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A B S T R A C T

The design process in construction projects is iterative and multi-disciplinary in nature. In today’s industry
practice, several discipline experts concurrently author multiple versions and design variants of BIM models
and share them at frequent intervals. Applying a sound version control methodology can significantly enhance
automation, enabling the coordination and combination of these model versions into consistent overall models
with less extensive manual effort. This paper introduces a diff-and-patch mechanism for transferring changes
between model versions, facilitating object-level change tracking using graph representations of BIM model
data, and specifically focuses on merging diverging versions through the application of graph transformations.
The mechanisms for executing branching and merging of model versions are thoroughly explained and
showcased through various illustrative scenarios. The presented method adheres to the established principles
of federated BIM collaboration but equips the participating parties with additional means to automate the
combination of various model versions, allowing them to focus on the relevant conflicts. The proposed
methodology of graph-based version control unlocks the potential of analyzing interdisciplinary dependencies
across partial models and enables the more efficient resolution of conflicting model versions.
1. Introduction

The AEC industry is characterized by a large number of highly
specialized disciplines. Especially in projects with various, sometimes
exceptional boundary conditions, many experts must contribute their
knowledge to achieve a design solution that fulfills the manifold re-
quirements and constraints inherent in a construction project. This
makes building design a highly collaborative process.

Over the last two decades, the technology of Building Information
Modeling (BIM) has been increasingly adopted by the AEC industry
[1,2]. Hence, the traditional approach of exchanging mainly (printed)
documents and drawings has been superseded by creating information-
rich BIM models that provide a comprehensive digital representation
of the built asset. A BIM model assembles geometric and semantic
information about the built asset and can be encoded in vendor-specific
(i.e., closed) or vendor-neutral, open data formats [3]. Public authori-
ties demand model deliveries in open, standardized representations to
enable fair competition on the software market [4,5].

Various standards and guidelines have been defined on national
and international levels to structure the workflows of collaborative
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design projects in the construction industry. The most relevant one
is ISO 19650-1, which has been defined as a successor to the British
standard PAS 1192 [6,7]. Both describe process-related aspects and
promote BIM-based collaboration using loosely coupled (i.e., federated)
discipline models. According to ISO 19650, each domain works pre-
dominantly independently of the other disciplines on their respective
discipline models [8]. Once a shareable state is reached, the design
information is uploaded as a complete model file (also denoted as an in-
formation container) to a joint project space known as a Common Data
Environment (CDE) [9]. By employing a CDE, interdisciplinary coordi-
nation can be performed by combining the available discipline models
into a coordination model. From a technical point of view, this combi-
nation step of all discipline models is realized by merely superimposing
the elements contained in the individual discipline models.

1.1. Problem statement

The notion of federated models and interdisciplinary collaboration
based on frequent whole-model transfers averts the tracking of changes
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Fig. 1. Multiple diverging design variants of a BIM model produced during a design process. There is no comprehensive mechanism to merge design decisions into a joint
deliverable using vendor-neutral data models.
at the level of individual objects stored inside a discipline model.
This lack of object-level concurrency control results in a significant
drawback: All other stakeholders must manually identify the changes
performed by one stakeholder to update their discipline models accord-
ingly. This also means that concurrent changes of the same or related
model elements by two different stakeholders may remain unidentified
and lead to significant inconsistencies. Given the high complexity of
collaborative design, the lack of support for object-level concurrency
control, including fine-grained tracking of changes and automated
conflict identification during merging, results in an error-prone and
laborious manual process of model coordination, leaving the potential
of computational support widely untapped.

From a more high-level perspective, it must be stated that the
current best practice of design coordination using federated discipline
models does not adequately address the nature of highly iterative
design processes. Equivalent problems can be seen in the local scope
of a single designer participating in a BIM-based collaboration work-
flow: Multiple variants of BIM models are produced to find the best-
performing solution for a given design task. Again, the current best
practice is to store all variants as individual files, resulting in re-
dundancy and loss of connection between the common basis of all
variants.

To overcome the above-mentioned deficiencies, this paper presents
an approach for implementing optimistic concurrency control on the
object level for concurrently modified BIM models. The recombination
(merging) of concurrently developed models has to take into account
(I) non-conflicting parts where the collaborators made modifications
on disjoint subsets and (II) conflicting parts where the same objects
have been altered, potentially in a non-consistent manner. This pa-
per addresses identifying these two parts and their proper handling
regarding concurrent version control. It uses graph representations of
BIM models and graph transformations to describe incremental changes
on the object level as introduced in Esser et al. [10]. In addition,
detailed emphasis is spent on existing technologies for data merging
used in other industry branches and why they cannot be applied to
data representations used to express built environment assets without
further adaptation.
2

1.2. Scope of the paper

The analysis of the current situation shows that collaboration based
on federated discipline-specific models is well established [8,9]. How-
ever, it is necessary to improve the issue of repetitive model exchanges
and consider the evolving nature of BIM models in the design process.
Looking into other industry sectors, established concepts of concur-
rency control including branching and merging provide a promising
solution to overcome the limitations identified.

We will first summarize previous works addressing model-based
version control using incremental update patches for the presented
problem field. As a critical contribution, we will extend these pre-
liminary achievements by introducing the concepts of branching and
merging to enable concurrent model states. We will define conditions
under which the merging of increments reflecting diverging design
states of a BIM model can be performed. After a formal definition of
the problem with fundamental notions of set theory and graph trans-
formations, several scenarios are outlined from which the necessity of
merging diverging model states is motivated. From these scenarios,
a general condition evaluation is derived that is agnostic to the data
format used to encode the engineering knowledge in a graph.

Introducing abstraction layers to structure the terminology and gain
a common understanding of the proposed methods is vital. Fig. 2
illustrates the three elementary layers. As the top priority, engineers
and designers involved in collaborative BIM workflows provide rich
knowledge about their specific discipline and operate BIM authoring
applications. To capture decisions and results, discipline models are
employed to store specific design information about the built asset in
question. Ultimately, BIM models are assembled by a set of objects that
can be understood using complex object networks as their technical
foundation.

Unless otherwise mentioned, this paper mainly discusses aspects of
the most generic abstraction layer that features the notion of graphs
as its fundamental concept. At appropriate positions, however, the
conclusions will be set into a reasonable context that relates to practical
examples.
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Fig. 2. Different abstraction layers are used in the following explanations.
1.3. Contributions & structure

In summary, the main contributions presented in this paper are as
follows:

• A proposal for an optimistic concurrency framework that extends
preliminary works of incremental model patches by the concepts
of branching and merging.

• The definition of conditions under which diverging model stages
can be eventually merged without any conflicts.

• An outline of how the presented approach can be facilitated in
future BIM collaboration workflows.

The paper is organized as follows: Section 2 discusses related work
n the field, and Section 3 introduces the concept of branching and
erging. Furthermore, this section presents the developed conditions

hat must be met to merge diverging model stages. Next, Section 4 dis-
usses the theoretical approach in practical scenarios and provides an
utlook on how the developed concept can be incorporated into future
IM collaboration platforms. Section 5 discusses identified limitations
nd Section 6 concludes the paper with a summary of the main findings.

. Background & related work

Collaborative approaches in which a system eventually allows di-
erging states of a digital artifact have been the subject of research in
arious fields [11]. Therefore, this chapter aims to introduce essential
spects of transactions in computer systems that form the technical
oundation for all subsequent considerations. Additionally, existing ap-
roaches for incremental version control techniques in object networks
nd BIM collaboration will be summarized. Lastly, some technical
ackground information regarding graph transformations and their
ommutativity is presented.

.1. Transactions on computer systems

A transaction is commonly defined as an atomic unit of actions
hat transforms an object from one valid state into another valid state.
ypically, a transaction consists of a set of operations. The transaction

s committed only if all operations can be performed successfully. In the
ase of failures during the execution of a transaction, all operations are
olled back to ensure a valid object state at any time [12]. Transactions
3

are widely implemented to preserve a system in a consistent state
and are therefore often associated with concurrency control. Especially
in database applications, transactions can be further described by the
ACID principles. According to Gray [12] and Robinson et al. [13], the
abbreviation ACID represents the concepts of Atomicity, Consistency,
Isolation, and Durability.

Even though these principles are still widely used in many computer
systems, various application cases have been identified that neither
require immediate consistency nor fit a strictly pessimistic concur-
rency control model. To soften the requirements of immediate con-
sistency, the BASE principles have been defined as a more optimistic
concurrency paradigm:

• Basic Availability: The stored data is not blocked during transac-
tions. Thus, data is available most of the time.

• Soft state: Stored operations do not have to be consistent during
the writing operation and do not directly federate to all existing
replicas of the data set.

• Eventual Consistency: Consistency among replicas is achieved
eventually at a later point in time.

According to these elemental concepts of storing and manipulat-
ing information in a computer system, it becomes evident that the
established fashion of decoupled discipline models in BIM-based col-
laboration associates well with the described BASE principles. In BIM
collaboration, a transaction should ultimately be considered as the
information synchronization between parties involved in an exchange
workflow. Schapke et al. [8] have discussed the advantages and down-
sides of optimistic and pessimistic concurrency control in BIM-based
information exchange. According to their statements, implementing
pessimistic concurrency control often requires locking mechanisms to
prevent others from manipulating information in the scope of a running
transaction. On the contrary, optimistic concurrency systems enable
higher flexibility in decoupled, asynchronous settings. They conclude
that optimistic concurrency appears suitable when the level of ag-
gregation and interconnection across the managed information sets is
low. We will discuss the aspect of aggregated information captured
in BIM models and their subsequent exchange in interdisciplinary
collaboration workflows in Section 5.
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2.2. Approaches for data exchanges in BIM collaboration environments

Capturing and representing structured, highly interconnected design
information of built facilities has been subject to extensive investi-
gations over the past decade [14,15]. The application of affiliated
techniques can range from routing problems in complex networks [16]
to data fusion problems [17,18], and dependency representations in
load-bearing systems [19]. In the scope of incremental version control,
investigations related to object and product models and graph-based
representations of such networks are of particular interest. For ex-
ample, the transfer of procedural geometries for civil infrastructure
assets has been extensively investigated by Vilgertshofer and Borrmann
[20],Vilgertshofer [21]. For this problem, labeled, attributed, and di-
rected graphs have been utilized to represent procedural geometry,
which is then refined using graph transformation rules. Abualdenien
and Borrmann [22] have picked up the idea of architectural patterns
described in Postle [23]. They used graph transformations to capture
design decisions and to apply them across different design models in
a BIM authoring tool. Mattern and König [24] have also worked in
a similar direction but focused on integrating design options into a
graph representation reflecting the BIM model. Regarding design and
variant communication, Zahedi et al. [25] presented an approach for
decision capturing in early design stages using the BIM Collaboration
Format (BCF). In essence, they employed ticketing systems to request
and respond to specific properties to be present for a particular sim-
ulation or use case. For this, a feedback function was defined that
transfers dedicated feature requests or suggestions on how a BIM model
must be extended to fit a simulation. Even though their approach
contributes to enhanced decision acceptance, it still lacks a proper
(i.e., automated) integration into design tools. El-Diraby et al. [26]
presented a framework that supports the management and reasoning
about design decisions that have been made related to sustainability
concerns in BIM-based design projects. Even though they do not con-
sider changes in exchanged BIM models on the raw data level, their
system supports identifying model components that gain high interest
in interdisciplinary discussions by applying social-technical analysis
techniques.

Esser et al. [10] have presented a thorough approach for transfer-
ring only the model updates instead of entire monolithic BIM files.
Their core idea focuses on the representations of BIM models using
labeled property graphs and the subsequent computation of update
patches containing only the changes between two model versions.
Also, Zhao et al. [27] have discussed a related approach. In contrast to
the approach described in Esser et al. [10], they have used additional
nodes to store each attribute of an entity instance, resulting in a greater
number of nodes and edges than the One-to-One mapping of each
class instance using node attributes. The general idea of reflecting
IFC-based models in labeled property graphs has also been discussed
by Zhu et al. [28]. Their concept focuses on the proper translation of a
given serialized representation of a BIM model into a property graph.
However, no further application of the achieved graph structure has
been presented in their article.

Chuang and Yang [29] have recently presented an encompassing
change identification framework that can determine deviations be-
tween two BIM models or a BIM model and laser scan data on a
geometric level. Similar to the approaches presented in Collins et al.
[30], they use graph-based scene representations for the geometries
stored in a BIM model and a point cloud. In the analysis of geometric
features, there are also other approaches that, in a broader sense, also
use graph-based structures to compare models to the built reality [31].

Koch and Firmenich [32] researched versioning approaches for
procedural building representations. Their approach is based on rep-
resenting both design states and state transitions, thus enabling the
4

exchange of change-oriented information through design steps denoted m
as modeling operations. Due to their procedural descriptions of the
model alterations, ideas towards diverging model states have been
tackled in their discourses.

A different approach of component-based synchronization is real-
ized in the Speckle framework [33,34]. In contrast to other initiatives
aiming to use well-defined data models, their system establishes direct
peer-to-peer communication between various software tools widely
established in the AEC domain. As a significant downside, however, all
software products participating in such collaboration workflows must
implement appropriate interfaces for sending and receiving update
messages. Hence, their approach is at risk of becoming another data
exchange standard and only partially solves the problems raised by col-
laborating in vendor-neutral BIM environments. Similar concerns can
be raised by the approach Ruokamo and Rauno [35] have presented.
Their concept features a Software Development Kit (SDK) for a jointly
edited cloud-based BIM model that various applications can access.
However, existing, internationally accepted, and widely adopted data
models like the Industry Foundation Classes (IFC) are not adequately
reflected in their system, which suggests a low acceptance of their
approach.

Moving away from specific approaches that deal with time-evolving
BIM models, Xue and Lu [36] have investigated the adoption of
blockchain technologies in BIM collaboration systems. They combined
blockchain techniques with interplanetary file system approaches and
thus were able to capture model states securely. Xue and Lu [36]
describe a three-layered framework capable of tracking changes be-
tween model stages and capturing these transactions in a blockchain.
The actual increment calculation is carried out on a JSON-like data
structure created based on IFC models, which can lead to a tremendous
information loss about the actual object network.

2.3. Graph transformations

The concept of graph transformation (also denoted as graph rewrit-
ing) builds upon graph theory and introduces formal definitions to
modify graphs. The general idea of graph rewriting is the mutation
of a given host graph 𝐻 into a resulting graph 𝐻 ′ by applying trans-
ormation rules. The formulation of these rules builds upon morphism
tatements that express relationships between nodes and edges of differ-
nt (sub-)graphs [37]. Detailed explanations and algebraic definitions
ave been published by Blomer et al. [38] and Ehrig et al. [39], which
he reader is directed to for further information.

Several previous publications utilize graph transformation to ex-
ress alteration processes that must be applied to a given network
f objects [10,20,21]. However, these contributions have implicitly
ssumed a chronological and sequential order in which their trans-
ormation rules are applied. In turn, Eichhoff and Roller [40] have
efined criteria to detect whether the result of two transformation rules,
rrespective of the order in which they are applied to a host graph, is
he same (illustrated in Fig. 3). Their work has essentially built upon
he research published by Corradini [41].

As one of their key objectives, Eichhoff and Roller [40] investi-
ated independence criteria, which led them to formulate morphism
tatements between two Double-Push-Out diagrams (i.e., if two trans-
ormations are mutually commutative). Transferring their conclusions
o the problem area of diverging BIM model states, we can utilize two
raph transformation rules that formally describe change applied to the
IM model. Accordingly, the vision of combining eventually diverging
odels closely aligns with their achievements. For graphs reflecting
IM models, however, more precise investigations are required to un-
erstand implications that may arise not only from a pure graph-based
erspective, but also on the model and design intent level as depicted
n Fig. 2. The latter will still require a comprehensive contribution of
he users’ expertise because of the extensive range of situations BIM

odels may contain.
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Fig. 3. Derivation confluence of graph transformation rules: Does it influence the resulting graph 𝐺2, in which order the rules 𝑝1 and 𝑝2 were applied? (figure influenced by the
work of Eichhoff and Roller [40]).
2.4. Identified research gap

The literature review has proven a great interest in graph-based
knowledge representations to capture, exchange, and facilitate design
decisions in building and civil infrastructure design. However, the
existing approaches concerning graph transformations for incremental
model updates only facilitate a very limited scope (e.g., only procedural
geometry representations) or demand the execution of transformation
rules in chronological order. None of the existing approaches has
considered diverging model states and their potential recombination in
a time-flexible manner. The fundamental works of Eichhoff and Roller
[40] and Corradini [41] have unveiled formal transformation defini-
tions and mutual dependencies across different graph transformation
rules. Hence, the vision of combining non-chronological graph trans-
formation rules with existing principles of model-based collaboration
appears valid and is discussed further in the next chapters.

The following section summarizes preliminary work used as the
foundation to motivate branching and merging concepts. The key objec-
tive is the development of confluence conditions under which a merge
operation between diverging model states can be performed.

3. Merging diverging BIM model states using graph transforma-
tion techniques

3.1. Preliminary work

The research described in the following section builds upon crucial
aspects already published in Esser et al. [10]. To ensure a complete
understanding of the merging approach discussed in this paper, the
following explanations recap the most relevant aspects concerning the
representation of BIM models in labeled property graphs, the determi-
nation of incremental change between two model versions, and their
exchange as incremental model patches using graph transformation
techniques.

As discussed in Section 2, graph-based representations have been
proven to be a suitable means for incremental updates applied to object
networks. Graph theory can be used in various manifestations depend-
ing on the application domain and the technical systems. However, all
graphs have in common that they are composed of a set of nodes and
5

edges connecting the nodes. Edges may be directed or undirected and
may potentially carry additional weights.

Labeled property graphs in particular follow this standard notation
and enable the storage and interaction with directed, multi-labeled,
attributed nodes and edges [42,43]. Accordingly, each node reflects
an object, whereas edges are used to model relationships between two
objects. All attributes specified for a dedicated object are attached to
the node and filled according to the design information given by the
BIM model. These capabilities align very well with object-oriented mod-
eling principles, which provide the foundation for various data models
currently used in the AEC domain. In essence, each class instance is
reflected by a single node. All attributes specific to the instance in
question are attached to the respective node as properties. Furthermore,
relations between instances are modeled by directed edges in the graph.
The name of the class the node is instantiating is stored in an additional
attribute called EntityType. Additionally, the name of a relationship
between two nodes or class instances, respectively, is captured in an
attribute relType, which is attached to each edge in the graph. In labeled
property graphs, properties must be in key–value pairs where the value
must be of a simple data type (e.g., a Boolean, string, or numerical
value). In addition to properties, labels can describe specific types of
nodes and edges.

Fig. 4 illustrates the preliminary work of the authors that covers
the representation of object networks stored inside a BIM model, their
translation into labeled property graphs, the abstraction of changes
between two model versions using the graph representations, and their
formal transfer to a receiving unit including validation of successful
patching [10].

An essential aspect of the framework is the independence from
the data models to be managed in the version control system. This
flexibility is accomplished by choosing a simple yet comprehensive
graph meta-model. A graph meta-model defines characteristics such as
allowed labels and attributes. In the case discussed here, a minimum set
of characteristics was sought that could be applied to all data models to
be considered in the BIM context. This analysis has led to three different
nodes labels that are used to characterize nodes in the property graph:

• PrimaryNodes: These nodes carry a globally unique identifier as
one of their properties that is assumed to be stable over all
versions of a BIM model.
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Fig. 4. The diff-and-patch workflow (influenced by Esser et al. [10]).
• SecondaryNodes: These nodes capture instances given in an object
network that do not have a unique identifier. However, it must
be satisfied that each secondary node is connected with at least
one primary node (either directly or by a path).

• ConnectionNodes: These nodes are used to represent one-to-many
or many-to-many relationships.

Class instances with unique identifiers establish a semantic skele-
ton in all of the investigated data schemata (including the Industry
Foundation Classes (IFC), LandXML, CityGML, PlanPro, RailML, and
others) to which several ‘‘resources’’ are associated. These resources are
defined according to domain-specific requirements and may represent
geometric shapes, material associations, costs, etc.

To calculate the incremental update between two versions of a BIM
model, both files are translated into their graph representations and
compared to identify the maximum common subgraph that is mutually
isomorphic, reflecting the BIM model’s unchanged parts. Subsequently,
all other parts of the graphs that do not belong to the common subgraph
must have been affected by modifications. Removed items turn up
in subgraphs only present in the initial but not the updated graph.
Accordingly, inserted objects are reflected in subgraphs that only exist
in the updated graph representation but are not contained in the initial
version. For both removed and inserted objects, suitable transformation
rules are formulated that describe how the removal and insertion must
be performed on an outdated graph. If model objects are present
in both versions but have modified properties, these alterations are
captured as semantic changes because they do not require changes in
the topological shape of the graph. Removed and inserted subgraphs
and property changes are then captured in a patch object 𝛿.

To search for a specific structure in a graph, the notion of patterns
and pattern matching is used. The term ‘‘pattern‘‘ describes the assembly
of nodes and edges forming a graph, whereas the term ‘‘matching‘‘
relates to the actual search of the pattern inside a specific graph.

In the case of the diff-and-patch approach, three different patterns
are captured and exchanged in a patch:

• The context pattern specifying parts in the host graph relevant
to perform the insertion or removal operation without violating
unaltered parts of the model (i.e., graph, respectively).

• The push-out pattern reflecting inserted and removed nodes and
edges (i.e., representing added and deleted objects in the BIM
model).
6

• The gluing pattern specifying how the push-out pattern is con-
nected to the host graph.

Fig. 5 illustrates the application method of a patch, including all
three patterns. First, the so-called context pattern must be matched
in the graph that the update patch should be applied to. Then the
push-out pattern is applied. All nodes and edges identified as removed
are detached and deleted in this step. Furthermore, newly inserted
nodes and edges are created. Finally, the newly inserted subgraphs
are connected to the existing graph structure according to the edges
specified in the gluing pattern. Because of the existence of secondary
nodes that do not carry a stable, unique identifier, all edges that should
be built from or towards these nodes must be expressed with patterns
that at least contain one primary node. This way, it is ensured that the
correct secondary node in question is unambiguously matched.

3.2. Types of pattern matching

There are various options to specify a pattern to be matched in a
labeled property graph. In the scope of the approach presented in this
article, the following two cases are relevant, which adopt the terms
used in Gallagher [44]:

• Structural matching
• Semantic pattern matching

An illustrative example is depicted in Fig. 6. The graph 𝐺 in question
consists of four nodes marked with capital letters A, B, C, and D.
Additionally, the edge set of 𝐺 consists of four directed edges labeled
with 1, 2, 3, and 4.

As the term implies, structural patterns focus on the topological
structure of nodes and edges that should be detected in the graph. Later,
this differentiation will be relevant to identifying the conditions that
must be met to perform the merging operation (see Section 3.6).

Of course, combinations of structural and semantic pattern state-
ments are possible. For example, the discussed example of the semantic
pattern matching could be extended by semantic conditions for node
z to match the semantic information 𝑎𝑛𝑜𝑡ℎ𝑒𝑟𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 : ‘‘𝑎𝑛𝑜𝑡ℎ𝑒𝑟𝑉 𝑎𝑙𝑢𝑒’’.
Naturally, such an enhanced pattern would result in only one matching:
the graphlet 𝐴 → 𝐵 → 𝐷.
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Fig. 5. Schematic illustration of the patch content and application procedure. Each patch comprises a context pattern, a push-out pattern, and a gluing pattern connecting the
push-out part with the existing context in the host graph.
Fig. 6. Structural and semantic pattern matching. The pattern statements are expressed in the Cypher query language described in Francis et al. [43].
3.3. Extending diff-and-patch by checkout and merge

The version control of full-fledged BIM models presented in Esser
et al. [10] is closely related to concepts implemented in the version
control system Git [45]. As discussed in detail in Esser et al. [10], a
pure text-based version control system cannot detect sensitive changes
on the underlying object network that is exchanged by means of BIM
models. A central issue exists in using identifiers that are not part of
the actual domain but are added to represent associations between two
7

instances in a textual manner. Furthermore, the engineering knowl-
edge captured inside the textual representation can be serialized into
instance models in a completely different order depending on the se-
rialization strategy, resulting in seemingly diverging files representing
the same design information. A text-based version control system would
falsely recognize a completely changed model.

Nevertheless, on a more abstract level, Git provides good analogies
for the approach presented here. Thus, we make use of its terminology
where appropriate. Table 1 summarizes the commands and highlights
deviations between both systems. The general vision of BIM-based
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Table 1
Terminology comparison between Git [45] and the graph-based version control system described in [46].

Command Git Graph-based version control system

add adds a file to the tracking or stages the file for an
upcoming commit operation

translates a given (file-serialized) BIM model into its graph-based
representation and stores it in the local graph storage

get – translates a graph-based representation of a BIM model back into a
file-based representation (e.g., into a STEP P21, XML, or JSON
encoding)

commit records the changes made to the staged files and
stores the snapshot as a commit

computes the differences between two graphs reflecting different
versions of a BIM model and produces the patch

push sends the commits locally produced and stored to
another peer in the system (e.g., the remote server)

sends the patches to another peer (e.g., a server or another
stakeholder in the project)

fetch checks for updates on a remote peer checks for updates on a remote peer
pull pulls any commits of other peers into the local

repository and applies the changes
pulls any patch objects from other peers and applies the
transformations onto the graphs available in the local graph storage

checkout switches to a specific branch switches to a specific branch
merge merges changes of another branch into the active

(currently checked) branch
merges changes of another branch into the active (currently
checked) branch
Fig. 7. Checkout and Merge (influenced by the work of Koch and Firmenich [32]).
version control and its role in upcoming BIM Level 3 collaboration has
already been outlined in Esser et al. [46].

So far, it has been assumed that one author always issues incre-
mental updates chronologically. This means an update patch can be
consistently applied to the host (i.e., outdated) graph on the receiver’s
side. Only the model author is expected to issue new patches for a
specific BIM model and its respective versions. In reality, however,
this assumption does not reflect actual practices in multi-disciplinary
engineering teams. Instead, it is often the case that different model
variations are created to identify the best solution for a given engi-
neering problem. In such cases, the user typically produces various
files containing the BIM model with slight deviations. Once a decision
is made, the final deliverable must be assembled, which is typically
done in the authoring tool. A much better solution would be to enable
the merge of different design variants without re-creating the final
deliverable using the variant considerations. Hence, this behavior is
closely aligned with a more optimistic concurrency control model. A
user should be enabled to create and apply patches across potentially
inconsistent (i.e., diverging) model stages.

To acknowledge this reality, we propose to extend the discussed
diff-and-patch framework presented in Esser et al. [10] by two new
concepts:

• to create branches and checkout an existing model state
8

• to merge incremental updates of one branch into another branch

Again, we make use of analogies to the text-based version control
system Git, where both concepts exist and are well established.

3.4. Formal problem definition of merging diverged BIM model states

Fig. 7 expresses the envisioned branching and merging concept
and extends the work of Eichhoff and Roller [40] by setting their
approaches into the context of data models used in BIM workflows.

Given a BIM model exists in the state 𝑉0, we state that a checkout
operation copies the model state 𝑉0 into a dedicated branch. A specific
branch is specified using capital letters, resulting in 𝐴 and 𝐵, respec-
tively. Furthermore, the checkout operation does not change the graph
specified in the source state, i.e., the resulting replicas are mutually
isomorphic.

𝑉0 = 𝑉 𝐴
0 (1)

and

𝑉0 = 𝑉 𝐵
0 (2)

Now, modifications can be performed in each development branch
independently, which leads to the formulation of patches 𝛿𝐴𝑖𝑗 and 𝛿𝐵𝑖𝑗 ,

respectively.
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Fig. 8. Scenario 1: Two development branches, in which new windows are inserted into the BIM model.
Fig. 9. Qualitative representation of the graph transformations encoded in 𝛿𝐴01 and 𝛿𝐵01 and the expected result in 𝑉2. The gray nodes illustrate the context pattern required to
perform both patch operations.
A patch 𝛿 contains a set of graph transformation rules that transfer
the applied change.

We specify the merge operation to transfer a state from one branch
to be transferred into another branch. A merge operation requires the
following two inputs:

• A host state the merge should be applied onto.
• An ordered list of sequential patches [𝛿] that have been issued

since the last checkout operation.

Fig. 7 depicts two merge operations. The first merge operation indi-
cates that the changes made in development branch A are supposed to
be merged into the master branch. As no changes have been applied to
the master branch after the checkout into branch A, we can inevitably
apply the patch 𝛿𝐴01 on 𝑉0 because of the given isomorphism between
𝑉 and 𝑉 𝐴.
9

0 0
Despite the changes applied in branch A, two patches have been
authored in branch B, resulting in the state 𝑉 𝐵

2 . Eventually, these
updates shall be incorporated into the master branch as well. In contrast
to the merge operation from branch A into the master, it is not ensured
a priori if the merge operation from development branch B into the
master branch can be performed immediately. The merge operation of
patches issued in branch A into the master branch could have produced
a state 𝑉1 incompatible with the patches 𝛿𝐵01 and 𝛿𝐵12.

The problem of merging diverging BIM model states can be formally
expressed by the following problem statements:

1. Given the task of merging a list of patches into a model that
has been altered since the initial checkout, how can we test the
applicability of the patches?

2. How can we identify a merge conflict, and under which condi-
tions can we perform a manual conflict resolution?
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3.5. Possible checkout-merge scenarios

The following sections describe scenarios that may arise, resulting
in diverging model states using separated, asynchronous development
branches. The scenarios are explained using a simple BIM model con-
taining a wall and a door in their initial state. In all cases, two branches
called Design Development Branch A and Design Development Branch B are
initialized. Using the notion of checkout, both branches feature the same
model state as their initial state.

All investigations refer to the level of the raw object networks and
do not necessarily reflect a meaningful design or a comprehensive
engineering result. Hence, additional consistency checking concerning
the design intents reflected in the graphs is required. We will discuss
this aspect in more detail in Section 5.

3.5.1. Scenario 1: Automated merging
In scenario 1, we investigate the situation illustrated in Fig. 8. In

Development Branch A, a new window has been added to the left of the
door. In Development Branch B, on the other hand, a new window was
inserted on the right side of the door. Both components require the wall
as their hosting element.

Analyzing the object networks in detail, it can be identified that
both insertion operations consist of a push-out part that represents
the newly inserted window, its placement, geometric representation,
the required voiding body, and associated semantic information. The
context pattern specifies the wall and other model resources required
to ensure the correct window insertion into the model. This may include
aspects like the geometric context, the positioning reference of the new
window, or the correct assignment of units. Accordingly, the gluing
pattern is supposed to connect the subgraph reflecting the new window
with all existing objects already stored in the graph to which the patch
is applied.

Fig. 9 illustrates the patch application qualitatively. The nodes
drawn in green show the newly inserted subgraph, whereas the red
and green edges are the patch’s gluing parts. As anticipated, both
operations require specific nodes to exist in the host graph such that the
inserted subgraphs can be connected to the existing graph successfully
and unambiguously. However, the patches independently issued in
branches A and B can be merged as they do not influence the context
structure they rely on mutually. Hence, after merging both patches onto
the initial graph 𝑉0𝑖, the expected result is a model containing the wall,
he door, and both windows.

.5.2. Scenario 2: User decision required
In this scenario, two semantic changes (as opposed to merely struc-

ural changes, see Section 3.1) have been applied to the subgraph
eflecting the door’s position in the object network. In Development
Branch A, the modeler has decided to move the door to the left, which
leads to the patch 𝛿𝐴01. In contrast, the door has been moved to the right
in Development Branch B, resulting in a corresponding patch 𝛿𝐵01. Hence,
two diverging model states have been authored that are depicted in
Fig. 10. We investigate if the patch 𝛿𝐵01 issued in Development Branch B
can be merged into the model state 𝑉1, resulting from merging 𝛿𝐴01 from
Development Branch A previously.

In contrast to the first scenario, the applied changes lead to semantic
modifications of nodes that are present in all nodes. Hence, neither
nodes nor edges are inserted or removed, but the node attributes
specifying the position of the door must be altered. Fig. 11 shows
the context pattern that must be met to perform the patch 𝛿𝐵01. As
described in Section 3.2, the node to be altered can be expressed by a
semantic pattern, including the door position given in the initial model
version 𝑉0 and 𝑉 𝐵

0 , respectively. Even though the subgraph reflecting
the position of the door is still structurally present in the graph, the
semantic matching of the context pattern given in 𝛿𝐵 is going to fail
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01
when 𝛿𝐵01 should be merged into the model version 𝑉1 (i.e, the model
state after the patch 𝛿𝐴01 has been already merged).

A possible solution is to soften the pattern statement and to pri-
marily focus on the structural aspect of the desired context pattern to
be matched. Suppose the pattern query is reduced by any attributes
specific to the model. In that case, a successful yet unique matching
can identify the node that carries the position of the door. However,
an automated overwrite of the value stored in the Coordinates attribute
might not be intended. Therefore, we conclude that differentiating
between the successful execution of exact and softened pattern match-
ing provides a comprehensive means of diverging patches that can be
merged without user interaction. The user must be asked to resolve
conflicting changes.

3.5.3. Scenario 3: Failing merge operation
In a third scenario, the second scenario is modified such that the

door is removed in Development Branch A. Accordingly, merging the
patch 𝛿𝐴01 into the master branch is still possible. However, when
considering merging the position modification authored in Development
Branch B and captured in the patch 𝛿𝐵01 into the master branch, the
operation must fail because the door is not available in the model state
𝑉1 anymore. The problem is illustrated in Fig. 12.

3.6. Formalization and generalization of the merge problem

Given the scenarios mentioned above, a formal description is de-
rived under which conditions a merge operation of diverging model
states can be performed without conflicts. Furthermore, scenarios re-
lated to the illustrated scenario 2 described in Section 3.5.2 should
be generalized such that a simple user decision can resolve identified
conflicts. Fig. 13 provides an overview under which conditions (i)
merging is possible and (ii) merge resolution is possible by a simple user
decision. In all other cases, a more comprehensive analysis is required
to identify the clashing changes encapsulated in different patches.

From these investigations, we conclude the following conditions for
the merging problem:

• A conflict-free merging of patches is expected if all context pat-
terns specified in the patches in question can be matched using
strict semantic pattern statements.

• A user decision is required if the context patterns cannot be
matched semantically but only structurally.

• Further investigation and communication with the patch authors
are required in any other case.

As the amount of modifications per patch is not regimented, combi-
nations of the mentioned situations can appear. In general, the chance
for a conflict-free merge rises with a high frequency of information ex-
change and updates limited to rather small modifications. By contrast,
long transactions typically result in a larger amount of conflicts to be
resolved at merging time. Similar to the idea of schema-agnostic version
control, the timing of patch issuing and integration cannot be advised
in a general manner. Rather, the frequency of committed changes and
the amount of change information inside each patch must be chosen
wisely, depending on the specific circumstances.

Another aspect that requires extensive input by the system users
is the maintenance of concurrent branches. Obviously, the fewer the
branches that are opened in the system, the fewer the model variants
that may exist and must be eventually merged again. According to
the definition of the checkout operation, we always ensure that each
version-controlled BIM model has a predecessor version. Hence, we
can trace back the origin of model versions at any time and reproduce
outdated model versions by applying the patches inversely.

If an entirely new BIM model is added to the version tracking, an
initial transfer of its graph representation is required. In this case, the
delta contains only insertion operations and performs a simple model
copy. All operations described in Table 1 can be applied.
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Fig. 10. Scenario 2: User interaction is required. Either the patch 𝛿𝐵01 issued in Development Branch B is chosen to overwrite 𝑉1 and thus withdraws the changes captured in patch
𝛿𝐴01 or the user decides to stick to the model version 𝑉1.
Fig. 11. Pattern matching: semantic-sensitive versus structural matching.
4. Cross-discipline collaboration

As the previous explanations primarily focus on the pure analysis
of the object networks captured and exchanged using BIM models (see
Fig. 2), this section aims to draw attention to possible application fields
and discuss the correlation between the merging conditions and their
relation to the BIM models and the respective design intent.

Following the motivation stated in Section 1, the opportunity to
work asynchronously in decoupled design environments fits well with
the mechanisms of how BIM-based design is currently carried out in
large design teams. Using the formal notion of graph transformations
as the technical backbone, formalizing model increments enables a
schema-independent practice that can be applied to many data mod-
els employed in BIM-based data exchange workflows. The proposed
methodology provides powerful means to allow each team member
to work independently from the other team members. As long as the
11
models to be updated (or, more precisely, their graph representations)
provide the required context structure to perform the patching, our
framework allows engineers and designers to combine different model
variants into a joint deliverable. As the proposed system is closely
aligned with the transaction principles of BASE, users of the system
will potentially conceive the new flexibility as an enhancement but not
as a significant change in current practices.

The application scenarios described in Sections 3.5.1 and 3.5.2
have focused on design interactions related to design collaboration
within one discipline. However, the principles of checkout and merging
can also support interdisciplinary collaboration among multiple project
stakeholders and can revolutionize the setup of overall coordination
models. As mentioned in the introduction, coordination models are
formed by superimposing elements of several discipline models. How-
ever, no integration mechanism so far enables a tight combination of
the same or similar elements.
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Fig. 12. Scenario 3: Failing Merge operation: The door has been removed in Development Branch A, and the changes have been merged, resulting in the model state 𝑉1. Subsequently,
the merge of the patches issued in Development Branch B fails because of the missing subgraph to which the modification should be applied.
Fig. 13. Formal description under which conditions a merge operation between diverging model states (i) can be performed without further investigations, (ii) require user
interaction, or (iii) cannot be performed due to unsolvable context manipulations.
To overcome this limitation, Fig. 14 illustrates a potential system
setup using the notions of branching and merging in a project-wide
context. To ensure the ability to merge various discipline models that
are authored and curated independently, it appears sufficient to ini-
tialize the overall collaboration model with a baseline model that
already contains minimal project-wide information and definitions.
Such a baseline model comprises aspects like unit settings, definitions
related to geometric contexts, or any other data that any domain must
consider. Each discipline subsequently creates branches of the baseline
model and develops it into its discipline-specific domain model. In
this process, each discipline team can perform version control of their
model variants in their local, independent repository. Once a shareable
state of a discipline model is reached, the authored model changes
issued locally can eventually be merged into the branches maintained
on any remote branch, e.g., the project-wide repository.

The envisioned system setup unveils several advantages. First and
foremost, detailed tracking of deliverables and change management
12
across an entire project becomes possible and enables direct reasoning
on the actual changes contained in a specific patch. Furthermore,
automated consistency checks can be performed every time a new
contribution is about to be integrated into the coordination model.
In case of conflicts, all parties that created competing patches can be
notified directly to resolve conflicts. To resolve a conflict, additional
patches may be created, which contain model updates that transform
the coordination model into a sufficient state again. Hence, not only the
conflict identification but also the agreed resolution is traced correctly
in the system.

An example of the envisioned interdisciplinary collaboration sys-
tem is presented in Fig. 15, which extends the introductory example
provided in Fig. 1. The presented merging strategy assumes an all-or-
nothing approach, meaning that a patch can be either applied to its
full extent or it gets entirely withdrawn. Hence, to selectively choose
and merge building components inserted in the two design variants,
individual patches are issued for inserting the walls in design variant
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Fig. 14. Checkout and Merge in a global project context. Each discipline can perform local branching and merging. Additionally, the project-wide data exchange is performed as
a merge operation into a central coordination model.
Fig. 15. Merging concurrent design variants into coordination models: A detailed view on the design fusion problem stated in Fig. 1. Green arrows indicate an accepted merge
operation, whereas the user may decline the merge indicated by the red arrow due to the upcoming geometric conflict between the walls and the column.
A, and the windows, the door, and the column in design variant
B, respectively. This is realized through various incremental versions
in both disciplines. Of course, each discipline can additionally use
branching and merge in its local scope (which has not been illustrated
in Fig. 15).

In total, three merging operations are considered in the given
scenario:

1. Merging model version 1 issued in discipline A into the coordi-
nation model (containing new inner walls)

2. Merging model version 2 issued in discipline B into the coordi-
nation model (containing the inserted door and window)
13
3. Merging model version 3 issued in discipline B into the coordi-
nation model (containing the inserted column)

As extensively discussed in Section 1, collaboration in distinct disci-
pline models and superimposing them into a coordination model is still
the better choice over joint editing of a central model. Accordingly, the
responsibility to perform a merge operation cannot be fully automated
but requires the understanding of the system operator. In the example
illustrated in Fig. 15, the user might decide to merge just the first two
cases and decline the merge of the column inserted in 𝑉 𝐵

3 because it
will produce a geometric conflict with the walls already merged from
discipline A. From a pure graph-based perspective, however, even the
column insertion would result in a well-formed coordination model.
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In the case that the geometric conflict between the wall and the
column is not anticipated at merge time but gets unveiled in a subse-
quent model check, the proposed workflow would be to checkout 𝑉2
f the coordination model and file another patch that either removes a
omponent or moves one component such that the geometric clash is
esolved. Alternatively, merged models can be checked automatically
hrough clash detection routines provided by the central hub, declining

merge that does produce errors. This is in analogy to automated
ompiler runs provided through the ‘‘continuous integration’’ paradigm
mplemented by central code repositories.

In any case, design and coordination decisions are not anticipated
o be fully automated. Rather, the diff-patch-merge system tempts to
rovide quicker access to model parts that require dedicated checking
nd care.

. Discussion & limitations

The discussed concept unveils great potential to integrate diverging
odel variants into a joint deliverable. The presented diff-patch-merge

pproach contributes to the integration of partial models on the level of
heir underlying object networks. Even though the illustrated scenarios
n Section 3.5 have demonstrated great potential, some deficiencies
equire further consideration.

.1. Consistency checks on model and design intent level

As outlined, the merging as defined in Section 3.6 inserts or removes
he specified subgraphs into or from the host graph without further
nalysis. The removal and insertion are performed once the context pat-
ern has been successfully matched. However, the formal matching of
he patterns in question only secures a correct execution on the level of
he graph representations. In turn, successfully merging two branches
oes not necessarily lead to a meaningful yet correct representation at
he higher abstraction layers depicted in Fig. 2. For example, there is
o consistency check on the pure graph level that checks for potential
eometric clashes or any other design issue. In scenario 1 discussed in
ection 3.5.1, the transformations inside each patch could be applied
uccessfully even if both windows overlap. To understand such clashes,
he information represented by the graph must be interpreted, which
s not seen as a core functionality of a classical version control system.

Drawing the analogy again to text-based version control systems,
his issue is present there as well. Git, as the most popular version
ontrol system, offers comprehensive tools to stage, commit, and ex-
hange increments of text files. However, Git does not provide any
ogic to resolve dependencies across different code files or syntactic
hecks of the version-controlled files, let alone the semantic correctness
f the code they contain. In turn, additional software applications like
ntegrated Programming Environments (IDEs) are employed to support
he developer in writing correct code. Moreover, modern collabora-
ion platforms such as GitHub offer automated testing of committed
ode to ensure the correctness of any submitted code. We propose
o transfer this concept to the presented graph-based version man-
gement accordingly. Various software vendors like Solibri [47] or
hinkProject [48], among others, already provide powerful software
ools for the automated checking of BIM models. Hence, we foresee
ligning the presented graph-based version control system operating
n the pure graph-based representations with established principles of
odel checking to check the committed changes in BIM models against
efined rules, ensuring consistency on the model view and design intent
evel.
14
5.2. Normalization across patches

In addition to the need for comprehensive consistency management,
the conditions for merging operations illustrated in Fig. 13 assume
that each patch produces specific, independent alterations. Due to the
asynchronous and decoupled nature of branching, it may occasionally
happen that two patches authored in separated branches are inserting
similar graphs into the host graph. More precisely, the term ’’sim-
ilarity’’ here refers to situations where all three patterns (pushout,
glue, and context pattern) are homomorphic between two patches.
In practical terms, situations may occur where two branches should
be merged, which insert the same objects into the BIM model using
similar resources (same geometric representation, same positioning,
same material definitions, . . . ). There is a great risk of injecting redun-
dant information into the overall model (and its graph representation,
respectively) in these cases.

Fig. 16 illustrates the problem in a conceptual example. Two patches
𝛿𝐴01 and 𝛿𝐵01 are considered and merged together. In both settings, the
patches have been issued with respect to the initial graph 𝐺. In the
patch 𝛿𝐴01, the nodes 𝐷, 𝐸, and 𝐺 have been inserted. In contrast, patch
𝛿𝐵01 has issued the node insertion of 𝐷, 𝐸, and 𝐹 . Specific attention must
be now paid to the subgraph spanned by the nodes 𝐷 and 𝐸 and its
irected, connecting edge. This subgraph is present in patches 𝛿𝐴01 and

𝛿𝐵01 and connects to the same node in the host graph 𝐺. Accordingly,
merging both patches naturally produces the graphlet 𝐷 → 𝐸 to be
resent twice.

Although the duplicated insertion of similar subgraphs is not a
evere problem on the structural level, two further facets must be
onsidered. The duplicated insertion of subgraphs leads to a denormal-
zation of the object network. The overall size of the graph increases
ithout carrying more design information. However, a more crucial

ssue arises once another patch demands the parts of the duplicated
ubgraphs at a later point in time. Given that this patch requires the
ontext pattern 𝐵 → 𝐷 → 𝐸, the result for this matching statement

would result in two fitting subgraphs and thus introduces an ambiguity.
The assumption that any secondary node can be uniquely identified by
a path to one primary node no longer appears valid (see Section 3.1 for
detailed definitions).

Further pre-processing of the patterns specified inside each patch
is required to overcome this deficiency. In the situation illustrated in
Fig. 16, the problem can be resolved if it had been checked whether
and which subgraphs specified in the push-out pattern of 𝛿𝐵01 had been
already inserted during the merging of 𝛿𝐴01. Then, it would have become
clear that the subgraph if 𝐷 → 𝐸 has already been given in the target
graph and should not be inserted again. Subsequently, this part of the
push-out pattern can be moved into the context pattern of 𝛿𝐵01 to ensure
that the newly inserted node 𝐹 is connected correctly to the rest of the
graph.

The problem described can occur in various modeling situations
where potentially only a subset of a push-out pattern has already been
inserted by another previous patch or merge operation. In other cases,
however, the duplicated insertion of repetitive subgraphs (and the
subsequent denormalization of the graph) might be of explicit intent.
Hence, it appears impossible to resolve this deficiency in a formal,
generic manner. Instead, further consistency checks and reasoning of
the design information actually encapsulated in a specific patch are
required.

5.3. Partial application of patches while merging

Another limitation is the constraint of applying patches in an all-
or-nothing fashion. Hence, the user must consider this aspect when
defining a suitable commit strategy to separate the design decisions into
suitable patches.
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Fig. 16. Schematic illustration of push-out normalization problem. Given the two patches 𝛿𝐴01 and 𝛿𝐵01, both insert a subgraph with the nodes 𝐷 and 𝐸. According to the fashion
mentioned above, the insertion would be carried out twice, resulting in the result graph 𝐺′

1. If the push-out patterns are considered in further pre-processing, the insertion of
repetitive subgraphs can be prevented, which is illustrated in the graph plot of 𝐺′′.
1
This limitation is vividly discussed in the example in Fig. 15. In
the branch of discipline B, each insertion operation has been captured
in a separate delta. Hence, the merge illustrated after version 𝑉 𝐵

2
requires the application of the patches 𝛿𝐵01, 𝛿𝐵12 onto version 𝑉1 of
the coordination model. Also, the inserting operation of the column
between versions 𝑉 𝐵

2 and 𝑉 𝐵
3 has been issued into a separate patch.

Subsequently, the user can actively decide if merging after version 𝑉 𝐵
3

is intended or should not be performed.
In the case of the changes made by discipline A, only one patch

exists that contains the insert operation of both inner walls. Therefore,
either both walls can be accepted during the merge, or the entire
merge operation must be declined. If only one wall were accepted, the
proposed resolution would be to create another patch in the branch of
discipline A, removing the wall that is not wanted. After issuing this
removal, the proper merging of all patches available in discipline A
can be performed again, resulting in only one of the two walls being
inserted.

6. Conclusions

This paper has presented a comprehensive method that evaluates
under which conditions the merging of diverging BIM model states
is possible. For this, BIM models are represented using the notion
of Labeled Property Graphs, which feature attributed labeled nodes
and directed edges. Incremental version control is achieved using a
diff-and-patch approach, capturing and exchanging only the delta be-
tween two model versions. Previous publications have assumed that
model updates and the corresponding patches are always captured
in sequential order. However, this assumption does not correctly fit
reality. Instead, multiple diverging model states might be produced
concurrently throughout a design process that should be eventually
merged into a consistent joint coordination model.

To address this gap, the article has introduced a branch-and-merge
concept that extends the incremental diff-and-patch approach of pre-
vious publications. Furthermore, a set of conditions has been derived
from three representative scenarios that have motivated the merging
problem on the instance level of graphs. This way, it can be now
precisely determined if diverging states of a BIM model (i) can be
15

merged without any conflict, (ii) require user decisions about which
state should be used for further design tasks, or (iii) update patches
influence each other in a way that automatic resolution is not possible.
Thanks to the investigations made on a pure object network level, the
approach is generic and can be applied to any data model following
object-oriented concepts.

The workflow presented has been tested on small and large-scale
models. In all cases, the core principles discussed in the paper remain
the same for any model size and number of collaborators. Especially
for projects with complex and large models and multiple disciplines
involved, dedicated emphasis must be spent on sufficient synchroniza-
tion frequencies, which must be chosen wisely according to the project
circumstances. Regarding project management aspects, the eventual re-
combination appears particularly useful for project coordinators and
managers. By merging updates authored in discipline models into a
coordination model, conflicts between the individual domain contribu-
tions can be identified with much less effort and manual re-evaluation.
Additionally, engineers and designers who must create many versions
searching for optimal design solutions will greatly benefit from the
enhanced tooling as branching and merging become available in their
local workspaces. Hence, they can produce many work-in-progress mod-
els and then combine the most suitable variants to be shared with the
project team. Cherry-picking of design decisions modeled in different
versions becomes possible if the variant changes are committed into
individual patches. This new technical means is not limited to a single
software tool but could even be applied if different tools are in use that
support vendor-open exchange standards.

Subsequent processing of the exchanged update patches can help
gain additional information for collaborative workflows. Some update
patches may have a higher impact and require more sophisticated
treatment if they influence a multitude of contributors. In contrast, the
project team can accept other updates without further discussion or
reasoning.

The presented diff-patch-merge method is advantageous for various
stakeholders in their daily organization and collaboration tasks. As
the application of incremental update patches enables direct access to
model changes applied, there is no need to compare different versions
anymore manually. Having this knowledge available immediately, fur-
ther automation of the information encapsulated in each patch can be

established. For example, each participant can define specific filters
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that notify about changes made in foreign disciplines that may affect his
or her design objectives. For incoming repetitive update patches, users
will be able to define automation rules that directly propose sufficient
model changes in their models. Especially for modifications of objects
providing a particular service to elements modeled in other disciplines
(e.g., hostings, voidings, and connectors), a direct link between these
dependent objects can be established. In case of modifications, automa-
tion can be invoked to evaluate the impact caused by the incoming
patch or propose a sufficient update of all involved models. In turn,
patches with less relevance or no interdisciplinary dependency may
be integrated without further investigation if no conflict is detected
on the pure data level or any discipline-specific view. Indeed, creating
such interdisciplinary links and correctly interpreting incoming updates
and their impact on other domains exceeds the proposed system and
requires future research work.

Besides enhancements to the clients’ environments, integrating
patches into the central project platforms can be equipped with ad-
ditional quality gates before accepting incoming changes. Such checks
can include geometric checks or predefined rules of semantic informa-
tion to be present. Even the fulfillment of issues and change actions
(e.g., captured in BCF files) appears to be further automated as the
information of applied modification is now directly accessible. This
way, an approval workflow similar to Git’s pull request can be added to
the overall collaboration ensuring further information quality. Again,
further research activity is relevant to understand new challenges.

In summary, our system further enhances the overall collaboration
and communication in the AEC industry by implementing improved
change and update dissemination. This way, potential conflicts be-
tween involved experts can be detected much earlier and with less
effort. Furthermore, possible solutions can be automatically proposed
in the future, and earlier indications of necessary interactions can be
provided.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We gratefully acknowledge the financial support of the German
Research Foundation (Deutsche Forschungsgemeinschaft, DFG) in the
frame of the programs FOR 2363 ‘‘Early BIM’’ and TRR 277 ‘‘Additive
Manufacturing in Construction – The Challenge of Large Scale’’ (project
no. 414265976). In addition, we would like to thank Autodesk, Inc.,
United States for its financial support.

References

[1] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to
Building Information Modeling for Owners, Managers, Designers, Engineers, and
Contractors, John Wiley & Sons, Inc., 2008.

[2] A. Borrmann, M. König, C. Koch, J. Beetz, Building information modeling:
Why? What? How? in: Building Information Modeling, Springer International
Publishing, Cham, 2018, pp. 1–24, http://dx.doi.org/10.1007/978-3-319-92862-
3_1.

[3] M. Oh, J. Lee, S.W. Hong, Y. Jeong, Integrated system for BIM-based collabo-
rative design, Autom. Constr. 58 (2015) 196–206, http://dx.doi.org/10.1016/j.
autcon.2015.07.015.

[4] Š. Jaud, S. Esser, S. Muhič, A. Borrmann, Development of IFC schema for infras-
tructure, in: Proceedings of the 6th International Conference SiBIM: Structured
Data are New Gold, 2020, pp. 27–35, URL https://publications.cms.bgu.tum.de/
16

2020_Jaud_siBIM.pdf, (last access: 2023-06-15).
[5] A. Borrmann, S. Muhič, J. Hyvärinen, T. Chipman, Š. Jaud, C. Castaing, C.
Dumoulin, T. Liebich, L. Mol, The IFC-Bridge project – Extending the IFC
standard to enable high-quality exchange of bridge information models, in:
2019 European Conference on Computing in Construction, 2019, pp. 377–386,
http://dx.doi.org/10.35490/EC3.2019.193.

[6] British Standards Institution, PAS 1192-2: Specification for information
management for the capital/delivery phase of construction projects using
building information modelling, 2013, URL https://knowledge.bsigroup.
com/products/specification-for-information-management-for-the-capital-
delivery-phase-of-construction-projects-using-building-information-modelling-
1/standard, (last access: 2023-07-25).

[7] ISO, ISO 19650-1: Organization and digitization of information about buildings
and civil engineering works, including building information modelling (BIM)–
information management using building part 1: concepts and principles, 2018,
URL https://www.iso.org/standard/68078.html, (last access: 2023-07-25).

[8] S.-E. Schapke, J. Beetz, M. König, C. Koch, A. Borrmann, Collaborative data man-
agement, in: Building Information Modeling, Springer International Publishing,
Cham, 2018, pp. 251–277, http://dx.doi.org/10.1007/978-3-319-92862-3_14.

[9] C. Preidel, A. Borrmann, H. Mattern, M. König, S.-E. Schapke, Common data en-
vironment, in: Building Information Modeling, Springer International Publishing,
Cham, 2018, pp. 279–291, http://dx.doi.org/10.1007/978-3-319-92862-3_15.

[10] S. Esser, S. Vilgertshofer, A. Borrmann, Graph-based version control for asyn-
chronous BIM collaboration, Adv. Eng. Inform. 53 (2022) 101664, http://dx.doi.
org/10.1016/j.aei.2022.101664.

[11] S.W. Sadiq, M.E. Orlowska, W. Sadiq, Specification and validation of process
constraints for flexible workflows, Inf. Syst. 30 (2005) 349–378, http://dx.doi.
org/10.1016/j.is.2004.05.002.

[12] J. Gray, The transaction concept: Virtues and limitations, in: Proceedings of
Seventh International Conference on Very Large Databases, Tandem Computers
Incorporated, 1981, pp. 144–154, URL http://people.eecs.berkeley.edu/
~kubitron/courses/cs262a-F21/handouts/papers/theTransactionConcept.pdf,
(last access 2023-06-15).

[13] I. Robinson, J. Webber, E. Eifrem, Graph Databases, O’Reilly Media, Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472, 2015, http://dx.doi.org/10.
1016/b978-0-12-407192-6.00003-0.

[14] L. Kolbeck, S. Vilgertshofer, J. Abualdenien, A. Borrmann, Graph rewriting
techniques in engineering design, Front. Built Environ. 7 (2022) 1–19, http:
//dx.doi.org/10.3389/fbuil.2021.815153.

[15] C. Voss, F. Petzold, S. Rudolph, Graph transformation in engineering design: an
overview of the last decade, Artif. Intell. Eng. Des. Anal. Manuf. 37 (2023) e5,
http://dx.doi.org/10.1017/S089006042200018X.

[16] A. Kneidl, A. Borrmann, D. Hartmann, Generation and use of sparse navigation
graphs for microscopic pedestrian simulation models, Adv. Eng. Inform. 26
(2012) 669–680, http://dx.doi.org/10.1016/j.aei.2012.03.006.

[17] J. Hao, L. Zhao, J. Milisavljevic-Syed, Z. Ming, Integrating and navigating engi-
neering design decision-related knowledge using decision knowledge graph, Adv.
Eng. Inform. 50 (2021) 101366, http://dx.doi.org/10.1016/j.aei.2021.101366.

[18] J. Johansson, M. Contero, P. Company, F. Elgh, Supporting connectivism in
knowledge based engineering with graph theory, filtering techniques and model
quality assurance, Adv. Eng. Inform. 38 (2018) 252–263, http://dx.doi.org/10.
1016/j.aei.2018.07.005.

[19] A. Justo, D. Lamas, A. Sánchez-Rodríguez, M. Soilán, B. Riveiro, Generating
IFC-compliant models and structural graphs of truss bridges from dense point
clouds, Autom. Constr. 149 (2023) 104786, http://dx.doi.org/10.1016/j.autcon.
2023.104786.

[20] S. Vilgertshofer, A. Borrmann, Using graph rewriting methods for the semi-
automatic generation of parametric infrastructure models, Adv. Eng. Inform. 33
(2017) 502–515, http://dx.doi.org/10.1016/j.aei.2017.07.003.

[21] S. Vilgertshofer, Kopplung von Graphersetzung und parametrischer Model-
lierung zur Unterstützung des modellbasierten Entwerfens und der Erstellung
mehrskaliger Modelle (Ph.D. thesis), Technical University of Munich, School of
Engineering and Design, Munich, 2022, URL https://mediatum.ub.tum.de/doc/
1687268, (last access: 2023-06-15).

[22] J. Abualdenien, A. Borrmann, PBG: A parametric building graph capturing and
transferring detailing patterns of building models, in: Proc. of the CIB W78
Conference 2021, Luxembourg, 2021, pp. 11–15, URL https://itc.scix.net/pdfs/
w78-2021-paper-001.pdf, (last access: 2023-06-15).

[23] B. Postle, On pattern languages, design patterns and evolution, New Des. Ideas
3 (2019) 44–52, URL http://jomardpublishing.com/UploadFiles/Files/journals/
NDI/V3N1/PostleB.pdf, (last access 2023-06-15).

[24] H. Mattern, M. König, BIM-based modeling and management of design options
at early planning phases, Adv. Eng. Inform. 38 (2018) 316–329, http://dx.doi.
org/10.1016/j.aei.2018.08.007.

[25] A. Zahedi, J. Abualdenien, F. Petzold, A. Borrmann, Minimized communication
protocol based on a multi-LOD meta-model for adaptive detailing of BIM models,
in: P. Geyer, K. Allacker, M. Schevenels, F.D. Troyer, P. Pauwels (Eds.), Proc. of
the 26th International Workshop on Intelligent Computing in Engineering 2019,
Leuven, Belgium, 2019, pp. 1–10, URL https://ceur-ws.org/Vol-2394/paper06.

pdf, (last access: 2023-06-15).

http://refhub.elsevier.com/S0926-5805(23)00323-0/sb1
http://refhub.elsevier.com/S0926-5805(23)00323-0/sb1
http://refhub.elsevier.com/S0926-5805(23)00323-0/sb1
http://refhub.elsevier.com/S0926-5805(23)00323-0/sb1
http://refhub.elsevier.com/S0926-5805(23)00323-0/sb1
http://dx.doi.org/10.1007/978-3-319-92862-3_1
http://dx.doi.org/10.1007/978-3-319-92862-3_1
http://dx.doi.org/10.1007/978-3-319-92862-3_1
http://dx.doi.org/10.1016/j.autcon.2015.07.015
http://dx.doi.org/10.1016/j.autcon.2015.07.015
http://dx.doi.org/10.1016/j.autcon.2015.07.015
https://publications.cms.bgu.tum.de/2020_Jaud_siBIM.pdf
https://publications.cms.bgu.tum.de/2020_Jaud_siBIM.pdf
https://publications.cms.bgu.tum.de/2020_Jaud_siBIM.pdf
http://dx.doi.org/10.35490/EC3.2019.193
https://knowledge.bsigroup.com/products/specification-for-information-management-for-the-capital-delivery-phase-of-construction-projects-using-building-information-modelling-1/standard
https://knowledge.bsigroup.com/products/specification-for-information-management-for-the-capital-delivery-phase-of-construction-projects-using-building-information-modelling-1/standard
https://knowledge.bsigroup.com/products/specification-for-information-management-for-the-capital-delivery-phase-of-construction-projects-using-building-information-modelling-1/standard
https://knowledge.bsigroup.com/products/specification-for-information-management-for-the-capital-delivery-phase-of-construction-projects-using-building-information-modelling-1/standard
https://knowledge.bsigroup.com/products/specification-for-information-management-for-the-capital-delivery-phase-of-construction-projects-using-building-information-modelling-1/standard
https://knowledge.bsigroup.com/products/specification-for-information-management-for-the-capital-delivery-phase-of-construction-projects-using-building-information-modelling-1/standard
https://knowledge.bsigroup.com/products/specification-for-information-management-for-the-capital-delivery-phase-of-construction-projects-using-building-information-modelling-1/standard
https://www.iso.org/standard/68078.html
http://dx.doi.org/10.1007/978-3-319-92862-3_14
http://dx.doi.org/10.1007/978-3-319-92862-3_15
http://dx.doi.org/10.1016/j.aei.2022.101664
http://dx.doi.org/10.1016/j.aei.2022.101664
http://dx.doi.org/10.1016/j.aei.2022.101664
http://dx.doi.org/10.1016/j.is.2004.05.002
http://dx.doi.org/10.1016/j.is.2004.05.002
http://dx.doi.org/10.1016/j.is.2004.05.002
http://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F21/handouts/papers/theTransactionConcept.pdf
http://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F21/handouts/papers/theTransactionConcept.pdf
http://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F21/handouts/papers/theTransactionConcept.pdf
http://dx.doi.org/10.1016/b978-0-12-407192-6.00003-0
http://dx.doi.org/10.1016/b978-0-12-407192-6.00003-0
http://dx.doi.org/10.1016/b978-0-12-407192-6.00003-0
http://dx.doi.org/10.3389/fbuil.2021.815153
http://dx.doi.org/10.3389/fbuil.2021.815153
http://dx.doi.org/10.3389/fbuil.2021.815153
http://dx.doi.org/10.1017/S089006042200018X
http://dx.doi.org/10.1016/j.aei.2012.03.006
http://dx.doi.org/10.1016/j.aei.2021.101366
http://dx.doi.org/10.1016/j.aei.2018.07.005
http://dx.doi.org/10.1016/j.aei.2018.07.005
http://dx.doi.org/10.1016/j.aei.2018.07.005
http://dx.doi.org/10.1016/j.autcon.2023.104786
http://dx.doi.org/10.1016/j.autcon.2023.104786
http://dx.doi.org/10.1016/j.autcon.2023.104786
http://dx.doi.org/10.1016/j.aei.2017.07.003
https://mediatum.ub.tum.de/doc/1687268
https://mediatum.ub.tum.de/doc/1687268
https://mediatum.ub.tum.de/doc/1687268
https://itc.scix.net/pdfs/w78-2021-paper-001.pdf
https://itc.scix.net/pdfs/w78-2021-paper-001.pdf
https://itc.scix.net/pdfs/w78-2021-paper-001.pdf
http://jomardpublishing.com/UploadFiles/Files/journals/NDI/V3N1/PostleB.pdf
http://jomardpublishing.com/UploadFiles/Files/journals/NDI/V3N1/PostleB.pdf
http://jomardpublishing.com/UploadFiles/Files/journals/NDI/V3N1/PostleB.pdf
http://dx.doi.org/10.1016/j.aei.2018.08.007
http://dx.doi.org/10.1016/j.aei.2018.08.007
http://dx.doi.org/10.1016/j.aei.2018.08.007
https://ceur-ws.org/Vol-2394/paper06.pdf
https://ceur-ws.org/Vol-2394/paper06.pdf
https://ceur-ws.org/Vol-2394/paper06.pdf


Automation in Construction 155 (2023) 105063S. Esser et al.
[26] T. El-Diraby, T. Krijnen, M. Papagelis, BIM-based collaborative design and socio-
technical analytics of green buildings, Autom. Constr. 82 (2017) 59–74, http:
//dx.doi.org/10.1016/j.autcon.2017.06.004.

[27] Q. Zhao, Y. Li, X. Hei, M. Yang, A graph-based method for IFC data merging,
Adv. Civ. Eng. 2020 (2020) 1–15, http://dx.doi.org/10.1155/2020/8782740.

[28] J. Zhu, P. Wu, X. Lei, IFC-graph for facilitating building information access and
query, Autom. Constr. 148 (2023) 104778, http://dx.doi.org/10.1016/j.autcon.
2023.104778.

[29] T.-Y. Chuang, M.-J. Yang, Change component identification of BIM models for
facility management based on time-variant BIMs or point clouds, Autom. Constr.
147 (2023) 104731, http://dx.doi.org/10.1016/j.autcon.2022.104731.

[30] F.C. Collins, M. Ringsquandl, A. Braun, D.M. Hall, A. Borrmann, Shape encoding
for semantic healing of design models and knowledge transfer to scan-to-BIM,
Proc. Inst. Civ. Eng. 175 (2022) 160–180, http://dx.doi.org/10.1680/jsmic.21.
00032.

[31] T. Meyer, A. Brunn, U. Stilla, Change detection for indoor construction progress
monitoring based on BIM, point clouds and uncertainties, Autom. Constr. 141
(2022) 104442, http://dx.doi.org/10.1016/j.autcon.2022.104442.

[32] C. Koch, B. Firmenich, An approach to distributed building modeling on the
basis of versions and changes, Adv. Eng. Inform. 25 (2011) 297–310, http:
//dx.doi.org/10.1016/j.aei.2010.12.001.

[33] P. Poinet, Enhancing Collaborative Practices in Architecture, Engineering and
Construction through Multi-Scalar Modelling Methodologies (Ph.D. thesis),
The Royal Danish Academy of Fine Arts, Schools of Architecture, Design
and Conservation, 2019, URL https://adk.elsevierpure.com/en/publications/
enhancing-collaborative-practices-in-architecture-engineering-and, (last access:
2023-06-15).

[34] P. Poinet, D. Stefanescu, E. Papadonikolaki, Collaborative workflows and version
control through open-source and distributed common data environment, in:
Lecture Notes in Civil Engineering, Vol. 98, Springer International Publishing,
2020, pp. 228–247, http://dx.doi.org/10.1007/978-3-030-51295-8_18.

[35] S. Ruokamo, H. Rauno, Single shared model approach for building information
modelling, in: 37th International Symposium on Automation and Robotics in
Construction (ISARC2020), Kitakyshu, Japan / online, 2020, pp. 240–247, http:
//dx.doi.org/10.22260/ISARC2020/0035.

[36] F. Xue, W. Lu, A semantic differential transaction approach to minimizing
information redundancy for BIM and blockchain integration, Autom. Constr. 118
(2020) 103270, http://dx.doi.org/10.1016/j.autcon.2020.103270.
17
[37] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph
Transformation, World Scientific, 1997, http://dx.doi.org/10.1142/3303.

[38] J. Blomer, R. Geiß, E. Jakumeit, The GrGen.NET user manual, 2013, URL http://
www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf, (last access
2023-06-15).

[39] H. Ehrig, U. Prange, G. Taentzer, Fundamental theory for typed attributed
graph transformation, in: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol.
3256, (April) 2004, pp. 161–177, http://dx.doi.org/10.1007/978-3-540-30203-
2_13.

[40] J.R. Eichhoff, D. Roller, Designing the same, but in different ways: Determinism
in graph-rewriting systems for function-based design synthesis, J. Comput. Inf.
Sci. Eng. 16 (2016) http://dx.doi.org/10.1115/1.4032576.

[41] A. Corradini, Concurrent graph and term graph rewriting, in: CONCUR ’96:
Concurrency Theory. CONCUR 1996. Lecture Notes in Computer Science, Vol.
1119, 1996, pp. 438–464, http://dx.doi.org/10.1007/3-540-61604-7_69.

[42] J. Hidders, A Graph-based Update Language for Object-Oriented Data Models
(Ph.D. thesis), (2001) Eindhoven University of Technology, 2001, http://dx.doi.
org/10.6100/IR551259.

[43] N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S.
Plantikow, M. Rydberg, P. Selmer, A. Taylor, Cypher: An evolving query language
for property graphs, in: Proceedings of the 2018 International Conference on
Management of Data, ACM, New York, NY, USA, 2018, pp. 1433–1445, http:
//dx.doi.org/10.1145/3183713.3190657.

[44] B. Gallagher, Matching structure and semantics: A survey on graph-based pattern
matching, in: AAAI Fall Symposium: Capturing and using Patterns for Evidence
Detection (Vol. 45), 2006, pp. 43–53, URL https://cdn.aaai.org/Symposia/Fall/
2006/FS-06-02/FS06-02-007.pdf, (last access 2023-06-15).

[45] S. Chacon, Pro Git, A Press, Berkeley, CA, 2009, http://dx.doi.org/10.1007/978-
1-4302-1834-0.

[46] S. Esser, S. Vilgertshofer, A. Borrmann, A reference framework enabling temporal
scalability of object-based synchronization in BIM level 3 systems, in: Proceedings
of the 2023 European Conference on Computing in Construction and 40th
International CIB W78 Conference, Heraklion, Greece, 2023, http://dx.doi.org/
10.35490/EC3.2023.177.

[47] Solibri, Solibri office, 2023, URL https://www.solibri.com, (visited on
2023-02-17).

[48] Thinkproject, DESITE BIM, 2023, URL https://thinkproject.com/de/produkte/
desite-bim/, (visited on 2023-02-17).

http://dx.doi.org/10.1016/j.autcon.2017.06.004
http://dx.doi.org/10.1016/j.autcon.2017.06.004
http://dx.doi.org/10.1016/j.autcon.2017.06.004
http://dx.doi.org/10.1155/2020/8782740
http://dx.doi.org/10.1016/j.autcon.2023.104778
http://dx.doi.org/10.1016/j.autcon.2023.104778
http://dx.doi.org/10.1016/j.autcon.2023.104778
http://dx.doi.org/10.1016/j.autcon.2022.104731
http://dx.doi.org/10.1680/jsmic.21.00032
http://dx.doi.org/10.1680/jsmic.21.00032
http://dx.doi.org/10.1680/jsmic.21.00032
http://dx.doi.org/10.1016/j.autcon.2022.104442
http://dx.doi.org/10.1016/j.aei.2010.12.001
http://dx.doi.org/10.1016/j.aei.2010.12.001
http://dx.doi.org/10.1016/j.aei.2010.12.001
https://adk.elsevierpure.com/en/publications/enhancing-collaborative-practices-in-architecture-engineering-and
https://adk.elsevierpure.com/en/publications/enhancing-collaborative-practices-in-architecture-engineering-and
https://adk.elsevierpure.com/en/publications/enhancing-collaborative-practices-in-architecture-engineering-and
http://dx.doi.org/10.1007/978-3-030-51295-8_18
http://dx.doi.org/10.22260/ISARC2020/0035
http://dx.doi.org/10.22260/ISARC2020/0035
http://dx.doi.org/10.22260/ISARC2020/0035
http://dx.doi.org/10.1016/j.autcon.2020.103270
http://dx.doi.org/10.1142/3303
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://www.info.uni-karlsruhe.de/software/grgen/GrGenNET-Manual.pdf
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1007/978-3-540-30203-2_13
http://dx.doi.org/10.1115/1.4032576
http://dx.doi.org/10.1007/3-540-61604-7_69
http://dx.doi.org/10.6100/IR551259
http://dx.doi.org/10.6100/IR551259
http://dx.doi.org/10.6100/IR551259
http://dx.doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1145/3183713.3190657
https://cdn.aaai.org/Symposia/Fall/2006/FS-06-02/FS06-02-007.pdf
https://cdn.aaai.org/Symposia/Fall/2006/FS-06-02/FS06-02-007.pdf
https://cdn.aaai.org/Symposia/Fall/2006/FS-06-02/FS06-02-007.pdf
http://dx.doi.org/10.1007/978-1-4302-1834-0
http://dx.doi.org/10.1007/978-1-4302-1834-0
http://dx.doi.org/10.1007/978-1-4302-1834-0
http://dx.doi.org/10.35490/EC3.2023.177
http://dx.doi.org/10.35490/EC3.2023.177
http://dx.doi.org/10.35490/EC3.2023.177
https://www.solibri.com
https://thinkproject.com/de/produkte/desite-bim/
https://thinkproject.com/de/produkte/desite-bim/
https://thinkproject.com/de/produkte/desite-bim/

	Version control for asynchronous BIM collaboration: Model merging through graph analysis and transformation
	Introduction
	Problem statement
	Scope of the paper
	Contributions & structure

	Background & related work
	Transactions on computer systems
	Approaches for data exchanges in BIM collaboration environments
	Graph transformations
	Identified research gap

	Merging diverging BIM model states using graph transformation techniques
	Preliminary Work
	Types of Pattern matching
	Extending Diff-and-Patch by Checkout and Merge
	Formal problem definition of merging diverged BIM model states
	Possible Checkout-Merge Scenarios
	Scenario 1: Automated merging
	Scenario 2: User decision required
	Scenario 3: Failing merge operation

	Formalization and generalization of the merge problem

	Cross-discipline collaboration
	Discussion & Limitations
	Consistency checks on model and design intent level
	Normalization across patches
	Partial application of patches while merging

	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


