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Abstract

Translating in vitro results from experiments with cancer cell lines to clinical applications

requires the selection of appropriate cell line models. Here we present MFmap (model

fidelity map), a machine learning model to simultaneously predict the cancer subtype of a

cell line and its similarity to an individual tumour sample. The MFmap is a semi-supervised

generative model, which compresses high dimensional gene expression, copy number

variation and mutation data into cancer subtype informed low dimensional latent represen-

tations. The accuracy (test set F1 score >90%) of the MFmap subtype prediction is vali-

dated in ten different cancer datasets. We use breast cancer and glioblastoma cohorts as

examples to show how subtype specific drug sensitivity can be translated to individual

tumour samples. The low dimensional latent representations extracted by MFmap explain

known and novel subtype specific features and enable the analysis of cell-state transfor-

mations between different subtypes. From a methodological perspective, we report that

MFmap is a semi-supervised method which simultaneously achieves good generative and

predictive performance and thus opens opportunities in other areas of computational

biology.

Introduction

Tumour-derived cell lines are important model systems for developing new anti-cancer treat-

ments and for understanding cancer biology [1–3]. They are comparably cost efficient, easy to

handle under laboratory conditions and do not inflict ethical issues arising in research involv-

ing human or animal subjects. Yet, promising cell line experiments are rarely translated to

clinical applications. In some cases, there are remarkable differences between cell lines and the

primary tumours they were derived from [2–4]. This is also the reason why the assignment of

clinically informative tumour subtypes to cell line models [3–5] is not a straightforward task.

To narrow the gap between preclinical findings and tumour treatment, it is necessary to

select appropriate cell line models for a given tumour sample or a given cancer subtype. Several

attempts to evaluate similarities and differences between cell lines and bulk tumours have
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focused on associations between corresponding data modalities including mutation, copy

number, gene expression and methylation [6–12]. An important data resource comes from

collaborative projects like NCI-60 [13] and the Cancer Cell Line Encyclopaedia (CCLE) [5,

14], who have generated large-scale pharmacogenomics data from patient-derived cell lines

across organs. Other efforts like Sanger Genomics of Drug Sensitivity in Cancer (GDSC) [15],

Connectivity Map (CMAP) [16], the Cancer Therapeutics Response Portal (CTRP v1 and

CTRP v2) [17, 18] further expanded the datasets. On the other hand, The Cancer Genome

Atlas (TCGA) [19] and the International Cancer Genome Consortium (ICGC) [20] systemati-

cally characterised molecular profiles of thousands of tumours. These complementary data

resources are valuable for understanding the complexity of cancer biology and connecting in
vitro pharmacogenomic profiles to patient molecular characteristics, potentially informing

anti-cancer treatment strategies.

Integrative analyses considering multiple data types of both cell lines and bulk tumours are

still challenging and new analysis concepts tailored towards specific questions are an ongoing

research topic. For instance, Cellector [21] preselects the most frequent genomic alterations

and defines cancer subtypes based on a sequence of these alterations. Although such a preselec-

tion of genomic alterations integrates prior knowledge about cancer mutational patterns, it

neglects complementary information contained in other data types. Furthermore, Cellector

relies on a binary matrix of genomic alterations. This matrix is very sparse, since samples har-

bouring the same alterations are very rare. Therefore, the statistical power to detect appropri-

ate cell lines for tumours might be limited.

A recent study [22] highlighted that independent classifiers based on different data types

to predict cell line identity often yield inconsistent results. For example, predictions based

on the mutation spectrum and oncogenic mutations can be contradictory, although both

features are derived from mutation data. Complementary information from different data

sources is integrated by the MAGNETIC-framework [23] into gene modules. Gene set

enrichment analysis (GSEA) is then used to interpret these modules as pathways. MAG-

NETIC is indeed a powerful technique for integrating multiple molecular datasets and prior

knowledge, but it does not conclude to what extent a cell line is suitable as a tumour model.

The maui framework assigns cancer subtype labels to cell lines by extracting relevant fea-

tures from multiple data types using a variational autoencoder (VAE) [24]. However, most

of the maui embedded features are weakly associated with subtype labels and are therefore

difficult to interpret.

Here, we propose MFmap, a new semi-supervised VAE architecture and objective func-

tion which combines good classification accuracy with good generative performance. We

exploit these properties to derive subtype informed low dimensional representations for

both cell lines and bulk tumours from high dimensional multi-omics data including gene

expression, mutation and copy number variation. The latent representations can then be

used to assess the similarity between a cell line and a tumour. We provide cell line by tumour

dissimilarity matrices for CCLE and TCGA for the ten different cancer types listed in

Table 1. In addition, MFmap predicts cancer subtype labels for cell lines. We demonstrate,

how these predicted cancer subtypes can be used to transfer information from cell-line-

based drug sensitivity screens to patient cohorts. We also show, that the latent representa-

tions learnt by MFmap are biologically interpretable. Finally, we illustrate how the genera-

tive nature of the MFmap model can be exploited for studying subtype transformations

during cancer progression. At http://h2926513.stratoserver.net:3838/MFmap_shiny/ we

provide a resource enabling researchers to select the most relevant cell line for a cancer

patient.
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Materials and methods

Matching cell lines and tumours as a semi-supervised learning problem

MFmap is a semi-supervised deep neural network which integrates gene expression, copy

number variation (CNV) and somatic mutation data with subtype classification. Each

tumour sample t consists of a pair of (xt, yt), where xt 2 R
D denotes the high dimensional

molecular features and yt 2 {1, . . ., h} is the cancer subtype label. For a cell line c, the cancer

subtype is unknown and only the molecular features xc are available. The index c or t will be

suppressed, whenever we refer to a single observation. The MFmap neural network is

trained in a semi-supervised manner using both cell line data Dtrain
cl ¼ fxcg

Ctrain
c¼1

and tumour

data Dtrain
tu ¼ fðxt; ytÞg

Ttrain
t¼1

. Here, we used cell line data from CCLE and tumour data from

TCGA.

One aim of MFmap is to use semi-supervised classification to infer the cancer subtype yc of

a cell line c. A second aim is to assess the similarity between a cell line and a tumour. Instead of

comparing the high dimensional molecular features xt and xc directly, we first encode them

into low dimensional latent representations z (see next section for details). Then, the similarity

of a tumour sample t and a cell line c is measured as the cosine coefficient between the corre-

sponding latent representation vectors zt and zc. We will also show that these latent representa-

tions z carry interpretable biological information.

The molecular data x = (xDNA, xRNA) consist of gene expression profiles xRNA and net-

work smoothed mutation and CNV profiles xDNA. We will refer to these two parts as RNA

and DNA view, respectively. The DNA view is obtained from the original binary mutation

and CNV matrices (Fig 1(A)), which indicate the occurrence of a mutation or CNV event

targeting a gene in a given tumour sample or cell line. These very sparse matrices are first

projected onto an annotated cancer network [25]. By using a network diffusion algorithm

[26], a mutation or CNV signal hitting a single gene is propagated to neighbouring nodes

in the network, thereby enriching the mutation or CNV data by cancer network informa-

tion. All molecular features were translated and scaled to the interval between zero and

one.

Specification of MFmap as a semi-supervised generative model

The MFmap neural network (Fig 1(B)) is a new variant of a semi-supervised VAE [27]. The

observable data are considered to be drawn from the probability distributions p(x, y) for

tumour samples and p(x) for cell lines. These distributions are modelled as marginals over the

Table 1. The sample size of TCGA and CCLE data used for training and testing MFmap.

TCGA code study name number of subtypes TCGA sample size CCLE sample size

BRCA Breast invasive carcinoma 4 484 51

COADREAD Colon adenocarcinoma 4 414 54

ESCA Esophageal carcinoma 2 169 27

HNSC Head and neck squamous cell carcinoma 4 278 29

LUAD Lung adenocarcinoma 3 227 70

LUSC Lung squamous cell carcinoma 4 178 22

PAAD Pancreatic adenocarcinoma 2 149 40

SKCM Skin cutaneous melanoma 3 260 49

UCEC Uterine corpus endometrial carcinoma 3 234 28

GBMLGG Glioblastoma multiforme and lower grade glioma 7 621 55

https://doi.org/10.1371/journal.pone.0261183.t001
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Fig 1. Overview of MFmap. (A) In a preprocessing step, mutation and CNV profiles are transformed to network smoothed DNA profiles. The original

mutation and CNV data are represented as a binary matrix indicating the presence/absence of a DNA alteration in a given tumour sample or cell line.

This sparse matrix is projected onto a cancer reference network (CRN) [25] and a network diffusion algorithm propagates this information to network

neighbours, resulting in a dense DNA mutation or CNV matrix (DNA features). (B) The smoothed DNA features (DNA view) combined with gene

expression data (RNA view) form the input of MFmap. The neural network architecture of MFmap has three components: encoder, decoder and

classifier, encoded by different colours. The encoder maps sample features to a distribution q(z|x) for the latent representation z with mean value μ(x)

and covariance σ2(x). The classifier outputs a molecular subtype probability p(y|z) and the decoder models a density p(x|z) for the reconstruction of the

DNA and RNA views. During semi-supervised training, the molecular subtypes of tumour samples are used. (C) For visualisation, the latent

representations of bulk tumour samples are used to generate a reference map. Cell lines are then projected to the reference map. The colour coding of

individual samples or cell lines (dots) indicates the tumour subtype or the predicted subtype, respectively. The density of the tumour samples is

indicated by background contour lines coloured according to the subtypes.

https://doi.org/10.1371/journal.pone.0261183.g001
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latent variable z ¼ ðz1; . . . ; zdÞ
T
2 Rh

, such that

pðx; yÞ ¼
Z

pðx; y; zÞ dz; pðxÞ ¼
Xh

y¼1

pðx; yÞ: ð1Þ

To facilitate biological interpretation of the latent representations, we set the dimension d
of the latent space equal to the number of cancer subtypes h. In other applications of the

MFmap model, one could also consider d as a tuneable hyper-parameter.

For the generative model, we assume x and y to be conditionally independent given the

latent variable z. Accordingly, the joint distribution can be factorised as

pðx; y; zÞ ¼ pðxjzÞ pðyjzÞ pðzÞ: ð2Þ

These distributions are specified as

pðzÞ ¼ N ðzj0; IÞ ð3aÞ

pðyjzÞ ¼ CatðyjπθðzÞÞ ð3bÞ

pðxjzÞ ¼ f θðxjzÞ: ð3cÞ

Here, p(z) is the prior distribution for the latent representation vector. We denote the

Gaussian distribution with mean vector μ and covariance matrix S by N ð�jμ;SÞ. The

parameter πθ(z) of the categorial distribution p(y|z) depends on the latent representation z.

For the decoder p(x|z) one can chose a suitable distribution fθ with parameters depending

on the latent representations z [27]. The functions z 7! πθ(z) and z 7! fθ(�|z) are represented

as neural networks. The parameters of these decoder networks are jointly denoted as θ.

For the mfMAP model we initially used a Gaussian distribution fθ(x|z) to model the out-

puts. However, we found that rescaling the molecular features x to the interval [0, 1] and using

a Bernoulli distribution for fθ improved the semi-supervised classification accuracy (see

Results section). Then, each single output of the decoder neural network z 7! fθ(�|z) can be

interpreted as the probability, that the corresponding molecular feature is active or not. For

instance, for the i−th component (xRNA)i of the RNA-view, the corresponding output can be

regarded as the probability that the i-th gene is expressed.

Posterior inference, i.e. the evaluation of p(y, z|x) using Bayes theorem, is often intractable,

because the marginal likelihood p(x) in Eq (1) requires integrating over z. Therefore, a varia-

tional distribution q(y, z|x) is introduced to approximate the true posterior [24, 27]. We

assume that the variational distribution reflects the conditional independence x? y|z of the

generative model in Eq (2). This implies

qðx; yjzÞ ¼ qðxjzÞ qðyjzÞ: ð4Þ

For consistency we assume that q(y|z) in Eq (4) is identical to p(y|z) in Eq (3b) and is repre-

sented by the same neural network mapping z to the categorial parameter πθ(z). For the varia-

tional distribution q(z|x) we choose a Gaussian

qϕðzjxÞ ¼ N ðzjμ; diagðσÞÞ with ðμðxÞ; logσðxÞÞ ¼ gϕðxÞ ð5Þ

with parameters μ(x) and σ(x). The parameters are represented by the encoder neural net-

work gϕ, which is itself parametrised by ϕ. The overall architecture of MFmap (Fig 1(B)) is

thus formed by three neural networks, the encoder Eq (5), the classifier Eq (3b) and the

decoder Eq (3c).
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Training of MFmap using a semi-supervised loss function

Variational inference involves maximising an evidence lower bound (ELBO) to the log-likeli-

hood of the observational data [24, 27]. For a single cell line sample xc 2 Dcl one can derive a

lower bound to the log-likelihood

log pðxcÞ ¼ log
X

y

Z

pðxc; y; zÞdz

 !

� LðxcÞ; ð6Þ

which is identical to the ELBO of the basic VAE [24] for unsupervised learning

LðxÞ ¼ EqðzjxÞ½log pðxjzÞ� � DKLðqðzjxÞjjpðzÞÞ; ð7Þ

consisting of a reconstruction loss term and a Kullback-Leibler (KL) divergence term. For a

single labelled tumour sample ðxt; ytÞ 2 Dtu we have for the log-likelihood

log pðxt; ytÞ ¼ log
Z

pðxt; yt; zÞdz
� �

� Ltuðxt; ytÞ; ð8Þ

where the ELBO for labelled examples reads

Ltuðx; yÞ ¼ LðxÞ þ EqðzjxÞ½log pðyjzÞ�: ð9Þ

To derive this ELBO (see S1 File), we exploited the conditional independence assumption x
? y|z for both the generative model (Eq (2)) and the inference model (Eq (4)). The additional

term in Eq (9) in comparison to Eq (7) can be interpreted as a classification loss. Given a

tumour sample (xt, yt), the probability for the cancer subtype label p(yt|z) is a function of z,
which is inferred from q(z|xt). This distribution is in turn determined by the molecular feature

vector xt.

We found empirically that the semi-supervised classification accuracy during training was

relatively poor when using these exact negative ELBOs as loss functions. This is in line with

previous findings that achieving both good semi-supervised classification accuracy and good

generative performance is often difficult in VAEs [28] or other generative models [29]. Moti-

vated by the work from [30], we added the negative entropy H½pðyjzÞ� of the distribution p(y|

z) to the unsupervised ELBO L in Eq (7) and to the supervised ELBO Ltu in Eq (9). In sum-

mary, the MFmap loss functions for the unlabelled cell line and the labelled tumour data are

respectively given by

UðxÞ ¼ � LðxÞ þH½pðyjzÞ�

¼ � EqðzjxÞ½pðxjzÞ� þ DKLðqðzjxÞjjpðzÞÞ þH½pðyjzÞ� ð10aÞ

Sðx; yÞ ¼ � LtuðxÞ þH½pðyjzÞ�

¼ � EqðzjxÞ½pðxjzÞ� þ DKLðqðzjxÞjjpðzÞÞ þH½pðyjzÞ� � EqðzjxÞ½log pðyjzÞ�: ð10bÞ

This entropy regularisation encourages the classification boundaries to be located in low

sample density regions [30] in the latent space, which improves the generalisation perfor-

mance of the model. As shown below (see Results section), the semi-supervised classification

accuracy was very convincing, when using this entropy regularisation.

During training, mini-batches b = 1, . . ., B from the cell line DðbÞcl � DTrain
cl and tumour data

DðbÞtu � DTrain
tu are used to minimise

X

xc2D
ðbÞ
cl

UðxcÞ þ
X

ðxt ;ytÞ2D
ðbÞ
tu

Sðxt; ytÞ ð11Þ
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over different epochs. To check whether all terms in the MFmap loss function in Eq (10) can

be jointly optimised, we recorded the values of each term in each training epoch and calculated

their pair-wise correlations. The reconstruction loss -Eq(z|x)[p(x|z)], the KL-divergence DKL(q
(y|x)||p(z)), the entropy H½pðyjzÞ� and the classification loss -Eq(z|x)[log p(x|z)] are highly cor-

related (Fig 2), what suggests that they are optimised simultaneously.

Fig 2. Joint optimisation of the reconstruction loss, the KL divergence, entropy and the classification loss with the MFmap loss function. The plot

shows the pairwise correlation of different terms in the MFmap loss function Eq (10) during different training epochs.

https://doi.org/10.1371/journal.pone.0261183.g002
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Visualisation of individual samples

The MFmap latent representation z can be used to visualise and organise the associations of

individual tumour samples and cell lines (Fig 1(C)). Inspired by the visualisation concept of

Onco-GPS (OncoGenic Positioning System) [31], we used the tumour samples with known

subtypes to generate a reference map for the cancer subtypes. In this reference map, the com-

ponents z1, . . ., zh of the latent representation are presented as a graph with h corner points in

a plane. The location of these corner points is determined by multidimensional scaling and is

chosen so as to reflect the distances in the h-dimensional latent space as good as possible (see

S1 File for details). An individual tumour sample can now be visualised as a point located in

the area between the corner points. The location of such a point is given by a superposition of

the corner positions weighted by the latent representation magnitudes of individual samples.

In addition, the subtypes of the tumour samples are colour coded. The contour lines and the

background colour shading represent the sample density in the region.

Once the reference map is established, individual cell lines can be projected to this map,

where the colour of each dot encodes the subtype predicted by the MFmap classifier. This pro-

jection is based on the latent representation values of the cell line samples. Since our aim is to

analyse the fidelity of a cell line as an oncological model for a given tumour or a cancer sub-

type, we name our framework the model fidelity map (MFmap).

Results

Evaluating the MFmap classification and generative performance

A direct evaluation of the MFmap subtype prediction for cell lines is impossible because there

are no ground truth labels available. However, the classification accuracy on an unseen test

dataset of bulk tumours provides an indirect evaluation of the subtype prediction perfor-

mance. In Table 2 we used 20% of the tumour samples as independent test set and evaluated

the classification performance using four multi-class classification metrics: overall accuracy,

weighted precision, weighted recall, and weighted F1 score. Similar results can be obtained,

when 10% of the tumour samples are used for testing (see Table 1 in the S2 File). We also tested

the effect of increasing the latent space dimension d and found that the classification accuracy

was typically not higher, indicating that our choice of setting d equal to the number of cancer

subtypes did not impair the classification accuracy (see Table 2 in the S2 File).

The good classification results for GBMLGG are intriguing, because the G-CIMP-High,

G-CIMP-Low and LGm6-GBM subtypes were derived from methylation data [32], which

Table 2. MFmap subtype classification performance estimated for unseen tumour samples. Here, 20% of the bulk tumour data were randomly selected as an indepen-

dent test set.

accuracy precision recall F1 score organ

0.97 0.97 0.97 0.97 BRCA

0.96 0.96 0.96 0.96 COADREAD

1.00 1.00 1.00 1.00 ESCA

0.99 0.99 0.99 0.99 GBMLGG

0.91 0.92 0.91 0.91 HNSC

0.96 0.96 0.96 0.96 LUAD

0.94 0.95 0.94 0.94 LUSC

0.97 0.97 0.97 0.97 PAAD

1.00 1.00 1.00 1.00 SKCM

0.96 0.96 0.96 0.96 UCEC

https://doi.org/10.1371/journal.pone.0261183.t002
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were not used to train MFmap. This indicates that MFmap is able to extract DNA and RNA

patterns reflecting features originally derived from different methylation status.

In addition, we tested how well the MFmap autoencoder part reconstructs the molecular

features x. To this end, we first sampled a latent representations from the encoder q(z|x) for a

given input x from the real data. Then, we correlated these original molecular features with the

output sampled from the decoder distribution p(x|z). The histogram of Pearson correlation

coefficients in Fig 3 shows a high input-output correlation for most molecular features for

three exemplary cancer types: breast invasive carcinoma (BRCA), colorectal adenocarcinoma

(COADREAD) and glioblastoma multiforme and lower grade glioma (GBMLGG). Taken

together, MFmap can combine very good classification accuracy with good generative

performance.

Future applications of MFmap will include the analysis of query samples input to a refer-

ence model trained on a large data set. To check how well MFmap can perform in such a set-

ting, we checked various measures for the quality of integrating these data from different

sources [33–35]. Since this is not the focus of this paper, we have relegated the very promising

results to the Supporting Information (see S2 File).

Selecting the optimal cell line for a given tumour

The heatmaps in Fig 4 represent pairwise cell line by tumour dissimilarity matrices for three

exemplary cancer types BRCA, COADREAD and GBMLGG. In addition, the subtypes of bulk

tumours annotated from [32, 36, 37] and the subtypes of cell lines predicted by the MFmap

Fig 3. The generative performance of MFmap. The histogram shows sample-wise correlation coefficients between input features (DNA and RNA

views) and reconstructed features output by the MFmap decoder.

https://doi.org/10.1371/journal.pone.0261183.g003
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Fig 4. Pairwise dissimilarity between CCLE cell lines and TCGA bulk tumours. The colour coding in the heatmaps

indicates the pairwise dissimilarity which was obtained from the latent representations of cell lines and tumours for the

three exemplary cancer types (A) breast invasive carcinoma (BRCA), (B) colorectal adenocarcinoma (COADREAD)

and (C) glioblastoma multiforme and lower grade glioma (GBMLGG). Tumours (columns) and cell lines (rows) were

clustered according to the dissimilarity score, which ranges from 0 (very similar) to 2 (very dissimilar). The subtype

classification of each cell line was predicted from the classification layer of the MFmap neural network. The tables

display the sample size for the different subtypes or predicted subtypes.

https://doi.org/10.1371/journal.pone.0261183.g004
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classifier are displayed. For a better visualisation, cell lines and tumours are clustered based on

their pairwise cosine dissimilarity scores. The similarity of a cell line c to a tumour t is defined

as the cosine of the angle between their latent representations zc and zt. Accordingly, the dis-

similarity between c and t is defined as dðc; tÞ ¼ 1� zc�zt=k zc kk zt k. A dissimilarity of d(c, t) =

0 indicates perfect alignment between the latent representations of the cell line and the

tumour, whereas a dissimilarity d(c, t) = 1 indicates orthogonal latent representations. The

highest dissimilarity of d(c, t) = 2 would be achieved for antipodal latent vectors. Based on this

dissimilarity matrix, researchers can select the best cell lines for a given tumour or a given

tumour subtype. And, vice versa, the relevance of promising experimental results observed in
vitro can be checked by selecting a subset of tumours most likely resembling the cell line char-

acteristics. The pairwise dissimilarity matrices between TCGA bulk tumours and CCLE cell

lines and cell line subtype predictions for all tumour types listed in Table 1 are provided on

our website (http://h2926513.stratoserver.net:3838/MFmap_shiny/).

These results also indicate, for which subtypes suitable cell line models exist and for which

subtypes cell lines should be prioritised for future in vitro model development [21]. Each

BRCA subtype is represented by at least three cell lines (Fig 4(A)) and the heatmap shows that

these cell lines are very similar to the corresponding tumours of the same subtype. However,

only three cell lines represents the HER2-enriched subtype. The four subtypes of COADREAD

tumours are also well represented by at least six highly similar cell lines in CCLE (Fig 4(B)).

For GBMLGG, the Mesenchymal-like tumour subtype is represented by 31 cell lines with

high similarity scores. Many TCGA tumour samples have the molecular subtype Codel and

G-CIMP-high, but they are only represented by seven and nine cell lines, respectively. Only

two cell lines were classified as Classic-like and a single cell line has the predicted subtype

LGm6-GBM. The PA-like tumour subtype is not represented by any cell line.

Predicting drug sensitivity in cancer patient sub-cohorts using MFmap and

in vitro drug screens

Predicting patient therapeutic response is one important goal of subtype stratification. To

explore the translational potential of the subtypes predicted by MFmap we estimated the asso-

ciation between predicted subtypes and drug sensitivity of all compounds available in the

CTRP dataset [18]. For each cancer type listed in Table 1 and each compound, we compared

the drug sensitivity among different cell line subtypes predicted by the MFmap classifier. Drug

sensitivity is quantified in CTRP by the area under the dose response curve (AUC). We used

an ANOVA to test for differences in the mean AUC among the predicted subtypes. At a false

discovery rate (FDR) cutoff of 25%, we found 18, six and 16 compounds in BRCA, GBMLGG

and UCEC to show significant subtype specificity, respectively. For the other seven cancer

types in Table 1, there are no significant AUC differences across the different subtypes. Note

that the sample size per subtype is very small, which might explain why statistically significant

results can only be obtained for three cancer types.

For BRCA, the compound with the strongest association between subtype and drug sensi-

tivity is Lapatinib (ANOVA p-value = 2.95e-05). Lapatinib is a tyrosine kinase inhibitor used

in combination therapy for HER2-positive breast cancer [38]. Our results suggest that cell

lines of molecular subtype HER2-enriched are more sensitive to Lapatinib treatment (Fig 5

(A)) in comparison to other three subtypes. Although there are only three cell lines represent-

ing the HER2-enriched subtype, this finding is in line with the known inhibitive mechanism of

Lapatinib on the HER2/neu and epidermal growth factor receptor (EGFR) pathways. This

result highlights the potential of MFmap as a tool for translating in vitro drug screening results

to patient sub-cohorts. Our analysis also suggests that larger sample sizes and a better coverage
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of underrepresented subtypes are essential to increase the statistical power for detecting sub-

type specificity from cell line drug screens.

Another drug with significant variations of the AUC values across the different BRCA sub-

types is Oligomycin A (ANOVA p-value = 1.39e-4), a compound targeting oxidative

Fig 5. Cancer subtype specific drug sensitivity of CCLE cell lines. The subtypes of breast invasive carcinoma (BRCA) cell lines respond differentially

to the compounds Lapatinib and Olygomycin A. Treatment response to the compounds KHS101 and Bortezomib in of glioblastoma multiforme and

lower grade glioma (GBMLGG) cell lines is subtype specific. The drug sensitivity is summarised by the area under the dose response curve (AUC) and

p-values refer to an ANOVA of the AUC differences among different subtypes.

https://doi.org/10.1371/journal.pone.0261183.g005
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phosphorylation via an inhibition of the ATP synthase. The potential of Oligomycin A as a

therapeutic compound to prevent metastatic spread in breast cancer has recently been

highlighted [39]. The results in Fig 5(B) suggest that treatment with Oligomycin A might be

most efficient for the HER2-enriched and Luminal A or Luminal B subtypes.

The drug sensitivities of KHS101 and Bortezomib are significantly associated with

GBMLGG subtypes (KHS101: ANOVA p-value = 2.3e-04; Bortezomib: ANOVA p-

value = 2.3e-04). The synthetic small molecule KHS101 was shown to promote tumour cell

death in diverse glioblastoma multiforme cell line models [40]. Our analysis suggests that the

G-CIMP-low subtype is more sensitive to KSH101 treatment (Fig 5(C)) compared to the other

six GBMLGG subtypes. G-CIMP-low is an IDH mutant glioma subtype with poor clinical out-

come in recurrent glioma [32].

Bortezomib targets the ubiquitin-proteasome pathway and is used for the treatment of mul-

tiple myeloma, but has also been discussed as treatment for glioma [41]. Our results in Fig 5

(D) show that the Codel and G-CIMP-high subtypes have larger AUCs. The results for

LGm6-GBM and Classic-like are not conclusive because there are not enough cell lines repre-

senting these subtypes.

Biological characterisation of latent representations learnt by MFmap

The pattern of MFmap learnt latent representations z can be used as a signature for cancer sub-

types. For example, in BRCA, the basal-like subtype is characterised by a pattern of low values

of components z1 and z4 and high values of z2 and z3 (Fig 6(A)). HER2-enriched tumours are

characterised by high values of z1 and z3 and z4. Luminal A and B subtypes can be distin-

guished by z4. Similarly, cancer subtypes in COADREAD and GBMLGG are highly associated

with their latent representations learnt by MFmap (Fig 6(B) and 6(C)).

To further investigate the biological meaning of the latent representations we analysed the

association between z and pathway activities in TCGA reference datasets. We used single sam-

ple gene set enrichment analysis (ssGSEA) [42] to assess sample-wise pathway activities. The

pathway signatures were compiled from several sources including 10 curated oncogenic signal-

ling pathways [43], 19 curated specific DNA damage repair (DDR) pathways [44], 14 expert-

curated specific DDR processes and DDR associated processes [45]. This collection was com-

bined with MsigDB (v7.0) [46] chemical and genetic perturbations (CGP) and canonical path-

ways (CP) collections (MsigDB C2 collection) and MsigDB (v7.0) hallmark gene sets (MsigDB

H collection). The degree of associations was quantified by the information coefficient and the

Pearson correlation coefficient and the statistical significance was assessed by permutation

tests. To tackle class imbalance in the different subtypes, we applied SMOTE upsampling [47].

We used COADREAD as a proof of concept, because it has four well characterised molecu-

lar subtypes CMS1-CMS4 [37]. The CMS1 subtype is characterised by micro-satellite instabil-

ity (MSI), whereas CMS4 tumours are micro-satellite stable. The CMS4 subtype is also

distinguished from CMS1 by epithelial mesenchymal transformation (EMT) characteristics,

accompanied by prominent stromal invasion and angiogenesis. These mutually exclusive char-

acteristics are clearly reflected in the magnitudes of the latent representation components. The

top gene sets associated with component z2 are “WATANABE COLON CANCER MSI VS

MSS UP” and “KOINUMA COLON CANCER MSI UP”, whereas z4 is associated with the

activity of gene sets annotated as “HALLMARK ANGIOGENESIS” and “HALLMARK EPI-

THELIAL MESENCHYMAL TRANSITION”. Clearly, high values of z2 are a characteristics of

the CMS1 subtype, whereas high values of z4 are a distinctive feature of CMS4 tumours. This

example illustrates that a meaningful way to guide biological interpretation of the latent repre-

sentations is to associate them to single sample pathway activity.
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The same method was applied to annotate latent representations of GBMLGG (Fig 7(A)),

which has seven subtypes [32]. The Mesenchymal-like and PA-like are stratified by gene

expression profiles and the G-CIMP-high, G-CIMP-low and LGm6-GBM are methylation

based. The Codel subtype describes IDH-mutant samples harbouring a co-deletion of chromo-

some arm 1p and 19q. Many pathways associated with latent representation z1 are related to

the neurotransmitter release cycle, which is also a characteristics of the Verhaak proneuronal

Fig 6. Association of MFmap latent representations and cancer subtypes. The dimension of the latent representation h is set to the number of cancer

subtypes. The boxplots display latent representations of different subtypes of TCGA samples in the three exemplary cancer types (A) breast invasive

carcinoma (BRCA), (B) colorectal adenocarcinoma (COADREAD) and (C) glioblastoma multiforme and lower grade glioma (GBMLGG). Cancer

subtypes are colour encoded and sorted by their median latent representations.

https://doi.org/10.1371/journal.pone.0261183.g006
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subtype [48]. Pathways correlated to latent representation z2 are related to the mesenchymal

cell type, hypoxia and angiogenesis, which characterises the Verhaak mesenchymal subtype.

The activity of the Fanconi Anemia (FA) DNA repair pathway is highly correlated with latent

representation z3. DNA damage response deficiency and amplified oncogenic MYC signalling

characterises tumours with large values of latent representation z4. Latent representation z5 is

related to the neurotransmitter release cycle and dysfunctional metabolism; latent representa-

tion z6 to mitotic checkpoint deficiency. Many pathways associated with latent representation

z7 are involved in mismatch repair deficiency, replication stress and cell cycle disregulation

and also related to the classical subtype in the earlier classification of Verhaak [48].

Individual samples and their relationships can be displayed in the MFmap reference map

(Fig 7(B)), a visualisation tool adapted from OncoGPS [31]. Here, the seven corners of the

map correspond to the respective latent representations z1, . . ., z7 in GBMLGG. The corner

locations are determined by multidimensional scaling on the latent representations of bulk

Fig 7. Characterising the MFmap learnt latent representations in glioblastoma multiforme and lower grade glioma (GBMLGG). (A) The top

heatmap shows the latent representation z of TCGA tumour samples (columns). The tumour samples are ordered based on a hierarchical clustering of z
and their subtypes are colour encoded. The heatmap at the bottom displays sample-wise pathway activities that are significantly associated with the

latent representations z1, . . ., z7. Pathway activities were computed using the ssGSEA algorithm [42]. For better visualisation, we upsampled the input

data of MFmap and ssGSEA to get a balanced sample size in each subtype. (B) The MFmap reference map is formed by projecting the latent

representations z of bulk tumours into two dimensions using multidimensional scaling. It consists of seven dominant components represented by black

nodes. The length of their connections is given by the Euclidean distance of the dominant components in the latent space. The annotation of the seven

dominant nodes is based on the correlation between z and pathway activity scores (see A). The background colour encodes sample subtypes, and the

background contour encodes sample density. Individual bulk tumours are displayed as dots on the MFmap reference map. (C) Cell line samples are

projected to the MFmap reference map. In both (B) and (C), the subtype of bulk tumours and predicted subtype of cell lines are colour coded. Subtype

specific sample size for bulk tumours and cell lines is reported in the legend table.

https://doi.org/10.1371/journal.pone.0261183.g007
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tumours. Individual bulk tumour samples are displayed as dots in the regions between the cor-

ner points with locations determined by a weighted vector sum of the seven corner locations

(see S1 File for details). The subtype of each tumour sample is indicated by colours. The den-

sity of the tumour samples of a given subtype is depicted by the contour lines and the corre-

sponding colour shading. Fig 7(B)) shows that samples of the same subtype clustered together

and the inter-cluster distance is large. Projecting cell lines to the MFmap reference map (Fig 7

(C)) helps to visualise the relationship between their predicted subtypes and their latent

representations.

Modelling cellular state transformations using latent space arithmetics

Cancerous neoplasms undergo various biochemical changes during cancer evolution and in

response to selective pressure. One example is the transition from a proneural to a mesenchy-

mal phenotype in glioblastoma, which is characterised by acquired therapeutic resistance and

more aggressive potential [49]. In the DNA methylation based subtype classification of [32],

the G-CIMP-high methylation phenotype tends to have the proneural molecular subtype [48]

(see Fig 7(B)). Given that the latent representations learnt by MFmap clearly distinguish these

different subtypes, we asked, whether the generative nature of the semi-supervised VAE can

also be exploited to study such cancer subtype transformations.

To this end, we used the latent representations of the G-CIMP-high tumours and the Mes-

enchymal-like tumours (see Fig 7(B)) and computed the centroid vectors �zG� CIMP� high and

�zMesenchymal� like for the corresponding tumour samples. The difference δ ¼ �zMesenchymal� like �

�zG� CIMP� high was used as a latent perturbation vector. By adding δ to the latent representation of

each G-CIMP-high tumour (Fig 8(A)) we obtained the latent representation of in silico sam-

ples (Fig 8(B)), which are located in the “Mesenchymal-like region” of the reference map. We

used these latent representation vectors of the in silico samples as input to the decoder of the

MFmap network. We then checked, whether key molecular features of real Mesenchymal-like

samples are reflected by these generated samples. Based on the available biological knowledge,

we focussed on the most prominent onco-markers of the G-CIMP-high subtype: mutation sta-

tus of the alpha thalassemia/mental retardation syndrome X-linked (ATRX), isocitrate dehy-

drogenase (IDH) and TP53 genes. The original G-CIMP-high tumours show a high

propensity towards mutations in these genes, indicated by relatively higher network smoothed

mutation scores (Fig 8(C)), although not all samples are necessarily harbouring these muta-

tions. In contrast, the predicted mutation scores for the perturbed in silico samples in Fig 8(B)

are much lower, indicating a lower propensity to IDH1, ATRX or TP53 mutations. This is in

agreement with the observed tendency of Mesenchymal-like tumours for these mutations [49].

This example not only highlights the good generative performance of MFmap but also hints at

potential applications on integrative analysis of cancer evolution dynamics.

Discussion

Limited success in translating in vitro therapeutic markers to clinical applications highlights

that not all cell lines are good models for a given cancer subtype. Selecting the most appropri-

ate cell line for a given tumour or a set of tumours is crucial for understanding cancer biology

and developing new anti-cancer treatments. Here, we provide a computational framework and

a resource for cancer researchers to select the best cell lines for a TCGA tumour or a cancer

subtype from ten different cancer types (http://h2926513.stratoserver.net:3838/MFmap_shiny/

). The quantitative similarity score enables researchers to judge, whether a given tumour or a

subtype of tumours is well represented by a cell line.
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The assignment of cancer subtype labels to cell lines enables cell biologists to optimise

experimental planning and to focus their research on clinically relevant model systems. We

found that our semi-supervised MFmap model can classify tumours with a very high accuracy.

Further analysis of drug sensitivity profiles supports that the subtype prediction for cell lines is

biologically meaningful. Our analysis shows that HER2-enriched cell lines are most sensitive

to Lapatinib, in agreement with prior knowledge about drug efficiency of this compound. As

an example for the translation of in vitro pharmacogenomic data, we predict that the G-CIMP-

low subtype is more sensitive to the new synthetic compound KHS101 compared to other

GBMLGG subtypes.

Our finding that only BRCA, GBMLGG and UCEC show significant subtype specific drug

sensitivity variation merits further investigation. One important reason is the small number of

cell lines representing some cancer subtypes, which prevents us from finding statistically sig-

nificant variations of drug sensitivity across the different subtypes. This highlights the need to

prioritise cell line development for underrepresented disease variants [21]. However, it can not

be ruled out that for some cancers the known subtype classifications are not predictive of drug

Fig 8. In-silico perturbation analysis of cellular state changes during disease transformation from the G-CIMP-high to the Mesenchymal-like

subtype in glioblastoma multiforme and lower grade glioma (GBMLGG). (A) The G-CIMP-high tumours from TCGA are projected to the MFmap

reference map. (B) By perturbing the latent representation vectors of these G-CIMP-high tumours we generate artificial tumour samples located in the

Mesenchymal-like region of the MFmap reference map (compare Fig 7(B)). (C) Boxplots of the sample mutation status (network smoothed mutation

scores) of marker genes IDH1, ATRX1 and TP53 before and after perturbation.

https://doi.org/10.1371/journal.pone.0261183.g008
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sensitivity. This suggests that clinically relevant subtype stratification should take into account

drug sensitivity.

By embedding the original gene expression space, somatic mutation space and copy

number space of bulk tumours and cell lines into a lower dimensional latent space, MFmap

extracts latent features that are strongly associated with cancer subtypes. For COADREAD

and GLMBGG, we have illustrated that the abstract latent representations can be annotated

biologically using their associations with pathway activities. This makes the latent represen-

tations interpretable and allows to study the molecular and clinical heterogeneity of this dis-

ease. In principle, MFmap can be complemented by other modalities such as methylation or

proteomics data. However, for our purpose we found that gene expression and DNA fea-

tures in combination with the prior knowledge about tumour subtypes contains sufficient

information.

Our proof of principle analysis of the transformation between two different tumour sub-

types presents a new approach for studying tumour evolutionary processes in a more integra-

tive way [50]. The small sample size of some multi-region sequencing or single-cell sequencing

studies limits the ability to infer robust evolutionary patterns. By projecting these data to the

MFmap reference map obtained from training on large sets of bulk tumour data one could

deduce useful phenotypic information for individual patients. We believe that this can leverage

information gathered in large cancer genomic studies like TCGA to guide personalised clinical

decision making.

The MFmap is based on a new semi-supervised neural network architecture combining a

basic VAE with an additional classifier. Such semi-supervised learning tasks are very common

in the biomedical research field, because it is often easier to acquire a large number of mea-

surements than to obtain the corresponding labels. Based on the good predictive and genera-

tive performance of MFmap together with the evidence provided here, that MFmap can learn

biologically and clinically meaningful information, we are convinced that the MFmap model

can be adapted to other semi-supervised tasks in oncology and beyond.
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tures database (MSigDB) 3.0. Bioinformatics. 2011; 27(12):1739–1740. https://doi.org/10.1093/

bioinformatics/btr260 PMID: 21546393

47. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Tech-

nique. Journal of Artificial Intelligence Research. 2002; 16:321–357. https://doi.org/10.1613/jair.953

48. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated Genomic Analy-

sis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA,

IDH1, EGFR, and NF1. Cancer Cell. 2010; 17(1):98–110. https://doi.org/10.1016/j.ccr.2009.12.020

PMID: 20129251

49. Behnan J, Finocchiaro G, Hanna G. The landscape of the mesenchymal signature in brain tumours.

Brain. 2019; 142(4):847–866. https://doi.org/10.1093/brain/awz044 PMID: 30946477

50. Williams MJ, Sottoriva A, Graham TA. Measuring Clonal Evolution in Cancer with Genomics. Annu Rev

Genom Hum Genet. 2019; 20(1):309–329. https://doi.org/10.1146/annurev-genom-083117-021712

PMID: 31059289

PLOS ONE MFmap: A generative model matching cell lines to tumours and cancer subtypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0261183 December 16, 2021 21 / 21

https://doi.org/10.1586/14737140.7.9.1183
http://www.ncbi.nlm.nih.gov/pubmed/17892419
https://doi.org/10.1038/s41556-020-0477-0
http://www.ncbi.nlm.nih.gov/pubmed/32144411
https://doi.org/10.1126/scitranslmed.aar2718
http://www.ncbi.nlm.nih.gov/pubmed/30111643
https://doi.org/10.1186/s40880-019-0424-2
http://www.ncbi.nlm.nih.gov/pubmed/31796105
https://doi.org/10.1186/1471-2105-14-7
http://www.ncbi.nlm.nih.gov/pubmed/23323831
https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/10.1016/j.cell.2018.03.035
http://www.ncbi.nlm.nih.gov/pubmed/29625050
https://doi.org/10.1016/j.celrep.2018.03.076
http://www.ncbi.nlm.nih.gov/pubmed/29617664
https://doi.org/10.1038/nrc3891
http://www.ncbi.nlm.nih.gov/pubmed/25709118
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1093/bioinformatics/btr260
http://www.ncbi.nlm.nih.gov/pubmed/21546393
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.ccr.2009.12.020
http://www.ncbi.nlm.nih.gov/pubmed/20129251
https://doi.org/10.1093/brain/awz044
http://www.ncbi.nlm.nih.gov/pubmed/30946477
https://doi.org/10.1146/annurev-genom-083117-021712
http://www.ncbi.nlm.nih.gov/pubmed/31059289
https://doi.org/10.1371/journal.pone.0261183

