

MBSE Assisted Functional Failure Modes

and Effects Analysis for Laser Interferometer

Space Antenna (LISA) Mission

Master’s Thesis

Thesis work to obtain the degree of

M.Sc. Aerospace

at the School of Engineering and Design at the Technical University of

Munich.

Submitted by Hakan Yanık

Student ID: 03742436

Submitted on 19.05.2023 in Munich/Germany

Supervised by Prof. Dr. Phil. Alessandro Golkar

 TUM - Chair of Pico and Nano Satellites, and Satellite Constellations

 Dipl. Ing. Tobias Ziegler

 Airbus / Space Systems - Mission & Satellite Chief Engineering Germany

Advisors Christian Greve, Dr. rer. nat.

 Jacopo Aurigi, M.Sc.

 Jaspar Sindermann, M.Sc.

2

Dedicated to my hero and role model,

 Mustafa Kemal Atatürk

“Science is the most real guide for civilisation, for life, for success in the world. To search for a guide
other than science is absurdity, ignorance and heresy.”

…for the Young Generation of the Young Republic,

25.09.1924

ABSTRACT

3

ABSTRACT

This master's thesis introduces two methodologies for conducting functional Failure Modes and
Effects Analysis (FMEA), namely static model-supported and executable model-based FMEA, that
utilize a system architecture model implemented through Model-Based Systems Engineering (MBSE)
with SysML (Systems Modeling Language). These two methodologies are investigated and compared
with a traditional document-based method, based on a specific set of criteria, in a selected operational
scenario within the Laser Interferometer Space Antenna (LISA) Mission.

The thesis establishes a system architecture model that incorporates model elements, traceability
links, and executable diagrams to depict functional architecture, interfaces, parameters, behaviours,
and constraints with links to functional requirements and technical components. In the static model-
supported FMEA, this model assists FMEA activities by automating input creation and providing
convenient access and storage of FMEA table and entries. The executable model-based FMEA builds
upon this by simulating operational scenarios with failures injected into each function, thereby
automatically revealing the effects of these failures on the LISA spacecraft constellation. Through
case studies and criteria-based qualitative assessment, the thesis investigates and compares the
model-based approaches against a traditional document-based method, highlighting their advantages
in enhancing FMEA activities and providing recommendations to address limitations. As a result, the
research demonstrates the superiority of the executable model-based FMEA approach for complex
space science missions like LISA.

This thesis contributes to the field of space systems engineering by offering a novel MBSE-assisted
FMEA methodology and highlighting the benefits of a model-based approach in improving FMEA.

ZUSAMMENFASSUNG

In dieser Masterarbeit werden zwei Methoden zur Durchführung einer funktionalen Fehler- und
Einflussanalyse (FMEA) vorgestellt, nämlich die statische, modellgestützte und die ausführbare,
modellbasierte FMEA, die ein Systemarchitekturmodell verwenden, das durch Model-Based Systems
Engineering (MBSE) mit SysML (Systems Modeling Language) implementiert wurde. Diese beiden
Methoden werden in einem ausgewählten Betriebsszenario der Laser Interferometer Space Antenna
(LISA) Mission untersucht und mit einer traditionellen dokumentenbasierten Methode verglichen, die
auf einem spezifischen Satz von Kriterien basiert.

In dieser Arbeit wird ein Systemarchitekturmodell erstellt, das Modellelemente,
Rückverfolgbarkeitsverknüpfungen und ausführbare Diagramme enthält, um die funktionale
Architektur, Schnittstellen, Parameter, Verhaltensweisen und Einschränkungen mit Verknüpfungen
zu funktionalen Anforderungen und technischen Komponenten darzustellen. In der statischen
modellgestützten FMEA unterstützt dieses Modell die FMEA-Aktivitäten, indem es die
Eingabeerstellung automatisiert und einen bequemen Zugriff auf und die Speicherung von FMEA-
Tabelle und -Einträgen ermöglicht. Die ausführbare modellgestützte FMEA baut darauf auf, indem sie
Betriebsszenarien mit Fehlern in jeder Funktion simuliert und so automatisch die Auswirkungen dieser
Fehler auf die LISA-Raumfahrzeugkonstellation aufzeigt. Anhand von Fallstudien und einer
kriterienbasierten qualitativen Bewertung werden in dieser Arbeit die modellbasierten Ansätze
untersucht und mit einer traditionellen dokumentenbasierten Methode verglichen, wobei ihre Vorteile
bei der Verbesserung von FMEA-Aktivitäten hervorgehoben und Empfehlungen zur Behebung von
Einschränkungen gegeben werden. Als Ergebnis zeigt die Arbeit die Überlegenheit des ausführbaren
modellbasierten FMEA-Ansatzes für komplexe wissenschaftliche Raumfahrtmissionen wie LISA.

Diese Arbeit leistet einen Beitrag zum Bereich des Space Systems Engineering, indem sie eine
neuartige MBSE-gestützte FMEA-Methodik anbietet und die Vorteile eines modellbasierten Ansatzes
zur Verbesserung der FMEA hervorhebt.

TABLE OF CONTENTS

4

TABLE OF CONTENTS

ABSTRACT .. 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES ... 6

LIST OF TABLES... 8

LIST OF ABBREVIATIONS ... 9

1 INTRODUCTION ... 12

1.1 PURPOSE AND MOTIVATION.. 12
1.2 THE LISA MISSION ... 13

1.2.1 Gravitational Wave Measurement Principle in LISA Mission.. 14
1.2.2 The LISA Spacecraft Payload ... 14
1.2.3 The Laser Acquisition Sequence .. 16

1.3 MODEL BASED SYSTEMS ENGINEERING ... 19
1.3.1 General Overview of MBSE .. 19
1.3.2 SysML and Cameo Systems Modeler .. 19

1.4 RESEARCH OBJECTIVES .. 21
1.5 RESEARCH STRUCTURE .. 21

2 STATE OF THE ART .. 23

2.1 FUNCTIONAL FAILURE MODES AND EFFECT ANALYSIS ... 23
2.2 MBSE ASSISTED FAILURE MODES AND EFFECTS ANALYSIS ... 24
2.3 LISA MISSION SYSTEM ARCHITECTURE MODEL .. 26

2.3.1 LISA Mission System Architecture Model Overview ... 26
2.3.2 R-MOFLT Architecture Framework ... 27
2.3.3 Model Content and Structure .. 28

2.4 STATE-OF-THE-ART REVIEW OUTCOMES AND RESEARCH CONTRIBUTIONS......................... 32

3 APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS

ANALYSIS IN LISA MISSION ... 34

3.1 FUNCTIONAL ARCHITECTURE MODELING... 34
3.1.1 Modelling of Technical Components and Functions ... 35
3.1.2 Modelling of Functional Interfaces and Flows .. 38
3.1.3 Modelling of Functional Modes, Behaviours and Failure Constraints .. 40

3.2 EXECUTABLE MODEL SIMULATION SETUP ... 45
3.2.1 Execution Context ... 45
3.2.2 Laser Acquisition Operational Phase Behaviour .. 46
3.2.3 Execution Behaviour and Results ... 48

3.3 FUNCTIONAL FMEA APPROACHES FOR THE LISA MISSION ... 50
3.3.1 FMEA Study: Traditional Document Based Analysis .. 50
3.3.2 FMEA Study: Static Model-Supported Analysis ... 54
3.3.3 FMEA Study: Executable Model-Based Analysis ... 57

4 RESULTS AND DISCUSSION ... 61

4.1 FMEA COMPARISON .. 61
4.1.1 Comparison of Examples from Investigated FMEA Results ... 61
4.1.2 Discussion and Assessment of Investigated FMEA Methodologies for the LISA Mission 67
4.1.3 Comparison Conclusion .. 75

4.2 THESIS SUMMARY AND CONTRIBUTIONS ... 76

5 FUTURE WORK ... 78

TABLE OF CONTENTS

5

6 APPENDIX .. 80

6.1 APPENDIX A ... 80
6.2 APPENDIX B ... 81

ACKNOWLEDGEMENT ... 85

REFERENCES ... 86

LIST OF FIGURES

6

LIST OF FIGURES

Figure 1.1: Spectrum of gravitational waves showing astronomical bodies and phenomena the LISA mission is
aimed to detect. Courtesy of ESA [10] ... 13
Figure 1.2: Schematic of a LISA SC with the two MOSAs and the most important instrument units. Modified
from Charpigny [5]. ... 16
Figure 1.3: LISA constellation view showing laser links and locking scheme. ... 17
Figure 1.4: Overview of SysML diagrams. Courtesy of Object Management Group [3]. 20
Figure 1.5: Flowchart showing the structure of the thesis work. .. 22
Figure 2.1: LISA System Architecture Model implementation timeline with LISA Mission timeline. Modified from
ESA [10]. ... 26
Figure 2.2: Overview of R-MOFLT methodology, courtesy of Airbus [26]. Usually in (science) space systems
with ESA as the customer, artefacts in Mission viewpoint (highlighted in red) are supplied by ESA. The
artefacts in Operation viewpoint (yellow) are defined by both ESA and Prime (ADS), still ESA being
responsible for the majority. The definition of the so called “solution space” (green), starting with the functional
architecture, is on the responsibility of the development team in ADS. ... 28
Figure 2.3: SOI-Viewpoints of system definition package of LISA Mission System Architecture Model. Modified
from Charpigny et.al. [7]. .. 29
Figure 2.4: Containment tree view of the “Model Execution” package... 30
Figure 2.5: Containment tree view of the “Reliability and Safety” package. It is important to point out the high
amount of model elements that need to be generated for only 6 failure cases (FMEA items). 31
Figure 3.1: Example of technical components (left) and functions (right) in the model containment tree view. 35
Figure 3.2: Allocation of functions to technical components. Left: The functional parts are contained inside the
technical component LA in the containment tree view. Right: The functional parts are depicted as green
rectangles inside the ibd of the technical component. Each functional part has an instance name followed by a
function type, divided by a semicolon in between (e.g. “LG : Light Generation”). .. 36
Figure 3.3: Collecting the technical components inside the Spacecraft-Technical block generates the definition
of the spacecraft type with the components and functions inside. ... 37
Figure 3.4: Profile diagram showing relationships in between functions, systems and requirements. 37
Figure 3.5: Containment tree and ibd view of functional interfaces of “Laser frequency actuation” function. 38
Figure 3.6: Containment tree view showing the functional interface types. Inside, functional flows are defined
which are typed by functional flow types. ... 38
Figure 3.7: Containment tree view of Laser Light flow type ... 39
Figure 3.8: ibd showing the functional interfaces and functional flows of the Laser frequency actuation
function. .. 40
Figure 3.9: Example of a possible functional architecture of a Laser Assembly. ... 40
Figure 3.10: State machine diagram of Laser frequency actuation function. Functional modes “Inactive” and
“Active” are depicted as the green rectangles with an “M” symbol. Inside the modes, opaque behaviours are
defined with the “do/” statements. The mode transitions are depicted as arrows with the signal triggers “1” and
“2”. The “activation” guard applied to the transition from inactive mode is shown inside the square brackets. . 41
Figure 3.11: Parametric diagram showing the modelled behaviour and constraints for the “Laser frequency
actuation” function belonging to LA. ... 44
Figure 3.12: Ibd showing the execution context as the instantiation of the Spacecraft-Technical Type three
times with laser links established as interface connections. .. 45
Figure 3.13: Left: Containment tree view of the execution context “Constellation_FMEA”. The part properties
depicted with the symbol “P”, represents the three spacecrafts (SC1-2-3) in the constellation. The reference
properties depicted with the symbol “R”, represents the three roles (master/reference, slave/transponder 1,
slave/transponder 2) defined for the laser acquisition sequence. The value properties depicted with the symbol
“V”, is used to assign a role to a specific spacecraft. Right: Classifier behaviour of the execution context as a
state machine. .. 46
Figure 3.14: Functions to be activated during laser frequency locking operational task. 47
Figure 3.15: Activation of a target function implemented as an activity diagram. The first opaque action on top
sends the signal that changes the mode of the desired function. The while loop node at the bottom checks and
waits until the mode change has happened. The decision node in between is implemented to by-pass the
check loop if a failure is deliberately injected to the function. .. 48
Figure 3.16: Left: Failure is injected to the SC2, left ePMS, Transponder beat note acquisition function by
turning its activation value property from “true” to “false”. Right: During execution, model elements with failed
parameters are highlighted in red. .. 49

LIST OF FIGURES

7

Figure 3.17: The Failure Mode table shows detailed info on the injected failure. .. 49
Figure 3.18: The “Bottom up functional breakdown analysis” relation map is useful to observe the higher level
effects of a failure happening inside a function. ... 49
Figure 3.19: The Failure Effects table shows the propagation of the failure along the constellation. The causes
of failure can be seen by looking at the names of the failed constraint properties in the “defining feature”
column. ... 50
Figure 3.20: Context diagram of the traditional document-based FFMEA studies in early phases. 51
Figure 3.21: Process diagram for the traditional document based FMEA.. 52
Figure 3.22: Context diagram for static model-supported FMEA ... 55
Figure 3.23: Process diagram for the static model-supported FMEA. Notice that the input preparation activities
are eliminated since they are done by the model automatically. .. 55
Figure 3.24: Excerpt from example FMEA table filled in using Cameo SRAP profile inside the model. 56
Figure 3.25: Context diagram for executable model based FMEA. ... 58
Figure 3.26: Process diagram for the executable model based FMEA. Notice that the review loop is eliminated
as the model is generating the failure cause and effects information through simulations. A generic review with
Systems Engineering might be needed at the end of the study. .. 58
Figure 4.1: Point based qualitative assessment of approaches according to “Quality of Input” criterion. 69
Figure 4.2: Point based qualitative assessment of approaches according to “Effort for Preparation” criterion. 69
Figure 4.3: Point based qualitative assessment of approaches according to “Information Access and
Traceability” criterion. ... 70
Figure 4.4: Point based qualitative assessment of approaches according to “Quality of Results” criterion. 71
Figure 4.5: Point based qualitative assessment of approaches according to “Effort to Obtain Results” criterion.
 .. 72
Figure 4.6: Point based qualitative assessment of approaches according to “Filling the FMEA table” criterion.
 .. 73
Figure 4.7: Point based qualitative assessment of approaches according to “Effort for Initial Setup” criterion. 74
Figure 4.8: Point based qualitative assessment of approaches according to “Effort for Initial Setup” criterion. 75
Figure 4.9: Point-based qualitative assessment of traditional document based, static model-supported and
executable model-based approaches according to defined criteria. .. 75
Figure 6.1: Deduction of failure causes and effects from the functional architecture using the static
approaches. The proposed method assumes that the upstream functions are possible causes of the primary
failure, whereas downstream functions are affected as a result of the primary failure. 80

LIST OF TABLES

8

LIST OF TABLES

Table 1.1: LISA payload instruments and descriptions. ... 15
Table 1.2: Payload functions for laser link acquisition.. 18
Table 3.1: Attributes of Laser Light flow type and their values ... 39
Table 3.2: The desired format of information of RAMS engineering for the starting of FMEA study is a table
that is the list of functions with the entries below. .. 53
Table 4.1: Input table for the “Laser frequency actuation” function. Compiled either manually using document-
based approach or automatically using the model-based approach. ... 62
Table 4.2: FMEA table for “Laser frequency actuation” failure. First row filled using the static approaches,
whereas second row filled using the generic executable approach. Incorrect assumptions of static approaches
are given in red colour, whereas additional entries from executable approach are highlighted in blue. 62
Table 4.3: Input table for the alternative architecture “Laser frequency actuation” function. Compiled either
manually using document-based approach or automatically using the model-based approach. 63
Table 4.4: FMEA table for alternative architecture “Laser frequency actuation” failure. First row filled using the
static approaches, whereas second row filled using the generic executable approach. Incorrect assumptions
of static approaches are given in red colour, whereas additional entries from executable approach are
highlighted in blue. .. 64
Table 4.5: Input table for the Internal frequency stabilisation function. Compiled either manually using
document-based approach or automatically using the model-based approach. .. 64
Table 4.6: FMEA table for Internal frequency stabilisation (reference mode) failure. First row filled using the
static approaches, whereas second row filled using the generic executable approach. Entries from executable
approach are highlighted in blue. ... 66
Table 4.7: Part of an FMEA table for “Internal frequency stabilisation (reference mode)” failure, filled in using
the detailed executable model-based approach. All the 6 instances of the function and where they belong in
the constellation are shown in first two columns. The failure effects are captured with their exact location in the
constellation (e.g., constellation.sc1.ePMS_L). The cause of failure for the affected functions are also listed
next to their respective entries. As anticipated, the functions responsible for stabilizing slave/transponder LAs
does not have failure effects as they are not used operationally. .. 66
Table 4.8: Criteria table showing the comparison criteria with descriptions used for evaluating the different
FMEA methodologies. .. 67
Table 4.9: Description of points of the qualitative assessment. ... 68
Table 5.1: Recommendations for future work. ... 78
Table 6.1: Comparison summary table comparing different methodologies of traditional document based,
static model-supported and executable model based FMEA approaches with pros [+] and cons [-] indicated. 81

LIST OF ABBREVIATIONS

9

LIST OF ABBREVIATIONS

ad Activity Diagram

ADS Airbus Defence and Space

AIT Assembly-Integration-Test

ALH API Action Language Helper API

bdd Block Definition Diagram

CAS Constellation Acquisition Sensor

CCS Central Checkout System

CMS Charge Management System

CST Cameo Simulation Toolkit

DDMS Digital Design, Manufacturing and Services

DOORS Dynamic Object Oriented Requirements System

DWS Differential Wavefront Sensing

ECSS European Cooperation for Space Standardization

ePMS extended Phase Measurement System

ESA European Space Agency

F_InT Functional Interface Type

FBD Functional Break-Down / Functional Breakdown Document

FFMEA Functional Failure Modes and Effects Analysis

FFT Fast Fourier Transform

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects and Criticality Analysis

FoV Field of View

FRS Frequency Reference System

GRS Gravitational Referencing Sensor

GRS FEE Gravitational Referencing Sensor Front-End Electronics

GRSH Gravitational Referencing Sensor Head

Hz Hertz

I/O Input/Output

ibd Internal Block diagram

LIST OF ABBREVIATIONS

10

IFO Interferometer

L/R Left/Right

LA Laser Assembly

LAS Laser Acquisition Sequence

LIGO Laser Interferometer Gravitational-Wave Observatory

LISA Laser Interferometer Space Antenna

LOA Long Arm

LS Laser System

MBSE Model Based Systems Engineering

MOSA Movable Optical Sub Assembly

OB Optical Bench

OBC On-Board Computer

OBSW On-Board Software

OMS Optical Metrology System

par Parametric Diagram

PDH Pound-Drever-Hall

PID Proportional Integral Derivative

PRN Pseudo Random Number

RAMS Reliability Availability Maintainability Safety

REF Reference

R-MOFLT Requirements-Mission Operational Functional Logical Technical

RX Receiving

SatSim Satellite Simulator

SC Spacecraft

SE Systems Engineering

SOI System Of Interest

SRAP Safety and Reliability Analyzer Plugin

stm State Machine Diagram

SVF Software Verification Facilities

SysML Systems Modeling Language

LIST OF ABBREVIATIONS

11

TDI Time Delay Interferometry

TEL Telescope

TM Test Mass

TM/TC Telemetry/Telecommand

TX Transmitting

UML Unified Modeling Language

USO Ultra Stable Oscillator

V&V Validation & Verification

INTRODUCTION

12

1 INTRODUCTION

This chapter elaborates on the context and the outline of this thesis work. The purpose and motivation
to conduct this study is explained in chapter 1.1. Information regarding the LISA mission, which the
work is applied to, can be found in chapter 1.2. An introduction to Model-Based Systems Engineering
(MBSE), which is the main theme of the thesis methodology is based on, can be found in chapter 1.3.
The research objectives of this thesis are summarised in chapter 1.4. And finally, the overall outline
structure of this thesis document is shown in chapter 1.5, with links to the research objectives.

1.1 PURPOSE AND MOTIVATION

For future space missions with complex operational scenarios and stringent performance
requirements, it becomes more and more relevant to understand the system behaviour (nominal and
in the presence of failures) at early stages in the development lifecycle. Especially for complex space
science missions like LISA, where system functions are spread over many system layers and are
realised by several elements of the payload, the platform, and even across the different spacecraft in
the constellation, an early anticipation of inconsistencies between specifications and system
behaviour becomes exceedingly important. The more functional interactions are present in operating
a complex system, the harder is it to detect failures and asses their impact on higher level. Moreover,
the later fault occurrences appear at higher level in the product development lifecycle, the more their
removal will result in cost increase and schedule delay [1, 2].

As an intention to mitigate the aforementioned issues, two main solutions in LISA project have already
been adopted:

• In order to cope with complexity and to avoid inconsistency during system definition, Model-
Based Systems Engineering (MBSE) solution is implemented as a formalized Systems
Engineering (SE) process. Functional modelling with SysML language [3] and Cameo
Systems Modeler tool [4] is one aspect of MBSE which is used to describe the system
architecture and behaviour in terms of formalized and executable diagrams. This allowed the
project team to have a consistent, unambiguous, and conveniently accessible definition of the
functions that are needed to do an operational task [5-7].

• To address the identification and analysis of failure cases, Reliability, Availability,
Maintainability and Safety (RAMS) discipline have been contacted at an early development
phase (Phase A/B1). A strategy is implemented to incorporate failure analyses methodologies,
such as functional Failure Modes and Effects Analysis (FMEA), within the presented model-
based approach.

However, it was realized that during the early phase development, when detailed information on
hardware and software components are still not available, the integration of the RAMS discipline to
the MBSE approach is limited. The classical approach to FMEA uses extensive documents review as
input to the FMEA study and does not benefit from the modelled system behaviours, operations and
traceability links. It is prone to create inconsistencies, repetition of work, and is often limited in
identifying failure cases (and their consequences), in particular when system functions are inter-
connected between several elements and layers of the system. In addition, once established in a
document-based approach, the link between the systems, functions, requirements, and failures needs
extensive updates in case of changes in system definition.

On the other hand, using an executable system architecture model to explore failure cases offers the
following potential benefits:

• It saves the effort of re-collecting information across multiple documents and experts, in order
to perform failure assessments.

INTRODUCTION

13

• It establishes a consistent link between failures and spacecraft systems, functions, operations,
and requirements across different levels of abstraction.

• It enables a better understanding of the behaviour and failure consequences of the
investigated spacecraft/satellite (or in case of LISA the constellation consisting of three
spacecraft) by injecting intentional failures into the nominal executable behaviours and running
operational scenarios. This helps to identify and prioritize the failures that have an impact on
the operational tasks instead of a more conservative approach that is independent of
spacecraft operations.

Therefore, the main objective of this thesis is to explore and implement approaches that makes use
of an (executable) system architecture model to perform a functional FMEA study and to investigate
(and if possible, quantify) the benefits of such a model-based approach. The thesis will compare and
discuss the proposed model-based approaches with a document-based method in a selected
operational scenario within the LISA mission.

1.2 THE LISA MISSION

The Laser Interferometer Space Antenna (LISA) mission is the third large mission (L3) in the ESA
Cosmic Vision Science Programme and has a launch date envisaged between 2035 and 2037. The
main objective of LISA is to observe gravitational waves in space [8]. Gravitational waves are ripples
in the fabric of spacetime that are produced by massive astrophysical events such as the collision of
black holes or neutron stars. These waves can provide valuable information about the nature of
gravity, the behaviour of matter in extreme environments, and the evolution of the universe. For the
first time on 14 September 2015, the gravitational waves were directly measured by ground-based
detectors: Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer
[9].

Figure 1.1: Spectrum of gravitational waves showing astronomical bodies and phenomena the LISA mission

is aimed to detect. Courtesy of ESA [10]

INTRODUCTION

14

LISA is designed to detect gravitational waves with a frequency range of 0.1 mHz to 1 Hz, which is
lower than the frequency range observed by ground-based detectors and cannot be measured on-
ground due to omni-present seismic noise. This low frequency range makes LISA particularly well-
suited for observing supermassive black holes, which are thought to be located at the centres of most
galaxies (see Figure 1.1).

The space segment of the LISA mission is a constellation of three identical spacecraft, flying in an
equilateral triangular formation with 2.5 million kilometres arm length in between. Each spacecraft is
equipped with two cubic test masses isolated from the outside environment in a free fall. By
exchanging bi-directional laser beams in between each other along the constellation arms, the
spacecrafts form a Michaelson interferometry setup. This setup enables measuring the relative test-
mass distance to picometer accuracy, which, due to the extreme stiffness of space-time, is required
to detect the gravitational waves at lower frequencies than the ground-based detectors [11]. The laser
links and free-falling test masses (see Figure 1.2) are one of the factors that makes this mission
unique from other space missions, as it requires highly collaborative functioning of all three
spacecrafts and their payload and platform systems to achieve the science objectives.

1.2.1 Gravitational Wave Measurement Principle in LISA Mission

The principle of gravitational wave measurement in the LISA mission is based on the use of laser
interferometry to detect the tiny changes in the distances between free flying test masses located
inside the three spacecrafts, arranged in a nearly equilateral triangle in space [8]. The measurement
principle of LISA is based on the fact that a passing gravitational wave causes a small, but measurable
change in the relative distances between the test masses that act as end mirrors of a large laser
interferometer that is spanned by the three spacecraft. The lasers are used to measure the distances
between the spacecraft by sending (TX) and receiving laser (RX) beams, which are reflected by the
test masses and interfered with each other. The change in distance is detected by comparing the
phase difference between the laser beams at different times. The phase difference is measured by
interferometry, which involves recombining received laser beam with the local beam to produce an
interference pattern. When a gravitational wave passes through the LISA constellation, the phase of
the beat note signal (a sinusoidal modulation of the detected laser intensity) changes as a function of
time, allowing the tiny changes in distance to be detected. The LISA mission uses a combination of
interferometry and time-delay interferometry (TDI) to measure gravitational waves. TDI is a technique
that combines data from multiple interferometers to remove the effects of laser frequency noise and
spacecraft motion arising from the difference in length of the interferometric inter-spacecraft links. By
making use of the measured absolute distances between different spacecraft and synthesizing
interferometric signals in post-processing, TDI can replicate the effect of a Michelson interferometer
with equal arm lengths [11].

1.2.2 The LISA Spacecraft Payload

The LISA spacecraft (SC) payload is mainly based on an Optical Metrology System (OMS) and a
Gravitational Reference Sensor (GRS) System to achieve the interferometric gravitational wave
measurement goal. The OMS is composed of:

• Telescope (TEL)

• Optical Bench (OB), also hosting the Constellation Acquisition Sensor (CAS)

• Laser System (LS), including Laser Assembly (LA) and Frequency Reference System (FRS)

• Extended Phase Measurement System (ePMS).

INTRODUCTION

15

Another central part of the LISA payload is the Gravitational Reference Sensor (GRS) System
consisting of:

• GRS Head (GRSH)

• GRS Front-End Electronics (GRS-FEE)

• Charge Management System (CMS)

The roles of the listed payload elements are described in the Table 1.1. Some core payload elements
are mounted in the so-called Movable Optical Sub Assembly (MOSA), comprising TEL, OB and
GRSH. This assembly is movable in one rotational degree of freedom to be able to change the angle
between the two arms of a spacecraft, thereby tracking the seasonal dynamics of the LISA
constellation. There are 2 MOSAs (Left and Right) in each spacecraft and most of the payload
elements are only responsible for the operation of their own local MOSA unit, which can be seen in
the schematic in Figure 1.2.

Table 1.1: LISA payload instruments and descriptions.

Payload Instrument Description

Laser Assembly (LA)
Generates, controls and modulates laser light. Contains the Laser Heads
which feed laser light to the OB.

Frequency Reference
System (FRS)

Serves as a reference for stabilizing the frequency of the generated laser
light. It is based on an optical cavity, consisting of two mirrors with a highly
stable spacer in between. The eigenmodes formed between the mirrors
serve as the optical frequency reference. The frequency of the laser light
is stabilized using the Pound-Drever-Hall (PDH) locking technique [12].

Optical Bench (OB)

Hosts 3 interferometers (IFO) called Reference (REF IFO), Long-Arm
(LOA IFO) and Test-Mass (TM IFO) interferometers, mechanisms,
photoreceivers and photodetectors.

• REF IFO: Interferes laser lights from local LA and the LA of the
neighbouring MOSA. It is used to lock the local lasers feeding the
two MOSAs to one-another.

• LOA IFO: Interferes laser light from local LA and RX light from LA
of the remote spacecraft at the other end of the long-arm. It is used
to measure the distance fluctuations in-between the two
spacecrafts.

• TM IFO: Interferes laser light from local LA and laser light reflected
from test-mass. It is used to measure the distance fluctuations
between the free-floating test-mass and the local spacecraft.

extended Phase
Measurement System
(ePMS)

Extracts the interferometric signals from the IFOs and provides control
signals for the lasers, based on the frequency of the interferometric beat
signals.

Telescope (TEL)
Serves as a laser beam expander/compressor to collect the RX light and
emit TX light.

Constellation Acquisition
Sensor (CAS)

Detects the laser beam from the remote spacecraft to support the
alignment of two spacecrafts' MOSAs onto each other, which is necessary
for the laser link acquisition.

INTRODUCTION

16

GRS Head (GRSH)
Hosts the test-mass in an electrode housing mounted in a dedicated
vacuum chamber, isolating the test-mass from external disturbances such
as solar radiation pressure.

GRS Front-End
Electronics (GRS-FEE)

Controls and detects the test-mass attitude and position electrostatically.

Charge Management
System (CMS)

Controls the test-mass charge.

Figure 1.2: Schematic of a LISA SC with the two MOSAs and the most important instrument units. Modified
from Charpigny [5].

1.2.3 The Laser Acquisition Sequence

One of the most important and complex operations in the LISA mission is the acquisition of the laser
links between the three spacecrafts in the constellation, involving various payload instruments and
functions (see Table 1.2). The laser links enable detection of the gravitational waves using laser
interferometry and also enable data transfer via modulation of phase of the laser light. This auxiliary
data retrieved from the laser links consists of science telemetry data, absolute ranging information
and clock noise signals that are used to post process the science data to make it available for analysis.

In order to enable this data exchange, first, the bi-directional laser beams have to be physically aligned
such that the MOSAs on the two opposing spacecrafts point to one another. This process is called
the geometric acquisition and is a prerequisite to detect interferometric signals. During geometric
acquisition, each spacecraft searches for the remote spacecraft using a scanning manoeuvre. Once
it detects the laser beam from the remote spacecraft on its CAS, the position of the RX spot on the
CAS detector is used to adapt the attitude of the spacecraft and its MOSA. This results in both
spacecrafts on each end to align themselves according to CAS readouts to establish the laser link.
CAS is a camera with a large Field of View (FoV) and designed to be strictly co-aligned with the
narrow FoV of the interferometric photoreceivers. Therefore, when the RX laser beam spot position
is properly aligned on the CAS, it also aligns on the photoreceivers. This enables a spatial co-

INTRODUCTION

17

alignment of the RX beam with the local TX beam on the LOA IFO photodetectors, allowing
interferometric signals to be detected. This process is done for all three spacecrafts of the
constellation to complete the geometric acquisition operation.

Figure 1.3: LISA constellation view showing laser links and locking scheme.

However, the geometric acquisition is not enough to establish a datalink or science measurement in
the constellation. The laser beam frequency is too noisy to enable exchange of data or extracting
picometer length measurements, therefore must be stabilized. This is done by the process called
laser frequency locking onto a stable frequency source. Each spacecraft is equipped with an optical
cavity in its FRS, establishing an appropriate reference for LAs to stabilize their laser frequencies. In
the constellation, the FRS of only one of the spacecrafts is active at a time, which becomes the
“master/reference spacecraft”. This spacecraft hosts the LA stabilized onto the FRS unit, which is
called the “master/reference LA” of the constellation. Every LA in the constellation eventually must
align its laser frequency according to this reference. This alignment, called laser frequency locking, is
a Proportional-Integral-Derivative (PID) control-actuation loop in the LA, which replicates the laser
frequency of the reference it is following, with a desired frequency offset. Once the control loop
achieves the desired laser frequency, and the corresponding PID control loop is closed, the laser is
termed to be "frequency locked".

There are three different frequency locking ways in the constellation.

• In the master/reference spacecraft, one of the LA frequency locks onto the optical cavity inside
the FRS. This LA is now referred as the master/reference LA and the process is called
“master/reference locking”.

INTRODUCTION

18

• The LA can frequency lock onto the neighbouring LA, by comparing the beat note between
the local and the neighbouring laser. This process is called as “slave/transponder mode - REF
IFO locking”, because it uses control signals which are provided from the ePMS and derived
from the interferometric signal of the reference interferometer.

• The LA can frequency lock onto the LA inside the remote spacecraft on the other end of the
laser link, by comparing the beat note between the local and the remote laser. This process is
called as “slave/transponder mode - LOA IFO locking”, because it uses control signals which
are provided from the ePMS and derived from the interferometric signal of the long-arm
interferometer.

Once the locking chain for all LAs involve the reference/master LA, the laser light frequency for these
LAs become stabilized. An example of a locking sequence is explained below and in Figure 1.3. Note
that a dot notation is used in the explanation as “SC.LA”, implying the owner of the element from right
to left of the dot.

1. Inside the SC-1, LA-L frequency locks onto the optical cavity inside the FRS. Therefore, SC-1
becomes the “master/reference SC” and SC-1.LA-L becomes the “master/reference LA”.

2. Inside the SC-1, LA-R frequency locks onto LA-L using the slave/transponder mode - REF
IFO locking process.

3. SC-2.LA-R frequency locks onto SC-1.LA-L using the slave/transponder mode - LOA IFO
locking process. Since SC-2 is the first spacecraft to establish the LOA IFO lock with the
master/reference spacecraft, it becomes the “slave/transponder – 1 SC”.

4. SC-3.LA-L frequency locks onto SC-1.LA-R using the slave/transponder mode - LOA IFO
locking process. Since SC-3 is the second spacecraft to establish the LOA IFO lock with the
master/reference spacecraft, it becomes the “slave/transponder – 2 SC”.

5. Inside the SC-2, LA-L frequency locks onto LA-R using the slave/transponder mode - REF
IFO locking process.

6. Inside the SC-3, LA-R frequency locks onto LA-L using the slave/transponder mode - REF
IFO locking process.

This example locking sequence deems all of the 6 LAs to become stable in frequency, therefore the
science measurement and data exchange can happen, completing the laser acquisition sequence.

Table 1.2: Payload functions for laser link acquisition.

Payload Instrument Function

CAS
Principle task of acquisition (Providing centroiding information for the RX
beam)

FRS Internal frequency stabilization (reference mode)

LA

Light Generation
Intensity Control
Phase modulation
Power stabilization on OB
External frequency control (transponder mode)
Laser frequency actuation

ePMS

IFO parameter extraction from carrier beatnotes
Retrieval of PRN code delay and data
Transponder beat note acquisition
Extraction of DWS angles from LOA and TM IFO
Demodulation of sideband-sideband beatnotes and clock noise retrieval

INTRODUCTION

19

PRN code generation
Generation of upscaled USO frequencies
FFT peak detection algorithm

OB

Laser Beam acceptance for emission to remote SC
Laser Beam acceptance for local interferometry
Laser Intensity Measurement on OB
Long-arm interferometer
Reference interferometer
Support for RX beam centroiding

TEL Beam Expander/Compressor

1.3 MODEL BASED SYSTEMS ENGINEERING

This chapter explains the model-based systems engineering approach with a general overview in
section 1.3.1, and description of the tools and language that is used in the thesis work in section 1.3.2.

1.3.1 General Overview of MBSE

Model-Based Systems Engineering (MBSE) is a methodology that uses models to represent and
analyse complex systems, and to support decision-making throughout the system lifecycle [13].
MBSE is based on the idea that a model is a more efficient and effective means of communicating
information about a system than traditional documents, diagrams, or other forms of textual description.
In MBSE, the system, its components and functions are represented using models that can be visual,
mathematical, or both. The models can be established using a variety of modelling languages and
tools, including SysML, UML, Arcadia/Capella, MATLAB, Simulink, etc.

In MBSE approach, the models can be used to define, simulate, and analyse system architectures,
and behaviours under various conditions and to test the system's performance and/or functionality
early in its lifecycle. Once established, these models become the main artefacts used to communicate
information about the system to various stakeholders, including engineers, managers, customers, and
regulators.

One of the key advantages of MBSE is that it promotes a holistic approach to engineering with the
philosophy of “single source of truth”. By representing the system and its components as
interconnected models, MBSE allows engineers to design, analyse, and communicate the system
definition as a whole and to identify and resolve potential conflicts or issues early in the design
process. The connected way of design and communication through models ensures consistency and
high level of awareness in the project team, leading to more efficient and effective system designs
and reducing the risk of costly errors or delays later in the development process [14].

1.3.2 SysML and Cameo Systems Modeler

SysML (Systems Modeling Language) is a graphical modeling language used for system engineering
applications [3]. It is an extension of the Unified Modeling Language (UML) and is specifically
designed to support the modeling of complex systems. SysML provides a standard set of graphical
symbols and diagrams that can be used to represent the different aspects of a system and its
components. The aspects are classified as structure, behaviour, requirements, and parametrics.
Some of the common SysML diagrams include (see Figure 1.4):

• Block Definition Diagram (bdd): provides a high-level structural view of the system and its
components. Commonly referred as Blackbox view.

INTRODUCTION

20

• Internal Block Diagram (ibd): represents the internal structure of a system and the interactions
between its components. Ibd provide a more detailed view of the system than bdd and
commonly referred as Whitebox view.

• Activity Diagram (ad): represents the behaviour of a system, including its processes and
activities. They are particularly useful for modelling the flow of information and control between
different components of a system.

• State Machine Diagram (stm): represents the behaviour of a system or component using
discrete events reflected as states and transitions. The states represent different conditions or
modes that the system or component can be in, while the transitions represent events or
actions that cause the system to move from one state to another.

• Parametric Diagram (par): represents the relationships between the parameters of a system
or component. It shows how changes in one parameter can affect other parameters and
ultimately the overall behaviour of the system through constraints.

The contents of these SysML diagrams, called model elements, are interconnected. This
interconnectedness allows for the easy traceability of requirements, behaviours, and functions of the
system being modelled. By linking the model elements, SysML enables users to access a wealth of
additional information that can be used to verify that the system is meeting its requirements and to
identify any issues that may arise during the development process. This level of traceability also allows
for the efficient management of complex systems, making SysML a powerful tool for engineers and
systems architects alike.

Figure 1.4: Overview of SysML diagrams. Courtesy of Object Management Group [3].

Cameo Systems Modeler is a powerful modelling tool that is widely used in the field of model-based
systems engineering (MBSE) and supports the Systems Modeling Language (SysML). It is a part of
the CATIA product family from Dassault Systèmes and adopted in Airbus Defence and Space (ADS)
as the main tool for early phase system architecture definition. The main capabilities of the tool
involves collaborative modelling, simulation and analysis, traceability, and reporting and
documentation [4]:

• Collaborative Modelling: Cameo Teamwork Cloud tool provides collaborative modelling
capabilities by allowing multiple users to access and work simultaneously on the same model

INTRODUCTION

21

stored in a cloud server. This can help to improve teamwork and collaboration, as well as
reduce the risk of errors and inconsistencies that may arise from working on multiple versions
of the same model.

• Simulation and Analysis: Cameo Simulation Toolkit provides the ability to simulate and
analyse models, allowing engineers to test the behaviour of a system swiftly without the effort
of exporting to external software. This can help to identify potential issues and conflicts early
in the design process.

• Traceability: Cameo Datahub tool provides traceability features that enable engineers to track
the relationships between different elements of a model and requirements management
software (e.g., IBM DOORS [15]). As an example, a system function in a Cameo model can
be traced to a specific customer requirement in DOORS. This traceability feature allows to
ensure that the requirement is properly addressed in the design and that any changes made
to the requirement are reflected in the system function.

• Reporting and Documentation: Through report wizard, it is possible to generate reports and
documentation from models, making it easier to communicate the design to stakeholders.

1.4 RESEARCH OBJECTIVES

The main objective of this thesis is to explore and implement approaches that makes use of an
(executable) system architecture model to perform a functional FMEA study and to investigate (and if
possible, quantify) the benefits of such a model-based approach. The thesis will compare and discuss
the proposed model-based approaches with a document-based method in a selected operational
scenario within the LISA mission. In particular, the thesis intends to find answers to the research
questions stated below:

1- How can a traditional document based functional FMEA process be improved using the same
input information but benefiting from a system architecture model implemented in MBSE
environment, instead of documents?

2- How can behavioural analysis and critical operational scenarios be integrated into a functional
FMEA study performed using the executable system architecture model?

3- What would be the difference between traditional (document based) FMEA, and model based
FMEA approaches in terms of:

• Analysis results

• Documentation process

• Process in case of update in system design assumptions

• Impact of operation scenario on failure cases

4- From the investigated approaches, which approach would be the suitable one to be implemented
in a complex space mission project like LISA? What would be the benefits?

1.5 RESEARCH STRUCTURE

The research structure of this thesis work is explained in this chapter and summarised in Figure 1.5.

Chapter 2 provides an elaboration on the state-of-the-art information in the literature. It investigates
Functional Failure Mode and Effects Analysis (FMEA) utilized for functional failure mode detection
and recovery analysis in the European space industry. Additionally, the chapter explores research
related to MBSE assisted FMEA, including different approaches to the problem and identified gaps.

INTRODUCTION

22

Furthermore, the LISA Mission System Architecture Model is introduced, with an examination of its
capabilities and gaps throughout its deployment history. Lastly, the chapter explains the state-of-the-
art outcomes and research contributions aimed at filling the gaps in the literature.

Chapter 3 delves into the methodology pursued to implement an early phase functional FMEA study
by leveraging the LISA Mission system architecture model. It describes a proposed approach for the
modelling of executable functional architecture, followed by an explanation of the execution and
simulation implementation of this model to answer Question 2- of the research objectives.
Subsequently, the chapter presents three different approaches for conducting a Functional FMEA
study within a defined scope in the LISA mission, namely the traditional document-based approach,
the static model-supported approach, and the executable model-based FMEA approach, elaborating
the improvements using the model and answering the Question 1- of the research objectives .

Chapter 4 is dedicated to presenting the results of the work performed to compare the three FMEA
methodologies (traditional document-based, static model-supported, and executable model-based),
answering Questions 3- and 4- of the research objectives. Additionally, the chapter highlights the
contributions of the thesis work to the investigated problem.

Chapter 5 focuses on potential areas for future work related to the thesis topic. It provides a
compilation of recommendations for the further development of the thesis, along with suggestions for
improving the modelling process and the integration of RAMS into MBSE methods and procedures.

Figure 1.5: Flowchart showing the structure of the thesis work.

STATE OF THE ART

23

2 STATE OF THE ART

This chapter elaborates on the state-of-the-art information in the literature. In chapter 2.1 Functional
Failure Mode and Effects Analysis is researched with the process depicted for ECSS-Q-ST-30-02C
standard [16], which is used for functional failure mode detection and recovery analysis in the
European space industry. In chapter 2.2, research related to MBSE assisted FMEA is investigated
with the description of different approaches to the problem as well as identified gaps. In chapter 2.3,
the LISA Mission System Architecture Model is introduced, with the investigation of its capabilities
and gaps throughout its deployment history. Finally in chapter 2.4, the outcomes of the literature
review and the research contributions aimed to fill in the gaps in the state-of-the-art are explained.

2.1 FUNCTIONAL FAILURE MODES AND EFFECT ANALYSIS

Functional Failure Mode and Effects Analysis (FFMEA) is a methodology used in systems engineering
to identify potential functional failure modes of a system with their causes and effects [17]. Functional
FMEA is a type of FMEA that focuses on the functional requirements of the system. This approach is
particularly useful when the system design properties are not known, or uncertain, especially in the
early phases of the development lifecycle. Since the functional description is one of the most stable
definition of a system, it is of high interest for engineers to analyse the potential failure cases on this
baseline before the system is designed/built, to avoid and mitigate any fundamental errors in later
phases [1].

In the context of space applications, functional FMEA is often used to assess the reliability and safety
of spacecraft and their subsystems. As an example, the ECSS-Q-ST-30-02C is a standard that
provides guidelines for performing Failure Modes and Effects Analysis (FMEA) [16]. The FMEA
requirements section of this standard outlines the general requirements for conducting FMEA, which
can be summarized as follows:

1. Identify the system functions: The first step in conducting FMEA is to identify the functions of
the system and break them down into their lowest level (“leaf”) functions and components. The
description, interfaces, interrelations and dependencies, as well as operational/mission link
has to be defined.

2. Identify potential failure modes: For each function, identify all potential failure modes that could
occur. Burge [17] defines potential failure modes with proverbs to the function itself such as
Over/Under/No/Intermittent/Unintended functioning.

3. Analyse the causes/effects of failure: Analyse the causes and effects of each potential failure
mode on the system, including its impact on safety, reliability, and mission success. This
analysis can be done with the help of the functional architecture and the functional breakdown.

4. Integrate findings: According to causes and effects of each failure mode, integrate them along
the functional hierarchy and architecture to create a consistent definition of failure cases along
the system abstraction layers.

5. Rank failure modes: Rank the potential failure modes according to their severity, occurrence
probability, and detection capability, to prioritize those that require mitigation.

6. Identify mitigation measures: For each identified failure mode, identify and implement
mitigation measures that reduce the risk of the failure occurring or minimize its effects.

It is also important to note that the analysis is done on the same system layer (horizontal) and also
along the system layer hierarchy (vertical). For example, horizontal investigation of a system layer
can lead to the identification of failure propagations along various functions and items in one level,
even if they are not part of the same hierarchical breakdown branch (see section 4.4b, 4.6b and 4.6c
in [16]). On the other hand, the vertical integration of the failure modes establishes a consistent
traceability of the failures to the higher levels of abstraction, where severity and impact of a failure on

STATE OF THE ART

24

operations and eventually the mission is more apparent (see section 4.5 in [16]). This way of
integration enables the consistency in between levels of abstractions and full coverage of the system
definition for the failure cases.

2.2 MBSE ASSISTED FAILURE MODES AND EFFECTS ANALYSIS

As the traditional systems engineering processes are transitioning toward the model-based approach
for creating systems definitions, it is more and more desired to integrate the FMEA activities into this
way of development methodology. Especially in the aerospace systems domain, integration of MBSE
and FMEA is an interesting topic of research for the development teams due to the complexity
involved. A selection of studies that offer distinct solutions regarding MBSE and FMEA integration are
investigated in this chapter.

Biggs et.al. [18] established a data model and a standard for the integration of safety analysis to
SysML language, creating the baseline of the Cameo Safety and Reliability Analyzer Plugin (SRAP)
[19]. The standard makes use of additional model elements, representing failure modes, effects,
failure causes etc. and allows users to fill up FMEA tables inside the model. The use of additional
model elements for safety and reliability analysis creates a separate viewpoint in the model,
decoupling it from the model elements used for the definition of the systems. The use of this decoupled
approach enables:

• direct linking of the failure analysis elements to system definition elements without altering the
properties of the system definition,

• separation in model structure for experts to conveniently focus on their own related artefacts
(e.g., safety and reliability experts work more on the SRAP model elements than the ones
used for system definition).

The links between the system elements and FMEA elements gives a strong traceability and overview
that is not present in paper-based format. However, there are significant gaps identified in the
proposed approach:

• The standard does not offer any automation in terms of deduction of failure causes and effects,
nor making use of the modelled system behaviours and/or architecture.

• The standard requires a model element to be generated for each property in the failure
analysis. Every different kind of failure mode, effect, cause, etc. must be reflected as a new
model element, instead of a new property/attribute to one existing FMEA element. This creates
high effort and clutter in the model, if the failure analysis involves specific failure modes,
effects, and causes per each system definition (see Figure 2.5).

Francesco [20] performs several RAMS analyses including FMEA with an MBSE approach for the
A320 flight control system with alternative architectures. The analysis makes use of state machines
for the system elements that include both nominal and failure states with their transitions and
respective behaviours inside, as failure causes and effects. The use of failure state also effects the
overall system behaviour since by execution the failed system will also not behave as intended.
However, there are several gaps identified with the proposed solution in the research:

• The approach does not identify the propagated effects of a specific failure along the entire
system architecture.

• Although modelled elements are mapped to the FMEA table entries by description, a solution
on how to compile the entries automatically using the model is not offered.

Girard et.al. [21] makes use of SysML modelling and an external software SmartIflow, to generate an
automated FMEA study. The procedure in modelling is the use of state machine diagrams for each
system:

STATE OF THE ART

25

• The states represent nominal and failure modes.

• The transitions to failure modes correspond to system faults.

• The behaviours defined inside the failure mode states correspond to the failure effects.

The SysML model is then imported to smartIflow software, which runs a simulation called “unfolding”
to generate an FMEA table. The approach traverses through every possible state transition that can
happen until ending in a final state and records this sequence. The sequences that end in a failure
mode state corresponds to a so called “failure chain” and therefore are represented in the FMEA
table. While offering a comprehensive identification of possible failure cases, the gap identified in the
proposed solution is that it does not include the effect of the operation of the systems on the identified
failure chains.

Schummer and Hyba [22], proposes a data path and anomaly tracing approach to identify failure
propagations using a SysML model and queries implemented in Neo4j database tool [23]. The system
architecture is modelled using an ibd with:

• SysML: Part Property representing systems,

• SysML: Proxy Port representing system interfaces,

• SysML: Itemflow representing exchanged items and telemetry parameters.

The model is then transferred to Neo4j database for analysis. The queries search through the data
extracted from itemflow information from the model, that shows where a specific item/parameter
traverses through the system elements in the architecture. This allows to identify potentially effected
elements due to faulty exchanges through system interfaces. While offering a convenient solution to
trace failure propagations, the approach does not take into account how a faulty input affects the
system behaviour. For example, the faulty parameter could:

• cause the failure of the system therefore fully deeming system output invalid/faulty,

• or without affecting the system functioning it can still be carried on as a part of the system
output,

• or without affecting the system functioning it can be cancelled out in the system output.

These behavioural aspects are significant in identifying the impacts of failures on overall system,
therefore important to address.

Mhenni et. al. [24] offer an Functional FMEA table generation approach by extracting Activity diagram
data from the model, which is then completed by a safety expert. In this approach, the system
functions are modelled as nested activity diagrams, with SysML: Action Input/Output Pin depicting
functional interfaces and SysML: Object Flow reflecting exchanged functional parameters, forming a
functional behavioural chain. The FMEA table is then generated by applying the following steps:

• All the lowest level “leaf” functions are extracted from the diagrams and listed into a table.

• Generic failure modes (e.g., “Fails to perform”, “Operates inadvertently” etc.) are listed for the
functions.

• Failure causes and effects are listed as input-output pins and/or upstream-downstream
activities.

Automatic filled table is then evaluated and finalized by the safety expert. The approach offers a
practical solution to automatically compile an FMEA table from modelled behaviour data. However,
several gaps have been identified in the approach, including:

• The connection between failure modes and failure effects is not addressed by the model.

STATE OF THE ART

26

• The approach does not capture the effects of relatively complex modelled functional
behaviours such as feedback loops, conditional behaviours etc. on a failure case.

2.3 LISA MISSION SYSTEM ARCHITECTURE MODEL

This chapter explains the implementation of the MBSE model, named as the LISA System
Architecture Model, within the project team in ADS. The overview of the model, involving the history
and strategy is explained in section 2.3.1. The Airbus R-MOFLT methodology used in the model is
described in section 2.3.2. Information on the content of the model can be found in section 2.3.3.

2.3.1 LISA Mission System Architecture Model Overview

LISA is among the largest planned science missions within the next years. It is characterized by a
complex mission architecture that requires the interaction of numerous elements at many levels in a
system of systems. In order to manage this complexity, LISA team in ADS employed the MBSE
approach as a part of their development process. Due to the complexity of the project, a behavioural
analysis capability has been set up to allow understanding and analysis of the implemented artefacts
and their impacts on higher levels in the system abstraction layers and different viewpoints.

Figure 2.1: LISA System Architecture Model implementation timeline with LISA Mission timeline. Modified
from ESA [10].

The evolution of the model through mission timeline can be observed in the Figure 2.1. The first
models focused on analysis and simulations for specific cases [5-7] and did not implement formalized
system definitions. This resulted in the obsoletion of the models once the analysis is finalized.
Therefore, the project team pursued a more generalized use case by transferring documentation into
the model to create a centralized definition of the system using the Airbus R-MOFLT methodology.
With this approach, the model became the formalized documentation source (or interface) for a
defined scope of operations, functions, systems and associated requirements, and this definition is
used for simulations and deliverables as a by-product. From there on, the activities on the model
pursued this aim especially in late A and B1 phases: documenting and generating (inputs to)
deliverables using the model where the simulations are implemented as a support to experts and/or
for the automation of artefact generation. It is important to note that the goal and the scope of the
model needed to be clearly defined at an early stage, otherwise the aim to generate a holistic system
description could have become an endless effort [25]. In the case of the LISA system architecture
model, the scope was set as:

STATE OF THE ART

27

• Functional description of the complex payload and how it interacts with the platform and
constellation.

• Ability to trace system functions to functional requirements.

• Generating inputs for critical operations definition.

• Generating inputs for Functional FMEA (the topic of this thesis work).

The implementation of the executable LISA system architecture model in this set scope has therefore
addressed the gaps in the existing SE process and methodologies for the LISA project team. As a
future outlook, the model is envisaged to be used until phase B2, where the mission-operation-
function-system and requirement definitions are finalized. Then, it will be used to transfer the system
definition to the suppliers and so called “verification benches” either via document excerpts or as a
model export if desired. The verification benches comprise:

• High-fidelity numerical simulators: e.g., flight dynamics, environment models, detailed
equipment models including Telemetry/Telecommand (TM/TC) interfaces.

• Software Verification Facilities (SVF): where an emulated On-Board Computer (OBC) is used
with real On-Board Software (OBSW) for software testing.

• Satellite Simulators (SatSim): In the SatSim, a "copy" of the SVF is connected to the Central
Checkout System (CCS) operated by Assembly-Integration-Test (AIT) team. It is at the same
time used for training.

• Full Electrical Functional model: Verification is finally done on a full Electrical Functional
model, where specific equipment mathematical models are replaced by real hardware models.

The model artefacts will be used as a baseline to define the verification plan and the verification bench
contents, being a part of a consistent definition chain between requirements, design, analysis, and
verification activities.

Still, the model is always a key part to communicate with various stakeholders (e.g., suppliers,
customer etc.) and as a reference throughout the development lifecycle. It acts as a user interface for
the experts to access desired information conveniently, and to train newcomers to the project in a
more visualized and holistic view to the systems.

2.3.2 R-MOFLT Architecture Framework

The Airbus R-MOFLT (Requirements - Mission, Operation, Functional, Logical and Technical)
framework is a baseline in the definition of system architecture models used for developments of
complex space systems in early phases (Phase 0/A/B1). The framework provides the methodology
and the tool to support the development of systems with an MBSE approach:

• Methodology: Step-by-step and top-down development process to create a system definition
using MBSE.

• Tool: Profiles and automations for Cameo Systems Modeler to customize the model elements
and add features according to the needs of the project, supporting the methodology.

The methodology is based on the fact that a system definition consists of multiple viewpoints
(Requirements, Mission, Operation, Functional, Logical, Technical) that can be implemented fully or
partly to the whole spectrum of system abstraction levels of interest. The viewpoints and abstraction
levels are interconnected and show different aspects of the system to different stakeholders, e.g.,
subsystem functional integration team is interested more on the Functional viewpoint on subsystem
level, whereas operations team is on the Operation viewpoint on system level, and RAMS team
focuses more on the Functional viewpoint on multiple system levels for FFMEA. The methodology

STATE OF THE ART

28

therefore guides the experts to fill in some key artefacts in all the viewpoints for the whole abstraction
levels in scope, creating an organized and holistic system definition. The key artefacts for the
viewpoints can be seen in Figure 2.2. The Requirement viewpoint is integrated to the model elements
in all levels and in all viewpoints using model relationship links, enabling full traceability to system
specifications.

R-MOFLT methodology focuses more on the consistent and full system definitions rather than
executable models. The major aim is to make diagrams easy to read and understand rather than
compatible for execution. The R-MOFLT models use majority of the SysML diagrams for its
viewpoints:

• activity and state machine diagrams for behaviour definitions

• internal block diagram for architecture definitions

• block definition diagram for structure and hierarchical definitions

Usage of parametric diagrams are not common in the methodology, as they are more specialized for
simulation purposes.

Figure 2.2: Overview of R-MOFLT methodology, courtesy of Airbus [26]. Usually in (science) space systems
with ESA as the customer, artefacts in Mission viewpoint (highlighted in red) are supplied by ESA. The

artefacts in Operation viewpoint (yellow) are defined by both ESA and Prime (ADS), still ESA being
responsible for the majority. The definition of the so called “solution space” (green), starting with the functional

architecture, is on the responsibility of the development team in ADS.

2.3.3 Model Content and Structure

LISA system architecture model consists of 2 main parts implemented as separate SysML: Package
dedicated to model definition and model execution. Another part was added to the model named as
“Reliability and Safety” for the contents of this thesis.

The model definition package (named “LISA_model”) involves all the model elements, relations,
diagrams, scripts and tables that create the system definition according to the R-MOFLT

STATE OF THE ART

29

methodology. The model definition consists of 4 system layers or System of Interest (SOI)-Viewpoints
in MOFLT terms (see Figure 2.3).

Figure 2.3: SOI-Viewpoints of system definition package of LISA Mission System Architecture Model.
Modified from Charpigny et.al. [7].

• L0 – LISA Mission, is mainly dedicated for the Mission viewpoint. It involves the LISA mission
objectives, mission concept, mission phases and stakeholder analysis.

• L1 - Constellation, is dedicated to the definition of the constellation formed by 3 spacecrafts.
For this SOI viewpoint, Operational view is of interest. Operational concepts, phases and
behaviours of the constellation are modelled in this layer including the Laser Acquisition
Sequence.

• L2 – Spacecraft, is dedicated to the definition of the LISA spacecraft. For this SOI viewpoint,
functional, logical and technical definitions are of interest. For example, the integration of
Spacecraft-Technical architecture is done in Technical view, where all the technical
components in the planned scope (mostly payload instruments) are integrated inside the
spacecraft. As an important note, since the spacecrafts are identical in the mission, only one
definition is enough, saving time and effort for the development team. This still does not
prevent the model to use the same definition but impose different behaviours on them in the
constellation level.

• The final levels are L3 – Payload and L3 – Platform. For these SOI viewpoints, functional,
logical and technical definitions are of interest. As an example, functions belonging to Payload
and its sub-elements are stored in this level, as well as the payload functional architecture.

The model execution package (see Figure 2.4) uses the elements in the model definition package to
create simulation contexts according to the desired analysis from the project team. This package
involves all the model elements, diagrams and scripts that enables the simulations to be configured

STATE OF THE ART

30

and run. Each analysis is stored in their corresponding packages and dedicated to a different
combination of the MOFLT viewpoints to analyse the effects of:

• nominal system behaviour in specific viewpoints. (e.g., “Execution – Operational/Logical”
package)

• faulty system behaviour in specific viewpoints. (e.g., “Execution – LAS Functional/Technical
FMECA” package)

The rest of the packages are dedicated to the signals used in the simulations and the configuration
elements.

Figure 2.4: Containment tree view of the “Model Execution” package.

The reliability and safety package (see Figure 2.5) involves all the model elements, relations,
diagrams, and tables that are dedicated to the RAMS activities that uses the Cameo SRAP profile.
These contents are linked to and make use of the elements in the model definition package. There
are key model elements from the Cameo SRAP profile used for the FMEA analysis in this thesis work:

• FMEA item: It is the main model element to store failure related properties of a function (in a
functional FMEA study) or a logical/technical component (in a system FMEA study). There are
one FMEA item per failure mode of each function and are linked to the functions using the
"FMEA Item" property (e.g., if a function has two failure modes, there must be two FMEA items
linked to the function for each failure mode). FMEA item model elements are stored in a
dedicated package called “FMEA Items”.

• Failure mode: Failure mode model elements are linked to the FMEA item of each function.
Generic failure modes can be defined, and assigned to the system functions (e.g., “No
Function”) to keep the number of failure mode model elements manageable. They are stored
in the “Failure Modes” package.

• Cause of failure: Cause of failure model elements are linked to the FMEA item of each function.
They are only defined as verbal descriptions and are not connected to any functions, functional
interfaces or flows defined in the model. Therefore, they must be generated and named
manually for each analysed failure case. They are stored in the “Failure Causes” package.

• Local/Final effect of failure: Local/Final effect of failure model elements are linked to the FMEA
item of each function. They are only defined as verbal descriptions and are not connected to
any functions, functional interfaces or flows defined in the model. Therefore, they must be
generated and named manually for each analysed failure case. They are stored in the “Final
Effect of Failures” and “Local Effect of Failures” packages.

The FMEA/FMECA tables are stored inside the “FMECA Tables” package and their columns are
customized according to desired standard/practice. These tables list the FMEA items and show all
linked FMEA elements to them. The tables can be filled in with dragging and dropping dedicated

STATE OF THE ART

31

elements into the column entries of the table, which would automatically generate a link to the FMEA
item. Finally, the tables, diagrams, relation maps, and matrices that are used to show dependencies
in between the failure analysis artefacts are stored inside the “Dependency Diagrams” package. It
allows to collect and identify most critical or interdependent failure cases using queries in the model
and particularly useful to the engineers.

Figure 2.5: Containment tree view of the “Reliability and Safety” package. It is important to point out the high
amount of model elements that need to be generated for only 6 failure cases (FMEA items).

STATE OF THE ART

32

2.4 STATE-OF-THE-ART REVIEW OUTCOMES AND RESEARCH CONTRIBUTIONS

This chapter outlines the state-of-the-art review outcomes and research contributions made in
addressing the identified gaps in the field of functional Failure Mode and Effects Analysis (FMEA) and
Model-Based Systems Engineering (MBSE) applications. The outcomes and gaps were identified
through an investigation of various approaches for functional FMEA, MBSE assisted FMEA
applications, Airbus R-MOFLT methodology, and the LISA system architecture model in the preceding
chapters.

The following sections describe the identified gaps in the literature that the thesis aims to fill.

• Inclusion of Operations in FMEA: The existing approaches lack the consideration of
operational aspects in the FMEA analysis. To account for the complexity of operations in the
LISA constellation, the proposed approach of the thesis incorporates operations in the FMEA
analysis. This ensures that the potential failure modes associated with operations are
considered, leading to a more comprehensive analysis.

• Effects of Exchanged Interface Flows on the Function: The influence of exchanged interface
flows on system functions is not adequately addressed in the existing approaches.
Understanding how these interface flows affect the system functions and overall failure
propagation is crucial for accurate FMEA analysis.

• Inclusion of Functional Behaviours and Architecture together in FMEA: Existing approaches
in the literature tend to primarily focus on either the functional architecture without explicitly
considering individual functional behaviours, or they concentrate solely on the functional
behaviours without adequately addressing the functional architecture. This limited focus leads
to an incomplete understanding of the system's overall behaviour and the impact in case of
failures. To overcome this limitation, the proposed approach integrates both behavioural and
architectural aspects in the FMEA analysis by considering functional behaviours, constraints,
interfaces, and flows.

• Detailed Modelling and Analysis Descriptions: Through the literature review, it has become
evident that there is a significant lack of detailed instructions on how to realize modelling and
analysis steps. Existing descriptions tend to focus on the overall approach but often omit
crucial details related to software configuration and the specific processes required to achieve
desired results (e.g., obtaining an automatically filled FMEA table in Cameo). Recognizing this
gap, the aim of this thesis is to provide comprehensive end-to-end descriptions of the
modelling approach, including detailed instructions on software configuration and the step-by-
step process for achieving desired results. By addressing this deficiency, the thesis seeks to
enhance the understanding and replicability of the modelling process.

In terms of state-of-the-art outcomes, several methods have successfully addressed the needs of
using Model-Based Systems Engineering (MBSE) for Failure Mode and Effects Analysis (FMEA)
applications, which are also considered for implementation in this research.

• Usage of ECSS-Q-ST-30-02C Standard: The approach and process outlined in the ECSS-Q-
ST-30-02C standard [16] (see chapter 2.12.2), which is a norm in the European space
industry, will be employed for conducting the FMEA analysis in this thesis. This standard will
serve as a guiding framework for the FMEA methodology and ensure compliance with industry
practices and requirements.

• Usage of Viewpoints: The MOFLT methodology (see section 2.3.2) separates the model
structure into viewpoints, allowing experts to focus on their relevant artifacts. This approach is
employed for FMEA topics, specifically using the "reliability and safety" viewpoint package in
the model (see section 2.3.3).

• Usage of Cameo SRAP: The concept of using dedicated model elements for safety and
reliability analysis and establishing a formal link to the model elements used for system

STATE OF THE ART

33

definition, is found beneficial and will be applied in this thesis work. The approaches from
Biggs et. al. [18] (see chapter 2.2) and the Cameo SRAP plugin [19] (see section 2.3.3) will
be utilized in the LISA system architecture model.

• Separation of Nominal and Non-Nominal Modes by States and State Machines: The approach
proposed by Francesco [20] and Girard et. al. [21] (see chapter 2.2) shows promise in
enhancing flexibility in behaviour modelling, providing concise representation and facilitating
convenient switching and control over nominal and non-nominal functional behaviours. Hence,
it will also be employed in the modelling approach of this thesis.

• Usage and Tracking of Interchanged Parameters: The approach presented by Schummer and
Hyba [22] (see chapter 2.2) involves utilizing and tracking interchanged parameters between
systems to assess their propagation across the system elements. This enables a better
understanding of how faulty parameters propagate in the overall system architecture. This
approach will be utilized for functions, functional interfaces, and functional architecture in this
thesis work.

• Usage of I/O and Architecture Information for Failure Cause/Effects: To enhance the analysis
of failure causes and effects, the proposed approach by Mhenni et. al. [24] (see chapter 2.2)
leverages functional inputs/outputs and functional architecture information. This approach
assists in identifying and evaluating potential failure causes and their impact on system
functions during the FMEA analysis. Therefore, it is employed in the methodology of this thesis
work.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

34

3 APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND
EFFECTS ANALYSIS IN LISA MISSION

This chapter elaborates on the methodology pursued to implement an early phase functional FMEA
study by making use of the LISA Mission system architecture model. Upon the investigation of the
state-of-the-art and the iteration with the project team in ADS, some key constraints are identified for
the approach:

• Usage of Cameo Systems Modeler and SysML: The approach shall use the tool and language
that has already been adopted by ADS LISA system engineering team for early phase system
architecture development. This limitation is to reduce the effort of transferring knowledge along
multiple software, which enables to analyse architectural implementations swiftly and
conveniently. It also enables collaboration, support and development along other project
teams in Airbus.

• Compatibility and integrability to MOFLT functional architecture modelling process: As the
standard is being defined by the Airbus group-wide Digital Design, Manufacturing and
Services (DDMS) activity, it is important to ensure compatibility with the company engineering
strategy. This would involve utilizing existing templates, manuals, and support, as well as
benefiting from profile automations and tools (e.g., report generator). Furthermore, aligning
with the MOFLT process enables building upon existing work and know-how of the project
team, reducing the training and learning effort.

• No implementation of performance analysis or high-fidelity physical/mathematical relations:
The approach shall not implement any performance analysis or high-fidelity
physical/mathematical relations to reflect the system behaviour. This role is clearly allocated
to detailed analysis models and simulators developed by discipline experts in standard tools
and processes that handle way better than Cameo in this case.

• Minimum modelling effort specific to FMEA: To reduce the modelling effort required for
conducting the FMEA study, the approach shall make use of existing model elements
dedicated to system definition as much as possible. Although FMEA is a key goal, the model
is not solely established for conducting FMEA activities, as described in section 2.3.1 of the
model strategy. Adapting a modelling method with a majority of elements that are only useful
for FMEA activities would result in higher effort and clutter in the model. Therefore, any
modelling effort and model elements specific to FMEA that are not related to system definition
shall be minimized.

Based on the constraints outlined above, a proposed approach for the modelling of executable
functional architecture is described in chapter 3.1, while the execution and simulation implementation
of this model is explained in chapter 3.2. Subsequently, in chapter 3.3, three different approaches for
conducting a Functional FMEA study within a defined scope in LISA mission are proposed, including:

• traditional document-based,

• static model-supported,

• executable model based FMEA approach.

3.1 FUNCTIONAL ARCHITECTURE MODELING

This chapter explains the process pursued to model the executable functional architecture inside the
MBSE environment using Cameo Systems Modeler.

As a basis for a functional FMEA study, the principle functions of the systems of interest shall be
analysed, to be able to identify failures that traverses a functional chain which can finally be traced
back to technical components. In order to identify the functional chain, the functions, their behavioural

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

35

nature, and their relationship with each other shall be defined. This definition must be traceable along
a hierarchical decomposition, involve traceable parameters exchanged in between elements, and
allow execution to simulate and record the overall system behaviour. In order to satisfy these
requirements, the following modelling concepts are performed for a model-based FMEA analysis of
the space segment of the LISA mission.

• Model the functions and the system components that are realizing them. These elements will be
the root cause of failures in the real implemented system, therefore the primary artefacts for the
FMEA study. This process is described in the section 3.1.1.

• Model functional interfaces and the functional flows occurring inside them. The interfaces and the
flows allow the traceability of failed parameters along the functional chain in the architecture. This
process is described in the section 3.1.2.

• Model functional behaviours defining how functions convert inputs into outputs, functional modes
that separates and controls the different behaviours of a function, and functional constraints that
defines the (in)valid conditions for the behaviours. This is described in the section 3.1.3.

The modelling approach proposed in this chapter is an addition into the default MOFLT methodology,
in terms of functional behaviour, constraint and interface modelling. The outcome of the modelling
approach is then used to conduct simulations and FMEA studies in the following chapters.

3.1.1 Modelling of Technical Components and Functions

The functions are the key artefacts to be analysed in a functional FMEA, whereas technical
components are the artefacts to be affected as an outcome of a failure. As a reference example to
conduct the FMEA studies, a set of functions that defines the laser acquisition sequence operational
scenario has been identified from the functional requirements and functional breakdown (see Table
1.2). These functions correspond to the lowest level (leaf) functions in the breakdown structure that
can be allocated to a technical system of interest and establish the baseline architecture. The decision
of only showing leaf functions and technical components in the architecture view instead of logical
components and high level functions is that the technical definitions (components are interfaces) are
mature enough to reflect during phase B1 of LISA development lifecycle.

In the model, the functions are implemented as <<Function>> (SysML: Block) elements, and the
technical components of interests are modelled as <<Technical Component>> (SysML: Block). The
model elements are located inside the packages in their respective MOFLT viewpoints (F and T) in
order to conveniently navigate inside the model as can be seen in Figure 3.1.

Figure 3.1: Example of technical components (left) and functions (right) in the model containment tree view.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

36

The next step is to establish the traceability links in between created model elements. In order to
establish the breakdown structure and hierarchical traceability, directed composition links are used in
between child and parent functions. After the generation of the functions, they are linked to the
<<SOIRequirement>> (SysML: Requirement) elements in the model using the <<SatisfiedBy>>
relation. The allocation of functions to the technical components is done via creating part properties
inside the technical components in an internal block diagram (see Figure 3.2). These part properties
are stereotyped as <<Functional Part>>, which are an instantiation of the function type it represents.
This operation creates a directed composition link between the functions and the technical
component.

Figure 3.2: Allocation of functions to technical components. Left: The functional parts are contained inside the
technical component LA in the containment tree view. Right: The functional parts are depicted as green

rectangles inside the ibd of the technical component. Each functional part has an instance name followed by a
function type, divided by a semicolon in between (e.g. “LG : Light Generation”).

Finally, all the defined technical components are instantiated and shown on an ibd inside a Spacecraft-
Technical block, which is stereotyped by <<Technical Component>> and <<System of Interest>>,
creating the baseline of the spacecraft architecture to be analysed (see Figure 3.3). The described
modelling steps in functional-technical domain establish the functional breakdown, function to
technical component allocation, and function to requirement traceability. This comes with the benefit
of having formal links established in between the model elements (requirement, function, and
technical component) ensuring model coherence and robustness and to be used in the FMEA study.
The summary of traceability links established can be seen in the data model sketched in the profile
diagram in Figure 3.4.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

37

Figure 3.3: Collecting the technical components inside the Spacecraft-Technical block generates the
definition of the spacecraft type with the components and functions inside.

Figure 3.4: Profile diagram showing relationships in between functions, systems and requirements.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

38

3.1.2 Modelling of Functional Interfaces and Flows

Functional inputs and outputs are the artefacts establishing the paths that have been used to
exchange parameters. These exchanged parameters affect the behaviour of each function and would
be the key elements to trace potential failures in the systems. The standard MOFLT process only
supports the definition of interfaces and flows, however it does not implement parameters, values, or
exchange mechanisms for them. This does not allow to reflect nor execute the behavioural aspects
of the functional architecture. Therefore, a customized implementation has been pursued on top of
the standard MOFLT modelling approach.

Following the MOFLT approach, the functional interfaces are modelled with <<Functional Interface>>
(SysML: Proxy Port) for all the functions in the scope of the architecture. Functional interfaces are
defined for each input-output parameters of the functions (see Figure 3.5). These interfaces are then
typed by <<Functional Interface Type>> (SysML: Interface Block) elements. The items that are
exchanged between the functional interfaces are modelled as <<Functional Flow>> (SysML: Flow
Property) inside the functional interface types (see Figure 3.6).

Figure 3.5: Containment tree and ibd view of functional interfaces of “Laser frequency actuation” function.

Figure 3.6: Containment tree view showing the functional interface types. Inside, functional flows are defined
which are typed by functional flow types.

For the executable functional architecture, it is utmost important to define the functional flows and
their values, as they will be exchanged in between functions during execution. From this point on, the
MOFLT process is extended by adding more details to the modelled functional flows. According to its
nature, the functional flows are typed by a block or a <<Functional Flow Type>> (SysML: Value Type).

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

39

The block type allows storing multiple parameters with values (as SysML: Value Property) in a
structured way, whereas functional flow type can only store one parameter with a value assigned. In
order to trace the parameter exchanges, the flows are given string values which shows the state of
the flow during execution. As an example to illustrate the adopted concepts, the laser light flow is
used. Majority of the functions in laser assembly and optical bench transfer laser light while changing
its distinct attributes. In order to capture these effects, laser light is modelled as a block with four value
properties as frequency, intensity, phase and state (see Figure 3.7). All the functional flows that
convey laser light are then typed by the laser light block. This enables the functional flows to inherit
the properties stated in Table 3.1 and change accordingly, enabling the traceability of changes along
the functional path (see Figure 3.8). Other functional flows that deemed not to be much detailed are
typed by functional flow type hosting string values that shows the state of the functional flow, for
example as “–“ (invalid) or “on” (valid).

Figure 3.7: Containment tree view of Laser Light flow type

Table 3.1: Attributes of Laser Light flow type and their values

Value Property Type Value

frequency String –, initial, controlled, stabilizing, stabilized

intensity String –, initial, set, stabilized

phase String –, initial, PRN_modulated, sideband_modulated, PRN_sideband_modulated

state String –, on

Once all the functions in the scope have been equipped with functional interfaces, they are connected
using a Functional Connection (SysML: Connector). This link enables the traceability of the functional
flows as well as flow exchange during execution. The connection only allows the flow to change its
properties in an input interface if the flow inside the connected output interface is changed. When all
of the functional interfaces are connected inside each technical components (see Figure 3.9) and then
inside the Spacecraft-Technical ibd, functional-technical architecture is established. The next step
would be to define behaviours for each function in the study scope.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

40

Figure 3.8: ibd showing the functional interfaces and functional flows of the Laser frequency actuation
function.

Figure 3.9: Example of a possible functional architecture of a Laser Assembly.

3.1.3 Modelling of Functional Modes, Behaviours and Failure Constraints

The previous steps define the structural aspects of the functional architecture. Even though it reflects
valuable information about function dependencies and interconnections, by itself it is not enough to
reflect what is actually happening in the architecture. It fails to answer the questions:

• Which functions are used or active?

• Which states are the functional flows in?

• Is the system working as desired?

Therefore, the next step in executable functional architecture modelling is establishing the behavioural
aspects of the architecture. Functional behaviours are collection of actions that are performed by the
function, showing how a function emerges to accomplish a desired need. Depending on different
modes and constraints, a function can behave differently. It is in the interest of the systems engineers

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

41

to define what kind of behaviours a function possesses, at which modes they emerge, what causes a
change in modes, and during which constraints they work properly. In the following sections, the
approach to model the modes, behaviour and constraints of the functions are explained.

3.1.3.1 Functional Modes

Functional modes separate behavioural expectations from a function and control the behaviour that it
performs. In the scope of the LISA model, majority of the functions have two modes defined as active
and inactive. For example, in its inactive mode, it is not expected for a “Light generation” function to
generate laser light, and vice versa, it is expected to generate light when active. The idea of this
separation is to allow controlling what the function is expected to do by switching the modes, but also
to allow capturing when function behaviour does not meet expectations, defined as failures.

The functional modes are modelled in a state machine diagram as <<Functional Mode>> (SysML:
State) as can be seen in Figure 3.10. The state machine diagrams are defined inside each function
and only for the function itself. Each mode has an opaque behaviour defined as a “do activity”. This
opaque behaviour updates a string value property named as “function_state” that is defined inside
the function, to the name of the mode the function is currently in. This enables any other entity that
accesses the function_state value property to know, real time, what mode the function is in. This is a
very important aspect of this modelling approach as the functional behaviours and constraints defined
for the function will be referencing this function_state value property to perform their activities (see
next sections 3.1.3.2 and 3.1.3.3).

Each mode has a transition defined as a signal trigger. The signals are named independent of the
mode names (as integers), so that they can also be used for any other mode transitions throughout
the model. The transitions from inactive mode are assigned a guard named “activation”. Activation is
a Boolean value property defined inside the function, which has a default value of “true”. Therefore,
as default, the guard will take the value of “true” allowing transition from inactive to active mode (or
any other defined mode). If set to false, even if the signal trigger is detected, the transition will not
happen. This is the main failure mode implemented to the functions for the functional FMEA study,
i.e., “No Function”.

Figure 3.10: State machine diagram of Laser frequency actuation function. Functional modes “Inactive” and
“Active” are depicted as the green rectangles with an “M” symbol. Inside the modes, opaque behaviours are

defined with the “do/” statements. The mode transitions are depicted as arrows with the signal triggers “1” and
“2”. The “activation” guard applied to the transition from inactive mode is shown inside the square brackets.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

42

3.1.3.2 Functional Behaviours

After the definition of functional modes, the behaviours, i.e., what the function does with input/output
(I/O) parameters in each mode has to be defined. This definition establishes the I/O value exchange
mechanism that enables the execution to traverse through functions in the architecture. The collective
work of these modelled behaviours emerge the overall functional behaviour of the system, also in the
case of failures.

It is a common practice in literature [20, 21, 24, 27-29] as well as in MOFLT methodology, to model
functional behaviours and exchanges with activities and object flows inside activity diagrams. These
model elements and diagrams are clear to read and understand due to their symbolic nature.
However, when executed, the values exchanged in between activities in an activity diagram do not
traverse through the interfaces inside the architecture established in the ibd. This is an important
problem because it is utmost desired that the consistency in between the behavioural and structural
aspect of the system must be ensured. Therefore, the execution must traverse through both aspects
of the system and serve as a validation tool to the functional architecture and behaviour. For this
reason, as a common practice, signal exchanges via Send Signal Action and Receive Signal Actions,
or SysML: Sequence Diagram are used to exchange information through the architecture [20, 30].
The problem in this methodology is that these exchange methods only handle discrete events and do
not support continuous data exchange during execution (as in Cameo Systems Modeler v19SP4). In
addition, these diagrams only execute once when called, therefore must be looped to ensure data
exchange continuously, and even if done so, all data exchanges need to be synchronized in between
behaviours to work properly. In addition, it was observed that the high number of loops and signal
exchanges drastically increases the amount of memory usage causing the software to crash. In the
frame of this thesis different methods know from literature [27, 31, 32] have been analysed and traded.
Finally, it has been concluded that the parametric diagram is best suitable for this task, as it:

• allows direct visual access and exchange through interfaces in the architecture

• is continuously active, therefore, does not need memory expensive loops and synchronization

• offers direct and visual access to function parameters (e.g., function_state)

• does not need the effort of modelling explicit signal exchange actions.

Therefore, to model functional behaviours, the parametric diagram is used with SysML: Constraint
Block and SysML: Constraint Property (see Figure 3.11). The behaviours are scripted inside the
constraint properties using if-else conditions using the Groovy scripting language [33]. Behaviours are
kept intentionally as basic and straightforward, i.e., if inputs are valid, outputs become valid, on the
contrary if inputs are invalid, outputs also become invalid. The reason is to keep the complexity
manageable, as the number of functions, systems and interactions involved are relatively high in the
architecture scope. Then, all the parameters that are manipulated by the behaviours are connected
to the functional flows inside the functional interfaces using SysML: Binding Connector. This
connection ensures that the parameters at each end to assume the same value, transferring any
change in the functional interface to the behaviour for the functional inputs and vice versa for the
functional outputs.

As an example, the behaviour modelled for the “Laser frequency actuation” function belonging to LA
can be given (see Figure 3.11). This function is responsible for changing the incoming laser frequency
according to control inputs received from either “External frequency control” or “Internal frequency
stabilization” functions. This function is necessary in order to lock the frequency of the laser onto
either the laser light of a remote spacecraft or the neighbouring LA on the same spacecraft, which is
eventually required for the science measurement.

The behaviour of the function is scripted inside the constraint property named “behaviour”. Since the
function only manipulates the frequency of the laser light, only the “frequency” parameter coming from
the laser input functional flow and going to the laser output functional flow is connected to the

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

43

constraint property. The rest of the parameters are directly relayed using the binding connectors.
Inside the script, the outermost if-else if conditions specify the mode that the function is in, with the
help of the bounded function_state value property defined inside the function. First, the behaviour for
the “inactive” mode is defined:

>> out_frequency = frequency;

This corresponds to the action that when the function is “inactive”, it does not impose a change in the
frequency parameter of the laser light. Then, for the “active” mode, valid conditions for each input
functional flow values are listed, and for each condition an output value is assigned to the output
functional flow value:

>> if (state == “on”)

Meaning that the laser light must be “on” first, for every other condition to be even considered.

>> if (IN_F_InT_referenceFrequencyControl == “on”) {out_frequency = “stabilized”;}

Meaning that if the reference frequency control signal is on, it directly stabilizes the laser light
frequency.

>> if (IN_F_InT_transponderFrequencyControl != “-”) {out_frequency = IN_F_InT_transponderFrequencyControl;}

Meaning that if the transponder frequency control signal is not invalid, the frequency will be actuated
to its this control signal value. And finally, if the conditions are not satisfied, the input value is relayed
without change.

>> else {out_frequency = frequency;}

This logic can be applied to all the functions in the architecture and customized depending on their
behavioural nature. An important advantage is that the methodology offers a modular approach, so
only the function of interest, its properties and its interfaces are being considered. Which means that
the functions can be relocated freely inside the architecture, connected to any desired function
through its ports, as long as the functional flow is compatible.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

44

Figure 3.11: Parametric diagram showing the modelled behaviour and constraints for the “Laser frequency
actuation” function belonging to LA.

3.1.3.3 Functional Constraints

Within the behaviour modelling, the functions behave nominally when all of its input conditions are
satisfied, and non-nominally when not, which is reflected in its output. However, explicitly for the FMEA
study, there needs to be a way to capture and record failures inside the function within the defined
behaviour. This would enable the observation of the failure propagation along the functional chain
and creation of the FMEA table as a result.

The failures in the modelled functions are defined in terms of “valid input conditions are not satisfied
when the function is active”. Each of the failures is then modelled as a constraint property inside the
parametric diagram of the function (see Figure 3.11). When the constraint is not satisfied and returns
“false” due to failure condition, the constraint property gets a verdictKind value as “fail” (verdictKind is
a Boolean-like value type defined in Cameo, taking the value of either “pass” or “fail”). By naming the
constraint property as the failure condition itself, one can observe the cause of the failure directly in a
verbal sense.

As an example, the “Laser frequency actuation” function needs at least one of the control inputs to
work, either the signal “IN_F_InT_referenceFrequencyControl”, or the signal
“IN_F_InT_transponderFrequencyControl”. On top of that, obviously, it needs the laser light to be “on”
so that it can change its frequency. To reflect these conditions, two explicit constraint properties are
defined, shown in Figure 3.11. During model execution, when the “Laser frequency actuation” function
is in its “active” mode:

• Failure Case 1: If “IN_F_InT_referenceFrequencyControl” signal switches to “-” while
“IN_F_InT_transponderFrequencyControl” signal already has the value “-”, the dedicated
constraint “Transponder and reference frequency control is not on” will get the value “fail”.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

45

• Failure Case 2: If “IN_F_InT_transponderFrequencyControl” signal switches to “-” while
“IN_F_InT_referenceFrequencyControl” signal already has the value “-”, the dedicated
constraint “Transponder and reference frequency control is not on” will get the value “fail”.

• Failure Case 3: If the laser light state switches from “on” to “-”, the dedicated constraint “Laser
light state is not on” will get the value “fail”.

Therefore, once the constraints for a function are explicitly defined, they can also be explicitly
identified when they fail, which gives the awareness to the user what exactly went wrong within the
functional chain execution. This information can be used to fill the failure cause and effects entries of
the FMEA table (described in section 3.3.3.2).

3.2 EXECUTABLE MODEL SIMULATION SETUP

In this chapter the implementation of the simulation in the model for the laser acquisition sequence
scenario is explained. The reason to implement an operations-based simulation is to correctly capture
the behaviour of the system according to its real mission usage. This way, it could be possible to find
the failure cases that are not straightforward to find while using the static architecture views. The
model execution for FMEA analysis has the two main pillars: modelling and setup of the execution
context explained in section 3.2.1 and modelling of the operation of interest explained in section 3.2.2.
The behaviour and the generated artefacts resulting from the simulation using the Cameo Simulation
Toolkit is explained in section 3.2.3.

3.2.1 Execution Context

The execution context, “Constellation_FMEA” block, is the main artefact that contains all the elements
of interest reflecting the system definition, as well as the diagrams and scripts to enable the
configuration of the analysis. The context involves three instances of the Spacecraft-Technical (see
Figure 3.3), modelled as part properties for each of the spacecrafts SC 1-2-3. Inside the ibd, external
functional interfaces of each spacecraft representing the laser links are connected using a functional
connection, establishing the constellation architecture (see Figure 3.12).

Figure 3.12: Ibd showing the execution context as the instantiation of the Spacecraft-Technical Type three
times with laser links established as interface connections.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

46

Inside the context (see Figure 3.13), three reference properties named as “Master”, “Slave_1” and
“Slave_2” are defined and typed by the Spacecraft-Technical block. These reference properties
represent the roles that the spacecrafts assume during laser acquisition sequence operations, as
described in section 1.2.3. Three value properties defined inside the context, named as
“master_sc_config”, “slave1_config” and “slave_2_config” take integer values representing which
spacecraft is assigned to which role. The roles can be assigned before the simulation is started by
modifying these configuration value properties. The context features a state machine diagram as a
classifier behaviour to orchestrate the execution. The first state called “CONFIGURE” contains an
activity called “Configure Roles” as a “do/ behaviour”. With the help of ALH API [34] scripts, each
reference property representing the roles is assigned the value of individual spacecrafts SC 1-2-3
according to the configuration value properties. This enables to track and refer to the spacecrafts with
both their roles and identification numbers. After the configuration steps, the execution transitions to
the second state called “START”, which contains the laser acquisition operational phase behaviour
as a “do/ behaviour”.

Figure 3.13: Left: Containment tree view of the execution context “Constellation_FMEA”. The part properties
depicted with the symbol “P”, represents the three spacecrafts (SC1-2-3) in the constellation. The reference
properties depicted with the symbol “R”, represents the three roles (master/reference, slave/transponder 1,

slave/transponder 2) defined for the laser acquisition sequence. The value properties depicted with the symbol
“V”, is used to assign a role to a specific spacecraft. Right: Classifier behaviour of the execution context as a

state machine.

3.2.2 Laser Acquisition Operational Phase Behaviour

The operational phase behaviour elaborates on what each spacecraft in the constellation does to
realize the laser acquisition sequence (refer to section 1.2.3). The activity diagram is used to model
this scenario as defined by the MOFLT process. According to this scenario, the three spacecrafts,
which are identical, are given separate roles as master, slave 1 and slave 2. These roles are depicted
inside the activity diagram as swimlanes assigned to reference properties Master, Slave_1 and
Slave_2. And according to these roles, individual operational tasks are performed.

Each operational task corresponds to a set of system functions that required to be in their so-called
active mode (see Figure 3.14). It is important to note that it differs from switching a system on. A
system can be on anytime, but it does not guarantee that it will provide the desired output. Whereas
the logic in the function activation employed in the operational tasks is that, the desired output is

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

47

wanted exactly when the function is activated. An example can be given for the “Long-Arm
interferometer” function. One can switch on the components responsible for long arm interferometry
without the RX and local TX laser inputs are present. It will not provide a desired output until both
laser inputs are present, however still, this action is operationally possible to do so and does not pose
a failure. But on the functional view, the desired output of Long-Arm interferometer function can only
be achieved when two laser inputs are present or else its constraints will fail, which means that the
function is not performing correctly when needed i.e., activated.

Figure 3.14: Functions to be activated during laser frequency locking operational task.

The activation is done by sending state transition signals to the respective functions using ALH API
scripts (see Figure 3.15). The swimlanes in the operational phase behaviour diagram allow the
execution to set its context into the respective reference property, which directs the context to one of
the three spacecrafts. Ideally these commands should have been run inside the OBC of each
spacecraft, and the signals should follow the functional connections. However, since the scope for
this study is on the Payload functions, to keep the study simple this type of commanding is selected.
After the command signal is sent, the execution goes into a loop node where it waits for the function
to become active, and once done, it proceeds with the control flow. Notice that there is a decision
node before this check loop which bypasses it, in case the “No Function” failure mode is set for the
function.

It is important to point out that, with the adopted activation scheme, there is a check loop implemented
with a direct feedback from the function mode status. It could be the case that the real system also
follows a pre-defined timeline as an open loop commanding. This would open up new failure cases
depending on the timing of the commands and functional response; however this is not included in
the scope of this study.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

48

Figure 3.15: Activation of a target function implemented as an activity diagram. The first opaque action on top
sends the signal that changes the mode of the desired function. The while loop node at the bottom checks and

waits until the mode change has happened. The decision node in between is implemented to by-pass the
check loop if a failure is deliberately injected to the function.

3.2.3 Execution Behaviour and Results

The execution is run using the simulation configuration named “LISA_FMEA”. After Cameo simulation
toolkit finishes debugging the execution instance, the simulation waits for a starting command by the
user. At this time, the user sets the activation property of the desired function inside the desired
system into “false” to inject a failure (see Figure 3.16). After that, the start button is clicked in the
simulation pane and the simulation is run. As a feature of the Cameo simulation toolkit, when a
constraint is failed, it is highlighted in red including all the values that are present on the failure
constraint through entire simulation context. This enables direct pinpointing of the failure location and
propagation during execution. The execution runs over the laser acquisition sequence scenario, which
takes around 2 minutes in a moderate business laptop (Intel i5-1135G7 processor, 8GB RAM). After
the execution is finished, the results are saved as an instance into the pre-designated “Results”
package.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

49

Figure 3.16: Left: Failure is injected to the SC2, left ePMS, Transponder beat note acquisition function by
turning its activation value property from “true” to “false”. Right: During execution, model elements with failed

parameters are highlighted in red.

In order to analyse the results, the instance is carried into another package called “Result Analysis”,
with two tables inside called “Failure Mode”, and “Failure Effects”. The failure mode table searches
for a slot instance that has a value “false” (see Figure 3.17). This slot corresponds to the activation
value property that has been set to false beforehand to inject failure. The table columns are then
configured to reflect which function, component, requirement, and system it belongs to, showing the
comprehensive awareness of where the failure is injected. The failure effects table on the other hand,
searches for a slot instance that has a value “fail” (see Figure 3.19). These slots correspond to the
constraint properties that are violated during the simulation. The table columns are then configured to
reflect which function, component, requirement, and system it belongs to, showing the comprehensive
awareness of where the injected failure has propagated. In addition, the relation map “Bottom-up
functional breakdown analysis” can be used to display the parent functions effected in the higher
layers of abstraction for comprehensive analysis (see Figure 3.18). The analysis can be re-done for
other simulation results by replacing the old simulation instance with the new one inside the “Result
Analysis” package. The entries in the tables are then automatically updated. This feature is particularly
useful to update the FMEA tables if the model is changed in the course of the project.

Figure 3.17: The Failure Mode table shows detailed info on the injected failure.

Figure 3.18: The “Bottom up functional breakdown analysis” relation map is useful to observe the higher level
effects of a failure happening inside a function.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

50

Figure 3.19: The Failure Effects table shows the propagation of the failure along the constellation. The
causes of failure can be seen by looking at the names of the failed constraint properties in the “defining

feature” column.

3.3 FUNCTIONAL FMEA APPROACHES FOR THE LISA MISSION

This chapter provides details on three proposed approaches for conducting a Functional FMEA study
within a defined scope in the LISA mission. These approaches are as follows:

• Traditional document-based FMEA approach, described in section 3.3.1.

• Static model-supported FMEA approach, described in section 3.3.2.

• Executable model-based FMEA approach, described in section 3.3.3.

Each of these methods utilizes either the system architecture model or documents in different ways
to conduct an FFMEA. The introduction of three different approaches allows for comparison and
evaluation of the benefits and weaknesses of establishing a model-based process for FMEA activities
(see chapter 4.1).

3.3.1 FMEA Study: Traditional Document Based Analysis

This section elaborates on the proposed approach for a traditional document-based functional FMEA
study for the LISA mission. The approach has been implemented by the combination of the process
followed when performing FFMEA in ADS at early project phases and ECSS-Q-ST-30-02C standard.
An overall summary can be found in section 3.3.1.1. Information on the preparation phase that
involves activities required to be done before establishing the FMEA table is described in section
3.3.1.2. Explanation on how the FMEA table entries are deduced and filled is given in section 3.3.1.3.
Example case studies using the methodology are explained in chapter 4.1.

3.3.1.1 Traditional Document Based Analysis Approach Summary

Functional FMEA study in the LISA mission is categorized as an early phase study and involves
various documents and stakeholders from different departments, that need to interact and harmonize
on the final deliverable. The study involves two main roles as the RAMS Engineering and Systems
Engineering with three main artefacts per each system of interest: Design Description Document,
Functional Analysis Document and Requirement Document (see Figure 3.20).

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

51

Figure 3.20: Context diagram of the traditional document-based FFMEA studies in early phases.

The main role that is responsible for the study is the RAMS engineering, which is stationed outside
the project and becomes involved during the study. This role has to gather necessary information
from the project, get familiar to it, compile it in the desired format and perform the analysis. The support
role is being undertaken by the systems engineering, that is responsible to provide all required
information to the RAMS engineering regarding the system definition and review the FMEA analysis
in the context of the mission. The process (see Figure 3.21) is by nature iterative due to the complexity
of the system and requires close collaboration in between the roles. The less clarity in documents,
the more need for one-to-one review sessions and the time needed scales strongly with mission
functional complexity.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

52

Figure 3.21: Process diagram for the traditional document based FMEA

3.3.1.2 Preparation

The document-based approach starts with the input from systems engineering as a flat list of functions
and a functional breakdown. There are various options exists regarding the format these artefacts are
supplied, and it is possible that different projects use different approaches. In the LISA mission FMEA
study, the list is implemented as an excel file with the breakdown structure and the breakdown
diagram is supplied as a picture or an html file. A functional architecture diagram is attached as a
picture that shows the relationship between functions and systems of interests.

The inputs are supplemented by the aforementioned three documents. Descriptions of the functions
can be found inside the functional analysis document and requirement document. The descriptions
include what the function needs to achieve, which system it belongs to and the parameters it
exchanges. The description of the system and system interfaces are found in the design description
document, which gives a more physical understanding on the implementation.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

53

When the inputs are supplied by the systems engineering, the compilation process on the RAMS
engineering starts. RAMS engineering has to study the system design description first, to be able to
familiarize with the system of interest and understand its generic working principle. Then the
components and subsystems are added and matched to the list of functions. It follows with the
requirements, and interfacing functions. When all this information is compiled (see Table 3.2), RAMS
engineering can generate and start filling up the FMEA table.

Table 3.2: The desired format of information of RAMS engineering for the starting of FMEA study is a table
that is the list of functions with the entries below.

Function Name of the function

System The system/component function belongs to

Description Description of the function

Requirement Requirement that the function is linked to

Function Input/Outputs List of functional input/output parameters

Upstream Functions List of functions that supply inputs to the function of interest

Downstream Functions List of functions that receive outputs of the function of interest

Parent Functions List of function that the function of interest is decomposed from

Child Functions List of functions that the function of interest decompose into

3.3.1.3 Conducting FMEA

Using the compiled information, RAMS engineering starts to fill the first draft of the ECSS-Q-ST-30-
02C FMEA table, first with the lowest level “leaf” functions that have been reflected in the functional
architecture diagram. Following the functions and the connections inside the diagram, information for
the FMEA table entries is deduced supplemented by the other input artefacts.

• Failure mode: In the scope of this thesis, only “No Function” failure mode is considered.

• Failure cause: The failure cause could be internal or due to the inputs from other functions.
For the internal cause, if the function of interest has child functions, the failure mode of these
functions are listed (no functionality of the child function) [16]. The functional breakdown
structure is used to follow this traceability. In addition, all the inputs to the function of interest
are listed inside this column with the upstream functions they come from. This is an
assumption made, as done by Mhenni et.al. [24], for the “first draft” of FMEA results before
being detailed or corrected during the review loop with the systems engineering.

• Mission phase / Operational mode: For the study conducted in the frame of this work, Mission
phase / Operational mode is set as “Laser Acquisition Sequence”.

• Local failure effects: As a first entry, the “loss of function” is listed. Another effect would be
the lack of outputs of the function of interest. This can also cause the failure of the downstream
functions, for example, because no inputs are provided to these downstream functions.
Therefore, in this column, all the outputs and downstream functions are listed. This is an
assumption made, as done by Mhenni et.al. [24], for the “first draft” of FMEA results before
being detailed or corrected during the review loop with the systems engineering.

• End failure effects: The end effect is defined as the failure mode of the parent function, which
is “no functionality of the parent function”. The functional breakdown structure is used to follow
this traceability.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

54

The rest of the table entries are filled out within the interpretation of the RAMS engineering according
to system nature, heritage information and engineering judgement.

From this point on, the first draft is finished, questions are collected and the review sessions with the
systems engineering starts. In particular, the failures and local effects on the other functions must be
agreed on within the context of the system definition. Some of the failures might pose no threat to the
downstream functions, whereas some of them might propagate further even through other spacecrafts
in the context of LISA constellation. This fact requires the expertise of the systems engineering to
review the correctness and the reach of the failure cases. Through sessions in between roles and
iterations, the final study is agreed on and delivered.

3.3.2 FMEA Study: Static Model-Supported Analysis

In the project, the “static model-supported FMEA approach” is defined as the process consisting of:

• generating inputs from the model for FMEA study directly, instead of supplying related
documentation as the master input,

• and storing the output of the FMEA study (the filled out FMEA table) inside the model using
Cameo SRAP profile.

The terminology “static” refers to the fact that there are no model execution and simulations involved
in the process.

This section describes the process followed in this approach with an overall summary in section
3.3.2.1, information on the preparation phase in section 3.3.2.2 and conducting the FMEA in section
3.3.2.3. Example case studies using the methodology are explained in chapter 4.1.

3.3.2.1 Static Model-Supported Analysis Approach Summary

Static model-supported approach (see Figure 3.23) shifts the information compilation process into the
system architecture model instead of the responsibility of the RAMS engineering. In this approach,
systems engineering generates the input table (see Table 3.2) directly in the model using the
traceability links defined during default MOFLT systems engineering process. Therefore, the input
table and all the associated model elements in its entries are available for the RAMS engineering
discipline inside the model, to support conducting the FMEA study. It important to note that it is still
possible to export the input table from the model, e.g., as an Excel file, if desired by the project team.
The documents are still supplied, but as a supplement for RAMS engineering to refer to, for further
details on the systems and functions that are not captured in the model (see Figure 3.22). RAMS
engineering can benefit from the analysis maps and diagrams in the model to enhance their
awareness on the system and the presentability of their study. The result of the study is stored inside
the “Reliability and Safety” viewpoint of the model using the model elements from Cameo SRAP profile
[19], with an FMEA table formatted in-line with the ECSS-Q-ST-30-02C standard (see section 2.3.3).
This approach does not necessarily force RAMS engineering to fill up the table inside Cameo, since
export and import from Excel is also possible, therefore offers a flexible working environment in
between disciplines. Additionally, it allows a smooth transition towards a fully implemented MBSE
work environment.

This approach assumes that the functional architecture modelling is already done as a part of the
systems engineering process and stored in the model in a formalized way. In the LISA project, this
had been achieved with the SysML model implemented in Cameo using MOFTL methodology, as
described in chapter 2.3. If there are still documents that are detailing on the functions and the
systems that are not involved in modelling scope, they are linked to the model (e.g. requirements
database in DOORS).

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

55

Figure 3.22: Context diagram for static model-supported FMEA

Figure 3.23: Process diagram for the static model-supported FMEA. Notice that the input preparation
activities are eliminated since they are done by the model automatically.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

56

3.3.2.2 Preparation

The preparation phase for the static model-supported approach is to establish the input to the RAMS
engineering in the desired table format (see Table 3.2). Inside the model, several queries can be
defined to compile this information.

First, using a generic table and metachain navigation (a querying method implemented in Cameo
[35]), the functions that have been reflected in the functional architecture diagram are compiled. Then
using the function-technical component link (“directed composition”) the system responsible for the
performing of the function is shown. Function description and requirement are traced using the
“satisfiedBy” link in between the function and the requirement elements. Functional input/outputs and
the upstream downstream functions are traced using the functional connections in between functional
parts inside the functional-technical architecture. And finally, the hierarchical parent/child functions
are traced using the “directed decomposition” link in between the functions inside the functional
breakdown structure (refer to traceability links descriptions in section 3.1.1 and Figure 3.4).

3.3.2.3 Conducting FMEA

In the static model-supported approach, deducing the content of the FMEA table entities is exactly
the same as the traditional document-based approach described in section 3.3.1.3. The main
difference in this approach is that the way deduced information is stored and filled. Instead of a
document or a dedicated software, the FMEA is conducted inside Cameo using the system definition
in the model and dedicated model elements from Cameo SRAP FMEA profile.

As a first step, for the failure mode, which is identified as “No Function”, a failure mode element is
created. This failure mode is then traced to the functions in the scope using the “failure mode”
property. After this step, a macro called “create FMEA items” is run for each of the functions, which
creates a “FMEA Item” model element. This is the main artefact that stores the main column entries
of the FMEA, described in detail in section 2.3.3. For the rest of the column entries such as cause of
failure, local effect of failure and final effect of failure, respective model elements are created and
linked to the FMEA Item accordingly using the FMEA table inside the model (see Figure 3.24).

When the model links and elements for the functions are established, the FMEA table shows the
functions and its entries dynamically, e.g., in case of a function change, or the system responsible for
realizing it, the table will be automatically updated. The table is also interactive, allowing to navigate
through model elements, or show their specifications when clicked on, which is used extensively for
the reviewing process afterwards.

Figure 3.24: Excerpt from example FMEA table filled in using Cameo SRAP profile inside the model.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

57

3.3.3 FMEA Study: Executable Model-Based Analysis

Executable model-based FMEA approach is defined as using the executable model simulations to
identify the failure causes and effects in the functional architecture. This section describes the process
followed in this approach with an overall summary in section 3.3.3.1, and information on conducting
the FMEA in section 3.3.3.2. Example case studies using the methodology are explained in chapter
4.1.

3.3.3.1 Executable Model-Based Analysis Approach Summary

Executable model-based approach supports RAMS engineering during the deduction of failure
causes and effects for the system functions along the functional chain by using the results of the
failure case simulation of the executable model (as described in section 3.2.3). As a pre-requisite for
this approach, the baseline MOFLT MBSE modelling activities with the prescribed extensions (as
described in chapter 3.1) must be performed by Systems Engineering. The interactions between the
stakeholders in this approach can be seen in Figure 3.25.

In terms of process (see Figure 3.26), this approach differs significantly from the previous ones, as it
is more of a review task than deduction. The deduction of failure cause and effects is not performed
manually by either RAMS discipline or by system engineering in this approach. This task is solely
performed by the simulation of the system architecture model. Systems engineering is responsible for
the correctness of the behaviour model as well as functional constraints, whereas RAMS engineering
is responsible to operate the simulation and collect the results in a proper FMEA table format. Once
done, the review session is initiated with Systems Engineering to either further investigate the
simulation results, or edits in the FMEA table. This review session is not as extensive and cyclic as
the review loops of the previous approaches. The reason is that the model provides extensive
information in a clear format on the most complex/knowledge-intensive part of the FMEA study, which
is the deduction of failure causes and effects. This approach also uses the same process as in static
model-supported approach to compile and store desired information inside the model.

In terms of contents, the most significant difference is that this study is connected to functional
behaviours and specific operational scenarios, meaning the failures can be directly traced to a non-
nominal behaviour and its cause during a specific operation. This link can be used to pinpoint:

• the most critical causes of functional misbehaviours

• the most critical functions per each operation

• the most critical operations in the mission

This allows for necessary efforts to be directed towards strengthening these identified elements.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

58

Figure 3.25: Context diagram for executable model based FMEA.

Figure 3.26: Process diagram for the executable model based FMEA. Notice that the review loop is
eliminated as the model is generating the failure cause and effects information through simulations. A generic

review with Systems Engineering might be needed at the end of the study.

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

59

3.3.3.2 Conducting FMEA

In the executable model-based approach, the execution context is run for each of the functions in the
architecture, one by one, with the “No Function” failure mode applied as described in section 3.2.3.
The failures that result in the “Failure Effects” table (see Figure 3.19) corresponds to the Failure
Effects entry of the FMEA table. On the other hand, the constraints of the function (described in
section 3.1.3.3) corresponds to the Failure Cause entry of the FMEA table.

An important point here is that there are two possible ways to conduct FMEA using this approach,
with different failure effect results that answer the following questions:

• Generic FMEA: Which functions could be affected when “Function X” fails?

• Detailed FMEA: Which functions, in which systems are affected when “Function X” fails in
“System Y”?

The generic FMEA includes all the possible failure effects independent of the system it happens in.
In order to collect all the functional failure effects that can possibly happen, independent of the system
it is used in, “No Function” failure mode is applied to all the instances of a specific function. As an
example, a LA function has 2 instances per spacecraft, and along the constellation it has 6 instances.
It could be that failure of each 6 instances could have different failure effects due to different
operations of the systems. In order to capture every possible failure effect, all 6 instances have to be
failed for the analysis of one function. After execution, the model generates the list of all failed function
instances for entire constellation, which would include same functions failed inside different
spacecrafts or systems. These repetitions need to be filtered out, as in FMEA table, entries are listed
only once. Therefore, a simple post processing step is needed. In this study, the Failure Effects table
in Cameo is exported to Excel and using the “Remove Duplicates” tool on the function name column,
the list is reduced to the unique list of functions as failure effects. This list can then be added to the
FMEA table as described in the previous step. For the failure causes there is no need to run the
simulations again and they can be deduced from the list of function constraints.

On the other hand, the detailed FMEA is a system dependent way of reporting failures. It analyses
the failure mode for each instance of a particular function, realized in different systems along the
constellation (e.g., 6 instances of the “Laser frequency actuation” function in 6 LAs along
constellation). Therefore, it includes unique failure effects that are identified along the constellation
within the individual systems, in the context of their respective operational tasks. For this way, the
process is to have the “Failure Mode” and “Failure Effects” table (see Figure 3.17 and Figure 3.19)
for each instance of the functions in the architecture and list these in individual FMEA table rows.
Although there is no additional modelling effort involved, it should be noted that the number of
simulations needed will be equivalent to the number of function instances (e.g., 6 individual
simulations have to be run for the 6 instances of the “Laser frequency actuation” function). The Failure
Cause entry of the FMEA table still remains as the list of function constraints. Note that, post
processing is not needed for this way of conducting FMEA. If desired, this way of reporting failures in
individual systems and spacecraft can be adopted as a baseline. This would identify in which system
of which spacecraft the functional failure is the most critical one and create a major situational
awareness for the development team.

It is important to note that both methods are still dependent on the operational scenario that is being
simulated. If during the operations, the failed function of interest is not used, it will not be captured in
the failure effects results of the simulation. The different results of the two methods can be observed
in Table 4.6 and Table 4.7. If possible, it is recommended to include both FMEA approaches in the
failure assessment because,

• Generic FMEA shows the worst-case combination by collecting all the functional failures that
can happen during an operational scenario,

APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA
MISSION

60

• Detailed FMEA shows the exact propagation of a specific failure along the constellation during
an operational scenario.

This combination of both information is valuable for understanding the behaviour and impact of failures
in the LISA constellation.

RESULTS AND DISCUSSION

61

4 RESULTS AND DISCUSSION

This chapter presents the results of the work performed to compare the three FMEA results and
methodology (traditional document-based, static model-supported, and executable model-based) in
chapter 4.1 and the contributions of the thesis work for the investigated problem in chapter 4.2.

4.1 FMEA COMPARISON

This chapter compares and discusses on the methodology and results of the three FMEA studies
performed within this thesis. The comparison of the quality of results obtained from three different
approaches is described in section 4.1.1. The comparison of the methodologies according to selected
evaluation criteria (e.g., effort for preparation, information access and traceability etc.) is described in
section 4.1.2. Discussion and conclusion on the comparison can be found in section 4.1.3.

4.1.1 Comparison of Examples from Investigated FMEA Results

This section investigates example FMEAs with 3 case studies:

• Correctness in results,

• Impact of architecture changes on the results

• Impact of operational scenario on the results

It's important to note that the results presented in this section correspond to the "first draft" of the
FMEA, which was conducted solely by the RAMS engineering discipline, with or without the support
of the model. This initial analysis does not involve review sessions with systems engineering, nor a
detailed study and understanding of functional behaviours and descriptions by the individual
conducting the analysis. This assumption is essential to ensure a meaningful comparison of the
results, since, in terms of content, all three FMEA methods would result in the same manner at the
end, if there were enough knowledge about the system, and enough time and effort was spent.

4.1.1.1 Case 1: Correctness in Results

The first case is the difference in the correctness of the results obtained. As an example, the “Laser
frequency actuation” function belonging to LA is given. This function is responsible for changing the
incoming laser frequency according to control inputs received from either “External frequency control”
or “Internal frequency stabilization” functions. This function is necessary in order to lock the frequency
of the laser onto either the laser light of a remote spacecraft or the neighbouring LA, which is
eventually required for the science measurement. The frequency actuated laser light output of the
function is then used by the phase modulation function where its phase is modulated with information
for inter-spacecraft communication.

For the traditional document-based approach, as described in section 3.3.1.2, from the documents
the input table is compiled for this function (see Table 4.1). On the contrary, for the static model-
supported approach, the input table is compiled automatically from the model as described in section
3.3.2.2. Using the information from input table and the functional architecture view in Figure 6.1, FMEA
table row is filled out as described in section 3.3.1.3 and 3.3.2.3. On the executable model-based
FMEA side, simulation is run by failing the function for all LAs in the constellation, and the generic
results are collected following the process described in section 3.3.3.2.

Investigating the “first draft” results obtained from traditional document based and also from the static
model-supported approaches in Table 4.2, it can be seen that there are some incorrect deductions.
The assumptions that correlate upstream-downstream functions to the failure cause and failure effects

RESULTS AND DISCUSSION

62

(refer to section 3.3.1.3) turn out to be incorrect. For example, in reality, the laser light frequency can
still be actuated without the need for intensity stabilization. Therefore, a non-stabilized intensity input
is not a cause of failure for the function of interest. In addition, the failure of the “Laser frequency
actuation” function does not impose a local effect of failure in the “Phase modulation” function since
the laser light phase can still be modulated even if the frequency is not actuated. This entry needs to
be corrected during the review loop with the systems engineering. On the contrary, when looking at
the results of the executable FMEA approach, one can see that the “Phase modulation” function is
not affected as the system behaviour dictates, showing the correct failure effects even 5 levels
downstream that comes after the “Phase modulation” function.

Table 4.1: Input table for the “Laser frequency actuation” function. Compiled either manually using document-
based approach or automatically using the model-based approach.

Function Laser frequency actuation

System LA

Description Actuate the laser frequency

Requirement PAYL-12

Function Inputs/Outputs

in IN_F_IntT_stabilizedLaserLight
in IN_F_IntT_referenceFrequencyControl
in IN_F_IntT_transponderFrequencyControl
out OUT_F_InT_frequencyActuatedLaserLight

Upstream Functions
Internal frequency stabilisation (reference mode)
Power stabilization on OB
External frequency control (transponder mode)

Downstream Functions
Internal frequency stabilisation (reference mode)
Phase modulation
External frequency control (transponder mode)

Parent Functions Transponder Mode Configuration

Table 4.2: FMEA table for “Laser frequency actuation” failure. First row filled using the static approaches,
whereas second row filled using the generic executable approach. Incorrect assumptions of static approaches

are given in red colour, whereas additional entries from executable approach are highlighted in blue.

Item /
block

Function Failure Mode Failure Cause
Mission Phase

/ Op. mode
Failure Effects

a. Local Effect Of Failure

Failure Effects
b. Final Effect Of

Failure

LA Laser
frequency
actuation

No Function Internal

No stabilized laser input
from LA : Power
stabilization on OB

No reference frequency
control input from FRS :
Internal frequency
stabilisation

No transponder frequency
control input from LA :
External frequency control

Laser
Acquisition
Sequence

Loss of Function

No frequency actuated laser light output

Failure in LA : External frequency control

Failure in LA : Phase modulation

Failure in FRS : Internal frequency
stabilization

Failure in OMS :
Transponder Mode
Configuration

LA Laser
frequency
actuation

No Function Internal

No reference and
transponder frequency
control input

No laser light input

Laser
Acquisition
Sequence

Loss of Function

No frequency actuated laser light output

Failure in ePMS : Extraction of DWS angles
from LOA and TM IFO

Failure in ePMS : IFO parameter extraction
from carrier beatnotes

Failure in ePMS : Retrieval of PRN code
delay and data

Failure in OMS :
Transponder Mode
Configuration

RESULTS AND DISCUSSION

63

Failure in ePMS : Demodulation of
sideband-sideband beatnotes and clock
noise retrieval

4.1.1.2 Case 2: Impact of Architecture Changes on the Results

The second case is to compare the impact of architecture changes on the results. For this purpose,
a small change in LA architecture is done by switching the places of “Laser frequency actuation” and
“Phase modulation” functions. This small change causes a relatively significant impact on the
interfaces of the “Laser frequency actuation” function, adding 3 more functions to its downstream (see
Table 4.1 and Table 4.3). For the document based and static model-supported approaches, this
change of architecture effects the result of the first draft significantly (see first rows of Table 4.2 and
Table 4.4). As the assumption has been made that all the downstream functions are affected by the
failure in the function of interest, the new list of downstream functions is included in the FMEA table
entry.

However, looking at the system behaviour, there should be no change in the FMEA results of both
architectures. The change in the sequence of the functional chain actually have no effect on the
system behaviour as “Laser frequency actuation” and “Phase modulation” functions are independent
of each other. The executable model-based approach can successfully capture this phenomena (see
second rows of Table 4.2 and Table 4.4 being exactly the same), since it only considers the functional
behaviours and interface exchanges instead of the “architectural picture”. On the other hand, not only
static approaches resulted in an unnecessary change in the table entries but also, they have to be
checked and corrected referring to the functional behaviour descriptions.

This example shows the big difference between the flexibility and robustness of executable and static
methods. With the static methods, each architectural change has to be analysed all over again,
whether there should be a modification in failure effects and causes. On the other hand, the
executable method only needs a simulation run (as described in section 3.2.3) to correctly show what
the new effects are, independent of the scale of the change in the architecture view.

Table 4.3: Input table for the alternative architecture “Laser frequency actuation” function. Compiled either
manually using document-based approach or automatically using the model-based approach.

Function Laser frequency actuation

System LA

Description Actuate the laser frequency

Requirement PAYL-12

Function Inputs/Outputs

in IN_F_IntT_phaseModulatedLaserLight
in IN_F_IntT_referenceFrequencyControl
in IN_F_IntT_transponderFrequencyControl
out OUT_F_InT_frequencyActuatedLaserLight

Upstream Functions
Internal frequency stabilisation (reference mode)
Phase modulation
External frequency control (transponder mode)

Downstream Functions

Internal frequency stabilisation (reference mode)
External frequency control (transponder mode)
Reference Interferometer
Long-Arm Interferometer
Laser beam acceptance for local interferometry
Laser beam acceptance for emission to remote SC

RESULTS AND DISCUSSION

64

Parent Functions Transponder Mode Configuration

Table 4.4: FMEA table for alternative architecture “Laser frequency actuation” failure. First row filled using the
static approaches, whereas second row filled using the generic executable approach. Incorrect assumptions

of static approaches are given in red colour, whereas additional entries from executable approach are
highlighted in blue.

Item /
block

Function Failure Mode Failure Cause
Mission Phase

/ Op. mode
Failure Effects

a. Local Effect Of Failure

Failure Effects
b. Final Effect Of

Failure

LA Laser
frequency
actuation

No Function Internal

No phase modulated laser
input from LA : Phase
modulation

No reference frequency
control input from FRS :
Internal frequency
stabilisation

No transponder frequency
control input from LA :
External frequency control

Laser
Acquisition
Sequence

Loss of Function

No frequency actuated laser light output

Failure in LA : External frequency control

Failure in FRS : Internal frequency
stabilization

Failure in OB : Reference Interferometer

Failure in OB : Long-Arm Interferometer

Failure in OB : Laser beam acceptance for
local interferometry

Failure in OB : Laser beam acceptance for
emission to remote SC

Failure in OMS :
Transponder Mode
Configuration

LA Laser
frequency
actuation

No Function Internal

No reference and
transponder frequency
control input

No laser light input

Laser
Acquisition
Sequence

Loss of Function

No frequency actuated laser light output

Failure in ePMS : Extraction of DWS angles
from LOA and TM IFO

Failure in ePMS : IFO parameter extraction
from carrier beatnotes

Failure in ePMS : Retrieval of PRN code
delay and data

Failure in ePMS : Demodulation of
sideband-sideband beatnotes and clock
noise retrieval

Failure in OMS :
Transponder Mode
Configuration

4.1.1.3 Case 3: Impact of Operational Scenario on the Results

The third case is to compare the impact of operational scenario on the results. As the static
approaches consider all the functions are active all the time, and the executable approach considers
the activated functions according to the operational scenario, there are significant differences in the
results. As an example, “Internal Frequency Stabilization” function belonging to FRS is given. This
function is responsible for stabilizing the laser frequency by locking it onto the optical cavity inside the
FRS. This function is necessary in order to stabilize the laser frequencies of the whole constellation,
which is eventually required for the science measurement and inter-spacecraft communication.

Table 4.5: Input table for the Internal frequency stabilisation function. Compiled either manually using
document-based approach or automatically using the model-based approach.

Function Internal frequency stabilisation (reference mode)

System FRS

Description
Ensure that at least one of both laser assemblies can be stabilized in
frequency to an optical frequency reference (master mode).

Requirement PAYL-10

Function Inputs/Outputs
in IN_F_IntT_masterLockingScanParameters
in IN_F_InT_frequencyActuatedLaserLight
out OUT_F_IntT_referenceFrequencyControl

Upstream Functions Command FRS

RESULTS AND DISCUSSION

65

Laser frequency actuation

Downstream Functions Laser frequency actuation

Parent Functions
Reference Mode Configuration
Laser Mode Configuration

Based on the information from Table 4.5 and the functional architecture, one can follow the static
approach to deduce the failure effects to conduct FMEA, resulting in the first row of Table 4.6. There
are two fundamental problems in this result:

• Tracing the local effects to only neighbouring (one upstream & downstream) functions does
not capture the full effect of the failure of this function. The function failure creates a drastic
propagation of errors and failures in the payload, which affects the whole constellation. To
handle this correctly in the sense of a realistic failure effects analysis, RAMS engineering has
to trace this failure along the constellation architecture. All the effected functions have to be
manually identified one by one with consultation to functional descriptions and systems
engineering during a review loop.

• Operationally, this function is active in only one of the spacecrafts (master/reference SC) and
only for one of the LAs. Therefore, the failure in different components shows different effects.
If the failure occurs in the function stabilizing the master/reference LA, the whole constellation
is impacted as an effect. On the contrary, a failure in the “Internal frequency stabilization”
function that is responsible for stabilizing the rest of the 5 LAs will not have any effect on the
constellation operations, because it is not used.

On the other hand, as shown in Table 4.7, a detailed model-based FMEA (as described in section
3.3.3.2) is conducted on the 6 different instances of “Internal Frequency Stabilization” function. The
analysis reveals that only the function inside the FRS of Spacecraft 1, that is responsible for stabilizing
the Left LA (master/reference LA), ends up in a drastic functional failure effect propagating along the
constellation. This shows that the static approaches fail to reflect the listed aspects of the functional
failure, whereas the executable model-based approach captures the full effect of the failure in all the
components it is allocated to, according to the operational use.

This example, even though obvious for the payload experts, is especially chosen to be easy to grasp
the concept. However, the same difference in results goes for all other functions in the architecture.
These functions may not be so intuitive to investigate, as their failure might propagate differently
depending on which component and during which operation it happens. This is a key limitation in the
early phase functional FMEA that uses static approaches. Because, for a non-expert on the system
functions (in this case RAMS engineering), there is limited expertise, information or intuition on how
much the operational aspects affect the behaviour and the level of propagation of a specific functional
failure. This results in a limited idea on how much effort that has to be spent on to analyse a specific
function, which eventually might end up in an FMEA not reflecting the full coverage of a functional
failure.

It is important to note that, according to the preference of the RAMS and systems engineering, the
number of failure effects entries can be reduced. Or a generic failure case independent of the
components (generic FMEA approach) can be investigated by only listing the affected functions once
(see second row of Table 4.6). This is achieved by failing the function of interest in all the components
along constellation and removing the duplicates of the functions as described in section 3.3.3.2.

RESULTS AND DISCUSSION

66

Table 4.6: FMEA table for Internal frequency stabilisation (reference mode) failure. First row filled using the
static approaches, whereas second row filled using the generic executable approach. Entries from executable

approach are highlighted in blue.

Item /
block

Function
Failure
Mode

Failure Cause
Mission

Phase / Op.
mode

Failure Effects
a. Local Effect Of Failure

Failure Effects
b. Final Effect Of

Failure

FRS Internal
frequency
stabilisation
(reference
mode)

No
Function

Internal

No master locking scan
parameters input from OBC
: Command FRS

No frequency actuated
laser light input from LA :
Laser frequency actuation

Laser
Acquisition
Sequence

Loss of Function

No reference frequency control
output

Failure in LA : Laser frequency
actuation

Failure in OMS :
Reference Mode
Configuration

Failure in OMS : Laser
Mode Configuration

FRS Internal
frequency
stabilisation
(reference
mode)

No
Function

Internal

No master locking scan
parameters input

No laser light input

Laser
Acquisition
Sequence

Loss of Function

No reference frequency control
output

Failure in LA : Laser frequency
actuation

Failure in ePMS : Extraction of
DWS angles from LOA and TM
IFO

Failure in ePMS : IFO parameter
extraction from carrier beatnotes

Failure in ePMS : Retrieval of PRN
code delay and data

Failure in ePMS : Demodulation of
sideband-sideband beatnotes and
clock noise retrieval

Failure in OMS :
Reference Mode
Configuration

Failure in OMS : Laser
Mode Configuration

Table 4.7: Part of an FMEA table for “Internal frequency stabilisation (reference mode)” failure, filled in using
the detailed executable model-based approach. All the 6 instances of the function and where they belong in

the constellation are shown in first two columns. The failure effects are captured with their exact location in the
constellation (e.g., constellation.sc1.ePMS_L). The cause of failure for the affected functions are also listed

next to their respective entries. As anticipated, the functions responsible for stabilizing slave/transponder LAs
does not have failure effects as they are not used operationally.

Item /
block

Function Failure Effects (with Failure Cause)

SC1.FRS Internal frequency
stabilisation (reference
mode) – LA_L

constellation.sc1.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized
constellation.sc1.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized
constellation.sc1.ePMS_L: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized
constellation.sc1.ePMS_L: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized
constellation.sc1.ePMS_L.: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized
constellation.sc1.ePMS_L: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized
constellation.sc1.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized
constellation.sc1.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized
constellation.sc1.ePMS_R: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized
constellation.sc1.ePMS_R: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized
constellation.sc1.ePMS_R: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized
constellation.sc1.ePMS_R: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized
constellation.sc1.LA_L: Laser frequency actuation - Transponder and reference frequency control is not on
constellation.sc2.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized
constellation.sc2.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized
constellation.sc2.ePMS_L: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized
constellation.sc2.ePMS_L: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized
constellation.sc2.ePMS_L: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized
constellation.sc2.ePMS_L: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized
constellation.sc2.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized
constellation.sc2.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized
constellation.sc2.ePMS_R: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized
constellation.sc2.ePMS_R: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized
constellation.sc2.ePMS_R: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized
constellation.sc2.ePMS_R: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_L: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized
constellation.sc3.ePMS_L: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_L: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_L: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized
constellation.sc3.ePMS_L: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_R: Demodulation of sideband-sideband beatnotes and clock noise retrieval - REF_IFO not frequency stabilized
constellation.sc3.ePMS_R: Extraction of DWS angles from LOA and TM IFO - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_R: IFO parameter extraction from carrier beatnotes - LOA_IFO not frequency stabilized
constellation.sc3.ePMS_R: IFO parameter extraction from carrier beatnotes - REF_IFO not frequency stabilized

RESULTS AND DISCUSSION

67

constellation.sc3.ePMS_R: Retrieval of PRN code delay and data - LOA_IFO not frequency stabilized
SC1.FRS Internal frequency

stabilisation (reference
mode) – LA_R

No Failure Effect

SC2.FRS Internal frequency
stabilisation (reference
mode) – LA_L

No Failure Effect

SC2.FRS Internal frequency
stabilisation (reference
mode) – LA_R

No Failure Effect

SC3.FRS Internal frequency
stabilisation (reference
mode) – LA_L

No Failure Effect

SC3.FRS Internal frequency
stabilisation (reference
mode) – LA_R

No Failure Effect

4.1.2 Discussion and Assessment of Investigated FMEA Methodologies for the LISA Mission

In this section, the methodologies are compared and assessed for the traditional document based,
static model-supported and executable model based FMEA approaches according to the defined
criteria in Table 4.8. The criteria are determined in the light of reflecting the aspects that are
encountered during the project evolution and are considered important for an effective FMEA analysis
by the project team.

Table 4.8: Criteria table showing the comparison criteria with descriptions used for evaluating the different
FMEA methodologies.

Criteria Description

Quality of Input
Correctness and level of detail in information of the input to
the FMEA study.

Effort for Preparation
Effort needed for the preparation before starting to fill the
FMEA table entries.

Information Access and Traceability
Convenience to access to desired information and trace in
between functions-requirements-systems-failures.

Quality of Results
Correctness and level of detail in information of the FMEA
entries of the “first draft” before systems engineering review
(only Failure Cause and Effects are considered).

Effort to Obtain Results Effort needed to obtain Failure Cause and Effects information.

Filling the FMEA Table Convenience to fill the FMEA table entries.

Effort for Initial Setup
Effort needed to initially setup the environment used for FMEA
study.

Maintenance
Effort needed to maintain the consistency along the system
definition and the FMEA entries during project evolution.

By comparing these three different approaches, it is possible to gain insights into the strengths and
weaknesses of each method. A point-based qualitative assessment is employed to evaluate each
method against the defined criteria explained in Table 4.8. Through this analysis, the strengths and
limitations of each approach are carefully considered, conclusions are made on whether the model-
based methodologies are the most suitable for meeting the specific needs of the LISA project and
recommendations are given to further improve on this conclusion for each defined criterion. The
summary of the comparison is given in Table 6.1 in APPENDIX B, whereas the overall conclusions
are given in the next section.

RESULTS AND DISCUSSION

68

Table 4.9: Description of points of the qualitative assessment.

Point Description

1
Poor: The FMEA approach has significant weaknesses and limitations that hinder its
effectiveness in the given criterion. There are significant issues that make the approach
difficult to use or that impact obtaining satisfactory results.

2
Below Average: The FMEA approach has some strengths, but also significant limitations
that impact its ability to perform optimally in the given criterion. The approach has some
gaps in coverage or require additional effort to achieve satisfactory results.

3
Average: The FMEA approach has a number of strengths and weaknesses that balance
each other out. It is generally effective in the given criterion, but requires additional support
or modifications to work optimally in certain situations.

4
Above Average: The FMEA approach has notable strengths and is generally effective in
the given criterion. It requires some adjustments to work optimally in certain situations, but
overall it is a strong approach.

5
Excellent: The FMEA approach has exceptional strengths and is highly effective in the
given criterion. It is versatile and can be applied in a variety of situations with little or no
modification.

4.1.2.1 Quality of Input

The document-based approach has some disadvantages compared to the static model-supported
approach and the executable model-based approach. Both approaches receive the same information
of the system description, functional list, architecture, and breakdown, however in different formats.
The document-based approach relies on excerpts from documents, which is not interactable and
spread through various pages and chapters. This increases the chance of inconsistency in the
information, unless specifically checked for, and may not provide a complete picture of the system's
characteristics. Additionally, the use of worded information may make it harder to understand and
extract the input. On the other hand, the static model-supported approach, and the executable model-
based approach both offer more consistent and complete information, which is important for ensuring
the accuracy and completeness of the FMEA analysis. The model enables to conveniently navigate
through relations in between elements to find, collect and present desired information. It also provides
a visual representation of the system's characteristics, which is easier to understand than worded
information. Finally, these approaches offer the ability to dynamically update the input, which is crucial
for ensuring the accuracy and completeness of the FMEA analysis input when changes occur over
time.

Both static model-supported and executable model-based approaches offer exceptional strengths in
ensuring high-quality and consistent input for the FMEA study, while the document-based approach
suffers from significant weaknesses and limitations, hence resulting in the assessment shown in
Figure 4.1. For the LISA project, it is recommended to pursue the model-based/supported approaches
in terms of this criterion.

RESULTS AND DISCUSSION

69

Figure 4.1: Point based qualitative assessment of approaches according to “Quality of Input” criterion.

4.1.2.2 Effort for Preparation

The document-based approach requires significant time and effort to compile information from
multiple documents as described in section 3.3.1.2. The need to manually extract information from
various sources for the preparation to the FMEA study makes this process time-consuming and more
prone to errors, especially when the number of functions to be analysed is high. In contrast, both the
static model-supported approach and the executable model-based approach offer significant
advantages in terms of reducing the effort for this preparation. These approaches use the queries and
relations in between the model elements to automatically compile the required information, which is
then presented real-time in a table format, eliminating the need for manual operation. Once the initial
setup is done in the model, the process becomes more efficient, streamlined, and less prone to errors,
making the overall time and effort required for preparation significantly less.

Figure 4.2: Point based qualitative assessment of approaches according to “Effort for Preparation” criterion.

0 1 2 3 4 5

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Quality of Input

0 1 2 3 4 5

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Effort for Preparation

RESULTS AND DISCUSSION

70

In terms of the preparation effort, both static model-supported and executable model-based
approaches demonstrate exceptional strengths by automating the information compilation effort, while
the document-based approach presents significant weaknesses and limitations, hence resulting in the
assessment shown in Figure 4.2. For the LISA project, it is recommended to pursue the model-
based/supported approaches in terms of this criterion.

4.1.2.3 Information Access and Traceability

The document-based approach has some limitations in terms of this criterion. It requires explicit
searching for the necessary information, which requires expertise, is time-consuming, and might result
in missing some essential information. Moreover, there is no formal traceability between the contents
of the documents, making it difficult to track the origin of the information. Navigation through the
documents is either manual or through hyperlinks if implemented, which is inconvenient. On the other
hand, both static model-supported and executable model-based approaches have significant
advantages overcoming these problems. They use model diagrams and relations to represent the
system's functions, requirements, systems, and failures, containing all necessary information
together. Additionally, full traceability is established between the model elements (shown in Figure
3.4), which makes it easier to track the origin of the information. Navigation is more convenient using
the interactive diagrams, tables, and model elements.

Figure 4.3: Point based qualitative assessment of approaches according to “Information Access and
Traceability” criterion.

In terms of the "Information Access and Traceability" criterion, both static model-supported and
executable model-based approaches are superior, with the exceptional strengths, to the document-
based approach which has significant weaknesses and limitations, hence resulting in the assessment
shown in Figure 4.3. For the LISA project, it is recommended to pursue the model-based/supported
approaches in terms of this criterion.

0 1 2 3 4 5

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Information Access and Traceability

RESULTS AND DISCUSSION

71

4.1.2.4 Quality of Results

When considering the criterion of “Quality of Results”, both the document-based and static model-
supported FMEA approaches have limitations, as highlighted in section 4.1.1. These approaches rely
on static functional breakdown and architecture views, which leads to missing details in the analysis
results or incorrect assumptions due to a lack of functional behavioural awareness. Additionally,
operational aspects are not included by default, requiring manual tracing of failure propagation in
operational context, if included in the study. Furthermore, the lack of an explicit cause of failure in the
local failure effects entry hinders the ability to address underlying issues. In contrast, the executable
model-based approach overcomes these limitations by utilizing functional behaviour, constraint, and
system operation simulations, ensuring consistency with the system definition. It incorporates
operational aspects, traces failure propagation along individual systems in the constellation, and
explicitly identifies the cause of failure in the local failure effects entry. These features contribute to
higher quality analysis results, as the executable model-based approach is more reliable and effective
in identifying potential failures and addressing their underlying causes.

Figure 4.4: Point based qualitative assessment of approaches according to “Quality of Results” criterion.

In terms of the "Quality of Results" criterion, the executable model-based approach is superior with
its exceptional strengths. Both the static model-supported approach and the document-based
approach exhibit notable weaknesses and limitations, hence resulting in the assessment shown in
Figure 4.4. For the LISA project, it is recommended to pursue the executable model-based approach
in terms of this criterion, especially for payload systems, as its complex nature requires highly detailed
and quality analysis results.

4.1.2.5 Effort to Obtain Results

The document-based approach in FMEA requires a manual deduction process for all functions in the
architecture, which is highly work-intensive and time-consuming. It also relies on a significant amount
of system knowledge and/or expert assistance, making it less accessible to individuals without
specialized expertise on the system of interest. Additionally, review loops are necessary for result
refinement, further increasing the overall effort required. In contrast, the static model-supported
approach provides instant access to the requirement-mission-operation-function-system information

0 1 2 3 4 5 6

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Quality of Results

RESULTS AND DISCUSSION

72

of the analysed failure, which saves time in the initial stages of analysis. However, it still requires a
manual deduction process for all functions in the architecture and relies on significant system
knowledge and/or expert assistance for the identification of the failures. Review loops are also needed
for result refinement. On the other hand, the executable model-based approach offers a more efficient
alternative. It involves a quick simulation run for each function, which provides a list of failure effects
and propagation with minimal effort. This approach eliminates the required time and effort for the
manual deduction and is independent of the expertise of the person conducting the study. It also
eliminates the need for frequent review loops, as only one review session is necessary at the end of
the study. Similar to the static model-supported approach, the executable model-based approach also
offers instant access to the requirement-mission-operation-function-system information of the
analysed failure.

Figure 4.5: Point based qualitative assessment of approaches according to “Effort to Obtain Results” criterion.

When considering the "Effort to Obtain Results" criterion, the executable model-based approach
stands out as superior, showcasing exceptional strengths. On the other hand, while the static model-
supported approach does possess certain strengths, it shares significant weaknesses and limitations
with the document-based approach, hence resulting in the assessment shown in Figure 4.5. For the
LISA project, it is recommended to pursue the executable model-based approach in terms of this
criterion, especially for payload systems, as its complex nature requires high effort and expertise to
obtain results.

4.1.2.6 Filling the FMEA table

The document-based approach offers a straightforward and convenient method for filling the FMEA
table in Excel, allowing for customized and flexible wording, easy editing, and the implementation of
drop-down lists. However, it still lacks formal traceability of failures to the system definition,
necessitating manual navigation from the FMEA table to the related documents. In contrast, the static
model-supported and executable model-based approaches utilize the model and SRAP elements to
populate the FMEA table. These approaches provide formal traceability of failures to the system
definition and enable convenient navigation from the interactive FMEA table to the system definition.
However, each unique FMEA table entry in the model-based approaches requires the generation of
a new model element and its linkage to the corresponding function's FMEA item, which is highly

0 1 2 3 4 5

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Effort to Obtain Results

RESULTS AND DISCUSSION

73

labour-intensive, especially when custom wording for the entries is desired. This process also
increases the number of elements in the model, potentially impacting software performance. While
drop-down lists are still possible in the model-based approaches, their implementation is less
convenient, requiring profile customization. Additionally, further profile customizations are needed to
assign model definition elements to table entries.

Figure 4.6: Point based qualitative assessment of approaches according to “Filling the FMEA table” criterion.

When evaluating the "Filling the FMEA table" criterion, it becomes evident that both the executable
model-based approach and the static model-supported approach, despite their respective
advantages, suffer from significant limitations that hinder their convenience and usability. In
comparison, the document-based approach outperforms the other approaches due to its inherent
simplicity and flexibility, hence resulting in the assessment shown in Figure 4.6. To pursue the model-
based/supported approaches in terms of this criterion, it is crucial and strongly recommended to
create a new customized profile for Airbus Space Systems-RAMS applications in Cameo System
Modeler instead of using the Cameo SRAP profile. Until it is implemented, for the LISA project, it is
recommended to use Excel to fill in the FMEA table and importing the filled in table into the model.
This would result in a higher convenience for the RAMS engineering for filling in the FMEA table
entries, while the later model import effort would still allow exploiting the advantage of model
traceability and navigation.

4.1.2.7 Effort for Initial Setup

The document-based approach offers a straightforward setup process by implementing the template
provided in the ECSS-Q-ST-30-02C standard in Excel, requiring low effort. Similarly, the static model-
supported approach benefits from a low setup effort as the template can be conveniently implemented
in the Cameo tool, on top of a pre-existing model following the default R-MOFLT process. In contrast,
the executable model-based approach necessitates additional time and effort for the modelling
process, involving the creation of functional failure modes, constraints, behaviours, and simulation
setup within the model. This undertaking calls for specialized expertise and training in modelling. As
a result, the document-based and static model-supported approaches exhibit lower initial setup effort,
a significant strength, while the executable model-based approach requires a significant amount of

0 1 2 3 4 5

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Filling the FMEA Table

RESULTS AND DISCUSSION

74

effort due to modelling and simulation setup requirements, one of the key shortcomings of this
particular method, hence resulting in the assessment shown in Figure 4.7.

Figure 4.7: Point based qualitative assessment of approaches according to “Effort for Initial Setup” criterion.

To pursue the executable model-based approach based on this criterion, it is essential and highly
recommended to leverage the additional modelling effort for other applications. In the context of the
LISA project, these additional modelled artifacts serve purposes such as comprehending and
validating functional behaviours, operational tasks, and phase behaviours. This effectively justifies the
investment of effort by providing a robust rationale beyond the scope of FMEA alone.

4.1.2.8 Maintenance

In terms of “Maintenance” criterion, the document-based approach requires manual maintenance for
the entire document chain, which means that any modifications made to a document is not
automatically reflected in the FMEA table. As a result, inconsistencies are very likely to arise
throughout the project evolution, requiring explicit checks to identify them. On the other hand, for the
static model-supported approach, as well as the executable model-based approach, maintenance can
be done continuously. The model has validation rules embedded, providing warnings during function-
requirement changes, and automatically updating system allocation or functional hierarchy with no
need for manual maintenance. However, when updating the Failure Effects and Failure Causes in the
FMEA entries, both the document-based approach and the static model-supported approach require
manual re-checking and deduction from scratch, as described in section 4.1.1.2, which is highly
labour-intensive. In contrast, the executable model-based approach only requires re-running quick
simulations to obtain the new list of failure propagation information, which is then used to update the
corresponding entries. This highlights the substantial difference in flexibility and robustness of the
executable model-based approach compared to the others, hence resulting in the assessment shown
in Figure 4.8.

It is highly recommended to pursue the executable model-based approach in terms of this criterion.
This approach is the most effective especially in early phases, like in LISA project, when the project
evolution is highly dynamic and continuous updates in the system definition are present.

0 1 2 3 4 5

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Effort for Initial Setup

RESULTS AND DISCUSSION

75

Figure 4.8: Point based qualitative assessment of approaches according to “Effort for Initial Setup” criterion.

4.1.3 Comparison Conclusion

Looking at the detailed comparison of the results in section 4.1.1 and the assessment of
methodologies in section 4.1.2, it is concluded that the offered executable model-based approach is
the most suitable one to pursue for a complex space science mission like LISA. It shows significant
advantages compared to the traditional document-based and static model-supported approaches in
6 out of the 8 defined criteria as shown in Figure 4.9.

Figure 4.9: Point-based qualitative assessment of traditional document based, static model-supported and
executable model-based approaches according to defined criteria.

0 1 2 3 4 5

Traditional Document-Based

Static Model-Supported

Executable Model-Based

Maintenance

0

1

2

3

4

5
Quality of Input

Effort for Preparation

Information Access and
Traceability

Quality of Results

Effort to Obtain Results

Filling the FMEA Table

Effort for Initial Setup

Maintenance

Criteria Based Evaluation of Proposed FMEA Approaches

Traditional Document-Based Static Model-Supported Executable Model-Based

RESULTS AND DISCUSSION

76

In order to manage complexity, the executable model-based functional FMEA approach offers the
very much needed details and information to help identifying the un-intuitive failure cases. The fact
that accessing this information with a relatively quick simulation is very much valuable and provide an
important situational awareness to the development team, since the whole failures-functions-systems-
requirements-operations linking is visible and conveniently accessible. The time and effort savings in
terms of conducting FMEA, updating FMEA during changes, and avoiding review loops to correct
wrong/missing entries is significant, which justifies the implementation effort in the long run. It is still
utmost essential to improve upon its limitations, therefore it is suggested to invest in specialized
expertise and training for modelling, create a customized profile for RAMS applications, and leverage
additional modelled artifacts also for other purposes than FMEA. These enhancements would further
enhance the effectiveness and efficiency of the executable model-based approach in the LISA project,
particularly for payload systems.

For missions or systems with low functional complexity, the investment in additional training and
modelling for an executable functional architecture is not justified. Existing systems can be understood
with minimal simulations to grasp their overall behaviour. In such projects, from a perspective of quick
benefit and effort, it is highly logical to transition to a static model-supported FMEA approach as soon
as possible. This approach is readily available with minimal effort if the development team is already
engaged in MBSE or R-MOFLT practices. If a model does not yet exist, it is still recommended to
undertake the effort in order to benefit from the many advantages of MBSE implementation. However,
the modelling scope should be limited to employing functional hierarchy and architecture without
delving deeply into the functional behaviours and constraints necessary for an executable model, in
order to maintain a reasonable level of effort.

4.2 THESIS SUMMARY AND CONTRIBUTIONS

This thesis contributes to the field of space systems engineering by offering a novel MBSE-assisted
FMEA methodology and highlighting the benefits of this model-based approach in improving
traditional FMEA results and process. In detail the following points have been performed and
achieved:

1- Define and implement a novel executable functional architecture modelling approach as an
extension to Airbus R-MOFLT methodology for operational-functional-technical simulations that
traverse through the functional architecture definition. Refer to chapters 3.1 and 3.2

2- Implement and test the static model-assisted FMEA method in an existing system architecture
model and utilize it to support a functional FMEA study. Refer to section 3.3.2

3- Define, implement, and test the executable model-based FMEA method, which utilizes a failure
propagation analysis for critical operational scenarios using the implemented executable
functional architecture model. Refer to section 3.3.3

4- Perform a thorough investigation and comparison between traditional (document based) FMEA
and model based FMEA approaches in terms of the listed criteria below. Analyse and find out why
executable model-based FMEA is the most suitable method for a complex space science mission
like LISA. Refer to chapter 4.1

• Quality of Input

• Effort for Preparation

• Information Access and Traceability

• Quality of Results

• Effort to Obtain Results

RESULTS AND DISCUSSION

77

• Filling the FMEA table

• Effort for Initial Setup

• Maintenance

At the culmination of this thesis, the research objectives (refer to chapter 1.4), and identified gaps in
the literature (refer to chapter 2.4), namely the inclusion of operations in FMEA, the consideration of
the effects of exchanged interface flows on system functions, the integration of functional behaviours
and architecture in FMEA, and the provision of detailed modelling and analysis descriptions, have
been successfully addressed and achieved.

The approaches and results in this thesis can be used to develop an MBSE adoption strategy for
complex space missions, serve as a guide for system modelling in MBSE environment, and integrate
RAMS engineering discipline into early phase model-based system development.

FUTURE WORK

78

5 FUTURE WORK

This chapter presents potential areas for future work related to the thesis topic presented in Table
5.1. It includes a compilation of recommendations for the further development of this thesis, as well
as for improving the modelling process and the integration of RAMS into MBSE methods and
procedures.

Table 5.1: Recommendations for future work.

Topic Description

Airbus Space
Systems-RAMS
profile

A new customized profile for Airbus Space Systems-RAMS applications in Cameo
System Modeler is needed. Cameo Safety and Reliability Analyser Plugin is limited
in terms of addressing the RAMS analysis needs and ease in usability. The new
profile shall out-of-the-box,

• contain standards used in space systems (e.g., ECSS-Q-ST-30-02C),

• does not require model elements (e.g., Cause of Failure, Final Effect of
Failure, etc.) to be created per each FMEA entry, possibly by allowing
linking failure properties to already existing model elements used for
system definition,

• allow creation of a failure database and list suggestions and possible
entries in the FMEA table for the user,

• contain easily customisable FMEA tables (e.g., allow custom naming for
table entries that are traced to model elements used for system definition)

• be integrated to R-MOFLT framework and make use of its dedicated
artefacts (e.g., automatically fill in mission phase, operational mode entries
in FMEA table using function-operational-mission traceability links).

Additional
operational
scenarios

Modelling of more operational scenarios enables to cover more/all LISA mission
phases (this thesis work focused only on laser link acquisition).

Automated
FMEA table
generation
inside Cameo
from simulation
results

Although automated tables are generated from simulations in the form of Failure
Cause and Failure Effects tables, it needs manual work to put these results in the
FMEA table format. It can be achieved using scripts in the model.

Monte Carlo
Analysis

Implementation of scripts to inject random failures for specific/all operational
scenarios to enable a Monte Carlo Analysis. This would enable identification of,

• Sensitivity of system functions to failures for the entire space segment,

• System failure rates/probability (i.e., for entire LISA constellation)

Severity and
Criticality
evaluation

It is possible to automatically evaluate the Severity and Criticality of the system
functions using the model. Simulations can be used to identify end effects of the
failures that is traced to mission level showing their Severity. Combined with the

FUTURE WORK

79

Probability data either found via simulations or using heritage information,
Criticality metric can be calculated.

Architectural
clustering
analysis

Architectural clustering analysis can be done automatically in the model to identify:

• Functions highly dependent on each other

• Components highly dependent on each other

• Logical dependency/clustering

• Failures highly dependent on each other

This data can be used to prioritize functions, components and logical systems or
develop mitigating actions to break potential failure chains.

Open-loop
functional
commanding
scheme

The operational-functional analysis in this thesis work followed a closed-loop
commanding scheme (see section 3.2.2). It could be the case that the real system
also follows a pre-defined timeline as an open loop commanding. This would open
up new failure cases depending on the timing of the commands and functional
response. Therefore, it is recommended to implement an option to perform a
mission timeline based operational-functional analysis and simulation in the model.

Component
state– Function
integration

Integration of payload component states and their respective functions in the model
execution is a key future activity to:

• manage the complexity of the payload operations,

• simulate and understand payload component behaviour also in the case of
functional failures,

• identify the most critical payload component states.

This activity would enable directly referring to payload component states in the
operational tasks instead of functions to be activated

Using AI
language
models to help
with modelling

It is highly recommended to experiment with using AI language models to convert
verbal behavioural descriptions into SysML diagrams and scripts for constraint
properties to help with users and modelers.

• Functional behaviours can be hard to put into a script format, that requires
high effort in the case of complex behaviours. AI language models show
promising potential to transfer verbal descriptions, which are more intuitive
to human mind, into if-else conditions that the model can use during
execution.

• It is also worth trying whether a diagram (e.g., SysML Activity Diagram, etc.)
can be generated from a verbal description of a function behaviour and vice
versa using AI tools.

Data for FMEA
effort

It is important to collect detailed data that reflects the time and effort of the
modelling and FMEA activities from LISA and other projects throughout Airbus
Space Systems for a more thorough comparison. This is important to identify:

• The kind of projects that should employ an executable model-based, static
model-supported or any other approach.

• Aspects of the approaches that should be improved.

APPENDIX

80

6 APPENDIX

6.1 APPENDIX A

Figure 6.1: Deduction of failure causes and effects from the functional architecture using the static approaches. The proposed method
assumes that the upstream functions are possible causes of the primary failure, whereas downstream functions are affected as a result of

the primary failure.

APPENDIX

81

6.2 APPENDIX B

Table 6.1: Comparison summary table comparing different methodologies of traditional document based,
static model-supported and executable model based FMEA approaches with pros [+] and cons [-] indicated.

Document Based

Static model-

supported

Executable Model

Based

Quality of Input Method: Excerpts from
documents

[-] Higher chance of
inconsistency in
information.

[-] Often not enough to
explain overall system
characteristics.

[-] Worded information,
relatively hard to
understand.

Method: Model,
dynamic tables

[+] Consistent

[+] Dynamically updated.

[+] Overall system
characteristics
represented with
requirement-mission-
operation-function-
system viewpoints all
together.

[+] Visual, easier to
understand than worded
information.

Method: Model,
dynamic tables

[+] Consistent

[+] Dynamically updated.

[+] Overall system
characteristics
represented with
requirement-mission-
operation-function-
system viewpoints all
together.

[+] Visual, easier to
understand than worded
information.

Effort for

Preparation

Method: Information
compilation from different
documents.

[-] Extraction of information
from multiple documents
needed.

[-] Need time, effort, and
expertise to find desired
information.

Method: Automatic
compilation using
queries.

[+] Required information
automatically shown in
table format.

[+] Queries do not need
manual operation once
setup.

Method: Automatic
compilation using
queries.

[+] Required information
automatically shown in
table format.

[+] Queries do not need
manual operation once
setup.

Information Access

and Traceability

Method: Access through
different documents.

[-] Information needs to be
explicitly searched for.

[-] No formal traceability in
between contents of the
documents.

[-] Navigation is manual or
via hyperlinks (if
implemented).

Method: Usage of
model diagrams and
relations.

[+] Model contains
necessary information
altogether.

[+] Full traceability
established in between
functions-requirements-
systems-failures.

[+] Convenient
navigation using the
interactive diagrams,

Method: Usage of
model diagrams and
relations.

[+] Model contains
necessary information
altogether.

[+] Full traceability
established in between
functions-requirements-
systems-failures.

[+] Convenient
navigation using the
interactive diagrams,

APPENDIX

82

tables, and model
elements.

tables, and model
elements

Quality of Results Method: Deduction
through static functional
breakdown, architecture
views.

[-] Might include wrong
assumptions due to lack of
functional behavioural
awareness.

[-] Does not include
operational aspects.

[-] Failure propagation
along constellation has to
be traced manually, if
included in the analysis.

[-] Does not include explicit
cause of failure in local
failure effects entry.

Method: Deduction
through static functional
breakdown, architecture
views.

[-] Might include wrong
assumptions due to lack
of functional behavioural
awareness.

[-] Does not include
operational aspects.

[-] Failure propagation
along constellation has
to be traced manually, if
included in the analysis.

[-] Does not include
explicit cause of failure
in local failure effects
entry.

Method: Usage of
functional behaviour,
constraint, and system
operation simulations.

[+] Consistent with
system definition due to
direct simulation of SE
artefacts instead of
deductions from
contained information in
the SE artefacts.

[+] Include operational
aspects and usage of
functions.

[+] Traces failure
propagation along
constellation.

[+] Explicit cause of
failure is identified in
local failure effects entry.

Effort to Obtain

Results

Method: Manual
deduction, Review loops
with Systems Engineering

[-] Work-intensive
deduction process for all
functions in the
architecture.

[-] Requires significant
amount of system
knowledge and/or expert
assistance.

[-] Requires review loops
for result refinement.

Method: Manual
deduction, Review loops
with Systems
Engineering

[+] Instant access to the
requirement-mission-
operation-function-
system information of
the identified failure

[-] Work-intensive
deduction process for all
functions in the
architecture.

[-] Requires significant
amount of system
knowledge and/or expert
assistance.

[-] Requires review loops
for result refinement.

Method: Executable
model simulation.

[+] Quick simulation run
per each function to
receive list of failure
propagation.

[+] Review session at
the end of study instead
of frequent review loops.

[+] Instant access to the
requirement-mission-
operation-function-
system information of
the identified failure

Filling the FMEA

table

Method: Excel worksheets

[+] Customized and
flexible wording possible.

Method: Model, Excel
and/or SRAP elements

[+] Formal traceability of
failures to system
definition.

Method: Model, Excel
and/or SRAP elements

[+] Formal traceability of
failures to system
definition.

APPENDIX

83

[+] Convenient and
straightforward editing.

[+] Easy to implement
drop-down lists.

[-] No formal traceability of
failures to system
definition.

[-] Manual navigation from
FMEA table to documents

[+] Convenient
navigation to system
definition directly from
interactive FMEA table.

[-] Every unique table
entry needs a new
model element.

[-] Editing needs to be
done on the model
elements instead of
directly on the table.

[-] Drop-down lists
require profile
customization.

[-] Need profile
customization to allow
assignment of model
definition elements to
table entries.

[+] Convenient
navigation to system
definition directly from
interactive FMEA table.

[-] Every unique table
entry needs a new
model element.

[-] Editing needs to be
done on the model
elements instead of
directly on the table.

[-] Drop-down lists
require profile
customization.

[-] Need profile
customization to allow
assignment of model
definition elements to
table entries.

Effort for Initial

Setup

Initial Setup: Excel
ECSS-Q-ST-30-02C
FMEA table template.

[+] Minimal effort to setup
template

Initial Setup: Cameo
ECSS-Q-ST-30-02C
FMEA table template.

[+] Minimal effort to
setup template

Initial Setup: Model
functional failure modes,
constraints and
behaviours. Model
functional chain in
operational tasks.
Establish simulation
setup in the model.

[-] Extra time for the
modelling process

[-] Requires training and
expertise for modelling.

Maintenance Method: Regular manual
document update, manual
deduction, Review loops
with Systems Engineering.

[-] No automation in terms
of updating FMEA entries.

[-] No indication of
inconsistencies.

[-] Manual and work
intensive process
repetition in case of
functional architecture
changes for Failure Cause
and Effects entries.

Method: Validation
rules, dynamic tables,
manual deduction,
Review loops with
Systems Engineering.

[+] Dynamic changes in
definition are reflected
on FMEA table.

[+] Validation rules give
warning during
inconsistencies.

[-] Manual and work
intensive process
repetition in case of
functional architecture

Method: Validation
rules, dynamic tables,
executable model
simulation.

[+] Dynamic changes in
definition are reflected
on FMEA table.

[+] Validation rules give
warning during
inconsistencies.

[+] Quick simulation run
per function is needed to
obtain the new failure
propagation information.

APPENDIX

84

changes for Failure
Cause and Effects
entries.

ACKNOWLEDGEMENT

85

ACKNOWLEDGEMENT

I am truly grateful for the support and encouragement of all those who contributed to the realization
of this work.

First and foremost, I would like to thank my supervisor Tobias Ziegler, for putting his trust in this work
and me at the first place. Witnessing his leadership in the project, having a fair share of the challenges
that came with it, and opportunities he had supplied to me is an invaluable experience and a big
inspiration to an enthusiastic young engineer like me. It takes a lot to motivate people to employ new
ways of working, and voluntarily bring disruptive ideas into a project as big and complex as LISA. I
am sure his vision will pave the way for a way more efficient systems engineering process for the new
projects to come and inspire the others to push the boundaries in their work.

I would like to express my sincere gratitude to Arno Dietrich, for supporting this initiative and making
this thesis possible. His sincere mentorship and guidance, combined with all the opportunities he had
offered, allowed me to interact thoroughly with the Airbus community and develop my skills. I really
appreciate the time and interest he had allocated to the students in his department and treating us as
an integral part of his team. He had shown and embraced the effort of learning from our experiences
as students, as much as we had learned from the team.

On TU Munich side, I would like to thank my supervisor Alessandro Golkar for accepting me as his
thesis student and providing guidance throughout the process. Many thanks to Jaspar Sindermann
for his invaluable guidance, ideas, and feedback throughout the process of maturing this thesis. Their
positive and enthusiastic attitude, as well as investment of time and interest to this work, have been
greatly appreciated.

Huge thanks for all the members of the LISA project team, especially to Christian Greve for all his
time and support on the realization of this work, as well as the lectures on the LISA mission and the
payload systems, opening my mind about the scientific side of this project. I want to extend my deep
thanks to Johannes Buerkle, Stephane Estable and Simon Eitelbuss for all their help and feedback
on this thesis work.

Many thanks to Peter Mathias Koch, whose mentorship, guidance, and feedback were instrumental
during my time in Airbus. I am equally grateful to Andre Lessow, who introduced me to the Airbus
family with Peter, and provided me with the opportunity to work on this exciting topic at the first place.

I would like to convey my heartfelt appreciation to Jacopo Aurigi, a remarkable colleague, mentor,
and friend who has been a constant source of inspiration and has taught me a great deal, both
professionally and personally, during my time at Airbus. Collaborating with him to brainstorm
innovative ideas to overcome the many challenges we encountered during this project was an
invaluable experience. His positive attitude, intelligence, and willingness to teach and share his
knowledge have been immensely valuable to me.

I would also like to acknowledge my dear friend group "Mahlzeit", who made my time at Airbus
unforgettable. I am immensely grateful to my dear officemate, Mario Izquierdo Serra, for his constant
support and companionship throughout this journey, and Niccolò Bardazzi and Alexandre Gol Mestre,
whose blindingly bright minds and unique personalities made every moment worth cherishing. Lastly,
I would like to extend a special thanks to all the students and interns of Airbus Defence and Space
Friedrichshafen for the wonderful memories.

Finally, I would like to express my deepest appreciation to my dear family for their unwavering support
and belief in me throughout my academic and professional journey. Their love and encouragement
have been my source of strength and inspiration, and I am forever grateful for their presence in my
life.

REFERENCES

86

REFERENCES

[1] J. Würtenberger and H. Kloberdanz, "An approach to identifying the ideal time to perform an FMEA
during the product development process," presented at the 1st International Symposium on Robust
Design, København, DK, 2014.

[2] J. M. Stecklein, J. Dabney, B. Dick, B. Haskins, R. Lovell, and G. Moroney, "Error cost escalation
through the project life cycle," in 14th Annual International Symposium, 2004, no. JSC-CN-8435.

[3] Object Management Group. "What is sysML?" https://www.omgsysml.org/what-is-sysml.htm (accessed
February, 2023).

[4] Dassault Systèmes. "Cameo Systems Modeler." https://www.3ds.com/products-
services/catia/products/no-magic/cameo-systems-modeler/ (accessed February, 2023).

[5] N. Charpigny, "An Executable System Model for Behavioural Analyses of the LISA Mission," Vehicle
Engineering, School of Engineering Sciences, KTH Royal Institute of Technology, 2019.

[6] J. Aurigi, "Behavioral Modelling and Simulations for Constellation Acquisition of the LISA Mission,"
2020.

[7] N. Charpigny, G. Hechenblaikner, T. Ziegler, and G. Pisacane, "An Executable System Model for
Behavioural Analyses of the LISA Mission," presented at the Tag des Systems Engineering 2019,
München, 6. - 8. November 2019, 2019.

[8] P. Amaro-Seoane et al., "Laser Interferometer Space Antenna," LISA Consortium, 2017. [Online].
Available: https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf.

[9] B. P. Abbott et al., "Observation of Gravitational Waves from a Binary Black Hole Merger," Physical
Review Letters, vol. 116, no. 6, 2016, doi: 10.1103/physrevlett.116.061102.

[10] ESA. "LISA mission moves to final design phase." ESA.
https://www.esa.int/Science_Exploration/Space_Science/LISA_mission_moves_to_final_design_phas
e (accessed February, 2023).

[11] S. Barke, Inter-spacecraft frequency distribution for future gravitational wave observatories. Hannover:
Gottfried Wilhelm Leibniz Universität Hannover, 2015.

[12] G. Mueller, P. McNamara, I. Thorpe, and J. Camp, "Laser frequency stabilization for LISA," 2005.
[13] S. Friedenthal, R. Griego, and M. Sampson, "INCOSE model based systems engineering (MBSE)

initiative," in INCOSE 2007 symposium, 2007, vol. 11: sn.
[14] L. Wang, M. Izygon, S. Okon, H. Wagner, and L. Garner, "Effort to accelerate MBSE adoption and

usage at JSC," in AIAA SPACE 2016, 2016, p. 5542.
[15] IBM. "IBM Engineering Requirements Management DOORS Family."

https://www.ibm.com/products/requirements-management (accessed February, 2023).
[16] ECSS‐Q‐ST‐30‐02 C Space Product Assurance–Failure Modes, Effects (and Criticality) Analysis

(FMEA/FMECA), ECSS, 2009.
[17] S. Burge, "The Systems Engineering Tool Box - Functional Failure Modes and Effects Analysis

(FFMEA)." [Online]. Available: https://www.burgehugheswalsh.co.uk/Uploaded/1/Documents/FFMEA-
Tool-v2.pdf

[18] G. Biggs, K. Post, A. Armonas, N. Yakymets, T. Juknevicius, and A. Berres, "OMG standard for
integrating safety and reliability analysis into MBSE: Concepts and applications," in INCOSE
International Symposium, 2019, vol. 29, no. 1: Wiley Online Library, pp. 159-173.

[19] No Magic. "Cameo Safety and Reliability Analyzer."
https://docs.nomagic.com/display/CSRA190SP4/Cameo+Safety+and+Reliability+Analyzer (accessed
February, 2023).

[20] B. Francesco, "A Model-Based RAMS Estimation Methodology for Innovative Aircraft on-board Systems
developed in a MDO Environment," Politecnico di Torino, 2020.

[21] G. Girard et al., "Model based safety analysis using SysML with automatic generation of FTA and FMEA
artifacts," in Proceedings of the 30th European Safety and Reliability Conference and the 15th
Probabilistic Safety Assessment and Management Conference (Esrel 2020 PSAM 15), 1-5 November
2020, Venice, Italy, 2020, no. CONFERENCE: 1-5 November 2020.

[22] F. Schummer and M. Hyba, "An Approach for System Analysis with MBSE and Graph Data
Engineering," arXiv preprint arXiv:2201.06363, 2022.

[23] Neo4j Inc. "Neo4j Graph Database." https://neo4j.com/product/neo4j-graph-database/ (accessed
February, 2023).

[24] F. Mhenni, N. Nguyen, and J.-Y. Choley, "SafeSysE: A safety analysis integration in systems
engineering approach," IEEE Systems Journal, vol. 12, no. 1, pp. 161-172, 2016.

[25] M. Chami and J.-M. Bruel, "A survey on MBSE adoption challenges," 2018.

https://www.omgsysml.org/what-is-sysml.htm
https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
https://www.3ds.com/products-services/catia/products/no-magic/cameo-systems-modeler/
https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf
https://www.esa.int/Science_Exploration/Space_Science/LISA_mission_moves_to_final_design_phase
https://www.esa.int/Science_Exploration/Space_Science/LISA_mission_moves_to_final_design_phase
https://www.ibm.com/products/requirements-management
https://www.burgehugheswalsh.co.uk/Uploaded/1/Documents/FFMEA-Tool-v2.pdf
https://www.burgehugheswalsh.co.uk/Uploaded/1/Documents/FFMEA-Tool-v2.pdf
https://docs.nomagic.com/display/CSRA190SP4/Cameo+Safety+and+Reliability+Analyzer
https://neo4j.com/product/neo4j-graph-database/

REFERENCES

87

[26] J.-B. Bernaudin, "MBSE on MSR ERO: a use case," presented at the Model Based Space Systems and
Software Engineering ~ MBSE2021, 2021. [Online]. Available:
https://indico.esa.int/event/386/contributions/6227/attachments/4269/6378/1145%20-
%20mbse%20on%20msr%20ero%20a%20use%20case.pdf.

[27] S. Friedenthal, A. Moore, and R. Steiner, A practical guide to SysML: the systems modeling language.
Morgan Kaufmann, 2014.

[28] No Magic. "Modeling functional flows with Activities."
https://docs.nomagic.com/display/SYSMLP190/Modeling+functional+flows+with+Activities (accessed
February, 2023).

[29] R. Krishnan and S. V. Bhada, "An integrated system design and safety framework for model-based
safety analysis," IEEE Access, vol. 8, pp. 146483-146497, 2020.

[30] MBSE Execution. "Information Exchange Between Blocks Simulation."
https://www.youtube.com/watch?v=Cwz_tuKX_xs&ab_channel=MBSEExecution (accessed February,
2023).

[31] MBSE Execution. "System Interface Simulation in SysML | 4 Methods How to Pass Data Through Proxy
Port." https://www.youtube.com/watch?v=di7oJYtp1T8&ab_channel=MBSEExecution (accessed
February, 2023).

[32] MBSE Execution. "Pass Values Through Ports." https://www.youtube.com/watch?v=1PDKgfX-
uhM&ab_channel=MBSEExecution (accessed February, 2023).

[33] Apache Groovy Project. "Groovy Programming Language." https://groovy-lang.org/ (accessed
February, 2023).

[34] No Magic. "ALH APIs." https://docs.nomagic.com/display/CST190SP3/ALH+APIs (accessed February,
2023).

[35] No Magic. "Using Metachain Navigation."
https://docs.nomagic.com/display/MD190SP4/Using+Metachain+Navigation (accessed February,
2023).

https://indico.esa.int/event/386/contributions/6227/attachments/4269/6378/1145%20-%20mbse%20on%20msr%20ero%20a%20use%20case.pdf
https://indico.esa.int/event/386/contributions/6227/attachments/4269/6378/1145%20-%20mbse%20on%20msr%20ero%20a%20use%20case.pdf
https://docs.nomagic.com/display/SYSMLP190/Modeling+functional+flows+with+Activities
https://www.youtube.com/watch?v=Cwz_tuKX_xs&ab_channel=MBSEExecution
https://www.youtube.com/watch?v=di7oJYtp1T8&ab_channel=MBSEExecution
https://www.youtube.com/watch?v=1PDKgfX-uhM&ab_channel=MBSEExecution
https://www.youtube.com/watch?v=1PDKgfX-uhM&ab_channel=MBSEExecution
https://groovy-lang.org/
https://docs.nomagic.com/display/CST190SP3/ALH+APIs
https://docs.nomagic.com/display/MD190SP4/Using+Metachain+Navigation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 PURPOSE AND MOTIVATION
	1.2 THE LISA MISSION
	1.2.1 Gravitational Wave Measurement Principle in LISA Mission
	1.2.2 The LISA Spacecraft Payload
	1.2.3 The Laser Acquisition Sequence

	1.3 MODEL BASED SYSTEMS ENGINEERING
	1.3.1 General Overview of MBSE
	1.3.2 SysML and Cameo Systems Modeler

	1.4 RESEARCH OBJECTIVES
	1.5 RESEARCH STRUCTURE

	2 STATE OF THE ART
	2.1 FUNCTIONAL FAILURE MODES AND EFFECT ANALYSIS
	2.2 MBSE ASSISTED FAILURE MODES AND EFFECTS ANALYSIS
	2.3 LISA MISSION SYSTEM ARCHITECTURE MODEL
	2.3.1 LISA Mission System Architecture Model Overview
	2.3.2 R-MOFLT Architecture Framework
	2.3.3 Model Content and Structure

	2.4 STATE-OF-THE-ART REVIEW OUTCOMES AND RESEARCH CONTRIBUTIONS

	3 APPROACH: MODELLING AND CONDUCTING FUNCTIONAL FAILURE MODES AND EFFECTS ANALYSIS IN LISA MISSION
	3.1 FUNCTIONAL ARCHITECTURE MODELING
	3.1.1 Modelling of Technical Components and Functions
	3.1.2 Modelling of Functional Interfaces and Flows
	3.1.3 Modelling of Functional Modes, Behaviours and Failure Constraints
	3.1.3.1 Functional Modes
	3.1.3.2 Functional Behaviours
	3.1.3.3 Functional Constraints

	3.2 EXECUTABLE MODEL SIMULATION SETUP
	3.2.1 Execution Context
	3.2.2 Laser Acquisition Operational Phase Behaviour
	3.2.3 Execution Behaviour and Results

	3.3 FUNCTIONAL FMEA APPROACHES FOR THE LISA MISSION
	3.3.1 FMEA Study: Traditional Document Based Analysis
	3.3.1.1 Traditional Document Based Analysis Approach Summary
	3.3.1.2 Preparation
	3.3.1.3 Conducting FMEA

	3.3.2 FMEA Study: Static Model-Supported Analysis
	3.3.2.1 Static Model-Supported Analysis Approach Summary
	3.3.2.2 Preparation
	3.3.2.3 Conducting FMEA

	3.3.3 FMEA Study: Executable Model-Based Analysis
	3.3.3.1 Executable Model-Based Analysis Approach Summary
	3.3.3.2 Conducting FMEA

	4 RESULTS AND DISCUSSION
	4.1 FMEA COMPARISON
	4.1.1 Comparison of Examples from Investigated FMEA Results
	4.1.1.1 Case 1: Correctness in Results
	4.1.1.2 Case 2: Impact of Architecture Changes on the Results
	4.1.1.3 Case 3: Impact of Operational Scenario on the Results

	4.1.2 Discussion and Assessment of Investigated FMEA Methodologies for the LISA Mission
	4.1.2.1 Quality of Input
	4.1.2.2 Effort for Preparation
	4.1.2.3 Information Access and Traceability
	4.1.2.4 Quality of Results
	4.1.2.5 Effort to Obtain Results
	4.1.2.6 Filling the FMEA table
	4.1.2.7 Effort for Initial Setup
	4.1.2.8 Maintenance

	4.1.3 Comparison Conclusion

	4.2 THESIS SUMMARY AND CONTRIBUTIONS

	5 FUTURE WORK
	6 APPENDIX
	6.1 APPENDIX A
	6.2 APPENDIX B

	ACKNOWLEDGEMENT
	REFERENCES

