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Abstract: We present an exponentially convergent numerical method to approximate the solution
of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded
operator coefficient and Caputo fractional derivative in time. The numerical method is based on the
newly obtained solution formula that consolidates the mild solution representations of sub-parabolic,
parabolic and sub-hyperbolic equations with sectorial operator coefficient A and non-zero initial
data. The involved integral operators are approximated using the sinc-quadrature formulas that
are tailored to the spectral parameters of A, fractional order α and the smoothness of the first initial
condition, as well as to the properties of the equation’s right-hand side f (t). The resulting method
possesses exponential convergence for positive sectorial A, any finite t, including t = 0 and the whole
range α ∈ (0, 2). It is suitable for a practically important case, when no knowledge of f (t) is available
outside the considered interval t ∈ [0, T]. The algorithm of the method is capable of multi-level
parallelism. We provide numerical examples that confirm the theoretical error estimates.

Keywords: inhomogeneous Cauchy problem; Caputo fractional derivative; sub-parabolic problem;
sub-hyperbolic problem; mild solution; numerical method; contour integration; exponential convergence;
parallel algorithm
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1. Problem Formulation and Introduction

In this paper, we consider a Cauchy problem for the following fractional order differ-
ential equation:

∂α
t u + Au = f , t ∈ [0, T]. (1)

Here, ∂α
t denotes the Caputo fractional derivative of order α with respect to t

∂α
t u(t) =

1
Γ(n− α)

t∫
0

(t− s)n−α−1u(n)(s) ds,

where u(n)(s) is the usual integer order derivative, n = dαe is the smallest integer greater or
equal to α and Γ(·) is Euler’s Gamma function. The operator ∂α

t provides a generalization of
the classical differential operator ∂

∂t = ∂1
t . For non-integer α, the action of Caputo fractional

derivative is essentially nonlocal in time. In addition to that, the memory kernel from
∂α

t , α < 1 has a mild singularity at 0. These two facts have a profound impact on the
analytical and numerical properties of solutions to fractional differential Equation (1). If
α < 1, this equation is called sub-parabolic. Similarly, when α > 1, the equation is called
sub-hyperbolic. We direct the reader to [1] for a more concise introduction into the subject
of fractional derivatives and the theory of associated ordinary differential equations.
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The coefficient A in (1) is assumed to be a closed linear operator with the domain
D(A) dense in a Banach space X = X(‖ · ‖, Ω) and the spectrum Sp(A) contained in the
following sectorial region Σ(ρs, ϕs), that is commonly called a spectral angle:

Σ(ρs, ϕs) =
{

z = ρs + ρeiθ : ρ ∈ [0, ∞), |θ| < ϕs

}
. (2)

The numbers ρs > 0 and ϕs < π/2 are called spectral parameters (characteristics) of A. In
addition to the assumptions on the location of spectrum, we suppose that the resolvent of
A: R(z, A) ≡ (zI − A)−1 satisfies the bound∥∥∥(zI − A)−1

∥∥∥ ≤ M
1 + |z| (3)

outside the sector Σ and on its boundary ΓΣ. Following the established convention [2],
we will call such operators strongly positive. We accompany Equation (1) with the usual
initial condition

u(0) = u0, (4a)

for the solution and additional condition for its derivative, when 1 < α < 2:

u′(0) = u1. (4b)

The theory of fractional Cauchy problems for differential operators was developed
in the works [3–5]. The abstract setting, considered here, has been theoretically studied
in [6–8] for α ∈ (0, 1) then in [9] for α ∈ [1, 2) and, most recently, in [10]. In the current
work, we focus on the numerical evaluation of the mild solution to problem (1), (4) that is
given by the following result.

Theorem 1 ([10]). Let α ∈ (0, 2) and A be a sectorial operator with the domain D(A) and the
spectral parameters ρs > 0, ϕs < π

2 min
{

1, α−1}. If f ∈ W1,1([0, T], X) and u0, u1 ∈ D(A),
then there exists a mild solution u(t) of problem (1), (4) that can be represented as follows:

u(t) = Sα(t)u0 + Sα,2(t)u1 + JαSα(t) f (0)+
t∫

0

Sα(t− s)Jα f ′(s)ds. (5)

Here, Jα stands for the Riemann–Liouville integral

Jαv(t) =
1

Γ(α)

t∫
0

(t− s)α−1v(s) ds, (6)

the initial vector u1 ≡ 0 for α ∈ (0, 1] and Sα,β(t) is defined by

Sα,β(t)x =
1

2πi

∫
Γ

eztzα−β(zα I + A)−1xdz, β ≥ 1. (7)

with Sα(t) ≡ Sα,1(t) for short. The contour Γ is chosen in such a way that the integral in (7) is
convergent and the curve zα, z ∈ Γ is positively oriented with respect to −Σ(ρs, ϕs).

The bulk of the existing research is devoted to the particular cases of (1) when A
is specified as a strongly elliptic linear partial differential or, more generally, pseudo-
differential operator with the domain D(A) that is dense in X [4,11,12]. These cases also
include the fractional powers of elliptic operators are encompassed by the class of strongly
positive operators [13] considered in Theorem 1 and below. In this regard, the shape of
Sp(A) justifies the choice of the range (0, 2) for α, as a maximally possible for the considered
class of A (see [10] for a more detailed discussion).
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There exists a considerable body of work devoted to numerical methods for evolution
fractional differential equations (see [14–17] and the references therein). Philosophically,
it can be subdivided into methods that directly approximate the components of (1), or its
integral analogue, and those that make use of more elaborate solution approximations.
The methods from the first class are sequential in nature and have algebraic convergence
order that typically does not exceed 2, even for the multi-step methods [18], due to the
intrinsic fractional-kernel singularity [19]. In addition, at each time-step, these methods
need to query the entire solution history in order to evaluate ∂α

t or Jα, numerically. In the
consequence of that, they are computationally costly and memory constrained. Nonetheless,
the methods from this class are popular due to their simplicity [20], numerical stability [18]
and the ability to handle non-smooth initial data [21]. The second class of numerical
methods is represented by the works [22–26], to name a few. These methods are based
on the clever solution approximations that result in a time-stepping scheme requiring
only a small number of previous solution states for the next state evaluation. With some
exceptions (e.g., [25]), these methods are also O(hp).

Spectral methods from [27–30] deserve a separate mention. Although formally be-
longing to the second class, they make use of the exponentially convergent contour-based
propagator approximation, which permits to evaluate the transient component of the
solution to the linear problem without time-stepping. The authors of these works, how-
ever, do not apply it to (1), (4) directly. Instead, they consider a special proxy problem
∂tu + I1−α Au = g where Iα is a nonlocal operator equal to ∂α

t , if α < 1, or to Jα, otherwise.
It was shown in [28], that the existing methodology for parabolic problems [31–33] can
be transferred to the mild solution of such proxy problem with all important numerical
features of the solution algorithms preserved, including uniform exponential convergence
for t ∈ [0, T] and the capacity for multi-level parallelism. Despite being simple and efficient,
the proxy-problem idea has certain ramifications when applied to (1), (4). Firstly, there is no
easy way to incorporate the initial condition from (4b) into the proxy problem formulation,
so all existing works consider u′(0) = 0. Secondly, the methods from [27–29,34] operating
on the Laplace transform image of the right-hand side g are prone to errors when the
original f from (1) is not given in the closed form. Hence, they are unsuitable for many
applications. Meanwhile, formula (5), which serves as a base for our numerical method,
does not require any additional knowledge about the right-hand side f ∈ W1,1([0, T], X)
beside the values f (0) and f ′(t), t ∈ [0, T]. In addition to that, the rigorous analysis
from [28,30] addresses a version of the proxy problem where ∂α is a Riemann–Liouville
(RL) fractional derivative. Cauchy problems with RL derivative are simpler in the sense
of propagator representation [10], but they are compatible with (1), (4) only under some
additional assumptions.

It is fair to point out that the majority of the mentioned methods are designed to
handle the nonlinear fractional differential equation, more general than (1). With the view
of similar nonlinear extensions in mind, in this work we would like to prioritize those
properties of the solution method for (1), (4), which will make such extensions possible.
Let us for the moment assume that f = f (t, u). Then, representation (5) can be used as a
base for the sequential time-stepping scheme [35,36] or as the fine propagator in a more
parallelization-friendly ParaExp-type scheme [37]. In both cases, the method will be free
of the issues with approximating ∂α

t u in the vicinity of t = 0, provided that the proposed
approximation of (5) converges uniformly. Such application scheme also justifies the use
of a moderate in size final time T. If, more generally, we assume that Au = A(t, u), then
the problem in question can be reduced to (1), (4) using collocation [2,38] or a similar in
nature time-stepping scheme, inspired by [39]. In such scenario, A(t, u) is approximated by
A(tk, uk) having spectral characteristics that may vary drastically with k (see Cahn–Hilliard
equation from [40], for instance), and the right-hand side in the form A(tk, uk)− A(t, u),
which makes sense only locally. Thus, the solution method should be able to reliably handle
operators with arbitrary spectral parameters and right-hand sides that are unknown a priori.
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Taking the aforementioned properties into account, below we devise an exponentially
convergent approximation for (5) by building upon a well-established technique [31,41–43]
that involves the application of a trapezoidal quadrature rule to the parametrized contour
integral from (7).

In Section 2, we study a question regarding the choice of the suitable integration con-
tour for such parametrization. The proposed time-independent hyperbolic contour Γ = ΓI
is valid for the wide class of sectorial operators A with fixed ϕs < π

2 min
{

1, α−1} and
arbitrary ρs > 0. The parameters of ΓI are derived using the set of constraints that utilizes
all available analyticity of the propagator, and therefore, maximize theoretical convergence
speed of the sinc-quadrature applied to Sα(t). Section 3 is devoted to the development
and justification of the numerical method. Using the moderate smoothness assumption
u0 ∈ D(Aγ), γ > 0, in Section 3.2 we propose an exponentially convergent approximation
of Sα(t)u0, that does not degrade for small t like the similar methods from [24,44]. Addi-
tionally, the approximation is numerically stable for sectorial operators with the spectrum
arbitrary close to the origin. This new result is made possible by extending the idea of re-
solvent correction, originally introduced for S1(t) in [31], to the class of abstract integrands
with a scalar-part singularity; see Lemma 1, below. In Sections 3.3 and 3.4, we apply the
developed approximation of Sα(t) to turn solution representation (5) into the exponentially
convergent numerical method. A priori error estimates given by Theorems 2 and 3 charac-
terize the method’s convergence in terms of the smoothness of u0, f ′(t), values α, ϕs and
the size of T.

The implementation details are provided by Algorithms 1 and 2 which are capable of
multilevel parallelism: at the level of solution evaluation for each of the desired t’s; at the
level of evaluating resolvents for the set of different quadrature points zm and at the level
of solving stationary problem that pertains to the resolvent evaluation for the fixed zm.

Algorithm 1 Algorithm for computing the homogeneous part approximation ũN
h (t).

INPUT: α, u0, u1, tk, ϕs, N, γ
OUTPUT:

{
ũN

h (tk)
}

1: N1 := N; N2 := αγN1
2: Calculate aI , bI and h1, h2 by (15) and (29)
3: for m = −N1 to N1 do
4: Solve (z(mh1)

α I + A)v = u0
5: F1,m := z(mh1)

α−1v− 1
z(mh1)

u0

6: end for
7: for each tk do

8: ũN
h (tk) := u0 +

h1
2πi

N1

∑
m=−N1

z′(mh1)ez(mh1)tk F1,m

9: end for
10: if α > 1 then
11: for m = −N2 to N2 do
12: Solve (z(mh2)

α I + A)v = u1
13: F2,m := z′(mh2)z(mh2)

α−2v
14: end for
15: for each tk do

16: ũN
h (tk) := ũN

h (tk) +
h2

2πi

N2

∑
m=−N2

ez(mh2)tk F2,m

17: end for
18: end if
19: return {ũN

h (tk)}
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Algorithm 2 Algorithm for computing the inhomogeneous part approximation ũN
ih(t).

INPUT: α, f (t), tk, ϕs, N, χ
OUTPUT:

{
ũN

ih(tk)
}

1: Calculate aI , bI and Ni, h, hi by (15) and (47), (48)
2: for m = −N to N do
3: Solve (z(mh1)

α I + A)v = f (0)
4: F1,m := z(mh1)

α−1v− 1
z(mh1)

f (0)
5: end for
6: M1 := dN0 min{1, α}e; M2 :=

⌈
N0 min

{
1
α , 1
}⌉

7: for each tk do

8: ũN
ih(tk) := tαh0

Γ(α)

M2

∑
`=−M1

e`h0

(1+e`h0 )α+1

(
f (0) + h

2πi

N
∑

m=−N
z′(mh)etkψ(`h0)z(mh)F1,m

)
9: end for

10: for each tk do
11: M1 := dN2 min{1, α}e; M2 :=

⌈
N2 min

{
1
α , 1
}⌉

12: ũN
ih(tk) := ũN

ih(tk)+
h1h2
Γ(α) tα+1

k

N1

∑
`=−N1

ψ′(`h1)ψ
α(`h1)

M2

∑
m=−M1

emh2 f ′(tkψ(`h1)ψ(mh2))
(1+emh2 )α+1

13: end for
14: for each tk do
15: M1 := dN5 min{1, α}e; M2 :=

⌈
N5 min

{
1
α , 1
}⌉

16: for m = −N3 to N3 do

17: fm := h4h5
Γ(α) tα+1

k

N4

∑
`=−N4

ψ′(`h4)ψ
α(`h4)etkz(mh3)(1−ψ(`h4))

M2

∑
j=−M1

ejh5 f ′(tkψ(`h4)ψ(jh5))
(1+ejh5 )α+1

18: Solve (z(mh3)
α I + A)v = fm

19: F1,m := z(mh3)
α−1v− 1

z(mh3)
fm

20: end for

21: ũN
ih(tk) := ũN

ih(tk) +
h3

2πi

N3

∑
m=−N3

z′(mh3)F1,m

22: end for
23: return {ũN

ih(tk)}

The mentioned numerical properties are experimentally verified in Examples 1 and 2,
for the homogeneous and inhomogeneous part of the solution, respectively. Both examples
consider the negative Laplacian with tunable spectral characteristics in place of A and
a conventional eigenfunction-based initial data. Such restriction on the form of initial
data permits us to evaluate the space component of solution explicitly, thus removing its
contribution to the overall error. The restriction is relaxed in Example 3, which is devoted to
the experimental analysis of a fully discretized numerical scheme based on the combination
of the developed method with a finite-difference stationary solver. In all three examples,
a stable numerical behavior of the approximated solution is observed for α ∈ [0.1, 1.9]
and T ≤ 5.

2. Contour of Integration

It is well known that the choice of integration contour Γ in (7) is critical to the per-
formance of the numerical evaluation of operator function based on the contour integral
representation [31,33,43,45]. Judicious contour selection involves the analysis of the inter-
play between the shape of the integration contour, analytical properties of the parametrized
integrand and their impact on the performance of a quadrature rule that is used to evaluate
the resulting integral numerically. The authors of [2] showed that the hyperbolic contour
is the most convenient choice for the quadrature-based numerical evaluation of abstract
functions with sectorial operator argument. Below, we extend their analysis to the case of
fractional propagator Sα(t).

Let us consider the following hyperbolic contour:

ΓI : z(ξ) = a0 − aI cosh(ξ) + ibI sinh(ξ), ξ ∈ (−∞, ∞), (8)
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with the parameters a0, aI , bI that are called shift, first and second semi-axes, respectively.
Admissible range of values for these parameters is determined from Theorem 1 that enforces
the integration contour Γ = ΓI to encircle the singularities of the integrand in (7) for β = 1, 2.
The integral is convergent for t ≥ 0 if <z(ξ)→ −∞ (ξ → ∞), because in such case the norm
of integrand on Γ will decay faster than the exponential. This observation transforms into
the condition aI > 0 for the first semi-axis of hyperbola from (8). The condition bI > 0 for
the second semi-axis is induced by the orientation of zα(ξ). We also have to make sure that
this curve does not intersect the spectrum of −A. It is worth noting that, for any ϕ ∈ [0, π],
the function zα maps the sector Σ(0, ϕ/α) into the sector Σ(0, ϕ). Such mappings can be
associated with the Dunford–Cauchy representation of the fractional powers of A [2,46].
They are often studied in the theory of fractional resolvent families [47] and associated
Cauchy problems [48].

For non-negative aI , bI , the hyperbolic contour ΓI is contained within the region
Σ(a0 − aI , ϕI) \ Σ(a0, ϕI). Here, ϕI is the angle between positive real semi-axes and asymp-
totes of ΓI : a0 + ρe±iϕI depicted in Figure 1b, i.e., tan ϕI = − bI

aI
.

d

−d
ξ

ν(a)

Γs

ΓI

Γc

ϕI

φs

(b)

Sp(−A) ϕs

(c)

Figure 1. Schematic plot of the complex neighborhood D ≡ Dd of R where the parametrized
integrand Fα(t, ξ) remains analytic and exponentially decaying for any t ∈ [0, T] (a) along with the
image of Dd under the mapping v → z(v) defined by ΓI (b) and the region zα(v), v ∈ Dd (c). The
“forbidden” regions of complex plane are indicated by “beige” color). (α = 1.3, ρs = −π, ϕs =

π
6 ).

Consequently, the pair of positive contour parameters aI , bI is admissible if
z(ξ) ∈ Σ(0, π−ϕs

α ) \ Σ
(
a, π

2
)
, for some a > a0, i.e.,

tan
π − ϕs

α
≤ − bI

aI
, a0 − aI ≥ 0. (9)

Next, we move on to derive exact formulas for a0, aI , bI . Let us assume that the chosen
set of parameters satisfies (9). The substitution of z(ξ) from (8) into (7) yields

Sα(t)x =
1

2πi

∞∫
−∞

Fα(t, ξ)xdξ, Fα(t, ξ) = ez(ξ)tz′(ξ)zα−1(ξ)(zα(ξ)I + A)−1, (10)
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where z′(ξ) = −aI sinh(ξ) + ibI cosh(ξ). The illustration provided by Figure 1 shows that
both scalar and operator parts of the parametrized integrand Fα(t, ξ), t ∈ [0, T] remain
analytic when ξ is extended into a certain complex neighborhood D of R. According to
the general theory of numerical integration [49], an accuracy of quadrature formula is
characterized by a norm of the error-term in the Hardy space Hp(D) of functions, defined
on the domain D ⊂ C. The shape of D depends on the chosen type of quadrature. For the
reasons that are soon to be understood, we approximate integral (10) by the sinc-quadrature
formula [31,50]:

Sα(t)x ≈ h
2πi

N

∑
k=−N

Fα(t, kh)x, (11)

with the discretization parameter N ∈ N and the step-size h = h(N,Fα). Then, D is formed
by an infinite horizontal strip Dd of the half-height d:

Dd = {z ∈ C : −∞ < <z < ∞, |=z| < d}.

The detailed error analysis of (11) will be presented in Section 3.2. For now, it is
sufficient to say that the error of sinc-quadrature decays as O(e−πd/h) if the integrand
is exponentially decaying and belongs to Hp(Dd) [50]. Thus, in order to achieve a faster
convergence rate of quadrature (11), we need to maximize the height of the strip Dd, where
Fα remains analytic, by tuning the parameters of ΓI .

Let us consider the family of curves Γ(ν) = {a0 − aI cosh (ξ + iv) + ibI sinh (ξ + iv) :
ξ ∈ (−∞, ∞)}, which extends the definition of ΓI = Γ(0) to the arguments with nonzero
imaginary part ν. Observe, that for a fixed ν > 0, the curve Γ(ν) is also a hyperbola, albeit
with different semi-axes a(ν), b(ν):

Γ(ν) = {a0 − a(ν) cosh ξ + ib(ν) sinh ξ : ξ ∈ (−∞, ∞)},
a(ν) = aI cos ν + bI sin ν, b(ν) = bI cos ν− aI sin ν.

(12)

Hence, the mapping w→ z(w) transforms Dd into the region of complex plane bounded
by two hyperbolas z(ξ + id), z(ξ − id), which will be denoted as Γs and Γc, respectively.
We choose parameters a0, aI , bI , so that Γs has the vertex at zero and its asymptotes form
the angle φs ≡ min

{
π, π−ϕs

α

}
with R+, as shown in Figure 1c. In addition, we require that

the asymptotes of Γc form the angle φc ∈
[

π
2 , φs

)
with R+, which will be called a critical

angle; see Figure 1b. The above requirements for ΓI , Γs, Γc are codified in the following
system of equations:

<z(id) = 0,
−b(d) = a(d) tan φs,

tan φc = lim
ξ→∞

=z(ξ−id)
<z(ξ−id) ,

⇔


aI cos d + bI sin d = a0,
aI sin d− bI cos d = a0 tan φs,
aI sin d+bI cos d
bI sin d−aI cos d = tan φc,

which is sufficient to ensure (9) and will lead to the maximal possible d, when φc = π/2.
The system composed from the first two equations is linear with respect to aI , bI ; thus,

aI = a0(cos d + tan φs sin d) =
a0

cos φs
cos (d− φs),

bI = a0(sin d− cos d tan φs) =
a0

cos φs
sin (d− φs).

(13)

As a consequence of that the left-hand side of the third equation is transformed as

aI sin d + bI cos d
bI sin d− aI cos d

=
sin 2d− tan φs cos 2d
− cos 2d− tan φs sin 2d

=
tan φs − tan 2d

1 + tan φs tan 2d
= tan (2d− φs),
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which, after back-substitution, implies tan (2d− φs) = tan φc. Due to the constraints on d,
φc, φs we are interested only in the following solution of the last equation:

d =
1
2
(φc + φs − π). (14)

For φc = π/2, and an arbitrary fixed a0 > 0 we obtain

φs = min
{

π,
π − ϕs

α

}
, d =

φs

2
− π

4
,

aI =
a0

cos φs
cos

(
φs

2
+

π

4

)
, bI = −

a0

cos φs
sin
(

φs

2
+

π

4

)
.

(15)

Here, α ∈ (0, 2) is the order of fractional derivative from (1), ϕs is the spectral angle
parameter defined in (2) and a0 ∈ R+ is given.

3. Numerical Method

To begin with the description of the numerical scheme, let us introduce some notation.
We rewrite Formula (5) in the form

u(t) = uh(t) + uih(t).

Here, uh(t) denotes the solution to the homogeneous part ( f (t) ≡ 0) of the given
problem (1), (4) and uih(t) the solution to the inhomogeneous part (u0 = u1 ≡ 0):

uh(t) = Sα,1(t)u0 + Sα,2(t)u1, uih(t) = JαSα(t) f (0) +
t∫

0

Sα(t− s)Jα f ′(s)ds. (16)

3.1. Alternative Propagator Representation

We consider the representation of the solution to the homogeneous part uh(t) first. In
the seminal paper [31], Gavrylyuk and Makarov showed that the numerical method for
S1(t) = e−At naively obtained from representation (7) is unsuitable for small values of t
because its accuracy degrades when t approaches 0. They traced back the root cause of
this behavior to the fact that the considered representation of e−At is, formally speaking,
divergent at t = 0, which result in the unremovable error of the quadrature-based numerical
method for such t. It turns out that propagator representation (7) poses the same adverse
feature for any fractional α. One could learn more about its impact on a numerical solution
of (1) by analyzing the results of the works [24,44].

In order to get around the divergence issue, we propose an alternative formula for
Sα,1(t), constructed in the vein of [31,51]. It is based on the following proposition, which
can be regarded as a generalization of Lemma 3.3 from [28].

Proposition 1. Let A be the sectorial operator satisfying the conditions of Theorem 1. If
x ∈ D(Am+γ) and zα /∈ Sp(A) ∪ {0}, then for any γ ≥ 0∥∥∥∥∥zα−β(zα I − A)−1x− 1

zβ

m

∑
k=0

Akx
zαk

∥∥∥∥∥ ≤ K(1 + M)‖Am+γx‖
|z|mα+β(1 + |z|α)γ

, (17)

with some constant K > 0 and M defined by (3).
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Proof. The function zαR(zα) =
(

I − A
zα

)−1
remains analytic and bounded for any zα /∈

Sp(A) ∪ {0}, so its Neumann series converges unconditionally. Therefore,∥∥∥∥∥zα−β(zα I − A)−1 − 1
zβ

m

∑
k=0

Ak

zαk

∥∥∥∥∥ =

∥∥∥∥∥ 1
zβ

(
I − A

zα

)−1
− 1

zβ

m

∑
k=0

Ak

zαk

∥∥∥∥∥
=

∥∥∥∥∥ 1
zβ

(
∞

∑
k=0

Ak

zαk −
m

∑
k=0

Ak

zαk

)∥∥∥∥∥ =

∥∥∥∥∥ 1
zβ

(
I − A

zα

)−1 Am+1

zα(m+1)

∥∥∥∥∥
=

1
|z|αm+β

∥∥∥(zα I − A)−1 Am+1
∥∥∥ =

1
|z|αm+β

∥∥∥A1−γ(zα I − A)−1 Am+γ
∥∥∥.

the last transformation is justified by the fact that R(z, A) and A1−γ commutes. Target
estimate (17) follows directly from the above formula, after we apply inequality (2.30)
from [2] with z = zα.

It is worth noting that, if the argument x posses certain spatial regularity x ∈ D(Aγ),
γ > 0, estimate (17) guarantees a faster decay of the corrected term’s norm ‖zα−β(zα I +
A)−1x− z−βx‖ < C|z|−β−αγ, as z→ ∞, when compared to the norm of the original term
in (10) bounded by

∥∥zα−β(zα I + A)−1
∥∥ < C|z|−β, C > 0.

The next result defines an improper integral representation for the components of
uh(t) from (16) and shows the way in which the aforementioned correction is incorporated
into the formula for Sα(t).

Lemma 1. Assume that the given A and α satisfy the conditions of Theorem 1. For any u0 ∈ D(Aγ),
γ > 0 and u1 ∈ X the operator functions Sα(t)u0, Sα,2(t)u1 admit the following representation:

Sα(t)u0 =
1

2πi

∞∫
−∞

ez(ξ)tFα,1(ξ)u0 dξ + u0,

Fα,1(ξ) = z′(ξ)
(

zα−1(ξ)(zα I + A)−1 − 1
z(ξ)

I
)

,

(18)

Sα,2(t)u1 =
1

2πi

∞∫
−∞

ez(ξ)tFα,2(ξ)u1 dξ,

Fα,2(ξ) = z′(ξ)zα−2(ξ)(zα I + A)−1,

(19)

where z(ξ) = a0 − aI cosh(ξ) + ibI sinh(ξ), ξ ∈ (−∞, ∞) and a0, aI , bI are specified by (15).
Moreover, for arbitrary finite t ≥ 0 integrals in (18) and (19) are uniformly convergent.

Proof. Assume Γ is a contour fulfilling the conditions of Theorem 1. Due to the estimate

‖Sα,β(t)x‖ ≤ Cert ∫
Γ
|z|α−β

1+|z|α dz from [10], the integral representation of operator function
Sα,2(t) is uniformly convergent for any bounded non-negative t. Formula (19) is obtained
as a result of the parametrization of (7) on the contour ΓI defined by (8). In order to
prove (18), we apply the identity 1

2πi
∫
Γ

ezt/z dz = Res
z=0

ezt/z = 1 to rewrite (7) with β = 1 in

the following manner:

Sα(t)u0 = Sα,1(t)u0 −
1

2πi

∫
Γ

ezt

z
u0 dz + u0

=
1

2πi

∫
Γ

ezt
(

zα−1(zα I + A)−1 − 1
z

I
)

u0 dz + u0.
(20)
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Proposition 1 and the inequality |ezt| < max {e<(z)t, 1}, t ∈ [0, T], T > 0 guarantee that the
last integral converges uniformly, so we are permitted to parameterize it on the contour
Γ = ΓI defined by (8). This yields representation (18).

Lemma 1 is essential for all remaining analysis. Unlike (7) or (10), the new representa-
tion of Sα,1(t) by formula (18) remains convergent at t = 0. For that matter, it can be used as
vehicle for the uniformly convergent numerical method. We shall use the term “corrected
propagator representation” as a reference to (18).

3.2. Propagator Approximation

As we can see from Lemma 1, the task of approximating the homogeneous part uh(t) of
the mild solution to (1), (4), defined by (16), is reduced to the task of numerically evaluating
improper integrals (18) and (19). In this part, we describe how this is achieved using
the trapezoidal quadrature rule. Then, we proceed to study the accuracy of the obtained
approximation using the theory of sinc-quadrature [50] along with its generalizations to
propagator approximations [31]. In what follows, symbols S̃N

α,β(t) are used to denote the
operators that approximate Sα,β(t). For some h > 0 and N ∈ N, let

S̃N
α,1(t)x1 =

h
2πi

N

∑
k=−N

Fα,1(t, kh) + x1, S̃N
α,2(t)x2 =

h
2πi

N

∑
k=−N

Fα,2(t, kh),

Fα,β(t, ξ) = ez(ξ)tFα,β(ξ)xβ, β = 1, 2, x1 ∈ D(Aγ), x2 ∈ X.

(21)

The functions Fα,2(ξ), Fα,2(ξ), z(ξ) and the parameter γ in the above formulas for propagator
approximations have the meaning prescribed by Lemma 1. Similarly to Sα(t), we use S̃N

α (t)
to denote S̃N

α,1(t), where appropriate in the sequel. Recall that ΓI is symmetric with respect
to the real axis; hence, one can further reduce the number of summands in (21) using the
following argument [2].

Remark 1. If the operator A is defined in such a way that R(z, A) + R(z, A) = 2R(<z, A), for
any z ∈ C \ Sp(A) and xβ is defined over the field of real numbers, then

h
2πi

N

∑
k=−N

Fα,β(t, kh) =
h
π

(
1
2
Fα,β(t, 0) +<

{
N

∑
k=1
Fα,β(t, kh)

})
,

and the number of resolvent evaluations for S̃N
α,β(t) in Formula (21) can be reduced from 2N + 1

to N + 1.

The error of (21) admits the following decomposition:

‖Sα,β(t)xβ − S̃N
α,β(t)xβ‖ = ‖Sα,β(t)xβ − S̃∞

α,β(t)xβ + S̃∞
α,β(t)xβ − S̃N

α,β(t)xβ‖

≤ 1
2π

∥∥∥∥∥∥
∞∫
−∞

Fα,β(t, ξ)dξ − h
∞

∑
k=−∞

Fα,β(t, kh)

∥∥∥∥∥∥+ h
2π

∥∥∥∥∥∥ ∑
|k|>N

Fα,β(t, kh)

∥∥∥∥∥∥,

where ‖ · ‖ is the norm of X, as before. This two-term representation of the error is common
in the analysis of the accuracy of sinc-quadrature (see Section 3.2 in [50]). The contribution
from the first term is responsible for the replacement of integrals of Fα,β(t, ξ) from (18)
and (19) by the infinite series S̃∞

α,β(t) of discrete function values Fα,β(t, kh). As such, it is
commonly called the discretization error. To determine the value of h, one needs to balance
it with the contribution from a so-called truncation-error term, that comes second in the
formula above.
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Let H1(Dd) be a family of all functions F : C→ X, which are analytic in the strip Dd,
equipped with the norm

‖F‖H1(Dd)
= lim

ε→0

∫
∂Dd(ε)

‖F (z)‖|dz|,

where Dd(ε) = {z ∈ C : |Re(z)| < 1/ε, |Im(z)| < d(1− ε)} and ∂Dd(ε) is the boundary
of Dd(ε). The truncation errors of (21) satisfy the estimate [31,50]:

∥∥∥Sα,β(t)− S̃∞
α,β(t)

∥∥∥ ≤ e−πd/h

2 sinh(πd/h)
‖Fα,β(t, ·)‖H1(Dd)

. (22)

Thus, in order to bound the truncation error, one needs to obtain estimates for the H1(Dd)
norms of the functions Fα,β(t, z), β = 1, 2. These are provided by the next lemma.

Lemma 2. Let A be a sectorial operator satisfying the conditions of Theorem 1. For any t ≥ 0,
α ∈ (0, 2), x1 ∈ D(Aγ), x2 ∈ X, γ > 0 and arbitrary small δ > 0

‖Fα,1(t, ·)‖H1(Dd−δ)
≤ C±α,1(γ, δ)ea0t‖Aγx1‖,

‖Fα,2(t, ·)‖H1(Dd−δ)
≤ C±α,2(γ, δ)ea0t‖x2‖,

(23)

with constants C±α,β(γ, δ) = Cα,β(γ, δ− d) + Cα,β(γ, d− δ) and

Cα,1(γ, ν) =
K1b(ν)

αγ(a(ν)− a0)r
γ
0 (ν)

,

Cα,2(γ, ν) = K2
b(ν)

(
b2(ν) + (a(ν)− a0)

2)α/2

(a(ν)− a0)2r0(ν)
,

(24)

that are independent of t. Here, K1, K2 > 0 and r0(ν) = inf
ξ∈R

r(ξ, ν),

r(ξ, ν) =
1

coshα ξ
+

(
b2(ν) tanh2 ξ +

(
a(ν)− a0

cosh ξ

)2
) α

2

. (25)

Proof. To estimate the norms ‖Fα,β(t, ·)‖H1(Dd1
), β = 1, 2 we start from (21), split out

the scalar part in each norm and use bounds (17), (3) for the operator-dependent parts,
correspondingly. As a result, we obtain

‖Fα,1(t, ξ)x‖ ≤
∣∣∣ez(ξ)tz′(ξ)

∣∣∣ (1 + M)K
|z(ξ)|(1 + |z(ξ)|α)γ ‖Aγx1‖,

‖Fα,2(t, ξ)x‖ ≤
∣∣∣ez(ξ)tz′(ξ)

∣∣∣ |z(ξ)|α−2M‖x2‖
(1 + |z(ξ)|α) .

When the variable ξ is extended from the real line into the strip, the integration
hyperbola z(ξ), adopted here from Lemma 1, transforms into the parametric family of
hyperbolas Γ(ν) = {z(ξ + iν) : ξ ∈ (−∞, ∞)}, ν ∈ [−d, d]. Let w = ξ + iν ∈ Dd−δ for
some δ > 0, then

∣∣∣∣ z′(w)

z(w)

∣∣∣∣ = ∣∣∣∣ a(ν) sinh ξ − ib(ν) cosh ξ

a(ν) cosh ξ − a0 − ib(ν) sinh ξ

∣∣∣∣ =
√

a2(ν) tanh2 ξ + b2(ν)√
b2(ν) tanh2 ξ +

(
a(ν)− a0

cosh ξ

)2
,
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with a(ν), b(ν) are defined by (12). Consider the function η1(s, b0) =
a2(ν)s2+b2(ν)

b2(ν)s2+(a(ν)−b0)2 , with
some b0 independent of s. The derivative of this function with respect to s

η′1(s, b0) =
2s(a2(ν)− a(ν)b0 − b2(ν))(a2(ν)− a(ν)b0 + b2(ν))

(b2(ν)s2 + (a(ν)− b0)2)2

=
2s
(
(a2(ν)− a(ν)b0)

2 − b4(ν)
)

(b2(ν)s2 + (a(ν)− b0)2)2

determines the behavior of η1(s, b0) for the values of b0 that belong to the interval (0, a0),

induced by the identity η1

(
tanh ξ, a0

cosh ξ

)
=
∣∣∣ z′(w)

z(w)

∣∣∣2. The sign of η′1(s, b0) is equal to the

sign of a2(ν)− a(ν)b0)
2 − b4(ν) ≤ a4(ν)− b4(ν) = −a4

0
cos2(2(φs+d−v))

cos4(φs)
. Therefore, for any

b0, the maximum of η1(s, b0) is attained at s = 0, whence∣∣∣∣ z′(w)

z(w)

∣∣∣∣ ≤ b(ν)√(
a(ν)− a0

cosh ξ

)2
≤ b(ν)
|a(ν)− a0|

.

The norm ‖Fα,1(t, w)x‖ can be further estimated as

‖Fα,1(t, w)‖ ≤ e<z(w)t
∣∣∣∣ z′(w)

z(w)

∣∣∣∣ (1 + M)K
(1 + |z(w)|α)γ ‖Aγx1‖

=
b(ν)

a(ν)− a0

e(a0−a(ν) cosh ξ)t

(1 + |z(w)|α)γ
(1 + M)K‖Aγx1‖

≤ b(ν)
a(ν)− a0

(1 + M)Ke(a0−a(ν) cosh ξ)t

(r(ξ, ν) coshα ξ)γ ‖Aγx1‖

≤ (1 + M)Kb(ν)2αγ

(a(ν)− a0)rγ(ξ, ν)
e(a0−a(ν) cosh ξ)t−αγ|ξ|‖Aγx1‖.

(26)

Here, r(ξ, ν) is a strictly positive bounded function that is defined by the equality 1 +
|z(w)|α = r(ξ, ν) coshα ξ. Solving it for r(ξ, ν) gives us (25).

Now, we turn our attention to ‖Fα,2(t, w)x‖. Let us consider a function η2(s, b0) =
a2(ν)s2+b2(ν)

(b2(ν)s2+(a(ν)−b0)2)2 , s ∈ [0, 1]. Similarly to η1(ξ), this function satisfies the identity

η2

(
tanh ξ, a0

cosh ξ

)
cosh2 ξ =

∣∣∣ z′(w)
z(w)2

∣∣∣2. By inspecting the derivative

η′2(s, b0) =
2s
(
(a2(ν)− a(ν)b0)

2 − 2b4(ν)− a2(ν)b2(ν)s2)
(b2(ν)s2 + (a(ν)− b0)2)3

we learn that its sign is also determined by a sign of the numerator with only one real
root s = 0. Two other roots of η′2(s, b0) are non-real because the quadratic function
(a2(ν)− a(ν)b0)

2 − 2b4(ν)− a2(ν)b2(ν)s2 ≤ (a2(ν)− a(ν)b0)
2 − 2b4(ν) ≤ 2a4(ν)− 2b4(ν)

is negative for any s. Whence, we obtain
∣∣∣ z′(w)

z2(w)

∣∣∣ ≤ b(ν)
cosh(ξ)(a(ν)−a0)2 and

‖Fα,2(t, w)‖ ≤ M|z′(w)| |z(w)|α−2e<z(w)t

(1 + |z(w)|α) ‖x2‖

≤ M
∣∣∣∣ z′(w)

z2(w)

∣∣∣∣ |z(w)|αe(a0−a(ν) cosh ξ)t

1 + |z(w)|α ‖x2‖

≤ M
b(ν)

(
b2(ν) + (a(ν)− a0)

2)α/2

(a(ν)− a0)2(cosh ξ)1−α

e(a0−a(ν) cosh ξ)t

1 + |z(w)|α ‖x2‖

≤ 2M
b(ν)

(
b2(ν) + (a(ν)− a0)

2)α/2

r(ξ, ν)(a(ν)− a0)2 e(a0−a(ν) cosh ξ)t−|ξ|‖x2‖.
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The obtained estimates for
∥∥Fα,β(t, w)

∥∥, β = 1, 2 demonstrate that these norms are
exponentially decaying for any t ≥ 0 as ξ → ∞. Consequently, the integral terms from∥∥Fα,β(t, w)

∥∥
H1(Dd)

over the vertical parts of ∂Dd−δ(ε) vanish in the limit ε→ 0 and we end
up with the following expression:

∥∥Fα,β(t, ·)
∥∥

H1(Dd−δ)
=

∞∫
−∞

∥∥Fα,β(t, ξ + i(δ− d))
∥∥+ ∥∥Fα,β(t, ξ − i(d− δ))

∥∥dξ.

After estimating the last integral using the bounds obtained above, we remove the de-
pendence of the integrands on r(ξ, ν) by bounding its value from below with a positive
function r0(ν) < r(ξ, ν) and, subsequently, evaluate the obtained integrals explicitly. This
yields the pair of objective estimates from (23), with constants K1 = (1 + M)K2αγ+1 and
K2 = 4M. The lemma is proved.

Observe that the appearance of αγ in Cα,1(γ, ν) from (24) forces the discretization error
of Sαx1, x1 ∈ D(Aγ) to become unbounded in the limit γ→ 0.

Lemma 3. Assume that A and α satisfy the conditions of Theorem 1. Then, for any t ≥ 0,
x1 ∈ D(Aγ), x2 ∈ X, γ > 0 the truncation error of (2N + 1)-term approximations (21) with the
step-size h > 0 satisfies the estimate

h
2π

∥∥∥∥∥∥ ∑
|k|>N
Fα,1(t, kh)

∥∥∥∥∥∥ ≤ hCα,1(γ, 0)
π(1− e−αγh)

ea0t

eαγ(N+1)h
‖Aγx1‖ ≤

Cα,1(γ, 0)
π

ea0t

eαγNh ‖Aγx1‖,

h
2π

∥∥∥∥∥∥ ∑
|k|>N
Fα,2(t, kh)

∥∥∥∥∥∥ ≤ hCα,2(γ, 0)
π(1− e−h)

ea0t

e(N+1)h
‖x2 ≤

Cα,2(γ, 0)
π

ea0t

eNh ‖x2‖,

where Cα,β(γ, ν) are defined by (24).

The proof of this Lemma relies on the established estimates for
∥∥Fα,β(t, w)

∥∥ and is analo-
gous to the proof of the respective part in Theorem 3.1.7 from [50]. For brevity, we omit
it here.

We finally have all the necessary tools in place to proceed to an a priori accuracy
estimate of the constructed numerical evaluation formulas (21) for propagators of (1), (4).

Theorem 2. Let A be a sectorial operator with the domain D(A) and the spectrum Sp(A) ⊂
Σ(ρs, ϕs), ρs > 0, ϕs < π/2. Then, for any α ∈ (0, 2), x1 ∈ D(Aγ), x2 ∈ X, γ > 0, such
that αϕs < π

2 , γ ∈ (0, 1) and t ∈ [0, T], the sinc-quadrature-based approximations S̃N
α,1(t)x1,

S̃N
α,2(t)x2 converge to the values of the corresponding operator functions Sα(t)x1, Sα,2(t)x2 at the

rate O(e−c
√

N), c > 0, as N → ∞. Moreover, the following error bounds are valid∥∥∥Sα(t)x− S̃N
α,1(t)x1

∥∥∥ ≤ C1 exp
(
−c
√

αγN
)

ea0t‖Aγx1‖, (27)

∥∥∥Sα,2(t)x− S̃N
α,2(t)x2

∥∥∥ ≤ C2 exp
(
−c
√

N
)

ea0t‖x2‖, (28)

with c =
√

2πd, provided that the step-size in (21) is given by h1 and h2, accordingly,

h1 =

√
2πd
αγN

, h2 =

√
2πd
N

. (29)

Here, d = φα+ϕc−π
2 , φα = min{π, π−ϕs

α } and φc ∈
( ϕs

α , π
2
]
, a0 are given. The constants Cβ

from (27) and (28) are independent of t, N.
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Proof. To obtain error bounds for the approximants S̃N
α,β, we depart from the previously

established decomposition

‖Sα,β(t)xβ − S̃N
α,β(t)xβ‖ ≤ ‖Sα,β(t)xβ − S̃∞

α,β(t)xβ‖+ ‖S̃∞
α,β(t)xβ − S̃N

α,β(t)xβ‖,

and then use the results of Lemmas 2 and 3 to estimate the right-hand sides. This tran-
scribes into

‖Sα(t)x1 − S̃N
α (t)x1‖ ≤

e−
πd
h ‖Fα,β(t, ·)‖H1(Dd−δ)

2 sinh πd
h

+
Cα,1(γ, 0)ea0t‖Aγx1‖

παγeαγNh

≤ ea0t

(
C±α,1(γ, δ)

e−
πd
h

2 sinh πd
h

+
Cα,1(γ, 0)
παγeαγNh

)
‖Aγx1‖

≤ ea0t

(
c0C±α,1(γ, δ)

e2 πd
h

+
Cα,1(γ, 0)
παγeαγNh

)
‖Aγx1‖,

and

‖Sα,2(t)x2 − S̃N
α,2(t)x2‖ ≤ ea0t

(
c0C±α,2(γ, δ)e−2 πd

h +
Cα,2(γ, 0)

πeNh

)
‖x2‖,

with c0 = (1− exp 2πd
h )−1. Having the aim of balancing the order of error contributions

from each term inside the brackets, we make two involving exponential functions asymp-
totically equal as N → ∞. This yields two independent equations

2πd
h

= αγNh,
2πd

h
= Nh,

with the solutions described by (29). After that, we substitute these expressions into the
previously established error estimates to obtain the following bounds:

‖Sα,1(t)x1 − S̃N
α,1(t)x1‖ ≤

(
c0C±α,1(γ, δ) + Cα,1(γ, 0)

)
ea0te−

√
2πdαγN‖Aγx1‖,

‖Sα,2(t)x2 − S̃N
α,2(t)x2‖ ≤

(
c0C±α,2(γ, δ) + Cα,2(γ, 0)

)
ea0te−

√
2πdN‖x2‖,

which are reduced to (27) and (28) after denoting C1 = c0C±α,1(γ, δ) + Cα,1(γ, 0),
C2 = c0C±α,2(γ, δ) + Cα,2(γ, 0).

It follows from (27) and (28), that the value of parameter a0 can be used to control the
error contribution of the factor ea0t. Throughout the rest of this work, we set a0 = π/6 to
make this factor reasonably bounded: ea0t ≤ e5π/6 ≤ 14.

3.3. Numerical Scheme for Homogeneous Part of Solution

We approximate the homogeneous part uh(t) of the solution to (1), (4) defined by (16)
using the numerical methods for propagators approximation constructed in Section 3.2.
Then, for every fixed N > 0, the approximation ũN

h (t) to uh(t) is defined as

ũN
h (t) = S̃N1

α,1(t)u0 + S̃N2
α,2(t)u1. (30)

The error of ũN
h (t) is characterized by the following corollary, which is an immediate

consequence of Theorem 2.
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Corollary 1. Assume that the operator A, initial values u0, u1 and the fractional order α satisfy the
conditions of Theorem 2 with x1 = u0, x2 = u1. For any given N ∈ N, the approximate solution
ũN

h (t), defined by (30) with N1 = N, N2 = αγN, converges to the homogeneous solution uh(t)
of (1), (4) and the following error bound is valid:∥∥∥uh(t)− ũN

h (t)
∥∥∥ ≤ Cγ exp

(
−c
√

αγN
)

ea0t‖Aγx1‖. (31)

The constant Cγ is dependent on A, u0, and independent of t, N.

It is important to note that the smoothness assumptions for u0, enforced by Corollary 1
and Theorem 2, are compatible with the similar assumptions made in [2,51] for the Cauchy
problem with the integer order derivative. For a more concise discussion on the impact of
the initial data smoothness on the properties of solution to problem (1), (4) we direct the
reader to [21].

To compute the approximation ũN
h (t), we suggest to use Algorithm 1 provided below.

In this algorithm, the evaluation of each propagator S̃
Nβ

α,β, β = 1, 2 is decoupled into

two cycles. The first cycle is responsible for the evaluation of resolvents (z(mh1)
α I + A)−1

at the quadrature points of ΓI . This amounts to the solution of 2Nβ + 1 linear equations that
are all mutually independent and hence can be solved in parallel. If A is the discretization of
a certain partial differential operator, every resolvent equation from line 4 of the algorithm is
actually a system of linear equations. When this is the case, one can leverage additional level
of parallelism here, as long as the size and the solution method of the resolvent equation
warrant that and the computing environment permits such possibility. Furthermore, the
total number of resolvent evaluations in Algorithm 1 can be reduced all the way down to
N1 + N2 + 2 if the initial data and A satisfy the conditions from Remark 1.

Given the solution of resolvent equations obtained in the first cycle of Algorithm 1, the
second cycle computes the resulting propagator approximation. As we can see from line 8
of Algorithm 1, for every fixed t = tk this step amounts to calculating the weighted sum
of resolvents. Hence, its computation is apparently independent of the computed values
of solution at different times and can be performed simultaneously. Such feature of the
method alone results in the substantial computational advantage over existing sequential
time-discretization methods [15,23,26,52], because the average computation cost per ũN

h (tk)
for any k ∈ {1, . . . , K} is independent on the value of tk ∈ [0, T] and, unlike in the case of a
sequential method, this cost goes down when K grows. Even in the worst-case scenario of
K = 1, tk << 1, our method should still remain competitive with the mentioned sequential
methods due to its parallelization capability and the uniform exponential convergence. We
postpone a more detailed comparison with existing methods until Example 3, where a fully
discretized problem is considered. It is important to point out that the described multi-level
parallel evaluation strategy is well suited for the multi-node computing architectures, with
each node containing the combination of a central processing unit and multiple hardware
accelerators, which are ubiquitous nowadays.

For certain realizations of A (c.f. [27]) and large values of N, the resolvent evaluation
steps of Algorithm 1 may lead to the numerical instability when |z| is large. This problem
can be alleviated by modifying lines 4–5 and 12–13 as described by Equation (2.18) from [28].
Another noticeable feature of the above algorithm is its use of the resolvent evaluations with
the complex arguments. This may require additional attention from the implementation
point of view if the resolvent is evaluated numerically, for instance using the finite element
method software that does not support complex arithmetic. Alternatively, one could deal
with the complex resolvent arguments by redefining A via the embedding of its domain
into the real space of higher dimensionality. This is always possible, since the resolvent
equations from lines 4 and 12 of the algorithm are linear in z. Such modifications are
unnecessary for the numerical experiments conducted below; hence, we do not incorporate
them into the algorithms for simplicity.
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Example 1. Let us consider the standard example problem in which A is a one-dimensional
Laplacian accompanied by the Dirichlet boundary conditions on [0, L]:

Au = −a
d2

dx2 u, ∀u ∈ D(A),

D(A) = {u(x) ∈ H2(0, L) : u(0) = u(L) = 0},
(32)

where a > 0 is some predefined constant. The initial values u0, u1 are chosen to be the eigenfunctions
of the operator A with indices k0, k1, correspondingly:

u0 = sin
πk0x

L
, u1 = sin

πk1x
L

. (33)

The exact solution of fractional Cauchy problem (1), (4) with such A, u0, u1 and f (t) = 0 can be
represented as follows (see Section 1.3 in [9]):

u(t, x) = Eα,1(−λ(k0)tα) sin
πk0x

L
+ H(α− 1)Eα,2(−λ(k1)tα) sin

πk1x
L

.

Here, Eα,β(z) =
∞
∑

k=0

zk

Γ(αn+β)
is the Mittag–Leffler function, λ(k) = a π2

L2 k2, k = k0, k1 are the

eigenvalues of A and H(·) is the Heaviside function, which is added to make the above solution
formula valid for all α ∈ (0, 2).

It is easy to verify that for any z ∈ C \ Sp(A) and k ∈ N, the resolvent R(zα,−A) sin πkx
L

admits the following representation

R(z,−A) sin
πkx

L
= (zI + A)−1 sin

πkx
L

=
1

z + λ(k)
sin

πkx
L

.

Hence, all the resolvent evaluations in Algorithm 1 for such u0, u1 can be conducted explicitly. This
allows us to focus on analyzing the error contribution from the numerical method for uh(t), given
by (30), in the absence of the error associated with the discretization of spatial operator A. The
results, presented below, were obtained using the reference implementation (the code is available at
https://github.com/DmytroSytnyk/FCP2023 (accessed on 1 May 2023)) of Algorithm 1 developed in
Matlab. The standard double precision IEEE 754 arithmetic (and its extension to complex numbers)
is used for computations everywhere in this and other examples. The evaluation of Eα,β(z) was
performed via the contour method from [53], using the accompanied Matlab implementation. The
interested reader may also consider alternative methods from [54,55].

The behavior of the exact solution u(t, x) for the simplest case c = 1, L = 1 is shown in
Figure 2, where it is plotted as a function of time for different values of α at x = 0.5. In the
sub-parabolic case α ≤ 1, the solution remains positive for positive u0 and it is monotonously
decaying toward zero as t→ T. More specifically, for small α (see graphs for α = 0.1, 0.3 in the left
plot of Figure 2), |u(t)| has a fast initial decay which tends to be getting slower as t progresses. This
effect becomes less noticeable as α goes toward 1, at which point u(t, x) = E1,1(−π2t) sin πx =

e−π2t sin πx. In the sub-hyperbolic case α > 1 (see the right plot of Figure 2), the solution exhibits
more complex behavior. It is akin to the damped oscillations with the initial amplitude equal to u0
(Eα,2(0) = 0 by definition) and the amount of damping that decays as α approaches 2.

https://github.com/DmytroSytnyk/FCP2023
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Figure 2. Exact solution u(t, 0.5) of problem (1), (4) with f (t) = 0 and A, u0, u1 defined by (32), (33)
(L = 1, k0 = 1, k1 = 4, a = 1): (a) the case α = 0.1, 0.3, 0.5, 0.7, 1; (b) the case α = 1, 1.2, 1.5, 1.7, 1.9.

To quantify the error of the numerical solution to Cauchy problem (1), (4), (32), (33), calculated
using Algorithm 1, we define

Eh(t, x) =
∣∣∣u(t, x)− ũN

h (t, x)
∣∣∣, errh = sup

t∈[0,T]
‖Eh(t)‖∞.

The behavior of Eh(t, x) as a function of t for fixed x = 0.5, L = 1, k0 = 1, k1 = 4, a = 1,
ϕs = π/60, γ = 1 and different values of α, N is illustrated in Figure 3, using a semi-logarithmic
scale for the plots. All graphs clearly illustrate the decay of Eh(t, x) on the whole time interval as N
increases. In the consequence of Theorem 2, the error Eh(t, x) also depends on how much fractional
order α deviates from 1. For α ≤ 1, this happens due to the direct presence of α in error bound (27)
as a factor. For α > 1, this is explained by the contribution of α to the factor c =

√
2πd, from the

same error bound, via d = φα+ϕc−π
2 .

Aside of that, for α ≤ 1, we witness a sharp drop of Eh(t, x) in the vicinity t = 0 (see
Figure 3a–c), which does not seem to be predicted by the error bound. This behavior is attributed
to the rather pessimistic estimate |ez(ξ)t| ≤ e(a0−a(ν) cosh ξ)t ≤ ea0t, which was used to account for
the contribution of the t-dependent term into both truncation and discretization errors of S̃N

α,1(t)u0
(see the proof of Lemmas 2 and 3 above). Similar phenomenon was observed in [28], where a related
fractional problem was considered. The influence of factor ea0t became more evident for larger t, as
seen from the graphs of Figure 3d–f For fixed N, the amplitude of error oscillations increases when
t approaches 5 but remains approximately equal α-wise (visually larger amplitude oscillations for
smaller α in Figure 3 are caused by the semi-log nature of the plots). This observation supports the
theoretical claim from Theorem 2 that the growth of Eh(t, x) in time is not influenced by α or d.

In order to analyze the error dependency on the position of Sp(A), we evaluate the sup-norm
error errh(N) for several values of diffusivity constant a = 10−5, 0.1, 1, 10 from (32), and a range
of α values (see Figure 4). The magnitude of the quantity ρs = inf

z∈Sp(A)
<z = aπ2 corresponding

to a = 10−5 in Figure 4a is characteristic for problems with a singularly perturbed A [56] and,
in particular, advection (convection)-dominated flows [57]. Our prior experiments suggest that
existing numerical methods [28,31,41,42], with the integration contour which lies entirely in the
same half-plane as Sp(A), face certain difficulties in handling problems with such small ρs. Those
are caused by the implicit rescaling of z(ξ) needed to fit z(Dd) between Sp(A) and the origin.
In contrast, the current method does not experience any accuracy degradation related to ρs → 0,
because the integration contour ΓI encircles Sp(A) ∪ 0. In fact, Figure 4 shows that the sup-norm
error decays exponentially with the order proportional to

√
αN as prescribed by (31), for all analyzed

values of a. The convergence results of our method for α ≤ 1 are similar to those obtained in [29] for
the specific case of (1), when A comes from the viscoelastic beam model.
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Figure 3. Error Eh(t, 0.5) of the approximate solution ũN
h to problem (1), (4) with f (t) = 0, A, u0, u1

being defined by (32), (33) and L = 1, k0 = 1, k1 = 4, a = 1. Graphs from the top row of subplots
correspond to α = 0.1, 0.3, 0.5, 0.7, 1 and (a) N = 32; (b) N = 64 (c); N = 128. Graphs from the bottom
row of plots correspond to α = 1, 1.2, 1.5, 1.7, 1.9 and (d) N = 32; (e) N = 64; (f) N = 128.
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Figure 4. Sup-norm error errh of the approximate solution ũN
h to problem (1), (4) with f (t) = 0, A,

u0, u1 being defined by (32), (33) and L = 1, k0 = 1, k1 = 4. Graphs from sublots correspond to the
different values of diffusivity constant: (a) a = 1× 10−5; (b) a = 0.1; (c) a = 1; (d) a = 10;
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3.4. Numerical Scheme for the Inhomogeneous Part

In this part, we apply the propagator approximation method from Section 3.2 to obtain
an efficient numerical algorithm for the inhomogeneous part uih(t) of the mild solution
to (1), (4), defined by (16). This formula combines the action of Sα(t) on a certain vector
from X with the subsequent action of the integral operator. The numerical evaluation of
such composition amounts to the reevaluation of Sα(s) at each quadrature point {sk}K

k=1,
needed to approximate the outer integral. As we have learned from the properties of
the numerical method developed in Section 3.2, this is not a problem for the first term of
uih(t), where the argument f (0) is fixed, because only 2N + 1 parallel resolvent evaluations
are needed. For the second term, however, the numerical evaluation of Sα(t− s)Jα f ′(s)
for every new value of t requires the reevaluation of resolvents for the entire set of new
quadrature points on ΓI . This leads to the solution of up to (2N + 1)K additional stationary
problems and may require additional storage and inter-process communication, when the
parallel computing model is used for evaluation.

To reduce the number of required resolvent evaluations, we take advantage of the fact
that the operator-dependent part of Sα(t) in representation (18) is itself a linear operator on
X; hence, it can be interchanged with the integral operator acting in t only

t∫
0

Sα(t− s)Jα f ′(s) ds =
t∫

0

1
2πi

∫
Γ

ez(t−s)zα−1(zα I + A)−1 Jα f ′(s) dz ds

=

t∫
0

1
2πi

∫
Γ

ez(t−s)
(

zα−1(zα I + A)−1 − 1
z

I
)

Jα f ′(s) dz + Jα f ′(t) ds

=

t∫
0

Jα f ′(s) ds +
1

2πi

∫
Γ

(
zα−1(zα I + A)−1 − 1

z
I
) t∫

0

ez(t−s) Jα f ′(s) ds dz.

Here, we used formula (20) under the assumption that Jα f ′(s) ∈ D(Aγ), γ > 0 and, then,
relied upon the uniform convergence of the corrected representation of Sα(t − s) with
respect to s ∈ [0, t], that had been established earlier. As we can see from the newly
obtained representation, now the evaluation of the time-dependent part is performed in
the resolvent’s argument. This reduces the number of parallel resolvent evaluations per t
to 2N + 1 for this term. The last representation permits us to rewrite the inhomogeneous
part of solution uih(t) in the form

uih(t) = JαSα(t) f (0) +
t∫

0

Jα f ′(s) ds +
1

2πi

∞∫
−∞

Fα,1(ξ)

t∫
0

ez(ξ)(t−s) Jα f ′(s) dsdξ. (34)

Next, we address another ingredient essential to the numerical evaluation of (34),
which is an efficient quadrature method for the Riemann–Liouville integral Jαv(t) defined
by (6). While evaluating this integral numerically, it is important to select the quadrature
rule that, on the one hand, can handle the endpoint singularity appearing in the inte-
grand when α < 1 and, on the other hand, is able to provide exponentially convergent
approximation. Among existing quadrature rules, only sinc-quadrature on a finite interval
satisfies two mentioned properties simultaneously (see [50]). We construct a version of
such quadrature rule by transforming Jα into the integral over (−∞, ∞) and then applying
the chosen sinc-quadrature formula. Let s = tep/(1 + ep), then

Jαv(t) =
1

Γ(α)

∞∫
−∞

(
t− tep

1 + ep

)α−1
v
(

tep

1 + ep

)
ds =

tα

Γ(α)

∞∫
−∞

ep

(1 + ep)α+1 v
(

tep

1 + ep

)
dp.
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The reader may note that the singularity (t− s)α−1 from original definition (6) of Jαv(t) is
no longer present in the last integral and the new kernel of Jαv(t) decays exponentially as
p→ ∞. More precisely, there exist a constant c > 0, such that

ep

(1 + ep)α+1 =
(

e−
p

α+1 + e
αp

α+1

)−(α+1)
≤ c

{
e−αp, p > 0,
ep, p < 0.

(35)

Our intent here is to approximate Jαv(t) by the time-dependent operator J̃N
α v(t), that

takes into account the difference in a speed of kernel’s decay as p→ ±∞, illustrated by the
above bound. To introduce the approximation J̃N

α v(t) properly, let us to recall the following
definition [50] (Definition 3.1.5). The function f is said to belong to the class La,b(Dd) if it is
analytic in Dd and there exist a constant c > 0 such that for all z ∈ Dd:

|v(z)| ≤ c
|ez|a

(1 + |ez|)a+b .

The constants a, b > 0 will be referred to as the decay orders (or the decay order if a = b).

Proposition 2. Assume that the function v: [0, T] → X is bounded ‖v(t)‖ < ∞, for any
t ∈ [0, T]. If v(z) admits analytic extension to the “eye-shaped" region

D2
d =

{
z ∈ C :

∣∣∣∣arg
(

z
T − z

)∣∣∣∣ < d
}

, (36)

for some d ∈ (0, π/2), then the operator

J̃N
α v(t) =

tαh
Γ(α)

dδNe

∑
k=−dεNe

ekh

(1 + ekh)α+1 v

(
tekh

1 + ekh

)
, (37)

with N ∈ N, ε = min{1, α}, δ = min
{

1
α , 1
}

and h =
√

2πd
εN , defines the convergent approxima-

tion to

Jαv(t) =
tα

Γ(α)

∞∫
−∞

ep

(1 + ep)α+1 v
(

tep

1 + ep

)
dp. (38)

Moreover, for all t ∈ [0, T] ∥∥∥Jαv(t)− J̃N
α v(t)

∥∥∥ ≤ Ctα

Γ(α)
e−
√

2πdεN , (39)

where the constant C > 0 is independent of N and t.

Proof. When t = T, the function tez/(1 + ez) maps the infinite horizontal strip Dd of
half-height d into the “eye-shaped” region D2

d (see [50] (Example 1.7.5)) around the interval
[0, T]. For smaller values of t, it maps Dd into the region tD2

d ≡
{

z ∈ C : zT/t ∈ D2
d
}

, which
is a proper subset of D2

d as long as t < T. Consequently, if the assumptions regarding
v(z) are fulfilled, the integrand from (38) belongs to the class of functions L1,α(Dd) for any
t ∈ (0, T]. Then, the results regarding the convergence of (37) to (38), as well as the form
of (37) itself, and the error estimate stated in (39) follow from Theorem 4.2.6 of [50].

Remark 2. The results of Proposition 2 remain valid if, instead of the boundedness of v(z), we
assume that the integrand from (38) belongs to the class La,b(Dd). In such case, the parameters ε, δ
from (37) should be determined by ε = min{a, b}/a, δ = max{a, b}/b.
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The presence of factor tα in error estimate (39) makes it possible to use fewer terms
in (37) as t decreases, if the end goal is to reach the prescribed accuracy uniformly in t.
Let us assume that the desired accuracy is achieved for some t0 by setting N = N0, then
for t ∈ (0, t0):

tαe−
√

2πdεN = tα
0e−
√

2πdεN0 .

After solving this equation for N, we obtain

N(t) =
(√

N0 +
α ln (t/t0)√

2πdε

)2

. (40)

Formula (40) becomes instrumental in the situation wherein one needs to numerically
evaluate J̃N

α v(t) for a range of t-values. This is the case of the inhomogeneous part of
solution representation given by (34), whose terms contain the integrals of Jα f ′(s).

Before addressing the question on how to numerically evaluate (34), we would like
to consider a prerequisite problem on how to quantify the contribution of the error in the
argument v(t) of J̃N

α v(t) to the overall error of approximation to Jαv(t).

Corollary 2. Assume that functions v, ṽ satisfy the assumptions of Proposition 2. If ‖v(t) −
ṽ(t)‖ ≤ κ, for all t ∈ [0, T], then the error of approximation J̃N

α ṽ(t), satisfies the bound∥∥∥Jαv(t)− J̃N
α ṽ(t)

∥∥∥ ≤ Ctα

Γ(α)
e−
√

2πdεN +
tα(α + 1)
Γ(α + 1)

κ. (41)

Proof. We rewrite (41) as∥∥∥Jαv(t)− J̃N
α ṽ(t)

∥∥∥ ≤ ∥∥∥Jαv(t)− J̃N
α v(t)

∥∥∥+ ∥∥∥ J̃N
α v(t)− J̃N

α ṽ(t)
∥∥∥.

The first term of this error decomposition is estimated by (39), so we focus on the sec-
ond term ∥∥∥ J̃N

α v(t)− J̃N
α ṽ(t)

∥∥∥ ≤ κtαh
Γ(α)

[δN]

∑
k=−[εN]

ekh

(1 + ekh)α+1 , (42)

where

h
[δN]

∑
k=−[εN]

ekh

(1 + ekh)α+1 ≤ h
[δN]

∑
k=0

e−khα + h
[εN]

∑
k=1

e−kh

(1 + e−h[εN])α+1

≤ h
1− e−hα[δN]

1− e−hα
+ h

e−h(1− e−h[εN])

(1− e−h)(1 + e−h[εN])α+1

≤ h
1− e−hα

+
he−h

1− e−h ≤
1
α
+ 1 =

α + 1
α

.

(43)

The bound 1− e−h =
∞
∑

k=1

(−1)k+1hk

k! ≥ h was used to cancel out h in the last estimation step.

The combination of (39), (42) and (43) completes the proof.

With all the necessary results in place, now we move on to construct the approximation
to uih. To achieve that, we apply approximations (21), (37) and discretize the remaining
time-dependent integrals in a similar fashion as the Riemann–Liouville integral Jα (see
Proposition 2). The rationale for such integral discretizations will become apparent when
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we analyze the error below. Meanwhile, let us introduce the proposed approximation ũN
ih(t)

of the inhomogeneous solution uih(t) from (34):

ũN
ih(t) = J̃N0

α S̃N
α,1(t) f (0) + h1

N1

∑
k=−N1

GN2
α (0, t, kh1)

+
h3h4

2πi

N3

∑
`=−N3

Fα,1(`h3)
N4

∑
k=−N4

GN5
α (z(lh3), t, kh4),

(44)

where Fα,1(ξ), z(ξ) are defined in Lemma 1 and

GN
α (z, t, p) = tψ′(p)ezt(1−ψ(p)) J̃N

α f ′(tψ(p)), ψ(p) =
ep

1 + ep .

Theorem 3. Let A be a sectorial operator satisfying the assumptions of Theorem 2. If the function
f (t) from (1) admits the analytic extension to the "eye-shaped" domain D2

d, d ∈ (0, π/2) and

f ′(z) ∈ D(Aχ), ∀z ∈ D2
d, (45)

with some χ > 0, then for any α ∈ (0, 2), such that αϕs <
π
2 and t ∈ [0, T], the approximation

ũN
ih(t) from (44) converges to the inhomogeneous part uih(t) of the mild solution to (1), (4), defined

by (16). Moreover, for any fixed N ∈ N, the following error bound is valid:∥∥∥uih(t)− ũN
ih(t)

∥∥∥ ≤ Cχ, f

(
t

αχ
+

1 + t
Γ(α)

tα +
χ + t(1 + χ)

χ
tαea0t

)
e−c
√

αχN , (46)

with c =
√

2πd, provided that the values of Ni and h, hi in (44) are determined by the following for-
mulas

N1 = N4 = αχN, N3 = N, N0 = N2 = N5 =
αχN

min{1, α} , (47)

h = hi =

√
2πd
αχN

, i = 0, . . . 5. (48)

Here, d = φα+ϕc−π
2 , φα = min

{
π, π−ϕs

α

}
and φc ∈

( ϕs
α , π

2
]
, a0 are given. The constant Cχ, f

from (46) is dependent on ‖Aχ f ′(z)‖, z ∈ D2
d and independent of t, N.

Proof. We analyze error
∥∥uih(t)− ũN

ih(t)
∥∥ of (44) in a term-by-term manner.

The first error term is estimated via Corollary 2 and Theorem 2, applied in succession:∥∥∥JαSα(t) f (0)− J̃N0
α S̃N

α (t) f (0)
∥∥∥ ≤ tα(α + 1)

Γ(α + 1)

∥∥∥Sα(t) f (0)− S̃N
α (t) f (0)

∥∥∥
+

C0tα

Γ(α)
e−
√

2πdεN0 ≤ Ctαea0te−c
√

αχN‖Aχ f (0)‖+ C0tα

Γ(α)
e−c
√

εN0 .

The error bound for the second term can be decomposed as∥∥∥∥∥∥
t∫

0

Jα f ′(s) ds− h1

N1

∑
k=−N1

GN2
α (0, t, kh1)

∥∥∥∥∥∥ ≤ η1 + η2,
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with η1 being the quadrature error of the outer integral:

η1 =

∥∥∥∥∥∥t
∞∫
−∞

ψ′(p)Jα f ′(tψ(p)) dp− th1

N1

∑
k=−N1

ψ′(kh1)Jα f ′(tψ(kh1))

∥∥∥∥∥∥,

stated here after the substitution s = ψ(p) is performed therein, whereas η2 is the compound
error of the discretized Riemann–Liouville operators:

η2 = th1

N1

∑
k=−N1

∥∥∥ψ′(kh1)
(

Jα f ′(tψ(kh1))− J̃N2
α f ′(tψ(kh1))

)∥∥∥
≤ t max

s∈[0,t]

∥∥∥Jα f ′(s)− J̃N2
α f ′(s)

∥∥∥h1

N1

∑
k=−N1

ψ′(kh1).

It is worth noting that the last series is a specific version of the one from (42), with α = 1.
Thus, formula (43) along with the bound from Proposition 2, warranted by the analyticity
assumptions on f ′(z), yield

η2 ≤ 2t max
s∈[0,t]

∥∥∥Jα f ′(s)− J̃N2
α f ′(s)

∥∥∥ ≤ C2

Γ(α)
tα+1e−c

√
εN2 .

Let us return to η1. The aforementioned analyticity of f ′(z) induces the uniform
convergence of the integral for Jα f ′(z) in Formula (38) with respect to z ∈ D2

d. Furthermore,
for an arbitrary value of p ∈ (−∞, ∞), the function zψ(p) from (38) maps the convex region
D2

d defined by (36), onto itself. By repeating the argument from the Proof of Proposition 2,

these two facts and the relation Dd
ψ−→ D2

d permits us to conclude that ψ′(p)Jα f ′(tψ(p)) is
analytic for p ∈ Dd. Due to the form of ψ′(p), it is also exponentially decaying as |p| → ∞
in Dd ⊆ C, with the decay order 1. Hence, the error of sinc-quadrature η1 admits the bound
established in Theorem 4.2.6 from [50]:

η1 ≤ C1te−c
√

N1 .

We treat the third term from (44) in a similar way as the second term, albeit this time
the error decomposition is conducted after the application of (20) in reverse:∥∥∥∥∥∥

∞∫
−∞

Fα,1(ξ)

2πi

t∫
0

ez(ξ)(t−s) Jα f ′(s) dsdξ − t
h3h4

2πi

N3

∑
`=−N3

Fα,1(`h3)
N4

∑
k=−N4

GN5
α (z(lh3), t, kh4)

∥∥∥∥∥∥
=

∥∥∥∥∥∥t
∞∫
−∞

ψ′(p)(Sα(t− tψ(p))− I)Jα f ′(tψ(p)) dp

−t
h3h4

2πi

N4

∑
k=−N4

N3

∑
`=−N3

Fα,1(`h3)GN5
α (z(`h3), t, kh4)

∥∥∥∥∥ ≤ η3 + η4 + η5.

Here, the quantity η4 is used to denote the quadrature error for the outer integral:

η4 =

∥∥∥∥∥∥t
∞∫
−∞

ψ′(p)(Sα(t− tψ(p))− I)Jα f ′(tψ(p)) dp

−th4

N4

∑
k=−N4

ψ′(kh4)(Sα(t− tψ(kh4))− I)Jα f ′(tψ(kh4))

∥∥∥∥∥.

(49)



Mathematics 2023, 11, 2312 24 of 35

The upper bound for the last integrand is determined by the properties of the norm

‖(Sα(t− s)− I)Jα f ′(s)‖ = 1
2π

∥∥∥∫ ∞
−∞ ez(ξ)(t−s)Fα,1(ξ)Jα f ′(s) dξ

∥∥∥, which can be estimated us-

ing inequality (26). Indeed, setting x1 = Jα f ′(s) in (21) reveals that the above integrand
equals to the expression for Fα,1(t− s, ξ). As such, it admits the estimate∥∥∥ez(ξ)(t−s)Fα,1(ξ)Jα f ′(s)

∥∥∥ ≤ Cα,1(χ, 0)e<(z(ξ)(t−s))−αχ|ξ|‖Aχ Jα f ′(s)‖

≤ Cα,1(χ, 0)
Γ(α)

e<(z(ξ)(t−s))−αχ|ξ|
∞∫
−∞

sαep

(1 + ep)α+1

∥∥Aχ f ′(sψ(p))
∥∥ dp

≤ Cα,1(χ, 0)sα

Γ(α + 1)
e<(z(ξ)(t−s))−αχ|ξ| sup

p∈R

∥∥Aχ f ′(sψ(p))
∥∥.

Here, we used the relation

∞∫
−∞

sαep

(1 + ep)α+1 =

s∫
0

(s− p)α−1dp =
sα

α
, (50)

stemming from the equivalence of definitions (38) and (6). The previous chain of estimates
leads us to the following bound:

∥∥(Sα(t− s)− I)Jα f ′(s)
∥∥ ≤ 1

2π

∞∫
−∞

∥∥∥ez(ξ)(t−s)Fα,1(ξ)Jα f ′(s)
∥∥∥ dξ

≤ Cα,1(χ, 0)sα

2πΓ(α + 1)
sup
p∈R

∥∥Aχ f ′(sψ(p))
∥∥ ∞∫
−∞

e<(z(ξ)(t−s))−αχ|ξ| dξ.

(51)

The norm ‖(Sα(t− s)− I)Jα f ′(s)‖ remains bounded as long as the last integral con-
verges. Since s = tψ(p) in the expression for η4, this convergence requirement translates
into the inequality <(z(ξ)(t− tψ(p))) ≤ 0, which needs to be valid as |ξ|, |p| → ∞. Let
p = w + iν ∈ Dd′ ; then, using the definition of aI , bI from (15) along with the identity
Arg (1− ψ(w + iν)) = − arctan ew sin ν

1+ew cos ν , we rewrite the inequality in terms of the complex
number arguments

π

2
≥ lim

ξ→∞
w→∞

Arg (z(ξ)(t− tψ(w + iν))) = lim
ξ→∞

Arg(z(ξ)) + lim
w→∞

Arg(1− ψ(w + iν))

=
φs

2
+

π

4
− lim

w→∞
arctan

ew sin ν

1 + ew cos ν
=

φs

2
+

π

4
− ν.

Therefore, the integrand from (49) is analytic in Dd′ , with the value of d′ = φs
2 −

π
4 , which

is equal to d from (15). Furthermore, the integrand’s norm is exponentially decaying as
a function of p ∈ Dd, as a consequence of (51), the boundedness of sup

z∈D2
d

‖Aχ f ′(z)‖ and

the convergence of the integral, established before. Hence, similarly to η1, the bound
from Theorem 4.2.6 of [50] yields

η4 ≤
C4t
αχ

e−c
√

N4 .
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Next, we use (27) in conjunction with (43) and (50) to estimate the propagator approxi-
mation error η3

η3 = th4

∥∥∥∥∥ N4

∑
k=−N4

ψ′(kh4)(Sα(t− tψ(kh4))− I)Jα f ′(tψ(kh4))

− h3

2πi

N4

∑
k=−N4

ψ′(kh4)
N3

∑
`=−N3

etz(`h3)(1−ψ(kh4))Fα,1(`h3)Jα f ′(tψ(kh4))

∥∥∥∥∥
≤ th4

N4

∑
k=−N4

|ψ′(kh4)|

∥∥∥∥∥∥ 1
2πi

∞∫
−∞

etz(ξ)(1−ψ(kh4))Fα,1(ξ)Jα f ′(tψ(kh4))

− h3

2πi

N3

∑
`=−N3

etz(`h3)(1−ψ(kh4))Fα,1(`h3)Jα f ′(tψ(kh4))

∥∥∥∥∥
≤ C′3tea0te−c

√
αχN3 h4

N4

∑
k=−N4

|ψ′(kh4)|‖Aχ Jα f ′(tψ(kh4)‖

≤
2C′3tα+1ea0t

Γ(α)
e−c
√

αχN3 sup
p∈R

∥∥Aχ f ′(tψ(p))
∥∥ ∞∫
−∞

ep

(1 + ep)α+1 dp

≤
2C′3tα+1ea0t

Γ(α + 1)
e−c
√

αχN3 sup
p∈[0,t]

∥∥Aχ f ′(p)
∥∥ ≤ C3tα+1ea0te−c

√
αχN3 sup

p∈[0,t]

∥∥Aχ f ′(p)
∥∥.

The remaining summand η5 represent the effect of discretized Riemann–Liouville
operators on the error of the third approximation term in (44). We estimate it as

η5 =
th3h4

2π

∥∥∥∥∥ N4

∑
k=−N4

ψ′(kh4)
N3

∑
`=−N3

etz(`h3)(1−ψ(kh4))Fα,1(`h3)Jα f ′(tψ(kh4))

−
N4

∑
k=−N4

ψ′(kh4)
N3

∑
`=−N3

etz(`h3)(1−ψ(kh4))Fα,1(`h3) J̃N5
α f ′(tψ(kh4))

∥∥∥∥∥
≤ th3h4

2π

N4

∑
k=−N4

|ψ′(kh4)|
N3

∑
`=−N3

∣∣∣etz(`h3)(1−ψ(kh4))
∣∣∣

×
∥∥∥Fα,1(`h3)

(
Jα f ′(tψ(kh4))− J̃N5

α f ′(tψ(kh4))
)∥∥∥

≤ (1 + M)KbI2αχh3h4

2π(aI − a0)
tet<z(0)

N4

∑
k=−N4

|ψ′(kh4)|
N3

∑
`=−N3

e−αχ|`h3|

rχ(`h3, 0)

×
∥∥∥Aχ

(
Jα f ′(tψ(kh4))− J̃N5

α f ′(tψ(kh4))
)∥∥∥.

Assumption (45) enables us to estimate the last norm via Proposition 2:∥∥∥Aχ
(

Jα f ′(tψ(kh4))− J̃N5
α f ′(tψ(kh4))

)∥∥∥ ≤ ∥∥∥Jα Aχf ′(tψ(kh4))− J̃N5
α Aχ f ′(tψ(kh4))

∥∥∥
≤ C(α, χ)(tψ(kh4))

α

Γ(α)
e−
√

2πdεN5 ≤ C(α, χ)tα

Γ(α)
e−
√

2πdεN5 .

This decouples the inner and outer series in the above estimate for η5. Thus,

h3

2

N3

∑
`=−N3

e−αχ|kh3|

rχ(kh3, 0)
≤ h3

2rχ
m

(
1− e−αχNh3

1− e−αχh3
+

e−αχh3(1− e−αχNh3)

1− e−αχh3

)
≤ h3

2rχ
m

1 + e−αχh3

1− e−αχh3

≤ 1
αχrχ

m
,
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with rm = inf
p∈R

r0(p) being strictly greater than zero, due to (25). By combining two

previously obtained bounds with (43), we arrive at

η5 ≤ C′5
C(α, χ)

χΓ(α + 1)
tα+1et(a0−aI)e−c

√
εN5 ≤ C5

tα+1

χ
et(a0−aI)e−c

√
εN5 .

The constant C′5 = (1+M)KbI2αχ+1

π(aI−a0)
, here, is independent of N5.

The bounds derived for the quantities ηi, i = 1, . . . , 5 show that they all are exponen-
tially decaying as Ni → ∞. We make these error bounds asymptotically equal to the error of
the first term from (44), that is decaying on the order of e−c

√
αχN , provided that εN0 = αχN

in the error estimate from the beginning of the proof. The resulting equations for Ni are
as follows:

N1 = αχN, εN2 = αχN, αχN3 = αχN, N4 = αχN, εN5 = αχN,

where ε = min{1, α}, as per Proposition 2. The solution of these equations gives us (47). By
collecting the derived error bounds for the terms of ũN

ih(t), we end up with

∥∥∥uih(t)− ũN
ih(t)

∥∥∥ ≤ (Ctαea0t‖Aχ f (0)‖+ C0tα

Γ(α)
+ C1t +

C4

αχ
t

+
C2

Γ(α)
tα+1 + C3tα+1ea0t sup

p∈[0,t]

∥∥Aχ f ′(p)
∥∥+ C5

tα+1

χ
ea0t

)
e−c
√

αχN .

This bound is reduced to (46) by absorbing the individual constants into Cχ, f , while
retaining the asymptotic behavior with respect to α, χ and t. The derived bound also proves
the convergence of approximation (44) to (34) and, therefore, to the original definition for
the inhomogeneous part of the solution given by (16).

Theorem 3 demonstrates that the proposed numerical method to approximate uih(t)
inherits essential properties of the numerical method for propagator approximation, it
is based upon. Firstly, the constructed approximation ũN

ih(t) is exponentially convergent
on the whole interval t ∈ [0, T]. Secondly, bound (46) exhibits, similar to, (27) depen-
dence on the fractional order α and the argument smoothness parameter χ. Thirdly, just
like (34), Formula (44) permits for an independent evaluation of resolvents R(zα,−A) for
the different values z ∈ ΓI . Moreover, the presence of factor tα in (46) guaranties that the
approximation ũN

ih(t) matches the asymptotic behavior of the inhomogeneous part uih(t),
when t→ 0+ [10].

Remark 3. In order to minimize the computational cost required for the evaluation of the approximation
ũN

ih(t), one can dynamically adjust the discretization parameters N2, N5 of the approximate Riemann–
Liouville integrals from (44) using formula (40) with t0 equal to tψ(kN1) and tψ(kN4), accordingly.

The following example is aimed to numerically verify the quality of approximation
(44) to the inhomogenous part of solution given by (34) or (16).

Example 2. Let A be defined as in Example 1. Furthermore, let f from (1) be a product of the
eigenfunction of A and the polynomial:

f (t) =
m

∑
i=0

citi sin
πkix

L
, (52)
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where m and ci, i = 0, . . . , m are given. For such f , we have

Jα f ′(t) =
m

∑
i=0

c′it
α+i−1 sin

πkix
L

, c′i =
Γ(i + 1)
Γ(α + i)

ci.

The inhomogeneous part of the solution to (1), (4) takes the form

u(t, x) =c′0 sin
πk0x

L

t∫
0

Eα,1(−sαλ(k))
(t− s)1−α

ds

+
m

∑
i=1

c′i sin
πkix

L

t∫
0

Eα,1(−(t− s)αλ(k))sα+i−1 ds,

which is derived using the fractional propagator representation from Example 1. The integrals
from the above formula for u(t) cannot be evaluated explicitly for arbitrary α. Thus, we rely upon
the numerical evaluation of u(t) via exponentially convergent quadrature formulas (38) and [50]
(Theorem 4.2.6) with discretization parameters NJ and NI , correspondingly. The analysis conducted
in the Proof of Proposition 2 suggests to set NJ = NI/ min{1, α}. This leaves us with only one
discretization parameter NI , which has to be chosen large enough for the error of the approximated
u(t) to be negligible with respect to the error of the numerical solution ũN

ih(t). The latter one is
obtained by Algorithm 2 for the data specified in (32), (33) and (52), using the explicit resolvent
evaluation formula from Example 1 and the software implementation mentioned there. We fix
m = 1, c0 = 1, c1 = 1, k0 = 1, k1 = 4, L = 1 in (52) and, after conducting several numerical
experiments, settle with NI = 256. The resulting behavior of u(t) is visualized in Figure 5.
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Figure 5. Exact solution u(t, 0.5) of problem (1), (4) with f (t) = sin πx + t sin 4πx, u0 = u1 = 0
and A, defined by (32) with a = 1, NI = 256: (a) the case α = 0.1, 0.3, 0.5, 0.7, 1; (b) the case
α = 1, 1.2, 1.5, 1.7, 1.9.

To measure the error of numerical solution ũN
ih(t), we define

Eih(t, x) =
∣∣∣u(t, x)− ũN

ih(t, x)
∣∣∣, errih = sup

t∈[0,T]
‖Eih(t)‖∞.

and plot the values of Eih(t, x) as a function of t for fixed x = 0.5 and different values of α, N in
Figure 6. It has exactly the same structure as Figure 3 for the homogeneous case. The top row of
plots in Figure 6 correspond to the case when α ≤ 1. Taking into account the monotonous behavior
of exact solution u(t) for such α, here we consider t ∈ [0, 1]. For the bottom row of plots with
α ≥ 1, we choose the larger time horizon T = 5. According to Figure 6b, with such T the numerical
simulation will cover at least two full solution oscillation periods. In both cases, we observe that the
maximum of the error α-wise goes down when N increases from one subplot to the next in line.
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Figure 6. Error Eih(t, 0.5) of the approximate solution ũN
ih to problem (1), (4) with parameters:

f (t) = sin πx + t sin 4πx; u0 = u1 = 0; A defined by (32); a = 1; NI = 256. Graphs from the top row
of subplots correspond to α = 0.1, 0.3, 0.5, 0.7, 1 and (a) N = 32; (b) N = 64 (c); N = 128. Graphs from
the bottom row of plots correspond to α = 1, 1.2, 1.5, 1.7, 1.9 and (d) N = 32; (e) N = 64; (f) N = 128.

In contrast to the homogeneous case, now we detect a notable growth in the experimental
error as t progresses, for each combination of α, N. This effect is less sizable for the sub-parabolic
case, depicted in Figure 6a–c, than for the sub-hyperbolic case from Figure 6d–f. Such phenomena
can be theoretically explained by the presence of factor tα in the type-dependent part of the error
estimate (46).

In order to analyze the error dependency of N in the similar fashion as in Example 1, we
additionally plot the graphs of errih(N) for a range of α ∈ [0.1, 1.9] in Figure 7. Here, we again
see notable differences between the cases of α being less and greater than one. Judging by the shape
of the curves in Figure 7a, the errors of ũN

ih(t, x) still decay exponentially with respect to N for
α < 1, but the convergence slows down faster for smaller α than in Figure 4. This can be attributed
to the influence of the additional factor tα−1 from (46) which was not present in estimate (31) for
the solution of the homogeneous problem. The exponential dependence of the accuracy on N is
also observed in Figure 7b for α > 1 and t ∈ [0, 5]. This time, there is no additional convergence
order degradation due to α and the plotted graphs look almost identical to the matching graphs from
Figure 4c. Moreover, the reader can clearly note the impact of the larger times on the numerical
stability of the method. This is an evidence of the method’s limitations to treat only moderate values
of T.

At this point, we presented enough experimental data to conduct a meaningful compar-
isons with existing numerical methods. We choose review [18] as a main comparison source
because it contains error data for several modern time-stepping numerical methods applied
to the linear scalar problem with the same range α ∈ [0.1, 1.9] as in the Figures 6 and 7. The
error plots in Figure 4 from [18] are generated using 1024 grid points in time. Thus, their
evaluation is computationally comparable to setting N = 1023 in the sequential version of
Algorithm 1. With such N, our method gives approximately two times more significant
digits then the mentioned second order time-stepping methods, provided that the fractional
parameter is not too small (α > 0.2). This result improves drastically when the parallel
evaluation is considered, because then the wall-time computational cost of our method is
asymptotically equivalent to one step of the intrinsically sequential time-stepping numeri-
cal scheme. As a result, our method is favored for the problems with initial data that satisfy
Theorem 2, especially when computational resources are plentiful. On the other hand,
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sequential time-stepping methods [18,23,26] may be a better choice in situations when the
initial data u0, u1 are not sufficiently smooth [21], α is close to 0 or if the computational
resources are severely constrained.
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Figure 7. Sup-norm error of the approximate solution to problem (1), (4) with f (t) = sin πx +

t sin 4πx, u0 = u1 = 0, and the operator A defined by (32); L = 1, a = 1. Errors are plotted for
N = 32, 64, 96, . . . , 2048 and (a) t ∈ [0, 1], α = 0.1, 0.3, 0.5, 0.7, 1; (b) t ∈ [0, 5], α = 1, 1.2, 1.5, 1.7, 1.9.

In the final example, we consider a fully discretized numerical method for the given
fractional Cauchy problem. It is constructed by applying the solution scheme from
Sections 3.3 and 3.4 to the fractional Cauchy problem (1), (4), where A is substituted by
the bounded linear operator Ã obtained via the finite-difference discretization of (32). The
initial conditions and right-hand side for the problem are derived using the method of
manufactured solutions.

Example 3. Let A be defined as in Example 1, with L = 1. We postulate that the exact solution to
problem (1), (4) is defined as

u(t, x) = x2(x− 1)
(

x− tδ − b
)

, δ > 1, b ∈ R. (53)

Then,
Au(t) = 2tδ(3x− 1)− 12x2 + 6x(b + 1)− 2b

∂α
t u(t) = − δx2(x− 1)

Γ(1− α)

t∫
0

(t− s)−αsδ−1d s = − δΓ(δ)tδ−α

Γ(1 + δ− α)
x2(x− 1),

so the right-hand side of (1) takes the form

f (t) = 6tδx− 2tδ − tδ−αδ!
Γ(δ + 1− α)

x2(x− 1)− 12x2 + 6x(b + 1)− 2b. (54)

Such f (t) permits us to study one important practical aspect of the developed solution method.
Namely, what happens to the accuracy of a fully-discretized solution when f ′(t) does not formally
belong to the domain of A, but the discretization Ã satisfies ‖Ã f̃ ′(t)‖ < ∞?

Let Ã be m × m matrix obtained by a second-order finite-difference discretization of oper-
ator (32) on a grid ∆d = {(i− 1)/(m− 1)}m

i=1. Then, the discretized right-hand side f̃ ′(t) ∈
(Rm, ‖ ‖∞) is defined by the projection of f ′(t) onto ∆d: f̃ ′(t) = ( f ′(t, 0), f ′(t, x2), . . . , f ′(t, L))T .
We set δ = 2, b = −1/2, and visualize the graph of the derivative

f ′(t) = 6δtδ−1x− 2δtδ−1 − tδ−α−1(δ− α)δ!
Γ(δ + 1− α)

x2(x− 1),
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for different values of t, α, in Figure 8a.
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Figure 8. The graph of exact solution (53): (a) plotted as a function of x ∈ [0, 1] for t = 0.01, 1,
α = 0.5, 1, 1.5; (b) plotted as a function of t ∈ (0, 1] for x = 0.5, α = 0.5, 1, 1.5.

As we can see, the function f ′(t), t > 0 does not satisfy the boundary conditions from (32);
hence, f ′(t) /∈ D(A). Furthermore, when α > 1, this function posses an integrable singularity
at t = 0; see Figure 8b. This permits us to test Remark 2, alluding that even for such f ′(t) the
approximation J̃N

α f ′(t) from Proposition 2 remains exponentially convergent. To this end, we define
the approximation errors

E(t, x) =
∣∣∣u(t, x)− ũN

m (t, x)
∣∣∣, err = sup

t∈[0,T]
‖E(t)‖∞,

where ũN
m (t, x), x ∈ ∆m is the numerical solution to (1), (4), with A = Ã, f (t) = f̃ (t) and

u0 = ũ(0, x), u1 = ũ′(0, x), calculated by Algorithms 1 and 2. We set a = 1, ϕs = π/60,
γ = χ = 1, as before, and consider the impact of the discretization parameters N, m on the
solution’s accuracy.

In the first batch of experiments, we vary N, α, while keeping the grid in space fixed with
m = 100. The resulting graphs of E(t, 0.1), t ∈ [0, 1] are displayed in Figure 9. The behavior of
E(t, 0.1) in these graphs follows the pattern predicted by Theorems 2 and 3, albeit this time the
error saturation occurs at about 10−5 ≤ m−2, when the effect of the second-order accuracy in space
becomes dominant. Aside of that, we observe no accuracy degradation as compared to Examples 1
and 2, where the space-dependent component of the solution was evaluated explicitly. For α > 1,
this demonstrates the aforementioned robustness of J̃N

α with respect to the integrable singularity of
f ′(t) at t = 0.

It is important to highlight that the a priori error estimates from Section 3 do not enforce
any dependencies between the discretization parameters N, m of the approximation ũN

m (t, x) or the
chosen grids in time and space. To practically verify this proposition, we consider the sup-norm
error err of the approximated solution. In the second batch of experiments, this error is evaluated
for the increasing sequence of m = 101, 102, 103, 104, N = 32, 64, 96, . . . 512 and different α. The
resulting graphs, depicted in Figure 10, reaffirm the pointwise error behavior observed in Figure 9.

The sup-norm error is decaying exponentially with respect to N until it plateaus near the
certain value, which is roughly constant within each subfigure. For larger m, the mentioned
plateauing occurs at a smaller value, consistently following the second-order decay rate with respect
to the grid step-size in space. This is true all across the range of m/N covered in Figure 10a–d.
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Figure 9. Error E(t, 0.1) of the fully discretized approximation ũN
100 to the solution of (1), (4) with A,

f (t) defined by (32) and (54), correspondingly; L = 1, a = 1, ϕs = π/60, γ = χ = 1. Graphs from the
top row of subplots correspond to α = 0.1, 0.3, 0.5, 0.7, 1 and (a) N = 64; (b) N = 128 (c); N = 256.
Graphs from the bottom row of plots correspond to α = 1, 1.2, 1.5, 1.7, 1.9 and (d) N = 64; (e) N = 128;
(f) N = 256.
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Figure 10. Sup-norm error of the fully discretized approximation ũN
m to the solution of (1), (4) with A,

f (t) defined by (32) and (54), correspondingly; L = 1, a = 1, ϕs = π/60, γ = χ = 1, T = 1. Errors
are plotted for N = 32, 64, 96, . . . , 2048 and (a) m = 10; (b) m = 102; (c) m = 103; (d) m = 104.
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The last example practically demonstrates that the only natural requirement imposed
by our method on the spatial discretization scheme is for the discretized operator Ã to
remain sectorial. This suggests the possibility for the extension of the developed method to
nonlinear problems, along the course discussed in the introduction. In addition, the gener-
alization of the method to Cauchy problems with the nonlocal-in-time condition [58,59]
also seems to be a promising direction of research, given its importance for the applications
to final-value problems [60,61].

4. Conclusions

In this work, we proposed and justified the new exponentially convergent parallel
numerical method for the fractional Cauchy problem (1), (4). The constructed method is
based on the approximation of mild solution representation (5) using the combination of
efficient methods for the contour evaluation of the propagators Sα,β(t), β = 1, 2 and tailored
quadrature rules for the discretization of the Riemann–Liouiville and convolution integral
operators from (5). As a result, the numerical evaluation of (5) is reduced to the solution of
a sequence of independent linear stationary problems. The accuracy estimates established
by Theorems 2 and 3 remain valid uniformly in time for the entire range α ∈ (0, 2), under
the moderate smoothness assumptions u0 ∈ D(Aγ), f ′(z) ∈ D(Aχ), with some γ, χ > 0
and all z ∈ D2

d, defined by (36). These results recover the previously existing error estimates
for parabolic problems [31,51], in the limit α→ 1 and T < ∞. All the theoretical results are
verified experimentally. This includes the results from Corollary 1 and Theorem 3 regarding
the approximation of homogeneous and inhomogeneous parts of the solution, which are
experimentally considered in Examples 1 and 2. Here, we put extra effort to demonstrate
that the constructed solution approximation is numerically stable for α ∈ [0.1, 1.9] and
practically capable of handling operators A with a broad range of spectral characteristics.
It encompasses the class of so-called singularly perturbed operators, that are modeled
in Example 1 by the Laplacian with a very small distance between the Sp(A) and the
origin (see Figure 4). Additionally, in Example 3, we considered a fully discretized solution
scheme for (1), (4) to practically verify the robustness of the constructed approximation
toward errors caused by the discretization in space. Naturally, the mentioned benefits of
the developed method come with some limitations. Among such, we mention the required
analyticity of f (z) in the complex neighborhood D2

d of time interval (0, T). On the ond
hand, such analyticity assumptions are typical for the theory of exponentially convergent
quadrature [49,50]. On the other hand, this is a considerably stronger assumption on the
problem’s right-hand side than the assumption f ∈W1,1([0, T], X), imposed by the solution
existence result from Theorem 1. Moreover, the quadrature rule chosen in Theorem 3
permits for a practically realistic situation when f ′(t) has an integrable singularity at t = 0.
The ability of the method to handle such class of f was experimentally demonstrated in
Example 3. Another possible limitation of the current method is its practical viability only
for moderate T ≤ 20. Nonetheless, existing numerical evidence suggests that the long-term
stability of the method could be improved by some nonessential modifications. Larger
values of T ≈ 200 are necessary for certain parameter identification problems [62], which,
along with the mentioned nonlinear and nonlocal extensions of the given problem, are
going to be considered in the future works.

Author Contributions: Both authors contributed equally to the conceptualization; methodology;
formal analysis; investigation and writing of the manuscript. Software development was done by
D.S. Project administration B.W. All authors have read and agreed to the published version of the
manuscript.

Funding: The research of the first author was funded by Technical University of Munich—Institute
for Advanced Study, fellowship for Ukrainian Researchers; National Research Foundation of Ukraine,
grant number 2020.02/0050. The research of the second author was funded by German Research Foun-
dation, grant number WO671/11-1. The APC was funded by TUM Open Access Publishing Fund.



Mathematics 2023, 11, 2312 33 of 35

Data Availability Statement: The data presented in the paper can be generated using the software
suite available at https://github.com/DmytroSytnyk/FCP2023 (accessed on 1 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kilbas, A.; Srivastava, H.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The

Netherlands, 2006; Volume 204.
2. Gavrilyuk, I.; Makarov, V.; Vasylyk, V. Exponentially Convergent Algorithms for Abstract Differential Equations; Frontiers in

Mathematics; Birkhäuser/Springer Basel AG: Basel, Switzerland, 2011; pp. viii+180. [CrossRef]
3. Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier:

Amsterdam, The Netherlands, 1974.
4. Schneider, W.R.; Wyss, W. Fractional diffusion and wave equations. J. Math. Phys. 1989, 30, 134–144. [CrossRef]
5. Dzherbashian, M.; Nersesian, A. Fractional derivatives and Cauchy problem for differential equations of fractional order. Fract.

Calc. Appl. Anal. 2020, 23, 1810–1836. [CrossRef]
6. Kochubei, A.N. The Cauchy problem for evolution equations of fractional order. Differ. Uravn. 1989, 25, 1359–1368.
7. Bazhlekova, E. The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1998, 1, 255–270.
8. Keyantuo, V.; Lizama, C.; Warma, M. Spectral criteria for solvability of boundary value problems and positivity of solutions of

time-fractional differential equations. Abstr. Appl. Anal. 2013, 2013, 614328. [CrossRef]
9. Bazhlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Department of Mathematics and Computer

Science, Eindhoven University of Technology, Eindhoven, The Netherlands, 2001. [CrossRef]
10. Sytnyk, D.; Wohlmuth, B. Abstract fractional Cauchy problem: Existence of propagators and inhomogeneous solution representa-

tion. Fractal Fract. submitted.
11. Eidelman, S.D.; Kochubei, A.N. Cauchy problem for fractional diffusion equations. J. Differ. Equ. 2004, 199, 211–255. [CrossRef]
12. Umarov, S. Fractional Duhamel principle. In Handbook of Fractional Calculus with Applications; De Gruyter: Berlin, Germany, 2019;

Volume 2, pp. 383–410. [CrossRef]
13. Fujita, H.; Saito, N.; Suzuki, T. Operator Theory and Numerical Methods; Elsevier: Heidelberg, Germany, 2001.
14. Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16.

[CrossRef]
15. Diethelm, K.; Karniadakis, G. Fundamental approaches for the numerical handling of fractional operators and time-fractional

differential equations. In Handbook of Fractional Calculus with Applications; De Gruyter: Berlin, Germany, 2019; Volume 3, pp. 1–22.
[CrossRef]

16. Diethelm, K.; Garrappa, R.; Stynes, M. Good (and not so good) practices in computational methods for fractional calculus.
Mathematics 2020, 8, 324. [CrossRef]

17. Diethelm, K.; Kiryakova, V.; Luchko, Y.; Machado, J.; Tarasov, V.E. Trends, directions for further research, and some open
problems of fractional calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [CrossRef]

18. Garrappa, R. Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comput.
Simul. 2015, 110, 96–112. [CrossRef]

19. Stynes, M. Singularities. In Handbook of Fractional Calculus with Applications; Karniadakis, G.E., Ed.; De Gruyter: Berlin, Germany,
2019; Volume 3, pp. 287–306. [CrossRef]

20. Stynes, M. A Survey of the L1 Scheme in the Discretisation of Time-Fractional Problems. Numer. Math. Theory Methods Appl. 2021,
15, 1173–1192. [CrossRef]

21. Jin, B.; Lazarov, R.; Zhou, Z. Numerical methods for time-fractional evolution equations with nonsmooth data: A concise
overview. Comput. Methods Appl. Mech. Eng. 2019, 346, 332–358. [CrossRef]

22. Cuesta, E.; Lubich, C.; Palencia, C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math.
Comput. 2006, 75, 673–696. [CrossRef]

23. Baffet, D.; Hesthaven, J.S. A Kernel Compression Scheme for Fractional Differential Equations. SIAM J. Numer. Anal. 2017,
55, 496–520. [CrossRef]

24. Fischer, M. Fast and Parallel Runge–Kutta Approximation of Fractional Evolution Equations. SIAM J. Sci. Comput. 2019,
41, A927–A947. [CrossRef]

25. Guo, L.; Zeng, F.; Turner, I.; Burrage, K.; Karniadakis, G.E. Efficient Multistep Methods for Tempered Fractional Calculus:
Algorithms and Simulations. SIAM J. Sci. Comput. 2019, 41, A2510–A2535. [CrossRef]

26. Khristenko, U.; Wohlmuth, B. Solving time-fractional differential equations via rational approximation. IMA J. Numer. Anal.
2022, 1–27. [CrossRef]

27. McLean, W.; Thomée, V. Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a
fractional-order evolution equation. IMA J. Numer. Anal. 2009, 30, 208–230. [CrossRef]

28. McLean, W.; Thomée, V. Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl.
2010, 22, 57–94. [CrossRef]

https://github.com/DmytroSytnyk/FCP2023
http://doi.org/10.1007/978-3-0348-0119-5
http://dx.doi.org/10.1063/1.528578
http://dx.doi.org/10.1515/fca-2020-0090
http://dx.doi.org/10.1155/2013/614328
http://dx.doi.org/10.6100/IR549476
http://dx.doi.org/10.1016/j.jde.2003.12.002
http://dx.doi.org/10.1515/9783110571660-017
http://dx.doi.org/10.3390/math6020016
http://dx.doi.org/10.1515/9783110571684-001
http://dx.doi.org/10.3390/math8030324
http://dx.doi.org/10.1007/s11071-021-07158-9
http://dx.doi.org/10.1016/j.matcom.2013.09.012
http://dx.doi.org/10.1515/9783110571684-011
http://dx.doi.org/10.4208/nmtma.OA-2022-0009s
http://dx.doi.org/10.1016/j.cma.2018.12.011
http://dx.doi.org/10.1090/S0025-5718-06-01788-1
http://dx.doi.org/10.1137/15M1043960
http://dx.doi.org/10.1137/18M1175616
http://dx.doi.org/10.1137/18M1230153
http://dx.doi.org/10.1093/imanum/drac022
http://dx.doi.org/10.1093/imanum/drp004
http://dx.doi.org/10.1216/JIE-2010-22-1-57


Mathematics 2023, 11, 2312 34 of 35

29. Colbrook, M.J.; Ayton, L.J. A contour method for time-fractional PDEs and an application to fractional viscoelastic beam equations.
J. Comput. Phys. 2022, 454, 110995. [CrossRef]

30. Vasylyk, V.; Gavrilyuk, I.; Makarov, V. Exponentially Convergent Method for the Approximation of a Differential Equation with
Fractional Derivative and Unbounded Operator Coefficient in a Banach Space. Ukr. Math. J. 2022, 74, 171–185. [CrossRef]

31. Gavrilyuk, I.; Makarov, V. Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous
problems in Banach spaces. SIAM J. Numer. Anal. 2005, 43, 2144–2171. [CrossRef]

32. Weideman, J.A.C. Optimizing Talbot’s contours for the inversion of the Laplace transform. SIAM J. Numer. Anal. 2006,
44, 2342–2362. [CrossRef]

33. Weideman, J.; Trefethen, L. Parabolic and hyperbolic contours for computing the Bromwich integral. Math. Comput. 2007,
76, 1341–1356. [CrossRef]

34. Pang, H.K.; Sun, H.W. Fast numerical contour integral method for fractional diffusion equations. J. Sci. Comput. 2016, 66, 41–66.
[CrossRef]

35. Hochbruck, M.; Ostermann, A. Explicit Exponential Runge–Kutta Methods for Semilinear Parabolic Problems. SIAM J. Numer.
Anal. 2005, 43, 1069–1090. [CrossRef]

36. López-Fernández, M.; Lubich, C.; Palencia, C.; Schädle, A. Fast Runge–Kutta approximation of inhomogeneous parabolic
equations. Numer. Math. 2005, 102, 277–291. [CrossRef]

37. Gander, M.J.; Güttel, S. PARAEXP: A Parallel Integrator for Linear Initial-Value Problems. SIAM J. Sci. Comput. 2013,
35, C123–C142. [CrossRef]

38. Bohonova, T.Y.; Gavrilyuk, I.P.; Makarov, V.L.; Vasylyk, V. Exponentially Convergent Duhamel-Like Algorithms for Differential
Equations with an Operator Coefficient Possessing a Variable Domain in a Banach Space. SIAM J. Numer. Anal. 2008, 46, 365–396.
[CrossRef]

39. González, C.; Thalhammer, M. Higher-order exponential integrators for quasi-linear parabolic problems. Part II: Convergence.
SIAM J. Numer. Anal. 2016, 54, 2868–2888. [CrossRef]

40. Fritz, M.; Rajendran, M.L.; Wohlmuth, B. Time-fractional Cahn–Hilliard equation: Well-posedness, degeneracy, and numerical
solutions. Comput. Math. Appl. 2022, 108, 66–87. [CrossRef]

41. McLean, W.; Thomee, V. Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 2004,
24, 439–463. [CrossRef]

42. Thomée, V. A high order parallel method for time discretization of parabolic type equations based on Laplace transformation and
quadrature. Int. J. Numer. Anal. Model. 2005, 2, 121–139.

43. Weideman, J.A.C. Improved contour integral methods for parabolic PDEs. IMA J. Numer. Anal. 2010, 30, 334–350. [CrossRef]
44. Rieder, A. Double exponential quadrature for fractional diffusion. Numer. Math. 2023, 27, 1–52. [CrossRef] [PubMed]
45. López-Fernández, M.; Palencia, C.; Schädle, A. A spectral order method for inverting sectorial Laplace transforms. SIAM J.

Numer. Anal. 2006, 44, 1332–1350. [CrossRef]
46. Ashyralyev, A. A note on fractional derivatives and fractional powers of operators. J. Math. Anal. Appl. 2009, 357, 232–236.

[CrossRef]
47. Li, M.; Chen, C.; Li, F.B. On fractional powers of generators of fractional resolvent families. J. Funct. Anal. 2010, 259, 2702–2726.

[CrossRef]
48. Martinez, C.; Sanz, M. The Theory of Fractional Powers of Operators; Elsevier: Amsterdam, The Netherlands, 2001.
49. Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration, 2nd ed.; Computer Science and Applied Mathematics; Academic Press:

Boston, MA, USA, 1984.
50. Stenger, F. Numerical Methods Based on Sinc and Analytic Functions; Springer Series in Computational Mathematics; Springer: New

York, NY, USA, 1993; Volume 20, pp. xv+565. [CrossRef]
51. Gavrilyuk, I.; Makarov, V.; Vasylyk, V. A new estimate of the Sinc method for linear parabolic problems including the initial point.

Comput. Methods Appl. Math. 2004, 4, 163– 179. [CrossRef]
52. Lubich, C. Convolution quadrature revisited. BIT Numer. Math. 2004, 44, 503–514. [CrossRef]
53. Garrappa, R. Numerical evaluation of two and three parameter Mittag–Leffler functions. SIAM J. Numer. Anal. 2015, 53, 1350–1369.

[CrossRef]
54. Seybold, H.; Hilfer, R. Numerical algorithm for calculating the generalized Mittag–Leffler function. SIAM J. Numer. Anal. 2009,

47, 69–88. [CrossRef]
55. McLean, W. Numerical evaluation of Mittag–Leffler functions. Calcolo 2021, 58, 7. [CrossRef]
56. Kadalbajoo, M.K.; Gupta, V. A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math.

Comput. 2010, 217, 3641–3716. [CrossRef]
57. Roos, H.G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-

Reaction and Flow Problems, 2nd ed.; Springer Series in Computational Mathematics 24; Springer: Berlin/Heidelberg, Germany,
2008.

58. Gavrilyuk, I.P.; Makarov, V.L.; Sytnyk, D.O.; Vasylyk, V.B. Exponentially Convergent Method for the m-Point Nonlocal Problem
for a First Order Differential Equation in Banach Space. Numer. Funct. Anal. Optim. 2010, 31, 1–21. [CrossRef]

59. Makarov, V.L.; Sytnyk, D.O.; Vasylyk, V.B. Existence of the solution to a nonlocal-in-time evolutional problem. Nonlinear Anal.
Model. Control 2014, 19, 432–447. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2022.110995
http://dx.doi.org/10.1007/s11253-022-02056-8
http://dx.doi.org/10.1137/040611045
http://dx.doi.org/10.1137/050625837
http://dx.doi.org/10.1090/S0025-5718-07-01945-X
http://dx.doi.org/10.1007/s10915-015-0012-9
http://dx.doi.org/10.1137/040611434
http://dx.doi.org/10.1007/s00211-005-0624-3
http://dx.doi.org/10.1137/110856137
http://dx.doi.org/10.1137/06065252X
http://dx.doi.org/10.1137/15M103384
http://dx.doi.org/10.1016/j.camwa.2022.01.002
http://dx.doi.org/10.1093/imanum/24.3.439
http://dx.doi.org/10.1093/imanum/drn074
http://dx.doi.org/10.1007/s00211-022-01342-8
http://www.ncbi.nlm.nih.gov/pubmed/36915282
http://dx.doi.org/10.1137/050629653
http://dx.doi.org/10.1016/j.jmaa.2009.04.012
http://dx.doi.org/10.1016/j.jfa.2010.07.007
http://dx.doi.org/10.1007/978-1-4612-2706-9
http://dx.doi.org/10.2478/cmam-2004-0009
http://dx.doi.org/10.1023/B:BITN.0000046813.23911.2d
http://dx.doi.org/10.1137/140971191
http://dx.doi.org/10.1137/070700280
http://dx.doi.org/10.1007/s10092-021-00398-6
http://dx.doi.org/10.1016/j.amc.2010.09.059
http://dx.doi.org/10.1080/01630560903499019
http://dx.doi.org/10.15388/NA.2014.3.8


Mathematics 2023, 11, 2312 35 of 35

60. Wei, T.; Wang, J.G. A modified quasi-boundary value method for the backward time-fractional diffusion problem. ESAIM Math.
Model. Numer. Anal. 2014, 48, 603–621. [CrossRef]

61. Jin, B.; Rundell, W. A tutorial on inverse problems for anomalous diffusion processes. Inverse Probl. 2015, 31, 035003. [CrossRef]
62. Zhokh, A.; Strizhak, P. Macroscale modeling the methanol anomalous transport in the porous pellet using the time-fractional

diffusion and fractional Brownian motion: A model comparison. Commun. Nonlinear Sci. Numer. Simul. 2019, 79, 104922.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1051/m2an/2013107
http://dx.doi.org/10.1088/0266-5611/31/3/035003
http://dx.doi.org/10.1016/j.cnsns.2019.104922

	Problem Formulation and Introduction
	Contour of Integration
	Numerical Method
	Alternative Propagator Representation
	Propagator Approximation
	Numerical Scheme for Homogeneous Part of Solution
	Numerical Scheme for the Inhomogeneous Part

	Conclusions
	References

