸ ︷︷ ︸

iHe

)T
(3.122)

are derived for the feedforward and head dynamics respectively. In the same fashion
with Tn-d given in (A.9) the state vectors

xn-F w =
(
d, α, vd, vα

)T
, xn-He =

(
θ, vθ

)T
(3.123)

are defined for the decoupled n-d-model as well as with Tg-d given in (A.10) the state
vectors

xg-F w =
(
d, vd

)T
, xg-He =

(
θ, vθ

)T
(3.124)

for the decoupled g-d-model. The gained decoupled representations offer several advan-
tages: First of all, we can use each subsystem to design and analyze a separate controller
for it, e.g. designing a standalone LQR for the feedforward as well for the heading system.
Additionally, the dynamic properties like the eigenvalues are directly allocated to the
corresponding subsystem and the motion it represents. Even though Delgado [23] solely
used the nonlinear (non-decoupled) system he used the presented input transformation
to get inputs in “more natural quantities”. Finally in the case of trajectory generation,
the decoupled system representation can be beneficial, too. Diepold et al. [30] used a
quite similar procedure to decouple the linear state space model of a robot balancing on
a ball into three separate systems for trajectory generation. Therefore, the decoupled
models are used for several purposes in the following sections and chapters: First, to
reveal the connection and interpretation of the different eigenvalues of the models to the
different system motions. Secondly, to choose a convenient system output, and finally
to ease the controller and observer synthesis.

3.3.3 System Output

In the previous subsection, the system has been split into two subsystems with a single
input. Now we are facing the question: What are good choices for the (single) output of
each system for stabilization, setpoint and trajectory tracking?
yF w = d for the forward dynamics and yHe = θ for the heading dynamics are probably
the most natural choices. Nevertheless, for models including the tilt angle in the forward
dynamics, there exists also another quite interesting choice

yF w = d + lOα (3.125)

for the output with lO ∈ R. This output could be interpreted as a point aligned with
the robot’s body axis Bz at a distance lO from the origin BO. For example, by an
appropriate choice of lO the output can be shifted to the robot’s top.
For trajectory tracking and feedforward control, a flat output (see Lèvine [70], Fliess
et al. [34]) is advantageous. If an appropriate reference trajectory yref (t) is given for a
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flat output, the feedforward control inputs can be computed easily. Finding a flat output
for a controllable LTI-system (see Zak [119], Dorf and Bishop [33]) is a trivial task. All
forward dynamics systems as well as their companion heading dynamics systems are
controllable. This can be shown through the evaluation of the rank condition

Theorem 3.1. A LTI system is controllable if the controllability matrix QC has full row
rank rank(QC) = n with n as the number of states.

with the controllability matrix

QC = [B, AB, A2B, · · · , An−1B] (3.126)

for each model. In consequence, the models can be transformed into the controllable
canonical form with

z = TCx (3.127)

and

TC =



tT

tTA
...

tTAn−1


with tT =

(
0, · · · , 0, 1

)
Q−1

C . (3.128)

For forward dynamics models of the balancing robot, the flat output is derived by

yF = tTxF w

=
(
t(1), t(2), 0, · · · , 0

)
xF w , (3.129)

where only the elements for d and α are non-zero. Let us scale the flat output by 1
t(1)

with

lO = t(2)
t(1) ≈ 0.0644 (3.130)

to gain the form of (3.125). As a result, the calculated flat output could be interpreted
as the distance traveled of a point, placed 64.4 mm over the wheel axis on the Bz axis.

3.3.4 Eigenvalues, Poles, Zeros and Performance Limitation

Let us take a closer look at the properties of our linear models. In Table 3.2 the eigen-
values of all three proposed model types are listed. Due to the decoupling of the models,
we are able to allocate different eigenvalues to the forward and heading motions. In
general, an assignment of eigenvalues to certain states is not possible, besides the ones
where the corresponding eigenvectors have only one non-zero entry. This is the case for
the eigenvalues 1 and 6, which are the integration of vd to d and vθ to θ respectively.
Nevertheless, since we removed the current dynamics to gain the n-model as well as the
tilt motion in the g-model, we can at least relate the eigenvalues to the different motions
of the TWIP. The eigenvalues 2 and 7 are most likely assigned with vd and vθ. The duo
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Table 3.2: Eigenvalues of the linearized models

Index c-model ← Deviation → n-model ← Deviation → g-model

Forward dynamics

1 0.00 - 0.00 0.00 0.00
2 −31.57 0.77 % −31.33 15.68 % −26.41
3 −7.21 0.01 % −7.21
4 7.53 0.00 % 7.53
5 −3720.62

Heading dynamics

6 0.00 - 0.00 0.00 0.00
7 −30.70 0.77 % −30.48 23.02 % −23.45
8 −3721.14

of the eigenvalue 3 and 4 are connected α and vα and describe the balancing motions.
Finally, we see the fast eigenvalues 5 and 8, which are only present in the c-model. Thus,
we relate them to the motor currents of the TWIP. We recognize, that there is a factor
of ≈ 118 between the eigenvalues related to the currents and the other eigenvalues. This
justifies the neglection of the current dynamics for control and observer design as done
in e.g. Delgado [23]. But if this is done, one has to be aware of the neglected dynamics
and ensure, that placed eigenvalues in the closed-loop do not interfere with them.
Based on the choice of the output with (3.125) for the forward dynamics and yHe = θ for
the heading dynamics as well as the decoupled linear models in (3.118), we are able to
derive a SISO transfer function for each subsystem. As long as we do not calculate the
minimal realization where pole-zero cancellation might happen, all eigenvalues listed in
Table 3.2 are poles of these transfer functions. It can be immediately recognized, that
the transfer functions of the forward dynamics (c- and n-models) have one pole in the
right half-plane (RHP) with p4 = 7.53. Let us assume we use output feedback control
to stabilize the robot and obtain the open-loop transfer function L(s) = G(s)K(s),
with G(s) for the TWIP forward dynamics transfer function and K(s) for an unknown
compensator. Recalling the Bode-Integral∫ ∞

0
ln |S(jω)| dω = π

∑
p∈P

Re(p) with P = {p |Re(p) > 0} (3.131)

where

S(jω) = 1
1 + L(s) (3.132)

is the sensitivity transfer function. We see that the area of the log integral where
disturbances are amplified is π · p4 larger than the area where disturbances are rejected.
This will get even worse if the compensator will add additional RHP-poles to L(s).
Furthermore, let us follow the argumentation done by Stein [101] for ‘The X-29 Airplane
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Story’ and take into account, that the shape of the sensitivity function can only be
influenced up to certain frequencies. Stein [101] called this bandwidth up to the limiting
frequency ‘available bandwidth’ Ωa, which should not be mixed up with the cross-over
frequency of L or the (closed-loop) bandwidths for S(jω) or T (jω) = L(s)

1+L(s) as defined in
e.g. Skogestad [98]. In our case, the 5 ms sampling-rate of the controller as well as the
internal filter bandwidth with 256 Hz of the gyroscope will limit Ωa to ≈ 66−100 rad/s3.
As a result, the upper limit of the Bode-Integral changes to∫ Ωa

0
ln |S(jω)| dω = π

∑
p∈P

Re(p) with P = {p |Re(p) > 0} (3.133)

and imposes the physical performance limitation for the closed-loop control, at least
if output feedback is used. Unfortunately, for multiple-input-multiple-output (MIMO)-
systems and state feedback there is not such a clear barrier for the performance limits
(see Skogestad [98] and Morari [76]). Nevertheless, it is probably a piece of good advice to
keep the Ωa limit in mind during the design of a state feedback controller. In this spirit,
the author recommends not pushing eigenvalues more to the left than Ωa or moving
eigenvalues of the systems which are left from this value, especially the eigenvalues
related to the current dynamics.
Moreover, Stein [101] gives a ‘rule of thumb’ for the bandwidth required, based on the
unstable pole: “The available bandwidth should exceed the airplane’s unstable pole by
at least a factor of ten”. Applying this rule of thumb to the TWIP, the unstable pole
p4 = 7.53 demands an available bandwidth of at least 75.3 rad/s. This shows, that the
chosen fast sample rate of the controller as well as the fastest available filter configuration
for the gyroscope is necessary to achieve a good control performance.
While it is widely known and accepted, that eigenvalues on the RHP significantly com-
plicate the controller design, the influence of the zeros sometimes is left unattended.
Nevertheless, this topic has been in focus in several publications and books. Freuden-
berg [37] gives a great overview over frequency domain properties of SISO and MIMO
feedback systems and Seron [96] gives an introduction to the Bode-Integral formulae,
the water-bed effect and reveals the effects of RHP-zeros and poles on the closed-loop
performance. In Freudenberg and Looze [35, 36], Looze and Freudenberg [66] the limita-
tions of feedback properties imposed by RHP -poles and RHP-zeros have been discussed
as well as the related design trade-offs in feedback systems. Chen et al. [19, 18], Chen
[16] focused on limitations on maximal tracking accuracy and Chen [16, 17] discusses
sensitivity integral relations and design trade-offs caused by RHP-poles and RHP-zeros.
Thus, let us take a closer look at the zeros in G(s) of our system, to draw conclusions
to their influence on the achievable closed-loop performance in the case of the TWIP.
With the choice of yHe = θ as output, the heading dynamics do not have any zeros. Thus,
the subsystem for the heading dynamics is quite well suited since it has no RHP-zeros nor
RHP-poles. Contrary to the heading dynamics, the forward dynamics could have zeros
depending on the choice of parameter lO in the output (3.125). In Table 3.3 the zeros
of the transfer function are given with different values for lO. Unfortunately, there are
output configurations with one zero in the RHP, which leads to a non-minimum-phase
system behavior. Together with the RHP-pole, this makes the control task extremely
challenging: The forward dynamics cannot be stabilized by a stable output feedback

3Based on the assumption, analogously to Stein [101], that a minimum of 2 −3 sample/rad for a
proper control is necessary.
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Table 3.3: Zeros of the forward dynamics model with current

lO z1 z2 min. ISE

0.0000 9.1091 −9.1091 0.2196
0.0643 288.05 −288.05 0.0069
0.0644 – – 0
0.0645 0.0+j288.05 0.0−j288.05 0
0.1288 0.0+j9.1091 0.0−j9.1091 0

controller4. Similar to the example of the inverted pendulum, discussed in Hoagg and
Bernstein [44], the controller will need an odd number of RHP-poles to the right of the
RHP-zero. These controller poles in the RHP are required to prevent the unstable open-
loop pole from being attracted by the RHP-zero if we close the loop. As stated in Hoagg
and Bernstein [44] and the references provided herein, “RHP-zeros limit the achievable
performance of fixed-gain controllers [. . . ] as well as adaptive controllers[. . . ]”. Moreover,
Skogestad et al. [99] conclude, that if an RHP-pole and RHP-zero are close to each other
in the complex plane (the distance between the zero and the pole is small), then the
peaks in the transfer functions |S(jω)| and |T (jω)| will be large, and stabilization is in
practice impossible. As we can see, if we chose lO = 0, then the distance between the
RHP-zero and the RHP-pole of the forward dynamics transfer functions is quite small,
where the distance increase with larger values of lO. Finally, Skogestad [98] relates
restrictions on the ‘gain crossover frequency’ ωc, which is defined as the frequency where
|L(jω)| first crosses the 0 dB from above. According to Skogestad [98], only up to ωc

a tight control of frequencies is possible but in practice, ωc should be chosen to hold
approximately ωc < z/2 for the smallest RHP-zero. Thus, an RHP-zero z close to the
origin degenerates the control performance. This encourages even more that one should
choose lO ≫ 0 for output feedback control5.
Finally, Qiu and Davison [93] presented “a quantitative measure of the degree of dif-
ficulty in solving the servomechanism problem for a non-minimum phase systems with
constant disturbances”. Let us employ the same performance limit for the TWIP, to
get a quantitative measure to judge about different choices for our output parameter lO.
Qiu and Davison [93] introduced the ‘cheap LQR’ with the cost function

Jϵ = min
u

∫ ∞

0

(
y′y + ϵ2u′u

)
dt (3.134)

for the system output y and control input u. The minimum value of the cost function
is found by reducing the weight of the control input to zero: J0 = limϵ→0 Jϵ. Qiu and
Davison [93] proved, that J0 is bounded from below by 2∑Nz

i=1
1
zi

with Nz for the number
of real RHP- zeros.

4A ‘stable output feedback controller’ is a controller, whose transfer function has only poles in the
left half-plane.

5In the lab course ‘Controller Implementation on Microcontrollers’ a pseudo-cascade control archi-
tecture with output feedback is used. It turned out in experiments, that stabilizing controllers can be
easily found and tuned manually with lO ≫ 0, where as the same task is almost impossible for lO = 0.
The given discussion reveals the reason.
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In the next step, let us use the Matlab command lqry with Qy = 1 and Ru = ϵ2 with
ϵ = 1 · 10−5 to design a linear-quadratic state-feedback regulator with output weighting.
The system matrices used are given in (A.11) and (A.12) for feedforward dynamics with
current. This is done for all parameters lO listed in Table 3.3 for the output equation
(3.125) together with the calculated lower bound for the integral square error (ISE)
value. The bound from below J0 is larger than zero for lO < 0.0644, which means, that
any response to a unit step or disturbance will cause a higher ISE value than the bound.
Contrary, the lower bound for lO ≥ 0.0644 is zero since the transfer functions of these
systems have no RHP-zeros.
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Figure 3.10: Error and ISE over time for different output

In Figure 3.10 the error response to a unit step as well as the ISE is shown. For sure, these
results only hold if the control input is unbounded, which is never the case in physical
systems. The fastest response shows the system with the output parameter lO = 0.0128
and a tiny ISE of 0.0028. Furthermore, the system with the output parameter lO =
0.0644 has no zeros at all, since it is a flat output. Its error response does not show
any undershoot and smoothly decreases to zero with a strongly damped oscillation and
a final ISE value of 0.0380. Finally, the response of the system with lO = 0.0 is by far
the slowest and shows a huge undershoot. Moreover, its final ISE has a value of 0.2224.
As expected, the final ISE is slightly above the lower bound of J0 = 0.2196. Concluding
the results, for output feedback control it is recommendable to choose lO > 0.0644 since
the achievable control performance is not bounded by the excitement of RHP-zeros.

3.4 Experimental Validation

Only if the model shows a high degree of concurrence with the dynamics of the physical
TWIP, model-based control and state estimation design will lead to satisfying results
in practice. Thus, in this section, measurements from experiments are evaluated with
simulation data calculated with the proposed model.
Typically for linear systems, the open-loop response to a step or impulse input of the
dynamical model and the real system is compared. As the TWIP is nonlinear and has
an unstable open-loop dynamic, such a simple comparison is not useful. Instead, the
TWIP is balanced with a controller and then the control loop is opened by setting the
inputs to zero at t ≈ 1.6 s. The estimated states xB, vd, and α of the experiment as well
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Figure 3.11: Switch off experiment (x, vd, α)

as the simulation are presented in Figure 3.11. Firstly, it can be recognized that the
limit cycle during the balancing is larger in the experiment than in the simulation. This
is due to the better performance of the friction compensation, the controller as well as
the state estimation in the simulation compared to the experiment as well as a friction
parameter deviation around vd = 0. Nevertheless, as soon as the loop is opened, the
tip-over trajectory of the model perfectly fits with the experimental data.
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Figure 3.12: Step experiment (x, vd, α)

As already mentioned, a comparison of the open-loop step response is not applicable.
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Therefore, a step of 0.3 m in the forward direction d is commanded to the closed-loop
simulation and experiment. The results, plotted in Figure 3.12, show a high degree of
concurrence. Especially, the inverted initial reaction due to the non-minimum phase
properties of the system can be recognized and simulation and experimental data show
an almost perfect fit. In addition, the minimum and maximum values of vd and α during
the step in Figure 3.12 are quite similar. This indicates an excellent mapping between
the physical system behavior and the simulation model. Compared to other published
results, this congruence is outstanding.
Finally, a small comment on alternative evaluations presented in the literature is given,
where the robot is rotated around θ to compare simulation and experimental results. The
more difficult part is balancing the robot in its d direction as pure rotation is supported
by the gyroscopic effects and thus, a high heading rate stabilizes the system (like a toy
gyroscope) almost without any controller. Thus, in this case, the easier task compared
to balancing and driving is presented since the linear dynamics (see Subsection 3.3.4)
of the heading motions have no right half-plane (RHP) poles or zeros in their transfer
function.

3.5 Concluding Remarks

In this chapter, a comprehensive model of the TWIP model has been presented. Com-
pared to existing literature (e.g. Pathak et al. [84], Kim and Kwon [56], Delgado [23])
the dynamics of the motor currents are included directly in the formulation of the La-
grangian. In literature, the current dynamics are neglected or modeled as a separate
subsystem and connected to the mechanical subsystem afterwards. In contrast, the pro-
posed method is less error-prone and more well-rounded, as the electrical and mechanical
systems are modeled jointly inside the Lagrangian framework. Based on the presented
approach, the Lagrangian of the TWIP can be directly used to set up a variational inte-
grator to receive a discrete model of the TWIP as presented in Albert et al. [2]. Another
advantage of including the current dynamics is, that the nonlinear state space model has
a constant input matrix which is beneficial for several nonlinear control design methods.
Last but not least, the physical current limits can easily be incorporated in the simula-
tion model and the model offers the possibility to consider them as state limits during
control design and the estimation of the DoA. This enables a more sophisticated control
synthesis.
Secondly, an insight into the system properties of the presented models with different
levels of details is given, namely one model with current dynamics as well as one without
current dynamics for the balancing two-wheeled inverted pendulum mode and a non-
balancing model of the TWIP on ground for the wheelchair mode. Utilizing an exemplary
trajectory, the interconnection and power exchange of the different energy storages of
the system, included in the Lagrangian, has been analyzed. Based on this, negligible
terms are detected as well as parts of the model which require particular attention during
modeling. The provided information allows a comparison of different models and a model
selection based on the requirements for the considered application. For example, the
nonlinear current dynamics model for the closed-loop simulation, the linearized model
with currents for controller and observer design, and the model without current dynamics
to design a friction compensation. The model on ground may be used to speed up
trajectory generation by using the solution gained with this simplified model as an initial
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guess for the trajectory generation with the current dynamics model.
In the consciousness of non-ideal sensors, a model for each of the three onboard sensors
is presented, which is used in the simulation environment of the TWIP. The introduced
sensors model provides the required congruence to the physical system for simulation-
based observer tuning and includes sampling, quantization, and digital on-chip filters.
Even though, the sensors show non-negligible dynamics due to their filters in the pre-
sented application, such a treatment of the sensors have not been presented before for
the TWIP.
In addition, a versatile treatment of the linearized models has been provided. State
transformations were introduced to decouple the dynamics into two subsystems, one for
the heading dynamics and one for the forward dynamics of the robot. These models
could ease the controller design and reveal additional system insights. Moreover, the
eigenvalues of the LTI-models as well as the poles and zeros of the subsystems transfer
functions are presented and an interpretation to physical system properties is given.
Furthermore, the connection between the choice of the system’s output to performance
limitations have been analyzed thoroughly. As a result, possible pitfalls in the design of
feedback controllers are revealed, especially due to unmodeled system dynamics, limited
bandwidth as well as state limits and input saturation. For the first time, such a com-
prehensive treatment has been published which offers novel insights for modeling and
control of the TWIP.
Finally, experimental results confirm a high degree of concurrence of the model with
the physical TWIP. In particular, the closed-loop response to a position step in the
experiments shows a remarkable match to the simulation results. Based on the proper
and control-orientated system design presented in Chapter 2, coupled with the thorough
modeling of the TWIP introduced in this chapter, an excellent mapping between the
physical system behavior and the simulation is gained. Compared to results published by
other authors, this congruence is outstanding and builds the foundation for a successful
controller and observer design in the later chapters.
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Optimal Trajectory Generation

An offline procedure to generate an optimized trajectory for the TWIP is presented in
this chapter. In particular, the objective is to follow through pre-specified positions and
orientations at pre-defined times (so-called checkpoints) while fulfilling state and control
constraints. Moreover, energy optimal trajectory generation is performed to conserve
resources and not only a simple control input minimization. For this, a two-stage ini-
tialization is introduced to speed up optimization and to improve the convergence of
the nonlinear optimization problem. Additionally, the trajectory is computed such that
sequences of it can be cut and repeated to generate a longer trajectory to perform long-
term test runs. The resulting trajectory will be used in the following chapters for (online)
closed-loop control and to evaluate the proposed control and state estimation algorithms.
The chapter is structured as follows: at the beginning, a quick motivation for trajectory
optimization is given. In the subsequent section, the optimization procedure is pre-
sented. Afterwards, the optimized reference trajectory, used in the following chapters,
is presented. Finally, concluding remarks on the chapter are given.
This chapter complements the publication Albert et al. [2] of the author by adding more
detailed information about the implementation of the optimization problem and the
resulting trajectory. Whereas Albert et al. [2] focuses on the application of the varia-
tional integrator (VarInt) discretization method and discrete mechanics, first published
in Phogat et al. [88], in this chapter the aspects of the Runge-Kutta (RK) discretization
schemes are discussed. Moreover, some fine-tuning on the optimization algorithms and
the checkpoints, compared to Albert et al. [2], led to a reduction of the computation
time, especially for the VarInt discretization method, which is also discussed. In addi-
tion, so-called equalitypoints are included to be able to slice and repeat the optimized
trajectory. To conclude, there is an unavoidable overlap of the contributions and content
of this chapter and Albert et al. [2] but this chapter adds necessary details about the
optimization procedure. Moreover, the resulting reference trajectory is required to make
this work self-contained.

4.1 Motivation

Let us pick up the use-case of the TWIP for surveillance applications as introduced
in Section 1.1 and consider a robot that has to drive through different checkpoints to
observe the surrounding. If more than one robot is in use, a collision has to be avoided

69
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and if e.g. doors have to be passed at a specific time, a simple path-following is not
possible, and instead, a trajectory is required. In the case of safety-critical systems,
like the unstable TWIP, state and control constraints have to be respected during the
generation of the trajectory. In addition, mobile robots require an energy supply, which is
typically a battery. Thus, the trajectory has to drive from a base (e.g. charging station)
to the desired area of operation, and then a sliced part of the trajectory is repeated e.g.
a surveillance application as described. Afterwards, if the battery is low, the robot has
to drive from the operating area back to the charging station. To be able to operate
as long as possible and to reduce the time in the charging station, an energy-efficient
trajectory is desirable.
One option to generate such an energy-optimal trajectory, subject to nonlinear system
dynamics as well as state and control constraints, is to set up a nonlinear optimization.
In the next section, such a nonlinear optimization procedure is presented and used to
optimize a trajectory, which might be used for a surveillance task as described.

4.2 Optimization Procedure

Firstly, we define the performance measure for energy optimal control of the TWIP which
should be minimized. The energy e(u, xc) consumed from the battery by the robot is
calculated by

e(u, xc) =
∫ te

t0
(uLiL + uRiR) dτ . (4.1)

This is the time-integral of the electrical input power of the two DC-motors as defined
in (3.99) and is used as a performance measure to be minimized. Besides, the trajectory
has to fulfill the system dynamics as well as the state and control constraints. Thus, let
us cast (4.1) used for the performance measure and the dynamic model of the TWIP
with current dynamics (c-model) (3.60) into one ordinary differential equation (ODE)ẋc

ė

 = Fode(xc, uc) =

fc(xc) + Gcu

uLiL + uRiR

 (4.2)

for optimization.
As the TWIP controller is executed in discrete-time, a discrete-time trajectory is required
and the natural choice is to choose the sample time of the controller of 5 ms for the step
length for the discrete optimization. Thus, a scheme to discretize (4.2) is needed. More-
over, typically explicit schemes with a fixed time step length are required for efficient
optimization algorithms. Therefore, different schemes are compared in the following to
find the best-suited scheme for the intended purpose. Firstly, the Runge-Kutta schemes
are considered and compared as they are the standard schemes for numerical discretiza-
tion. In particular, RK1, RK2 and RK4 are covered, where RKn is the nth order of the
scheme. Secondly, the VarInt scheme is evaluated, as presented in Albert et al. [2], as
it has the advantage of preserving system invariants like momentum and energy and is
more accurate than conventional techniques as discussed in Marsden and Ratiu [71]. In
Section 4.3, the required computation time of the different discretization schemes will
be compared based on an optimized reference trajectory.
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We start with the RK4 scheme with which (4.2) is discretized as follows

[Kx,1,Ke,1]T = Fode(x, u) (4.3a)

[Kx,2,Ke,2]T = Fode(x + ∆T

2 Kx,1, u) (4.3b)

[Kx,3,Ke,3]T = Fode(x + ∆T

2 Kx,2, u) (4.3c)

[Kx,4,Ke,4]T = Fode(x + ∆TKx,3, u) (4.3d)

xc = xc + ∆T

6 (Kx,1 + 2Kx,2 + 2Kx,3 +Kx,4) (4.3e)

e = e + ∆T

6 (Ke,1 + 2Ke,2 + 2Ke,3 +Ke,4) . (4.3f)

As can be seen, the energy is also calculated within the scheme in (4.3f) to receive
a precise result of the energy integral (4.1). The schemes RK1, RK2 have the same
structure but with fewer function evaluations per discretization step length ∆T . For
proper discretization, the stability of the scheme has to be ensured and thus the step
length ∆T has to be appropriately selected. In particular, for the Dahlquist test equation
ẏ = λy the stability region of the RK1 and RK2 schemes is known to be −λ∆T < 2.0
and for the RK4 scheme it is −λ∆T < 2.8 as shown in Hairer and Wanner [41]. Due
to the fastest eigenvalue of the c-model λ8 = −3721.14, as listed in Table 3.2 for the
linearized model, 10 RK1 or RK2 substeps with ∆T = 0.5 ms and 7 substeps for the
RK4 are chosen with ∆T = 0.714 ms and for time discretization of (4.3). As a result,
for one sample step of Rm = 0.5 ms in the optimization, the RK1 and RK2 schemes are
repeated 10 times and the RK4 scheme 7 times.
In addition, the trajectory has to be optimized with respect to additional state and
control constraints, which are chosen as follows:

(c-i) Input voltage (uL, uR): [-5, 5]V,

(c-ii) Input voltage rate (u̇R, u̇L): [-2, 2]V/s,

(c-iii) Motor current (iL, iR): [-3, 3]A,

(c-iv) Tilt angle (α): [-15, 15]°,

(c-v) Heading angle rate (vθ): [-120, 120]°/s.

These constraints are introduced in Subsection 3.1.9 but are chosen tighter than the
physical limits. This is necessary, as the optimized trajectory is used for feedforward
control and has to share the available control input with the feedback controller. More-
over, if the optimal trajectory states and inputs are close to the physical state limits, in
case of small disturbances, the control algorithm might fail to stabilize the system.
In addition, besides the fixed initial state xc[0] and the final state xc[N ] for the optimal
trajectory, the TWIP should pass through Nm ≤ N pre-specified checkpoints {x̄kj

}Nm
j=1,

where N is the number of discretization steps for the optimization.
To be able to slice and repeat the trajectory, Ne ≤ N equalitypoints Pe = {k̄i, k̄e,i}Ne

i=1
are enforced, where the state vectors xc[k̄i] = xc[k̄e,i] have to be identical.
Finally, the discrete-time optimal control problem can be formulated with the integration
scheme (4.3) and the constraints (c-i)-(c-v) as well as the checkpoints and equalitypoints
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by

minimize
{u[k],xc[k]}N−1

k=0

J :=
N−1∑
k=0

e[k + 1](u[k], xc[k]) (discrete energy)

subject to{
xc[k + 1] = Fdis(xc[k], u[k]) (discrete dynamics)
−5 ≤ uR[k], uL[k] ≤ 5

for k = 0, . . . , N − 1,

−3 ≤ iR[k], iL[k] ≤ 3
− π

12 ≤ α[k] ≤ π
12

−2π
3 ≤ vθ[k] ≤ 2π

3
−2Rm ≤ uR[k − 1]− uR[k] ≤ 2Rm

−2Rm ≤ uL[k − 1]− uL[k] ≤ 2Rm

xc[k] = x̄c[kj ] if k = kj for any j = 1, . . . , Nm

xc[k] = xc[k̄e,i] if k = k̄i ∈ Pe

for k = 1, . . . , N − 1,

xc[0] = x̄c[0],
xc[N ] = x̄c[N ].

(4.4)

The minimization problem (4.4) is implemented in MATLAB 2020b by the use of CasADi
v3.5.5 from Andersson et al. [4] and solved with IPOpt v3.12.3 from Wächter and Biegler
[118].
Unfortunately, as introduced, the nonlinear optimization takes a large computation time
to solve or does even not converge at all if it is not properly initialized. The IPOpt solver
requires an initial guess for the optimization values and the closer they are to the optimal
solution, the more likely the algorithm converges and the time to compute the solution
can be reduced. In experiments, in many cases, the optimization failed to solve (4.4)
with the default initialization (zero vector). Thus, a simplified optimization problem
with the g-model (3.91), as presented in Subsection 3.1.8, is set up. As the nonlinear
dynamics are much slower, a RK1 scheme with a single step for the time step length
of 5 ms has been found to be sufficient. Moreover, the reduced number of states eases
the optimization problems in magnitudes. As the motor currents are not included in
the g-model, the energy is calculated by evaluating the static motor current equation
(3.68) and the value of the input. Then, the solution of this first stage optimization will
be used to initialize the optimizations of the second stage, solving (4.4) with different
discretization schemes for comparison purposes, namely RK1, RK2 and RK4 and VarInt.
To conclude, a two-stage optimization is used to compute the optimal discrete-time
trajectory. Firstly, the g-model is discretized and used to generate a good initial guess
for the optimization with the c-model. Secondly, the c-model is discretized with different
schemes and the optimization problem (4.4), initialized with a solution from the g-model,
is solved. In the next section, the optimization of the reference trajectory is presented,
based on the optimization procedure introduced.
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4.3 Reference Trajectory

To test the proposed optimization procedure and to compare the required computation
time of the different discretization schemes, a reference trajectory has been set up. In
addition, the RKn schemes are also tested with 1 substep to ease the comparison with
the results presented in Albert et al. [2] as well as the VarInt scheme. This trajectory
includes a path from an initial start point to the desired area, then an eight-knot and
a zig-zag path as well as a path back to the initial start point. The x-y phase plot of
the optimized trajectory is plotted in Figure 4.1 and could be the required trajectory
of a surveillance application as introduced. In particular, the optimized trajectory is

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0
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x (m)
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(m

)

Figure 4.1: Trajectory x-y phase

parameterized and partitioned into different parts as follows:

• Step length (Rm): 5 ms,

• Final time (T ):

1. The eight-knot: 21.68 s,
2. The zig-zag: 19.52 s,
3. Complete trajectory: 81.38 s

• Number of Steps (N = T/Rm)

1. The eight-knot: 4336,
2. The zig-zag: 3904,
3. Complete trajectory : 16 276.

To specify the trajectory, 37 checkpoints are defined and shown in Figure 4.2 as red
crosses. Herein, checkpoints define that the trajectory has to fulfill the xB, yB, θ require-
ment at a defined time instance. Moreover, 16 equalitypoints are specified and marked
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Figure 4.2: Optimal trajectory states (xB,yB,θ)

in Figure 4.2 with green circles and labeled with the letters ‘A’ up to ‘H’. The equality-
points labeled with the same letter, are forced to have the same state vector xc which
leads to 10 equality constraints in (4.4). Due to this, the resulting trajectory can be
cut and repeated after the optimization. The position, between which the trajectory
is cut and repeated is marked with dashed red lines at t1 = 9.42 s and t2 = 61.46 s in
Figures 4.2 and 4.4 as well as the plot of the control inputs in Figure 4.5. For long-term
benchmark runs, the sequence between t1 and t2 is repeated 80 times, leading to an
optimal trajectory with a total length of ≈ 70 min.
The introduced reference trajectory is optimized on a machine with CPU - Intel(R)
Core(TM) i7-8700 CPU @ 3.20GHz, RAM - 8 GB, OS - Windows 10 64-Bit. On this
machine in sum 77 s are required to assemble and solve the optimization problem with
the g-model. Herein, the time for CasADi to assemble the problem is around 16 s. The
resulting trajectory is then used to initialize the c-model in the next step.
Depending on the discretization, the trajectory optimization problem with the c-model
is solved between 206 s and 2241 s. Besides small numerical differences, the solutions
of the optimizations with different schemes were identical. The total computation time
is the sum of the time required to step up the problem and the time needed to solve
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it. In particular, CasADi requires between 6 s for RK1with 1 substep and 17 s for RK4
with 7 substeps to set up the problem. The time required to set up the task using the
VarInt discretization scheme requires 17 s and is thus comparable with the RK4 with 7
substeps.
In Figure 4.3 the total computation time to assemble and solve the optimal trajectory
problem with the c-model is plotted. In sum, the time required by MATLAB and
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Figure 4.3: Computation time comparison

CasADi to set up the optimization task is negligible compared to the time required to
solve the problem with the IPOpt solver. Notice, that the required computation times
are between 14 % for RK2 and 60 % for the VarInt reduced compared to reported values
in Albert et al. [2]. This is the result of choosing a different, non-default option for
the treatment of fixed variables1 in the IPOpt solver, which leads to the same optimal
trajectory but requires less computation power. Especially the VarInt discretization
scheme outperforms the classical RKn schemes even more than it has been presented in
Albert et al. [2].
Due to the fast current dynamics considered in the model, a proper discretization using
the RKn schemes demands 10 or 7 substeps. As visualized in Figure 4.3, in this case, the
computation time rises up to 603 s for RK1, 1459 s for RK2 and 2241 s for RK4. Thus,
the traditional RKn schemes require for this benchmark optimization between 3 and 11
times more computation time than the VarInt scheme.
Finally, an optimization run with the c-model and VarInt without the initial solution
from the g-model has been started, to evaluate the advantage of the proposed two-stage
optimization procedure. In this case, IPOpt stopped after 2000 iterations, which took
over 10 h, without providing an optimal trajectory. This highlights, that the proposed
procedure reduced the required optimization time or even enables the IPOpt solver to
solve the problem at all.

1In particular, the option ‘fixed_variable_treatment’ has been set to ‘relax_bounds’.
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4.4 Concluding Remarks

A method to compute an energy optimal trajectory offline, subject to the nonlinear
TWIP model with current dynamics and state and input constraints has been presented.
Herein, the introduced optimization problem minimizes the input energy of the TWIP
and not only control input. In addition, by the use of pre-specified checkpoints and
so-called equalitypoints, the desired trajectory can be precisely specified. Moreover, an
optimized reference trajectory is presented which can be cut and repeated for long-term
test runs. Also, this chapter includes improvements in the setup of the optimization task
and adds detailed information about the implementation and optimization compared to
Albert et al. [2].
A major contribution is the introduced two-stage optimization scheme using the simpler
g-model in the wheel-chair mode to compute an initial guess for the optimization task
using the c-model of the balancing TWIP with current dynamics. Moreover, additional
analyses are presented to compare the standard RKn with VarInt discretization scheme
as presented in Albert et al. [2]. All tested schemes were applicable for the optimization
and all results were similar besides small numerical inaccuracies. Using VarInt scheme for
discretization, the optimization required about 44 % less computational power compared
to the fastest RKn scheme. In addition, the VarInt scheme preserves system invariants
which makes the VarInt discretization scheme superior compared to the standard RKn
schemes. This result coincides with Albert et al. [2] but in this chapter, it has been
revealed that VarInt outperforms the standard schemes even more than it has been
presented by Albert et al. [2].
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Chapter 5

Setpoint and Trajectory Tracking

In this chapter a novel discrete-time feedback structure is presented as shown in Fig-
ure 5.1, to stabilize the TWIP and to perform setpoint or trajectory tracking. A major
contribution is the derivation of a full discrete-time treatment of all elements of the con-
trol structure as well as results for a command governor for trajectory tracking applied
for the first time on a MIMO-system in experiments.

Trajectory
or Setpoint
Generator

Command
Governor

Model

Guidance
Algorithm

Controller

State
Estimator

Friction
Compensation

−
eT

eC
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ů u usat

x̊
x

e

y
x̂

uF

Figure 5.1: Control structure with command governor

Due to the state limits and the input saturation of the physical system, introduced in
Subsection 3.1.9, the DoA is limited and stabilization will fail if the control error eC is
outside the DoA. To ensure a stable operation during setpoint tracking and trajectory
tracking, a command governor algorithm for each of the two tracking modes is pre-
sented. Thereby, the stability of the closed-loop system is ensured by the use of a QLF
inside the command governor with a known level set, bounding the estimated stable
region. Originally, Buhl and Lohmann [13] proposed a setpoint command governor for
continuous-time systems with one control input. Based on this, modifications for tra-
jectory tracking and systems with multiple inputs have been presented by Dessort [27],

79
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Pieczona [89], Diepold and Pieczona [28] and Diepold [31]. All introduced algorithms in
these publications consider continuous-time models, trajectories and control. Contrary
in this chapter, a novel discrete-time realization is introduced and its applicability is
proven in simulations as well as experiments. Moreover, in Diepold [31] the command
governor for trajectory tracking has only been applied on the SISO-system ‘Inverted pen-
dulum on a cart’ in experiments. Contrary in this chapter, the algorithms are applied
on the TWIP and thus experimental results for a MIMO-system are presented which
additionally underlies nonholonomic constraints.
The chapter is structured as follows: In the first section, it is motivated why the control
structure, as illustrated in Figure 5.1, with a command governor is proposed. In the
subsequent section, friction compensation, which reduces the effects of nonlinear me-
chanical friction, is introduced. This approach ensures the congruence of the LTI-model
proposed in Section 3.3 for all velocities. Afterwards, a guidance algorithm is presented
to ensure, that the desired trajectory can be reached even though the TWIP underlies
nonholonomic constraints. Furthermore, a stabilizing linear constant feedback controller
is designed based on the discrete-time LTI-model of the robot with motor currents as
presented in Section 3.3. All control algorithms are considered to be discrete-time, as
they will be executed cyclically on the robots MCU, which is novel. Based on the sta-
bilizing linear constant feedback controller, the DoA is estimated in Section 5.5 and
used in the consecutive sections by the therein introduced command governors. Besides
the theoretical derivation of the command governor algorithms, experimental results are
presented. Finally, concluding remarks on the chapter are given.
The development, implementation, and first experimental testing of the guidance al-
gorithm, the setpoint tracking command governor, as well as the trajectory tracking
command governor, has been intensively supported by the master’s thesis of Anhalt
[5], supervised by the author. In consequence, the algorithms and first experimental
results are also presented there. The introduced algorithms are the outcome of almost
daily meetings, creative discussions, and troubleshooting and debugging done jointly. In
consequence, this chapter includes the non-separable contribution of Anhalt [5] and the
author. While the underlying principles are the same as already presented in Anhalt
[5], some notations and derivations as well as experimental results differ in the following
sections.

5.1 Motivation

Typically, a ‘standalone’ controller for unstable systems has a very limited DoA in pres-
ence of input saturation and state limits. In consequence, stabilization will fail if the
control error is outside the DoA of the designed stabilizing controller.
Such a large control error might happen due to one of the three sources introduced,
among others:

• a large disturbance acting on the robot increasing the control error,

• a large step in the desired state x̊,

• a measurement update causing a large change in estimated state x̂ used to calculate
the control error.
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The 1st source is commonly mentioned but not the 2nd and 3rd and thus an explanation
is given.
Performing setpoint tracking, it might be the case, that the operator or an upper-level
process control has no knowledge about the DoA of the robot. If a new desired position
and orientation are then commanded to the robot, a large control error outside the stable
region could occur. Assuming trajectory tracking, it might happen that a new trajectory
is planned due to a mission change while the robot follows another. For sure, the ideal
case is, that the new trajectory starts exactly at the current state of the robot. But
if the planning of the trajectory requires some amount of time, the robot’s state might
already differ from the state assumed as the initial state of the new trajectory which
results in a large control error after switching to the new trajectory.
Another issue for a large control error may be linked to the state estimation. Commonly,
local sensors are used for odometry in combination with a remote global measurement
to estimate the position and orientation of the robot. If the remote measurement has
delays or dropouts, the position and orientation have to be calculated by integration
temporarily which accumulates measurement errors. Thus, the estimated position and
orientation will differ more and more from the real one over time as long as no remote
measurements are available. If a new measurement is received after a while, this might
cause a large correction step and thus a large change in the estimated state. As the
control error is calculated with the estimated state x̂, this might cause an increase in
control error and an abandonment of the DoA.
Since all three introduced issues might happen during operation, not only a friction
compensation and a stabilizing controller is presented in the next sections but also a
command governor to drastically increase the DoA of the pure standalone controller and
prevent failing stabilization, if possible.

5.2 Friction Compensation

Recently, Dai et al. [21] presented a sliding mode controller applied to a TWIP to
avoid the negative effects of nonlinear friction. As the control algorithms proposed in
this chapter, are designed with the linear state space model of the robot as introduced
in Section 3.3, this sliding mode approach does not apply. Moreover, a good control
performance with a controller designed for the linearized system may only be reached, if
the congruence of the linear and nonlinear model is high in the domain of operation. In
consequence, the nonlinear components of the friction torque are compensated through
the plant input by the approach presented by Delgado [23]. Contrary to Delgado [23] and
as already mentioned in Section 3.3, only the nonlinear components will be compensated,
since this will ease the allocation of the limited control input between the controller and
the friction compensation. Thus the desired goal is to remove the tanh() terms modeling
the stick-friction in (3.37).
At least for the models without current dynamics (n-model) this can be achieved. In
the equation of the reduced system dynamics (3.83) the terms (3.70) with the nonlinear
friction as well as (3.71) for the plant input are summed up. Therefore, a full friction
compensation through the input u has to fulfill

Fdis + Eu︸︷︷︸
Fext

= 0 . (5.1)
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As Delgado [23] argued, this is only possible if the condition

E⊥Fdis = 0 (5.2)

is fulfilled, where E⊥ is the left annihilator of E . The left annihilator,

E⊥ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1

 (5.3)

leads to E⊥E = 0 and also fulfills (5.2) in the case of the n-model. In other words, the
friction terms in Fdis lie in the image of the plant input matrix E .
Let us assume, Fdis includes only the nonlinear friction, then (5.1) is given by

0 =


03×2

11×2

−I2×2


dC tanh (d0ωδR)

dC tanh (d0ωδL)

−nWMkM
RM


03×2

11×2

−I2×2


︸ ︷︷ ︸

E

uR

uL


︸ ︷︷ ︸

u

. (5.4)

Based on this, the plant input can be calculated by

uF = −
(
ETE

)−1
ET


03×2

11×2

−I2×2


dC tanh (d0ωδR)

dC tanh (d0ωδL)

 (5.5)

= RM
nWMkM

dC tanh (d0ωδR)
dC tanh (d0ωδL)

 , (5.6)

which compensates the nonlinear friction terms. A nice detail is, that uF only depends
on ωδR and ωδL which are directly measured by the encoders. In consequence, a friction
compensation can even be used if no state estimation is available.
As only the nonlinear friction components are compensated, the maximum input de-
manded is about uF,max = 0.26 V whereas a full friction compensation would require
about 4.3 V evaluated at a forward speed of 0.65 m/s.
Unfortunately, condition (5.2) cannot be fulfilled in the c-model, and in consequence, no
‘perfect’ friction compensation can be designed if the current dynamics are considered.
Nevertheless, let us assume that if we use the compensation (5.6) on our physical robot,
the nonlinear friction will be compensated sufficiently as the current dynamics are con-
siderably faster than the mechanical dynamics. Based on this, let us assume that the
nonlinear friction terms can also be dropped in the c-model before linearization, which
is then used for linear control synthesis in Section 5.4.

5.3 Guidance Algorithm

As the system underlies nonholonomic constraints the reduction of the control error is
a nontrivial task in the x− y plane. For visualization, let us just consider the case with
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an error in the y coordinate and heading angle of zero and thus an error in the lateral
direction of the robot. To reduce the error we may turn the robot about 90◦, drive to
the desired position in y and turn 90◦ back. Another option is, to drive slightly forward
and turn a few degrees and then drive backwards and turn back again. In particular,
there are infinite possible trajectories to reach the desired position even though they
will differ in the time needed and energy consumption. To solve this problem in respect
to a cost function (e.g. minimal time or energy) and additional constraints (e.g. vd ≥
0), a nonlinear optimization will be needed. But even with a nonlinear optimization,
several solutions might exist leading to the same minimal cost function value. Moreover,
nonlinear optimizations usually are computationally intensive, require a long time to
solve and might even fail to converge in some cases due to numerical issues.
Dengler and Lohmann [26] and Dengler [25] presented a controller in the form of a re-
current neural network trained with imitation learning using trajectories from nonlinear
optimizations. In consequence, the controller has a kind of guidance algorithm included
which imitates the learned trajectories to drive to the desired point. This method has
two major drawbacks. First, to cover almost all possible trajectories to the desired point,
the recurrent neural network has to be quite large or performance drawbacks have to
be accepted. In particular, Dengler [25] used a fully connected neural network with
64 and 32 neurons in two hidden layers as well as 32 neurons in the output layer. In
consequence, a powerful MCU is required to compute the neural network at each sample
step. Secondly, the path planning or guidance is combined with the controller design and
thus both, stabilization as well as setpoint tracking, have to be trained together. This
increases the overall complexity of the neural network as well as the training procedure.
This could have been avoided if the recurrent neural network had been split into two,
one used for guidance and one for stabilization. In addition, the presented experimental
results show a relatively large stationary offset but it is hard to judge about the source
of this offset as in Dengler and Lohmann [26], Dengler [25] no error analysis is provided.
It might result from the relatively small neural network, the control method itself, or
could be caused by hardware issues. Moreover, Dengler [25] considered setpoint tracking
only.
Another “extremely simple” approach for setpoint tracking has been proposed by Astolfi
[6] with a nonlinear control law based on a transformed coordinate system. In particular,
the presented paths where the robot is initially in different positions on a unit circle
around the desired point as well as the published parking maneuver are quite promising
and seem to be superior to other presented algorithms. Unfortunately, this method
also combines controller and guidance design and has only been developed for setpoint
tracking.
For setpoint tracking, there is one more quite simple approach, used by e.g. Delgado
[23] and Strohm [102]. In this case, a line is considered between the x− y coordinates of
the robot and the desired point. The desired orientation θ̊ is then chosen such that the
robot will orientate to the angle of this line and the desired distance d̊ is set to the length
of the line. To avoid helical trajectories close to the desired point, additional smoothing
parameters and a dead-zone have to be included as discussed in Strohm [102].
In this section, a guidance algorithm for setpoint tracking as well as trajectory tracking is
proposed, separating the guidance or path planning from the controller design. Moreover,
to be able to use linear control laws, the error in the spatial space (xB, yB, and θ) is
‘translated’ into an error in forward direction d and orientation θ. In addition, the
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algorithms for setpoint tracking discussed above present stumbling blocks if they are
applied to trajectory tracking. Let us simply consider, that we are moving quite fast
in the forward direction but with a small offset in the lateral direction. The intuitive
control action would be, to slightly change the orientation of the robot towards the
desired point during driving and then slightly turn back, similar to changing lanes on a
highway. Contrary to this intuitive control action, the above-mentioned algorithms try
to directly drive to the desired point which leads to a command to turn 90◦ at full speed.
Clearly, this is not the desired control action as we like to have a smooth approach to
the trajectory. In the following, a guidance algorithm is introduced, which leads to a
smooth approach if the robot is close to the desired trajectory such that the tracking
error smoothly decreases. The first presentation of the guidance algorithm as well as the
application on the TWIP can be found in Anhalt [5], supervised by the author.
Let us introduce the tracking error

ẽ = x̊− x̂ = [ẽxB , ẽyB , ẽθ, eα, evα , evd
, evθ

, eiR , eiL ]T (5.7)

where x̊ is the desired state and x̂ is the estimated state of the robot. As we need an
error in d and θ instead of xB, yB, θ coordinates, we introduce the tracking error

e = [ed, eθ, eα, evα , evd
, evθ

, eiR , eiL ]T (5.8)

transformed into the coordinates of the c-d-model including the distance error ed and
the orientation error eθ, which are derived in the following.
First, based on ẽ the distance

∆d =
√

ẽ2
xB

+ ẽ2
yB

(5.9)

is calculated between the estimated position (x̂B, ŷB) of the robot and the desired posi-
tion (̊x, ẙ) in the x−y plane. In addition, the angle of the vector, pointing from (x̂B, ŷB)
to (̊x, ẙ) can be calculated by

∆θ = arctan
(

ẽyB

ẽxB

)
. (5.10)

Up to this point, the method is quite similar to the approach presented by Strohm [102]
and also used by other authors.
To provide a smooth approach to the desired trajectory, a radius R of 100 mm is con-
sidered around the desired position and the algorithm switches between two methods
depending if ed is larger or smaller than R. If ed ≥ R, the robot is outside the considered
area and we intend to drive directly to the desired point. In consequence, the orientation
error is calculated with

eθ = ∆θ − θ̂ . (5.11)

The calculation of the error in distance depends on the value of eθ and is given by

ed =
{

∆d if |eθ| ≤ π
2

0 if |eθ| > π
2

. (5.12)

Thus, if the desired point is outside the ‘view range’ of the robot of ±π
2 the distance

error is set to zero to first turn the robot towards the desired point (̊xB, ẙB).
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Figure 5.2: Operation of the guidance algorithm inside R (inspired by Anhalt [5])

Contrary to the introduced first case, a smoother approaching algorithm is applied if
ed < R to reduce the tracking error. In Figure 5.2 the behavior of the guidance algorithm
in the close range (ed < R) is illustrated for θ̊ = 0 for positive and negative velocities vd

of the robot. The red arrows indicate the desired direction in which the TWIP should
move. For θ̊ ̸= 0 the vector field shown will be rotated around the origin with θ̊. In the
first step, the error in distance is calculated by

ed = cos(∆θ − θ̊)∆d (5.13)

for this case, such that a large difference between ∆θ and θ̊ reduces the distance error.
Subsequently, the auxiliary angle

∆Z =


+(∆θ − θ̊) if |∆θ − θ̊| ≤ π

2 ∧ v̂d ≥ 0
−(∆θ − θ̊) if |∆θ − θ̊| ≤ π

2 ∧ v̂d < 0
−(∆θ − θ̊) + π if |∆θ − θ̊| > π

2 ∧ v̂d ≥ 0
+(∆θ − θ̊) + π if |∆θ − θ̊| > π

2 ∧ v̂d < 0

(5.14)

is calculated, pointing from the TWIP to the desired trajectory in relation to the velocity
vd.
For a smooth approach, eθ is scaled with the distance ∆d, such that the angle gets smaller
as the closer the robot is to the trajectory. In addition, to gain a smooth approach even
with slow velocities below vlim = 0.1 m/s, an additional scaling is introduced. eθ is finally
given by

eθ =
{

θ̊ − θ̂ + ∆Z
∆d
R if |v̂d| ≥ vlim

θ̊ − θ̂ + ∆Z
∆d
R

|v̂d|
vlim

if |v̂d| < vlim
. (5.15)

To summarize, the introduced guidance algorithm uses two different approaches depend-
ing on the distance between the robot and the desired point on the trajectory to calculate
a pseudo-control error e. Based on e, a linear state space controller is able to stabilize
the system as well as follow a trajectory smoothly.
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5.4 Linear Constant State Feedback

For stabilization and tracking a linear-quadratic regulator (LQR) is proposed. In Sub-
section 3.3.2 it has been shown, how the linear state space model can be split into two
separate models, one for the forward dynamics and one for the heading dynamics with
the state vectors as defined in (3.122) and new inputs given in (3.120) and (3.121). In
the following, the decoupled models are used to ease the choice of the control parame-
ters. Moreover, to reduce the number of parameters even further, two linear-quadratic
state-feedback regulators with output weighting (LQRYs) are used and the outputs are
chosen considering the performance limitations discussed in Subsection 3.3.4. The input
saturation and state limits are neglected for the LQR design procedure.
As all algorithms are executed on the MCU with a sample time of 5 ms, both linear
state space models are discretized in time under the assumption of constant plant inputs
during one sample step. In consequence, a discrete-time linear state space model in error
coordinates is calculated in the form of

eC [k + 1] = A⟳eC [k] + B⟳uC [k] (5.16)

for the forward as well as the heading state space model. Hereby, the ‘circle arrow’-
symbol on the right top of A and B indicates that these are the dynamic and input
matrices of a discrete-time state space model and k is the sample step. The matrices
for the forward dynamics are given in (B.1) and (B.2) as well as (B.3) and (B.4) for the
heading dynamics. In consequence, the controllers are also designed in discrete-time.
Firstly, let us define the control error vectors for each submodel based on (3.122) with

eC,F w =
(
ed, eα, evd

, evα , eiF w

)T
and eC,He =

(
eθ, evθ

, eiHe

)T
. (5.17)

Then, the control error eC as depicted in Figure 5.1 can be calculated with

eC = T −1
c-d

eC,F w

eC,He

T

. (5.18)

using the state transformation matrix Tc-d given in Appendix A.4. For closed-loop
control, a feedback matrix K is required, such that the control law

uC [k] = KeC [k] (5.19)

stabilizes the TWIP. To reduce the number of parameters, a LQRY is used for each
of the submodels. Hereby, the output for the forward model is chosen to be flat and is
defined by (3.125) and (3.130) and thus the output matrix is given by

CF w =
(
1, 0.0644, 0, 0, 0

)
. (5.20)

In addition, the output matrix for the heading model is chosen as

CHe =
(
1, 0, 0

)
(5.21)

and thus the output is yHe = θ. Finally, let us define the cost function used in the LQRY
design synthesis for the forward model with

J =
∞∑

k=0
(eC,F w[k]TCT

F wQF wCF weC,F w[k] + uF w[k]TRF wuF w[k]) (5.22)
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and for the heading model with

J =
∞∑

k=0
(eC,He[k]TCT

HeQHeCHeeC,He[k] + uHe[k]TRHeuHe[k]) . (5.23)

In consequence, the derived feedback gains KF w and KHe minimize the respective cost
function. Using the input transformation Tu and the state transformation Tc-d defined
in (A.7) and (A.8) the feedback gain

K = T −1
u

KF w 01×3

01×4 KHe

Tc-d (5.24)

can be calculated which is used in (5.19) and stabilizes (5.16). As each model only
has one output, the weighting matrices reduce to scalar factors. They are tuned in
simulations and verified in experiments with QF w = 3000, QHe = 150 for the outputs
and RF w = RHe = 1 for the control inputs. The resulting matrix K is given in (B.5).
For sure, the same feedback gain can also be derived by assembling and transform-
ing QF w, QHe as well as RF w, RHe and solving the LQR problem for the full (not
decoupled) state space model.
The proposed design procedure eases the control synthesis, as only two scalars (QF w

and QHe) have to be tuned. In addition, the approach offers a clear relation between the
parameters to tune and the effect on the error compensation related to the longitudinal
and heading motions of the robot. Moreover, if one decides to neglect the current dy-
namics for closed-loop control and uses the model without currents for control synthesis,
the procedure stays the same and the tuned parameters can be reused as they weight
the output and not directly the states.

5.4.1 Experimental Results

The performance of the controller and guidance algorithm proposed has been evaluated
in experiments with the optimal trajectory as presented in Chapter 4. To be precise,
one loop of the trajectory with a duration of about 53 s as shown in Figures 4.1, 4.2,
4.4 and 4.5 is sliced out of the experimental data for analysis. In Tables 5.1 and 5.2 the
maximum absolute errors and RMS values of all states are listed. In addition, Figures 5.3
and B.11 show the error plot of the states.

Table 5.1: Experimental control errors (xB, yB, θ, α)

state xB yB θ α

unit m m ° °

max |eC | 1.7 · 10−2 1.6 · 10−2 5.4 · 100 2.3 · 100

RMS(eC) 7.3 · 10−3 7.0 · 10−3 2.1 · 100 6.2 · 10−1

1Note that tiny error peaks due to disturbances and noise in the estimated state, especially at the
currents iR and iR, are included in the calculation for the maximum absolute and RMS error values but
cannot be seen in the plots, as they have to be drawn with down-sampled data.
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Table 5.2: Experimental control errors (vα, vd, vα, iR, iL)

state vα vd vα iR iL

unit °/s m/s °/s A A

max |eC | 4.9 · 10−1 4.9 · 10−2 8.8 · 10−1 4.9 · 10−1 4.9 · 10−1

RMS(eC) 1.1 · 10−1 1.5 · 10−2 1.4 · 10−1 10 · 10−2 9.4 · 10−2
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Figure 5.3: Experimental control errors (exB ,eyB ,eθ)

For stability, precise control of α and high disturbance rejection is required. This prop-
erty is fulfilled as can be inferred by the values for α in Table 5.1. Moreover, the TWIP
is able to follow the trajectory precisely with less than 2 cm maximum offset in position
and less than 6◦ in orientation with the proposed algorithm. Note that the typical offsets
are much smaller, as the RMS values show. Moreover, a controller tuned to be more
aggressive is able to even further reduce the influence of disturbances but will lead to a
smaller DoA due to the limited motor terminal voltages. Thus, the controller parameters
were chosen to get a good compromise between error minimization as well as disturbance
rejection and the resulting size of the DoA.
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5.5 Estimation of the Domain of Attraction

In this section, the DoA is estimated by the use of a quadratic Lyapunov function (QLF)

V [k] = eC [k]T PeC [k] with P = P T > 0 , (5.25)

the linear state space model and the controller derived in the previous section. Hereby,
the calculated estimated domain of attraction (EDoA) is limited by a defined level set
V (eC [k]) = η0 and the state limits and input saturation of the systems are incorporated
by the derivation of the matrix P .
The set of matrix inequalities defining the constraints on the QLF as well as an opti-
mization problem to find the largest EDoA is introduced in the following. As they can
be converted into LMIs as presented in Boyd et al. [10] the optimization problem can be
solved via convex optimization efficiently as introduced by Boyd and Vandenberghe [9].
To ensure a minimum control performance inside the EDoA, a minimum decay rate of
the Lyapunov function can be considered. Moreover, such a minimum decay rate is even
required to ensure stability during trajectory tracking. The requirement for a minimum
decay rate β > 0 can be formulated with the difference of the Lyapunov function between
two consecutive sample steps by

∆V [k] = V [k + 1]− V [k] ≤ −βV [k] with 0 < β ≤ 1 . (5.26)

In the next step, eC [k + 1] can be replaced by the linear closed-loop system dynamic

eC [k + 1] = (A⟳ + B⟳K)︸ ︷︷ ︸
A⟳

cl

eC [k] (5.27)

in V [k + 1] and included in (5.26). Based on the resulting difference equation

∆V [k] = eC [k + 1]TPeC [k + 1]− eC [k]TPeC [k]

= eC [k]T
(
A⟳

cl
TPA⟳

cl − P
)

eC [k] ≤ −βeC [k]T PeC [k] . (5.28)

the matrix inequalities

P = P T > 0 (5.29a)
A⟳

cl
TPA⟳

cl − (1− β)P ≤ 0 (5.29b)

can be formulated. In consequence, if a positive definite matrix P can be found such that
(5.29) is fulfilled, a QLF for the closed-loop system has been found. As no constraints
have been incorporated yet, the EDoA covers the full state space of the linear model.
Unfortunately, due to the state and input limits of the TWIP, the real DoA is limited.
In consequence, these limits have to be included in the estimation of the DoA. This is
possible, by adding additional LMIs to the problem such that the largest level set η0 of
the QLF is known, in which all trajectories starting with a value V (eC) ≤ η0 will not
violate the state and input limits. In consequence, the goal is to find an EDoA

S0 = { eC | V (eC) ≤ η0} (5.30)

as large as possible, with η0 inside all introduced restrictions. This is nothing else than
maximizing the size of an ellipsoid inside a polytope as shown in Boyd et al. [10]. Hu
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and Lin [46] as well as Hu et al. [47] introduced how state and input limits could be
included in the optimization of P through the definition of a polytope. This approach
has also been used by Diepold et al. [30], Diepold [31] and Anhalt [5]. Defining η0 = 1
the conditions

kT
i P −1ki − u2

C,i,η0 ≤ 0 , (5.31a)
gT

j P −1gj − e2
C,j,η0 ≤ 0 (5.31b)

can be formulated to consider the limits. Hereby, the vector ki is the i row of the constant
feedback gain K (5.24) and enforces the input limit of the ith input. Analogously, the
vector gj accounts for the jth state limit and is defined as a vector with the size of the
state vector, with all entries zero beside the jth entry. For the TWIP, the inputs uR
and uL are limited as well as the states α, iR and iL. The values uC,i,η0 and eC,j,η0 are
the smallest absolute values of the available control input or the acceptable error in the
limited state which are inside the level set η0.
The minimization of the determinant of P in respect to the conditions (5.29) and (5.31)
is similar to the maximization of the volume of the ellipsoid of the QLF limited by the
conditions on η0 (see Boyd et al. [10], Hannah [42]). Thus, the complete optimization
problem assembles to

min det P (5.32a)
s. t. P > 0 (5.32b)

A⟳
cl

TPA⟳
cl − (1− β)P ≤ 0 , (5.32c)

kT
i P −1ki − u2

C,i,η0 ≤ 0 ∀i ∈ {R, L} , (5.32d)
gT

j P −1gj − e2
C,j,η0 ≤ 0 ∀j ∈ {α, iR, iL}. (5.32e)

To solve this problem efficiently, the introduced inequality equations and cost func-
tion have to be converted to LMIs and a convex cost function. Using the substitution
Q = P −1 and applying the Schur complement on (5.32c) LMIs are received. Further-
more, if the logarithmic function is applied to (5.32a), the optimization problem

min(− log det Q) (5.33a)
s. t. Q ≥ 0 , (5.33b)(1− β)Q QA⟳

cl
T

A⟳
clQ Q

 ≥ 0 , (5.33c)

kT
i Qki − u2

C,i,η0 ≤ 0 ∀i ∈ {R, L} , (5.33d)
gT

j Qgj − e2
C,j,η0 ≤ 0 ∀i ∈ {α, iR, iL} . (5.33e)

is convex and can be solved through convex optimization and a EDoA based on a QLF
is derived. The introduced optimization problem is solved by the use of the toolbox
YALMIP created by Löfberg [65] and with the solver SDPT3 provided by Toh et al.
[104] and Tütüncü et al. [105]. As setpoint tracking requires different parameters com-
pared to trajectory tracking, the numerical values of the parameters used in (5.33) and
their choice are discussed in the corresponding sections of the tracking method.
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5.6 Command Governor

In Section 5.4 the design of a linear control law is presented which stabilizes the TWIP.
Based on this controller, a QLF is derived in Section 5.5 with a level set η0, limiting
the EDoA. In consequence, only if the control error eC is inside the EDoA, stabilization
can be guaranteed. As motivated in Section 5.1 this might not always be the case even
during ‘normal’ operation.
To extend the EDoA, Buhl [12], Buhl and Lohmann [13], Diepold et al. [30] and Diepold
[31] presented algorithms for setpoint and trajectory tracking. In particular, Buhl [12]
and Buhl and Lohmann [13] presented an algorithm for setpoint tracking with SISO-
systems and Diepold et al. [30] and Diepold [31] extended the algorithm for MIMO-
systems and developed additional requirements to perform trajectory tracking. Finally,
Anhalt [5] and the author adapted the concepts to be used with discrete-time systems. In
consequence, the first presentation of the discrete-time variants of the above-mentioned
algorithms as well as the application on the TWIP can be found in Anhalt [5], supervised
by the author.
Buhl [12], Buhl and Lohmann [13] and Diepold [31] used a control structure for setpoint
tracking, where the command governor modifies the desired state before the calculation
of the control error. However, in this thesis, the command governors are presented
directly in error coordinates for both, setpoint tracking as well as trajectory tracking.
For a more detailed derivation and thorough theoretical treatment it is referred to Buhl
[12], Buhl and Lohmann [13] for the SISO setpoint tracking case and to Diepold et al.
[30], Diepold [31] for the MIMO and trajectory tracking case.

ed

evd

eR eT [0] eT [1] eT [2] eD

e[0]

e[1]
e[2]

e[3]

Figure 5.4: Illustration of the command governor principle

In Figure 5.4 a projection of a EDoA to a 2D-plane with the distance error ed and
forward velocity error evd

for the TWIP is illustrated. Herein, the green solid line marks
the limiting level set η0 of the EDoA in respect to the desired equilibrium eD = 0 at the
origin. The control error eC , as shown in Figure 5.1, is calculated by

eC = e− eT , (5.34)

where eT is a temporary equilibrium set by the command governor algorithm. Let us first
assume, that e is inside the EDoA and thus V (e) ≤ η0. Then, the command governor
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will set eT = eD = 0 and due to the asymptotically stabilizing controller, the control
error eC = e− eT = e− eD = e should converge to zero over time.
However, a couple of issues have been discussed in Section 5.1, causing a large control
error outside the EDoA. For an initial time step k = 0 such a large error e[0] is plotted
in Figure 5.4, which is clearly outside the EDoA with the origin eD. But, if a stationary
offset in the distance d is accepted, another equilibrium eR (‘R’ for reference) may be
found, in which EDoA includes e[0], as shown in Figure 5.4 with the blue limiting level
set. In consequence, if the control error is calculated by eC = e−eT = e−eR the control
error is inside the EDoA of eR and thus stabilization is ensured but with a stationary
offset in d. In particular, eC will converge to zero and thus e to eT = eR over time.
However, the goal has to be that e converges to zero and thus eT is set to eD.
In consequence, the idea is to look for a temporary equilibrium eT , which lies between eR
and eD with e inside the EDoA, but as close as possible to eD. With discrete-time control,
the derivation of eT can be repeated in every sample step and in consequence, the control
error will be guided by eT , set by the command governor, to eD over time. Thereby,
stabilization can be guaranteed as long as a reference equilibrium with V (e− eR) ≤ η0
can be found.
Such a shift of eT by the command governor is visualized in Figure 5.4. At first, a
reference equilibrium eR is calculated to ensure, that e[0] is inside any EDoA at all.
Afterwards, a temporary equilibrium eT [0] is calculated and used to calculate eC [0] =
e[0] − eT [0]. Due to the asymptotically stabilizing control law, designed in Section 5.4,
the error will converge slightly towards eT [0] during the sample step. In the next sample
step k = 1, a new temporary equilibrium eT [1] can be derived which is closer to eD and
can be used to calculate eC [1]. As shown in Figure 5.4, this procedure is repeated until
e is inside the EDoA of the origin eD.
Let us now introduce the equations to derive the temporary equilibrium eT . At first,
the reference equilibrium has to be found. As linear dynamics are considered for control
synthesis and analysis, the QLF found for eD is also valid for all other equilibria and
thus all points share the same Lyapunov matrix P . Buhl [12] and Buhl and Lohmann
[13] noted for linear systems, that the reference points lie in the nullspace N of the
continuous-time dynamic matrix A, if the system has eigenvalues in the origin. As the
TWIP has two eigenvalues in zero, we calculate

eR = Nw with N =

1 0 01×6

0 1 01×6

T

, (5.35)

which defines the reference equilibrium via the vector w = [ed, eθ]T. In the next step, let
us derive w, such that the corresponding value of the QLF of eR is as small as possible.
In consequence, we formulate the minimization problem

eR = arg min
eR

V (e− eR) = arg min
eR

(
(e− eR)TP (e− eR)

)
(5.36)

to find the desired eR. As eR is defined in (5.35) as a function of w, we include this in
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(5.36) and get

w = arg min
w

V (e−Nw) (5.37)

= arg min
w

(
eTPe− eTPNw − (Nw)TPe + (Nw)TP (Nw)

)
(5.38)

= arg min
w

(
eTPe + wTNTPNw − 2wTNTPe

)
︸ ︷︷ ︸

fw

(5.39)

which has to be solved for w. The extrema of the function fw are at the zeros of its
derivative

∂fw

∂w
= 2NTPNw − 2NTPe = 0 . (5.40)

In our case, only a single solution for the minimum with

w = (NTPN)−1NTPe (5.41)

is derived, depending on e. By including the solution of w into (5.35) the reference
equilibrium is given by

eR = Nw = N(NTPN)−1NTP︸ ︷︷ ︸
L

e , (5.42)

which is the equilibrium with the smallest value of the QLF V (e). As the matrix L can
be calculated offline in advance it does not have to be computed online at each sample
step to derive eR.
In the following, the derivation of a temporary equilibrium is introduced. If e is already
inside the EDoA of the origin V (e− eD) = V (e) ≤ η0 then the intuitive choice is to set
eT = eD = 0. In all other cases let us look for a temporary equilibrium point between
eR and eD, defined by

eT = eR + c (eD − eR) c ∈ [0, 1) (5.43)

with c as large as possible, to derive eT to be as close as possible to eD. Consequently,
the desired eT leads to V (e− eT ) = η0 and thus to

(e− eR − c(eD − eR))T P (e− eR − c(eD − eR)) = η0 . (5.44)

This condition can be rearranged to

c2
(
(eR − eD)TP (eR − eD)

)
+ c

(
2(eR − eD)TP (e− eR)

)
(5.45)

+
(
(e− eR)TP (e− eR)

)
= η0

and is a scalar quadratic equation in c. Due to this, c can be calculated by solving the
quadratic equation and the selection of the larger value of c in [0, 1). Finally, we are
able to calculate eT with (5.43) and the calculated value of c such that eC is inside the
EDoA.
For visualization purposes, a fictive temporary value for the desired distance and heading
angle can be calculated by

d̊T = d̂ + eC,d = d̂ + (ed − eT ,d) (5.46)
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and

θ̊T = θ̂ + eC,θ = θ̂ + (eθ − eT ,θ) , (5.47)

with eT and e. These two temporary values will be used to visualize the experimental
results in the later sections of this chapter.
Even though the EDoA typically underestimates the DoA drastically, it is not a piece
of good advice to choose a eT such that e is exactly at the border of the EDoA with
V (e) = η0. During experiments, measurement noise might increase the error of the state
estimation and also model uncertainties have to be considered. Thus, the command
governors are typically parameterized to calculate eT , such that e is on a smaller, safer
level set V (e) = ηS = kSη0 with 0 > kS ≥ 1.
Last but not least, there might be the case that e leads to a value η0 > V (e) > ηS and
no eT can be calculated but a stable eR can be found. Even worse, unexpected large
disturbances might lead to V (e) > η0, which means e is not inside any EDoA. As a
fallback solution, eR is calculated by (5.42) and used in these cases as eT , even though
the value of V might be even larger than η0 and stabilization cannot be guaranteed. The
case V (e) > η0 should never occur during operation, but it is implemented to at least
attempt to stabilize the system if it occurs. On the other side, the case η0 > V (e) > ηS

occurs frequently since eT is set to be on the level set ηS and the estimated states often
slightly differ from the real state values due to measurement noise.
The charm of the presented procedure is that almost no computational power is required
to compute eR and to solve the quadratic equation (5.45). Thus the derivation of eT is
incredibly cheap and can be calculated on literally every MCU in real-time.
At the end, a remark to a small modification to the introduced command governor
method is given to improve the performance: Experiments conducted by Anhalt [5]
have shown that the command governor leads to S-curved trajectories, even if only an
initial error in distance is considered. This is caused by an interaction of the stable
heading dynamics as introduced in Subsection 3.3.2, the degree of freedom in (5.42) in θ
as well as the guidance algorithm to handle the nonholonomic constraints of the TWIP.
In consequence, to force the TWIP to a more forward-directed motion, the degree of
freedom in (5.35) for θ is removed by default and only if no eR could be found which
leads to an eC inside the EDoA, the introduced equation (5.42) with two degrees of
freedom is used.
In the next section, the setpoint tracking control algorithm will be presented, using the
command governor introduced, and its applicability is shown by experiments.

5.7 Setpoint Tracking Control

To change the robot’s position and orientation a setpoint tracking control algorithm is
required, which ensures a stable transmission from the initial point to the new desired
setpoint. Such setpoint changes may be commanded by a simple upper-level navigation
scheme, leading the robot with waypoints through a building or logistic center. To ensure
stable operation, the command governor presented in Section 5.6 is used and thus a QLF
that estimates the DoA is needed.
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Table 5.3: Parameters to estimate the DoA for setpoint tracking

Parameter Value

uC,R,η0 7.14 V
uC,L,η0 7.14 V
eC,α,η0 ±1

6π rad
eC,iR,η0 2.82 A
eC,iL,η0 2.82 A

β 4 · 10−3

kS
2
3

5.7.1 Parameters

The parameters used to calculate the EDoA, as presented in Section 5.5, are listed in
Table 5.3 and introduced in the following.
Firstly, the available input for control has to be determined. The friction compensation,
presented in Section 5.2 requires the input uF and depends on the robot’s state. In
consequence, the maximum input which is available for control is calculated by uC,R,η0 =
uC,L,η0 = ubat − |uF,max|, which is the difference between the available battery voltage
and the maximum value of the input demanded by the friction compensation. As only
the nonlinear friction components are compensated, the amount of input that has to be
statically allocated to the friction compensation is drastically reduced. This leads to a
larger available input uC,R,η0 and uC,L,η0 for control, which can be considered in finding
the EDoA. Moreover, the current limit has only to be reduced from ±3 A to ±2.82 A
due to the friction compensation.
Furthermore, to force all trajectories to stay inside the region, where the linear model
shows a high congruence with the real nonlinear system, the physical tilt angle limit of
±1

2π rad is reduced to ±1
6π rad. Due to this, a setpoint change will only show small tilt

angles.
For robustness, the command governor is parameterized with kS = 2

3 .
Last but not least, to ensure a minimum performance on the EDoA, a minimum decay
rate of β = 4 · 10−3 is considered.

5.7.2 Experimental Results

The proposed control structure has been tested experimentally and the results are pre-
sented in the following. In the experiment, a setpoint change of 1.5 m in x and y has
been commanded. This leads to an error ed in d of 3√

2 m which is outside the DoA and
thus a stable setpoint change will fail without the use of the command governor.
Experimental results using the proposed command governor are shown in Figure 5.5
and Figure 5.6. In Figure 5.5, the dotted blue lines are the desired values given and the
setpoint changes for x and y at t = 3.5 s can be recognized. The setpoint change requires
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Figure 5.5: Experimental results setpoint tracking

about 4.5 s where the forward speed is about 0.5 m/s. In addition, the non-minimum
phase behavior of the system can be observed in the plots, as the system response first
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goes into the reverse directions for x, y, d and vd. Also, the robot tilts up to 15◦ in α to
accelerate and decelerate at the beginning and the end of the maneuver. Moreover, the
temporary values for the desired distance d and heading angle θ that are calculated by
the command governor are shown in the plots of d and θ by dashed orange lines. Hereby,
using temporarily desired values, the control error eC is limited to be inside the DoA as
can be seen in the plots of eC,d and eC,θ

To perform the setpoint change, the orientation of the robot has to be modified from
its final desired value, as can be seen in the plot of θ. This is done by the guidance
algorithm by manipulating the desired orientation of θ, such that the robot drives to the
new setpoint and then recovers the desired heading. In particular, the reference value
for θ is changed from 0◦ to 45◦ at the beginning of the setpoint change and then back
to the desired value of 0◦ as the new position is approached.
The upper plot of Figure 5.6 shows VeD , which is the value of the QLF evaluated with
the control error eC using the equilibrium eD of the new desired setpoint. In addition,
VeT is drawn, which is the value of the QLF calculated with eC using the temporary
equilibrium eT . Also, the limiting level set ηS is drawn, marking the values for a safe
command governor operation, including a safety margin to η0 = 1. In addition, the
lower plot of Figure 5.6 shows where the command governor is active and manipulates
the value of eC by eT ̸= 0.
At t = 2.6 s, as well as t = 7.7 s, short disturbances push the value of the QLF above
the limit of ηS and the command governor is activated for a few milliseconds to ensure
safe operation. As the value of VeD exceeds ηS as well as η0 at the beginning of the
setpoint change at t = 3.5 s, the command governor is activated as expected. During
the active phase of the command governor, the value of VeT stays equal to ηS as eT is
recalculated every sample step to fulfill VeT = ηS in order to reach eT = eD as quickly
as possible. As soon as VeD is below ηS , the command governor is deactivated and eT is
set to eT = eD = 0. This can be observed in the plots at t = 7.3 s.
The experimental results show that the proposed control structure for setpoint tracking is
able to provide a stable transition of the robot to a new setpoint, even if the new setpoint
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is far outside the DoA of the controller. Moreover, the applicability and robustness of
the proposed and implemented algorithms are verified.

5.8 Trajectory Tracking Control

Besides setpoint tracking, modern applications for mobile robots also require accurate
trajectory tracking. For example, this is required if several robots operate in the same
area of a logistic center and a collision has to be avoided, even if their paths are crossing.
Moreover, if a robot is used for surveillance applications, trajectory tracking is required
to accurately follow the desired target in motion.
The major difference between setpoint tracking and trajectory tracking is that the limits
for the control input uC and error eC depend on the feedforward values of the trajectory
ů and x̊. In particular, the plant input u = uC + uF + ů, shown in Figure 5.1, has to be
inside the physical limits of the TWIP and thus the condition ∥u∥∞ ≤ umax always has
to be fulfilled2. The same principles apply for the state limits: the desired trajectories
superposed with possible errors, have always to be inside the state limits of the system.
Let us assume a desired value i̊R[k∗] = 1 A at the sample step k∗ and a state limit of
iR,max = 3 A, for example. In this case, the value of the control error eC,iR

has to be
≤ 2 A. In consequence, there are two possibilities to estimate the DoA.
The first option is an a priori static allocation of input and state limits (SAL). In this
case, the limits for uC and eC are calculated in advance based on the maximum values
of the desired trajectory. In consequence, similar to the setpoint tracking application, a
constant limiting level set ηL = η0 of the calculated QLF is received, which can be used
by the command governor. The operation principle is then similar to the introduced
setpoint tracking. The disadvantage of this static input and state allocation is, that if
the desired input and states are close to the system’s limits for a single moment, the
input and state limits on uC and eC might get tight and the EDoA drastically shrinks.
Contrary to the static allocation, a dynamic allocation of input and state limits (DAL)
can be considered. In this case, the control input and control error limits are calculated
based on the values ů and x̊ of the desired trajectory in each sample step k, which leads
to a changing limiting level set ηL(̊x[k], ů[k], η0) of the QLF in every sample step. In
consequence, additional requirements on the desired trajectory and the Lyapunov func-
tion have to be fulfilled to ensure stability. The EDoA based on the dynamic allocation
may change over time, as the limiting level set depends on the desired input and state
of the trajectory. Moreover, it can be larger but, due to the additional requirements
mentioned above, also smaller than with the static allocation.
To use the benefits of both approaches, the EDoA is based on SAL and DAL and in each
sample step the approach is selected which guarantees stability and reduces the control
error faster.
In the following, the static allocation as well as the dynamic allocation with additional
conditions for the desired trajectory and the Lyapunov function are introduced. After-
wards, an algorithm to choose the better approach (SAL or DAL) at each sample step
is introduced. Finally, experimental results are presented and discussed.

2Diepold [31] presented an approach with additional conditions inside the LMIs to estimate the DoA
to guarantee stability even if the control limits are violated (also called oversaturation).
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5.8.1 Static Allocation of Input and State Limits

If the static allocation of input and state limits (SAL) between the desired trajectory
and the controller is chosen, the maximum values of the entire desired trajectory have
to be used to calculate the effective input and state limits for the controller. This is
contrary to the setpoint tracking application, where ů = 0 and x̊ = 0.
For the trajectory, introduced in Chapter 4, the maximum feedforward values are 4.28 V
for the input, 0.37 A for the motor currents and 0.05 rad for the tilt angle. The maxi-
mum values allocated to the friction compensation are similar to the setpoint tracking
application with 0.26 V for the input and 0.18 A for the motor currents.
To obtain the available input for the controller, the maximum input which may be
allocated to the friction compensation as well as the feedforward input of the desired
trajectory has to be subtracted from the available battery voltage. In consequence,
the input limits considered to estimate the limiting level set η0 of the DoA have to be
calculated with

uC,i,η0 = ubat − |uF,i,max| −max
k
|̊ui[k]| ∀i ∈ {R, L} . (5.48)

In addition, the limit for the current errors are given by

eC,i,η0 = xi,lim − |xF,i,max| −max
k
|̊xi[k]| ∀i ∈ {iR, iL} (5.49)

and the error limit for the tilt angle is defined by

eC,i,η0 = xi,lim −max
k
|̊xi[k]| ∀i ∈ {α} . (5.50)

Since no state limits have been defined for the other states, they are not considered
here. In accordance to the setpoint tracking application, the same decay rate constraint
is used for the estimation of the DoA.
Finally, all limits and parameters used to find the EDoA as introduced in Section 5.5
with a static allocation of the input and state limits are listed in Table 5.4.

Table 5.4: Parameters to estimate the DoA for trajectory tracking

Parameter Static Dynamic

uC,R,η0 2.85 V 7.14 V
uC,L,η0 2.85 V 7.14 V
eC,α,η0 0.34 rad 0.39 rad
eC,iR,η0 2.45 A 2.82 A
eC,iL,η0 2.45 A 2.82 A

β 4 · 10−3 6.6 · 10−3

kS
1
2

1
2



100 Chapter 5. Setpoint and Trajectory Tracking

5.8.2 Dynamical Allocation of Input and State Limits

Contrary to a static allocation, dynamic allocation of input and state limits (DAL) is
only possible if an additional condition linking the desired trajectory and the decay rate
of the Lyapunov function is fulfilled. In this case, at each sample step the controller can
use all resources which are currently not allocated to the desired trajectory and friction
compensation. In consequence, the limiting level set may change at every sample step
and thus the EDoA may increase or shrink.
Thus, in the following, the calculation of the limiting level set with DAL is introduced and
the required minimum decay rate for the Lyapunov function is derived. More precisely,
the required decay rate can be calculated based on a given desired trajectory or vice
versa, based on a given decay rate, the maximum rate constraints for the input and
states of the desired trajectory can be calculated. Finally, additional information is
given on how a ‘duplicate’ allocation of input and state resources can be avoided if a
friction compensation is used together with a desired trajectory.
Now, let us consider a dynamical allocation of the state and input limits available for
the controller to stabilize the system. In this case, the limiting level set ηL of the EDoA
changes at each sample step, depending on the desired trajectory with ů[k] and x̊[k].
Firstly, the available input for the controller is defined with

uC,i,avail[k] = ubat − |uF,i,max|︸ ︷︷ ︸
ui,η0

−|̊ui[k]| ∀i ∈ {R, L} , (5.51)

the admissible state error for the currents, limiting the control error trajectories are
defined as

eC,i,avail[k] = xi,lim − |xF,i,max|︸ ︷︷ ︸
eC,i,η0

−|̊xi[k]| ∀i ∈ {iR, iL} (5.52)

and for the tilt angle control error with

eC,i,avail[k] = xi,lim︸ ︷︷ ︸
eC,i,η0

−|̊xi[k]| = ∀i ∈ {α} (5.53)

for every sample step k. Contrary to the static allocation, in (5.51), (5.52) and (5.53)
the values at the current sample step k of the desired trajectory are considered instead
of their maximum over all sample steps. In consequence, the available control input and
control error changes for every sample step k as ů[k] and x̊i[k] of the desired trajectory
change. Thus, the EDoA and the limiting level set ηL will also change. Similar to
Subsection 5.8.1, the DoA can be estimated as presented in Section 5.5. Here, the limits
uC,i,η0 and eC,i,η0 as labeled in (5.51), (5.52) and (5.53) with the values listed in Table 5.4
are used. As a result, the EDoA is calculated for ů[k] = 0 and x̊i[k] = 0 with the limiting
level set η0. In presence of ů[k] ̸= 0 or x̊i[k] ̸= 0, the limiting level set is reduced by the
squared ratio of the available limits uC,i,avail, eC,i,avail and the limits uC,i,η0 , eC,i,η0 , used
to calculate the QLF with η0. In particular, the limiting level for the sample step k can
be calculated set based on the desired control input by

ηL,u[k] = η0 min
i

(
(uC,i,η0 − |̊ui[k]|)2

u2
C,i,η0

)
∀i ∈ {R, L} (5.54)
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Figure 5.7: Reduction of the EDoA due to changed state and input limits

and based on the desired states by

ηL,x[k] = η0 min
i

(
(eC,i,η0 − |̊xi[k]|)2

e2
C,i,η0

)
∀i ∈ {α, iR, iL} . (5.55)

As both, the control input and the state error limits have to be fulfilled, the effective
limiting level set is given by

ηL[k] = min (ηL,u[k], ηL,x[k]) . (5.56)

Based on the desired trajectory, increasing ů or x̊ from one sample step to the next can
lower the limiting level set ηL[k] and the EDoA might shrink. To ensure stability, the
value of the Lyapunov function V (eC) needs to decrease faster than the limiting level
set ηL[k] shrinks the EDoA. This is visualized in Figure 5.7, where the EDoA for sample
steps k and k +1 are shown. Here the EDoA is labeled with S[k] and the ellipsoid drawn
is the corresponding limiting level set ηL[k] of the QLF. Let us assume that increasing
values of ů and x̊ cause a reduction of the limiting level set from k to k + 1. In the
case shown, eC [k] is inside the EDoA but the value of V does not decrease the same
amount as ηL does from sample step k to k + 1. In consequence, eC [k + 1] is outside the
EDoA S[k + 1], while eC [k] has been inside S[k]. Clearly, this should never happen and
thus, to use a dynamical allocation of the input and state limits, a minimal decay rate
constraint to the Lyapunov function is required. This minimal decay rate constraint
ensures that an increasing allocation to the desired trajectory never reduces the limiting
level set faster than the Lyapunov function decreases. Luckily, we are able to enforce
such a minimal decay rate of the QLF in Section 5.5 and moreover, the required decay
rate can be calculated in advance based on the desired trajectory, as is introduced in the
following.
Let us first change the expressions of the limiting ratio for the control input in (5.54) to

ξuC =

1−max
i

∣∣∣∣∣ ůi[k]
uC,i,η0

∣∣∣∣∣︸ ︷︷ ︸
νu,i[k]

 ∀i ∈ {R, L} (5.57)
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as well as the ratio for the states in error coordinates in (5.55) to

ξeC =

1−max
i

∣∣∣∣∣ x̊i[k]
eC,i,η0

∣∣∣∣∣︸ ︷︷ ︸
νx,i[k]

 ∀i ∈ {α, iR, iL} (5.58)

such that νu,i[k] and νx,i[k] are scaled values between 0 and 1. As result, a value of ν = 1
indicates that the full amount of the corresponding quantity is allocated to the desired
trajectory and nothing is left for the controller and vise versa, ν = 0 indicates that the
full amount of the quantity can be used by the controller. Thus, the largest value

ν[k] = max {νu,i[k], νx,j [k]} ∀i ∈ {R, L}, ∀j ∈ {α, iR, iL} (5.59)

of all νu,i[k] and νx,i[k] is the one which will lead to the smallest level set ηL. In
consequence, the level set limiting the EDoA can be calculated with

ηL[k] = η0(1− ν[k])2 . (5.60)

The most critical situation occurs, if the value of the Lyapunov function for the control
error is equal to the limiting level set

V (eC [k]) = ηL[k] (5.61)

and thus ’on the border’ of the estimated stable region.
To guarantee stability in this situation, the difference ∆V [k] = V [k + 1] − V [k] of the
Lyapunov function has to decrease faster than the difference ∆ηL = ηL[k + 1]− ηL[k] of
the limiting level set, which leads to the condition

∆V [k] ≤ ∆η[k] . (5.62)

Using the Lyapunov candidate function (5.25) with the minimal decay rate β, this con-
dition is fulfilled if and only if

−βV [k] ≤ ∆η[k] (5.63)

holds.
Let us now derive the connection between the minimal decay rate β and the rate

∆ν[k] = ν[k + 1]− ν[k] (5.64)

calculated with (5.57), (5.58) and (5.59) using ů and x̊ from the desired trajectory.
Substituting (5.61) in (5.63) gives us the condition

−βηL[k] ≤ ∆η[k] (5.65)

where the rate of the limiting level set is given by

∆ηL[k] = ηL[k + 1]− ηL[k]

= η0
[
(1− ν[k + 1])2 − (1− ν[k])2

]
. (5.66)
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Afterwards, ν[k + 1] can be substituted in (5.66) with (5.64) such that we derive

∆ηL[k] = η0
[
(1−∆ν[k]− ν[k])2 − (1− ν[k])2

]
= η0

[
∆ν[k]2 − 2∆ν[k] + 2∆ν[k]ν[k]

]
= η0

[
∆ν[k]2 − 2(1− ν[k])∆ν[k]

]
, (5.67)

which plugged into (5.65) gives us the inequality

∆ν[k]2 − 2(1− ν[k])∆ν[k] + β(1− ν[k])2 ≥ 0 . (5.68)

relating ν with β.
The left side of this inequality is a parabola opened upwards with respect to ∆ν[k],
whose zeros are calculated by

∆ν1/2[k] = (1− ν[k])
(
1±

√
1− β

)
. (5.69)

In consequence, the inequality (5.68) is only fullfiled, if ∆ν[k] lies outside the region
restricted by the zeros ∆ν1/2 of the quadratic equation. Considering the conditions
0 ≤ ν ≤ 1 and 0 < β < 1 and in consequence −1 ≤ ∆ν ≤ 1, only the solution

∆ν[k] ≤ (1− ν[k])
(
1−

√
1− β

)
∀k (5.70)

is valid. Thus, the inequality (5.70) has to be fulfilled to guarantee stable operation with
the proposed command governor and a dynamic allocation of the input and state limits
between the controller and the desired trajectory.
On the other hand, with (5.68), the required decay rate β can be calculated with

1 > β ≥ 2(1− ν[k])∆ν[k]−∆ν[k]2
(1− ν[k])2 ∀k. (5.71)

for a given desired trajectory. If (5.71) is not be fulfilled with the desired trajectory, a
regeneration of the trajectory with rate constraints on the input and states or a QLF
with a larger decay rate β is required.

5.8.3 Combining SAL and DAL

In the previous sections, two different methods to estimate the DoA have been presented.
While the SAL has a constant limiting level set, the DAL allocates the limits depending
on the desired trajectory at each sample step and thus the EDoA changes over time.
The EDoAs of both methods can be nested, overlapping or even identical. In conse-
quence, it might happen that eC is inside both EDoAs (DAL and SAL) or only one of
them. If eC is only inside of one EDoA, the corresponding allocation method is used to
calculate a temporary point eT . Contrary, if eC is inside both EDoAs, both methods
provide a value for eT . As DAL and SAL use the same controller, the method is selected
based on the values of the temporary distance eT ,d and the temporary orientation eT ,θ.
The smaller eT ,d and eT ,θ, the larger the resulting error eC and thus the higher the out-
puts of the controller uC . To prioritize the error reduction in orientation, at first values
of eT ,θ are compared and only if SAL and DAL provide the same values, the temporary
distance eT ,d is used to select the desired method.
As a result of combining both methods, both EDoAs are joined and the overall command
governor and controller performance can be increased.
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5.8.4 Remarks to Modifications to the Friction Compensation

In Chapter 4, a trajectory has been optimized using the full nonlinear model, including
the nonlinear friction. In consequence, if the TWIP exactly follows the desired trajectory
x̊, no additional friction compensation is required. If the friction compensation intro-
duced in Section 5.2 will be used together with the trajectory from Chapter 4 without
any modifications, the nonlinear friction will be compensated twice. To avoid this, the
input uF,̊x to compensate the nonlinear friction based on x̊ as well as the input uF,x̂

based on the estimated state x̂ is calculated with (5.6). Afterwards, instead of uF,x̂ only
the difference

uF = uF,x̂ − uF,̊x (5.72)

is applied to the plant input to compensate the nonlinear friction properly during tra-
jectory tracking.

5.8.5 Experimental Results

The proposed control structure to perform trajectory tracking has been tested experi-
mentally and the results are presented in the following. To test the command governor,
an offset of 1.5 m in x and y has been added at t = 1 s to the trajectory presented in
Chapter 4. This leads to an error ed in d of 3√

2 m which is outside the DoA and thus
stable tracking will fail without the use of the command governor.
In Figure 5.8 and Figure 5.9 the results of the experiment, using the proposed command
governor for trajectory tracking are shown. The dotted blue lines in Figure 5.8 are the
values of the desired trajectory and the applied offset for x and y at t = 1 s can be
recognized. The robot requires about 5 s to catch up to the shifted (or new) trajectory.
For this, the forward speed vd is increased from the desired value up to 0.85 m/s. To
accelerate and decelerate at the beginning and the end of the maneuver, the robot tilts
up to 6.5◦ in α. The temporary values for the desired distance d and heading angle θ
calculated by the command governor are shown in the plots of d and θ by dashed orange
lines. To ensure stable operation, temporarily desired values are used to calculate the
control error which can be recognized in the plots of eC,d and eC,θ. Doing so, the control
error eC is limited to be inside the DoA by the command governor, as can be seen in
the plot eC,d, where the control error in distance is less than 0.15 m whereas the distance
error ed is about 3√

2 m ≈ 2.12 m after the shift of the trajectory.

Similar to the command governor used for setpoint tracking, the orientation of the robot
has to be modified from the desired value of the trajectory, as can be seen in the plot of
θ. Again, this is done by the guidance algorithm by manipulating the desired orientation
of θ, such that the robot drives to the desired trajectory.
Figure 5.9 visualizes the operation of the command governor during the maneuver with
five plots. The upper diagram, labeled with CG status shows if the command governor
is in use, which corresponds to eT ̸= 0. At t = 1 s, where the offset is added to the
desired trajectory, the command governor is activated. After reaching the new desired
trajectory at t ≈ 5.4 s, the command governor is deactivated again.
The second and third plot show the values of VeT of the QLF, calculated with eT , the
limiting level set ηL as well as the safe level set ηS derived with the SAL and DAL
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Figure 5.8: Experimental results trajectory tracking
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Figure 5.9: Experimental results command governor trajectory tracking

methods. SAL has a fixed limiting level set ηL = 1 and safe level set ηS = 0.5. Contrary,
the plot for DAL shows time variant limits ηL and ηS .
The fourth plot, labeled with Selected, indicates if the temporary equilibrium eT from
SAL or DAL is used to manipulate the control error eC . In addition, in the plots for
DAL and SAL the line color of VeT is faded if the method is not selected.
VeT of both methods never exceeds the limiting level set but often the safe level is
violated if the method is not active. On the other side, during the active phase of the
command governor, VeT is equal to ηS of the selected method. This is the result of the
derivation of eT inside the command governor, which ensures that VeT (eC) is equal to
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ηS , as introduced in Section 5.6.
The lowest plot of Figure 5.9 reveals the internal status of the DAL and SAL during the
maneuver. The y-label ’All eT ’ indicates that both methods are able to provide an eT
such that VeT (eC) ≤ ηS is fulfilled. In this case, the control distance error and control
orientation error is used to select between DAL and SAL. ’One eT ’ labels the case where
only one method is able to provide a temporary equilibrium and in this situation, the
corresponding method is used. The label ’All DoA’ marks the case, where both methods
are able to calculate an eR leading to VeR(eC) ≤ ηL but both are not able to provide
an eT that fulfills VeT (eC) ≤ ηS . Similar to the setpoint tracking case, the last case
happens quite often during the operation of the command governor, as the states used
to calculate eT such that VeT (eC) = ηS are estimated and disturbed by measurement
noise.
The experimental results show that the proposed structure for trajectory tracking com-
bining SAL and DAL is able to ensure a stable transition from one trajectory to another,
even if large tracking errors occur. Again, the applicability and robustness of the pro-
posed and implemented algorithms could be demonstrated.

5.9 Concluding Remarks

In this chapter, a novel control structure to perform setpoint and trajectory tracking
in the presence of large control errors has been presented. A major contribution is the
derivation of a complete discrete-time treatment of all elements of the control structure.
Moreover, the presented guidance algorithm enables that a desired setpoint or trajectory
can be reached even though the TWIP underlies nonholonomic constraints. In addition,
a friction compensation is proposed to reduce the effects of nonlinear mechanical friction
and to increase the congruence of the LTI-model used for control synthesis.
For stabilization and tracking a discrete-time linear-quadratic regulator (LQR) has been
designed. This is done using the decoupled linear state space models for the forward
dynamics and heading dynamics, which eases the control synthesis, as only two scalars
have to be tuned in simulations and experiments. In addition, the approach offers a clear
relation between the parameters to tune and the effect on the error compensation related
to the longitudinal and heading motions of the robot. Moreover, the design procedure
stays the same if the motor currents are neglected and the tuned parameters can be
reused.
In the next step, the domain of attraction (DoA) of closed-loop system is estimated
using a quadratic Lyapunov function (QLF). As the system is subject to state and
input constraints, the DoA is limited. Using the introduced LMIs the matrix P of the
QLF can be efficiently calculated by solving a convex optimization. Moreover, with
the introduced procedure, the limiting level set of the QLF is known which defines the
estimated domain of attraction (EDoA) limited by all state and input constraints. This
approach is easy to implement and can be efficiently solved.
Based on the calculated EDoA and the limiting level set, a command governor algorithm
is introduced to extend the DoA of the closed-loop system of the TWIP. This is done
by the derivation of a reference equilibrium R, which is inside the EDoA. Then a
temporary equilibrium T is calculated such that the current state is still inside the
EDoA. In particular, T is derived to lead the TWIP into the direction of the desired
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equilibrium D. In the case of the proposed setpoint tracking algorithm, D is the new set
point. In the case of the introduced trajectory tracking, D is reached, if the robot exactly
follows the desired trajectory. In both cases, the control error then is zero. To enhance
the performance of the algorithm for trajectory tracking, static and dynamic allocations
of the input and state limits between the desired trajectory and the stabilizing controller
are presented.
As another major contribution experiments on a MIMO-system for setpoint and tra-
jectory tracking are presented to prove the applicability of the algorithms in practice.
The problems arising from nonholonomic constraints stay for the TWIP, thus stability
can only be guaranteed for the linear system but not for the nonlinear system with the
guidance algorithm. This problem is unsolved in the literature up to now and remains.
Nevertheless, the presented experimental results highlight that in practice good results
for setpoint tracking as well as trajectory tracking can be achieved. In particular, large
setpoint changes and trajectory offsets could be handled in experiments without the loss
of stability. Finally, the proposed control algorithms showed impressive performance,
even in presence of disturbances, measurement noise and state estimation errors, which
are present in every real system.



Chapter 6

State Estimation with Time
Delayed Measurements

In the preceding chapter control algorithms for the TWIP have been presented. To
calculate the control error e, besides the desired state x̊, the estimated state x̂ of the
TWIP calculated by a state estimator as shown in Figure 5.1, is required. In consequence,
a state estimation algorithm is developed and presented in this chapter.
A novel state estimation for the TWIP is introduced, which uses the local sensor mea-
surements from the accelerometer, the gyroscope and the encoders as well as the remote
measurements from the remote tracking system introduced in Section 2.4. In particu-
lar, the presented state estimation is a mixture of a time-variant, nonlinear extended
Kalman filter (EKF) and a time-invariant, linear, optimal state estimator (or stationary
Kalman filter). Contrary to an EKF for the TWIP, the presented algorithm is able
to run on the microcontroller used with limited computational capacity. Moreover, the
deterioration of the estimated state due to the non-constant transmission delays of the
remote measurements received is minimized by the proposed technique. In addition, the
introduced algorithm incorporates the property, that the motion of the TWIP underlies
nonholonomic constraints, in a novel way to reduce the estimation error.
At the beginning of this chapter, a brief motivation is given and preliminaries are in-
troduced. Afterwards, the key problem is sketched and a deeper look into the nature
of the remote measurement delays is taken. This is done to reveal the need for a novel
state estimation algorithm as presented in this chapter. In addition, it is explained why
a moving horizon estimation (MHE) or an EKF is not applicable for the intended ap-
plication on the TWIP. Afterwards, the developed cascaded quasi-linear Kalman filter
(CQLKF) method is presented and simulation and experimental results are given to
prove its applicability. Finally, concluding remarks on the chapter are given.
The first version for an estimator for the TWIP but without the tracking system and thus
measurement delays has been presented in Wunderlich [117]. Based on this, Priesack [92]
added the tracking system measurements to the estimator. Afterwards, Bürchner [14]
added the clock parameter estimation such that time-delays of the remote measurements
could be calculated. Note, all three student theses have been supervised and supported
by the author. Moreover, the algorithm and thus the results presented in this chapter
differ from the preliminary results presented in the student theses.
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6.1 Motivation

6.1.1 Problem Description

Typically mobile robots, used for indoor applications, are linked via wireless connections
(e.g. Bluetooth, Wi-Fi) to other robots, upper-level command governors or remote
sensors. As introduced in Section 2.4 and Section 2.5, a similar experimental setup for
the TWIP is used in this thesis. Thereby, an optical tracking system is connected via
Bluetooth to the robot as a remote sensor. To improve the state estimation, the tracking
system’s measurements are used to update the predicted position and orientation of the
robot. Contrary, the velocities as well as the tilt angle can be updated with the local
sensor measurements from the IMU and the odometry1.
Unfortunately, the tracking system’s measurements are received by the robot with a
varying time delay. This is caused by the nature of image processing on a PC as well as
the tasks involved in transferring data wirelessly to the robot, namely, output buffering,
sending, receiving and input buffering which leads to packet delay variation (PDV) or
sometimes called jitter (see Demichelis and Chimento [24]). Commonly, this time delay
varies between every data set received by the robot. Especially, if the robot moves fast,
the transmission delays mentioned above can deteriorate the estimation of the current
position and orientation of the robot as has been pointed out in van der Merwe et al.
[107].

6.1.2 Estimation Error due to Delayed Measurements

Let us quickly take a look at the reason for the deterioration. Typically, mobile robots as
the TWIP, use measurements from encoders and an IMU to estimate the forward velocity
vd and heading rate vθ of the robot. By means of integration, the position (x, y) and
orientation θ of the robot can be calculated. Based on this dead reckoning navigation,
errors due to gyroscope drift and wheel slip are also integrated and lead to cumulated
errors in position and orientation. These errors can be bounded and reduced if a tracking
system provides absolute measurements of (x, y, θ) to the robot with a fixed sample rate.
If the position and orientation calculated by the dead reckoning algorithm are updated
with a data set (yT,x, yT,y, yT,θ) from the tracking system just at the time instant when
the data set is received by the robot, neglecting the time delay, a considerable estimation
error might occur. Figure 6.1 depicts this phenomenon with experimental data. In the
upper plot, the points marked by asterisks show the position of the robot at the time
instant when the tracking system gathered the image data, whereas the circles denote
the time instant when the position and orientation have been finally received by the
robot. The lower plot shows the time delay calculated offline for each transmitted data
set from the tracking system. As already mentioned, in this experiment an observer is
used which uses the received data immediately to update the estimated values at the
current time instant, neglecting the delay. For instance, notice that at time t = 76.345 s
a large delay of 112 ms occurs. Instead of reducing the estimation error of the position
x, the error has increased through the measurement update. Moreover, the faster the
robot moves and the larger the delay of a data set is, the more this error may increase.

1The local sensors of the TWIP are introduced in Subsection 2.3.2 and remarks are given in Subsec-
tion 2.3.4.
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Figure 6.1: Position xB estimated neglecting the time delays

To solve this issue, state estimators have been presented in literature to handle fixed
finite measurement delays e.g. Kaszkurewicz and Bhaya [52]. Moreover, Shi et al.
[97] presented a Kalman filter to handle time-varying measurement delays, caused by
an packet-delaying network, using a probabilistic approach. Nevertheless, the method
requires that the measurement delays can be modeled as random variable which is in-
dependent and identically distributed in time. Therefore, in the next subsection the
properties of the random process behind the PDV are analyzed for presented experi-
mental setup. This is required to verify, if the methods proposed in literature using an
probabilistic model of the delays, can be applied.

6.1.3 Characteristic of Transmission Delays

The properties of the random process of the experimental setup are analyzed by looking
at the setup as well as the experimental data. In the lower plot of Figure 6.1, the delays
of the data packages are plotted over time. It can be recognized, that the packages are
typically received in clumped groups of three to five received packages. Due to this,
the delay of the first package received is typically much larger than the delays of the
consecutive packages of the same group. This already indicates a (time-)dependence of
the individual time delays to each other.
The probability as well as the cumulative distribution function (CDF) of the delays,
evaluated with experimental data, are plotted in Figure 6.2. In addition, a log-normal
distribution and a Γ distribution (see Hogg et al. [45]) fitted to the experimental data are
shown. Both distributions fit quite well with the experimental data. This result coincides
with Mukherjee [77], who found that Γ distributions are well suited to model transmis-
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Figure 6.2: Statistical delay time analysis

sion delays on networks while a normal distribution does not. Due to the typically
assumed identical distribution in time the delays might be modeled with a log-normal
or Γ distribution function.
To check the time-independence of the random process, the Ljung–Box test presented
in Ljung and Box [64] is applied to the delays calculated offline with measurement data
from experiments. Unfortunately, the result of the Ljung–Box test clearly indicates
that the delays are strongly autocorrelated in time. This denies the use of the methods
introduced above from literature to handle time delays with an observer which require
that the delays are independent and identically distributed in time. It has to be assumed,
that all methods based on a Kalman filter, which model the delays as random variable,
will show bad performance as it is mandatory that the random variable is independent
in time. This is clearly not the case in the presented application.
Moreover, a data package transmission model for simulation purposes using a simple
log-normal or Γ random number generator, will show a comparable distribution as the
transmission delays retrieved in experiments, but the transmission delays in simulation
will be time-independed. This is contrary to the real transmission delays. In conse-
quence, this demands a more sophisticated time delay model for a simulation-based
observer testing, tuning and evaluation. Thus, in this thesis, a model which imitates the
buffering done by the PC and MCU software combined with a fitted Γ distribution is
used to simulate transmission delays which are also time-depended.
As already introduced, an observer algorithm who assumes the delays to be constant or
just uses the measurements as they arrive will show avoidable large estimation errors.
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An improvement can be reached by a simple ordering of the packages, buffering up to the
largest expected delay and then using the constant maximum delay in the filter synthesis.
However, if the delays are calculated individually for each measurement data set online
with the provided time stamps and this information is used for the measurement update
and state prediction, the state estimation error can be reduced even further as van der
Merwe et al. [107] shows.

6.1.4 State Estimation Concepts for Delayed Measurements

Different concepts for a state estimation are proposed in Alexander [3], Bak et al. [8],
Larsen et al. [61], Pachner et al. [83], van der Merwe et al. [107] which use time stamps
(e.g. sample step indexes) of the received measurements to compute the time delay. The
calculated time delay of each measurement is then used to improve the state estimation.
In particular, in van der Merwe et al. [107] a Sigma-point Kalman Filter with and
without sensor delay compensation is presented. Herein, experimental results highlight
a considerable reduction of the estimation error if the delay of each measurement received
is available and are incorporated for the measurement update. As already mentioned,
this is done by calculating the measurement errors at the time instant the measurements
have been recorded together with stored measurements. Afterwards, with the stored data
(states, measurements, inputs, error-covariance matrix, etc.) the state is re-predicted
and corrected up to the current sample step.
All introduced methods from literature are computationally intensive, at least if the
nonlinear dynamics of the TWIP are used, and require a computation power far beyond
the capacities of the MCU used. In particular, an EKF as proposed in Maybeck [72]
requires the evaluation of the Jacobian of nonlinear system dynamics and measurement
functions at each sample step. But the most computational cost is caused by the required
calculation of a time-integral involving a matrix exponential. The evaluated method from
van Loan [108] to compute the integral, as well as the required calculation of a matrix
exponential itself with methods as presented in Moler and van Loan [75] showed, that an
EKF cannot be used in real-time on the TWIP. Moreover, Sigma-point Kalman Filters
(SPKF) as presented in van der Merwe [106] and used for time-stamped transmission
delays in van der Merwe et al. [107] also exceeds the available computational resources
in magnitudes. Herein, the integration of the nonlinear system dynamics function for
each sigma point over one sample step as well as the calculation of the Cholesky factors
are violating the real-time limits with the available computational power.
Finally, methods based on a moving horizon estimation (MHE) as presented in Philipp
[86], Philipp and Altmannshofer [85] and Philipp and Lohmann [87] require nonlinear
optimizations to be performed in real-time on the TWIP and thus cannot be used as
well.
Due to this, a novel state estimation algorithm using time-stamped delayed measure-
ments which is able to run on the MCU of the TWIP is presented in the following.
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6.2 Preliminaries

6.2.1 Clock Model and Time Conversion

Clocks in electronic circuits utilize crystal oscillators that generate square wave signals
with a (almost) stable frequency. The local time of a clock is then calculated by counting
the periods of the oscillator signal. Based on such a local time, the tracking system as
well as the TWIP generates a trigger for each sample step. Each sample step T k ∈ N
of the tracking system is triggered with a sample time (or clock skew) T m ∈ R+. If the
clock offset (or initial time offset) T o ∈ R related to the ideal (or reference) time t is
known, then the time instant is defined as

t = T m · (T k − T o) (6.1)

for each sample step T k. In the same manner, based on the robot’s sample step Rk and
its clock offset Ro, the time instant

t = Rm · (Rk − Ro) (6.2)

is defined. The leading lower index R is used to highlight that Rk is related to the
sample time Rm and offset Ro of the robot and the lower index T for the tracking
system’s sample time T m and offset T o respectively.
If both clocks are not running with exactly the same offsets and sample times, a function
to derive the concurrent sample step Rk using T k cannot be formulated. Instead, only
the sample step Rk with the smallest difference in time to the sample step T k is derived.
As we are free to choose the time t origin let us assume Ro to be zero and based on (6.1)
and (6.2) define the function

RkT = round
(

T m · (T k − T o)
Rm

)
∈ N (6.3)

to calculate the closest robot sample step RkT for a given sample step T k of the tracking
system.

6.2.2 Data Sets

As previously introduced and shown in Figure 2.8, the TWIP receives data packages in
an irregular pattern from the tracking system with unknown time delays. Lets us define
a data set (or tuple)

DP = (RkR, T kT , yT,x, yT,y, yT,θ) , (6.4)

which contains the sample step RkR
2 of the robot when the data package has been

received by the robot as well as the data from the tracking system included in the
package. As introduced in Section 2.5, each package contains the position yT,x, yT,y and
the orientation yT,θ of the robot measured by the tracking system as well as the sample
step T kT of the tracking system at the time instant the measurement has been done.
The received data sets can be converted with (6.3) into data sets

cDP = (RkR, RkT , yT,x, yT,y, yT,θ) . (6.5)
2The trailing lower index R in RkR stands for received.
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Note that, the clock parameters T o, T m and Rm have to be known for this operation.
Based on cDP an observer is able to utilize the modified data to improve the state
estimation, by calculating a measurement update at sample step RkT with stored local
measurement data from the sample step (e.g. from the IMU and odometry) and then
predicting the updated estimated states together with stored data (e.g. plant input) till
the current sample step Rk. Notice that the prediction and update technique does not
need absolute but relative time information.
Since both sample times (Rm,T m) deviate from their nominal values and the offset
(T o) depends on the time instance when the sample process has been started on the
tracking system and the TWIP, they cannot be implemented as fixed parameters in the
estimator. This corroborates the demand for an online estimation of the clock parameters
as presented in Chapter 7.

6.3 Cascaded Quasi-Linear Kalman Filter

The methods discussed in Section 6.1 are able to reduce the estimation error caused by
the varying time-delay of the data package DP with the (yT,x, yT,y, yT,θ) measurements
from the optical tracking system. This is done, by the use of timestamps provided along
the measurements. All algorithms presented above from the literature are not able to
run on low-power and cost hardware. Thus, a novel approach for the TWIP is presented
in the following which reduces computation costs for the state estimation.

6.3.1 Concept

The concept of the algorithm is to receive a good state estimation with reduced compu-
tational requirements through in-cooperation of the timestamps of the delayed measure-
ments to perform the measurement updates at the correct time instances in the past. For
this, a buffer is used to store the required past states, inputs and measurements. Then,
if a delayed measurement arrives, the update can be calculated at the corresponding
sample step in the past. Afterwards, the state is re-predicted and updated with stored
data step by step up to the current sample step.
To reduce the complexity and thus computational requirements, the model of the TWIP
as well as the observer are split into two parts: a linearized discrete-time submodel

x̂l[k] = A⟳
l x̂l[k − 1] + B⟳

l uO[k − 1] (6.6)

with the state vector x̂l, the observer input uO and a nonlinear discrete-time submodel

x̂u[k] = f⟳
u (x̂u[k − 1], x̂l[k − 1]) (6.7)

with the state vector x̂u. Herein, the u and l indices classify the upper, nonlinear and
the lower, linear submodel respectively. The union of both state vectors assembles to

x̂ := ((x̂B, ŷB, θ̂)︸ ︷︷ ︸
x̂T

u

, (α̂, v̂α, v̂d, v̂θ, îR, îL)︸ ︷︷ ︸
x̂T

l

)T (6.8)

which is the full estimator state vector x̂ of the c-model presented in Subsection 3.1.6.
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full prediction
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Figure 6.3: CQLKF flowchart

As will be shown later, the upper model only requires the states v̂d and v̂θ out of x̂l

to predict x̂u and the dynamic equations of x̂l do not depend on x̂u. In consequence,
the structure of the proposed method can be interpreted as cascading two state estima-
tors. In addition, the update gains will be chosen to minimize the sum of the weighted
state estimation error and measurements in a cost function in the following. Thus, the
proposed state estimation algorithm is called the cascaded quasi-linear Kalman filter
(CQLKF).
At every sample step, x̂l is predicted from k − 1 to k. As the time-discrete dynamic
equations for x̂l are chosen to be linear, the prediction can be done with minimal com-
putational costs. Similarly, x̂u has to be predicted at every sample step from k− 1 to k,
which is done by the use of forward Euler integration as the underlying continuous-time
dynamic equations are nonlinear. The described state prediction from k − 1 to k at the
beginning of a sample step is shown in a flowchart of the algorithm in Figure 6.3 and is
explained further in Subsection 6.3.2.
After prediction, x̂l can be directly updated by the use of the local sensor measure-
ments, namely the gyroscope, accelerometer and encoders. As all local measurements
are available without time-delay, the update of x̂l can be done directly after prediction.
Contrary, to update the upper part x̂u of the estimated state, a remote measurement
from the optical tracking system is required. As the measurements usually arrive with
a large and varying time-delay, x̂u cannot be updated instantaneously. In consequence,
the estimated state vector x̂ of sample step k always includes not updated (a priori) as
well as updated (a posteriori) states. To indicate the update status, a ‘−’ for predicted
states and a ‘+’ for updated states are added as upper right index. Moreover, x̂l[k − 1]
of x̂[k − 1] is typically updated but x̂u[k − 1] can but does not have to be updated by
the proposed algorithm. Thus, the index ‘⊎’ is used to indicate the two possible update
statuses of x̂u.
After the prediction of x̂ and the local measurement update, the values of x̂−

B [k], ŷ−
B [k],

θ̂−[k] and v̂+
d [k] of the current sample step k are stored in a buffer. This reduction of

variables to be stored is a result of splitting the state estimator model into a linear and
a nonlinear part and the proposed estimator structure, as will become more clear in the
next sections. In particular, the reduced set of variables to be stored is an advantage
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in contrast to the algorithms discussed in Subsection 6.1.4 which typically require at
least the full state vector, the input and the local measurement vector to be buffered.
Therefore, the proposed estimation algorithm for the TWIP requires only a fraction of
the memory for buffering compared to other methods.
After these first steps, the algorithm checks if a new delayed remote measurement has
arrived, as illustrated in Figure 6.3. In case of a new measurement, the delay has to
be calculated first. For this, the timestamp in the received data package DP has to
be converted with (6.3) into a package cDP with a local timestamp as presented in
Subsection 6.2.1 and Subsection 6.2.2. Afterwards, the delay τM can be calculated by
the difference between the current sample step Rk of the robot and the tracking system
timestamp RkT stored in cDP together with the measurements. Then, the values of
sample step k− τM are read from the buffer and a measurement update of x̂u[k− τM ]−
to x̂u[k − τM ]+ is performed. Subsequently, x̂u is re-predicted from x̂u[k − τM ]+ up to
x̂u[k]− using the buffered values. Please note, that all re-predicted values are also stored
in the buffer and thus replace the former ones of the corresponding sample steps.

6.3.2 State Prediction

Now, let us derive the discrete-time models used for state estimation. For the lower state
estimation vector x̂l, the linearized c-d-model presented in Subsection 3.1.10 is used with
the state vector

xd,c := ((d, θ, α), (vα, vd, vθ, iR, iL))T . (6.9)

as given in (3.98). Similar to the linear control design in Section 5.4, linear friction as
discussed in Subsection 3.3.1 is assumed. As the TWIP input u (shown in Figure 5.1)
is the sum of the feedforward value ů, the controller output uC as well as the friction
compensation output uF (x̂, x̊), the observer input uO has to be expurgated from the non-
linear friction compensation components introduced in Section 5.2 and Subsection 5.8.4.
uO for a model assuming a linear friction curve as shown in Figure 3.9 can be calculated
by

uO = u− uF,x̂ , (6.10)

where uF,x̂ is the friction compensation output presented in (5.6) evaluated with the
estimated state x̂.
In the next step, the distance d as well as the orientation θ from the linear, continuous-
time model and the corresponding state vector xd,c are removed, as they are not included
in x̂l. This can be done, as the differential equations of the remaining states in x̂l are
not a function of d and θ.
Similar to the other presented algorithms in this thesis, the state estimation is exe-
cuted on the MCU with a sample time of 5 ms and thus the linear state space model is
discretized in time and given with

x̂−
l [k] = A⟳

l x̂+
l [k − 1] + B⟳

l uO[k − 1] (6.11)

under the assumption of constant input uO during one sample step. The numerical
values of A⟳

l and B⟳
l are given in (C.1) and (C.2).
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As the guidance algorithm in Section 5.3 requires x̂B and ŷB, these states are required
and thus included in the estimated state vector x̂. In consequence, to predict x̂u the two
nonlinear differential equations

ˆ̇xB = v̂d cos(θ̂) (6.12)
ˆ̇yB = v̂d sin(θ̂) (6.13)

for the positions of the TWIP are required. Together with the orientation θ̂, they are
numerically discretized by the use of forward Euler integration:

x̂−
B [k]

ŷ−
B [k]

θ̂−[k]


︸ ︷︷ ︸

x̂−
u [k]

=


x̂⊎

B[k − 1]
ŷ⊎

B[k − 1]
θ̂⊎[k − 1]

+ Rm


v̂+

d [k − 1] cos(θ̂⊎[k − 1])
v̂+

d [k − 1] sin(θ̂⊎[k − 1])
v̂+

θ [k − 1]


︸ ︷︷ ︸

f⟳
u (x̂⊎[k−1])

. (6.14)

Notice, that the integrated differential equations in Eqs. (6.12) and (6.13) for positions
x̂B and ŷB are nonlinear. In addition, f⟳

u in (6.14) depends on v̂d, v̂θ from the lower
state vector x̂l beside x̂u. Due to this, only two variables from x̂l have to be stored to
predict x̂u from k−1 to k. This property is used, to reduce the number of variables that
have to be stored in the buffer, as discussed in Subsection 6.3.1 and shown Figure 6.3.
Finally, to predict x̂ from k − 1 to k, (6.11) and (6.14) have to be evaluated.

6.3.3 Local Measurement Update

At every sample step k the measurement
yE,δ

yG,x

yG,y

yS,z


︸ ︷︷ ︸

yl[k]

=


0 cE,α cE,vd

0 0 0
0 0 0 cG 0 0
0 cG 0 0 0 0
cS 0 0 0 0 0


︸ ︷︷ ︸

Cl

xl[k] (6.15)

from the local onboard sensors of the TWIP is available. The parameters used in the
measurement matrix Cl are given in Table C.1. In consequence, the lower state vector
x̂l can directly be updated with

x̂+
l [k] = x̂−

l [k] + Ml(yl[k]− ŷl[k]) (6.16)

after prediction as shown in the flowchart in Figure 6.3. The local update gain Ml is
a design parameter that will be chosen in Subsection 6.3.5. In the following, the four
components of the lower measurement vector yl are introduced.
yE,δ is a virtual measurement, derived with the encoder measurement vector yE , which is
presented in Subsection 2.3.2, modeled in Subsection 3.2.3 and illustrated in Figure 3.8.
In particular, the (scalar) measurement yE,δ is calculated by

yE,δ =
(
1 1

) (
yE [k]− yE [k − 1]

)
(6.17)
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in advance of the evaluation of the state estimator and uses yE [k] as well as yE [k − 1]
from the preceding sample step. Then, based on (3.116) and (6.17), the measurement
equation is derived by

yE,δ ≈Rm cE

(
1 1

)
ωδ = Rm cE (ωδR + ωδL)

= 2 Rm cE
1

rW︸ ︷︷ ︸
cE,vd

vd−2 Rm cE︸ ︷︷ ︸
cE,α

vα . (6.18)

The entries yG,x and yG,y of yl are the angular velocity measurements along the Gx and
Gy axis of the gyroscope as introduced in Subsection 2.3.2, modeled in Subsection 3.2.2
and illustrated in Figure 3.7. Thereby, the parameter cG is the conversion factor from
rad/s to LSB.
Last but not least, yS,z is the acceleration measurement of the accelerometer on its Sz
axis as introduced in Subsection 2.3.2, modeled in Subsection 3.2.1 and illustrated in
Figure 3.5. The parameter cS,α = gcS in Cl is the conversion factor to from rad to LSB.
Herein, it is assumed that yS,z ≈ g sin(α) ≈ gα holds for small tilt angles and other
terms in (3.106) can be treated as disturbance on the measurement.

6.3.4 Delayed Remote Measurement Update

Contrary to the local measurements, the remote measurements
yT,x

yT,y

yT,θ


︸ ︷︷ ︸

yu[k]

=


cT,xy 0 0 0

0 cT,xy 0 0
0 0 0 cT,θ


︸ ︷︷ ︸

Cu

xu[k] (6.19)

from the optical tracking system, as introduced in Section 2.4 and discussed in Section 6.1
arrive with a varying time delay τM . cT,xy and cT,θ are the conversion factors between
the units of the tracking system and ones of the states and are given in Table C.1.
As presented in Subsection 6.3.1, τM can be calculated for each remote measurement re-
ceived using the supplied timestamp and time conversion introduced in Subsection 6.2.1.
Afterwards, together with the buffered data, the measurement update on x̂−

u can be per-
formed at the sample step k − τM by

x̂+
u [k − τM ] = x̂−

u [k − τM ] + Mu(yu[k − τM ]− ŷu[k − τM ]) . (6.20)

The diagonal structure of the measurement matrix Cu in (6.19) offers the possibility to
split up the update into three separate updates steps

x̂+
B [k − τM ] =x̂−

B [k − τM ] + mu,x(yT,x[k − τM ]− ŷT,x[k − τM ]) (6.21)
ŷ+

B [k − τM ] =ŷ−
B [k − τM ] + mu,y(yT,y[k − τM ]− ŷT,y[k − τM ]) (6.22)

θ̂+[k − τM ] =θ̂−[k − τM ] + mu,θ(yT,θ[k − τM ]− ŷT,θ[k − τM ])︸ ︷︷ ︸
∆∗

M

. (6.23)

The three scalar update gains mu,x, mu,y and mu,θ are design parameters and will be
chosen in Subsection 6.3.5. After the measurement update, a re-prediction of x̂B, ŷB,
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θ̂ from k − τM up to k is required. To reduce the computational cost for re-prediction,
the prediction equations f⟳

u in (6.14) are modified. In particular, as the orientation θ̂ is
a linear integration over time, the update ∆∗

M in (6.23) calculated for θ̂−[k − τM ] can
simply be added to all values in the buffer up to θ̂−[k]. Therefore, the equations


x̂−

B [k]
ŷ−

B [k]
θ̂−[k]

 =


x̂⊎

B[k − 1]
ŷ⊎

B[k − 1]
θ̂⊎[k − 1]

+


Rm v̂+

d [k − 1] cos(θ̂⊎[k − 1])

Rm v̂+
d [k − 1] sin(θ̂⊎[k − 1])

∆∗
M

 (6.24)

have to be evaluated from k − τM to k to re-predict the upper state. In addition, all
buffer values of x̂B, ŷB and θ̂ have to be updated. To sum up, minimal computational
power is required to update and re-predict the state vector from k− τM to k. Moreover,
only the states x̂B, ŷB, θ̂ and v̂d have to be buffered, which leads to relaxed memory
requirements on the MCU. This is a strong advantage of the proposed algorithm with a
focus on low-power and low-cost MCUs compared to other algorithms (e.g. Alexander
[3], Pachner et al. [83] or van der Merwe et al. [107]).

6.3.5 Synthesis

Up to now, the choice and calculation of the update gains Ml, mu,x, mu,y and mu,θ

remained open. Let us start with the observer for x̂l and use an optimal state estimation
approach and define the cost function

Jl =
∞∑

k=1

(
(xl − x̂l)TQl(xl − x̂l) + yT

l Rlyl

)
(6.25)

to be minimized by Ml. This problem leads to a discrete-time algebraic Riccati equation
(DARE) and can be easily solved by the use of the duality with the discrete-time LQR
synthesis and the available design tools. For this, the symmetric positive semi-definite
weighting matrix Ql and the symmetric positive definite matrix Rl have to be chosen
properly to gain the desired estimation performance. As the underlying system is non-
linear and the identification, as well as accurate modeling of the process and sensor
noise, is non-trivial, an optimization that minimizes the estimation error in the simu-
lation environment is used to tune the parameters Ql and Rl as will be discussed in
Subsection 6.3.6. If all entries of Ql and Rl are optimized, the best performance might
be found in theory, but the curse of dimensionality renders the optimization problem to
get unsolvable. Thus, a reduction of parameters is desired.
Firstly, only the diagonal elements of Ql and Rl are chosen to be non-zero. This step
already reduces the number of parameters down to ten. Secondly, to make use of symme-
tries the state transformation (3.92) given in Subsection 3.1.10 is modified and applied
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to x̂l. From this, the state transformation

xω,l =



α

vα

ωδR

ωδL

iR

iL


=



1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1

rW
dW
rW

0 0
0 −1 1

rW
−dW

rW
0 0

0 0 0 0 1 0
0 0 0 0 0 1


︸ ︷︷ ︸

Tω,l

xl (6.26)

from xl to xω,l can be derived for the continuous-time model. Based on the assumption,
that ωδR and ωδL, as well as iR and iL, is subject to the same modeling uncertainties,
errors and process noise due to symmetry and by the use of the Tω,l, the weighting
matrix for the states is defined as follows

Ql = T T
ω,l diag (ql,α, ql,vα , ql,ω, ql,ω, ql,i, ql,i) Tω,l (6.27)

with a reduced number of parameters. In consequence, only four parameters remain
for the weighting of the six states in xl. Unfortunately, such a drastic reduction of
parameters is not possible for the weighting of the four measurements

Rl = diag (rl,Eδ, rl,Gx, rl,Gy, rl,Sz) (6.28)

and thus the four parameters remain. To sum up, eight parameters have to be optimized
in the optimal cost function to find the update gain Ml which leads to a minimal state
estimation error for xl in simulations.
Let us focus in the next step on the design of the state estimator for xu. In Sub-
section 6.3.4, the estimation problem has already been split down into three separate
state estimators with only one state variable. Similar to the design for the lower state
estimation, update gains mu,x, mu,y and mu,θ which minimize the cost functions

Ju,x =
∞∑

k=1

(
(xB − x̂B)Tqu,x(xB − x̂B) + yT

T,xru,xyyT,x

)
(6.29)

Ju,y =
∞∑

k=1

(
(yB − ŷB)Tqu,y(yB − ŷB) + yT

T,yru,xyyT,y

)
(6.30)

Ju,θ =
∞∑

k=1

(
(θ − θ̂)Tqu,θ(θ − θ̂) + yT

T,θru,θyT,θ

)
(6.31)

for the positions and orientation are required. As can be noticed, the weighting entries
for the yT,x and yT,y measurements are chosen to be equal with ru,xy, as it is assumed that
the tracking system measurements of both quantities underlie the same uncertainties and
noise.
Contrarily, the state weights for the position estimation errors are chosen differently as
a function of θ̂. If the robot moves along the Ix axis as shown in Figure 3.1 and thus
θ = 0◦ or ±180◦, the yB value stays constant while the velocity vd is integrated and
added to xB. In consequence, estimation errors of vd mainly accumulate in x̂B. The



122 Chapter 6. State Estimation with Time Delayed Measurements

opposite happens, if the orientation is along the Iy axis with θ = ±90◦. In addition,
estimation errors in θ̂ lead to a wrong partition of the driven distance between x̂B and
ŷB. This observation is used to define the weighting functions as follows

qu,x =qu,xy + |qu,vd
cos(θ̂)| (6.32)

qu,y =qu,xy + |qu,vd
sin(θ̂)| . (6.33)

Herein, the parameter qu,xy is used to take errors, raised by the estimation of θ̂ as well
as from discrete-time integration where θ̂ has to be assumed to be constant over one
sample step, into account. In addition, qu,vd

is introduced to consider integration and
estimate errors related to v̂d. Due to this, the underling nonholonomic constraints of
the movement of the TWIP can be treated inside the state estimation to improve the
performance of the estimation of the positions.
The update gains which minimize the cost functions (6.29) and (6.30) can be found by
solving the scalar DAREs

0 =apaT − p− (apcT)(cpcT + r)−1(cpaT) + q . (6.34)

In the introduced case, the parameters are a = 1, c = cT,xy, r = ru,xy and q = qu,x for
x̂B or q = qu,y for ŷB respectively. As (6.34) is scalar, it can be solved analytically and
an equation for px(θ̂) with qu,x and py(θ̂) with qu,y can be derived. Based on these two
equations for p, the scalar functions for the gains

mu,x(θ̂) =px(θ̂)cxy(cxypx(θ̂)cxy + ru,xy)−1 (6.35)
mu,y(θ̂) =py(θ̂)cxy(cxypy(θ̂)cxy + ru,xy)−1 (6.36)

can be formulated to update the predictions x̂−
B [k − τM ], ŷ−

B [k − τM ] using the new
measurements yT,x[k − τM ] and yT,y[k − τM ].
The presented approach incorporates the nonholonomic constraints of the dynamics of
the TWIP and thus offers an improved state estimation for the positions compared to
solutions using fixed gains. Based on the parameters found in Subsection 6.3.6, the
resulting update gains mu,x(θ̂) and mu,y(θ̂) are plotted over θ̂ in Figure 6.4. It can be
seen, that the optimized parameters lead to a high update gain for mu,x at θ̂ = 0◦ or
±180◦ and a quite small gain for θ̂ = ±90◦. The gain mu,y for yB shows the opposite
behavior. This coincides with the intuition, that the prediction error along the direction
of the movement is larger than to the perpendicular direction. Finally, as mu,x(θ̂) and
mu,y(θ̂) are scalar and only contain sin(θ̂) and cos(θ̂) terms, they can be evaluated online
at every sample step on the MCU with low computational cost. The three parameters
qxy, qvd

, rxy in total for the remote measurement update have to be optimized in the
next section to tune the estimation performance of the positions.
Finally, the update gain mu,θ for the orientation has to be calculated and constant values
for qu,θ and ru,θ in (6.31) are used. Similar to the position estimation, the cost function
(6.31) leads to a scalar DARE and mu,θ can be calculated analytically or numerically.
The parameters qu,θ and ru,θ have also be tuned in the next section to minimize the
estimation error evaluated by simulations.

6.3.6 Parameter Optimization

To optimize the observer parameters, the simulation environment presented in Sec-
tion 2.6 and shown in Figure 2.9 is used. Herein, the full nonlinear model with cur-
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Figure 6.4: Update gains mu,x, mu,y over orientation θ̂ for x̂B, ŷB

rent dynamics of the TWIP given in Subsection 3.1.6 and sensor models as presented
in Section 3.2 are included as well as an algorithm to imitate the transmission delays
of the tracking system measurements. In addition, the friction compensation, guidance
algorithm and the LQR presented in Sections 5.2 to 5.4 are used to follow the reference
trajectory generated in Section 4.3.
If the observer parameters are optimized based on simulations using the nominal nonlin-
ear model of the TWIP and the linearized version is used for synthesis, the accuracy of
the model used inside the estimator will typically be overestimated. In particular, this
leads to small values of the corresponding q-parameters in the cost function and small
update gains. Also, the same considerations will apply to the sensor models. Unfortu-
nately, the resulting estimator will show bad performance in experiments due to model
parameter uncertainties. To avoid this, 168 models with randomly varied parameters are
generated, differing from the nominal ones and used to tune the estimator parameters
with an optimization algorithm. For sure, in the best case, the random parameter and
thus the models differ from the nominal model in a similar manner then the real TWIPs
deviate from the nominal model.
Additionally, to ensure a sufficient fast decay of the estimation error

ê = x− x̂ (6.37)

after initialization, all nonlinear simulation models are initialized with random non-zero
state vectors as aspected in experiments. Contrary, the initial state x̂[k = 0] of the
estimator is set as a zero vector. Finally, the timespan of the simulations used has to
be long enough such that accumulated drift effects due to sensor noise and small offsets
will influence the estimation result sufficiently and thus the tuned estimator is able to
cope with these effects in experiments afterwards. A timespan of 300 s has been found
as a good compromise between incorporating drift effects and minimizing computational
cost to perform the simulation-based optimizations.
For the parameter optimization, the cost function

Jopt =
∞∑

k=1

(
(x− x̂)TQopt(x− x̂)

)
(6.38)

is defined to judge the estimator’s performance. Hereby, Qopt is a diagonal weighting
matrix used to scale the states based on the minimum and maximum values of the
trajectory used. The matrix Qopt is given in (C.3). Therefore, a minimization of the
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cost function correlates with an improvement of the estimator performance and thus
minimizes state estimation error.
To reduce the number of parameters to be optimized at once, firstly the parameters
ql,α, ql,vα , ql,ω, ql,i and rl,Eδ, rl,Gx, rl,Gy, rl,Sz of the state estimator for the lower state
vector x̂l are tuned. To avoid a non-unique solution, ql,α = 1 has been fixed. Thus, the
resulting optimization problem has seven free parameters.
Afterwards, the parameters qu,xy, qu,vd

, ru,xy and qu,θ, ru,θ of the estimator for the upper
state vector x̂u are tuned via optimization. Again, to get a unique solution the param-
eters qu,xy = qu,θ = 1 are fixed. This results in an optimization with three remaining
parameters.
The resulting parameters found by simulation-based optimizations using the pattern
search algorithm (see Audet and Dennis [7]), where able to give a proper state estimation
in simulation and also showed good performance in experiments as well. The parameters
found by the optimization are listed in Table C.2. Simulation and experimental results
are presented and discussed in the next two sections.

6.4 Simulation Results

In the following, the proposed state estimation algorithm with the optimized parameters
is presented with simulation results. Therefore, the TWIP is following the trajectory
presented in Section 4.3. In simulations, the real state is known and thus the estimation
error can be calculated by (6.37) which is the difference between the state of the nonlinear
model and the estimated state. Note, this difference cannot be calculated with the data
presented in the next section as the real state of the TWIP is unknown in experiments.
The presented simulation results use accurate clock parameters such that the perfor-
mance of the pure state estimator can be seen. Also, the nominal model parameters
for the TWIP are used. Contrarily, random sensor misalignment, sensor quantization,
digital filtering and noise, as introduced in Section 3.2, have been included. Moreover,
a random initialization error between the estimator state and model state is set, to
evaluate the convergence of the estimated state to the model state.

Table 6.1: Simulation estimation errors ( êxB , êyB , êθ )

state xB yB θ α

unit m m ° °

max |ê| 3.0 · 10−3 4.0 · 10−3 1.4 · 100 3.7 · 10−1

RMS(ê) 8.0 · 10−4 1.0 · 10−3 4.4 · 10−1 9.5 · 10−2

Figure 6.5 and Figure 6.6 show the estimation error during trajectory tracking. Herein,
the first three seconds are plotted separately with a larger y-axis scale to show the decay
of the initial estimation error. Two things can be observed. First, the estimator is able
to reduce the initial error of all state variables in less than three seconds. Second, the
estimation error is kept small by the algorithm which highlights its ability to reduce the
excitation effects from the sensor models and the differences between the partly linear
estimator model and the nonlinear model used to simulate the TWIP. Moreover, it can
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be seen in Figure 6.5, that the position errors êxB and êyB show peaks, if the êθ error is
large. This is expected, as θ̂ is used to predict the positions x̂B and ŷB. Finally, Table 6.1

Table 6.2: Simulation estimation errors ( êα,êvα ,êvd
,êvθ

,êiR ,êiL )

state vα vd vα iR iL

unit °/s m/s °/s A A

max |ê| 2.5 · 100 6.9 · 10−3 3.9 · 100 5.7 · 10−2 5.5 · 10−2

RMS(ê) 5.8 · 10−1 1.9 · 10−3 1.1 · 100 1.4 · 10−2 1.4 · 10−2

and Table 6.2 list the RMS(ê) as well as max |ê| values of the presented simulation run.

6.5 Experimental Results

In addition to simulations, the performance of the CQLKF has been tested in exper-
iments. Since in experiments the real state of the TWIP is unknown, the difference
between the tracking system measurements yT,x, yT,y and yT,θ and the estimated posi-
tions x̂B, ŷB and orientation θ̂

∆xB =yT,x − x̂B (6.39a)
∆yB =yT,y − ŷB (6.39b)
∆θ =yT,θ − θ̂ (6.39c)

is used to evaluate the estimation performance in experiments. For sure, the real position
and orientation of the TWIP will differ from the tracking systems measurement as well.
In particular, the tracking system measurements suffer from noise and there are always
small differences between the origin IB assumed during modeling in Section 3.1 and
the origin of the TWIP defined by the tracking system software. Moreover, the clock
parameters have to be estimated offline as well to convert the measurement data to the
same time scale to evaluate (6.39). Thus, clock estimation errors will add an additional
error to the calculated difference in (6.39).
Nevertheless, due to a lack of alternatives for comparison, the differences (6.39) are used
to evaluate the estimator performance and are plotted in Figure 6.7. In addition, the
RMS(eo) as well as max |eo| values are given in Table 6.3. Based on the results, it can be

Table 6.3: Experimental position and orientation differences (xB, yB, θ)

state xB yB θ

unit m m °

max |eo| 8.3 · 10−3 9.2 · 10−3 2.6 · 100

RMS(eo) 3.8 · 10−3 3.9 · 10−3 1.1 · 100

concluded that the proposed estimation algorithm with the optimized parameters offers
a good state estimation such that the control algorithms presented in Chapter 5 are not
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only able to stabilize the TWIP but also are able to follow the trajectory precisely as
shown in the experimental results of Chapter 5. In addition, based on the evaluations
with the tracking system measurements in Figure 6.7 and Table 6.3 the estimator shows
good performance and small estimation errors for the positions and orientation. Thus,
it has been shown that the proposed algorithm is able to mitigate the effects of delayed
remote measurements.
At the beginning of this chapter, in Subsection 6.1.1, experimental results from an esti-
mator which directly uses the delayed measurements as they arrive are given in Figure 6.1
for the xB of the TWIP. Based on estimated clock parameters (see Chapter 7) as well
as the proposed estimator, an estimation of the position xB is provided in Figure 6.8.
Hereby, the algorithm uses the online estimated clock parameters to calculate the delay
of each received measurement and uses them for the measurement update as proposed.
Similar to Figure 6.1, the points marked by asterisks show the position of the robot at
the time instant when the tracking system gathered the image data, whereas the circles
mark the time instant when the position and orientation data sets have been finally
received by the robot. Compared to the results presented in Figure 6.1, an impressive
reduction of the error of the estimated position xB is achieved in Figure 6.8 with the
novel algorithm.

6.6 Concluding Remarks

In this chapter, a new state estimation method for the TWIP has been presented which
is able to incorporate delayed remote measurements properly. Moreover, the proposed
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algorithm requires low computational power and small memory requirements.
In addition, a statistical analysis of the non-constant transmission delays has been per-
formed, based on experimental data. Thereby, an important outcome is that the iden-
tical distribution in time can be approximated by a Γ distribution function but the
random process is not time-independent. This result is contrary to the assumptions
usually defined during the estimator design in literature, as most methods rely on the
time-independence of the random process to yield a good estimation performance.
The presented method uses the timestamps included in the delayed measurements and
incorporates them during the measurement update, such that no assumptions on the
random process of the delays are required to design the estimator. To reduce the compu-
tational power requirements the proposed estimator structure of the presented cascaded
quasi-linear Kalman filter (CQLKF) splits the TWIP model into a linear and a nonlin-
ear part. This results in an algorithm that is able to run on low-cost and low-power
hardware while still offering good state estimation results. In addition, the underlying
nonholonomic constraints of the movement of the TWIP are used by the presented al-
gorithm to improve the estimator’s performance. Finally, the applicability and accurate
state estimation performance, even in presence of large measurement delays, have been
demonstrated in experiments.
To conclude, the presented cascaded quasi-linear Kalman filter (CQLKF) is a mixture
of a time-variant, nonlinear EKF and a time-invariant, linear, optimal state estimator
and thus is able to run on a microcontroller with limited computational power and
memory. Thereby, the deterioration of the estimation state due to the non-constant time-
delays of the transmitted remote measurements is minimized by the proposed algorithm.
Hence, this chapter contributes a novel solution to reduce the algorithm complexity for
state estimation for the TWIP and to decrease the required computational power while
still offering an accurate state estimation performance in presence of large time-varying
measurement delays.



Chapter 7

Efficient Clock Parameter
Estimation

In Subsection 6.2.1 a clock model and time conversion have been introduced, which is
used in Chapter 6 to convert the timestamps of the tracking system into local time of
the TWIP. For this, the clock parameters of the tracking system and the TWIP have
to be available for time conversion. In this chapter, a novel method is proposed to
estimate clock parameters online and efficiently on a microcontroller of a small mobile
robot. Particularly, the presented algorithm requires low computational power and has
small memory requirements. The introduced algorithm estimates the clock parameters
by repeated online optimizations which compare remote and local sensor measurements
mapped to a common local time. No additional software (e.g. a Network Time Protocol
(NTP) client) is required on the tracking system or the robot since the incremented
sample step index of the tracking system and the robot are used. Based on the estimated
clock parameters provided by the algorithm and the sample step index the time delay
of each measurement received can be calculated and used by an observer as presented
in Chapter 7.
The remainder of the chapter is organized as follows. Firstly, a brief motivation is
given. Afterwards Section 7.2 presents the proposed method to estimate online clock
parameters on a microcontroller as used by the TWIP. Thereupon, Section 7.3 presents
the algorithm and Section 7.4 discusses the advantages and disadvantages of the proposed
method. In Section 7.5 additional implementation details of the algorithm are given.
Experimental and simulation results are discussed in Section 7.6. Finally, Section 7.7
concludes the contribution presented in this chapter with remarks.
An early version but with some differences from the proposed algorithm has been pre-
sented in Bürchner [14], a student thesis supported and supervised by the author.

7.1 Motivation

In general, tracking systems trigger image acquisition properly in real-time with a high
sample rate and provide for every recorded set of images a unique, incremented sample
step index. This index can be interpreted as a local time stamp of the data set. The
gathered images are analyzed by the tracking system’s software, running on a PC, which
computes the position and orientation of the robot. Commonly, the incremented sample
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step index of the images is appended to the resulting position and orientation data set.
This also applies to the tracking system used for the TWIP as presented in Section 2.4.
Based on this index, the delay of each received data set can be calculated and utilized to
improve the estimate by the robot’s observer as has been shown in Chapter 7. However,
this requires the clock sample times and offsets and thus the clock time of the tracking
system and the robot to be known.
One solution to compute the time delays of the received measurements is, to synchronize
the clocks on the tracking system’s PC as well as on the robot. This synchronization can
be done by a Network Time Protocol (NTP) client Mills [73] which ensures a synchro-
nized and precise system clock on the tracking system’s PC as well as on the robot. The
trigger signal for the tracking system’s cameras to capture a new set of images has then
to be used to capture a time stamp of the NTP synchronized time on the PC. This time
stamp is then transmitted together with the position and orientation data to the robot,
instead of the sample step index of the tracking system. Based on this time stamp, the
robot is able to calculate the time delay of each measurement based on its local NTP syn-
chronized clock. An extended review of possible methods of clock synchronization over
wireless networks is offered by Sundararaman [103], Wu et al. [116], Djenouri and Bagaa
[32]. Nevertheless, this solution to calculate the time delays has drawbacks in a wide
number of applications: Firstly, the trigger of the tracking system has to be accessible
as a signal to a software program to record a time stamp and a separate program might
have to be written for that purpose. To avoid a missed trigger signal and to minimize a
delay between the trigger signal and the record of the time stamp, this software has to
be executed in a real-time environment. Secondly, running an NTP client demands com-
putational power, memory and communication bandwidth on the mobile robot. This is
contrary to the fact, that small robots typically use a low-cost microcontroller with lim-
ited computational power, memory and energy consumption. Furthermore, on several
mobile robots, no operating system is used and no NTP client software implementation
is available. Last but not least, the precision of the time synchronization with NTP
strongly depends on the delay time of the network connection and it is assumed that
the delay in both directions (sending and receiving) is equal. Additionally, with large
communication delays, clock errors of up to 100 ms are not unusual (see Wang et al.
[110], Mills [73]). These clock errors will cause an error in the calculation of the time
delay of a received measurement and might deteriorate the estimation of the position
and orientation of the TWIP.
Another possible solution is to run a moving horizon estimation (MHE) Philipp [86],
Philipp and Altmannshofer [85], Philipp and Lohmann [87] on the TWIP. If the clocks
of the tracking system and the robot are not synchronized and have different sample
times and offsets, the computation of the time delays requires the knowledge of the clock
parameters, namely, clock sample time and clock offset. An MHE is able to estimate the
states (including position and orientation) as well as the clock parameters by solving an
optimization problem in real-time at every sample step of the robot. Hence an MHE is
perfectly suited to provide a model-based state estimation, on one hand, and to estimate
simultaneously the clock parameters on the other. Running an MHE in real-time with
a small sample time (e.g. 5 ms) on a small mobile robot like the TWIP requires a
vast amount of computational power, memory and energy, since the data for the whole
horizon has to be stored and a large optimization problem has to be solved every sample
step. This demand on computational resources and energy denies the application on the
TWIP.
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In conclusion, the aforementioned methods, the clock synchronization over the network
or the use of an MHE, are not suitable to run on a microcontroller with low computational
power and limited memory and thus on small mobile robots. Therefore in this chapter a
new algorithm to estimate online the clock parameters on the mobile robot is presented
which utilizes the properties of typical indoor applications of mobile robots and thus the
TWIP.

7.2 Concept

Two sensor outputs that measure the same state (e.g. orientation angle velocity of the
robot vθ) with time stamps in the form of sample steps (e.g. RkG, T kT ) are used to
perform a clock parameter optimization. One measurement comes from a remote sensor
(e.g. tracking system) and the other from a local robot’s sensor (e.g. gyroscope). Both
measurements are stored over a chosen horizon length together with their sample steps.
The stored timestamped measurements are used to evaluate a cost function to be op-
timized. In the cost function J , the sample steps T kT of the remote sensor’s measure-
ments, as well as the sample steps RkG of the local sensor’s measurements, are converted
with (6.1) respectively (6.2) into time. Afterwards the absolute error between the two
measurement signals (interpolated in time) is summed up over the chosen measurement
horizon and the mean error is calculated.
The optimization parameters can be reduced to two parameters if the robot’s time is
used as a reference. In this case, let us assume that the sample time Rm is fixed at its
nominal value and the clock offset Ro is zero. The described cost function is then used
to derive the tracking system’s sample time T m and clock offset T o via optimization.
It is important to set up a cost function that leads to robust optimization results, espe-
cially in presence of measurement noise. This means that a sequence of two simultane-
ously recorded measurement signals have to differ from each other if the estimated clock
parameters differ from the real ones and thus the converted signal is shifted and warped
in time.
This is visualized in Figure 7.1 which shows an exemplary plot of the heading rate of
the robot versus time. Besides the reference signal, a curve with a clock offset deviation
and a curve with a sample time deviation is drawn in the figure. The lower subplot in
the figure shows the absolute error between the reference signal and the curves with a
parameter deviation. It can be observed, that the signals have to show a certain amount
of excitation, such that a parameter deviation causes a noticeable difference from the
reference signal. In the time intervals, 0.2 s to 1.5 s and 2.5 s to 4.0 s the heading rate
curves show a high rate of change and the parameter mismatch causes an error between
the signals. Contrary, in the time interval from 1.5 s to 2.5 s the heading rate curves
show no difference even though the clock parameters differ.
Also, another observation can be done based on Figure 7.1. While a clock offset, even
with a short horizon (e.g. from 0 s to 1 s), causes an error between the reference signal
and the shifted signal, the error generated by a deviation of the sample time remains
small at the beginning and increases with the length of the horizon. Thus the horizon
length influences the sensitivity of the cost function. In summary, the cost function will
be sensitive to the clock offset T o even with a short horizon, the sensitivity of the cost
function with respect to the sample time T m increases with the length of the horizon.
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Figure 7.1: Change of clock parameters and absolute error in heading rate to reference

Consequently, the idea of the method is to acquire signals from a remote and a local
sensor which are timestamped and measure the same state. To minimize memory con-
sumption, power and computational cost only sequences of the signals which are sensitive
to a misalignment in time are stored to run optimizations. To maintain a cost function,
which is sufficiently sensitive to the sample time T m, a finite number of sequences of the
signals over time are stored to obtain a long horizon. Every time a new signal sequence
has been recorded, an optimization will be executed. The optimization minimizes the
cost function J(T m, T o) which calculates the absolute error between the remote and lo-
cal signal sequences stored. The outputs of the optimization are optimal values of T m
and T o which can be used by an observer subsequently.
The choice of the measurement of the state vθ is based on the observation that mobile
robots used indoor are operated in a very similar way typically: In most cases, robots
follow way-points through a building and turn at predefined points to drive around
corners or objects Jose and Antony [50], Zhang et al. [120], Lim et al. [63]. Even if they
follow more smooth, optimized trajectories, they usually still show segments of straight
movements and sequences where the robot turns. The measured heading rate slopes
of the robot can thus be used in this case to determine the clock parameters with an
optimization.
Hence, the following design decisions are proposed to run the clock parameter estimation
online on a microcontroller with reduced memory, computational power and energy
requirements:

C.1 Since the absolute time is not typically required by an observer but the time
information in terms of the sample step, the sample time Rm of the robot is
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assumed to match its nominal value and its offset Ro to be zero. Thus only the
sample time T m and clock offset T o of the remote sensor are used as optimization
parameters in the cost function J(T m, T o).

C.2 Only one timestamped measurement signal from a local and one from a remote
sensor are used for the optimization, namely the heading rate of the robot.

C.3 To reduce the amount of data to be stored, only sequences of measurements are
recorded that exhibit at least a certain amount of excitation. The variance of a
sequence of measurements is hereby used as an indicator for the sensitivity of the
cost function which will use the recorded data sequence for evaluation. This leads
to a long horizon with less required memory, since only isolated data sequences are
stored, at which the cost function J(T m, T o) is sensitive to the clock parameters
T m and T o.

C.4 An optimization method has to be used which can be easily split into a sequence
of small tasks and can be executed over several sample steps on a microcontroller.
This is required to ensure that a microcontroller is able to calculate also other tasks
in real-time (e.g. observer and controller) without a task scheduling operating
system while running an optimization.

7.3 Algorithm

For the TWIP, an algorithm is presented which utilizes the proposed concept. The algo-
rithm running on the robot’s microcontroller can be split into three parts namely filter,
storage and optimization. The structure and the purpose of each part will be discussed
in the following. A sketch of the structure of the algorithm is shown in Figure 7.2.

7.3.1 Filter

The filter part is visualized at the top of Figure 7.2 and can be split into two sections: the
processing of the local measurements on the left side and the processing of the remote
measurements on the right side. The local section processes the data sets

DR = (RkG, yG,x)

which includes the measured heading rate yG,x of the gyroscope as well as the sample step
RkG of the robot when data from the IMU has been read and the remote section processes
the data sets DP , given in (6.4), containing the measured orientation θT = yT,θ from the
tracking system. Both measurements are subject to noise which should be smoothed out
for optimization.
For both measurements (yG,x, yT,θ) a symmetric Savitzky-Golay-Filter (SG-Filter) pro-
posed by Savitzky and Golay [95] is used to smooth out noise. Moreover, the SG-Filter
for yT,θ is designed to output the first derivate of the input signal and thus ṽθ,T . As
a digital differentiator, it minimizes the noise-amplification factor and attunes high fre-
quencies (see Luo and Ying [68]). An SG-Filter fits a low-degree polynomial to a subset
of the data points by minimizing the least-square error (see Orfanidis [82]). Filtering
is done by means of convolution, which is easy to implement and utilizes fast multiply-
accumulate instructions on microcontrollers with digital signal processing capabilities.
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The measurement values used for convolution can be stored in a simple First-In-First-
Out (FIFO)-buffer.
It has to be noted that both measurements are part of a data set. The measurement of
the gyroscope yG,x is related to the robot’s sample step RkG when the IMU has been
read. Also the measured orientation yT,θ from the tracking system and its derivative
are related to the sample steps T kT and RkR included in the data set DP . Since the
filter output introduces a time delay of ND = 1

2(NF − 1) sample steps from its input
(NF is the filter order), the related data set items have to be equally delayed. This
is necessary to ensure that the sample steps stored in the data sets DG and DT still
correspond to the filtered measurements. This delay can be implemented by the use of
a simple FIFO-buffer. To derive the values T k̃T and Rk̃G a FIFO is not required since
they can be calculated by subtracting ND from the current sample steps T kT and RkG

at the filter input.

7.3.2 Storage

The outputs of the filter part are fed into the storage part of the algorithm, shown in
the middle of Figure 7.2. To record the data sets from the filter part which are required
for the clock parameter estimation, an array of NS structures is used. Each structure
has two buffers. In the first buffer BG, NBG data sets

DG =
(

Rk̃G, ṽθ,G

)
, (7.1)

can be stored. To record NBT data sets

DT =
(

Rk̃R, T k̃T , ṽθ,T

)
, (7.2)

a second buffer BT is used.
During the recording of data sets into one of the structures, the online variance of ṽθ,G is
calculated using Welford’s Online algorithm (see Welford [111]). For each data set stored,
the algorithm updates the mean and variance of all stored data sets in the structure.
This is done by recurrence formulas which ensure a numerically stable calculation of
mean and variance (see Knuth [57]). Due to the recurrent updates, a peak in required
computational power is avoided when the buffer has been filled up.
If both buffers in a structure are full, it is checked, if the variance exceeds the defined
threshold σ2

min. If the variance is above σ2
min the data is kept and used for optimization.

If not, both buffers are deleted and the structure will be used again to record new data.
As soon as all structures are filled up with recorded data and always, if one structure
has been filled up with new data, the parameter optimization is started. When the
optimization is finished, the structure with the oldest data is deleted and used to record
new data.

7.3.3 Optimization

The last part of the algorithm corresponds to the parameter optimization, visualized at
the bottom of Figure 7.2. It uses the data sequences stored in all structures and their
buffers.
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The Downhill Simplex method (DSM) proposed by Nelder and Mead [79], which is
also known as Nelder-Mead method is used to run the optimization. It is a direct
search method and one of the most popular methods for nonlinear optimization (see
Lagarias et al. [60]), e.g. used in Matlab. The algorithm has been selected since it is
easy to implement and minimizes a scalar nonlinear cost function using only function
values without the need for gradients. This is an important property for our application
since interpolation is required during the evaluation of the cost function and the online
calculation of the gradients causes high computational costs. Moreover, an analytical
solution of the gradients might be complicated to calculate and has to be changed, if
the interpolation function is modified. The calculation of gradients with single precision
numeric and noisy measurement data is also avoided by the chosen optimization method.
For each evaluation of the cost function J(T m, T o) by the DSM all data sets stored are
used. Firstly, the time instants

tG(i) = Rm · Rk̃G(i) for i = {1 . . . NBG} (7.3)

for each sample step Rk̃G in DG as well as the time instants

tT (i) = T m · (T k̃T (i)− T o) for i = {1 . . . NBT } (7.4)

for all sample steps T k̃T in DT are calculated. Based on tG and tT the values of ṽθ,T in
DT are linearly interpolated at the time instants tG:

v̄θ,T = interpolate(ṽθ,T , tT , tG) . (7.5)

The set Ωv contains all indices i ∈ {1 . . . NBT } where the time vectors tG and tT overlap
and thus interpolation is possible and Nv is the number of elements in Ωv. In the next
step the difference

ϵv(i) = ṽθ,G(i)− v̄θ,T (i) ∀ i ∈ Ωv (7.6)

is calculated. Afterwards the cost function value

Jϵ = 1
Nv

∑
i

abs (ϵv(i)) ∀ i ∈ Ωv (7.7)

can be defined. Finally, for all data packages received, the transmission times

∆t(i) = Rm · Rk̃R(i)− tT (i) for i = {1 . . . NBT } (7.8)

are calculated. The transmission of a data set from the tracking system to the robot
needs at least one sample step of the robot and thus a minimum time ∆t ≥ Rm. To
ensure that only clock parameters which fulfill this condition lead to a small cost function
value, the final cost function value with the penalty cost for not feasible (too small or
even negative) transmission delays

J = Jϵ + αp

∑
i

abs(∆t(i)− Rm) (7.9)

for i ∈ {j = {1 . . . NBT } : (∆t(j) < Rm)}

is computed where αp weights the penalty term.
The optimal clock parameter T m and T o are returned when the optimization is finished.
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7.4 Advantages and Disadvantages

The method sketched reduces computational costs, required memory and thus energy
and the algorithm can be implemented and executed in real-time on a microcontroller of
a small mobile robot. To summarize, the proposed method has the following advantages:

• A SG-Filter can be implemented as a convolution of FIFO-buffered input data
with the SG-Filter-Parameters which is easy to code and fast to execute on a
microcontroller and has a small and fixed memory demand.

• The delay of the sample step indices in the data sets can be implemented through
a FIFO-buffer or calculated in the case of T kT and RkG.

• By the use of Welford’s Online algorithm, the calculation of the variance is split
into small steps during the recording of the data sets into a buffer. This avoids a
peak in required computational power.

• The variance of a sequence of measurements is a simple indicator of the sensitivity
of the cost function.

• Since only sequences of data sets, which will lead to good optimization results,
are stored and used, the algorithm has a lower memory consumption compared to
an algorithm that stores all data at a similar horizon length. Furthermore, the
number of data points that have to be interpolated, evaluated and summed up by
the cost function is reduced which also reduces the computational cost.

• By the use of the DSM a well-known and quite common optimization algorithm is
used which is easy to implement. Furthermore, the calculation of gradients with
single precision numeric and noisy measurement data is avoided.

The major disadvantages of the proposed method are also listed:

• If the robot’s trajectory has no turn or turns with small heading rates, the variance
threshold may never be reached and thus no data will be stored and no optimization
will be performed. The method relies on recurring intervals with changing heading
rates.

• The algorithm requires some time to fill up all structures before the first opti-
mization can be started. During this period no optimized clock parameters are
available for subsequent algorithms like an observer.

• Offsets like gyroscope drift and measurement noise will limit the accuracy of the
results of the parameter optimization since the measurement data is used in the cost
function. The higher the disturbances of the measurements are the less accurate
the estimated parameters (T m and T o) will be and the more often an optimization
is required to keep the time error small.

Implementation details and algorithm parameters used for the presented simulations
and experiments are given in the following section. Readers which are not interested
in implementation details and do not intend to apply the proposed algorithm themself
might skip over Section 7.5. In Section 7.6 simulation and experimental results are given.
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7.5 Implementation Details

The algorithm has been implemented in Matlab and the code generation toolboxes are
used to generate C-Code which can be compiled and run on the microcontroller of the
TWIP.
A hardware timer triggers an interrupt every 5 ms to perform a sample step on the robot.
Firstly, the routine to read the local sensors and evaluate the received Bluetooth data
is executed. Afterwards the clock estimation method, the observer, and the controller
functions are called. Finally, the actuator outputs are updated and the data which
should be logged is sent out via Bluetooth.
As already mentioned, the IMU is read first and a new data set DR is created. If a new
data set has been received via Bluetooth by the robot during the last microcontroller
sample step, a data set DP is also created including the received information. If no data
has been received from the tracking system an empty data set is generated. Subsequently
the algorithm function Clock Parameter Estimation (CPE) (see Algorithm 1) is executed
and both packages DR and DP are passed. If the function has finished, the subsequent
functions, for the observer and controller, etc., are executed. It is imported to ensure,
that the sum of the execution time of all functions during a sample step never exceeds
the sample time of 5 ms.
The most important CPE functions of the algorithm are listed in Algorithm 1 and
Algorithm 2 as pseudo code based on the structure visualized in Figure 7.2. Line 3
in Algorithm 1 calls the function to record data sets and Line 4 to Line 13 cover the
optimization part. The introduced filter part is presented in Algorithm 2 from Line 2
to Line 5. Finally, Line 6 to Line 18 in Algorithm 2 introduces the storage part. The
implementation details of the filtering, data storage, and optimization parts are explained
separately in the following subsequent sections.

7.5.1 Filtering

The IMU with the gyroscope is read at each sample step of the microcontroller and
thus the filter for the data sets DR is executed at every sample step too. However, the
tracking data set filter and the corresponding FIFO is only executed, if a package DP

with new data has been received by the microcontroller during the last sample step.
The gyroscope measurement yG,x of the heading rate in the dataset DR as well as
the tracking system’s measurement yT,θ of the heading angle is fed into a SG-Filter
of NG = NT = 15th order, fitting a 5th degree polynomial. Both SG-Filters are set
up symmetrically and the output is evaluated at the middle of the fitted polynomial.
Contrary to the SG-Filter for the gyroscope heading rate, the SG-Filter for the tracker
measurement is designed to give the filtered first-order derivative ṽθ,T as output. In
addition, it is assumed that the deviation of the sample time T m from its nominal value
has a negligible influence on the time derivative calculated by the filter.
To keep up the connection between the robot’s sample step index RkR and the filter
output ṽθ,T a FIFO-buffer with a length of (NT − 1)/2 is used. At every evaluation of
the filter, the sample step index RkR from the current data set DT is enqueued and the
oldest entry in the buffer is dequeued. The dequeued sample index Rk̃R then corresponds
to the filter output ṽθ,T since it has been delayed in the same amount.
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Algorithm 1 Clock Parameter Estimation Function
Input:

DP ▷ Tracking data set of current robot sample step (empty if no data has been
received)
DR ▷ Gyro data set of current robot sample step
T m ▷ Clock sample time from last optimization
T o ▷ Clock offset from last optimization

Output:
T m ▷ Current estimate of the clock sample time
T o ▷ Current estimate of the clock offset

Static:
A ▷ Array of NS structures to recorde data sets DT and DG in buffer
i (init=0) ▷ Current buffer index
fb (init=true) ▷ Flag which is set if data recording is active
σ2 (init=0) ▷ Variance of current gyro buffer

1: function cpe(DR,DP )
▷ Check if data recording is active

2: if fb is true then
3: (fb,σ2) = recDataSet(DP ,DR,A,σ2,i)
4: else
5: fO = runOptimizationStep(A,T m,T o)

▷ Check if optimization is finished
6: if fO is true then

▷ Reactivate data recording
7: i = getOldestStructureIndex()
8: cleanStorage(A(i))
9: cleanVariance()

10: fb = true
▷ Update new estimated parameter

11: (T m,T o) = getOptimizationResults()
12: end if
13: end if
14: return (T m,T o)
15: end function
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Algorithm 2 Data Set Record Function
Input:

DP ▷ Tracking data set of current robot sample step (empty if no data has been
received)
DR ▷ Gyro data set of current robot sample step
A ▷ Array of NS structures to record data sets DT and DG in buffer
σ2 ▷ Variance of current gyro buffer
i ▷ Current buffer index

Output:
fb ▷ Flag which is set if data recording is active
σ2 ▷ Variance of current gyro buffer

1: function recDataSet(DP ,DR,A,σ2,i)
▷ Call SG-Filter

2: DG = SGFGyro(DR)
3: if DP is not empty then
4: DT = SGFTracking(DP )
5: end if
6: storeGyroDataSet(DG, A(i).BG)
7: σ2 = updateVariance(DG, σ2)
8: if DP is not empty then
9: storeTrackingDataSet(DT , A(i).BT )

10: end if
11: if A(i) is full then
12: if σ2 > σ2

min then
▷ Deactivate recording and start optimization

13: fb = false
14: else

▷ Restart data recording in same buffer
15: cleanStructure(A(i))
16: cleanVariance()
17: end if
18: end if
19: return (fb,σ2)
20: end function
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The sample step index RkG can be calculated with Rk̃G = RkG−(NG−1)/2. In the same
way, the corresponding sample index T kT can be calculated with ˜

T kT = T kT−(NT−1)/2.
Due to this, a FIFO for RkG and T kT is not needed as shown in Figure 7.2.

7.5.2 Data Storage

A total number of NS = 8 structures are used, each with a buffer BG and a buffer BT .
All variables are saved as single precision floats or 32 bit-integers.
The size of the buffer BG is chosen to store NBG = 100 data sets DR. Only every
second sample of the gyroscope filter output is stored in the buffer BG. This is done
to double the horizon length without increasing the required buffer memory and the
number of points that have to be interpolated and evaluated in the cost function during
optimization. A period of 1 s of data can be recorded in the buffer BG of one structure
in this case.
Based on the nominal sample time T m of the tracking system with 20 ms, a size of
NBT = 50 has been chosen, to record the same time period of tracking system data sets
DT into the buffer BT .
Each structure requires 2.95 kBytes to store the given number of data sets and variables
which makes in total 23.6 kBytes for all structures.
Based on preliminary experimental results an average delay of approximately 65 ms of
the received data packages from the tracking system has been evaluated. The start of
the recording of the tracking system data sets is delayed about the average transmission
delay time of 65 ms, to prevent that the first data sets of the tracking system cannot be
used for interpolation and for the calculation of the cost function because there is no
matching gyroscope data.
The variance threshold has been experimentally tuned to a value of σ2

min = 1 (rad/s)2.
If the variance of the stored gyro data in the buffer BG is below σ2

min when the buffer
is full, the data in both buffers is deleted and the recording is restarted into the same
structure.
To ensure that the stored data in the structures cover a long period of time which is
required to get a sensitive cost function, a long horizon is required, as discussed in
Section 7.2. Thus, a break is implemented which ensures a minimum time gap between
the last recorded data set in the last filled-up structure and the trigger to start the
storage of data into a new structure. A break of 12 s has been experimentally chosen
and is a compromise between minimum horizon length and time which is to required
renew the data sets in the structure. To avoid an overload with details in the listing of
Algorithm 1, this feature is not sketched but has been implemented in the code.
The number of structures and the length of the buffers has been chosen such that the
memory demand of the algorithm does not exceed the available resources of the mi-
crocontroller. The more memory and the more computational power a microcontroller
offers, the longer the horizon can be made and the more data sets can be evaluated.
Offline experiments with measurement data show, that this improves the estimation of
T m, T o. Unfortunately, a higher number of structures or longer buffer lengths leads to
a sample time violation in the online implementation.
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7.5.3 Optimization

As already introduced, the Downhill Simplex method (DSM) introduced by Nelder and
Mead [79], Lagarias et al. [60] is used to run the optimization online on the microcon-
troller. In each iteration, the DSM performs different tasks to vary three points of (T m,
T o) in order to find the optimal values. To split the tasks of each iteration into small
steps, a state machine is implemented. In each stage of the state machine at least for
one point, the cost function has to be evaluated. At every call of the optimization (Al-
gorithm 1 Line 5) the cost function is evaluated for only one structure and one point.
Thus, to evaluate the cost function, NS calls of the optimization function are required.
This separation into small tasks is done to limit the maximum computation time of DSM
at each sample step of the microcontroller.
To ensure that the optimization time is limited, two stop criteria are introduced. The
optimization is either stopped after 40 iterations or if the area covered by the three
points is below 1 · 10−7.
Algorithm 3 sketches the procedure to calculate the cost function value of one storage.
First, from Line 2 to Line 7 the sample steps stored in the buffer BT and BG of the current
structure are converted into time variables with the current set of clock parameters (T m,
T o). Afterwards, for each data set in BG an interpolated value at the time tG of the
tracking system’s ṽθ,T is calculated (Line 8). The interpolation in time is done linearly
between the two nearest points ṽθ,T in time tT . If a value tG is out of the interpolation
region, the value v̄θ,T is marked as invalid.
For all valid interpolation points v̄θ,T , Line 12 calculates the difference between ṽθ,G and
v̄θ,T which is added to the cost function value in Line 13.
As introduced, the transmission of a data set from the tracking system to the robot needs
at least one sample step of the robot and thus a minimum time Rm. Thus, Line 17 to
Line 22 add a penalty cost to the function value as given in (7.9). The penalty parameter
αp = 0.05 is used to weight the constraint violation influence.

7.6 Results

7.6.1 Simulation

Firstly, the proposed method is evaluated via simulations. A trajectory optimization
using a model of the TWIP to compute a trajectory of over 4700 s is utilized to generate
measurement data sets. The clock parameters of the tracking system are set to T o =
1000 samples and T m = 20.006 ms such that they differ from their nominal parameters.
Contrary, the clock parameters of the robot are defined to their nominal values.
Two different cases are considered. In the first case, the algorithm is fed with data
sets with no noise. The second test case is set up to investigate how noise affects the
parameter estimation. Especially noise on the tracking system measurement θT may
decrease the accuracy of the parameter estimation, since in the cost function of the
optimization its numerical derivative vθ is used, which will amplify the noise. Thus
additive zero-mean white Gaussian noise with a standard deviation of σ = 0.5◦ is added
to the tracking system measurements during the generation of the test data sets.
In Figure 7.3 and Figure 7.4 the results for the estimated parameters T o and T m are



7.6. Results 145

Algorithm 3 Cost Function
Input:

T m, T o ▷ Clock parameter
BG = {DG(1), DG(2), . . . , DG(NBG)} ▷ Buffer with gyro data sets
BT = {DT (1), DT (2), . . . , DT (NBT )} ▷ Buffer with tracking data sets

Output:
J ▷ Cost function value

1: function calculateJ(T m, T o, BG, BT )
▷ Calculate local time of gyro data

2: for i = 1 to length(BG) do
3: tG(i) = Rm ·BG(i).Rk̃G

4: end for
▷ Calculate local time of tracking data

5: for i = 1 to length(BT ) do
6: tT (i) = T m · (BT (i).T k̃T − T o)
7: end for

▷ Interpolate tracking heading rate on gyro time points
8: v̄θ,T = interpolate( BT (:).ṽθ,T ,tT ,tG)

▷ Calculate cost function (mean error)
9: J = 0, j = 1

10: for i = 1 to length(BG) do
▷ Check v̄θ,T is valid (no extrapolation)

11: if v̄θ,T (i) is valid then
▷ Calculate error between tracking and gyro heading rate

12: ϵv = BG(i).ṽθ,G − v̄θ,T (i)
▷ Add absolute error of current point to cost function

13: J = j−1
j · J + 1

j · abs(ϵv)
▷ Increment mean value counter

14: j = j + 1
15: end if
16: end for

▷ Add penalty to cost function for transmission delays below the time of one
sample step of the robot

17: for i = 1 to length(BT ) do
18: ∆t = Rm ·BT (i).Rk̃R − tT

19: if ∆t < Rm then
20: J = J + α · (Rm−∆t)
21: end if
22: end for

▷ Return cost function value
23: return J
24: end function
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Figure 7.3: Estimated clock sample time T m (simulation)
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Figure 7.4: Estimated clock time offset T o (simulation)
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Figure 7.5: Clock time difference (simulation)
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plotted. In the first test case without noise the method delivers the accurate clock
parameter estimation with negligible small numerical errors after the second run of the
optimization. This leads to a perfect time estimation without any time difference, as
could be seen in Figure 7.5.
The simulation results with noisy measurements are plotted in blue in Figure 7.3, Fig-
ure 7.4 and Figure 7.5. Besides the fact, that the noise clearly affects the accuracy of the
results of the clock parameter estimation, the maximum error in time stays below 10 ms
after the first optimization run. Since the clock offset parameter T o has an increased
sensitivity to the accuracy of the estimated clock sample time T m, its difference to the
real parameter increases over time. This increasing mismatch of the offset over time can
be seen in Figure 7.4. Nevertheless, the simulation results indicate that the proposed
method will be able to give a valid clock time with a small error if optimizations are
performed repeatedly in time.

7.6.2 Experiments

To evaluate the proposed clock parameter estimation method online on a mobile robot
with real measurement data, an experiment with the TWIP and the tracking system, as
introduced, was set up.
During the experiment of over 4700 s the TWIP follows a repeated trajectory covering
an area of 2 m × 4 m. For validation purposes, the clock parameters are also obtained
offline by an optimization that uses the recorded data of the complete experiment in
one optimization horizon. An average delay of 64 ms and a maximum delay of 161 ms
between the time instant when the images are gathered by the tracking system and
time instant the data sets are received by the robot has been calculated offline with the
recorded data from the experiments.
During the experiment, the maximum computation time required by all tasks (communi-
cation, controller, observer and clock parameter estimation) has been 3.6 ms. Herein the
evaluation of the clock parameter estimation took approximately 2.6 ms. To conclude,
28 % of the 5 ms sample time of the robot is still available for further tasks.
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Figure 7.6: Estimated clock sample time T m (experiment)

In Figure 7.6 and Figure 7.7 the results of the estimated clock parameters during the
experiments are shown. The online estimated clock sample time shows a maximum
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Figure 7.7: Estimated clock time offset T o (experiment)

absolute difference from the offline computed sample time T m of 1.4 µs. Furthermore,
the difference between the time calculated online and offline does not increase, as can
be seen in Figure 7.8. After the first optimization the maximum absolute error in time
stays below 8 ms which corresponds to a delay of less than two sample steps of the
microcontroller.
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Figure 7.8: Clock time difference (experiment)

One comment to the clock offset T o in Figure 7.7 which grows over time: this is not an
issue. Therefore, the maximum absolute error in time in Figure 7.8 does not grow over
time. In (6.1) the T o is multiplied by the clock sample time T m. In consequence, the
larger the time t gets as time progresses the larger T o changes due a small deviation of
T m from its real value. Thus, this is an expected behavior.
With fixed clock parameters instead of online estimated ones also an error in time has
to be considered after 4700 s. This error comes from two sources: on the one hand the
deviation of the robot’s oscillator frequency from its nominal value, and on the other
hand, a possibly wrong initialization of the clock offset parameter. As introduced in
Subsection 2.3.2, the robot’s oscillator frequency deviation may introduce an error in
time of 108 ms/h and thus an error of up to 141 ms at end of the experiment. An
additional initialization error is calculated and added based on the assumption, that
the clock offset parameter has been defined by the first package received by the robot.
Furthermore, it is assumed that this package delay matches exactly the average delay of
64 ms. Thus, with fixed clock parameters an error of up to 205 ms has to be assumed.
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However, if the package delay has the maximum delay of 161 ms observed during the
experiment, the error in time may grow up to 302 ms. Finally, it has to be mentioned,
that the tracking system’s clock is not completely accurate either. Since no technical
details about the clock parameters of the tracking system’s oscillator are available, these
deviations are also not considered time error estimate. The presented results highlight,
that the method can be used to get an online estimation of the clock parameters, which
reduces the maximum error of the calculated time drastically. In the experiment over
4700 s the error in time, compared to the error using fixed clock parameters, is less than
3.9 %.

7.7 Concluding Remarks

In this chapter, a novel method to estimate clock parameters online on small robots
with microcontrollers, limited memory, and low-power requirements has been presented.
First, the clock parameter estimation problem has been motivated, and afterwards the
concept to overcome the issue has been explained. Further implementation details are
given to ease the implementation of the algorithm if required. Simulation results as well
as experimental results with the TWIP are presented showing the applicability of the
proposed method. Finally, an experiment with a duration of 4700 s has been conducted
and presented to pove the functionality of the proposed clock parameter estimation
algorithm. The experimental results show a reduction of the error in time estimation of
up to 96.1 % compared to an approach with fixed clock parameters.
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Chapter 8

Summary of Achievements and
Outlook

To finalize this thesis, a summary of achievements is presented to give a compact overview
of the key insights gained and the major contributions in the field of design, modeling,
control as well as state and parameter estimation applied to the two-wheeled inverted
pendulum (TWIP). In addition, a brief outlook is given to motivate further research in
this challenging area.

8.1 Summary of Achievements

TWIPs offer a new way of personal transport in urban areas, for the recording of movies,
filming sport-events, and also for indoor logistics. Especially for the last two tasks, where
autonomous driving might be desired, stable and precise setpoint and tracking control for
TWIPs is essential. Besides this, small TWIPs offer a challenging benchmark platform
to test new control algorithms for researchers. In this thesis, a small TWIP has been
built, a comprehensive dynamic model has been derived and control, as well as state
and parameter estimation algorithms, have been developed and applied to the mobile
robot. In each of the given tasks, contributions were presented which bring the ongoing
research in this field forward.

Two-Wheeled Inverted Pendulum In Chapter 2, the concept and building process
of the TWIP has been presented with a strong focus on the desired real-time closed-loop
control application. This led to a robust and lightweight robot, where an appropriate
choice of sensors delivers high-quality measurement signals required for precise state
estimation. In addition, the bare-metal firmware on the MCU ensures that all algorithms
can be executed in real-time. The contributed insights and details of the design process
and the resulting experimental setup enables other researchers to improve their setups
and to receive better results.

Modeling A comprehensive model of the TWIP has been presented in Chapter 3.
Compared to existing literature the dynamics of the motor currents are included di-
rectly in the Lagrangian and are not neglected. Therefore, the proposed novel approach
is less error-prone and a more well-rounded modeling procedure, as the electrical and
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mechanical systems, are modeled jointly inside the Lagrangian framework. In addition,
the physical current limits can easily be incorporated into the model derived and it offers
the possibility to consider them as state limits during control design and the estimation
of the DoA.
In addition, an insight into the system properties of the presented models with different
levels of detail is given in Chapter 3, namely one model with current dynamics as well
as one without current dynamics for the balancing two-wheeled inverted pendulum mode
and a non-balancing model of the TWIP on ground for the wheelchair mode. Utilizing
an exemplary trajectory, the interconnection and power exchange of the different energy-
storages of the system, included in the Lagrangian, is revealed. Based on this, negligible
terms are detected as well as parts of the model which require particular attention during
modeling. To the best of the author’s knowledge, such a detailed and comprehensive
treatment has not been presented before for TWIPs.
Moreover, in the awareness of non-ideal sensors, a model for each of the three onboard
sensors is presented, including sampling, quantization, and the digital on-chip filters to
provide the required congruence to the physical system for simulation-based observer
tuning. Even though the sensors show non-negligible dynamics due to their filters in the
presented application, such a treatment of the sensors has not been presented before for
the TWIP.
Furthermore, the presented experimental results confirm a high degree of congruence of
the model with the physical TWIP. In particular, the closed-loop response to a position
step in the experiments show a remarkable match to the simulation results. Based on
the proper and control-orientated system design presented in Chapter 2, coupled with
the thorough modeling of the TWIP introduced in Chapter 3, an excellent mapping
between the physical system behavior and the simulation is achieved. Compared to
other published results, this congruence is outstanding.
Finally, a versatile treatment of the linearized models has been provided. State trans-
formations are introduced to decouple the dynamics into two subsystems, one for the
heading dynamics and one for the forward dynamics of the robot. Moreover, the eigen-
values of the LTI-models as well as the poles and zeros of the subsystem’s transfer
functions are presented and an interpretation of physical system properties is given.
Furthermore, the connection of the choice of the system output to performance limita-
tions has been analyzed thoroughly. For the first time, such a comprehensive treatment
has been published which offers novel insights for modeling and control of the TWIP.

Optimal Trajectory Generation In Chapter 4, a method has been presented to
compute an energy optimal trajectory offline, subject to the nonlinear TWIP model
with current dynamics and state and input constraints. The introduced optimization
problem minimizes the input energy of the TWIP and not only the control input. By the
use of checkpoints and so-called equalitypoints, the desired trajectory can be specified.
Moreover, an optimized reference trajectory that can be cut and repeated for long-term
test runs is presented. A major contribution is the introduced two-stage optimization
scheme using the simpler model on ground in the wheel-chair mode to compute an ini-
tial guess for the optimization task using the full model of the balancing TWIP with
current dynamics. Moreover, additional analyses are presented to compare the standard
Runge-Kutta (RK) against variational integrator (VarInt) schemes for discretization.
The presented results coincide with Albert et al. [2] but in this chapter, it has been re-
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vealed that VarInt outperforms the standard schemes even more than has been presented
by Albert et al. [2].

Setpoint and Trajectory Tracking A novel control structure to perform setpoint
and trajectory tracking in the presence of large control errors has been presented in
Chapter 5. A major contribution is the derivation of a full discrete-time treatment of
all elements of the control structure. Moreover, the presented guidance algorithm makes
it possible that a desired setpoint or trajectory can be reached even though the TWIP
underlies nonholonomic constraints. In addition, a friction compensation is proposed to
reduce the effects of nonlinear mechanical friction and to increase the congruence of the
LTI-model used for control synthesis.
For stabilization and tracking, two discrete-time linear-quadratic state-feedback regula-
tors with output weighting (LQRYs) have been designed. This is done by the use of
decoupled linear state space models for the forward dynamics and heading dynamics,
which eases the control synthesis, as only two scalars have to be tuned in simulations and
experiments. In addition, the approach offers a clear relation between the parameters to
tune and the effect on the error compensation related to the longitudinal and heading
motions of the robot.
In the next step, the limited domain of attraction (DoA) of the closed-loop system is
estimated by the use of a quadratic Lyapunov function (QLF). Using linear matrix
inequalities (LMIs) the matrix P for the quadratic Lyapunov function (QLF) can be
efficiently calculated by solving a convex optimization. Moreover, by the introduced
procedure the limiting level set of the QLF is known which defines the estimated domain
of attraction (EDoA) limited by all state and input constraints. This approach is easy
to implement, can be efficiently solved, and gives an EDoA which can be used by a
command governor, as introduced.
Based on the calculated EDoA, a command governor algorithm is introduced to extend
the DoA of the closed-loop controller of the TWIP. In addition, to enhance the per-
formance of the discrete-time algorithm for trajectory tracking, a static and dynamic
allocation of the input and state limits between the desired trajectory and the stabiliz-
ing controller are presented, which are based on the continuous-time algorithm proposed
by Diepold [31]. The experiments presented for setpoint and trajectory tracking prove
the applicability of the algorithms in practice.
The problems arising from nonholonomic constraints stay for the TWIP, thus stability
can only be guaranteed for the linear system but not for the nonlinear system with the
guidance algorithm. This problem is an ongoing research topic for trajectory tracking
and deserves the attention of future research. Nevertheless, the presented experimental
results highlight that in practice good results for setpoint tracking as well as trajectory
tracking can be achieved. In particular, large setpoint changes and trajectory offsets
could be handled without the loss of stability in experiments.
To sum up, the proposed new control algorithms showed remarkable performance, even
in presence of disturbances, measurement noise, and state estimation errors which are
present in every real system.

State Estimation with Time Delayed Measurements An innovative state estima-
tion method for the TWIP has been presented in Chapter 6 which is able to incorporate
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delayed remote measurements properly. In particular, the introduced algorithm requires
low computational power and little memory requirements compared to existing methods.
Moreover, a statistical analysis of the non-constant transmission delays has been per-
formed based on experimental data. Most methods in the literature rely on the time-
independence of the random process of the delays to yield a good estimation performance,
but it turned out that the assumption of time-independence of the random process does
not hold. Therefore, the presented novel method uses the timestamps included in the
delayed measurements and incorporates them during the measurement update, such
that no assumptions on the random process of the delays are required to design the
state estimator. Thus, the deterioration of the estimated state due to the non-constant
time-delays of the transmitted remote measurements is minimized. In addition, the
underlying nonholonomic constraints of the motion of the TWIP are used by the pre-
sented algorithm to improve the estimator’s performance. Finally, the applicability and
remarkable state estimation performance, even in presence of large measurement delays,
has been demonstrated in experiments.

Efficient Clock Parameter Estimation In the last Chapter 7, a new algorithm to
estimate clock parameters online on a low-power microcontroller with limited memory
has been presented. Simulation results show the applicability of the proposed algorithm.
In addition, experimental results are presented to prove the functionality of this novel
concept to estimate the clock parameters for the proposed state estimation algorithm.

8.2 Outlook

To support and inspire further design and research in this innovative area, ideas and
open topics are listed in this last section.
Firstly, the presented platform could be continued as a public open-source project and
might be used as a benchmark platform by different research groups. This would ease
the comparison of the gained results. Therefore, some parts as the gears might be
redesigned to use out-of-the-shelf parts instead of customized ones. The same applies to
the PCB and the electronics. Due to the rapid development, the MCU as well as the
sensors are already outdated and a redesign with new components would be required. In
addition, a more precise mounting for tracking markers should be realized to reduce the
misfit between the tracking system and the model coordinate systems, which currently
probably introduces some avoidable state estimation errors.
In this thesis, the focus has been laid on nonlinear optimal trajectory generation but
other approaches in the literature offer alternatives requiring less computational power.
The use of splines to optimize the path first in combination with the use of a flat output,
as presented in Subsection 3.3.3, is promising to speed up the generation of an initial
guess for the consecutive nonlinear optimization with the model of the balancing TWIP
with current dynamics. A quite similar approach has been presented by Diepold et al.
[30] for a ball-balancing robot.
In the field of control, a better solution for the guidance algorithm to overcome the
stumbling blocks placed by the nonholonomic constraints of the dynamic system will
improve the closed-loop performance. Ideally, in the same manner, as Astolfi [6] pre-
sented a solution for stable setpoint tracking, a solution for trajectory tracking might



8.2. Outlook 155

be developed. In addition, an investigation into a new method to estimate the DoA
with the full nonlinear model (with xB and yB) will increase the trust in the stability
region found. Takagi-Sugeno-Models might improve and increase the estimated DoA as
proposed by Diepold and Albert [29]. Moreover, the ω-representations of the state space
model, as presented in Subsection 3.1.10, may ease the design of nonlinear control laws.
As discussed, the model has an integration chain uR → iR → ωδR which is (almost)
decoupled from the chain uL → iL → ωδL. Utilizing this property, new opportunities for
control may arise in the application of partial feedback linearization or backstepping.
In the field of state estimation, an estimation error reduction during high velocities might
be gained by a new approach to handle delayed measurements. As typically the time
instances of the sample steps of the robot and the tracking system do not match exactly,
the measurements are currently used in the next or previous sample step of the robot.
The faster the robot moves, the larger the resulting error in the measurement update
will be. This error might be reduced by interpolating the received measurements and
using the interpolated value at the right time instance. Moreover, if a more powerful
MCU is available, a comparison of the presented estimation approach with an EKF and
SPKF will be interesting.
Finally, the clock parameter estimation suffers from the change of sensitivity of the two
parameters over the run-time. Maybe, an approach can be found to reduce or even
eliminate this effect.
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Appendix A

Modeling

A.1 Matrices Model with Current Dynamics (c-d)

Ac-d =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 6.440 · 101 −6.346 · 10−1 1.923 · 101 0 −3.916 · 101 −3.916 · 101

0 0 1.196 4.087 · 10−2 −1.238 0 2.522 2.522
0 0 0 0 0 −1.841 7.648 · 101 −7.648 · 101

0 0 0 4.726 · 102 −1.432 · 104 −7.018 · 102 −3.750 · 103 0
0 0 0 4.726 · 102 −1.432 · 104 7.018 · 102 0 −3.750 · 103



(A.1)

Bc-d =



0 0
0 0
0 0
0 0
0 0
0 0

2.500 · 103 0
0 2.500 · 103



(A.2)
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A.2 Matrices Model with Current Dynamics (n-d)

An-d =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 6.440 · 101 −1.051 · 101 3.183 · 102 0
0 0 1.196 6.765 · 10−1 −2.050 · 101 0
0 0 0 0 0 −3.047 · 101


(A.3)

Bn-d =



0 0
0 0
0 0

−2.610 · 101 −2.610 · 101

1.681 1.681
5.099 · 101 −5.099 · 101


(A.4)

A.3 Matrices Model on Ground (g-d)

Ag-d =


0 0 1 0
0 0 0 1
0 0 −2.641 · 101 0
0 0 0 −2.345 · 101

 (A.5)

Bg-d =


0 0
0 0

2.166 2.166
3.925 · 101 −3.925 · 101

 (A.6)
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A.4 Decoupling Matrices

Input transformation

Tu =

1 1
1 −1

 (A.7)

State transformation model with current

Tc-d =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1



(A.8)

State transformation model without current

Tn,d =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1


(A.9)

State transformation model on ground without current

Tg,d =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (A.10)

A.5 Matrices Decoupled Model with Current Dynamics

Forward dynamics

Ac-F w =



0 0 1 0 0
0 0 0 1 0
0 1.196 −1.238 4.087 · 10−2 2.522
0 6.440 · 101 1.923 · 101 −6.346 · 10−1 −3.916 · 101

0 0 −2.864 · 104 9.453 · 102 −3.750 · 103


(A.11)
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bc-F w =



0
0
0
0

2.500 · 103


(A.12)

Heading dynamics

Ac-He =


0 1 0
0 −1.841 7.648 · 101

0 −1.404 · 103 −3.750 · 103

 (A.13)

bc-He =


0
0

2.500 · 103

 (A.14)

A.6 Matrices Decoupled Model without Current Dynam-
ics

Forward dynamics

An-F w =


0 0 1 0
0 0 0 1
0 1.196 −2.050 · 101 6.765 · 10−1

0 6.440 · 101 3.183 · 102 −1.051 · 101

 (A.15)

bn-F w =


0
0

1.681
−2.610 · 101

 (A.16)

Heading dynamics

An-H =

0 1
0 −3.047 · 101

 (A.17)

bn-He =

 0
5.099 · 101

 (A.18)
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A.7 Matrices Decoupled Model on Ground without Cur-
rent Dynamics

Forward dynamics

Ag-F w =

0 1
0 −2.641 · 101

 (A.19)

bg-F w =

 0
2.166

 (A.20)

Heading dynamics

Ag-He =

0 1
0 −2.345 · 101

 (A.21)

bg-He =

 0
3.925 · 101

 (A.22)
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A.8 Model Parameters

Table A.1: TWIP model parameters

Symbol Value Description

g 9.81 m/s2 gravity constant

mB 280 · 10−3 kg body mass
lB 49.467 · 10−3 m distance to the body’s center of gravity
IB body inertia
IBxx 567.7 · 10−6 kg m2 about the x-axis
IByy 496.7 · 10−6 kg m2 about the y-axis
IBzz 155.2 · 10−6 kg m2 about the z-axis

mW 28 · 10−3 kg wheel mass
lW 37.396 · 10−3 m distance to the wheel’s center of gravity
IW wheel inertia
IWxx 4.998 · 10−6 kg m2 about the x-axis
IWyy 7.404 · 10−6 kg m2 about the y-axis
IWzz 4.998 · 10−6 kg m2 about the z-axis

IM 268.528 · 10−9 kg m2 inertia motor shaft
IG 1.807 · 10−6 kg m2 inertia gear stage
nWM (78/11)2− gear ratio wheel to motor
nWG 78/11− gear ratio wheel to gear

kE 3.76 · 10−3 V/(rads) motor back-EMF constant
kM 3.76 · 10−3 N m/A motor torque constant
LM 4 · 10−4 H motor inductance
RM 1.5 Ω motor resistance

rW 33 · 10−3 m wheel radius
2dW 2× 49 · 10−3 m distance between wheels

dV 1.532 · 10−3 N m/rad viscous damping coefficient
dC 32.6 · 10−3 N m coulomb damping coefficient
d0 8− slope of the damping curve
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Control

B.1 Matrices Decoupled Discrete-Time Model with Cur-
rent Dynamics

Forward dynamics

A⟳
F w =



1 1.529 · 10−5 4.778 · 10−3 7.363 · 10−6 2.980 · 10−6

0 1.001 3.454 · 10−3 4.887 · 10−3 −4.629 · 10−5

0 6.190 · 10−3 9.089 · 10−1 3.023 · 10−3 5.845 · 10−4

0 3.189 · 10−1 1.416 9.541 · 10−1 −9.085 · 10−3

0 3.145 · 10−2 −6.641 2.192 · 10−1 −6.811 · 10−3


(B.1)

B⟳
F w =



1.811 · 10−5

−2.813 · 10−4

7.450 · 10−3

−1.157 · 10−1

5.851 · 10−1


(B.2)

Heading dynamics

A⟳
He =


1 4.669 · 10−3 9.049 · 10−5

0 8.644 · 10−1 1.778 · 10−2

0 −3.262 · 10−1 −6.708 · 10−3

 (B.3)

B⟳
He =


5.499 · 10−4

2.262 · 10−1

5.865 · 10−1

 (B.4)
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B.2 LQR Feedback Gain

K =



−2.616 · 101 −2.616 · 101

5.881 −5.881
−1.548 · 101 −1.548 · 101

−1.542 −1.542
−1.859 · 101 −1.859 · 101

1.560 · 10−1 −1.560 · 10−1

6.762 · 10−3 4.122 · 10−4

4.122 · 10−4 6.762 · 10−3



T

(B.5)



B.3. LQR Error Plots 167

B.3 LQR Error Plots
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State Estimation

C.1 Local Model

A⟳
l =



1.0 · 100 4.9 · 10−3 3.5 · 10−3 −3.4 · 10−20 −4.6 · 10−5 −4.6 · 10−5

3.2 · 10−1 9.5 · 10−1 1.4 · 100 −1.5 · 10−17 −9.1 · 10−3 −9.1 · 10−3

6.2 · 10−3 3.0 · 10−3 9.1 · 10−1 7.8 · 10−19 5.8 · 10−4 5.8 · 10−4

−7.4 · 10−19 −8.7 · 10−18 2.7 · 10−16 8.6 · 10−1 1.8 · 10−2 −1.8 · 10−2

1.6 · 10−2 1.1 · 10−1 −3.3 · 100 −1.6 · 10−1 −6.8 · 10−3 −5.2 · 10−5

1.6 · 10−2 1.1 · 10−1 −3.3 · 100 1.6 · 10−1 −5.2 · 10−5 −6.8 · 10−3


(C.1)

B⟳
l =



−2.8 · 10−4 −2.8 · 10−4

−1.2 · 10−1 −1.2 · 10−1

7.5 · 10−3 7.5 · 10−3

2.3 · 10−1 −2.3 · 10−1

5.9 · 10−1 −6.7 · 10−4

−6.7 · 10−4 5.9 · 10−1


(C.2)
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C.2 Measurement Parameter

Table C.1: State estimator measurement matrix parameters

Symbol Value

cT,xy 1.00 · 103

cT,θ 1.00 · 100

cE,α −5.73 · 100

cE,vd
1.74 · 102

cG 9.40 · 102

cS 2.56 · 102
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C.3 Cost Function

Table C.2: State estimator cost function parameters

Symbol Value Symbol Value

ql,α 1 rl,Eδ 3.4009 · 105

ql,vα 8.6756 · 10−28 rl,Gx 8.3330 · 103

ql,ω 1.4464 · 10−17 rl,Gy 4.3985 · 10−27

ql,i 5.0793 · 1012 rl,Sz 6.5133 · 1013

qu,xy 1 ru,xy 9.4493 · 1010

qu,vd
1.3116 · 103

qu,θ 1 ru,θ 2.2439

C.4 Optimization

Qopt = diag



1.000 · 102

1.000 · 102

1.146 · 101

2.230 · 101

4.460
3.048

4.775 · 10−1

5.081
5.081



(C.3)
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Appendix D

Abbreviations and acronyms

back-EMF back electromotive force

BCE Before the Christian

CAD computer-aided design

CDF cumulative distribution function

CPE Clock Parameter Estimation

CPR counts per revolution

CPU central processing unit

CQLKF cascaded quasi-linear Kalman filter

DAL dynamic allocation of input and state limits

DARE discrete-time algebraic Riccati equation

DC direct current

DoA domain of attraction

DoF degree of freedom

DSM Downhill Simplex method

EDoA estimated domain of attraction

EKF extended Kalman filter

FIFO First-In-First-Out

FIR finite impulse response

FPU floating-point unit

I2C inter-integrated circuit

IMU inertial measurement unit
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ISE integral square error

LED light-emitting diode

LiPo lithium-ion polymer battery

LMI linear matrix inequality

LQG linear-quadratic-Gaussian

LQR linear-quadratic regulator

LQRY linear-quadratic state-feedback regulator with output weighting

LSB least significant bit

LTI linear time-invariant

MCU microcontroller unit

MEMS microelectromechanical systems

MHE moving horizon estimation

MIMO multiple-input-multiple-output

MOSFET metal–oxide–semiconductor field-effect transistor

NTP Network Time Protocol

ODE ordinary differential equation

OS operating system

PC personal computer

PCB printed circuit board

PDV packet delay variation

PID proportional-integral-derivative

PWM pulse-width modulation

QDEC quadrature decoder

QLF quadratic Lyapunov function

RAM random access memory

RHP right half-plane

RISC reduced instruction set computer

RK Runge-Kutta

RMS root mean square

SAL static allocation of input and state limits
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SDP semidefinite programming

SG-Filter Savitzky-Golay-Filter

SISO single-input-single-output

SLS selective laser sintering

SPI serial peripheral interface

SPKF Sigma-point Kalman Filters

SPP serial port profile

SRAM static random-access memory

TUM Technical University of Munich

TWIP two-wheeled inverted pendulum

VarInt variational integrator



176 Appendix D. Abbreviations and acronyms



List of Figures

1.1 TWIP with markers for an optical tracking system . . . . . . . . . . . . . 2
1.2 Outline of the thesis mindmap . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Operation modes of the TWIP . . . . . . . . . . . . . . . . . . . . . . . . 12
a Wheelchair mode with pen holder . . . . . . . . . . . . . . . . . . 12
b Two-wheeled inverted pendulum mode . . . . . . . . . . . . . . . . 12

2.2 TWIP components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 TWIP encoder unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Firmware sample step flowchart . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 H-bridge circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Velocity over PWM with different H-bridge operation modes and PWM

frequencies (experimental data from Kaufmann [53]) . . . . . . . . . . . . 20
2.7 TWIP tracking system with TWIP . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Structure of the experimental setup . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Structure of the simulation model . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 TWIP coordinate systems and geometric parameters . . . . . . . . . . . . 28
3.2 Diagram of the electronic motor circuit with an illustration of the con-

nection to a gearbox and a wheel (inspired by Delgado [23]) . . . . . . . . 28
3.3 Nonholonomic constrains of the TWIP . . . . . . . . . . . . . . . . . . . . 37
3.4 Power flows inside the TWIP . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Structure of accelerometer model . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Coordinate systems and geometric parameters of the accelerometer and

gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7 Structure of gyroscope model . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.8 Structure of encoder model . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.9 Dissipative torques forcing the n-model . . . . . . . . . . . . . . . . . . . 58
3.10 Error and ISE over time for different output . . . . . . . . . . . . . . . . . 65
3.11 Switch off experiment (x, vd, α) . . . . . . . . . . . . . . . . . . . . . . . . 66

177



178 List of Figures

3.12 Step experiment (x, vd, α) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Trajectory x-y phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Optimal trajectory states (xB,yB,θ) . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Computation time comparison . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Optimal trajectory states (α,vα,vd,vθ,iR,iL) . . . . . . . . . . . . . . . . . 77
4.5 Optimal trajectory input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Control structure with command governor . . . . . . . . . . . . . . . . . . 79
5.2 Operation of the guidance algorithm inside R (inspired by Anhalt [5]) . . 85

a Velocity vd > 0.1 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . 85
b Velocity vd < −0.1 m/s . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Experimental control errors (exB ,eyB ,eθ) . . . . . . . . . . . . . . . . . . . 88
5.4 Illustration of the command governor principle . . . . . . . . . . . . . . . 91
5.5 Experimental results setpoint tracking . . . . . . . . . . . . . . . . . . . . 96
5.6 Experimental results command governor setpoint tracking . . . . . . . . . 97
5.7 Reduction of the EDoA due to changed state and input limits . . . . . . . 101
5.8 Experimental results trajectory tracking . . . . . . . . . . . . . . . . . . . 105
5.9 Experimental results command governor trajectory tracking . . . . . . . . 106

6.1 Position xB estimated neglecting the time delays . . . . . . . . . . . . . . 111
6.2 Statistical delay time analysis . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3 CQLKF flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Update gains mu,x, mu,y over orientation θ̂ for x̂B, ŷB . . . . . . . . . . . 123
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,êvθ
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