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ABSTRACT Scalability is often mentioned in literature, but a stringent definition is missing. In particular,
there is no general scalability assessment which clearly indicates whether a system scales or not or whether
a system scales better than another. The key contribution of this article is the definition of a scalability
index (SI) which quantifies if a system scales in comparison to another system, a hypothetical system,
e.g., linear system, or the theoretically optimal system. The suggested SI generalizes different metrics from
literature, which are specialized cases of our SI. The primary target of our scalability framework is, however,
benchmarking of two systems, which does not require any reference system.
The SI is demonstrated and evaluated for different use cases, that are (1) the performance of an IoT load
balancer depending on the system load, (2) the availability of a communication system depending on the
size and structure of the network, (3) scalability comparison of different location selection mechanisms in
fog computing with respect to delays and energy consumption; (4) comparison of time-sensitive networking
(TSN) mechanisms in terms of efficiency and utilization. Finally, we discuss how to use and how not to use
the SI and give recommendations and guidelines in practice. To the best of our knowledge, this is the first
work which provides a general SI for the comparison and benchmarking of systems, which is the primary
target of our scalability analysis.

INDEX TERMS communication networks, performance, availability, scalability

I. INTRODUCTION
The evaluation of systems focuses on different aspects: per-
formance, efficiency, elasticity, flexibility, and scalability. Es-
pecially, scalability is often used in literature with statements
like “The system scales well.” or “Our approach scales better
than previous ones.” However, such statements are imprecise
and do not give meaningful insights. To this end, a stringent
definition of scalability is provided which allows quantifying
scalability and to compare the scalability of communication
networks and systems.

In the context of software engineering and cloud com-
puting, there are several definitions of scalability, e.g., [1],
[2]. The closest work to ours is the definition of scalability
metrics in [1] for cloud computing. They define the quality
scalability metric of the system as follows: For a system,
the target measure of interest f(x) is measured depending
on a certain parameter. In the case of cloud computing [1],
the target measure is, e.g., the average service response time
and the parameter is the demand level x. The obtained area

F under the average service response time function is then
compared to the areaH of an ideal system function h(x) (i.e.,
ideal service response time) depending on the demand. The
quality scalability metric is the ratio of the two areas under
the curve, i.e. H/F , which gives a value between 0 and 1.
This is visualized in Figure 1.

In the realm of communication networks and systems,
scalability is frequently acknowledged but lacks a precise
definition, analysis, and quantification in existing research
and literature. We generalize the definition in [1] by consid-
ering:

1) A system function f(x) which quantifies an arbitrary
target measure of interest, e.g., average response time,
e.g., 95% quantile of response time, e.g., packet loss
ratio.

2) An arbitrary reference system (with target reference
function h(x)), which may be the optimal system be-
havior. However, the optimal system may be unknown
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FIGURE 1: Quality scalability metric as ratio H/F of the
areas under the target measure curves in the context of cloud
computing according to [1]. The real system F is related to
an ideal system H.

in practice, and we may want to consider if the system,
e.g., scales linearly. Then this can be done with a proper
reference function.

3) Instead of a parameter range [x0;x1] to be considered in
the scalability analysis, we focus on a weighted param-
eter range w(x) which allows defining the importance
of some parameter settings in the scalability analysis.
Or we may also exclude some parameter settings in the
analysis.

Our definition is more general, and several definitions of
scalability metrics in literature are a special case of ours. The
closest definition to ours is [1] which considers the optimal
reference system; however, the optimal system behavior may
be unknown for real-world communication networks and
systems. Furthermore, the arbitrary target measure needs to
be adapted to communication networks and systems, e.g.,
considering service-level agreements as we demonstrate in
our use cases. Our introduced weighted parameter range is
thereby of utmost importance to appropriately include the
network and system configurations or parameter values of
interest. The weighted parameter range may also consider
costs, see the availability use case later. Thus, all ingredients
are generalized to the needs of communication networks.

A. CONTRIBUTION
The key contribution of this paper is a general framework
to quantify whether a system (or communication network) is
scaling in comparison to a reference system. This also allows
comparing two systems and to rank them, i.e., which system
is scaling better. We additionally provide an overview of re-
lated concepts (performance, efficiency, elasticity, flexibility)
and how they differ from scalability. This conceptual differ-
ence is important, since related work is partly mixing terms
and not providing measures for scalability. To this end, we
conduct an in-depth literature study and show the differences
of existing measures to our framework. We show that our

scalability index generalizes approaches from the literature
by the introduction of arbitrary reference systems and target
measures, as well as the introduction of a weighted parameter
range. Finally, we demonstrate the usage of the scalability
framework for different use cases: IoT load balancer, avail-
ability in communication systems, location selection in fog
computing, comparison of time-sensitive networking (TSN)
mechanisms. Those use cases show different aspects which
need to be considered in a scalability analysis and are sum-
marized as lessons learned. We discuss practical guidelines
on how to use the scalability index, especially regarding the
definition of reference systems, target functions, weighted
parameter ranges. Our contributions in a nutshell:

• scalability framework generalizing existing approaches;
• overview of related concepts: performance, efficiency,

elasticity, flexibility, scalability;
• detailed analysis of related work wrt. scalability defi-

nitions: identification of misleading usage of the term
‘scalability’ due to missing scalability definition;

• complementary use cases which demonstrate how to use
the scalability index in practice and which indicate the
need for the suggested generalization.

B. ORGANIZATION

The remainder of this paper is structured as follows. Related
work is revisited in Section II to get an overview of existing
scalability definitions and to differentiate it from aspects
like performance, efficiency, elasticity. The literature study
serves as the basis for our definition of a scalability index
(SI) in Section III that generalizes the existing approaches.
To demonstrate the SI, different use cases are analyzed in
Section V: (1) scalability of an IoT load balancer depending
on system load, which is modeled with queueing theory; (2)
availability of a communication system depending on the
number of nodes and system structure, which is modeled
by probability theory; (3) scalability comparison of different
location selection mechanisms in fog computing with respect
to delays and energy consumption based on existing experi-
mental results; (4) comparison of time-sensitive networking
(TSN) mechanisms in terms of the number of deployed
streams while guaranteeing upper delay bounds based on
measurement results, which are investigating an unequally
spaced parameter range (number of requested stream). The
intention of those use cases is to demonstrate how to com-
pare systems, the relevance of the target parameter under
investigation, how to cope with positive (e.g., availability)
and negative target functions (e.g., waiting times), the impact
of the parameter range under investigation, how the target
measure influences the scalability result. This will be sum-
marized in Section VI which provides additional discussions
and recommendations for the practical usage of the SI and
lessons learned from the use cases.
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II. EXISTING FRAMEWORKS AND METRICS ON
SCALABILITY
In the context of cloud computing, several definitions of
scalability are provided, which are revisited and summarized
below. This summary will show that our proposed definition
of scalability is more general and abstracts the existing defi-
nitions. However, before that, we want to differentiate several
terms related to scalability to clarify the different scopes.

A. DIFFERENTIATION: PERFORMANCE, EFFICIENCY,
ELASTICITY, FLEXIBILITY, SCALABILITY
Figure 2 shows the performance of two different systems F
and G. In the example, the average response time is plotted
depending on the number of requests per hour to be served
by the system. Thereby, the system is considered for a given
request rate over a longer time, i.e., under quasi steady-state
assumptions1 of the system. It can be seen that the system F
has a better performance for 100 and 200 requests per hour
than G. However, G outperforms F for 300 or more requests
per hour. From Figure 2, it is unclear which system scales
better, but it seems that G has better scalability properties. For
such statements, a proper definition of scalability is required.
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FIGURE 2: Performance curves of two different systems F and
G.

Efficiency relates to the costs (or consumption of re-
sources in general) required to complete a request or a given
amount of work in a system. For example, energy efficiency
would be the ratio of the number of completed requests in
a system compared to the maximum number of requests
which could have been completed in an ideal system with
the same amount of energy [3]. As for the quantification
of performance, the system is considered for a particular
parameter setting over longer time, e.g., 100 requests per
hour. Of course, the request arrivals are a stochastic process,
but a quasi stationary system is considered where the request
arrival rate over longer time is quasi constant. Other measures
of efficiency in the context of distributed systems consider the

1The system conditions are varying slowly enough such that the system
acts over a longer period of time as in equilibrium.

work rate per processor, while “Scalability means not just the
ability to operate, but to operate efficiently and with adequate
quality of service, over the given range of configurations” [4].

In contrast, elasticity considers the dynamic changes of a
system and quantifies the ability of the system to adapt itself
during shorter time scales. Elasticity is defined as “the degree
to which a system is able to adapt to workload changes by
provisioning and de-provisioning resources in an autonomic
manner, such that at each point in time the available resources
match the current demand as closely as possible” [5]. The
dynamic adaptation of capacity, e.g., by altering the use of
computing resources, to meet a varying workload is called
elastic computing [6]. In communication networks, elasticity
means that the network adapts its operation and reallocates
or redistributes resources (resource supply) according to
temporal and spatial traffic fluctuations and service demands
(resource demand). This may include computational and
communications resources, e.g., for the management of com-
putational resources in softwarized and virtualized networks,
e.g., in 5G systems [7]. Figure 3 illustrates the elasticity of
a system over time by comparing the resource demand and
the resource supply of that system. In contrast, efficiency
would relate the resource supply and the resulting costs to
the resource demand. Mathematical definitions for elasticity
are provided in [5].
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FIGURE 3: Elasticity of a system relating resource supply and
resource demand [5].

It is worth noting that the time dynamics of the resource
demand in Figure 3 are summarized as a single parameter
setting x in the performance curve in Figure 2. E.g., the
average resource demand, expressed as number of requests
per hour, is the considered parameter in the quasi stationary
system. The performance of that system is then characterized
in that quasi steady state, e.g., by considering the average
response time. Thus, the results from Figure 3 are a single
point in Figure 2, as visualized in Figure 4.

Finally, flexibility is a key property of systems that are
surveyed for communication networks in [8]. A model for
measuring network flexibility is proposed in [9] which quan-
tifies network flexibility as the achievable subset of the set of
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FIGURE 4: Performance and elasticity of a system are consid-
ered on longer and shorter time scales.

all possible demand changes. It is defined in [9] as: “Given
the demands the communication network has to respond, net-
work flexibility is the ability of the network to adapt its state
to satisfy the new demands promptly and with little effort.” In
contrast to elasticity, flexibility considers all possible demand
changes in the quantification.

B. DEFINITIONS OF SCALABILITY IN LITERATURE
In general, scalability is seen as the ability of the system to
sustain increasing workloads of a quasi stationary system,
i.e., on a longer timescale, e.g., by making use of addi-
tional resources, e.g., by adapting its configuration, e.g., by
adapting or reducing QoS. In the context of cloud comput-
ing, scalability is typically seen as the ability of the cloud-
based system to increase the capacity of the software service
delivery by expanding the quantity of the software service
that is provided when such increase is required by increased
demand for the service over a longer period of time [1], [2].
In contrast, short-term flexible provision of the resources is
captured by elasticity of the service provision which means
scaling up or down at a specific time; hence, elasticity is the
measurement of the instantaneous behavior of the service in
response to changes in service demand [1], as depicted in
Figure 3. Scalability is scaling up by adding resources in the
context of a given time frame and considers the behavior of
the service over a (longer) period of time. Thus, scalability
does not aim at quantifying how fast, how often, and at
what granularity scaling actions can be performed [5], but
considers a longer period of time. However, scalability needs
to consider the system behavior (e.g., performance or any
other desired target function) of all different and relevant
demand scenarios. Hence, Figure 2 is the required general
input for a scalability measure. We follow this understanding
of scalability and provide a general framework to quantify a
scalability index and show how to compare the scalability of
systems.

For various use cases and scenarios, particular definitions
of scalability are provided. For software defined networks,

scalability issues are arising due to logically centralized
control planes, which may need to be physically distributed.
Such scalability issues as well as concrete solution ap-
proaches are discussed, e.g., in a special issue [10]. However,
still, a concrete scalability metric is required which may be
utilized for quantifying such solution approaches. To this
end, [11] defines a scalability metric for control planes in
software defined networks. Thereby, the authors propose to
use another target function beyond throughput and latency to
address control planes properly. In particular, they consider
for a network the ratio of workload over overhead. Workload
is thereby quantified as the number of flows entering the
network through the data plane. Overhead is quantified as
the number of messages processed in the control plane.
However, this definition of scalability lacks the consideration
of changed demands and is more related to efficiency. To fit
this into a general scalability framework, the ratio of work-
load over overhead may be considered as a target function
depending on the system load. The resulting curves which are
provided in [11] are then similar to Figure 1 and may serve
as input for a scalability index. In general, literature quite
often considers such performance curves (e.g., Figure 2) and
authors qualitatively argue that a system is scaling without
properly defining what this really means.

For communication networks, coping with dynamicity,
heterogeneity of demands, diversity of communication mech-
anisms, and the scale leads to significant challenges, while
stringent and dynamic quality requirements need to be ful-
filled. Such advancements in the field were considered in
[12] focusing on adaptive and scalable communication net-
works. One of the core concepts is transitions, aiming at
increasing the flexibility and scale at which communication
networks can be adapted. Thereby, possibilities to change
existing protocols, technologies, or their configuration while
the network is in operation are realized by transitions. Still,
for benchmarking different implementations of transitions, a
framework for comparing the scalability of different transi-
tion solutions is missing. Complementing the existing flexi-
bility framework [9], our scalability framework fulfills a need
in literature and provides a novel approach which can be
applied in the domain of communication networks.

The scalability of big data processing systems in clouds is
investigated in [13]. They consider some performance curves
depending on load and consider linear scalability, sublinear
scalability and super-linear scalability as defined in previous
work [14]. Thereby, scalability considers a reference system,
which is a theoretical system with a linear relation between
the target measure and the parameter under investigation.
This will be a relevant scenario in practice, since scalability is
often interpreted as comparison to linear relations. However,
a precise definition is also needed here, since the constant off-
set of a linear function must be considered, see Section III-C.
[13] also defines a higher level target measure of the system
performance for a dedicated workload. This target measure is
referred to as ‘scalability’ (which is misleading and wrong),
but it does not provide a single measure quantifying how the

4 VOLUME 12, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3314201

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Hossfeld et al.: Comparing the Scalability of Communication Networks and Systems

system behaves for different workloads.
[15] coined the term ‘stochastic scalability’ and consid-

ered as an example P2P-based information sharing platform.
As target function of their analysis, they consider the 99%-
quantiles of search delays in such a platform depending on
the number of customers of the network and the amount
of information to be stored in it (parameter under consid-
eration). This target function goes beyond typical works,
since quantiles instead of averages are considered, which
may be relevant for business. [15] uses the term ‘functional
scalability’ to analyze whether the functionality of a system
(quantified by the target function) also works for many
customers (parameter under investigation). [15] advances the
scalability analysis and defines: “Stochastic scalability, on
the other hand, tries to verify whether a system can sustain the
stochastic behavior of its components.” To be more precise,
the influence of the coefficient of variation of the interarrival
times of service requests is considered as another parameter
on the performance. Hence, stochastic scalability changes the
parameter under investigation (here: coefficient of variation
of interarrival times). In our general framework, the target
function and the stochastic characterization of the system
load as parameter under consideration are well reflected.
Hence, our framework also includes stochastic scalability.

A metric to predict software scalability is suggested in
[16]. However, the authors simply define another target func-
tion, which is referred to as Performance Non-Scalability
Likelihood (PNL). For a given load in a system, the PNL
metric reflects the probability that the system’s performance
objective will not be met. Hence, again, the authors do not
define a scalability index considering various load situations
and the system’s performance. The PNL can be used in our
framework as a target function.

Other definitions of ‘scalability’ consider the ratio of ef-
ficiency for two different load scenarios [4], although this is
more related to speedup and does not generalize scalability
for various load scenarios and in comparison to arbitrary
reference systems. Similarly, isospeed scalability relates the
workload capacity of the system at two different scales
[14]. The initial and scaled problem size (workload) and the
resources (number of processors) are considered. The target
function is the ratio of workload per processor. Isospeed scal-
ability quantifies then the ratio of the target functions for the
initial and scaled problem size. The Isoefficiency scalability
[17] is described as the “ability of parallel machines to keep
the parallel efficiency constant when the system and problem
size increase“ [11]. This is advanced to H-isoefficiency for
heterogeneous systems [18]. Similar critics as above are
observed, since those quantities do not reflect scalability as
intended.

In the software engineering domain, it is often differen-
tiated between resource scalability and demand scalability,
see e.g., [19]. A resource demand metric indicates the re-
source demand depending on the actual load. It is analyzed
whether the resource demand increases linearly, sub-linearly,
or super-linearly (i.e., using an appropriate reference func-

tion). This analysis may also consider whether a system only
scales up to a certain point of load, while additional load
cannot be handled even though further resources are added.
This is also referred to a strong scaling in software engi-
neering. The load capacity metric indicates how processing
capabilities increase with increasing resources. Similarly, a
certain point of capacity may be reached when with addi-
tional resources do not increase the processing capabilities
anymore. The additional resources may even decrease the
capabilities due to signaling and coordination overhead. This
is also referred to as weak scaling in software engineering.
Both aspects are included in our scalability framework by
using appropriate parameters under investigation and target
functions.

III. GENERAL FRAMEWORK FOR QUANTIFYING AND
COMPARING SCALABILITY
From the definitions and understanding of scalability in lit-
erature, we provide now a general framework to quantify
scalability in terms of a scalability index, which allows
comparing the scalability of different systems. To this end,
exact definitions of scalability and a scalability index (SI)
are proposed. The ingredients of the scalability index are
discussed and the fundamental characteristics of the SI are
analyzed.

A. DEFINITION OF SCALABILITY INDEX
A tempting definition of scalability is seen as the ability of
the system to sustain increasing workloads of a quasi station-
ary system. However, this definition is not precise enough,
since it is unclear what “sustaining” really means here. It
is not specified what is the target measure of interest, what
is the parameter under consideration, and how to evaluate
if a system “sustains” increasing workloads. Furthermore,
workload is only one specific parameter (probably the most
important one in practice), but also the size of networks (e.g.,
IoT mesh networks), or stochastic variations (i.e., stochastic
scalability) may be of interest in a scalability analysis. An-
other critical point is that ‘sustaining’ means that we need a
(theoretical) reference system for comparison. This has also
been suggested in literature for specific theoretical systems:
linear, sublinear, super-linear scaling and target functions
[13], [14] or the comparison to the optimal/ideal reference
system [1].

Furthermore, the analysis of scalability needs to consider
all relevant parameter settings. By weighting the importance
or relevance of a parameter setting, the target measure then
needs to accumulate the weighted target measure. As a
consequence, the quantification of scalability results in an
integral measurement of the (weighted) target measure over
the entire parameter range. If the system may not work
properly above a certain load, then this needs to be captured
in the target function, while the relevance or importance of
such a scenario can be adjusted with the weighting function.

Then, the ingredients of scalability and its quantification
are as follows:
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1) A system function f(x) quantifies an arbitrary target
measure of interest for the system F , see Figure 1.

2) An arbitrary reference system H with a target reference
function h(x), like the ideal system behavior in Fig-
ure 1, is used for comparison. In practice, the optimal
system may be unknown. Or we may want to investigate
if the system scales linearly, i.e., the reference function
is a linear function.

3) Integral measurements F and H of the target measure
for the system and the reference consider the parameter
range under investigation. This is simply the area under
the corresponding target function curve in Figure 1.

4) A weighted parameter range w(x) allows defining the
importance of some parameter settings as weighted in-
tegral. Thereby, we may also exclude some parameter
settings in the analysis.

We propose the following definition of the term ‘scalability’.

Definition 1 (Scalability): The ability of a system to perform
as well as a reference system regarding a target measure
within a defined weighted parameter range.

The quantification of scalability is then the weighted inte-
gral measurement F of the system function using the desired
target measure of interest in relation to the weighted integral
measurement H of a reference system over a defined param-
eter range X. The parameter range is potentially weighted
w(x) according to the relevance/importance of a parameter
setting in the scalability analysis.

F =

∫

x∈X
w(x) · f(x) dx (integral system meas.)

H =

∫

x∈X
w(x) · h(x) dx (integral reference meas.)

Definition 2 (Scalability Index): Quantification of the scal-
ability of a system F with respect to a reference system H as
the ratio of the integral measurements F and H .

SI = H/F or SI = F/H (scalability index)

Depending on the target measure, we may use the ratio
H/F or the inverse ratio F/H . In the case of a target
reference function, for which an increase means increasing
‘badness’, e.g., average response time, then the ratio H/F
is used. If H is the optimal reference system, then SI is
normalized between 0 and 1. Note that in other reference
systems, e.g., a linear system, the SI may also achieve values
larger than 1. In the case of a target reference function,
for which an increase means increasing ‘goodness’, e.g.,
throughput or availability, then the ratio F/H is used, see
Table 1. We will discuss this further for the two use cases in
the later sections.

To have a general definition of the SI, we may use the
auxiliary variable γ with γ = 1 indicating ‘goodness’ and
γ = −1 indicating ‘badness’ of the target measure.

TABLE 1: Concrete definition of the scalability index as ratio
of the integral measurements F and H depending on good-
ness/badness of an increase in the target measure and param-
eter, respectively, with some (examples) given in brackets.

Parameter Target measure’s increase indicating system’s increase of
increase badness γ = −1 goodness γ = 1
indicating (e.g. response time) (e.g. throughput)

badness H/F F/H
(load) (response vs. load) (throughput vs. load)

goodness H/F F/H
(#servers) (response vs. #servers) (throughput vs. #servers)

any H/F F/H
parameter (response time) (throughput)

Definition 3 (General Scalability Index): Quantification of
the scalability of a system F with respect to a reference
system H as the ratio of the integral measurements F and
H and the goodness indicator γ.

SI = (F/H)
γ (general scalability index)

With the definition of the SI, we can test if a system is
scaling. To be more precise, we need to provide the reference
target function h(x) and the weighting function w(x).

Definition 4 (Testing Scalability): A system F is scaling
with respect to a reference system H, a well-defined target
measure f(x) and h(x), respectively, a weighting function
w(x), and a parameter range X if the scalability index SI is
less or equal to 1.

SI ≤ 1 : System scales wrt. h(x) and w(x) for x ∈ X.
SI > 1 : System does not scale wrt. h(x), w(x), x ∈ X.

Thus, testing scalability simply means comparing the in-
tegral measurements F and H . Note that a system is never
scaling in relation to the optimal system. But the quantifica-
tion SI shows how close a system gets to an optimal one.

Our definition of scalability and the scalability index gen-
eralizes definitions of scalability metrics in the literature,
which are a special case of ours. In particular, [1] uses an
optimal reference system H with equal importance of all
parameter settings, i.e. w(x) = 1. However, we may be
interested in quantifying if a system scales linearly, which
we discuss later.

B. COMPARING THE SCALABILITY OF SYSTEMS
With the definitions above, we can now compare the scalabil-
ity of two different systems F and G wrt. a reference system
H, well-defined target measure and weighting function. The
integral measurement is F and G and the corresponding
scalability index is SIF and SIG, respectively.
F is scaling better than G wrt. a well-defined target mea-

sure and weighting function, if the scalability index SIF
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is larger than the scalability index SIG. For a target refer-
ence function indicating ‘badness’ (e.g., response times), this
means:

SIF = H/F > H/G = SIG =⇒ F < G (badness)

if F is scaling better than G. For a target reference function
indicating ‘goodness’ (e.g., throughput), this means

SIF = F/H > G/H = SIG =⇒ F > G (goodness)

if F is scaling better than G. Hence, there is no need for an
additional reference system H.

Definition 5 (Comparing Scalability of Systems): A system
F scales better than a system G with respect to a well-defined
target measure and a weighting function w(x) defined for the
parameter x if

(F/G)
γ
> 1 . (scalability comparison: F ≻ G)

System G is scaling better than F if

(G/F )
γ
> 1 . (scalability comparison: G ≻ F)

Hence, we have the same structure and definition for
comparing a system to a reference system (Definition 4) or
to any other system (Definition 5).

C. LINEAR SCALING
In practice, linear scaling is important and a good reference
system for comparison. Statements like “The system is scal-
ing.” are not precise due to the missing reference system
and weighting function. However, often a linear function is
implicitly assumed while for comparison a parameter range
[x0;x1] is considered where all parameter settings are equally
important (w(x) = 1 for x ∈ X = [x0;x1]). Thus, the
weighting function is w(x) = 1X(x).

Nevertheless, it is important to clearly define the linear
function. Consider a simple example of a square relation-
ship between the request rate and the avg. response time
in a system F . The parameter range of interest is 1 s−1 to
3 s−1. The reference system H1 has a larger constant offset
than another reference system H2, while the gradient of the
reference function h1(x) is less than the gradient of h2(x).
Depending on the reference system, our conclusion would be
that the system is linearly scaling (F ≻ H1) or is not linearly
scaling (F ≺ H2). This becomes even more obvious when
using constant functions, cf. dashed lines in Figure 5.

D. FEATURES OF THE SCALABILITY INDEX
Comparison to Ideal System
The scalability index is in the range [0; 1] if a system is
compared to an ideal system. Then, the SI shows how close
the system gets to the scalability behavior of the perfect
system.

1 1.5 2 2.5 3

request rate (s−1)

av
g.

re
sp

on
se

ti
m

e
(s

)

system F : F = 10
system H1: H1 = 12
system H2: H2 = 9

FIGURE 5: Linear scaling also needs to define a reference sys-
tem and the linear reference target function. The scalability
index is SI1 = 1.2 and SI2 = 0.9 wrt. system H1 and H2,
respectively.

Constant Reference Target Measure
The average f of the target measurement over the parameter
range is f = F/(x1−x0), which is identical to the scalability
index (F/H)γ with a constant reference system h(x) = 1
and equal weights w(x) = 1. The integral measurement of
the reference system is H =

∫ x1

x0
w(x) · h(x) dx = x1 − x0.

Constant Weights and Relation of Means
Constant weights w(x) = c have no influence on the SI.

SI =

(∫
x∈X f(x) · c dx∫
x∈X h(x) · c dx

)γ

=

(∫
x∈X f(x) dx∫
x∈X h(x) dx

)γ

(1)

It may be useful to define weights, such that the integral
measurements can be interpreted accordingly. For example,
we consider the mean of the system function f(x) and the
reference function h(x). The ratio of means corresponds to
the SI with constant weighting function w(x) = 1

x1−x0
.

f = F =

∫

x∈X
f(x)

1

x1 − x0
dx (2)

h = H =

∫

x∈X
h(x)

1

x1 − x0
dx (3)

SI = (F/H)γ = (f/h)γ (4)

It is tempting to compute the average function f by just
computing the system function f(x) of the average value of
the parameter range x = x1+x0

2 . This would require only the
derivation of a single value of the system at the parameter
x instead of deriving the entire parameter range. Especially,
when measurements of the system F are conducted, this
would save significant efforts.

However, Jensen’s inequality, see for example [3], shows
that the two quantities are different in general.

f =
1

x1 − x0

∫

x∈X
f(x) dx ̸= f(x) = f(

x1 + x0
2

) (5)
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Only for linear systems, both quantities are identical. Hence,
for testing linear scalability with h(x) = mx + c, the mean
h of the function h(x) and the function of the mean x are
identical.

h =
1

x1 − x0

∫

x∈X
h(x) dx =

m

2
(x1 + x0) + c (6)

= h(
x1 + x0

2
) = h(x) (7)

Stochastic Parameter Range and Expected Target Measure
A typical weight function w(x) is the probability or proba-
bility density function of the parameter x for a discrete and
continuous parameter range, respectively, see for example
Section IV-C. Hence, the parameter range X is a random
variable, described by w(x). The integral measurement is
then simply the expected value of the target function. The
scalability index relates the expected system target measure
E[f(X)] to the expected reference target measure E[h(X)].

SI =

(∫
x∈X f(x) · w(x) dx∫
x∈X h(x) · w(x) dx

)γ

=

(
E[f(X)]

E[h(X)]

)γ

(8)

Difference of System Curves
The SI can also be interpreted as the relative difference
between the integral measurements of the system function
f(x) and the reference function h(x).

SI = (F/H)γ = (H/H −H/H + F/H)
γ (9)

=

(
1− H − F

H

)γ

(10)

The area H−F between the two curves is normalized by the
area H . This relative difference indicates how far away the
system F is from H. The SI is then the difference between 1
and this relative difference.

Multi-Dimensional Parameters
Note that the integral measurement is defined for a parameter
x which may also reflect a vector of different parameters, i.e.
x = (ξ1, . . . , ξn). The measurement integral is then a multi-
ple integral over all parameter variables with a corresponding
multidimensional weighting functions.

F =

∫

x∈X
w(x) · f(x) dx (integral system meas.)

=

∫

ξ1∈X1

···
∫

ξn∈Xn

w(ξ1, ··· , ξn) · f(ξ1, ··· , ξn) dξ1 ··· dξn

The computation of the scalability index is not changed by
considering multidimensional parameters.

Scaling in Non-Operational Area
Consider a system which is not operating, e.g., due to over-
load. For example, a single server waiting queue cannot serve
more requests than the service rate of the single processing
unit. Thus, the arrival rate λ must be smaller than the service
rate µ for a stable system. If this stability condition is

violated, the quasi steady-state is not reachable. Then, the
target measure like the waiting time is ∞. The corresponding
integral measurement is then F = ∞ and the scalability
index is SI = H/F = 0.

Attributes of Scalability
Scalability is an integrative concept that encompasses the
following basic attributes. Those attributes are considered in
our definition of the scalability index accordingly.

• The target measure defines the major interest and scope
of the scalability analysis, e.g., performance of the sys-
tem, e.g., availability of the system, and if the system
scales with respect to that particular target measure.
Considering several target measures lead to different
SI values or may be combined accordingly, see the
example in Section V-B4.

• Costs or importance of configurations or parameter
settings need to be considered. This may be achieved
through a proper weighting function.

• Elasticity is the ability of a system to automatically scale
resources up or down based on demand, and is a need for
scalability (see also Figure 4).

• Fault Tolerance and Redundancy are essential. Scalable
systems should be designed with fault tolerance in mind.
Redundancy and replication of critical components can
ensure that failures in one node do not disrupt the entire
system. This behavior is included through the target
measure function, as system reaction to faults.

The scalability index has the following characteristics to
quantify the scalability of a system under test F .

• A system function f(x) quantifies an arbitrary target
measure of interest for the system F .

• A weighted parameter range w(x) allows defining the
importance or costs of parameter / configuration set-
tings.

• An arbitrary reference system H with a target reference
function h(x) is required to quantify how well the
system F scales in comparison to an ideal, optimal,
linear, or arbitrary system.

In practice, there are several means to attain scalability.
Some common examples are reflected here. Vertical Scala-
bility (Scaling Up) is the ability to handle increased load by
adding more resources to a single node, such as increasing
the CPU, RAM, or storage capacity of a server. Vertical
scalability is often limited by the hardware limitations of a
single machine. Horizontal Scalability (Scaling Out) handles
increased load by adding more nodes to a distributed sys-
tem, such as adding more servers to a cluster. Horizontal
scalability is typically achieved through load balancing and
partitioning of data and tasks across multiple nodes. Load
Balancing means distributing incoming workloads (evenly)
across multiple resources or nodes, ensuring that no single
node is overwhelmed while others are underutilized. For
distributed systems, data partitioning and sharding involve
breaking large datasets into smaller, manageable subsets
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and storing them across different nodes. This strategy helps
improve data access and distribution, making it easier to scale
horizontally. In particular, caching frequently accessed data
can significantly improve system performance and reduce the
load on devices. Effective caching mechanisms can enhance
scalability by reducing the need for repeated data processing.
Finally, breaking down a monolithic system into smaller,
loosely coupled modular microservices can enhance scala-
bility. Each microservice can be scaled independently based
on its specific demands.

IV. COMPARISON OF GENERAL SI WITH EXISTING
SCALABILITY FRAMEWORKS
Table 2 summarizes relevant approaches from related work
which investigate scalability. The ingredients of a scalability
index are analyzed, that are the target measure and the
parameter of interest. It is considered if a reference system
is considered, e.g., a linear system, to investigate linear
scalability. Or if the approach can be used for comparing
the scalability of two systems. Our introduction of weights
is only partly addressed in literature by taking into account
costs.

The column ‘scope’ in Table 2 indicates what kind of
concept is really considered, e.g., efficiency, performance,
scalability. Some works consider only performance curves,
e.g., a performance target measure depending on a parameter
like load (i.e., performance curve). Based on that curve,
scalability is qualitatively analyzed without providing any
scalability index. The column ‘index’ indicates whether a
scalability index is provided. The column ‘application’ shows
the example domain investigated in the presented approach.

A detailed description of the approaches is discussed in
Section II-B, while a brief summary is provided at the bottom
of Table 2. The comparison shows that literature misuses
the term scalability and partly considers different aspects
like efficiency or performance. The related performance- or
efficiency-curves give only qualitative insights. Those system
functions are the main ingredient of a scalability analysis,
and it is one possibility to report the system function as
curve measure concerning scalability. To relate this curve
measure to linear scalability, additionally a linear curve is
then provided as a reference function. Or when comparing
two systems, the two system functions are provided as curve
measures for scalability.

However, as already discussed, just providing those system
curves is typically not sufficient to identify which system
scales better, see as an example Figure 2 or Figure 5. Espe-
cially when the two system functions are crossing each other.

Our goal is to provide a single-value scalability index
which allows comparing the scalability of the two systems.
Therefore, we need to aggregate the system function into a
single value, which is done through the integral measure-
ment. To relate the two systems, the ratio of the integral
measurements is considered, reflecting the SI. As shown
previously, this is identical to the ratio of the means of the
two functions.

Such a desired single-value scalability index is only pro-
vided in a few works. Our framework generalizes those
works and allows quantifying, e.g., linear, scalability, or to
benchmark the scalability of two systems. In the following,
we will show for some selected scalability measures from the
literature how they fit into our generalized framework. The
approaches from literature are a special case of our SI.

A. SI OF CLOUD SOFTWARE SERVICES IN RELATION
TO IDEAL SYSTEM

A single-value scalability measure for cloud-based software
services is provided in [1]. As target measure, the response
time of cloud services or volume of available software in-
stances is considered. They compare the system F under
investigation with an ideal system H. The single-value metric
J is defined by comparing the areas under the curve. It is
0 ≤ J ≤ 1 with corresponding γ ∈ {−1; 1}.

J =

(∫
x
f(x) dx∫

x
h(x) dx

)γ

(11)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• [1] “Scalability analysis comparisons of cloud-based
software services” by Al-Said Ahmad and Andras

• target measure: f(x)
• reference system: ideal system with h(x)
• parameter range: x ∈ [x0;x1]
• weight: w(x) = 1

SI =

(∫
x
f(x) · w(x) dx∫

x
h(x) · w(x) dx

)γ

= J (12)

B. LINEAR SCALABILITY OF BIG DATA PROCESSING
SYSTEMS (BDPS)

Linear scalability is a common term in literature, e.g., [13],
[14] divide scalability into three categories that are linear
scalability, sublinear scalability and super-linear scalability.
For the quantification, the system’s performance v(x) is
divided by a linear function l(x). As a result, a performance
curve f(x) = v(x)/l(x) is obtained, which indicates if the
performance is better (f(x) > 1) or worse than that of the
linear system.

As a concrete example, f(x) is the speedup of the sys-
tem, when the number of processing nodes is x, while
l(x) indicates linear speedup. Then, the system function is
f(x) = v(x)/l(x). Furthermore, a more advanced measure
for BDPS is provided which goes beyond speedup. Still, the
basic concept is to relate the measure to a linear system l(x).

For evaluating scalability, [13] provides the curve measure
f(x). Then, f(x) > 1 and f(x) < 1 shows super-linearity
and sub-linearity, respectively. To obtain a single value J
from the curve measure, we may use the average value.
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TABLE 2: Comparison of the suggested scalability index and the framework for comparing the scalability of two systems. The
‘scope’ indicates what is considered in the different papers and if a single metric for scalability is provided. ‘Index’ shows
whether a single scalability index is provided to quantify the scalability of a system. The ‘application’ shows the example
domain investigated in the presented approach.

Ref. Target Measure Reference
System

Parameter Weights Index Scope Application

[1] response time (system quality
scalability), volume of software
instances (provisioning)

ideal,
optimal
system

demand — ✗ — ✓ scalability cloud software services, see
Section IV-A

[2] assigned resources as major
measure, performance, QoS

— ✗ — workload,
demand

— ✗ — ✓ scalability cloud computing

[20] performance to used resources
ratio (PRR)

— ✗ — workload
(changes)

price factor — ✗ — scalability cloud applications

[11] ratio of workload (flows) over
overhead (messages)

— ✗ — traffic load — ✗ — — ✗ — efficiency control planes in software
defined networks

[13] performance linear #nodes cost — ✗ — scalability big data processing systems in
clouds, see Section IV-B

[14] performance linear load — ✗ — — ✗ — scalability (sub-/super-)linear scalability;
isospeed scalability

[15] performance — ✗ — stochastic
variation

— ✗ — — ✗ — scalability stochastic scalability

[21] success ratio (SLO) — ✗ — load probability
of load

— ✗ — scalability domain-based scalability [21],
domain-specific scalability
[22], see Section IV-C

[16] Performance Non-Scalability
Likelihood (PNL)

— ✗ — offered load probability
of system
state

— ✗ — performance customer care database system

[4] productivity per cost — ✗ — demand cost — ✗ — efficiency distributed computing
applications, see Section IV-E

[23] power metric: throughput per
response time

— ✗ — demand cost — ✗ — efficiency p-scalability for distributed
computing applications, see
Section IV-D

[17] speedup — ✗ — #processors — ✗ — — ✗ — Isoefficiency parallel algorithms and
architectures

[18] efficiency — ✗ — workload — ✗ — — ✗ — H-
isoefficiency

heterogeneous parallel systems

[19] required resources/ max. load
the system can process

linear, expo-
nential

load/
provisioned
resources

— ✗ — — ✗ — resource/
demand
scalability

stream processing

Our any ✓ any ✓ any ✓ any ✓ SI ✓ scalability generalization of
benchmarking scalability metrics above ✓

[1] The definition is closest to ours, but is limited to an optimal reference system which may be unknown in practice. Only dedicated target measures for the
software-as-a-service domain are considered. This is particular use case of our SI.

[2] Surveys literature on scalability definitions and provides an overview on scalability concepts concerning target measures and parameters. Scalability
means are horizontal scaling (adding computing nodes) and vertical scaling (adding computing power to single node).

[20] The ratio of performance to used resources (PRR) is measured. The scalability of the system under test is measure by the performance change (PC) when
workload changes. The variance of the performance change is an indicator for the scalability.

[11] Another target function appropriate for the scalability of control planes is introduced. Workload is the number of flows in the data plane. Overhead are
the processed messages in the control plane. For data plane scalability, throughput and latency are mentioned. However, an efficiency metric is defined,
not scalability.

[13] Linear scalability is considered for big data processing systems in clouds, based on the definition in [14]. A higher level target measure of the system
performance for a dedicated workload is defined as scalability curve, but no single value is provided.

[14] By using a theoretical system with linear relationship between the parameter and the target measure, linear scalability, sublinear scalability and super-
linear scalability are qualitatively compared. This is particular use case of our SI.

[14] Relates the workload capacity of the system at two different scales.
[15] The influence of stochastic variations of the parameter under investigation is considered for arbitrary target measures. No scalability metric is provided.

We use this parameter as example to quantify stochastic scalability with our SI.
[16] As target measures the Performance Non-Scalability Likelihood (PNL) is introduced. No scalability measure is provided.
[4] Productivity is using a Power metric, but expresses efficiency. The throughput in responses weighted with value per response is the goodness. The costs

are the badness. The ratio of efficiency for two different load scenarios is defined as scalability, but it quantifies efficiency. If productivity is maintained
as the scale changes, the system is regarded as scalable.

[23] P-scalability uses the power metric as target measure. Then the ratio of the power metric for two systems is quantified as P-scalability. Efficiency curves
are considered, but no scalability index of a system is provided.

[17] Scalability is described as the “ability of parallel machines to keep the parallel efficiency constant when the system and problem size increase“. Efficiency
curves are considered, but no scalability index of a system is provided.

[18] Efficiency curves are considered, but no scalability index of a system is provided.
[19] Performance curves are considered and compared to linear or exponential curves. No scalability index is provided.
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Then, the single value J indicates whether the system scales
linearly or better (J ≥ 1).

J =
1

n

n∑

x=1

f(x) =
1

n

n∑

x=1

v(x)

l(x)
(13)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• [13] “Scalability and performance analysis of BDPS in
clouds” by Li, Ou, Zhou, et al.

• target measure: f(x) = v(x)/l(x)
• reference system: h(x) = 1
• parameter range: number of nodes x ∈ {1, 2, . . . , n}
• weight: w(x) = 1

SI =

∑n
x=1 f(x) · w(x)∑n
x=1 h(x) · w(x)

=

∑n
x=1 f(x)

n
= J (14)

Instead of using the relative target measure, the two curves
v(x) and l(x) may be directly used for comparison. This
leads to an alternative definition of the target measure and
the reference system.

• alternative comparison to [13]
• target measure: f̂(x) = v(x)
• reference system: ĥ(x) = l(x)
• parameter range: number of nodes x ∈ {1, 2, . . . , n}
• weight: w(x) = 1

ŜI =

∑n
x=1 f̂(x) · w(x)∑n
x=1 ĥ(x) · w(x)

=

∑n
x=1 v(x)∑n
x=1 l(x)

(15)

̸= 1

n

n∑

x=1

v(x)

l(x)
=

1

n

n∑

x=1

f(x) = SI (16)

The two definitions SI and ŜI lead to different values, but
similar behavior of the scalability index and conclusions are
observed. Figure 6 shows exemplary the scalability index SI
and ŜI when considering the throughput of a system depend-
ing on the number of processing nodes x. The throughput of
the system is f̂(x) = v(x) = xβ with β = 0.9. The reference
system yields ĥ(x) = l(x) = x. The scalability index ŜI
is computed for the parameter range {1, . . . x1}, and x1 is
varied in Figure 6. In contrast, for the computation of SI ,
the target measure f(x) = v(x)

l(x) = xβ−1 and the reference
function h(x) = 1 are used. Both definitions of SI lead to
similar results in practice.

FIGURE 6: Different definitions of the target measure and the
reference system lead to the scalability index ŜI and SI as
defined in Eq.(15) and Eq.(16), respectively. It is f̂(x) = xβ

with β = 0.9 and ĥ(x) = v(x) = x yielding ŜI . In contrast,
SI uses f(x) = v(x)/l(x) = xβ−1 and the reference
function h(x) = 1.

C. DOMAIN-BASED SCALABILITY FOR MICROSERVICE
ARCHITECTURES

A single value scalability metric is provided for the as-
sessment of microservice architectures in [21]. Thereby, the
response time of the architecture is considered for a given
workload. This workload in the system is modeled as a
random variable X with a probability density function p(x)
for the parameter range x ∈ [x0;x1]. Thus,

∫ x1

x0
p(x) dx =

1. Different services are tested under a certain load test
specification. The fraction of successful executions of all
services for a given load x while keeping the response time
below a threshold is the target measure of interest f(x). The
scalability metric is defined as follows in [21].

J =

∫ x1

x0

f(x) · p(x) dx = E[f(X)] (17)

Hence, the scalability index J is the expected success ratio
E[f(X)] over all load conditions X , i.e., the expected value
of a function f(x) of the random variable X .

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• [21] “Scalability assessment of microservice architec-
ture deployment configurations: A domain-based ap-
proach leveraging operational profiles and load tests” by
Avritzer, Ferme, Janes, et al.

• target measure: f(x) is the fraction of successful execu-
tions of all services for a given load x while keeping the
response time below a threshold

• reference system: ideal system h(x) = 1
• parameter range: x ∈ [x0;x1]
• weight: w(x) = p(x) with probability density function
p(x) for the random variableX of the load in the system
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SI =

∫ x1

x0
f(x)w(x) dx

∫ x1

x0
h(x)w(x) dx

=

∫ x1

x0
f(x)p(x) dx
∫ x1

x0
p(x) dx

=

∫ x1

x0
f(x)p(x) dx

1
= E[f(X)] = J (18)

Besides the domain-based metric by [21], a domain-
specific metric was proposed by [22]. The differences be-
tween the works is not the quantification of scalability as a
single-value measure, but whether resources may be added
to satisfy specified service-level objectives (SLOs) require-
ments.

D. P-SCALABILITY OF DISTRIBUTED SYSTEMS
The P-scalability metric [23] depicts a measure curve which
combines capacity and response time with cost. Thereby, the
so-called ‘power’ measure P (x) is used when the system
is considered with a scale factor x. This power measure is
the ratio of the throughput of a distributed system and the
response time of the system. It follows Kleinrock’s power
metric [24] which considers the ratio of ‘goodness’ (here:
throughput) to ‘badness’ (here: response time). We discuss
Kleinrock’s approach in more detail for the use case of
availability in communication networks in Section V-B4.

The power measure P (x) is combined with the costs C(x)
and reflects the system function f(x) = P (x)/C(x). The
scale factor x reflects a certain number of active users or jobs
x. As a simple example, a database system is considered in
[23], where the number of processors and the database size
depend on that scale factor x.

The P-scalability is then defined as the ratio between f(x)
(system with scale factor x) and a reference system f(x1)
(system with scale factor x1). However, [23] does not provide
a single-value scalability metric. Therefore, we consider the
system for all scale factors x ∈ [x0;x1] and compute the
average system function f . Then, a scalability index may be
given depending on the reference scale factor x1, i.e., h(x) =
f(x1) = P (x1)/C(x1).

J =
f

f(x1)
=

∫ x1

x0
f(x) dx

x1 − x0
· 1

f(x1)
(19)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• [23] “A scalability metric for distributed computing
applications in telecommunications” by Jogalekar and
Woodside

• target measure: f(x)
• reference system: h(x) = f(x1)
• parameter range: x ∈ [x0;x1]
• weight: w(x) = 1

x1−x0

SI =

∫ x1

x0
f(x) · w(x) dx

∫ x1

x0
h(x) · w(x) dx =

∫ x1

x0

f(x)
x1−x0

dx
∫ x1

x0

f(x1)
x1−x0

dx

=

∫ x1

x0

f(x)
x1−x0

dx

f(x1)
∫ x1

x0

1
x1−x0

dx =

∫ x1

x0
f(x) dx

(x1 − x0)f(x1)
= J (20)

E. PRODUCTIVITY AND VALUES AS TARGET MEASURE
In a follow-up work of [23], another target measure was
defined [4], which is quite interesting. For a distributed
system, the productivity is considered as the value delivered
per second, divided by the cost per second at a scale factor
x. For a throughput t(x) (in responses per second at scale k)
and average value v(x) of each response, calculated from its
quality of service at scale x, the productivity f(x) is

f(x) = t(x) · v(x)/c(x) (21)

for the costs c(x) at scale x, expressed as a running cost per
second to be inline with the definition of t(x).

Similarly, as above [23], the scalability measure is a curve
measure and defined as the ratio of productivity figures. Over
the entire parameter range x of scale factors, we consider
therefore the average productivity and relate it to the refer-
ence point f(x1).

J =
f

f(x1)
=

∫ x1

x0
f(x) dx

x1 − x0
· 1

f(x1)
(22)

Bringing this approach into our scalability framework
yields the following instances of the SI constituents.

• [4] “Evaluating the scalability of distributed systems”
by Jogalekar and Woodside

• target measure: f(x)
• reference system: h(x) = f(x1)
• parameter range: x ∈ [x0;x1]
• weight: w(x) = 1

x1−x0

SI =

∫ x1

x0
f(x) · w(x) dx

∫ x1

x0
h(x) · w(x) dx =

∫ x1

x0

f(x)
x1−x0

dx
∫ x1

x0

f(x1)
x1−x0

dx

=

∫ x1

x0

f(x)
x1−x0

dx

f(x1)
∫ x1

x0

1
x1−x0

dx =

∫ x1

x0
f(x) dx

(x1 − x0)f(x1)
= J (23)

Note that Eq.(20) and Eq.(23) are identical, just the def-
inition of the target measure differs: power measure vs.
productivity.

F. USING SI WITHOUT REFERENCE SYSTEM:
GENERAL SYSTEM’S REFERENCE POINT
Some examples above used a single reference point xr and
related the target measure of the system f(x) to the target
measure at the reference point f(x), like in Section IV-E.

In general, instead of a reference system H, a single
reference point xr and its target measure f(xr) of the system
F can be utilized to indicate scalability. To be more precise,
the target measure of the system is related to that reference
point, how the system develops. This reference point may
lead to the best target measure, but any arbitrary reference
point can be used. It is just used to relate the target measure
accordingly.

We consider the speedup as an example. The response
time of the system F is T (x) if x servers are used. The
speedup is then the factor S(x) = T (1)/T (x), i.e., the
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improvement of the response time with respect to a reference
system with xr = 1 server and response time T (1). As
weight, we consider the probability p(x) that the system has
x active servers. The discrete random variable X models the
number of active servers with a probability function p(x). It
is
∑x1

x=x0
p(x) = 1.

In general, for a discrete or continuous random variableX ,
we have the following ingredients for the SI, respectively.

• scalability index computation by only using the system
function without reference system

• target measure: f(x)
• reference system: h(x) = f(xr) with reference point xr
• parameter range: x ∈ {x0; ...;x1} for a discrete param-

eter x; x ∈ [x0;x1] for a continuous parameter x
• weight: w(x) = p(x) with probability mass function
p(x) of the discrete random variable X; w(x) = p(x)
with probability density function p(x) of the continuous
random variable X

The SI for a discrete parameter x is as follows.

SI =

∑x1

x=x0
f(x) · w(x)∑x1

x=x0
h(x) · w(x) =

∑x1

x=x0
f(x)p(x)

f(xr)
∑x1

x=x0
p(x)

(24)

=
E[f(X)]

f(xr)
(25)

Hence, the expected target measure E[f(X)] is normalized
by the target measure at the reference point. For the example
of speedup, we may use as reference point the maximal
speedup when x1 servers are available. Then, the SI indi-
cates how far the system is away from the performance at
the reference point. However, in practice, it may be more
interesting to understand if the speedup linearly scales or
not. Then, the SI is the relation between the expected target
measure of the system F and the linear reference system H:
SI = E[f(X)]/E[h(X)] with E[h(X)] = m ·X + c.

Similarly, the SI for a continuous parameter x is computed
by using the probability density function p(x).

SI =

∫ x1

x=x0
f(x) · w(x)

∫ x1

x=x0
h(x) · w(x) =

∫ x1

x=x0
f(x)p(x)

f(xr)
∫ x1

x=x0
p(x)

(26)

=
E[f(X)]

f(xr)
(27)

It is the expected target measure of the system F , which is
normalized by the target measure at the reference point.

V. USE CASES FOR DEMONSTRATION
The application of the SI is demonstrated for four use cases:
(1) performance of an IoT load balancer depending on the
system load, (2) availability of a communication system
depending on the size and structure of the network, (3) scala-
bility comparison of different location selection mechanisms
in fog computing with respect to delays and energy consump-
tion; (4) comparison of time-sensitive networking (TSN)
mechanisms in terms of efficiency and utilization. The use
cases show the need for proper selection of reference systems
and target measures. The selected reference system and target

measure aim at analyzing the scalability with a concrete
question in mind. We also show the impact of the weighting
of the parameter space, e.g., according to its occurrence in
practice.

A. WAITING TIME OF AN IOT LOAD BALANCER
An IoT scenario is considered where data arrives from sensor
nodes and is aggregated at a load balancing gateway. This
IoT load balancer then forwards the data to the backend
cloud servers according to some load balancing strategy. This
IoT load balancer may be the performance bottleneck of the
IoT architecture [25] and we can model it as a single server
queueing system, e.g., to dimension the load balancer. An
appropriate model is an M/GI/1 waiting queue [3], for which
analytical formulas are well known and used here to produce
numerical results. IoT messages arrive at the load balancer
at rate λ and are served at rate µ. The mean service time to
process a single message is E[B] = 1/µ. The offered load
and the utilization of the load balancer is ρ = λ/µ which
is the key quantity defining the waiting time of messages in
the queue before they are served. The system is stable when
λ < µ (ρ < 1). The variance of the service time is described
by the coefficient of variation cB .

1) Scalability over the Entire Parameter Range
It is well known that a waiting system is not scaling if the
load gets close to 1. Then, the system is not stable anymore
and waiting times get bigger and bigger, thus for ρ → 1, the
expected waiting times are E[W ] = ∞. The average waiting
time is as follows, see, e.g., [3].

E[W ] = E[B]
ρ(1 + c2B)

2(1− ρ)
(28)

Figure 7 plots the expected waiting time (the target mea-
sured) depending on the load (the parameter under investi-
gation x = ρ). We compare it to a linear reference system
with h(ρ) = ρ. For ρ > 0.5, the IoT load balancer has a
worse performance in terms of expected waiting time than
the linear system. The strong decay indicates that the system
gets unstable when approaching ρ = 1.

Let us formally analyze that a waiting system is not scaling
if the load gets close to 1. We are interested in analyzing
scalability with respect to the expected waiting time, a linear
reference system with h(x) = x and we consider the entire
parameter range X = [0; 1]. Then, the integral measurement
diverges: F =

∫
X f(x) dx = ∞ with f(x) = E[W ]. Hence,

the scalability index is SI = H/F = 0.

2) Weighting the Parameter Range
In practice, additional mechanisms like admission control
may be implemented to guarantee that the load is below 1,
e.g., ρ ≤ 0.8 such that the expected waiting time is below
a certain threshold and service-level agreements (SLAs) can
be met. Therefore, we limit the parameter range accordingly.
Figure 8 shows the integral measurement of the IoT load bal-
ancer and the linear system, while the considered parameter
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FIGURE 7: IoT load balancer – Linear scalability wrt. mean
waiting time of messages normalized by message processing
time. Deterministic message processing times are assumed.

range of the scalability analysis is [0; ρ]. We observe that the
integral measurementH of the linear system is slightly above
the integral measurement F of the load balancer when the
load is below 0.68. At the intersection point ρ∗ ≈ 0.68, the
integral measurements are identical and SI = 1.

FIGURE 8: IoT load balancer – Integral measurement over the
parameter range [0; ρ] for the IoT load balancer and the linear
system regarding the mean waiting time of messages.

It is important to understand that the performance of the
IoT load balancer is worse than the linear system at the load
ρ∗. However, the scalability index considers the entire range
of parameter settings, i.e. ρ ∈ [0; ρ∗]. Over the entire range,
the accumulated expected waiting times are identical for both
systems and the scalability behavior is the same, i.e. SI = 1.
This is also visualized in Figure 9.

In general, it is important to consider the parameter range
of interest to draw conclusions. Furthermore, the importance
of the particular parameter settings may be adjusted. For
example, with higher offered load, more IoT sensors and their
messages are fed to the cloud. Therefore, this scenario and
higher loads may be more important in the evaluation (’high
load importance’). On the other hand, this load situation may
not be so relevant in practice, since it does not occur with high
probability. Assume a scenario where the less the load, the

FIGURE 9: IoT load balancer – Scalability index over the pa-
rameter range [0; ρ] with respect to linear function h(ρ) = ρ
and mean waiting time of messages.

more likely the scenario occurs. Accordingly, the parameter
weights may be adjusted (’load and medium load’). If such
weights are unknown, then all parameter settings should be
equally weighted (’equal importance’). Figure 10 indicates
the scalability index for those three different scenarios. The
resulting scalability index depending on the upper parameter
x1 = ρ to be considered in the integral measurement is visu-
alized. We see similar behavior for the three different weight
functions. Nevertheless, with low and medium load having
a higher importance, the SI is higher, e.g., when considering
the parameter range [0.1; 0.9], the SI is 0.73, 0.57, 0.45 for
low load, equal, high load importance, respectively.

FIGURE 10: IoT load balancer – Scalability index over a
weighted parameter range [0.1; ρ] with respect to linear func-
tion h(ρ) = ρ and mean waiting time of messages. Three
different scenarios are considered: low and medium load
importance (w(x) = 1/x), equal importance of all parameter
settings (w(x) = 1), high load importance (w(x) = (x +
1)4).

3) Stochastic Scalability
Instead of considering how the system scales with respect to
load, it may also be interesting to analyze the scalability in
terms of variance of the service process due to different IoT

14 VOLUME 12, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3314201

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Hossfeld et al.: Comparing the Scalability of Communication Networks and Systems

message sizes. To this end, the coefficient of variation cB
of the service demand (i.e., message size) is considered as
the parameter under investigation in the scalability analysis.
Hence, the stochastic scalability of the IoT load balancer
is investigated. Figure 11 shows the expected waiting time
depending on cB .

FIGURE 11: Stochastic scalability of the IoT load balancer –
Expected waiting time of the IoT load balancer for varying
service demands, expressed as coefficient of variation cB
of the service time of a single IoT message. The expected
waiting time is normalized with the mean service time
E[W ]/E[B].

The scalability analysis uses the best case as a reference
system H, i.e., deterministic service times (cB = 0), and
considers the expected waiting time over the coefficient of
variation in the range [0; 2.0]. The resulting scalability index
is SI = 0.43 for any load ρ.

F =

∫ x1

x0

E[B]ρ
2(1−ρ) (1 + c2B) dcB =

14

3
E[B]ρ
2(1−ρ)

H =

∫ x1

x0

E[B]ρ
2(1−ρ) (1 + 02) dcB = 2 E[B]ρ

2(1−ρ)

SI = H/F =
6

14
≈ 0.43

4) Different Target Measures: Mean, Quantile, Probability
So far, we have changed the parameter range, the parameter
weights, and the reference system. Next, we consider differ-
ent target measure functions. Instead of looking at average
waiting times, the α%-quantile qα of the waiting times or the
probability wy that the waiting time is below y = 100ms are
considered, which may be more relevant SLAs in practice.

We assume that the server operates with exponentially
distributed service times (M/M/1-∞). Then, the cumulative
distribution function of the waiting time is

W (t) = 1− ρ · e−(1−ρ)µt (29)

and the α%-quantile follows as

qα = −
log( 1−α

ρ )

(1− ρ)µ
. (30)

With exponentially distributed service times (cB = 1), the
expected waiting time is

E[W ] = E[B] · ρ

(1− ρ)
. (31)

Those different key characteristics may be considered as
SLAs and are depicted in Figure 12 depending on the system
load.

FIGURE 12: IoT load balancer – Different SLAs are now
considered in the scalability analysis.

In the scalability analysis, we consider those SLAs as
different target measures over the range [0.1; 0.9] with equal
weights. However, the question arises what is a good ref-
erence system. To this end, we define the reference system
to always operate like the original IoT load balancer at load
ρ = 0.5, see the dashed lines in Figure 12. For all target
measures, the SI is below 1. Thus, the original system is less
scalable than the reference system. In particular, the SI is
SIE[W ] = 0.5726, SIq0.99 = 0.7016, SIW (2E[B]) = 0.9239,
respectively.

5) Economy of Scales – Bundling Servers
The term “economies of scale” is well known in the analysis
of queueing systems and refers to the fact that larger-scale
operation has advantages over smaller ones. In the particular
use case of the IoT load balancer, there may be several load
balancers which are independently operating. Let us assume
that there are n independent load balancers, i.e., a single
processing unit operating with service rate µ and a single
waiting queue for each of the n load balancers. The arrival
rate of requests to each of the n load balancers is λ.

Bundling all the n independent load balancers into a single
one results in a single entity with n processing units, but a
single waiting queue for all incoming requests. This single
entity then needs to serve all requests, i.e. n · λ. Economies
of scale means that the bundled servers will result in a
better performance like the waiting probability of incoming
requests or the expected waiting time.

However, we are interested in quantifying the scalability of
the bundled servers, which is modeled as M/M/n-∞ waiting
queue. Formulas for the expected waiting time E[W ] or
the probability pW that a request has to wait (known as
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Erlang-C formula) are given in literature, see e.g., the Python
implementation for the numerical calculation of the M/M/n-
∞ in [3].

Figure 13 shows the scalability index depending on the
number of bundled servers. If all IoT load balancers are
operating independently (n = 1), the scalability index is only
0.3. Bundling the servers increases the scalability and the SI
reaches 1 for the reference system.

FIGURE 13: Economies of scales of the IoT load balancer –
The scalability analysis uses as reference system an M/M/16
waiting queue with n processing units, service rate µ per unit,
arrival rate nλ. As target measure, the waiting probability
and the expected waiting time are considered. The parameter
under investigation is the load over the range [0.1; 0.9].

6) High-Performance Server vs. Commodity Servers
Note that Figure 13 also shows the results to answer if it is
better to have a single high-performance server or n servers
bundled. The high-performance server operates at a rate µ
and serves an arrival rate λ. When having n servers with less
performance µ/n, the same total service rate is achieved.
However, with several smaller servers bundled into one en-
tity, the head-of-line blocking is reduced in comparison to
the single high-performance server.

In Section V-A5, bundling servers means increasing the
arrival rate nλ with service rate µ per processing unit. Thus,
the offered load is nλ/µ and the utilization per processing
unit is λ/µ. Here in Section V-A6, the high-performance
server has a service rate µ and serves an arrival rate λ, while
the low-end servers have a service rate µ/n and serve the
same arrival rate λ. Hence, the offered load is nλ/µ and the
utilization per processing unit is λ/µ. Thus, we get the same
results.

B. AVAILABILITY IN A COMMUNICATION SYSTEM
1) System Structures / Topologies
Communication systems have by design different physical
(and logical) topologies and structures, e.g., given by the
trade-off between the cost of network elements and the
required system availability. The availability of connected
peers will depend on the grade of redundancy provided in

the physical structure available. In this example, we define
four topologies with n (network) nodes:

(1) Bus topology (serial): a serial structure with no redun-
dancy for the connected peers, and with only one peer-to-
network link per peer, and n 9 1 intermediate links.
(2) Ring topology (serial-parallel): a serial structure in two
parallels which provides two node disjoint redundant paths
for the peer to peer connection between X and Y .It has two
peer-to-network links per peer, and n 9 2 intermediate links,
see Figure 14 for an illustration.
(3) Ring topology with cross-connects (parallel-serial): two
component parallels in a serial structure, which provides n
non-disjoint redundant paths for the peer to peer connection
between X and Y .It has two peer-to-network links per peer,
and 2(n 9 2) intermediate links, see Figure 15 for an illustra-
tion.
(4) Parallel topology (parallel): a parallel structure with n
node and link disjoint redundant paths for the connected
peers, with n peer to network links, and no intermediate links.

The parallel structure has the best system availability and
will be used as a reference system for the system availability,
but is regarded as too expensive to be a practical alternative
because the number of peer-to-network links (access links)
increases with the network size. To reflect the cost of the
alternatives, we add cost related to the number of links
required in a network of size n nodes in the four different
cases.

1
3

4
2 n

n-1

X Y
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FIGURE 14: System structures and Reliability Block Diagrams
(RBD) for serial-parallel structure.
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<latexit sha1_base64="cp/2DPYLbh7DIuy69DWO6K9GTjo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKxhbaUDbbTbt0swm7E6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LR7dRvPXFtRKIecJzyIKYDJSLBKFrJp71cTXrVmlt3ZyDLxCtIDQo0e9Wvbj9hWcwVMkmN6XhuikFONQom+aTSzQxPKRvRAe9YqmjMTZDPjp2QE6v0SZRoWwrJTP09kdPYmHEc2s6Y4tAselPxP6+TYXQd5EKlGXLF5ouiTBJMyPRz0heaM5RjSyjTwt5K2JBqytDmU7EheIsvL5PHs7p3Wb+4P681boo4ynAEx3AKHlxBA+6gCT4wEPAMr/DmKOfFeXc+5q0lp5g5hD9wPn8ADQ6O3A==</latexit>an

<latexit sha1_base64="ECyIEt8nHucbpzsHXzufPerOP44="></latexit>an91

FIGURE 15: System structures and Reliability Block diagrams
for parallel-serial structure.

In Figures 14 and 15, the serial-parallel and parallel-serial
systems are shown with their corresponding reliability block
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diagrams (RBD). From the RBDs, the system availability of
the four system structures can be determined:

As(n, a) = an (serial)

Asp(n, a) = 1 9 (1 9 an/2)2 (serial-parallel)

Aps(n, a) = (1 9 (1 9 a)2)n/2 (parallel-serial)
Ap(n, a) = 1 9 (1 9 a)n (parallel)

where n = 2, 4, 6, · · · is the number of nodes, and a is the
(homogeneous) node availability.

The costs of the two peer-to-network links and the cost (c)
for each of the n intermediate links are considered for each
topology:

cs(n) = (2ca + (n− 1)c) (serial)
csp(n) = (4ca + (n− 2)c) (serial-parallel)
cps(n) = (4ca + 2(n− 2)c) (parallel-serial)
cp(n) = (2nca) (parallel)

2) Scalability Index: System Availability as Target Measure
We want to study the scalability of the different structures. In
this example, we focus on how the system availability scales
with fixed node availability, a, when the number of nodes, n,
increases in the range (n0, n1). The target function is system
availability, Ai(n, a). We define the parallel system as our
reference system, and the other three as target systems.

The scalability index is then

SIi(n|a) = Fi/H = Ai(n|a)/Ap(n|a) (32)

where i = s, sp, ps, and

Ai(n|a) =
n∑

k=2

Ai(k, a)

Figure 16a shows the SI wrt. system availability and
assumes a node availability a = 0.95 and the number of
nodes in the range n ∈ (2; 4000). Concerning the system
availability, the parallel structure is optimal. Individual nodes
may fail, still the communication is possible over other
nodes. As expected, the parallel-serial is second best. The
serial structure is the worst when considering the system
availability and achieves the lowest SI.

3) Scalability Index: Costs as Target Measure
The system availability of the parallel structure results how-
ever in much higher costs. Therefore, we consider now the
scalability wrt. costs of the different structures. The serial
structure is the optimal one regarding costs and used as a
reference system. The link costs are ca = 2c with c = 1,
i.e., the access links have double the cost compared with the
intermediate links. We see significant differences of the SI
for the structures wrt. costs, see Figure 16b.

Furthermore, we recognize that the ranking of the struc-
tures changes when considering system availability and costs.
Depending on the target measure, the decision which topol-
ogy to use in practice may vary. In general, the target measure

(a) Target measure is system availability. Parallel structure is
optimal with respect to system availability.

(b) Target measure are costs. Serial structure is optimal with
respect to costs.

FIGURE 16: Scalability index for different network topologies
in communication networks, depending on the number of
nodes n ∈ (2;n1) with node availability a = 0.95. The
reference system is the optimal one wrt. target measure and
plotted as a dashed line.

of interest determines the scalability index. As we have seen,
a system may scale with respect to one measure (here: system
availability), but not for another measure (here: costs).

4) Scalability of Structures: Combing Availability and Costs
In practice, we may want to consider both, system avail-
ability and costs, to decide which topology to use regard-
ing their scalability. There are several approaches how to
tackle this multi-objective problem, e.g., Pareto optimization
approaches and exploration strategies of the Pareto front,
e.g., multi-objective ranking methods, e.g., the weighted sum
method by converting the multi-objective problem into a
single objective problem by linearly combining the objectives
with weights, e.g., the constraint method by introducing
constraints that reflect the importance of each objective.

For the scalability analysis of structures, we follow here
Kleinrock’s approach [24] and use the so-called Power metric
ψ as a transformation into a one-dimensional utility metric.
The power metric is the ratio of ‘goodness’ (i.e., system avail-
ability) divided by ‘badness’ (i.e., costs). Then, higher values
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of the power metric indicate a better system with respect to
system availability and costs. Thus, we are combining system
availability and costs appropriately and use the power metric
in the scalability analysis.

ψi(n, a) = Ai(n, a)/ci(n) (power metric) (33)

As reference system, we use the parallel structure H and
the corresponding integral reference measurement H . The
scalability index is then

SIi(n|a) = H/Fi = Aw
p (n|a)/Aw

i (n|a) (34)

where i = s, sp, ps, p, and

Aw
i (n|a) =

n∑

k=2

ψi(k, a) =

n∑

k=2

Ai(k, a)/ci(k) .

In other words, we are weighting the target mea-
sure Ai(k, a) in the integral measurement with a weight
wi(k, a) = 1/ci(k). Thus, a weight function wi(n) is added
to each structure to reflect the cost (ca) of the two peer-to-
network links and the cost (c) for each of the n intermediate
links:

wi(n) = 1/ci(n) (weight)

The integral measurement of the reference is also weighted
with the costs of the reference structure:

H = Aw
p (n|a) =

n∑

k=2

Ap(k, a)/cp(k) .

Thus, the scalability analysis with Kleinrock’s power met-
ric as target measure is the same as the scalability analysis
with system availability as target measure, but weighted with
the inverse of the cost function.

In Figure 17, SIi(n|a) from Eq.(34) is plotted for i =
s, sp, ps, for node availability, a = 0.95 and a = 0.99, and
number of nodes in the range n ∈ (2; 400) and n ∈ (2; 400).
Again, the link costs are ca = 2c with c = 1, i.e., the access
links have double the cost compared with the intermediate
links.

The plots in Figure 17 show that all structures scale better
than the parallel due to the cost of access links relative to
the intermediate links when the node availability is high,
a = 0.99. For lower node availability, a = 0.95, parallel out-
ranks (crosses 1) the others, first serial, then serial-parallel,
and finally parallel-serial. For a = 0.95, the serial structure
scales best in the range (2; 16), and in the range (16; 210)
the serial-parallel, and then the parallel-serial. Observe that
even the serial scales better than the parallel in (2; 270). For
a = 0.95, the same is observed; serial scales best in (2; 70),
serial-parallel in (70; 4000), but now all scales better than the
parallel structure.

The main observation is that the scalability index as de-
fined in this section gives can be useful to gain insight in how
to structure the network when it is expected that the number
of nodes will grow. The index used here takes both the cost
of links (and distinguished between access and intermediate
links), the node availability, and the system availability that
is provided.

(a) Node availability a = 0.95.

(b) Node availability a = 0.99.

FIGURE 17: System availability scalability of n ∈ (2;n1) with
node availability a = 0.95 and a = 0.99, respectively.

C. LOCATION SELECTION FOR FOG NODE
DEPLOYMENT

As a concrete example from literature how to use the SI to
compare the scalability of different solution approaches, the
location selection for fog node deployment and routing in
SDN-based wireless networks for IoT systems is investigated
[26]. The interesting aspect of that use case is that we need to
consider two different target measures, which are the average
end-to-end delay as well as the energy consumption. The
scalability of both aspects is thereby investigated for three
different solution approaches.

The fog computing architecture involves relocating ser-
vices such as computing, processing, and storage from the
centralized cloud to the network edge or nearby devices,
where these services are deployed. [26] introduces a novel
approach called “Scalable and Optimal Near-Sighted Loca-
tion Selection” (SOSW) to address two key issues in fog
computing architecture with software-defined networking
(SDN). (i) Fog nodes are strategically deployed for optimal
performance. (ii) A new heuristic-based traffic engineering
algorithm computes the best paths for data flows based on
constraints like end-to-end delay and link utilization, which
are deployed in an SDN environment. The goal is to minimize
both the energy consumption and end-to-end delay of IoT
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devices during task offloading.
The more fog nodes are deployed, the better the perfor-

mance measures. Nevertheless, increasing the number of fog
nodes comes with a significant cost, making it preferable to
achieve optimal performance using a limited number of these
nodes. For a given number of IoT nodes, the scalability of the
SOSW solution is therefore investigated in terms of end-to-
end delay, averaged over the number of tasks to be offloaded,
and the energy consumption of the IoT nodes. Therefore, the
scalability index is computed for both target measures. As
parameter, the number of tasks is considered, which is varied
from 100 to 1000. Equal weights are selected for the entire
parameter range. As reference function, we consider linear
scalability with the suggested linear functions in Figure 18.

Figure 18a shows that the suggested heuristic even leads
to a better scalability index than the reference system with
SI = 1.03 > 1. However, the shape of the SOSW curve
is not following a linear curve. It has to be noted that the
scalability index only considers the parameter range of in-
terest with the corresponding weights. Hence, for computing
the SI, the parameter range of interest must be specified and
the corresponding target measure (here: end-to-end delay)
must be known. Otherwise, some prediction curves of the
end-to-end delay need to be assumed to compute the SI for
larger parameter range and a larger number of tasks. A power
law prediction of the delay curve is provided in Figure 18b.
Now, we want to investigate the parameter range from 100
to 1200 tasks. While the measurement points are taken from
100 to 1200 tasks, the predicted delays are used for 1100
and 1200 tasks. Now, the SI is only 0.74 indicating that the
system is not scaling linearly over the parameter range up to
1200 tasks. This example again demonstrates the importance
of setting the relevant parameter range for the scalability
investigation.

Figure 18a also shows two other approaches from literature
[27]: (a) the random offloading random path (RORP) model,
(b) the delay-aware greedy path (DGP). Their scalability
index is provided in the legend in relation to the linear
reference system. Considering the scalability of the delay,
the SOSW heuristic demonstrates significant improvements
over the two existing methods. Hence, we may conclude that
SOSW scales linearly and better than DGP and RORP, which
have SI values smaller than the SI of SOSW.

We may also directly compute the SI when using an-
other system as reference. Each row in Table 3 com-
putes the scalability index for different reference systems
(as indicated in the columns). For example, the SI of
SOSW with DGP as reference is SISOSW,DGP=1.20. The
SI of DGP with SOSW as reference system is the inverse:
SIDGP,SOSW=1/SISOSW,DGP=1/1.20=0.83. However, this is
not required, since we may simply compare the SI of SOSW
and DGP in comparison to the linear reference system:
SISOSW,lin.=1.03 and SIDGP,lin.=0.85. The SI shows that
SOSW outperforms DGP. The corresponding SI follows di-
rectly: SISOSW,DGP=SISOSW,lin./SIDGP,lin.=1.20. In practice,
we are typically interested in linear scalability, i.e., a linear

(a) Average end-to-end delay.

(b) Average end-to-end delay with prediction.

(c) Energy consumption.

FIGURE 18: Example of location selection for fog node deploy-
ment and routing in SDN-based wireless networks for IoT
systems. The data is taken from [26]. In addition, the SI is
computed for different approaches with respect to a linear
reference system. As target measures, energy consumption
as well as the average end-to-end delay are considered. The
parameter range is equally weighted.
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TABLE 3: Fog computing example: The SI is computed for
any combination of the different approaches (SOSW, DGP,
RORP) and the linear reference.

SI wrt. delay using reference system
SOSW DGP RORP linear rank

SOSW 1.00 1.20 1.30 1.03 1
DGP 0.83 1.00 1.08 0.85 2
RORP 0.77 0.93 1.00 0.79 3
linear 0.97 1.17 1.27 1.00 ref.

SI wrt. energy using reference system
SOSW DGP RORP linear rank

SOSW 1.00 1.13 1.26 0.84 1
DGP 0.89 1.00 1.11 0.75 2
RORP 0.80 0.90 1.00 0.67 3
linear 1.19 1.34 1.49 1.00 ref.

reference function, and then a ranking of the methods. Hence,
the computation of the SI as indicated in the legend of
Figure 18a is sufficient.

Similarly, other target measures may be investigated in
terms of scalability. Figure 18c shows the energy consump-
tion of the IoT nodes depending on the number of tasks for
the different approaches and a linear reference system. Now,
the scalability of the SOSW is not linear when compared
with an appropriate linear system (SI<1). This is caused by
a certain amount of energy consumption in idle mode or
when the load in terms of number of tasks is low. Hence,
we get different conclusions when using different target
measures, as already discussed in Section V-A4 for the IoT
load balancer. In the fog computing example, the energy and
delay scalability lead to the same ranking of the approaches,
see Table 3. The next example will show that also the ranking
may change itself depending on the measure of interest.

D. NUMBER OF SUPPORTED FLOWS IN TSN
As a final use case, time sensitive networking (TSN) is
considered with two different mechanisms, that are the IEEE
802.1Q strict priority transmission selection algorithm (SP)
[28] and the IEEE 802.1Qcr Asynchronous Traffic Shaping
(ATS) mechanism [29]. The scalability analysis is based on
measurement results, for which the parameter values are not
evenly spaced. Such a situation may happen in practice, when
comparing the scalability of an own system with another sys-
tem, where only limited measurement results are available.

An IEEE 802.1Q Strict Priority switch supports different
traffic classes and uses a FIFO transmission selection algo-
rithm for all data frames within the same queue (i.e., traffic
class). [30] shows that deterministic latency with priority
queuing is feasible without the need for network-wide infor-
mation or reshaping and timed gates in the SP forwarding
devices. The mechanism relies on a resource reservation
process that communicates necessary information for the
resource reservation of each stream along its path, e.g., based
on the resource allocation protocol (RAP) developed in IEEE
802.1Qdd [31] which provides stream reservation and quality
of service capabilities.

In contrast, the ATS mechanism deploys a per-hop re-
shaping of streams based on IEEE standard draft P802.1Qcr
in an ATS switch. To be more precise, ATS applies per-
stream leaky bucket shaping with interleaved queuing to
keep the burstiness of streams low. The ATS and the SP
mechanism are proven to guarantee latency bounds with a
proper reservation protocol [30], [32].

An evaluation of the impact of SP and ATS on stream
reservations is provided in [30]. In the experiments, a varying
number of streams is deployed with different traffic char-
acteristics for low-priority and high-priority traffic. A new
stream attempts to reserve network resources, but if the new
stream reservation leads to violations of any delay guarantees
for any stream in the network, the new stream is declined.
Otherwise, the new stream is accepted.

Figure 19a shows the number of deployed streams de-
pending on the number of requested stream reservations. The
study involves conducting multiple experiments with various
configurations of attempted reservations. These configura-
tions range from 100 to 2000 streams, with four different
steps in between. For each of these configurations, 20 rep-
etitions are conducted, each time using random stream traffic
specifications. Figure 19a shows the average numbers of
accepted reservations for ATS and SP. It can be seen that ATS
could accept more streams than SP and is therefore preferred.
However, an ATS switch is more complex than an SP switch,
which is a lightweight solution that is available in current
switches. Note that SP and ATS guarantee the upper delay
bounds for the traffic of the different classes (which are low-
and high-priority traffic in the numerical example).

The question arises how to compute the scalability index.
We use as a reference system the optimal system, i.e., the
number h(x) of accepted and deployed streams is the number
x of requested streams: h(x) = x. The parameter range x is
from 100 to 2000. The measurement points are discrete and
not evenly spaced. Instead, we have the measurement values
for the parameter x ∈ {100, 200, 500, 2000}.

In general, we may have n measurement values and there-
fore tuples (xi, yi) for i = 1, . . . , n. Then, the SI can
be computed by a piecewise linear function between the
measurement points. The area under that function is

Ây =

n∑

i=2

(xi − xi−1)yi−1 +
1

2
(xi − xi−1)(yi − yi−1)

=
1

2

n∑

i=2

(xi − xi−1)(yi + yi−1) (35)

for the parameter range x ∈ {100, 2000}. In our example, the
area Ah under the reference function h(x) = x is

Ah =
1

2
xnyn − 1

2
x0y0 (36)

and the SI is

ŜI = Ây/Ah . (37)
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(a) Number of deployed streams for ATS and SP, respec-
tively.

(b) Scalability index for ATS and SP, respectively.

FIGURE 19: Time sensitive networking (TSN) using the strict
priority (SP) and the asynchronous traffic shaping (ATS)
mechanism, respectively. The experimental results are taken
from [30] for two different traffic classes with the following
delay guarantees: δhigh = 2ms, δlow = 8ms.

Note that a piecewise linear function fitting f(x) leads to the
same area

Ay =

xn∑

x=x1

f(x) = Ây (38)

and consequently the same SI.
Figure 19b visualizes the piecewise linear function be-

tween the measurement points and provides the scalability in-
dex using the computation of the area in Eq.(36) and Eq.(38).
The scalability of the ATS mechanisms is SIATS/SISP =
1.36 times better than the scalability of the SP mechanism.
The relation of the SI values simply means to compute the SI
of a system with respect to another system, but without ex-
plicitly defining a reference system like the optimal system.
This is a very useful feature of the SI in practice.

In general, there may be system F and G with the corre-
sponding integral measurement F and G, respectively. Then,
the scalability index SIHF and SIHF can be computed based

on a reference system H and integral measurement H .

SIHF =

(
F

H

)γ

SIHG =

(
G

H

)γ

(39)

The relation of these two SI values is however the SI of the
F using G as reference system.

SIGF = SIHF /SI
H
G =

(
F

H

)γ

/

(
G

H

)γ

=

(
F

G

)γ

(40)

Thus, the scalability improvement or deterioration of F in
relation to G is quantified by the SI relation.

VI. CONCLUSIONS AND DISCUSSIONS
Scalability is often mentioned in literature, but a stringent
definition is missing. In particular, there is no general scal-
ability assessment which clearly indicates whether a system
scales or not or whether a system scales better than another.
Furthermore, it is often unclear what is meant by statements
like “A system scales.” To this end, we survey literature
and differentiate scalability from aspects like performance,
efficiency, elasticity.

A. KEY CONTRIBUTIONS
The key contribution of this paper is the definition of a “gen-
eral scalability index” that generalizes existing approaches
from the literature, which are a special case of ours. Our
general framework allows quantifying whether a system or
communication network is scaling in comparison to a ref-
erence system. This also allows, e.g., a comparison with an
optimal system or benchmarking systems and ranking them.
With our numerical results, we demonstrate the use of the
scalability index and emphasize the relevance of the key
components of the scalability index, which are as follows.
(1) The system function (or target measure function) quanti-
fies the target measure of interest for the system, depending
on a certain parameter. The researcher needs to link the scal-
ability question about an appropriate target measure. Diverse
target measures can yield varying outcomes regarding the
scalability of a system in practical scenarios. Defining the
target measure, such as considering SLAs, is crucial and
should be prioritized as the initial step in assessing system
scalability. By modifying the system function, it becomes
possible to analyze additional aspects, such as stochastic
scalability. This opens up new opportunities for examining
the system under probabilistic scenarios.
(2) A reference system is used for comparison with the
system under test. The reference system serves as a bench-
mark for comparing and evaluating two or more systems.
It provides a standard against which the target measure of
the systems can be measured. Often, the ideal system serves
as a desirable benchmark; however, it may not always be
achievable or known in real-world applications. In practice, a
typical question is to investigate if the system scales linearly.
Then, the reference function is a linear function. Still, the
slope and offset of such a linear function needs to be deter-
mined.
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(3) The analysis of scalability needs to consider all relevant
parameter settings. Scalability means not just the ability to
operate, but to operate efficiently and with adequate quality
of service, over the given range of configurations. Thus,
the scalability index must consider the parameter range of
interest to draw conclusions.
(4) By weighting the importance or relevance of a param-

eter setting or configuration, the quantification of scalability
results in an integral measurement of the (weighted) target
measure over the entire parameter range.

B. LESSONS LEARNED FROM THE USE CASES
The use cases for demonstrating the SI are an IoT load
balancer, availability in communication systems, node selec-
tion in fog computing, and benchmarking of TSN mecha-
nisms. They differ in the parameter range (continuous load
of IoT balancer, discrete number of nodes, number of fog
computing tasks, number of requested TSN streams), the
goodness indicator (response times, availability, costs, delay,
energy consumption, deployed TSN stream), and the focus of
the scalability analysis (functional and stochastic scalability,
structure of networks, combination of availability and costs,
benchmarking of existing fog computing or TSN mecha-
nisms).

The use case of availability in communication systems
demonstrates that the scalability index can be useful to gain
insight in how to structure the network when it is expected
that the number of nodes will grow. The scalability of the
system differs depending on the target measure (availabil-
ity, costs), which are mutually contradicting. Therefore, it
is shown how to combine different target measures with
the power metric or using costs as weights. It is important
to understand that the scalability index and the scalability
analysis change depending on the target measure of interest.
In our example, the parallel system scales wrt. availability,
but not wrt. costs.

For the use case of an IoT load balancer, our results
show how the scalability index helps to quantify aspects
like “economies of scale”, i.e., larger-scale operation has
advantages over smaller ones. Bundling the servers increases
the scalability, as quantified by the scalability index. It also
allows quantifying how much better it is to have a single
high-performance server or smaller servers bundled.

The fog computing use case shows how to benchmark
different mechanisms concerning their scalability. Thereby,
the results show linear scalability of one approach. This
means that the system behavior in terms of delay as target
measure of a linear system is similar to the mechanism under
investigation. The performance curve shows however that the
curve is following an exponential increase instead of a linear
one. It is important to understand the scalability index needs
a defined parameter range of interest. If it is expected that the
system may also need to cope with larger parameter values
(number of tasks) in the future, then the performance curve
needs to be extended to the entire (future) parameter range.
This may be done based on predictions.

We clearly want to mention that the scalability index is
computed for a system where the behavior is known. This
means the target measure function must be known or esti-
mated for future developments. This is the required input
for the integral measurement. In other words, the scalability
index of a deployed system is constant. If the system is
changed, after it is built (e.g., by adding more resources), then
the scalability index must be re-computed, since this would
change the target measure function. If the system behavior is
unknown, then the scalability index cannot be computed.

Finally, the TSN use case shows how to deal with un-
equally spaced measurements and limited configurations
under test. Piece wise linear functions may be used, if
no more system knowledge and more fine-grained target
measure—parameter curves are available. For benchmarking
different mechanisms, we may use the optimal reference
system. Then, the SI relates the scalability of a mechanism to
the optimal system and the absolute value of the SI provides
meaningful insights. Similarly, linear systems (i.e., linear
target measure functions) as reference allow quantifying to
which degree a system linearly scales.

The comparison of two mechanisms means to compute the
SI for one system in relation to another system. The relation
of the two SI values shows how much better a system scales
in comparison to another.

C. PRACTICAL GUIDELINES AND LIMITATIONS
For the scalability analysis of a system, there are a couple
of aspects to be considered in practice. We provide some
practical guidelines by revisiting the ingredients of the SI.

The target measure: The system function quantifies the
system behavior depending on a certain parameter and the
desired target measure of interest. This system function is
the input for the integral measurement of the SI. In practice,
several target functions may be of interest, e.g., delays or
energy consumption. Then, it is recommended to compute
the SI for all the interesting target functions. This gives a
detailed understanding how the system scales in different
dimensions. If there is the possibility to combine some target
measures into a single-dimensional utility function, then the
SI regarding that utility function as target measure function
may lead to different results and conclusions. Kleinrock’s
power metric or appropriate weighting functions, e.g., for
costs, are recommended and may give advice, which systems
are scaling better in practice.

The parameter range: The scalability analysis requires
a defined parameter range to be investigated. The parameter
range may also be unbounded, but the system function, which
is the target measure depending on a certain parameter over
the entire range, is the necessary input for the SI computa-
tion. In practice, only limited information, how the system
behaves, may be known for extended parameter ranges, e.g.,
future system size and more nodes in a future system. The
SI computation must get the system function as input. If the
system behavior is not known for the parameter range of in-
terest, then the SI cannot be computed. However, in practice,
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interpolation of measurement points, e.g., piecewise linear
functions, as well as prediction of future system behavior are
possibilities how to obtain the system function.

The weighting function: The weighting function gives a
powerful way how to include additional aspects like the im-
portance of parameter / configuration settings, the probability
for such settings, or the costs resulting from such settings.
The weighting function requires deep expert knowledge of
the system, e.g., costs may be difficult to measure or to esti-
mate in practical environments. If not known, all parameter
settings should be treated equally, i.e., same weight.

The reference system: : If the optimal system behavior is
known, the optimal system should be defined as a reference
system. The SI shows then how far a system is away from
the optimal system. In practice, the optimal system is often
unknown or too complex to be derived. Linear reference
functions are a proper mean to test for linear scalability,
which is a key comparison in practice. Still, a proper linear
function needs to be considered, see Section III-C. However,
knowledge in the domain or expert knowledge of the system
allows defining the slope as well as the constant offset of the
linear function. The offset may be derived from the system
in idle mode. The slope may reflect the desired or acceptable
behavior of the system.

However, we want to emphasize that the scalability anal-
ysis provides a framework to compare two different systems
F and G. Then, the scalability index can be computed with
a linear system as reference. Then resulting SI values of F
and G provide then a ranking, independent of which reference
system is used. The relation of the two SI values shows the
scalability improvement or deterioration of F in relation to
G, see the TSN example in Section V-D. For benchmarking
of two or more systems, the SI can be directly computed
by just using the system functions of F and G, see also the
fog computing example and Table 3. Thus, benchmarking of
two systems does not require a reference system – and is
the primary target of our SI framework. Probably most often
used in practice is the scalability comparison of a system with
another similar system. Only in case there is no comparison
targeted, we use a reference system for the computation of
SI.

In practice, additional issues may arise. To account for
situations where the system may not function correctly with
specific parameter settings or configurations, it is crucial to
incorporate this information into the target function. Addi-
tionally, the relevance or importance of such scenarios can
be adjusted using a weighting function. This ensures that
the scalability evaluation captures the impact of problematic
parameter settings or configurations appropriately.

If we compute the scalability index of a deployed system,
then the SI is constant. If the system is changed, after it is
built (e.g., by adding more resources), then the scalability
index must be re-computed, since the system function is
changed. If that system function is not known, the SI cannot
be computed. As discussed above, predictions or interpola-

tions may be useful in that case. This also means that the SI
will remain unchanged, i.e., constant, when a system is not
changed.

In general, the SI measures the potential of a system to
scale. If the system scales up/down over time, then this
must be captured in the system function. Hence, aspects like
elasticity are part of a scalability analysis.

Knowing how the system works and the system functions
are a prerequisite for calculating the SI. If we have a black
box system at hand, then we need to learn the system be-
havior to derive the system function. This may be done via
experiments in a test bed or via simulations, or alternatively,
we can do some stress tests with the running system if possi-
ble. In practice, we typically want to compare a system with
another similar system. If no other system for comparison is
available, we can compare to a linear or optimal system.
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