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Abstract

In recent years there have been an exponential rise in the capabilities of the modern
High Performance Computing (HPC) systems. Such trend poses new challenges
for managing node-level resources such as compute cores, memory bandwidth, and
shared cache. This has led to an increasing demand for effective resource management
methodologies in HPC systems. As modern HPC systems are typically composed of fat
and rich compute nodes, it is usually difficult to fully utilize all the in-node resources
by a single application. Co-scheduling, i.e., co-locating multiple jobs in a space shared
manner, offers a promising solution for improving overall system throughput. To
this end, it is crucial to allocate the node resources to specific jobs based on their
requirements. At the same time, during co-scheduling of multiple jobs, there is a
further increase in the interference for the shared resources. Therefore, the significance
of shared resource isolation increases during the allocation of resources to the co-located
jobs. Furthermore, there have been a rise in heterogeneity of the node-level resources.
GPU-based HPC systems are increasingly prevalent among top supercomputers. Hence,
similar challenges are applicable to the GPU-based systems as well.

Considering these trends, industry has started supporting several resource partitioning
or isolation features designed for shared resources on both modern CPUs and GPUs.
Driven by this technological trend, we focus on co-scheduling and resource partitioning
on modern CPU-GPU HPC systems. Specifically, for CPUs, our target is to harmonize
the co-run job selections and diverse resource assignments in a NUMA-aware manner.
Regarding GPUs, we explore hierarchical resource partitioning on latest NVIDIA
GPUs, employing both finer-grained logical partitioning (MPS) and coarse-grained
physical partitioning (MIG). To optimize resource management decisions, we implement
a reinforcement learning-based solution, addressing CPU and GPU optimizations
separately. Experimental evaluations demonstrates that our approach can improve the
overall system throughput by up to 78.1% and 87.3% for CPU and GPU, respectively.

iv



Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 NUMA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Modern GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5
2.1 Profiling Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Co-scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Resource Management Features . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Role of Deep Neural Networks . . . . . . . . . . . . . . . . . . . . 21

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.1 NUMA Systems and Optimizations . . . . . . . . . . . . . . . . . 22
2.5.2 Co-scheduling and Resource Partitioning on CPUs . . . . . . . . 23
2.5.3 Co-scheduling and Resource Partitioning on GPUs . . . . . . . . 24
2.5.4 System Optimizations with Reinforcement Learning . . . . . . . 24

3 Optimization Strategy: Methodology Insights 26
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 High-Level Solution Overview . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Offline Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



Contents

3.2.2 Offline Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Online Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Reinforcement Learning Components . . . . . . . . . . . . . . . . . . . . 31

4 Harmonized Resource Management on NUMA Systems 34
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Allocation Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Throughput v/s Allocation Policy . . . . . . . . . . . . . . . . . . 36
4.2.2 Optimal Resource Assignment . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Throughput v/s Core Allocation . . . . . . . . . . . . . . . . . . . 38

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 RL Implementation Details . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Target Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Evaluation Workloads . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.3 Training/Inference Setup . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.1 Throughput Comparison . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Validation of Core/Memory Affinity Choices . . . . . . . . . . . 46
4.5.3 Scaling Scheduling Attributes . . . . . . . . . . . . . . . . . . . . 47
4.5.4 Scheduling Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Hierarchical Resource Management on Modern GPUs 49
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Throughput v/s MPS Resource Allocation . . . . . . . . . . . . . 52
5.2.2 Benefit of Bandwidth Partitioning . . . . . . . . . . . . . . . . . . 53
5.2.3 Throughput v/s Partitioning Variants . . . . . . . . . . . . . . . . 54

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.1 RL Implementation Details . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.1 Target Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Evaluation Workloads . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.3 Training/Inference Setup . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.4 Compared Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.5 Evaluated Resource Partition Setups . . . . . . . . . . . . . . . . . 61

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.1 Throughput Comparison . . . . . . . . . . . . . . . . . . . . . . . 62

vi



Contents

5.5.2 Scaling Scheduling Attributes . . . . . . . . . . . . . . . . . . . . 63
5.5.3 Application Slowdown Comparison . . . . . . . . . . . . . . . . . 64
5.5.4 Fairness Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5.5 Scheduling Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Discussion 67
6.1 Extension Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Hybrid Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Cluster of GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.3 Other Possible Improvements . . . . . . . . . . . . . . . . . . . . . 68

6.2 Coordinated Approach to Heterogeneous HPC Resource Management . 69
6.3 Comparison with Existing Works . . . . . . . . . . . . . . . . . . . . . . . 71

7 Conclusion 75

Scientific Contributions 76

Abbreviations 78

List of Figures 80

List of Tables 82

Bibliography 83

vii



1 Introduction

Modern HPC clusters and supercomputers have seen an extraordinary surge in
capabilities. Over the past decade alone, there has been more than 35-fold increase in the
computational performance of top supercomputer, measured in terms of flops/s [82].
Ever since the end of Dennard scaling [25], these performance improvements have
been driven by the adoption of multi-/many-core parallelism and heterogeneous
architectures focusing on thread-/data-level parallelism. Consecutively, the industry has
consistently increased the on-chip core counts, resulting in the widespread integration
of many-core processors within HPC systems. Moreover, contemporary HPC systems
are becoming increasingly heterogeneous, reflected in the fact that, as of November
2023, 187 out of the top 500 supercomputers are equipped with GPUs [82].

With such increased capabilities, the node-level resources have increased drastically,
leading to fat and rich compute nodes. As a consequence, it is usually difficult to
fully utilize all the in-node resources by a single application. Co-scheduling, which
involves concurrently placing multiple applications through space sharing, stands out
as a promising solution for enhancing overall system throughput. While co-scheduling
contributes to improved performance, it also causes contention for shared resources
such as cache and memory bandwidth. As a result, shared resource partitioning or
isolation techniques are increasingly important during co-scheduling.

Industry has started supporting several resource/traffic partitioning features. For
CPU, recent commercial microprocessors offer new hardware features designed for
partitioning resources and traffic. Notable examples include cache and bandwidth
partitioning features like Intel CAT/MBA, which are integral components of Intel
Resource Director Technology [32]. Similarly, for modern accelerators like recent
NVIDIA GPUs, multiple resource partitioning features are available, including: (1) MPS
(Multi-Process Service) which enables the logical sharing of compute resources among
multiple programs [52]; (2) MIG (Multi-Instance GPU) that has capabilities to physically
partition compute and bandwidth resources at the granularity of the GPC [55].

To realize performance improvements through co-scheduling and the mentioned
resource partitioning features, it is crucial to carefully apply optimal policies when
scheduling jobs on an HPC system. In other words, this involves selecting complementary
jobs for co-location and determining suitable resource allocations for these co-located
jobs. As a consequence, an efficient algorithm becomes imperative for making informed
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1 Introduction

scheduling decisions. This necessity led us to formulate the described resource management
challenge as an optimization problem.

Reinforcement Learning is a fundamental machine learning paradigm that involves
undertaking a series of actions in an environment to maximize the cumulative rewards.
By leveraging these rewards, an agent can be trained to determine an optimal set
of actions. This form of learning has demonstrated to perform well in various
domains, including robotics, game-playing, autonomous vehicles, and natural language
processing. In alignment with this trend, we employ a reinforcement learning-based
solution to derive the optimal set of scheduling decisions for the resource management
problem.

To enhance the computational throughput and memory bandwidth at the CPU level,
contemporary nodes are often configured with multiple processor sockets, leading to
inherently Non-Uniform Memory Access (NUMA) based designs [38]. This rationale
guides us to utilize NUMA-based CPU in this work. Moreover, we use a recent NVIDIA
GPU, leveraging its enhanced capabilities and essential partitioning features. Using
these selected platforms, we conduct a comprehensive evaluation of our reinforcement
learning-based approach, including comparisons with existing state-of-the-art methods
wherever feasible.

1.1 Organization

This thesis has been organized into six additional chapters, each dedicated to describe
the following aspects:

• Background and Related Work: In this chapter, we provide essential background
and review existing related work to facilitate a thorough understanding of
this work. This includes foundational details on profiling tools, co-scheduling,
resource partitioning features, reinforcement learning, and neural networks.

• Problem Definition and Solution Blueprint: In this chapter, we initially present
the mathematical formulation of the optimization problem. Subsequently, we
provide a high-level blueprint of the proposed solution.

• Harmonized Resource Management on NUMA Systems: This chapter provides
in-depth insights into observations, implementation details, and experimental
evaluations, providing a focused examination on NUMA systems.

• Hierarchical Resource Management on Modern GPUs: This chapter provides
comprehensive insights into observations, implementation details, and experimental
evaluations, offering a focused examination on modern GPUs.

2



1 Introduction

• Discussion: In this chapter, we engage in additional discussions on topics such
as potential future opportunities to extend our approach, and comparison of our
approach to other existing methods.

• Conclusion: Finally, this chapter conclude this thesis with a summary, highlighting
the key takeaways.

1.2 Major Contributions

In this work, our approach is applied distinctly to both CPU and GPU. Subsequently,
the key contributions for CPU and GPU are listed separately in the following sections.

1.2.1 NUMA Systems

1. We initially establish the correlation between core/memory mapping affinities
and cache/bandwidth partitioning configurations on a NUMA-based platform.

2. Simultaneously, we observe that the selection of co-run job pairs significantly
influences the effectiveness of both co-scheduling and partitioning decisions.

3. We apply our reinforcement learning-based systematic approach to solve the
optimization problem on a NUMA system.

4. We ultimately quantify the effectiveness of our approach, demonstrating an
substantial improvement of up to 78.1% in system performance compared to the
time-shared scheduling.

5. Also, we provide comparison with another existing work done by Saba et el. [71].

1.2.2 Modern GPUs

1. This study marks the pioneering application of reinforcement learning to concurrently
optimize job co-scheduling and hierarchical resource partitioning on modern
GPUs, which incorporate multiple partitioning features (MPS and MIG).

2. We measure and analyze the impact of the various resource partitioning setups
on the overall throughput of the GPU.

3. We experiment with hierarchical mixing of finer-grained MPS and coarse-grained
MIG features.

3



1 Introduction

4. Subsequently, we apply the reinforcement learning-based solution to address
hierarchical resource partitioning on co-scheduling on modern GPUs.

5. Finally, we illustrate that our approach is successful in concurrent establishment
of resource partitioning and co-scheduling group selections, while achieving a
throughput improvement of up to 87.3% compared to the time-shared scheduling.

6. Additionally, our evaluations also cover comparison with prior studies [4, 71].

4



2 Background and Related Work

This chapter provides additional details on the background information necessary for a
comprehensive understanding of the concepts referenced throughout this work. We
provide foundational information related to Profiling Tools, Co-scheduling, Resource
Management Features, and Reinforcement Learning.

2.1 Profiling Tools

2.1.1 CPU

Linux Perf

In this section, we will describe the Linux Perf tool, also known as perf_events [63].
Perf is a versatile tool capable of instrumenting CPU performance counters, tracepoints [85],
kprobes [36], and uprobes [84]. It excels in lightweight profiling capabilities. Perf started
as a tool for leveraging the performance counters subsystem and has evolved with
numerous improvements to encompass tracing capabilities [63].

CPU performance counters serve as the foundation for profiling applications using
perf. These counters are specialized hardware registers that count crucial hardware
events, including but not limited to instructions executed, cache-misses, and branches
misses [63].

Perf tool provides various commands for collecting and analyzing performance
data, including but not limited to: perf stat, perf record, and perf report [83]. For
our work, only perf stat is relevant; thus, we will delve further into its details. For
supported events, perf stat maintains a running count during process execution [83].
Occurrences of events are subsequently aggregated and printed at the end of execution [83].
A sample output of perf stat command has been shown in Listing 2.1 with few
selected performance counters.

$ perf stat -e duration_time,task-clock,context-switches,cpu-cycles,
instructions ls

Performance counter stats for ’ls’:
2,039,833 ns duration_time # 1.494 G/sec
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2 Background and Related Work

1.37 msec task-clock # 0.669 CPUs utilized
2 context-switches # 1.465 K/sec

3,361,002 cpu-cycles # 2.462 GHz
3,249,994 instructions # 0.97 insn per cycle
0.002039833 seconds time elapsed
0.000000000 seconds user
0.001917000 seconds sys

Listing 2.1: Usage example of perf stat command

2.1.2 GPU

NVIDIA Nsight Compute Framework

NVIDIA Nsight Compute Framework offers an interactive profiler tailored for CUDA
and NVIDIA OptiX, providing performance metrics and API debugging capabilities
via both a user interface and a command-line tool [56]. In this work, we will utilize
Nsight Compute for profiling the CUDA kernels. NVIDIA Nsight Compute CLI (ncu)
provides a non-interactive way to profile applications from the command line [53]. It
can print the results directly on the command line or store them in a report file. In
the execution shown in Listing 2.2 for the ncu command, we can specify the profiling
report name with the -o option.

$ ncu -o profile CuVectorAddMulti.exe

[Vector addition of 1144477 elements]
==PROF== Connected to process 5268
Copy input data from the host memory to the CUDA device
CUDA kernel launch A with 4471 blocks of 256 threads
==PROF== Profiling "vectorAdd_A" - 0: 0%....50%....100% - 46 passes
CUDA kernel launch B with 4471 blocks of 256 threads
==PROF== Profiling "vectorAdd_B" - 1: 0%....50%....100% - 46 passes
Copy output data from the CUDA device to the host memory
Done
==PROF== Disconnected from process 5268
==PROF== Report: profile.ncu-rep

Listing 2.2: Usage example of ncu command [53]

6



2 Background and Related Work

2.2 Co-scheduling

As compute nodes in HPC systems become more fatter and richer, it is getting more
challenging to fully utilize all node resources by a single application. Memory-intensive
applications typically require only a fraction of in-node compute resources, while
compute-intensive applications may not completely utilize the abundant bandwidth
resources the node offers. Several factors contribute to this trend: firstly, not all
programs exhibit sufficient parallelism to leverage available compute resources for
significant speedup, as governed by Amdahl’s law [3]. Secondly, memory-intensive
applications face limitations in speedup due to constrained memory bandwidth,
rendering increased compute resources ineffective – a phenomenon known as the
memory-wall problem [26]. Also, in GPUs, the compute resources are also becoming
heterogeneous with different types of units (e.g., matrix engines, regular FP64 units,
integer units, etc.), and depending on their usages, power can also be under utilized
and wasted [4].

A promising solution to address resource waste is through co-scheduling, where
multiple applications or jobs are concurrently executed on the same node in a space-
sharing manner, which has been widely studied for servers and HPC systems [8, 73,
14, 15, 97]. By co-locating different types of applications that require complementary
resources, the resource wastes can be significantly reduced.

Figure 2.1 presents an example of co-scheduling for two jobs at a time. In the
given example, resources (cores/LLC/bandwidth) are partitioned for co-location of
multiple jobs at a time, hence it is also referred as space shared scheduling. Note that the

Cores

LLC
Memory Controllers

Memories

Figure 2.1: An example illustrating co-scheduling for two jobs (J1 and J2)
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2 Background and Related Work

number of jobs co-located at any given time determines the concurrency level of the
system. To fully leverage the advantages of co-scheduling, it is important to carefully
select jobs for co-scheduling, hence we explicitly target job selections in our work.
The major drawback of co-scheduling is that it induces interference effects among
co-running applications due to the contentions on shared resources (e.g., shared caches
and memory controllers). Therefore, resource partitioning is another important aspect
which we discuss in the following section.

2.3 Resource Management Features

In this section, we explore the range of resource management features available for
modern HPC systems. Subsequently, in the following sub-sections, we separately
describe these features for CPUs and GPUs, respectively.

2.3.1 CPU

For CPU, we will examine three features related to the allocation and partitioning of
compute, cache, and memory bandwidth. Initially, with focus on NUMA systems,
we will explore the numactl command, which assists in specifying core and memory
mappings on such systems. Nextly, we will look more closely into the Intel’s Resource
Director Technology which provides the required framework for partitioning cache and
memory bandwidth.

Numactl

Numactl provides support for NUMA policies on Linux. numactl executes processes
with a designated NUMA scheduling or memory placement policy [43]. Furthermore,
numactl has the capability to establish a persistent policy for shared memory segments
or files. The following mappings can be done using the numactl command.

1. Core Mapping: numactl can be used to bind physical cores to the application.
This can be done with the help of –physcpubind=cpus or -C cpus option. The
parameter cpus can be used to pass the cpu numbers. This parameter accepts
"all", comma-separated cpu numbers and range of cpus as valid inputs. With
such core binding, the application can only utilize the specified physical cores.

2. Memory Mapping: numactl also helps to set the memory placement policies.
There are multiple options available, including:

(1) first-touch: It is the default memory placement policy. The memory mapping
happens to the NUMA node that first uses it.

8



2 Background and Related Work

0 0 0 0 0 0 1 1 1 1 1
App1 hex val: 0x1f

1 1 1 1 1 1 0 0 0 0 0
App2 hex val: 0x7e0

Figure 2.2: Illustration demonstrating the utilization of CBM for CAT: the last 5 cache
ways are allocated to App1, while the remaining are assigned to App2. The
hexadecimal value corresponding to the binary bitmask is indicated in the
top-right corner.

(2) local-alloc: This option is useful when memory placement shall always be
performed on the current NUMA node where the program is being executed.
This policy can be set with –localalloc or -l option.

(3) round-robin: Memory will be allocated using round robin on nodes. When
memory cannot be allocated on the current interleave target fall back to other
nodes. Round robin allocation can be done by setting memory interleave policy by
using –interleave=nodes or -i nodes option, where nodes sets all the NUMA
nodes to be considered for interleaving. Here, setting nodes value to "all" shall
use all NUMA nodes.

Intel’s Cache Allocation Technology (CAT)

Intel’s Cache Allocation Technology (CAT) is part of the Intel’s Resource Director
Technology which empowers the Operating System (OS) to specify the amount of
cache space dedicated to an application [31]. This functionality facilitates the allocation
of cache resources based on the application priority or Class of Service (COS). For
CAT, the COS definitions are established using a Capacity Bitmask (CBM), defining
the relative amount of cache space available to the application. The CBM is provided
as a parameter to the rdtset command, configuring the cache ways accessible to the
application. For example, the system illustrated in Figure 2.2 features 11 cache ways. In
this configuration, we can partition the last-level cache for App1 and App2, implementing
the required allocation through the command shown in Listing 2.3. Note that -t option
is used to pass the hexadecimal value of the CBM along with the associated cores,
whereas -c and -k options are used for passing the cores and job command respectively.

9



2 Background and Related Work

$ rdtset -t ’l3=0x1f;cpu=0-5’ -c 0-5 -k ./App1 &
$ rdtset -t ’l3=0x7e0;cpu=6-11’ -c 6-11 -k ./App2 &

Listing 2.3: Usage of rdtset command for partitioning Last-Level Cache.

Intel’s Memory Bandwidth Allocation (MBA)

Intel’s Memory Bandwidth Allocation (MBA) is another feature from the Intel’s
Resource Director Technology that provides indirect and approximate control over
the memory bandwidth available to an application. This feature offers to regulate
applications that might excessively use bandwidth relative to their priority [31].
Therefore, it helps in partitioning memory bandwidth according to the specific requirements
of each application. The MBA works by defining the throttling value or an approximate
maximum bandwidth cap. This throttling value can be defined in terms of the
percentage of the total memory bandwidth. As an example in Listing 2.4, App1 and
App2 are allocated 30% and 70% of the memory bandwidth respectively.

$ rdtset -t ’m=30;cpu=0-5’ -c 0-5 -k ./App1 &
$ rdtset -t ’m=70;cpu=6-11’ -c 6-11 -k ./App2 &

Listing 2.4: Usage of rdtset command for partitioning Memory Bandwidth.

2.3.2 GPU

In case of GPUs, we will focus on the partitioning features available on the modern
NVIDIA GPUs. We explain two features in this section: (i) a finer-grained logical
partitioning using NVIDIA Multi-Process Service (MPS), (ii) and a coarse-grained
physical partitioning using NVIDIA Multi-Instance GPU feature (MIG).

NVIDIA’s Multi-Process Service (MPS)

The Multi-Process Service (MPS) is used to allow logical sharing of computational
resources among multiple programs. It is a software-based mechanism that can be used
to assign process to Streaming Multi-processor (SM) with arbitrarily defined rates. The
MPS is implemented as a client-server runtime of the CUDA API, comprising three key
components [52]:

1. A control daemon responsible for initiating/stopping the server and coordinating
client-server connections.

2. A client runtime, accessible to any CUDA application, facilitating GPU execution.
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2 Background and Related Work

Multi-Process Service

CPU
GPU

App1 App2 App3

CUDA Multi-Process
Service Control

App1 App2 App3

37.50% 31.25% 31.25%

Figure 2.3: Overview of the Multi-Process Service (MPS) (Re-drawn Version, Original
Source: [52])

3. A server process that promotes concurrency by enabling shared connections to
the GPU for clients.

Figure 2.3 illustrates the overview of the working of MPS. In this figure, three
applications (App1, App2, App3) are concurrently executed on the GPU using MPS.
Notably, MPS allows the allocation percentage of Streaming Multi-processors (SMs) to
each application to be set arbitrarily, enabling a finer-grained resource partitioning.

To launch the MPS service on a GPU, we need to execute nvidia-cuda-mps-control
-d command which starts the control daemon. Note that before the launch of the
control daemon, it might be useful to set relevant environment variables such as
CUDA_MPS_PIPE_DIRECTORY and CUDA_MPS_LOG_DIRECTORY. For controlling the allocation
percentage for an application, CUDA_MPS_ACTIVE_THREAD_PERCENTAGE variable can be
used at the time of application launch. Listing 2.5 shows the launch of applications
corresponding to the Figure 2.3.

$ CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=37.50 ./App1 &
$ CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=31.25 ./App2 &
$ CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=31.25 ./App3 &

Listing 2.5: Launching multiple applications concurrently using NVIDIA MPS.
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As we can see, MPS provides a flexible resource allocation scheme for computational
resources. However, it does not offer the ability to partition shared resources like
Last-Level Cache (LLC) and High Bandwidth Memory (HBM). Therefore, using MPS
may lead to increased contention for shared resources among concurrent applications.
Hence, it is recommended to use cooperating workloads with MPS.

NVIDIA’s Multi-Instance GPU (MIG)

Multi-Instance GPU is a recent feature introduced in the latest NVIDIA GPUs from the
Ampere generation [55]. This new feature enables GPUs to be securely partitioned into
up to seven distinct GPU Instances for CUDA applications, ensuring multiple users
have separate GPU resources for optimal GPU utilization [55]. This feature proves
especially beneficial for workloads that do not fully saturate the GPU’s capacity, and in
such cases concurrent execution can lead to optimal GPU utilization.

We will discuss further about the NVIDIA A100 GPU Architecture. As shown
in Figure 2.4, a single A100 GPU comprises of multiple GPCs (Graphics Processing
Clusters), and each GPC is made up of multiple Streaming Multi-Processors. A
single SM has its own private resources including local instruction/data cache, a warp
scheduler, a dispatcher, a register file, and other functional units. Whereas other
resources such as Last-Level Cache (LLC) and High Bandwidth Memory (HBM) are
shared by GPCs.

Figure 2.4: A100 GPU Chip Architecture (Source: [57])
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Figure 2.5: Overview of the Multi-Instance GPU (MIG) Feature

MIG enables the resource partitioning at the granularity of GPCs in a hierarchial
manner, as described below:

1. Initially, it is used to partition GPU into one or more GPU Instances (GI), ensuring
complete isolation between these instances — no shared resources exist between
them.

2. Subsequently, these GIs need to be configured with one or more Compute
Instances (CI), which share memory resources within the GI but exclusively
utilize compute resources at the granularity of GPC.

Note that for performing such setup, we first need to enable the MIG feature using
the command: nvidia-smi -mig 1. Figure 2.5 illustrates the coarse-grained physical
partitioning using MIG. Note that when enabling the MIG feature, 1 GPC is disabled. In
this example, out of 7 available GPCs, 2 GIs are created with 4 and 3 GPCs respectively.
Additionally, 2 and 1 CIs are created on each GI respectively. With this setup, App1 and
App2 share LLC/HBM, while App3 runs with complete isolation. The MIG setup, as
described in Figure 2.5, can be configured using the nvidia-smi command. Table 2.1
lists the available GI profiles on the A100 GPU. For example, profile MIG 4g.20gb and
MIG 3g.20gb have been used for creating GPU instances illustrated in the Figure 2.5.
Additionally, corresponding CI profiles can be chosen for each GPU instance. Note
that a MIG device is fully configured and ready to use only after creating Compute
Instances (CIs).
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Table 2.1: GI Profiles available on A100 GPU
Name SM Count Memory (GiB)

MIG 1g.5gb 14 4.75
MIG 1g.5gb+me 14 4.75

MIG 1g.10gb 14 9.62
MIG 2g.10gb 28 9.62
MIG 3g.20gb 42 19.50
MIG 4g.20gb 56 19.50
MIG 7g.40gb 98 39.25

It is noteworthy that MIG partitioning operates at the granularity of a GPC, lacking
the flexibility seen in MPS. Therefore, MIG is well-suited for coarse-grained partitioning.
Furthermore, in contrast to MPS, the creation of distinct GIs provides capabilities for
shared resource isolation. However, disabling one GPC results in a reduction of
compute resources.

2.4 Reinforcement Learning

Reinforcement Learning is a machine learning paradigm in which an agent takes
actions, learning through interactions with the environment to maximize cumulative
rewards [78]. The objective is to empower an agent to explore its environment
through interactions, collect rewards, engage in trial-and-error processes, and eventually
generalize its learning to execute an optimal set of actions that maximizes the overall
reward. It is well-suited for problems involving sequential decisions. Resource
management decisions, in our case, can be formulated as a sequence of actions taken
to create and execute a scheduling policy, making reinforcement learning particularly
suitable for our scenario.

2.4.1 Markov Decision Process

Markov Decision Process (MDP) provides the mathematical framework for modeling
decision making in situations where the cost/reward and transition functions rely
solely on the current state of the system and the current action [64]. MDP can be
mathematically defined by the tuple (S, A, P, R), where: (i) S is a set of states, (ii) A is a
set of actions, (iii) P is the state transition probability matrix, and (v) Rw : S× A→ R

is a reward function. A policy function π : S × A → [0, 1] gives the probability of
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taking action a when in state s. The main objective in MDP is to find a policy π such
that it maximizes the expected value of the cumulative rewards. Typically, a discount
factor γ ∈ [0, 1] is also used to provide appropriate weight to the rewards. The objective
function can be expressed as following:

max E[
T

∑
t=0

γtRwat(st, st+1)] (2.1)

where we need to maximize the cumulative reward for making series actions from
timestep 0 to T. Here, as γ tends to zero, the motivation is to maximize immediate
rewards rather than focusing on long-term rewards. Note that the presented mathematical
framework serves as a foundation for developing additional concepts for reinforcement
learning.

2.4.2 Overview

Using the described framework in Section 2.4.1, we can illustrate reinforcement learning
as a series of interactions of an agent with an environment, as shown in Figure 2.6.
At a timestep t, the overall system can be represented by the state st. The agent takes
an action at, receives a reward rwt, and undergoes a transition to state st+1. With
this setup, agent shall continue to interact with the environment until it maps the
possible state-action pairs to corresponding rewards, and eventually learn to make the
optimal set of actions for maximizing the cumulative reward. Further details about
these elements are described as follows.

Agent

Environment
rwt+1

st+1

Reward rwt

State st

Action at

Figure 2.6: Overview of Reinforcement Learning (Re-drawn Version, Original Source: [69])
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Environment

An environment is the world in which an agent learns through interactions. The
environment must be capable of deducing the overall system state and providing the
correct representation to the agent. Additionally, the environment must have a reward
function that guides the agent in its learning process.

Agent

An agent is an actor and learner in reinforcement learning responsible for making
decisions based on the given state of the system. The role of the agent is to gather
information about the environment through reward signals and accurately map state-
action pairs to corresponding rewards. Through repetitive interactions and trial-and-
error, the agent learns to take optimal actions to reach the goal state.

State

In the RL framework, the representation of the current situation of the system is defined
as the state. The state should encompass all the relevant information necessary for
making decisions about actions. At timestep t = 0, the environment provides the initial
state of the system, and the objective is to reach the goal state through a series of actions.
The set of all possible states of the system defines the state space S.

Action

An action is a decision made by the agent based on the current state of the system,
causing a transition from the current state to the next state. The set of all possible
actions defines the action space A. Depending on the scenario, action space can be
either discrete or continuous. In a discrete action space, a finite set of actions are available
to the agent, while in a continuous action space, any real number from a range of
values can be used.

Reward

A reward signal defines the goal of the RL problem. For every action, the environment
sends a reward signal as a numerical value to the agent. As the agent’s goal is to
maximize the cumulative reward, the reward signal determines what is a good or bad
action at a given state of the system.
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2.4.3 Optimization Methods

In the given formulation in Section 2.4.1, we need to optimize for the cost function in
a such way that it maximizes the overall reward. For solving the mentioned problem
with reinforcement learning, two main classes of methodologies are available:

1. Model-based RL: Involves constructing a model of the environment through the
analysis of state transitions and outcomes, ultimately generating a functional
representation of the environment. In these methods, the emphasis is on estimating
the probability distribution and reward function associated with the MDP (2.4.1),
and planning the agent’s behavior based on this acquired knowledge. While
model-based methods are more sample-efficient, especially in relatively simple
environments, it’s important to note that building an accurate model of the
environment can be challenging and computationally expensive, particularly in
complex scenarios.

2. Model-free RL: In scenarios where the dynamics of the environment are complex
and cannot be pre-determined, the agent interacts with the environment, observes
outcomes via trial-and-error, and learn the value associated with sequences
of actions over time. In these methods, the emphasis is on estimating the
optimal policy or value function without explicitly understanding the underlying
dynamics. The flexibility of these methods makes them more applicable to
complex and unknown environments.

Due to their simplicity and flexibility, we will be focusing on the model-free reinforcement
learning methods. As mentioned above, with model-free learning, the focus is on
estimating the policy or value function. These functions are defined as follows.

• Policy Function: A policy function defines the agent’s behavior in an environment
by mapping states to actions and hence represents the agent’s decision making.
Following on the definition from Section 2.4.1, this function represents the
probability of selecting action a when the agent is in state s.

π : S× A→ [0, 1] (2.2)

• Value Function: A value function provides an estimate of the expected cumulative
reward an agent can receive from a particular state-action pair. It is useful to
compare and evaluate the value or goodness of distinct state-action pairs in terms
of long-term rewards. Further, there are two main kinds of value functions:

– State Value Function (V-function): represents the expected cumulative reward
when starting from a particular state s0 = s and following a specific policy
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π.

Vπ(s) = Eπ[
T

∑
t=0

γtRwt+1|s0 = s] (2.3)

– Action Value Function (Q-function): represents the expected cumulative reward
when starting from state s0 = s, taking action a0 = a, and then following a
specific policy π.

Qπ(s, a) = Eπ[
T

∑
t=0

γtRwt+1|s0 = s, a0 = a] (2.4)

Using these mathematical foundations, we will look closer into two state-of-the-art
reinforcement learning methods, namely: (i) Q-Learning and (ii) Soft Actor-Critic
Method. These methods are off-policy, model-free reinforcement learning approaches.
Using off-policy approaches encourages the agent to learn from experiences generated
by any policy, not necessarily the one currently maximizing rewards. This is important
because it enables the agent to explore and learn from sub-optimal moves, contributing
to a better understanding of the environment.

Q-Learning

Q-learning is an off-policy, model-free reinforcement learning method, where it learns
based on the value of an action in a particular state. For any finite MDP, Q-learning
tends to find an optimal policy such that it maximizes the expected value of the
cumulative reward. Specifically, the main objective here is to map the state-action
pairs to the corresponding rewards, and learn to maximize the Q-function or the action
value function. The optimal Q-function has been defined using the Bellman Optimality
Equation [90].

Q∗(s, a) = E[Rwa
s + γ ∑

s′∈S
maxQ∗(s′, a′)] (2.5)

In Equation 2.5, the optimal value of taking action a in the state s has been defined.
To this end, the reward Rwa

s refers to the immediate reward of taking action a at state
s. Additionally, long-term rewards are maximized for the subsequent series of states
and actions. This emphasizes the agent’s goal of not only considering immediate
rewards but also optimizing its actions for sustained benefit over time. The factor γ

(discount factor) is used to apply appropriate weight to the long-term rewards, where if
γ = 0, the agent will be completely myopic and only learn about actions that produce
an immediate reward, while a factor approaching 1 will make the agent strive for a
long-term high reward.
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For learning the optimal Q-function (Q∗(s, a)), series of iterations need to performed
for updating the Q-values such that the cumulative rewards are maximized. During
Q-learning, the Q-values are updated using the rule given in Equation 2.6.

Qnew(st, at)← Q(st, at) + α(rwt + γ max
a

Q(st+1, a)−Q(st, at)) (2.6)

In the Equation 2.6, the paramter α defines the learning rate of the agent. The
Q-values are updated iteratively, allowing the agent to learn and estimate Q-values
for all possible state-action pairs. Traditionally, a Q-table is employed to store these
Q-values, associating them with respective state-action pairs and their corresponding
rewards. However, while effective for simpler scenarios, the Q-table approach becomes
impractical as the number of states and actions increases, necessitating more sophisticated
methods for handling larger state and action spaces. Hence, combining Q-learning with
function approximation becomes crucial when dealing with problems involving a large
number of states and actions. In this context, Mnih et al.’s work [48] introduced the use
of artificial neural networks to approximate the Q-function, enabling the application of
the algorithm to more complex scenarios.

Exploration v/s Exploitation: While implementing Q-learning, it is crucial for the
agent to explore the environment sufficiently before converging towards optimal
policies. The ϵ-greedy approach proves effective in achieving this exploration. In this
approach, a parameter ϵ and an ϵ-decay rate are defined. The parameter ϵ determines
the probability of the agent taking random actions instead of focusing solely on actions
that currently maximize rewards. The initial value of ϵ is set to 1, and with each
iteration, it is decreased by the ϵ-decay rate. It is advisable to eventually stabilize the
value of ϵ at the minimum value ϵmin, allowing the agent to irregularly take random
actions while exploiting the learned optimal policies.

Note that Q-learning is applicable only to discrete action spaces. It is most effective
in scenarios where the number of discrete actions is relatively small.

Soft Actor-Critic Method

Soft Actor-Critic (SAC) is another off-policy, model-free reinforcement learning method
that aims to maximize cumulative reward and policy entropy [28]. Entropy characterizes
the level of unpredictability in the choice of actions made by the policy. Building on
the other model-free methods, SAC has been designed to efficiently handle complex
environments. The algorithm works by optimizing the stochastic policy in an off-
policy manner and maintains the value function for estimating the state-action values.
Standard RL methods aim to maximize for the expected sum of rewards, whereas SAC
adapts a more general maximum entropy objective which favors stochastic policies by
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augmenting the objective function with the expected entropy of the policy [28]. The
objective function for SAC can be referred from the Equation 2.7.

J(π) =
T

∑
t=0

E(st,at)[γ
t(rwt + βH(π(.|st)))] (2.7)

In the Equation 2.7, the objective function for policy π aims to maximize the expected
values for the discounted rewards rwt (with dicount factor γ) and the policy entropy
H. The temperature paramter β defines the relative importance of the entropy term in
the objective function, thus control the stochasticity of the optimal policy. Note that
by setting β = 0, we can recover the objective function for conventional reinforcement
learning. The addition of the entropy term encourages exploration by discouraging
overly deterministic policies. The parameter β can be used to control the trade-off
between maximizing rewards and maximizing entropy.

SAC algorithm involves optimizing several functions during the learning process.
Firstly, we define the objective for Q-function, which is parameterized by the function
parameters ϕ. Note that during implementation, two separate Q-functions are maintained
for improving training stability. In the Equation 2.8, the objective function for the Q-
function optimization has been defined using the minimization of the mean squared
Bellman error. Note that the used functions are consistent with the previously discussed
notations and definitions.

J(ϕ) = E(st,at)[
1
2
(Qϕ(st, at)− Q̂(st, at))

2]

where, Q̂(st, at) = rwt + γE[V(st+1)]
(2.8)

Next, the policy π is optimized to maximize the expected cumulative reward and
entropy regularization. The policy is parameterized by the function parameters θ. The
Equation 2.9 shows the objective function for policy optimization.

Jπ(θ) = E(st,at)[β log(πθ(at|st))−Qϕ(st, at)] (2.9)

Additionally, SAC optimize for the temperature parameter β as well. The temperature
parameter is optimized to encourage the policy to be more or less stochastic. The
Equation 2.10 shows the objective function for temperature parameter optimization.

J(β) = Est [−β log(πθ(at|st))] (2.10)

Considering this formulation of SAC, the "actor" refers to the policy function that
determines the agent’s decisions and the "critic" refers to the value functions that critics
the action suggested by the actor with the estimated values. The inclusion of entropy
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term in this framework has been indicated with the term "soft" as it is designed to
balance exploration and exploitation. Again, the use of artificial neural networks have
been proposed for function approximation in SAC [28].

Note that SAC was originally proposed for continuous action spaces by Haarnoja et
al. [28]. However, the effectiveness of SAC in terms of training stability and sample
efficiency has led to its adaption to the discrete action settings as well [22].

2.4.4 Role of Deep Neural Networks

Artificial Neural Networks, or simply neural networks are a subset of machine learning
techniques which mimics structure and functioning of the human brain. These networks
consist of interconnected layers of nodes or artificial neurons, where each node connects
to others and has an associated weights and biases. The collective activity of these
nodes and their connections allows for identification and extraction of patterns from
complex datasets. Therefore, neural networks have found applications in diverse
fields, including: medical image classification, social network filtering, behavioral data
analysis, financial predictions, and energy demand forecasting [92].

A neural network typically comprises an input layer, one or more hidden layers, and
an output layer, each layer featuring multiple nodes. In the context of deep learning, a
neural network with multiple hidden layers is referred to as a deep neural network, as

Input
Layer

Hidden
Layers

Output
Layer

Input: Output: 

Figure 2.7: Structure of a fully connected deep neural network
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depicted in Figure 2.7.
Figure 2.7 illustrates a fully connected deep neural network. In fully connected

networks, each neuron in one layer connects to every neuron in subsequent layers. The
input vector x is fed into the input layer, with the number of neurons in the input layer
equal to the input size. Similarly, the output layer’s neuron count matches the size of
the output vector (y). Each node is connected to others with corresponding weights
(wi) and biases (bi). Neural networks are trained to predict output values for y. During
training, weights and biases are iteratively adjusted through backpropagation [50] to
minimize the difference between predicted and actual output values. Further, non-
linearity is introduced through activation functions ( f ), such as ReLU, Sigmoid, and
Tanh, enhancing a neural network’s capacity to handle complex problems. Following
on this formulation, in Figure 2.7, f (wix + bi) denotes the output of the ith node.

Universal Approximation Theorem suggests that a neural network is capable of learning
complex patterns and relationships in data as long as certain conditions are fulfilled,
and provided that sufficient data of the corresponding domain is available [81]. Due to
inherent capability of deep neural networks to estimate non-linear functions, we utilize
deep neural networks as universal function approximators, employing reinforcement
learning methods that leverage them for approximating functions such as the deep-Q-
learning and soft actor-critic method.

2.5 Related Work

2.5.1 NUMA Systems and Optimizations

NUMA-based systems have been a focus of research for several decades, with optimizations
in data mapping and process/thread scheduling. The IBM ACE multiprocessor
workstation in the 1980s, based on NUMA architecture, prompted studies on various
page placement policies [12]. Subsequent work by W. J. Bolosky et al. applied
trace-based analyses, indicating that the optimal paging policy relies on architectural
parameters [13]. H. Li et al. proposed a locality-based scheduling technique for parallel
loops on NUMA [42]. With the dominance of cache-coherent NUMA (CC-NUMA)
architecture in the 1990s, B. Verghese et al. introduced an OS-assisted technique to
enhance data locality for CC-NUMA [87]. J. Bircsak extended OpenMP to support
necessary data placement features for NUMA-based machines [10]. As Dennard scaling
ended in the mid-2000s and multi-/many-core architectures took center stage, NUMA
effects became prominent even within a node, with multiple sockets enhancing core
counts in high-end systems [11, 46]. In response to this architectural shift, studies
targeted multi-threaded programs, aiming to minimize thread-to-thread and thread-
to-memory overheads for in-node NUMA optimizations [30, 40]. Recent research
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explored the correlation between thread/data allocations and prefetcher configurations
for NUMA systems [70]. Our work aligns with this literature, integrating NUMA-aware
thread/data optimization with emerging shared resource control features, providing a holistic
solution that incorporates co-scheduling job set selections using reinforcement learning.

2.5.2 Co-scheduling and Resource Partitioning on CPUs

Ever since the introduction of multi-/many-core processors to the market, a range
of co-scheduling techniques has been put forward for server machines and high-
performance computing (HPC) systems. M. Bhadauria et al. investigated the viability
of co-scheduling and introduced a scheduling policy based on a greedy approach [8].
H. Sasaki et al. introduced a resource allocation method based on scalability for
concurrently scheduled multi-threaded programs [73]. J. Breitbart et al. developed a
resource monitoring utility targeting the co-scheduling of HPC applications [14] and
proposed a co-scheduling policy taking into account the memory intensity [15]. Q. Zhu
et al. focused on CPU-GPU heterogeneous processors and introduced a co-scheduling
approach tailored for such systems [97]. I. Saba et al. orchestrated co-scheduling,
resource partitioning, and power budgeting across CPU and GPU [71]. J. Choi et
al. introduced an application clustering scheme and a co-scheduling algorithm for
contemporary processors [21]. V. S. da Silva et al. devised a processor partitioning
and co-scheduling method that co-locates a variable number of programs [74]. D.
Álvarez et al. implemented a library to achieve system-wide co-scheduling for task-
based applications on HPC systems [2]. P. Zou et al. explored the combination of
co-scheduling and power capping for clusters [98]. However, it is noteworthy that these
co-scheduling studies primarily focused on job selections and/or resource partitioning, neglecting
the integration of memory resource partitioning and NUMA effects.

In modern microprocessors, where the last-level caches and underlying memory
controllers are typically shared among multiple cores, co-scheduled programs can
lead to significant contentions on these shared resources. To address the interference
effects, an effective approach involves partitioning or isolating shared caches and
main memory bandwidth traffic, while optimizing assignments based on the demands.
The concept of cache partitioning, along with its associated microarchitectural design,
was first proposed by M. K. Qureshi et al., who quantified its effectiveness through
simulations [65]. Subsequently, N. Rafique et al. developed a software/hardware
mechanism to control memory bandwidth assignments among co-scheduled applications [66].
Motivated by these pioneering studies, the industry has begun to incorporate cache
and bandwidth partitioning features in commercial processors [32]. Recent research
has explored the benefits of these partitioning features, proposing various techniques
to optimize them [5, 51, 60, 93, 59, 20]. Some studies specifically focused on cache
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partitioning features [5, 51], while others concentrated on memory bandwidth partitioning [60,
93]. J. Park et al. conducted an evaluation of the combination of these two features [59],
and R. Chen et al. applied a machine learning approach to optimize the configurations
of these hardware features [20]. In our work, we extend the optimization to encompass the
combination of cache and memory bandwidth partitioning, introducing two novel aspects: (1)
NUMA-aware resource assignments and (2) job set selections for co-scheduling from a given job
queue. These additions contribute to a more comprehensive and refined optimization strategy in
the context of shared resource management.

2.5.3 Co-scheduling and Resource Partitioning on GPUs

S. Pai et al. initially identified resource wastage within a GPU during the execution of
a CUDA kernel and investigated the feasibility of GPU multiprocessing through their
elastic kernel implementation [58]. I. Tanasic et al. introduced a microarchitectural
mechanism for enabling multiprocessing on GPUs without requiring modifications to
the kernel [79]. Subsequently, the MPS feature, inspired by these seminal studies, has
been integrated into commercial Nvidia GPUs [52]. Various studies have concentrated
on software mechanisms to enhance multiprocessing efficiency on GPUs. T. Allen et
al. presented Slate, a framework optimizing the combination of co-located processes
and dynamically adjusting their scales [1]. smCompactor, similar to Slate, focuses on
maximizing resource utilization [19]. C. Reano et al. proposed a secure co-scheduling
mechanism that considers memory footprints when co-scheduling processes in a time-
sharing manner [67]. In contrast, other studies have emphasized hardware mechanisms
to enhance the efficiency of concurrency-controlling features [24, 6, 37]. With the
advent of industry-supported physical resource partitioning, such as MIG [55], a few
studies have targeted MIG-based partitioning, proposing optimization mechanisms [41,
4, 71]. The work closest to ours, [71], addresses co-scheduling decision-making and resource
partitioning but lacks management of hierarchical partitioning and is limited to co-locating only
two programs.

2.5.4 System Optimizations with Reinforcement Learning

Reinforcement learning, being a versatile approach for optimizing systems through
interaction with the environment, has found extensive applications in computing
system optimizations. E. Ipek et al. employed reinforcement learning for memory
controllers, dynamically selecting an optimal scheduling policy in real-time [33]. Yoo et
al. applied reinforcement learning to QLC SSDs to determine various size/threshold
parameters [94]. D. Zhang et al. devised a reinforcement learning-based batch
scheduler for HPC systems, automatically configuring the priority function [95]. R.
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Chen et al. introduced reinforcement learning to optimize resource partitioning
on commodity servers for multi-programmed server workloads [20]. Y. Wang et
al. proposed a reinforcement learning-based power management mechanism for
multi-core processors [88]. P. Zhang et al. implemented reinforcement learning in an
ensemble prefetch controller that dynamically selects the best policy from multiple
prefetchers [96]. G. Singh et al. suggested an adaptive and extensible data placement
using online reinforcement learning for hybrid storage systems [75]. While these previous
studies show promise or have been adopted in production-level systems, they address different
problems/components than our current focus.
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3 Optimization Strategy: Methodology
Insights

In this chapter, we will present a formal mathematical definition of the problem and
then propose a holistic solution employing reinforcement learning. This chapter adapts
a general approach and offers a comprehensive overview of the optimization strategy
while proposing a methodology that is applicable to both CPU and GPU.

3.1 Problem Definition

In HPC systems, there are typically multiple users trying to schedule their workloads on
the system. In this context, HPC schedulers play a crucial role in managing the queuing
system, assessing resource availability, and monitoring system health. Furthermore,
utilizing co-scheduling without a systematic approach to HPC scheduling can result
in inefficiencies, as multiple jobs run concurrently, potentially leading to interference
and suboptimal performance in the system. Therefore, in this section, we begin by
formulating the HPC scheduling problem in a concise mathematical manner.

Our focus is on addressing the scenario of an over-crowded system characterized by
extended queuing times, where there is a persistent availability of jobs ready to run.
This situation is common in HPC centers where resource demand often exceeds the
available capacity. For a given job queue Q, we define a job windowW to assess the
scheduling strategy for a batch of jobs within W at a time. Figure 3.1 illustrates the
formulation of the optimization problem.

As shown in Figure 3.1, jobs are arranged in the job queue Q, and our attention is on
the initial W jobs (J1, J2, . . . , JW ) at any given time. We also introduce a concurrency
limit Cmax, where concurrency C ≤ Cmax signifies the number of jobs selected for co-
execution. Window SizeW and Concurrency Limit Cmax define the scheduling behavior
and are referred to as the Scheduling Attributes: (W , Cmax).

Given the system’s constraint of limited total resources RT, the task is to formulate
co-schedule in form of job-set JSi in a way that efficiently partitions and allocates the
resources RT as Ri = (r1, r2, . . . ). Within these constraints, the optimization problem has
two primary objectives: (i) Co-Scheduling: selecting a set of jobs JSi to ensure concurrent
runs of complementary jobs, and (ii) Resource Partitioning: creating partitions of total
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Figure 3.1: Problem Definition

resources into suitable resource chunks, allocating resources as specified by the tuple
Ri to the jobs in the co-schedule.

On the right side of Figure 3.1, we illustrate the allocation of system resources
over time, with the x-axis representing resource allocation and the y-axis representing
execution time. The job sets JS1 : (J3, J1, J6) and JS2 : (J2, J4, J5) are assigned resources
R1 : (r3, r1, r6) and R2 : (r2, r4, r5), respectively. For each job set, the objective is to
minimize the CoRunTime, signifying the overall goal of minimizing the height of the
plot. We formulate the optimization problem mathematically as follows.

given W , Cmax, Q = {J1, J2, ..., JW}

min
|LJS|
∑
i=1

CoRunTime(JSi, Ri,Q)

s.t. CoRunTime(JSi, Ri,Q) ≤ SoloRunTime(JSi,Q) (3.1)

1 ≤ Ci(= |JSi|) ≤ Cmax, |JSi| = |Ri| (3.2)

∀Ri, r1 + r2 + . . . r|Ri| ≤ RT (3.3)

∀i ∈ [1, |LJS|], |LJS| = |LR| (3.4)

JS1 ∪ ...∪ JS|LJS| = Q (3.5)

|JS1|+ ... + |JS|LJS|| =W (3.6)

output LJS = {JS1, JS2, ...}, LR = {R1, R2, ...}

During the optimization process within the specified constraints, we derive a list
of job sets LJS alongside a list of corresponding resource partitioning states LR. The
constraint 3.1 represents that co-scheduling the ith set of jobs in LJS must improve
performance compared with time-shared scheduling, i.e., running the jobs one by
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Table 3.1: Parameter/Function Definitions
Parameter/Function Definition

Q Queuing jobs within the window:
Q = {J1, J2, · · · , JW}

W The number of jobs within the window on the queue
Cmax The maximum number of concurrently executed jobs
LJS A list of job sets to be co-scheduled:

LJS = {JS1, JS2, · · · }
JSi ith set of jobs in LJS to be co-scheduled
LR A list of resource partitioning/allocation setups

associated with the job sets: LR = {R1, R2, · · · }
Ri The resource partitioning/allocations for JSi

Ci (= |JSi|) The concurrency of ith co-scheduled job set
ExecutionTime(Jk, JSi) The time taken to execute kth job in the job-set JSi
CoRunTime(JSi, Ri,Q) The total execution time when co-locating JSi with Ri

(Longest running job determines the execution time
of the job-set)

⇒ maxk=0,...,|JSi|[ExecutionTime(Jk, JSi)]

SoloRunTime(JSi,Q) The total time when executing JSi with time sharing
(Sum of execution time of all jobs in the job-set)

⇒ ∑k=0,...,|JSi|[ExecutionTime(Jk, JSi)]

JobMixTpt(JSi, Ri,Q) Relative throughput normalized to that of
time-sharing scheduling for a particular job mix

(Ratio of SoloRunTime(JSi,Q) to
CoRunTime(JSi, Ri,Q))
⇒ SoloRunTime(JSi,Q)

CoRunTime(JSi,Ri ,Q)
Throughput(LJS, LR,Q) Overall throughput for the entire job queue (Q)

(Weighted sum of JobMixTpt(JSi, Ri,Q))
⇒ ∑

|LJS|
i=1

Ci
W JobMixTpt(JSi, Ri,Q)

one using the entire resources exclusively. Constraint 3.2 defines two objectives: (i)
it restricts co-scheduling concurrency, i.e., the concurrency (Ci) must be less than or
equal to the given upper limit (Cmax), and (ii) the number of selected jobs in job-set
JSi shall be equal to the generated resource partitions in Ri. Constraint 3.3 signifies
that for all resource partitioning states Ri, resource allocation is bounded by the total
available resources RT. Next, constraint 3.4 ensures that these constraints hold for any i
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(1 ≤ i ≤ |LJS|). Constraints 3.5 and 3.6 restrict the job set selections, ensuring they are
chosen from the queue (Q) in a mutually exclusive and collectively exhaustive manner.
Table 3.1 lists the definitions of parameters and functions used above. Important:
Note that the metric throughput, as used in the following chapters, has been defined as
Throughput(LJS, LR,Q), in Table 3.1.

This optimization problem can be viewed as a variant of the widely recognized strip
packing problem [45]. In a typical strip packing problem, there are multiple items,
usually with rigid rectangular shapes, and a strip is given. The objective is to minimize
the height by arranging all the items within the strip. In our scenario, the shapes of the
given items can be altered based on the resource assignment setups (Ri), and each item
possesses multiple dimensions. Given that the fundamental strip packing problem is
acknowledged as NP-hard [45], ours is also a strongly hard problem, given its high
degree of freedom in decision-making.

3.2 High-Level Solution Overview

In this section, we present a high-level overview of the proposed methodology. We
introduce a comprehensive approach that addresses the optimization challenge through
the application of reinforcement learning.

Figure 3.2 offers an overview of our solution’s entire system architecture. As depicted,
the comprehensive solution comprises three main components: (1) offline profiling for
job characterization and profile collection; (2) offline training to learn the coefficients of
our agent; and (3) online optimization to employ the trained agent for decision-making.

3.2.1 Offline Profiling

To characterize applications, we use hardware performance counters to capture the
runtime characteristics of jobs on the target system, and the specific counters are
detailed in chapters 4 and 5. Profiling is a prerequisite for all co-scheduling targets
in both the offline and online phases. During the offline phase, solo-run profiles are
collected for all benchmark programs before model training. In the online optimization
phase, if a queuing job lacks a profile, it is excluded from the co-scheduling targets. This
job is executed exclusively, utilizing the entire system resources while collecting the
profile, which is then stored in the Job Profiles Repository. If an application is rerun on
the system, it is included in the co-scheduling target since its profile is available in the
repository. A matching function is necessary to associate each job with its corresponding
profile, based on submission information such as the binary path and user ID. In this
study, we opt for a straightforward approach, using the application binary path plus
name as a key and checking for an associated profile in the repository. While our
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Figure 3.2: Solution Overview

current method is basic, developing a more sophisticated scheme for generating the key
from job submission information, considering various factors like input dependency,
remains an open challenge. For instance, the characteristics/behavior of an application
can depend on its inputs, and there are several promising solutions to compensate for
it [17]. In future work, our matching function can be replaced with a more advanced
approach.

3.2.2 Offline Training

For the offline model training, we generate variations of benchmark program mixes
to be co-located on the target GPU. For each program mix, we systematically explore
co-run throughput while adjusting the partitioning setup. This partitioning search relies
on reinforcement learning, where we adaptively update the partitioning and resource
allocations based on the output of the reward function. The reward function considers
the co-run throughput. Throughout this process, the state-action table, approximated
by a neural network in our study, is trained, and the model coefficients in the agent
are ultimately determined. It’s crucial to note that the model coefficients are hardware-
specific and are not transferable to different hardware configurations. However, the
training procedure only needs to be conducted once for a specific system. We opt
for this offline training approach based on reinforcement learning for several reasons.
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Firstly, the job selection and resource partitioning setup may not always be dynamically
configurable at runtime. As a result, we cannot adaptively learn optimal configurations
for a given set of jobs in the queue (Q) by testing various configurations at runtime.
Secondly, during the offline training phase, we employ reinforcement learning instead
of using well-known supervised learning with a training dataset. This choice is driven
by the impracticality of obtaining a labeled dataset. In this context, labeling involves
associating a given job mix with the best co-scheduling and resource partitioning
decisions, necessitating an exhaustive search for each job mix (or data) in the dataset.

3.2.3 Online Optimization

In the online phase, we employ an optimization agent to address the optimization
problem defined in Section 3.1, utilizing the model generated during the offline phase.
The agent treats the optimization as a classification problem, utilizing the model to
select sets of co-scheduled job mixes (LJS) and their associated resource allocations (LR)
with the aim of maximizing the system throughput. Notably, in this study, we do not
update the model dynamically during the online phase. However, the potential for
dynamically refining the trained model stands as a promising avenue for future work.

3.3 Reinforcement Learning Components

In reinforcement learning, an agent learns the optimal action based on the situation to
maximize the cumulative reward [78]. As discussed in Section 2.5.4, the objective of
this learning approach is to enable the agent to explore the parameter space through
interactions with the environment, engage in trial-and-error, and eventually generalize
to perform an optimal set of actions to reach the goal state. The various components of
reinforcement learning in the context of this work are explained as follows.

1. Agent: The agent learns an optimal policy to maximize the accumulation of
reward signals during offline training in our approach. In this work, our agent
functions as a co-scheduler responsible for selecting sets of job mixes and their
associated partitioning (LJS and LR) from the given queue (Q). We set up the
agent with deep neural networks for function approximation, enabling it to learn
the optimal set of state transitions and maximize the cumulative reward.

2. Environment: The environment serves as a black box for the agent. In this work,
the environment encompasses the job queue (Q), target HPC system and its
hardware features.
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Figure 3.3: State Representation for Resource Management

3. State: The representation of the current system situation is defined as the
state. It should contain all relevant information necessary for deciding actions.
In our approach, the state of the system includes all jobs in the current job
window (Q = J1, J2, · · · , JW ) along with their job features characterized by their
profiles. For example, Figure 3.3 illustrates state representation that can be a
good candidate during reinforcement learning in our approach. In Figure 3.3, the
state representation includes job characteristics and other parameters updated
by the agent’s decisions, such as hardware configurations (resource allocations)
and scheduling decisions. Hence, a state can be represented by a vector s ∈
RW×(n+m+p), where n, m, and p are the count of values for job features, hardware
configurations, and scheduling decisions, respectively.

4. Action: Actions in our approach can involve decisions for selecting sets of co-
scheduled job mixes and corresponding resource allocations (LJS and LR). We
limit our search for the optimal set of decisions to a discretized parameter space
for resource allocation combinations. Consequently, our action space is also
discrete.

5. Reward: A reward signal defines the goal of reinforcement learning [78]. For
every action, the agent receives the reward signal as a numerical value. As the
agent’s goal is to maximize the cumulative reward, the reward signal quantifies
and evaluates an action at a given state of the system. The details of the setup
for this reward function will be provided in chapters 4 and 5. In this work, we
define two types of rewards: (1) Intermediate Reward: When an agent is building a
schedule, it is essentially making different decisions about resource partitioning
for concerned jobs. For each of these actions, we define certain rewards based on
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heuristics. (2) Final Reward: When an agent has successfully created a schedule,
it executes the schedule and hence transitions to the final state. In this case,
the reward signal can be directly taken from the measured overall speed-up as
compared to running the job in the time-shared manner.
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4 Harmonized Resource Management on
NUMA Systems

In this chapter, our emphasis is on achieving "Harmonized" resource management on
NUMA systems. As discussed in Section 2.3.1, contemporary NUMA systems offer
resource partitioning features like numactl and rdtset. These features allows for
diverse resource assignments on a NUMA system. This chapter will initially introduce
these diverse resource assignment policies, followed by empirical observations when
employing these policies. Subsequently, we will delve into the implementation details
of our reinforcement learning-based approach, specifically designed to harmonize
co-scheduling and resource assignments on NUMA systems. We will then validate our
approach through experimental evaluations.

4.1 Overview

We focus on HPC systems that consists of multiple NUMA domains and offer cache
and bandwidth partitioning features controllable through software. The resource
partitioning for cache and memory bandwidth are explained as follows: (1) Last-level
Cache: we focus on partitioning last-level cache by dividing and allocating cache to
concurrently running jobs at the granularity of the cache ways; (2) Memory Bandwidth:
we assume that the memory controllers have the capability to partition and prioritize the
memory access traffic of concurrently running jobs by defining the memory bandwidth
utilization limit. As discussed in Section 2.3.1, these features are commonly available in
modern server-class commercial microprocessors [32]. Our objective is to co-schedule
multi-threaded or multi-processed jobs/applications and simultaneously determine the
resource assignments, including cores, cache ways, and bandwidth.

For instance, Figure 4.1 illustrates the system used in our evaluations. This system
comprises of two CPU sockets, both of them supporting the Intel RDT features [32]
for allocating cache ways and memory bandwidth to each active job (represented as
J∗ in the figure). The connections between these NUMA domains are facilitated by
an interconnect known as UPI (Ultra Path Interconnect). The allocation of cores and
memory is managed through the numactl tool set [38], while cache ways and memory

34



4 Harmonized Resource Management on NUMA Systems

Cores

LLC
Memory Controllers

Memories

Cores

LLC
Memory Controllers

Memories

NUMA 1 NUMA 2

Interconnect

Core
Assignments

Cache
Assignments

Bandwidth
Assignments

Memory
Assignments

Figure 4.1: Overview of the Target NUMA System

bandwidth assignments are executed using the rdtset package [32]. Note that further
details about the evaluation setup is provided in Table 4.1.

4.1.1 Allocation Policies

We explore two distinct core mapping policies for NUMA systems, namely compact and
distributed. With compact allocation policy, cores are predominantly allocated from the
same NUMA domain, whereas distributed allocation policy involves choosing cores
from different NUMA domains in a round-robin fashion. In Fig. 4.1, the distributed
policy is used for J2, whereas the compact policy is applied to the others. In both
scenarios, various memory mapping options, including first touch[12, 87], round robin,
and local alloc, are considered to optimize memory accesses for the specific co-running
jobs and the chosen core mapping.

The compact option is preferable when NUMA interconnect is the performance
bottleneck. This case may occur when the running job involves frequent inter-core
communications or irregular memory accesses that are sparse and intensive. Conversely,
the distributed option is suitable when memory references are more regular or localized
within each NUMA domain, potentially providing additional cache capacity and
memory bandwidth for the job since these resources are also distributed. After
determining the co-run job set and core/memory mappings, cache and bandwidth
partitioning features are applied to mitigate interference effects among co-located jobs
on each NUMA domain.

35



4 Harmonized Resource Management on NUMA Systems

4.2 Observations

In this section, we provide observations aimed at understanding the impact of employing
different resource assignment policies on a NUMA system.

4.2.1 Throughput v/s Allocation Policy

Figure 4.2 presents a throughput comparison across different core affinity policies for
various job pairs. The y-axis enumerates distinct policies for each job pair, while the
x-axis represents the relative throughput normalized to that of time-shared scheduling
using exclusive solo runs. We evaluate both compact and distributed core affinities
with and without employing cache/bandwidth partitioning features. The best policy
out of the four is denoted with "*", highlighting the optimal choice for each job mix.
When cache/bandwidth partitioning features are enabled, we conduct an exhaustive
search to select the best setup, testing all possible configurations and choosing the one
that maximizes throughput. This includes optimizing the number of cores assigned to
co-scheduled applications and selecting memory mapping from three different options
(detailed in Section 4.4) to maximize co-run throughput. The specific search space
related to hardware assignments is detailed in Section 4.4.

As depicted in Figure 4.2, the emerging cache/bandwidth partitioning features
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Figure 4.2: NUMA Throughput comparison among different resource assignment
policies for various job pairs (J1 : J2). The ⋆ indicates the best assignment
policy for a given job pair.
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prove highly effective for specific job mixes, such as ocean_cp:water_spatial and
FT:fmm. This efficiency stems from the memory-intensive or cache-friendly nature of
these programs. Isolating/partitioning these memory resources significantly mitigates
interference effects, leading to substantial throughput improvement when resource
assignments are configured accordingly. However, for other workloads like MG:EP
and water_spatial:UA, these new partitioning features are less effective. The primary
reason is that inter-NUMA communications, which can induce interference effects on
the interconnect, become a bottleneck for these workloads. Therefore, cache/bandwidth
partitioning features do not contribute to throughput improvement, making core
affinity setup crucial in such cases. Hence, depending on the selected jobs for co-
location, a careful choice between compact and distributed affinity policies is necessary.
Simultaneously, selecting an appropriate job pair is also crucial — for example, mixing
water_spatial with ocean_cp outperforms doing so with UA, as illustrated in the
figure.

4.2.2 Optimal Resource Assignment
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Figure 4.3: Optimal NUMA resource assignment setup for the "Compact w/
Partitioning" allocation policy

In the subsequent figures, Figure 4.3 and Figure 4.4, we present a detailed breakdown
of resource assignments for various application pairs optimized under compact and
distributed core affinity options, respectively. The Y-axis enumerates different resources
per job mix, while the X-axis aggregates the rates of resource allocation. Additionally, for
cache and bandwidth partitioning, we also consider the shared option, where resources
can be utilized by both co-scheduled programs. As evident in the figures, the choice of
core affinity (compact or distributed) significantly influences decisions regarding resource
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Figure 4.4: Optimal NUMA resource assignment setup for the "Distributed w/
Partitioning" allocation policy

partitioning setups, including cores, cache, and bandwidth partitioning. Simultaneously,
the selection of a specific job pair markedly impacts decisions on these resource
assignments, as optimal configurations heavily depend on the given job mix.

4.2.3 Throughput v/s Core Allocation
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Figure 4.5: Throughput as a function of core allocation for various NUMA allocation
policies (ocean_cp:water_spatial)
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Figure 4.6: Throughput as a function of core allocation for various NUMA allocation
policies (MG:EP)

Lastly, in Figure 4.5 and Figure 4.6, we illustrate the co-run throughput in relation
to the number of cores, considering four different resource assignment options when
co-scheduling ocean_cp and water_spatial or MG and EP. The x-axis in the figures
represents the number of cores allocated to the co-scheduled programs, while the y-axis
indicates the relative throughput normalized to that of time-shared scheduling with
exclusive solo runs. When cache/bandwidth partitioning features are enabled, we
select the best partitioning setup for the given core affinity policy through exhaustive
search. The figures demonstrate that the number of cores assigned to the co-scheduled
jobs significantly impacts co-run throughput. Simultaneously, the effect on throughput
may vary depending on the specific job mix, the chosen affinity policy (compact or
distributed), and the cache/bandwidth partitioning configurations.

4.3 Implementation

The insights gained from the previous section motivates us to introduce a comprehensive
approach that simultaneously optimizes co-scheduling decisions, NUMA-aware resource
assignments, and the cache/bandwidth partitioning setup.

Following on the mathematical formulation described in Section 3.1, we perform
throughput-oriented optimization for NUMA systems. Furthermore, as described
in Section 3.2, our reinforcement learning-based approach comprises distinct offline
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phases, namely profiling and training, along with an online optimization phase. The
following section delve into the implementation specifics of our reinforcement learning-
based solution.

4.3.1 RL Implementation Details

In this section, the components of reinforcement learning, as mentioned in Section 3.3,
have been applied to address the resource management challenges specific to NUMA
systems.

1. Agent: Following on the benefits of Soft Actor-Critic Method as highlighted in
Section 2.4.3, the agent has been configured with soft actor-critic for discrete action
settings [22].

2. Environment: In this work, the environment consists of the NUMA system
along with its hardware features such as NUMA allocation policies and resource
partitioning features for cache/bandwidth.

3. State: The state represents the current situation of the system. As described
in Section 3.3, the state s ∈ RW×(n+m+p), where n, m, and p are the number of
job features, hardware configurations, and scheduling decisions, respectively. In
this context, n = 12, signifying the utilization of 12 job features (extracted from
hardware performance counters) detailed in Table 4.2. The value m = 7, which
includes attributes related to resource allocation: (1) selected core allocation policy
(compact/distributed), (2) selected memory allocation policy (first touch/round
robin/local alloc), (3) allocated number of cores, (4) allocated number of cache
ways to each socket (×2), and (4) allocated memory bandwidth to each socket
(×2). Moreover, the agent needs to retain two scheduling details for each job,
specifically: (1) the co-schedule ID, and (2) whether the job has been executed.
These scheduling decision parameters assist the agent in understanding the overall
state of the co-execution, resulting in p = 2. Additionally,W represents the job
window size, which we can modify according to the evaluation requirements.

4. Action: The agent must execute two types of actions: (1) Schedule-level policies:
As explained in Section 4.1.1, the agent selects the core mapping policy from two
alternatives: compact or distributed. Regarding the memory mapping policy, the
options include first-touch, round-robin, and local-alloc (specified by the numactl
command). (2) Job-level assignments: Once the schedule-level policies are
determined, the agent proceeds to decide resource allocations in terms of core
count, the number of cache ways, and memory bandwidth. For core counts, the
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choices are 3, 6, 12, 18, and 21 (out of 24 cores). For Cache allocation we explore
five options: 4, 8, 12, 16, and 22 (out of 22 ways on 2 sockets). Memory bandwidth
allocation is constrained to five options: 20%, 40%, 60%, 80%, and 100%. During
cache and memory bandwidth allocation, the selected cache ways and memory
bandwidth are distributed either in a balanced manner or proportionally (based
on the core allocation ratio) to each socket. As mentioned in Section 4.4.1, our
target system has two sockets. In addition to these actions, a skip option is
available to defer the current job to the end of the job window, streamlining the
job selection process. Thus, the exploration space encompasses 257 unique actions
[(schedule-level: 2× 3) + (job-level: 5× 5× 5× 2) + skip].

5. Reward: As detailed in Section 3.3, our reward functions fall into two categories:
(1) intermediate, designed to provide appropriate rewards by considering job
characteristics and resource allocations, and (2) final, dependent on the overall
throughput improvement of the job mix. The exact definitions of these reward
functions are outlined in Table 4.5. Note that the final reward signal is exclusively
provided during the execution of the co-schedule on the system.

4.4 Evaluation Setup

4.4.1 Target Platform

Table 4.1: Target Evaluation Platform Details for NUMA System
Name Remark

CPU Intel(R) Xeon(R) Silver 4116 x2 sockets
Operating

System
Ubuntu 20.04.4 LTS, Kernel Version: 5.13.0-22-generic

Software Gcc/Gfortran Version: 9.4.0, Numactl Version: 2.0.12-1,
Rdtset Version: 3.2.0, Python Version: 3.8.10

The specifications of our evaluation platform are provided in the Table 4.1. Our
system comprises two processors equipped with emerging cache and bandwidth
partitioning features, namely Intel CAT/MBA, which can be controlled using the
rdtset command [32]. In our assessment, we apply the Intel CAT cache partitioning
feature exclusively to the last level caches. While the accuracy and effectiveness of
these partitioning features can vary based on the CPU generation, as indicated in a
recent study [77], our RL agent adapts and learns their performance impact during
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Table 4.2: Collected Hardware Performance Counters for NUMA system
Statistics

duration_time, task-clock, context-switches, cpu-cycles, instructions,
page-faults, branch-misses, L1-dcache-load-misses, L1-icacheload-misses,

LLC-load-misses, dTLB-load-misses, iTLB-loadmisses

the training process. The affinities for core/memory mapping are managed using the
numactl command [38]. Our implementation is executed in Python, leveraging several
standard libraries. The reinforcement learning environment is constructed using the
gymnasium Python library [27]. For the agent implementation, we employ the PyTorch
library [61] to build the deep neural networks for the Soft Actor-Critic Method [22].
Additionally, scikit-learn is used for performing supplementary data pre-processing
and feature engineering [62].

We gather hardware performance counters to profile and characterize the applications,
employing the Linux perf command [63]. The hardware performance counters collected
through the perf command are detailed in Table 4.2. These metrics play a crucial role in
evaluating application characteristics, including compute intensity, memory intensity,
cache friendliness, and other relevant aspects, which are essential for our approach.

4.4.2 Evaluation Workloads

We employ the Parsec benchmark suite [9] and the NAS Parallel benchmark suite [7]
in our evaluations, as they are widely utilized in studies involving multi-/many-core
processors. The specific programs used in our evaluations are listed in Table 4.3.

In our assessment, we initially set the job window size (W = 6) and later vary the
size to evaluate the impact of window size selection. Similarly, we fix the maximum
concurrency (Cmax = 4), meaning that at most 4 jobs can be co-located simultaneously.
Note that the concurrency may be less than 4, depending on decisions made by the

Table 4.3: Evaluation Benchmarks for NUMA System
Benchmarks

Suite
Applications

Parsec barnes*, cholesky*, fft, fmm, lu_cb, lu_ncb, ocean_cp,
ocean_ncp, raytrace*, water_nsquared*, water_spatial

NAS Parallel BT*, CG, DC*, EP, FT, IS*, MG, SP
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Table 4.4: Tested Job Mixes for NUMA System (W = 6)
Name Jobs

Q1 fmm, FT, EP, fft, CG, lu_ncb
Q2 IS*, lu_ncb, EP, CG, SP, cholesky*
Q3 fft, MG, IS*, lu_ncb, lu_cb, EP
Q4 fmm, IS*, MG, FT, SP, fft
Q5 CG, MG, FT, fmm, DC*, water_nsquared*
Q6 lu_ncb, water_spatial, fft, DC*, fmm, MG
Q7 ocean_ncp, CG, fmm, barnes*, ocean_cp, lu_ncb
Q8 IS*, MG, FT, CG, DC*, ocean_ncp
Q9 MG, EP, IS*, fft, DC*, water_nsquared*
Q10 DC*, barnes*, cholesky*, lu_ncb, CG, fmm
Q11 lu_cb, MG, barnes*, cholesky*, fmm, MG
Q12 raytrace*, cholesky*, DC*, BT*, fft, lu_ncb

agent. For offline training, we exclude 7 programs marked with * in Table 4.3 and utilize
the remaining 12 programs. The exclusion is aimed at assessing the generalization
capability of our approach to unseen applications.

We generate 16 distinct job queues for agent training, each containingW programs
randomly chosen from the pool of 12 programs. For online inference, we evaluate
our approach by randomly creating 12 job queues, sampling jobs from all 19 available
programs. The specific job mix selections forW = 6 are detailed in Table 4.4. Programs
marked with * are those not encountered during the training phase.

4.4.3 Training/Inference Setup

Table 4.5 outlines the setup for the reward function and the agent in this evaluation.
As described in Section 3.3, we employ two types of rewards: (i) intermediate reward
rwi and (ii) final reward rw f . The intermediate reward assesses the resource allocation
for a chosen job, assessed before launching the job using the associated profile,
offering higher rewards for appropriate resource assignments (e.g., allocating more
memory bandwidth to a memory-intensive application). Conversely, the final reward
corresponds to the measured throughput improvement achieved over time-sharing
executions, determined only after completing the co-execution of a job mix. Note that
the reward function can be tailored to optimize for various factors such as energy efficiency,
application slowdown, and fairness by modifying the definitions provided in the table.

In the Table 4.5, CoreAllocRatio, CacheAllocRatio, and BWAllocRatio represent
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Table 4.5: Agent and Reward Function Setups for NUMA System
Type Setups

Reward
Function

Intermediate: rwi = CoreAllocRatio ∗ (ScaleFactorRatio2 +

DurationRatio2) + (CacheAllocRatio + BWAllocRatio)
* L3CacheMissesRatio2

Final: rw f = (SoloRunTime/CoRunTime− 1)× 100
Agent [# of neurons in the input layer]: W × (n + m + p),

[State Parameters]: n = 12, m = 7, p = 2
[# of hidden layers for each Network]3,

[# of neurons in each hidden layer]: 256/256/256,
[# of neurons in the output layer]: 257,

[Layer NW]: Fully connected,
[Activation function]: Rectified Linear, Softmax

hardware parameters denoting (i) the ratio of allocated cores to the total available cores,
(ii) the ratio of allocated cache ways to the total available cache ways, and (iii) the ratio
of allocated memory bandwidth to the total available memory bandwidth, respectively.
Additionally, ScaleFactorRatio, DurationRatio, and L3CacheMissesRatio serve as job-
specific profile parameters with the following definitions: (i) ScaleFactorRatio indicates
the ratio of the current job’s scale factor to the mean scale factor of the job window,
where the scale factor is defined as the ratio of running the job on a single core to
running it on all available cores; (ii) DurationRatio is the ratio of the solo-run execution
time of the current job to the mean solo-run execution time of the job window; and (iii)
L3CacheMissesRatio represents the ratio of L-3 cache misses for the current job to the
mean L-3 cache misses of the job window.

As previously mentioned, the agent is configured with the soft actor-critic method for
discrete settings [22], and the details are outlined in Table 4.5, whereW represents the
window size. This method requires three separate networks for function approximations:
one actor network and two critic networks. Specific details about the update rules for
each network can be found in the work by Christodoulou [22].

The outlined procedure takes a state vector as input and provides an action to be
taken. At the initial time step of an episode, the schedule-level policies are defined.
Subsequently, each time step of the training episode determines all required actions for
resource allocation for a particular job. This training process is designed to converge
towards the global optimum. After completing the training procedure, we conduct
tests in the evaluation mode using the trained models.
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4.5 Experimental Results

In this section, we present the results of our experiments to evaluate the effectiveness of
our approach in optimizing overall throughput across distinct job queues (Q1−Q12).
Initially, we compare our approach with various alternative scheduling methodologies
and resource allocation methods. Following that, we evaluate the ability of the agent to
identify appropriate core/memory affinity policies. Subsequently, we investigate the
influence of the window size (W) on throughput improvement. Lastly, we present the
scheduling overheads associated with our approach.

4.5.1 Throughput Comparison

In our comparative analysis with state-of-the-art methods, we specifically compare our
approach with the work conducted by Saba et al. [71], denoted as OCRP-ML, due to its
relevance to our research focus. It’s important to note that while their approach shares
similarities with ours, it does not address cache/memory bandwidth partitioning, and
the maximum job concurrency is restricted to two. Additionally, in our evaluations, we
do not employ the power capping feature associated with their approach.
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Figure 4.7: Throughput Comparison among Different Scheduling and Resource
Allocation Methods for NUMA System (W = 6, Cmax = 4)
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To assess the effectiveness of our approach, we compare it against various scheduling
and resource allocation methodologies, including:

1. Time Sharing (Baseline): Jobs in the given queue are executed with full system
resources without co-scheduling.

2. OCRP-ML: We utilize the framework proposed by Saba et al. [71] to evaluate job
co-scheduling and resource partitioning with C = 2.

3. OCRP-ML - BEST: This method assesses the theoretical maximum throughput
for the work of Saba et al. [71] with C = 2. An exhaustive search is employed to
identify the optimal combination of job-sets and resource allocations.

4. RL - FIFO: Emphasizing the significance of job selection, we evaluate our
reinforcement learning (RL) approach with the job selection feature disabled
and C ≤ Cmax.

5. Our Approach: We assess our proposed reinforcement learning-based approach,
which co-optimizes job selections, core/memory mapping, and resource assignments
with C ≤ Cmax.

Figure 4.7 illustrates the throughput comparison for various scheduling and resource
allocation methods. The X-axis represents job queues used for evaluations (AM =
Arithmetic Mean), as indicated in Table 4.4, while the Y-axis represents the relative
throughput normalized to that of Time Sharing for each job queue. In this comparison,
we setW = 6 as mentioned before.

Overall, our approach consistently outperforms all other scheduling methods. Compared
to the Time Sharing, our approach achieves a throughput improvement factor of 1.303
on average. Furthermore, we observe a maximum throughput improvement of up
to 1.781 times. In contrast to OCRP-ML methods, where cache/memory bandwidth
partitioning is not available and concurrency is limited, our approach demonstrates a
distinct advantage. Lastly, by emphasizing the critical role of job-set selection quality
in co-scheduling, the use of the RL - FIFO scheduling policy restricts the agent from
achieving higher performance.

4.5.2 Validation of Core/Memory Affinity Choices

In this analysis, we assess whether the designated job sets are assigned with optimal
core/memory affinities, referred as NUMA policies, for each job queue. Figure 4.8
presents this validation by comparing the throughput across different methods for each
job queue. The X-axis denotes the distinct job queues referenced from Table 4.4, while
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Figure 4.8: Throughput Comparison against the Optimal NUMA Policy Selection (W =

6, Cmax = 4)

the Y-axis illustrates the relative throughput normalized to the Time Sharing method.
The RL - Optimal NUMA Policy approach involves executing the jobs chosen by the RL
agent with corresponding resource assignments utilizing the optimal core/memory
affinity, determined through an exhaustive search for cores and memory mapping
policies (e.g., compact with first touch).

Overall, our approach achieves nearly optimal throughput for nearly all cases,
with an average throughput degradation (or room for improvement) of only 6.38%
compared to RL - Optimal NUMA Policy. It’s worth noting that further improvements in
throughput can be realized by adjusting the reward function accordingly. In the
current implementation, an intermediate reward is designed on a job-wise basis.
However, adopting a global perspective that considers all co-located jobs could enhance
the core/memory mapping affinity selections. This is because the potential affinity
selections for one job are constrained by those of the other concurrently scheduled jobs.

4.5.3 Scaling Scheduling Attributes

In our approach, we kept W = 6 as the fixed window size and Cmax = 4 as the
maximum concurrency. In this section, we assess the performance of our approach for
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Figure 4.9: Average Throughput comparison for varying values of window size (W)
and maximum concurrency (Cmax) for NUMA System

varying window sizes and concurrency limits. We explore different values for both
scheduling attributes, setting W in the range [4, 6, 8] and Cmax in the range [2, 3, 4].
Figure 4.9 illustrates the comparison of average throughput for different combinations
ofW and Cmax. The x-axis represents the window size (W), and the y-axis depicts the
maximum concurrency (Cmax). The color-coded visualization indicates the average
throughput for eachW −Cmax setup. These evaluations are conducted using the same
set of jobs listed in Table 4.4. Since there are a total of 72 jobs (6× 12) in this table, we
form similar job queues usingW = 4 andW = 8. The observed trend indicates that
our approach scales effectively with the scheduling attributes, displaying a gradual
improvement in average throughput with scaled values ofW and Cmax.

4.5.4 Scheduling Overhead

Finally, we present the time and memory overheads of our scheduling approach. The
time overhead of online inference, compared to each job execution time, averages
only 1.06% across our workloads. The model training time falls within the range of
approximately 10-12 hours, required only once per system. During inference, the memory
overhead of our RL agent is only 13MiB, which is negligible when considering the
memory capacity of modern systems.
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5 Hierarchical Resource Management on
Modern GPUs

In this chapter, we focus on introducing "Hierarchical" resource management on modern
GPUs1. As discussed in Section 2.3.2, modern GPUs support various resource partitioning
features such as NVIDIA Multi-Process Service and NVIDIA Multi-Instance GPU. We
introduce the setup for mixing these features hierarchically and co-locating multiple
jobs on the GPU. We quantify the benefits of using such resource partitioning setups
using empirical measurements. Nextly, we will delve into further details about the
implementation of our reinforcement learning-based solution, specifically targeting
hierarchial resource management on modern GPUs. Finally, we evaluate our methodology
with experimental evaluations.

5.1 Overview

Figure 5.1 illustrates the architecture of a modern GPU, focusing on the hierarchical
partitioning features on modern GPUs. As described in Section 2.3.2, the focus is on
the features found in the NVIDIA Ampere architecture [54], which includes MIG [55]
and MPS [52] functionalities.

GPU partitioning can be achieved through the MIG feature, dividing a GPU into
one or more GIs (GPU Instances) at the granularity of GPC. Each GI can then launch
one or more CIs (Compute Instances), occupying GPCs within the GI in a mutually
exclusive manner. A user can select a CI and run a program on it. Each GI owns the
same number of LLC/HBM blocks as GPCs, providing private and isolated resources
accessible only by the CIs on the GI. However, as described in Section 2.3.2, MIG’s
coarse-grained physical partitioning has limitations: (1) one GPC must be disabled
when the feature is enabled; (2) it is configurable only when no program is running;
and (3) the partitioning choices are limited to 19 variants in the current implementation,
lacking support for certain configurations, such as dividing 7 GPCs into 2 GPCs and 5
GPCs.

1The results discussed in this chapter have already been published in the Proceedings of IEEE
International Conference on Cluster Computing 2023 [72]. All illustrations used in this chapter
are re-drawn versions of the figures from the published work.
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Figure 5.1: Modern GPU architecture with Hierarchical Resource Partitioning

Additionally, the MPS feature allows further partitioning at the granularity of SM,
either within each CI or the entire GPU if MIG is not applied. While MPS provides
more flexibility and finer-grained partitioning than MIG, it lacks controls for quality of
service, such as shared resource partitioning. Thus, MIG is suitable for setting up shared
memory resource partitioning/isolation to mitigate interference impact, while MPS is useful
for flexibly assigning compute resources to balance the performance of all co-located programs,
surpassing the capabilities of CI-level partitioning.

The combination of MIG and MPS features presents various partitioning variations,
as illustrated in Figure 5.2. Figure 5.2a and Figure 5.2b illustrate the first two options
which involve not partitioning memory resources but sharing them among all co-
located applications. These options are beneficial when co-located applications require
complementary resources. For instance, one application may be compute-bound, not fully
utilizing available memory bandwidth, while another may be memory-bound, requiring
only a small subset of available compute resources. The MPS-only option offers
advantages over MIG-only shared memory, allowing more flexible and fine-grained
compute resource allocations, and it avoids the need to turn off 1 out of 8 GPCs, as
required by MIG (for A100 GPUs [54]).

Figure 5.2c illustrates the option designed to mitigate shared resource conflicts among
co-located applications. This interference-free option is particularly effective for not
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Figure 5.2: Resource Partitioning Variants for GPU using MIG and MPS
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well-scalable applications, limiting both compute and bandwidth resources on the GPU
simultaneously. As Amdahl’s law suggests [3], scalability is constrained by a program’s
parallelism or the overhead of parallelization, which holds for GPU applications limited
by issues like synchronization overhead or problem size. This scalability limit within
a GPU becomes more critical as compute/bandwidth resources grow richer due to
advancements in VLSI technology.

Finally, Figure 5.2d is a combination of MIG and MPS, representing a hierarchial case
of all the above options. This approach is promising, especially when executing multiple
programs concurrently on the GPU, and it is suitable for a variety of program mixes.
The first three options are considered extreme setups of this hierarchical partitioning
approach. When co-locating more than two programs within a GI, concurrency
increases in the MPS while setting the number of CIs to 1, allowing full flexibility
of the MPS feature.

5.2 Observations

5.2.1 Throughput v/s MPS Resource Allocation
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Figure 5.3: Co-scheduling GPU Throughput as a Function of Compute Resource
Allocations (MPS Partitioning)
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Figure 5.3 illustrates GPU throughput concerning the allocation of compute resources
to two co-located jobs across different program mixes. In this assessment, we employ
MPS-based partitioning, as depicted in the Figure 5.2a. The Y-axis indicates the ratios
of MPS resource allocation to the co-scheduled programs, as indicated in the plot title,
while the X-axis denotes the relative throughput normalized to that of time-sharing
scheduling. This involves executing the two programs sequentially without resource
sharing but with complete allocation of the entire GPU resources.

As demonstrated in Figure 5.3, the optimal allocation of compute resources for
co-located programs depends heavily on the specific programs and their characteristics.
Notably, for lavaMD : gaussian, a balanced allocation achieves the best performance,
whereas for the others, a skewed allocation has an advantage over a balanced one,
exhibiting a unique optimal allocation point. Given such varying optimal allocations
for different program mixes, we conclude that compute resource partitioning features need
to be fine-grained and flexible to allow for precise tuning of the allocation setup, with MPS being
more preferable for this purpose.

5.2.2 Benefit of Bandwidth Partitioning
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Figure 5.4: Performance Benefit of Bandwidth Partitioning on GPU

Figure 5.4 illustrates the affect of memory bandwidth resource partitioning while
utilizing the two distinct MIG options (shared or partitioned) introduced in Figure 5.2b
and Figure 5.2c, respectively. The X-axis shows job mixes with varying compute
resource allocation rates and memory options (shared or partitioned), while the Y-axis
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indicates the relative throughput normalized to that of time-sharing scheduling. For
evaluating the impact of memory bandwidth partitioning, we configure the exact same
resource allocation for both of the memory options: shared and partitioned. As while
using MIG, one GPC needs to disabled, resulting in a total compute resource allocation
percentage of 87.5% in each case.

We observe a significant throughput improvement when partitioning memory bandwidth,
thereby mitigating interference among the co-located programs. Therefore, depending
on the specific job mix, it is preferable to partition/isolate shared memory resources to mitigate
interference impact, and only the MIG feature is useful for this purpose.

5.2.3 Throughput v/s Partitioning Variants
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Figure 5.5: Performance Comparison for Different GPU Partitioning Variants

Figure 5.5 illustrates a comparison of various resource partitioning variants described
in Figure 5.2. The horizontal axis indicates the various partitioning variants introduced
in Figure 5.2, while the vertical axis represents the relative throughput normalized to
that of the aforementioned time-sharing scheduling. The job-mix of four programs
used for co-scheduling is indicated at the top of the plot, with optimal pairs selected
for each partitioning variant.

For the MPS Only option, the best compute resource allocation [%] is chosen for
the two co-located programs. In the MIG Only options, each co-located application is
assigned to one of the 4GPC or 3GPC CIs, optimally selected to maximize throughput.
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The MIG+MPS Hierarchical is a combination of these options. We co-locate all four
programs simultaneously on the GPU, initially partitioning it into 4GPCs and 3GPCs
with the MIG feature. Then, each co-located program is assigned to one of them with
optimal compute resource allocations [%] designated by the MPS feature. Note that we
exhaustively search for optimal setups and job pair selections for all the above options.
As depicted in the figure, the combination of the two different partitioning features in a
hierarchical manner outperforms other partitioning variants. Thus, hierarchically mixing
MIG and MPS helps to maximize the advantages derived from their utilization.

5.3 Implementation

As discussed in previous sections, hierarchical combination of MIG and MPS is effective
in improving the overall throughput of GPUs. For achieving improved performance,
it is important to carefully choose the partitioning setup based on the characteristics
of the co-located jobs. Additionally, it is vital to select complementary jobs from the
job queue for co-location, as job selection can significantly impact the overall system
performance. In this work, we co-optimize while targeting both co-scheduling and
resource partitioning setup. In this section, we discuss further about our reinforcement
learning-based solution and map it to the hierarchial resource management on GPUs.

Following on the mathematical formulation described in Section 3.1, we perform
throughput-oriented optimization for GPUs. Additionally, as described in Section 3.2,
our reinforcement learning-based approach consists of offline phases: profiling and
training, and an online optimization phase. Subsequently, we provide the implementation
details for our reinforcement learning-based solution as follows.

5.3.1 RL Implementation Details

Reinforcement learning components have been described in Section 3.3. In this section,
these components have been mapped to the resource management problem for GPUs.

1. Agent: Following on the benefits of Q-learning as highlighted in Section 2.4.3, we
make use of deep-q-learning in this work. The agent has been configured with
duelling double deep Q network. The choice of this network is based on the benefits
outlined in two separate works by Hasselt et al. [86] and Wang et al. [89].

2. Environment: In this work, the environment consists of the GPU along with its
hardware features such as resource partitioning via MIG and MPS.

3. State: The state represents the current situation of the GPU. As described in
Section 3.3, the state s ∈ RW×(n+m+p), where n, m, and p are the number of
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job features, hardware configurations, and scheduling decisions, respectively.
In this context, n = 12, signifying the utilization of 12 job features (extracted
from hardware performance counters) detailed in Table 5.2. The value m = 3,
encompasses resource allocation for each job, including: (1) allocated SM count,
(2) allocated Memory in GiB, and (3) memory option (shared or isolated). Further,
the agent is required to store two scheduling details for each job, namely: (1) co-
schedule ID, and (2) whether the job has been executed. These scheduling decision
parameters helps agent to understand the overall state of the co-execution, hence
p = 2. Additionally,W is the job window size, which we can adjust based on the
evaluation requirements.

4. Action: As the agent encounters a job, it has the option to either select one of 27
resource partitioning schemes and assigning it to the job or skip the job. The skip
mechanism has been incorporated to facilitate the job selection process. Once
the co-schedule has been generated, the agent needs to take action to execute the
co-schedule for evaluating its performance. Hence, we have in-total 29 actions in
this implementation.

5. Reward: As mentioned in Section 3.3, we have two categories of reward functions:
(1) intermediate: designed to offer suitable rewards considering job characteristics
and resource allocations (such as SM count and Memory), and (2) final: based on
the overall throughput improvement of the job-mix. The exact definitions of the
reward function has been described in Table 5.5. Note that the final reward signal
is only provided when the co-schedule is being executed on the GPU.

5.4 Evaluation Setup

In this section, we describe our evaluation setups including our target platform,
workload selections, neural network configurations, compared methods, and partitioning
variants.

5.4.1 Target Platform

Table 5.1 lists the target platform used for evaluating our approach. As mentioned
before, we utilized an A100 GPU and applied the MIG and MPS features to it. Our
reinforcement learning-based solution has been implemented in Python using multiple
standard python libraries. We build our reinforcement learning environment using
the gymnasium python library [27]. For implementing the agent, we use the PyTorch
library for implementing the deep neural networks for Q-learning [61]. Further, we use
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Table 5.1: Target Evaluation Platform Details for GPU
Name Remark

GPU NVIDIA A100 40GB PCIe 250W TDP
Operating

System
Ubuntu 20.04.4 LTS, Kernel Version: 5.4.0-137-generic

Software CUDA Version: 11.6, Driver Version: 510.108.03, Python
Version: 2.7.18

Table 5.2: Collected Hardware Performance Counters for GPU
Statistics

Duration, Memory [%], Elapsed Cycles, Grid Size, Registers Per Thread,
DRAM Throughput, L1/TEX Cache Throughput, L2 Cache Throughput, SM
Active Cycles, Compute (SM) [%], Waves Per SM, Achieved Active Warps Per

SM

scikit-learn for performing additional data pre-processing and feature engineering [62].
We collect hardware performance counters to profile and characterize the applications.
To this end, we utilize the NVIDIA Nsight compute framework [56]. Table 5.2 lists the
collected hardware performance counters by using the framework. These statistics are
useful to characterize the applications in terms of compute intensity, memory intensity,
parallelism/scalability, memory access pattern, and so forth.

5.4.2 Evaluation Workloads

We use the Rodinia benchmark suite [18], a stream [23] benchmark, a randomaccess [39]
benchmark, and the Quicksilver mini application selected from the CORAL benchmark
suite [44]. These benchmark programs are categorized into CI (Compute Intensive), MI
(Memory Intensive), and US (UnScalable), as outlined in Table 5.3. The classification
follows a methodology established in a previous study [4]: (1) If the performance
degradation caused by a 1GPC run with the private memory option, compared with the
full 8GPC run, is less than 10%, we designate it as an UnScalable (US) application; (2)
otherwise, if the ratio of Compute (SM) [%] to Memory [%] exceeds 0.80, we classify it
as a Compute-Intensive (CI) application; (3) otherwise, it is categorized as an Memory-
Intensive (MI) application.

In our evaluations, we initially set the job window size (W) to twelve and later
vary this size to evaluate the impact of window size selection. For offline training,
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Table 5.3: Evaluation Benchmarks for GPU along with classification
Class Benchmarks

CI lavaMD, huffman*, hotspot3D, hotspot*, heartwall*,
bt_solver_A, bt_solver_B, bt_solver_C

MI lud_A, lud_B, lud_C*, sp_solver_A, sp_solver_B,
sp_solver_C, randomaccess, cfd*, gaussian*, stream

US kmeans, dwt2d, needle*, pathfinder, backprop*, qs_Coral_P1,
qs_Coral_P2, qs_NoFission*, qs_NoCollisions

we exclude nine programs marked with an asterisk (*) in Table 5.3 and utilize the
remaining 18 programs. The exclusion aims to test the generalization capability of our
approach to unseen workloads.

We create 20 different job queues for agent training, each comprisingW programs
randomly selected from the 18 programs while ensuring representation from all three
categories in the queue. For online inference, we test our approach with various job
mixes: (1) CI-dominant; (2) MI-dominant; (3) US-dominant; and (4) Balanced. In the
X-dominant job mix, 50% of applications are from class X (X=CI, MI, or US), and the
remaining 50% are from the other classes in a round-robin manner. For example, when
W = 12, the CI-dominant class comprises 6 CI, 3 MI, and 3 US applications. The Balanced
job mix selects application classes in a round-robin manner, consisting of 4 CI, 4 MI,
and 4 US applications when mathcalW = 12. For each job mix category, we create
several variants (A, B, and C), assigning applications randomly selected from Table 5.3
to each application class. The specific job mix selections for W = 12 are detailed in
Table 5.4. Note that programs marked with * are unseen during training.

5.4.3 Training/Inference Setup

Table 5.5 outlines the configurations employed for the reward function and the agent in
our evaluation, incorporating two types of rewards: (i) intermediate reward ri and (ii)
final reward r f . The intermediate reward assesses the resource allocation for a selected
job, determined before job launch using the associated profile. It yields a higher
reward for better resource assignment, such as allocating more memory bandwidth
to a memory-intensive application. Conversely, the final reward gauges the measured
throughput improvement over time-sharing executions, accessible only after completing
the co-execution of a job mix.

In the table, SmAllocRatio and MemoryAllocRatio are hardware parameters, signifying
(i) the ratio of allocated Streaming-Multiprocessors to the total count and (ii) the ratio
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Table 5.4: Tested Job Mixes per Category for GPU (W = 12)
Category Name Jobs

Q1 huffman*, bt_solver_C, bt_solver_B, hotspot3D, heartwall*,
lavaMD, lud_B, cfd*, sp_solver_B, pathfinder, needle*,

qs_NoFission*
CI-dominant Q2 bt_solver_C, heartwall*, lavaMD, huffman*, hotspot*,

hotspot3D, cfd*, sp_solver_C, gaussian*, pathfinder,
needle*, qs_Coral_P1

(CIx6, MIx3,
USx3)

Q3 huffman*, bt_solver_C, hotspot3D, hotspot*, heartwall*,
lavaMD, lud_B, stream, sp_solver_C, qs_NoFission*,

pathfinder, needle*
Q4 bt_solver_B, heartwall*, bt_solver_C, lud_B, gaussian*,

sp_solver_B, cfd*, sp_solver_C, stream, qs_NoCollisions,
pathfinder, qs_Coral_P2

MI-
dominant

Q5 heartwall*, hotspot*, bt_solver_B, lud_B, gaussian*,
randomaccess, stream, lud_C*, sp_solver_B, qs_Coral_P2,

dwt2d, qs_Coral_P1
(CIx3, MIx6,

USx3)
Q6 bt_solver_C, huffman*, lavaMD, sp_solver_B, gaussian*,

randomaccess, lud_C*, stream, cfd*, qs_NoFission*,
needle*, qs_Coral_P1

Q7 heartwall*, hotspot*, hotspot3D, gaussian*, stream, lud_B,
pathfinder, qs_NoFission*, qs_Coral_P2, backprop*,

qs_NoCollisions, dwt2d
US-

dominant
Q8 bt_solver_C, hotspot3D, lavaMD, stream, cfd*, lud_B,

qs_Coral_P1, needle*, kmeans, qs_Coral_P2, qs_NoFission*,
qs_NoCollisions

(CIx3, MIx3,
USx6)

Q9 lavaMD, hotspot3D, hotspot*, sp_solver_B, lud_C*,
randomaccess, qs_Coral_P1, dwt2d, kmeans, needle*,

qs_NoCollisions, qs_Coral_P2
Q10 lavaMD, huffman*, hotspot3D, bt_solver_C, lud_C*, lud_B,

stream, sp_solver_C, qs_NoCollisions, needle*, pathfinder,
qs_Coral_P1

Balanced Q11 huffman*, hotspot3D, hotspot*, bt_solver_B, cfd*, lud_C*,
stream, gaussian*, qs_Coral_P2, needle*, pathfinder, dwt2d

(CIx4, MIx4,
USx4)

Q12 lavaMD, hotspot*, huffman*, heartwall*, sp_solver_C,
lud_C*, randomaccess, gaussian*, needle*, pathfinder,

qs_NoCollisions, backprop*
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Table 5.5: Agent and Reward Function Setups for GPU
Type Setup

Reward Function Intermediate: rwi = (SmAllocRatio× ComputeRatio +
MemoryAllocRatio×MemoryRatio)× DurationRatio2

Final: rw f = (SoloRunTime/CoRunTime− 1)× 100
Agent [# of neurons in the input layer]: W × (n + m + p),

[State Parameters]: n = 12, m = 3, p = 2
[# of neurons in the output layer]: V = 1, A =29,

[# of hidden layers]: 3,
[# of neurons in each hidden layer]: 512/256/128,

[Layer NW]: Fully connected,
[Activation function]: Rectified Linear

of allocated memory bandwidth to the total available memory bandwidth, respectively.
The parameters ComputeRatio, MemoryRatio, and DurationRatio are job-specific profile
parameters characterized as follows: (i) ComputeRatio: the ratio of Compute (SM) [%]
for the current job to the mean Compute (SM) [%] of the job window, (ii) MemoryRatio:
the ratio of Memory [%] for the current job to the mean Memory [%] of the job window,
and (iii) DurationRatio: the ratio of solo-run execution time for the current job to the
mean solo-run execution time of the job window.

While our current reward function focuses on optimizing for co-run throughput, its
adaptability allows for further refinement, incorporating additional parameters like
job-specific priorities, scheduling fairness, and energy consumption.

Regarding the agent, it is configured with a double dueling deep Q-network [89],
with details provided in Table 5.5. In this network, the Q-value is decomposed into
two components: (i) V value, representing the state’s value, and (ii) A advantage,
signifying the benefit of selecting a specific action in the given state. The update rule
for the Q-value, utilizing A and V , is detailed in Wang et al.’s work [89]. Following
on prior work [86], we employ two networks based on the same architecture: one for
predicted Q-value and the other for target Q-value. As mentioned in Section 2.4.3,
training involves using the ϵ-greedy approach, where the parameter ϵ starts at 1 and
gradually diminishes until reaching a set point (e.g., 0.01 in our evaluation). This
parameter controls the frequency of random actions taken by the agent. Specifically,
with a probability of ϵ, the agent randomly selects an action from the entire search
space. This iterative procedure aims to converge toward the global optimum. Once the
training phase concludes, ϵ is set to 0 to eliminate random actions when utilizing the
trained agent in the online phase.
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5.4.4 Compared Methods

To evaluate the effectiveness of our approach, we compare various scheduling policies
with respect to throughput, application slowdown, and fairness when handling given
job mixes. The following methods are examined:

• Time Sharing (Baseline): Jobs in the provided job mix (or queue) are executed
using the entire GPU resources exclusively, without any co-scheduling or partitioning.

• MIG Only (C = 2): In line with previous studies [4, 71], we explore the MIG-only
option with a concurrency level C set to 2. The job set selections and assignments
are optimized through exhaustive consideration of all possible setups.

• MPS Only (C ≤ Cmax): The MPS-only option is tested with various concurrency
selections (C ≤ Cmax). The job set selections and resource assignments are
determined through an exhaustive search.

• MIG+MPS Default (C ≤ Cmax): MIG partitioning is selected to maximize the
average throughput across Q1−Q12. The MPS allocation is set to the default
mode (which is 100% allocation of the active thread percentage). The job set
selections (LJS) are optimized through exhaustive search within the designated
concurrency limit and configuration space.

• MIG+MPS w/ RL (C ≤ Cmax): Our proposed reinforcement learning-based co-
optimization of co-scheduling and hierarchical resource partitioning.

5.4.5 Evaluated Resource Partition Setups

Table 5.6 enumerates the partitioning variants examined in the evaluation across
different concurrency setups (C). As previously discussed, the variants are specified for
MPS Only and MIG+MPS w/ RL. Additionally, for MIG Only, we investigate the two
options illustrated in Figure 5.2b and Figure 5.2c to provide a comparative analysis
with existing works [4, 71]. In the case of MIG+MPS w/ Default, it involves assigning
the default active thread percentage over the optimized MIG partitions.

The format for representing partitioning states is defined as follows. Firstly, a GI or
the entire GPU is enclosed in square brackets, denoted as [compute resource setup,
assigned memory resource]. For the memory resource part, when α× 100% of the
entire GPU memory bandwidth is assigned, it is expressed as "αm". Regarding the
compute resource setup, a CI or an MPS process is enclosed in curly brackets or
parentheses, respectively. The number in brackets (denoted as β) signifies the allocated
compute resources (i.e., β× 100% of the GPU total). For example, [β, αm] signifies
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Table 5.6: GPU Partitioning Setups for Different Concurrency (See Section 5.4.5 for the
Format Definition)

C For MPS Only For MPS+MIG w/ RL

2 [(0.1)+(0.9),1m]; [(0.2)+(0.8),1m];
. . . ; [(0.5)+(0.5),1m];

[(0.1)+(0.9),1m]; [(0.2)+(0.8),1m]; . . . ;
[(0.5)+(0.5),1m]; [{0.375}+{0.5},1m];

[{0.375},0.5m]+[{0.5},0.5m]
3 [(0.1)+(0.1)+(0.8),1m]; . . . ;

[(0.34)+(0.33)+(0.33),1m];
[(0.1)+(0.1)+(0.8),1m]; . . . ;
[(0.34)+(0.33)+(0.33),1m];

[{0.375},0.5m]+[(0.1)+(0.9),{0.5},0.5m]; . . . ;
[{0.375},0.5m]+[(0.5)+(0.5),{0.5},0.5m];

[{0.375}+(0.1),(0.9){0.5},1m]; . . . ;
[{0.375}+(0.5),(0.5){0.5},1m];

4 [(0.1)+(0.1)+(0.1)+(0.7),1m]; . . . ;
[(0.25)+(0.25)+(0.25)+(0.25),1m];

[(0.1)+(0.1)+(0.1)+(0.7),1m]; . . . ;
[(0.25)+(0.25)+(0.25)+(0.25),1m];

[(0.1)+(0.9),{0.375},0.5m]+
[(0.1)+(0.9),{0.5},0.5m]; . . . ;
[(0.5)+(0.5),{0.375},0.5m]+

[(0.5)+(0.5),{0.5},0.5m];
[(0.1)+(0.9){0.375}+(0.1)+(0.9){0.5},1m]; . . . ;

[(0.5)+(0.5){0.375}+(0.5)+(0.5){0.5},1m];

the presence of one CI inside the GI, capable of utilizing β × 100% (or α × 100%)
of compute (or bandwidth) resources. Furthermore, partitions at the same level of
the hierarchy are combined with "+" in the format. For instance, [0.375+0.5,1m]
represents the 3GPC+4GPC MIG-only partitioning with the shared memory option,
whereas [0.375,0.5m]+[0.5,0.5m] signifies the isolated memory option with the same
GPC allocations.

5.5 Experimental Results

5.5.1 Throughput Comparison

Figure 5.6 presents a throughput comparison across different methods and diverse
workloads. The horizontal axis depicts the executed workloads (AM: Arithmetic Mean),
while the vertical axis showcases relative throughput normalized to that of Time Sharing
for each workload. Throughout the assessment, the maximum concurrency (Cmax) is
consistently set at 4. Generally, the proposed reinforcement learning-based approach
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Figure 5.6: Throughput Comparison for GPU Evaluations (Cmax = 4,W = 12)

outperforms all other methods across a wide range of workloads. In comparison to
Time Sharing, it achieves an average throughput improvement of 1.516 and a peak
improvement of 1.873. The MIG+MPS Default method is also hierarchical and uses fixed
MIG partitioning and default MPS configuration. However, our approach surpasses
this option, indicating that hierarchical partitioning should be dynamically adjusted
based on the characteristics of co-scheduled jobs. The effectiveness of the MPS Only
option is limited as it cannot effectively mitigate interference on shared resources
among co-scheduled programs. However, when combined with the MIG feature, its
effectiveness improves.

5.5.2 Scaling Scheduling Attributes

In the subsequent figure, Figure 5.7 depicts the average throughput relative to the
maximum job concurrency (Cmax) and the window size (W). The vertical axes in
these sub-figures showcase the average throughput computed across all 12 job queues
(Q1−Q12), and the horizontal axes represent the respective attributes: Cmax and W .
Notably, when scaling Cmax,W is maintained at a value of 12, whereas when scaling
W , Cmax is consistently fixed at 4. The figure reveals an upward trend in throughput as
these parameters are scaled. This can be attributed to two key factors: (1) our approach
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Figure 5.7: Scaling GPU Scheduling Attributes

excels in identifying more optimal co-scheduling groups for largerW values; and (2)
flexible partitioning and shared resource isolation, facilitated by MPS and MIG, allows
our co-scheduling to utilize resources more efficiently for higher Cmax. Ultimately, we
determined thatW = 12 and Cmax = 4 offer optimal throughput for our workloads, as
further scaling did not yield additional improvements.

5.5.3 Application Slowdown Comparison

Figure 5.8 provides insights into the average application slowdown induced by co-
scheduling across various methods and job queues. The X-axis represents the evaluated
workloads, while the Y-axis signifies the average application slowdown. The application
slowdown (AppSlowdown) for a specific job (J) drawn from a given queue (Qi) is
defined as the ratio of its co-scheduled execution time (CoRunAppTime(J)) to its
solo-run execution time (SoloRunAppTime(J)):

AppSlowdown(J) =
CoRunAppTime(J)

SoloRunAppTime(J)

The average application slowdown is then computed across all jobs within the
respective queue for each method. Our approach demonstrates an average application
slowdown of 1.829 and a best-case slowdown of 1.345. Despite the presence of
application slowdowns in co-scheduling scenarios, the approach achieves higher
throughput overall, as observed in Figure 5.6. It leverages increased concurrency up to
Cmax, contributing to enhanced total system throughput. Notably, while the average
application slowdown for MIG Only (C = 2) is smaller than that of other methods,
its limited concurrency results in a lower overall throughput. As our approach can
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Figure 5.8: Average Application Slowdown Comparison for GPU Evaluations (Cmax = 4,
W = 12)

trade-off the application slowdowns and concurrency in a better way, it achieves higher
total system throughput as a consequence.

5.5.4 Fairness Comparison

Figure 5.9 offers a comparative analysis of scheduling fairness across different methods
and various workloads. Employing a fairness metric from a previous study [49], we
define the fairness metric (Fairness) for a given queue (Qi) as follows:

Fairness(Qi) =
minJ∈Qi(AppSlowdown(J))
maxJ∈Qi(AppSlowdown(J))

A higher value is preferable for this metric, with the maximum attainable value
being 1. Specifically, when the fairness metric equals one, it implies that the maximum
slowdown aligns precisely with the minimum slowdown, signifying that all applications
experience an equivalent degree of slowdown. As depicted in Figure 5.9, our approach
exhibits fairness comparable to other methods, except for Time Sharing, even though it
outperforms them in terms of throughput. Note that the fairness in our approach can
be further enhanced by incorporating it into the reward function.
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Figure 5.9: Fairness Comparison for GPU Evaluations (Cmax = 4,W = 12)

5.5.5 Scheduling Overhead

Lastly, we report the overhead of our approach in both the online and offline phases.
The throughput degradation caused by our online optimization is less than 0.5%
on average across our workloads (W = 12), which is negligible compared with the
throughput gain, and thus we observe the considerable throughput improvement, as
shown in Figure 5.6. As for the offline training time, a key bottleneck arises due to
real-time interactions with the system, i.e., continuous benchmark runs. With available
MIG/MPS setups for the selected concurrency (let NC be the number of available setups
for C, see also Table 5.6), the maximum count of distinct job selections plus resource
assignments is ∑Cmax

C=2 (
W
C )×C !×NC . Here, to assess the maximum, we suppose selecting

C jobs fromW unique jobs and assigning them to C distinct regions partitioned with
a certain MIG/MPS setup chosen from NC variants. Consequently, for W = 12 and
Cmax = 4, the training overhead could escalate to the order of 105 × tavg, where tavg

signifies the average duration taken for executing a scheduling policy on the system.
However, as the agent progressively converges towards optimal policies, it need not
explore every conceivable policy within this set. Hence, in our environment, the offline
training procedure takes only couple of hours. The overhead is reasonable as the
training is required only once for a system.
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In this chapter, we would like provide additional discussions on three aspects: (1) Firstly,
we will also explore possible future extension opportunities for our work, (2) Secondly,
we would like to propose a potential future work on coordinated resource management
for heterogeneous HPC systems, and (3) Lastly, we will present a comparison with
other existing methods,

6.1 Extension Opportunities

6.1.1 Hybrid Memories

Our methodology, as described in chapter 4, naturally extends to hybrid memory
systems incorporating multiple memory devices. Typically, faster/smaller memories
in such systems serve as hardware caches or scratchpads [35], and our approach
is versatile for both scenarios. For hardware caches, our agent can learn optimal
partitioning/scheduling by incorporating cache statistics from additional memory
devices into job profiles. In the case of scratchpads mapped to different NUMA
domains [35], extension of our agent can handle memory assignment optimization by
including more memory affinity options in decision-making.

6.1.2 Cluster of GPUs

Our approach, as described in chapter 5, is readily adaptable to GPU clusters, as
optimizations at the node level naturally extend to clusters and directly influence GPU
cluster operations. To achieve this extension, the hierarchical optimization framework
outlined in this study must be enhanced by incorporating an additional level of resource
assignments at the top, specifically, node/GPU allocations. To facilitate this extension,
the vector of job characteristics denoted as Ji must include the numbers of GPUs/nodes
requested by the job, information that can be obtained from the corresponding job
script. Based on this information, the agent will determine the resource allocations
denoted as Ri, which also need expansion to encompass the physical IDs of assigned
nodes/GPUs, along with their partitioning states. Moreover, the agent and the reward
function must collaboratively address load imbalances introduced by co-scheduling
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multi-node/-GPU jobs. For instance, a multi-node/-GPU job may be co-located with
different jobs on distinct nodes/GPUs, leading to a considerable load imbalance for the
job.

We envision two options for this extension: (1) introducing a more extensive and
scalable neural network; (2) utilizing a multi-level agent to separately handle system-
wide and node-level optimizations, but in a coordinated manner.

For option (1), we will employ a larger and more scalable neural network to enhance
training and inference efficiency. Additionally, we will modify the reward function to
incorporate multi-node/-GPU optimization considerations. In terms of the agent, this
extension transforms the problem into a three-dimensional packing problem. Here, one
dimension corresponds to node/GPU assignments, another to the time domain, and the
third to the resource assignments within each GPU. Note that the first dimension can
also be treated as a hierarchical resource management structure if each node comprises
multiple GPUs, mirroring the hierarchical approach used in this work. The additional
challenges for the agent include: (1) considering the number of GPUs/nodes each job
occupies and the total number available on the cluster when selecting jobs to schedule;
and (2) ensuring synchronization of resource partitioning within each GPU across all
GPUs to avoid significant load imbalances across all scheduled workloads.

The focus of this work is on overcrowded systems with prolonged queuing times,
where there is a constant influx of runnable jobs, a scenario commonly encountered
in HPC centers with GPU demand exceeding GPU availability. In such situations, co-
locating multiple GPU jobs on the same GPU(s) to maximize throughput, similar to our
approach, can be highly efficient. As the system becomes less crowded, conventional
scheduling policies like FCFS (First Come First Serve) with backfilling, without co-
scheduling, may become more efficient. Therefore, in practice, a policy selection
mechanism that adapts to the system state, considering currently running and queuing
jobs, becomes essential. Developing such a mechanism is an intriguing research
direction and could be a focus of our future studies, along with integrating our
approach into existing HPC cluster management tools like Slurm [76].

6.1.3 Other Possible Improvements

In this study, we simplify application input dependencies by using constant inputs for
each application throughout the evaluation. In practical HPC scenarios, applications
often run with different inputs, altering their behaviors. To address this, future work
will explore existing schemes [34, 17] to estimate/compensate for the impact of input
changes on application characteristics.

Security concerns in shared node resources during co-scheduling include potential
violations of inter-process data protection and quality of service (QoS). Existing
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solutions for general-purpose computing can handle inter-process data protection
vulnerabilities at a low level, such as the OS or firmware. QoS can be managed by
developing a robust/fair job selection and resource partitioning mechanism as an
extension of our work. Additionally, an interference-aware pricing scheme may be
effective in addressing noticeable QoS violations [16].

While our focus in this work is on profile-driven static management, where job
selections and resource assignments are static decisions in HPC, it is promising
to explore dynamic adjustments for some controllable knobs/resources (e.g., Intel
CAT and MBA) at runtime. This dynamic fine-tuning can be particularly useful
when applications change their behaviors dynamically, and it represents a promising
extension/enhancement for our work, potentially through updating our agent or
integrating our approach with existing tools like DRLPart [20].

6.2 Coordinated Approach to Heterogeneous HPC Resource
Management

As discussed in Chapter 1, modern HPC systems are characterized by increasing
heterogeneity, incorporating CPUs, GPUs, and FPGAs within a single node. While
our research has predominantly focused on resource management for CPUs and GPUs
separately, the proposed methodology has shown efficacy in enhancing platform-
specific performance for these components. However, it does not directly address the
broader challenges associated with the overall heterogeneity of HPC systems.

As evident with benchmark suites for heterogeneous systems, such as Rodinia [18],
often multiple implementations are available for the same applications targeting CPU,
GPU, and FPGA. Consequently, the strategic selection of the appropriate platform
for job execution becomes crucial in achieving further performance improvements.
In this section, we explore the prospect of a Coordinated Approach to HPC resource
management.

Figure 6.1 illustrates a potential approach to such a coordinated approach to Heterogeneous
HPC resource management. Here, we target node-level resource management for a
heterogeneous system. Considering a global job queue Q and window size W , we
firstly need to classify the encountered jobs into platform-specific queues: QCPU , QGPU
and QFPGA for CPU, GPU, and FPGA, respectively. Next, we need to define platform-
specific scheduling parameters: Wk and Ck

max, where k can be CPU, GPU, or FPGA.
Following the discussed mathematical formulation from Section3.1, we can again define
the optimization problem at the platform-level as the strip packing problem [45]. The
objective is to generate an optimal list of local queues (LQ), and a list of complementary
job sets (JSk

i ) along with corresponding resource allocations (Rk
i ) per platform. Note
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Figure 6.1: Coordinated Approach to Heterogeneous HPC Resource Management

that k denotes the platform name. For throughput-oriented optimization, the main
objective will be to minimize the overall execution time of the global job queue. In such
a scenario, the set of resource management decisions can be performed at the global
and local level.
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1. Global Decision (Platform Selection): As illustrated in Figure 6.1, such a
coordinated approach should classify jobs based on their platform-specific characteristics.
Hence, a classification model needs to be built while considering job performance
counters and hardware characteristics into account. There are certain existing
works that try to model performance for heterogeneous systems such as [80,
47]. A further extension of these works can be a good starting point for such
a classifier. If required, more sophisticated approaches using machine learning
can also be explored. The global decisions shall yield a list of local queues LQ,
containing local queues for each platform.

2. Local Decisions (Platform Specific): The resource management problem at the
platform level shall look very similar to our optimization problem (Section 3.1).
For a given platform k, we need to formulate and solve the problem separately,
as highlighted in this work. Our reinforcement learning-based approach can be
useful to train platform-level agents. As each platform can have a very different
set of resource allocation features and hardware configurations, it can be very
challenging to train a single agent to make decisions for all platforms. Hence, it
is vital to employ a platform-specific solution that can produce the list of job sets
LJSk along with corresponding resource allocations Lk

R. Also, platform-specific
scheduling can take place once a local queue has at leastWk jobs. Furthermore,
platform-specific co-scheduling is initiated when a local queue accumulates a
minimum of Wk jobs. Depending on the circumstances, the system can opt for
additional waiting time to fill the queue or utilize time-shared scheduling. This is
shown in Figure 6.1 for FPGA.

Furthermore, such an approach can be extended to a cluster scale. To this end,
several improvements to the global and local decision making might be required. For
implementing such extension, further integration can also be done with an existing
cluster management tool such as Slurm [76].

6.3 Comparison with Existing Works

Finally, in this section, we compare our work with other existing methodologies.
Following the literature survey conducted in Section 2.5, we have chosen five existing
methods based on the proximity of their focus to our research. Table 6.1 presents the
comparison of these methods concerning key ideas, methodology, and main distinctions
from our work. Notable distinctions between our work and existing related works are
also highlighted below:
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6 Discussion

1. Q. Zhu et al. [97] proposed pioneering work on CPU-GPU Heterogeneous systems,
focusing on platform selection for portable workloads. However, their approach is
limited to concurrently scheduling a single job on the CPU and GPU, respectively.

2. E. Arima et al. [4] offers a comprehensive analysis of the NVIDIA MIG feature,
presenting a linear regression-based solution for throughput and fairness-oriented
optimizations. While foundational for understanding NVIDIA MIG’s impact, it
does not leverage higher GPU concurrency and does not target CPUs.

3. I. Saba et al. [71] coordinates HPC resource management by addressing co-
scheduling, resource partitioning, and power budgeting for heterogeneous systems.
While similar to our scenario, their approach lacks scalability with respect to
concurrency and lacks provisions for isolating shared resources on CPUs.

4. D. Zhang et al. [95] focuses on HPC Batch Job Scheduling, optimizing for metrics
such as average job waiting time, average response time, average slowdown, and
resource utilization using a reinforcement learning-based solution. While their
solution methodology is similar to ours, the target scenario is quite different.

5. R. Chen et al. [20] has methodology proximity, but their approach has been
designed for commodity hardware. Also, it differs considerably from our
approach as it lacks NUMA-awareness and consideration of GPU-based systems.
The dynamic resource partitioning in their approach motivates us (as discussed
in Section 6.1.3) to extend our approach to include dynamic resource allocation
decisions.

Additionally, Table 6.2 compares these methods based on available target scenarios.
The parameters in Table 6.2 are considered based on our distinct use case, confirming
the novelty and versatility of our work. As shown in this Table, our approach targets all
scenarios except power capping. Power capping can be incorporated into our approach
by adjusting the reward functions accordingly. Note that the symbols used in Table 6.2
are defined as follows: (1) "✓" indicates that the target scenario is available, (2) "×"
indicates that the target scenario is not available, and (3) "-" indicates that the target
scenario is not applicable.
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6 Discussion

Table 6.1: Comparison with Existing Works for Methodology
Author(s) Key Idea(s) Methodology Main Distinctions

Q. Zhu et
al. [97]

Proposes
co-scheduling under
power caps using
performance bounds
for co-schedules

Uses heuristic-based
job characterization
with a Greedy
scheduling approach

(1) Limited
concurrency
(CCPU = CGPU = 1);
(2) Includes power
capping

E. Arima et
al. [4]

Co-scheduling using
MIG feature for GPU
Partitioning under
Power Caps

Proposes a
regression-based
performance model
for estimating
co-scheduling
throughput and
fairness

(1) Limited
concurrency (C = 2);
(2) Explores
MIG-only setups for
GPU

I. Saba et
al. [71]

Co-optimize
co-scheduling,
resource partitioning,
and power capping
on CPU-GPU
systems

Utilizes neural
network-based
performance
modeling with a
perfect matching
graph-based
scheduling algorithm

(1) Limited
concurrency (C = 2);
(2) No shared
resource partitioning
for CPUs;
(3) Explores
MIG-only setups for
GPU

D. Zhang et
al. [95]

Targets HPC batch
job scheduling

Proposes an RL-based
solution for
optimizing batch
scheduling
parameters such as
wait time and
response time

Utilizes RL for an
entirely different
scenario (HPC Batch
Job Scheduling)

R. Chen et
al. [20]

Dynamic resource
partitioning for
co-located jobs on
commodity servers

Utilizes RL and
neural network-based
performance
modeling for
generating
co-location and
resource isolation
decisions

(1) Targets
commodity hardware;
(2) Dynamic resource
partitioning;
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7 Conclusion

In this work, we focused on co-scheduling and resource partitioning in modern NUMA
systems and GPUs equipped with emerging resource partitioning features. Initially,
we introduced and formulated the resource management challenge as a throughput-
oriented optimization problem. Later, we propose our reinforcement learning-based
solution, aiming to discover the optimal set of decisions for co-scheduling and resource
partitioning on a platform-level.

For NUMA systems, we explored the co-relation between NUMA-aware core/memory
assignments and emerging hardware partitioning features, such as Intel CAT and Intel
MBA. Additionally, we investigated the impact of job pair selections. Based on these
observations, we implemented our solution for NUMA systems using the Soft Actor-
Critic method, achieving a substantial throughput improvement of up to 78.1%.

With respect to GPUs, we focused on hierarchial resource management using
partitioning features found in contemporary commercial GPUs, including MPS and
MIG. We examined the benefits of these resource partitioning features along with the
impact of hierarchical resource allocations. We proposed a deep-Q-learning based
approach to co-optimize the configurations of these multiple and hierarchical resource
partitioning features, along with making co-scheduling decisions for a given set of
jobs. The experimental results showed the effectiveness of our approach, showcasing a
significant throughput improvement of up to 87.3% for GPUs.

There are numerous opportunities for extending our work. One promising direction
is the expansion of our work to include multiple nodes on a broader cluster scale. To
achieve this, updates to the agent and the reward function are needed, potentially
involving the integration of a larger and more scalable neural network or the introduction
of multi-level entities to handle the increased complexity in such a setting. Additionally,
there are prospects of integrating our approach with established HPC cluster management
tools, like Slurm. Further, there is room for exploration into additional partitioning
features spanning various components. The inclusion of other resources, such as power,
can further enhance the comprehensiveness of our optimization framework. We also
provided a high-level overview of a coordinated approach for resource management in
HPC systems, suggesting a potential approach targeting heterogeneity in HPC systems.
Lastly, we provide a comprehensive comparison of our approach to other existing
works.
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Scientific Contributions

The content of this thesis has been organized into two research papers, one of which
has been presented at a peer-reviewed scientific conference. The details are provided as
follows:

1. Urvij Saroliya, Eishi Arima, Dai Liu, and Martin Schulz "Hierarchical Resource
Partitioning on Modern GPUs: A Reinforcement Learning Approach" In Proceedings
of IEEE International Conference on Cluster Computing (CLUSTER), pp.185-196,
November (2023) [72].

2. Urvij Saroliya, Eishi Arima, Dai Liu, and Martin Schulz "Harmonized Co-
scheduling and Diverse Resource Assignments on NUMA Systems through
Reinforcement Learning" [Under Review].

Scientific Engagement at IEEE Cluster 2023: As part of the research conducted for
this master thesis, IEEE International Conference on Cluster Computing (CLUSTER)
was attended in Santa Fe, New Mexico (USA). The conference served as an exceptional
opportunity to present a segment of this thesis focused on GPUs (as described in
chapter 5) and engage in exchange of scientific ideas within the field.

The IEEE Cluster serves as a major international forum for presenting and sharing
recent accomplishments and technological developments in the field of cluster computing
as well as the use of cluster systems for scientific and commercial applications [29].
The Cluster 2023 targeted discussions on recent advances in cluster computing,
specifically focusing on (1) Applications, Algorithms, and Libraries; (2) Architecture,
Networks/Communication, and Management; (3) Programming and Systems Software;
and (4) Data, Storage, and Visualization [29].

Our work titled, "Hierarchical Resource Partitioning on Modern GPUs: A Reinforcement
Learning Approach", was submitted to the Architecture, Networks/Communication, and
Management submission track. Following a rigorous review and rebuttal process, the
paper was accepted for presentation, with an overall acceptance rate of 23.84% for IEEE
Cluster 2023 [91].

The conference presented a unique opportunity to participate in technical sessions
covering diverse topics such as Distributed Machine Learning, Resource Management
for HPC Systems, ML for Scheduling and Management, and GPU and FPGA Applications.

76



Scientific Contributions

Noteworthy keynote addresses included discussions on "AI, Cloud, and the Future of
HPC," "Pushing RISC-V into HPC," and an "Update on the Aurora Supercomputer."

On the sidelines of the conference, discussions were also conducted on future
opportunities for extending the work presented in this thesis. There was considerable
interest in exploring the latest resource partitioning features available on modern GPUs.
Discussions were conducted around the potential of similar evaluations (as presented in
Chapter 5) for deep learning workloads on GPUs. Additionally, integration possibilities
with state-of-the-art cluster management tools, such as Slurm [76], were explored.
Overall, there was significant anticipation for the future outcomes of the REGALE
Project [68].

Ongoing Publication Efforts: Ongoing efforts are in place to publish the segment
of this thesis focused on NUMA Systems (as described in chapter 4) with title,
"Harmonized Co-scheduling and Diverse Resource Assignments on NUMA Systems
through Reinforcement Learning", in a peer-reviewed scientific conference. Note that
this research paper is currently undergoing the review process.
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Abbreviations

AI Artificial Intelligence

AM Arithmetic Mean

API Application Programming Interface

App Application

BW Bandwidth

CAT Cache Allocation Technology

CBM Capacity BitMask

CC-NUMA Cache-Coherent Non-Uniform Memory Access

CI Compute Instance

COS Class of Service

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FCFS First Come First Serve

FIFO First In First Out

FP64 Float64 (Double-Precision Floating-Point Format)

FPGA Field Programmable Gate Array

GB Gigabyte

GiB Gibibyte

GI GPU Instance

GPU Graphics Processing Unit

GPC Graphics Processing Cluster

HBM High Bandwidth Memory

HPC High Performance Computing
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Abbreviations

ID Identification

LLC Last-Level Cache

MBA Memory Bandwidth Allocation

MDP Markov Decision Process

MIG Multi-Instance GPU

MPS Multi-Process Service

NP-hard Non-deterministic Polynomial-time hard

NUMA Non-Uniform Memory Access

OCRP-ML Orchestrated Co-Scheduling, Resource Partitioning, and Power
Capping on CPU-GPU Heterogeneous Systems via Machine Learning

OS Operating System

PCIe Peripheral Component Interconnect Express

QLC Quad-Level Cell

QoS Quality of Service

RDT Resource Director Technology

RISC Reduced Instruction Set Computer

RL Reinforcement Learning

SAC Soft Actor-Critic

SM Streaming Multi-processor

SSD Solid State Drive

TDP Thermal Design Power

UPI Ultra Path Interconnect

VLSI Very Large Scale Integration
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