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Introduction
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Mathematical System Description – Second-Order Systems
Linear-time invariant dynamical systems with single input and single output (SISO) in second-order form are regarded:

Σ :

{
Mẍ(t)+Cẋ(t)+Kx(t) = fu(t),

y(t) = gx(t),
(1)

with mass, damping and stiffness matrix M, C, K ∈ Rn×n degrees of freedom ẍ(t), ẋ(t), x(t) ∈ Rn, input u(t) ∈ R and f ∈ Rn and
output y(t) ∈ R and g ∈ R1×n.
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Mathematical System Description – Second-Order Systems
Linear-time invariant dynamical systems with single input and single output (SISO) in second-order form are regarded:

Σ :

{
Mẍ(t)+Cẋ(t)+Kx(t) = fu(t),

y(t) = gx(t),
(1)

with mass, damping and stiffness matrix M, C, K ∈ Rn×n degrees of freedom ẍ(t), ẋ(t), x(t) ∈ Rn, input u(t) ∈ R and f ∈ Rn and
output y(t) ∈ R and g ∈ R1×n.

After performing a Laplace transformation the transfer function of the system can be computed as

H(s) = g
(
s2M+ sC+K

)−1 f, (2)

with the complex frequency s ∈ C.
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Mathematical System Description – First-Order Systems
One possibility to reformulate a second-order system into a first-order system is as follows:

ΣI :



[
J 0
0 M

]
︸ ︷︷ ︸

EI

[
ẋ(t)
ẍ(t)

]
︸ ︷︷ ︸

ẋI(t)

=

[
0 J

−K −C

]
︸ ︷︷ ︸

AI

[
x(t)
ẋ(t)

]
︸ ︷︷ ︸

xI(t)

+

[
0
f

]
︸︷︷︸

BI

u(t),

y(t) =
[
g 0

]
︸ ︷︷ ︸

CI

[
x(t)
ẋ(t)

]
︸ ︷︷ ︸

xI(t)

.

(3)

where EI, AI ∈ R2n×2n, BI ∈ R2n and CI ∈ R1×2n. J ∈ R2n×2n is an arbitrary invertible matrix, for example the identity.
An application of the Laplace transformation leads to the transfer function

H(s) = CI (sEI −AI)
−1 BI, (4)

with the complex frequency s ∈ C.
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Parametric Model Order Reduction by Matrix
Interpolation
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Parametric Dynamic Systems
The system matrices and the degrees of freedom depend on d parameters p = [p1, p2, . . . , pd].

H(s,p) = g(p)
(
s2M(p)+ sC(p)+K(p)

)−1 f(p), (5)

with parameter-dependent mass, damping and stiffness matrix M(p), C(p), K(p) ∈ Rn×n and input and output vector f(p) ∈ Rn and
g(p) ∈ R1×n.
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Parametric Dynamic Systems
The system matrices and the degrees of freedom depend on d parameters p = [p1, p2, . . . , pd].

H(s,p) = g(p)
(
s2M(p)+ sC(p)+K(p)

)−1 f(p), (5)

with parameter-dependent mass, damping and stiffness matrix M(p), C(p), K(p) ∈ Rn×n and input and output vector f(p) ∈ Rn and
g(p) ∈ R1×n.

Furthermore, it is assumed that it is not possible to efficiently compute an affine representation of the parametric dependency of the
following form (exemplarily for the stiffness matrix):

K(p) = K0 +
M

∑
i=1

fi(p)Ki, i = 1, . . . ,M, (6)

where fi(p) are scalar functions. [BGW15]
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Parametric Model Order Reduction by Matrix Interpolation
To handle non-affine parametric dependencies, the following workflow was proposed by [PMEL10]:

p

{Mr,Cr,Kr, fr,gr}(p1)

p1 p2

{Mr,Cr,Kr, fr,gr}(p2)

v1,1

v2,1

v1,2

v2,2
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1. Sampling of Local Reduced Systems

p

{Mr,Cr,Kr, fr,gr}(p1)

p1 p2

{Mr,Cr,Kr, fr,gr}(p2)

v1,1

v2,1

v1,2

v2,2
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1. Sampling of Local Reduced Systems

p1

p 2

p8

p5

p7

p2

p1

p3

p6

p4

{M(pk), C(pk),K(pk), f(pk), g(pk)}

⇓ Project into Vk ∈ Cn×r, (x(pk)≈ Vkxr(pk))

{Mr(pk), Cr(pk),Kr(pk), fr(pk), gr(pk)}

with

Mr(pk) = VH
k M(pk)Vk, fr(pk) = VH

k f(pk),

Cr(pk) = VH
k C(pk)Vk, gr(pk) = g(pk)Vk,

Kr(pk) = VH
k K(pk)Vk
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1. Sampling of Local Reduced Systems – Modal Truncation (MT)
In modal truncation (MT), selected eigenmodes of a proportionally damped structure build the reduced basis V. For this, the
eigenvectors Φ of the undamped system are computed:

(ω2M+K)Φ = 0. (7)

To build the reduced basis, the r eigenmodes with the largest dominancy according to the following index are selected: [BKTT15]

∥gφ iφ
⊺
i f∥2

Re(ωd+,i)Re(ωd−,i)
, (8)

with the damped eigenfrequency
ωd±,i =−ωiξi ±ωi

√
ξi −1, (9)

and
Φ

⊺CΦ = Ξ = diag(2ω1ξ1, . . . ,2ωnξn). (10)
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1. Sampling of Local Reduced Systems – Proper Orthogonal
Decomposition (POD)
For Proper Orthogonal Decomposition (POD), snapshots of the state are computed for various frequencies si, i = 1, . . .r:

X = [x(s1),x(s2), . . . ,x(sr)] . (11)

Afterwards, a singular value decomposition (SVD) of the snapshots is performed:

X = VΣΣΣSH, (12)

where V ∈ Cn×n and S ∈ Cr×r are the left and right singular vectors. ΣΣΣ ∈ Rn×r is a diagonal matrix with the non-negative singular
values σi, i = 1, . . . ,r on the diagonal in a descending order. [GHV21]
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1. Sampling of Local Reduced Systems – Second-Order Iterative
Rational Krylov Algorithm (SO-IRKA)
In the iterative rational Krylov algorithm, expansion frequencies are found iteratively in the following steps: [GAB08], [Wya12]

1. Choose an initial set of r expansion frequencies si with i = 1, . . . ,r closed under complex conjugation.
2. Compute reduced basis:

V =
[(

s2
1M+ s1C+K

)−1 f, . . . ,
(
s2

r M+ srC+K
)−1 f

]
. (13)

2. Compute reduced order model:
Mr = VHM(pi)V, Cr = VHCV, Kr = VHKV. (14)

3. Solve quadratic eigenvalue problem
(
λ 2Mr +λCr +Kr

)
x = 0.

4. Select r eigenvalues from the set of 2r eigenvalues as new expansion frequencies
5. Repeat steps 2. to 4. until convergence
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1. Sampling of Local Reduced Systems – Balanced Truncation (BT)
Balanced Truncation (BT) is based on the concepts of controllability and observability:

u(t)

y(t)

u(t)

y(t)
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1. Sampling of Local Reduced Systems – Balanced Truncation (BT)
Balanced Truncation (BT) is based on the concepts of controllability and observability:

u(t)

y(t)

u(t)

y(t)

To find the most controllable and observable states, the controllability and observability Gramians P and Q have to be computed by
solving the following Lyapunov equations:

EIPA⊺
I +AIPE⊺

I =−BIB⊺
I , (15)

EIQA⊺
I +AIQE⊺

I =−C⊺
I CI. (16)

The reduced basis is then obtained from SVDs of P and Q [MS96].
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2. Transformation to Generalized Coordinate System

p

{M̃r, C̃r,K̃r, f̃r, g̃r}(p1)

ṽ1,1

ṽ2,1

p1 p2

{M̃r, C̃r,K̃r, f̃r, g̃r}(p2)

ṽ1,2

ṽ2,2
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2. Transformation to Generalized Coordinate System
To make the interpolation meaningful, the reduced operators should be in the same coordinate system. To achieve this, the
following approach was suggested in [PMEL10]:

1. Find a generalized coordinate system. For this purpose, find the most significant basis vectors by concatenating all N sampled
bases and then performing an SVD:

[V1,V2, . . . ,VN ] = UΣΣΣY, Vk ∈ Cn×r, k = 1, . . . ,N (17)

The most significant basis vectors are the first r columns in U and denoted with R:

R = U(:,1 : r). (18)

2. Transform the individual reduced operators from their individual bases Vk to the generalized coordinate system R:

K̃r(pk) = T⊺
k Kr(pk)Tk, C̃r(pk) = T⊺

k Cr(pk)Tk, M̃r(pk) = T⊺
k Mr(pk)Tk, f̃r(pk) = T⊺

k fr(pk), g̃r(pk) = gr(pk)Tk, (19)

with
Tk = (RT Vk)

−1. (20)
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3. Interpolation/Regression of Reduced Operators

p

{M̃r, C̃r,K̃r, f̃r, g̃r}(p1)

ṽ1,1

ṽ2,1

p1 p2

{M̃r, C̃r,K̃r, f̃r, g̃r}(p2)

ṽ1,2

ṽ2,2

p̂

{M̃r, C̃r,K̃r, f̃r, g̃r}(p̂)
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3. Interpolation/Regression of reduced operators
When all local reduced systems are described in a similar coordinate system, an interpolation/regression of the reduced operators is
meaningful. Any interpolation/regression method can be used to learn the reduced operators entry-wise.
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3. Interpolation/regression of reduced operators
When all local reduced systems are described in a similar coordinate system, an interpolation/regression of the reduced operators is
meaningful. Any interpolation/regression method can be used to learn the reduced operators entry-wise.

Possible methods for the interpolation/regression are
• Polynomial Regression
• Radial Basis Function
• Kriging
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3. Interpolation/regression of reduced operators
When all local reduced systems are described in a similar coordinate system, an interpolation/regression of the reduced operators is
meaningful. Any interpolation/regression method can be used to learn the reduced operators entry-wise.

Possible methods for the interpolation/regression are
• Polynomial Regression
• Radial Basis Function
• Kriging

To ensure positive definiteness of the predicted system matrices,
the Cholesky decomposition of the transformed system matrices
[XHD21]

K̃ = L⊺
KLK, (21)

or the logarithmic mapping of the transformed system matrices
[AF11]

ΓΓΓK = log
(

I−1/2K̃I−1/2
)

(22)

can be learned instead of the transformed system matrices.
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Transformation to Generalized Coordinate System – Inconsistency
Measures
However, it is not guaranteed that all local reduced systems can be transformed to the generalized coordinate system. Possible
measures to judge whether this is/was possible are:

(a) [ATF15] proposed for a different pMOR approach to compute the subspace angles between the reduced bases obtained in the
sampling. The subspace angles between the subspaces spanned by the two bases Vi and V j, which both have to be
orthonormal, are computed by first performing an SVD on the following product:

VH
i V j = UΣΣΣY⊺, i, j = 1, . . . ,N (23)

The subspace angles can then be found as
ϕl = arccos(σl), l = 1, . . . ,r. (24)

In [ATF15] it is stated that in case any angle ϕl ≥ π

4 , consistency between the subspaces cannot be achieved.
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Transformation to Generalized Coordinate System – Inconsistency
Measures
However, it is not guaranteed that all local reduced systems can be transformed to the generalized coordinate system. Possible
measures to judge this are:

(a) Subspace Angles ϕ

(b) In pMOR by Matrix Interpolation, the basis of the local reduced systems after the transformation can be computed as

Ṽk = VkTk. (25)

Consistency can then be judged by computing the angle between the lth transformed basis vectors of samples i and j:

ψl = arccos
(

< ṽl,i, ṽl, j >

∥ṽl,i∥2 · ∥ṽl, j∥2

)
, l = 1, . . . ,r, i, j = 1, . . . ,N, (26)

where < ·, ·> denotes the scalar product.
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Results
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Error measures
The following error measures are used for the investigated SISO systems:

• Relative error per frequency point:
ε(s; p̂) =

|y(s; p̂)− yr(s; p̂)|
|y(s; p̂)|

(27)

• Relative H∞ error:
∥ε(·; p̂)∥H∞

= sup
s∈C

|ε(s; p̂)| (28)
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Results – Timoshenko Beam – Beam Height h
A 3D cantilevered beam discretized with Timoshenko beam elements is investigated. The beam is excited at the tip with a harmonic
force of varying frequency ([0,1000] Hz). Rayleigh damping is used: C = αK+βM.

t

hl

z x
y

y(t)

u(t)

Parameter Range/Value Unit
Height h [0.01, 0.05] m

Thickness t 0.01 m
Length l 1.0 m

Young’s modulus E 2.1 ·1011 N/m2

Poisson’s ratio ν 0.3 -
Density ρ 7860 kg/m3

Rayleigh damping α 8 ·10−6 1/s
Rayleigh damping β 8 s

Table: Geometry and material parameters of the 3D cantilevered beam.

Training samples: 10 equally distanced samples within [0.012, 0.048] m.
Test samples: 101 equally distanced samples within [0.01, 0.05] m.
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Timoshenko Beam – Kriging
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Timoshenko Beam – Proper Orthogonal Decomposition
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Timoshenko Beam – Proper Orthogonal Decomposition
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Timoshenko Beam – POD – Inconsistency Measures

Reminder:
The lth subspace angle ϕl between the reduced bases Vi and V j
of samples i and j is computed as

ϕl = arccos(σl), l = 1, . . . ,r, (29)

with i, j = 1, . . . ,N and

VH
i V j = UΣΣΣY⊺, i, j = 1, . . . ,N. (30)
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Timoshenko Beam – POD – Inconsistency Measures

Reminder:
The angle ψl between the lth transformed basis vectors ṽl,i and
ṽl, j of samples i and j is computed as

ψl = arccos
(

< ṽl,i, ṽl, j >

∥ṽl,i∥2 · ∥ṽl, j∥2

)
, l = 1, . . . ,r, (31)

where < ·, ·> denotes the scalar product and i, j = 1, . . . ,N.
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Results – Timoshenko Beam – Beam Length l and Beam Height h
A 3D cantilevered beam discretized with Timoshenko beam elements is investigated. The beam is excited at the tip with a harmonic
force of varying frequency ([0,1000] Hz). Rayleigh damping is used: C = αK+βM. The full order model is reduced using SO-IRKA
with r = 10.

t

hl

z x
y

y(t)

u(t)

Parameter Range/Value Unit
Height h [0.01,0.05] m

Thickness t 0.01 m
Length l [1.0, 2.0] m

Young’s modulus E 2.1 ·1011 N/m2

Poisson’s ratio ν 0.3 -
Density ρ 7860 kg/m3

Rayleigh damping α 8 ·10−6 1/s
Rayleigh damping β 8 s

Table: Geometry and material parameters of the 3D cantilevered beam.
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Timsohenko Beam – Cholesky Decomposition
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Timsohenko Beam – Exponential Map
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Conclusion and Future Work
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Conclusions
• Regarding MOR, Balanced Truncation, Modal Truncation and the Iterative Rational Krylov Algorithm proved to be suited for

pMOR by Matrix Interpolation.

• The subspace angles ϕ and the angles ψ between the transformed basis vectors seem to be indicators for inconsistency of the
sampled subspaces.
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Future Work – Frame
A frame structure discretized with Timoshenko beam elements is investigated. The frame is excited at the top left corner with a
harmonic force of varying frequency ([0,100] Hz), the output is the displacement at the top right corner. Rayleigh damping is used:
C = αK+βM. The full order model is reduced using SO-IRKA with r = 10.

u(t)

l

h

y(t) Parameter Range/Value Unit
Height h [2.0, 4.0] m
Length l 5.0 m

Young’s modulus E 2.1 ·1011 N/m2

Poisson’s ratio ν 0.3 -
Density ρ 7860 kg/m3

Rayleigh damping α 8 ·10−6 1/s
Rayleigh damping β 8 s

Table: Geometry and material parameters of the frame.
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Results – Frame
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Results – Frame
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Frame – Subspace Angles ϕ
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Frame – Angles ψ Between Transformed Basis Vectors
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Frame – Angles ψ Between Transformed Basis Vectors
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1. Sampling of local reduced systems – Balanced Truncation (BT)
In Balanced Truncation (BT), states that are equally observable and controllable are used as reduced basis V. For this, the
controllability and observability Gramians P and Q need to be computed by solving the following Lyapunov equations:

EIPA⊺
I +AIPE⊺

I =−BIB⊺
I , (32)

EIQA⊺
I +AIQE⊺

I =−C⊺
I CI. (33)

The reduced basis V is then computed as [MS96]
V = RpS1ΣΣΣ

− 1
2 , (34)

with [
U1 U2

][ΣΣΣ1 0
0 ΣΣΣ2

][
S1
S2

]
= L⊺

pRp and P =

[
Rp
Rv

][
Rp
Rv

]⊺
, Q =

[
Lp
Lv

][
Lp
Lv

]⊺
(35)
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3. Interpolation/regression of reduced operators
When all local reduced systems are described in a similar coordinate system, an interpolation/regression of the reduced operators is
meaningful. Any interpolation/regression method can be used to learn the reduced operators entry-wise:

θ(p̂)→ K̃r(pk), D̃r(pk), M̃r(pk), F̃r(pk), G̃r(pk) (36)

However, this way it is not guaranteed that important properties of the reduced operators such as positive-definiteness of the mass,
damping and stiffness matrix are preserved. Two different approaches can be used to ensure this:

a) Train interpolation/regression model with the Cholesky decomposition of the stiffness, damping and mass matrix [Quelle!]:
a) Cholesky decomposition
b) Train interpolation/regression model with the exponential map of the reduced operators [AF11]:
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θ(p̂)→ K̃r(pk), D̃r(pk), M̃r(pk), F̃r(pk), G̃r(pk) (36)

However, this way it is not guaranteed that important properties of the reduced operators such as positive-definiteness of the mass,
damping and stiffness matrix are preserved. Two different approaches can be used to ensure this:

a) Train interpolation/regression model with the Cholesky decomposition of the stiffness, damping and mass matrix [Quelle!]:

K̃r(pk) = LK(pk)
⊺LK(pk), C̃r(pk) = LC(pk)

⊺LC(pk), M̃r(pk) = LM(pk)
⊺LM(pk) (37)

θ(p̂)→ LK(p̂), LC(p̂), LM(p̂), F̃r(p̂), G̃r(p̂) (38)

a) Cholesky decomposition
b) Train interpolation/regression model with the exponential map of the reduced operators [AF11]:
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3. Interpolation/regression of reduced operators
When all local reduced systems are described in a similar coordinate system, an interpolation/regression of the reduced operators is
meaningful. Any interpolation/regression method can be used to learn the reduced operators entry-wise:

θ(p̂)→ K̃r(pk), D̃r(pk), M̃r(pk), F̃r(pk), G̃r(pk) (36)

However, this way it is not guaranteed that important properties of the reduced operators such as positive-definiteness of the mass,
damping and stiffness matrix are preserved. Two different approaches can be used to ensure this:

a) Train interpolation/regression model with the Cholesky decomposition of the stiffness, damping and mass matrix [Quelle!]:

a) Cholesky decomposition
b) Train interpolation/regression model with the exponential map of the reduced operators [AF11]:

ΓΓΓ = LogX(Y) = log
(

X−1/2YX−1/2
)
, Y = ExpX(ΓΓΓ) = X1/2 exp(ΓΓΓ)X1/2 (37)

ΘΘΘ = LogX(Y) = Y−X, Y = ExpX(ΘΘΘ) = X+ΘΘΘ (38)

θ(p̂)→ΓΓΓK(p̂),ΓΓΓC(p̂),ΓΓΓM(p̂),ΘΘΘF(p̂),ΘΘΘG(p̂) (39)
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3. Interpolation/regression of reduced operators – Polynomial
Regression

â(p) = α0 +
d

∑
j1=1

α j1 p j1 +
d

∑
j1=1

d

∑
j2= j1

α j1 j2 p j1 p j2 + . . . (40)

Comparisons for Parametric Model Order Reduction by Matrix Interpolation | Sebastian Schopper (TUM) | 22.03.2023 47



3. Interpolation of reduced operators – Radial Basis Function

â(p) =
K

∑
k=1

ckϕ (∥p−pk∥) (41)
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3. Interpolation/regression of reduced operators – Kriging
â(p) = f⊺reg(p)β̂ββ + r⊺(p)R−1

corr

(
as −Fregβ̂ββ

)
(42)

Comparisons for Parametric Model Order Reduction by Matrix Interpolation | Sebastian Schopper (TUM) | 22.03.2023 49


	References

