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Scalable Robust Safety Filter with
Unknown Disturbance Set

Felix Gruber and Matthias Althoff

Abstract— Equipping any controller with formal safety
guarantees can be achieved by using safety filters. These
filters modify the desired control input in the least restric-
tive way to guarantee safety. However, it is an unresolved
issue to construct scalable safety filters without assuming
the availability of the disturbance set. We address this issue
by proposing an efficient approach to implementing safety
filters. In particular, we perform offline set membership
identification to obtain a linear model that is conformant
to a finite set of training data. Based on this conformant
model, we compute a set-based safe backup controller with
a corresponding safe set. Because a new measurement
obtained online might invalidate the model conformance,
we update the model, the safe backup controller, and the
safe set online to restore formal safety guarantees. We
use scalable reachability analysis and convex optimization
algorithms to perform these updates as quickly as possible.
We demonstrate the usefulness and scalability of our safety
filter approach using four numerical examples from the
literature.

Index Terms— Supervisory control, robust control, opti-
mal control, reachability analysis, system identification.

I. INTRODUCTION

EXCELLENT control performance is typically achieved
using sophisticated control methods with fine-tuned pa-

rameters. Due to the high complexity of these performance
controllers, it is usually cumbersome to formally verify safety.
Nevertheless, providing formal safety guarantees for any con-
troller can be accomplished using an additional safety filter
and a corresponding safe backup controller. Such a filter aims
to modify the desired input of the unverified performance
controller in a minimally invasive way so that safety is always
guaranteed. Therefore, safety filters are supervisory mediators
between a simple, safe backup controller and an unverified,
sophisticated performance controller.

Because the simple concept of safety filters is compelling,
they are used in a wide variety of areas, such as safe re-
inforcement learning [1], [2], human-in-the-loop control [3],
motion planning [4], [5], collision avoidance [6], and fault-
tolerant systems [7]. Moreover, different naming conventions
have been introduced in the literature because safety filters
are widely used in several disciplines. For instance, they
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are closely related to safety shields [8], verified control en-
velopes [9], and sandboxing control [10].

Safety filters can be efficiently implemented using, e.g.,
reachability analysis [11], [12], invariance control [13], [14],
barrier functions [15], [16], or command governors [17].
These implementations usually use predictive control tech-
niques [18]–[20], where an optimal control problem is itera-
tively solved online on a moving time horizon. By increasing
this time horizon, the region of operation of the safe backup
controller, also known as the safe set, can be enlarged [21].

The conservativeness of a safety filter is mainly determined
by the size of its safe set. The largest safe set is known as the
discriminating kernel [22], infinite-time reachable set [23], or
maximal robust control invariant (MRCI) set [24]. This safe
set can be computed for discrete-time, linear time-invariant
systems by standard set recursion. Because these computations
typically fail to terminate in finite time, various approaches
exist for approximating the MRCI set.

Polytopic robust control invariant (RCI) under-
approximations and over-approximations are presented
in [25], where arbitrarily small constraint violations are
tolerated in case of an over-approximation. To prevent the
polytopic representation of an RCI set from becoming too
complex, the desired number of representing halfspaces can
also be fixed [26] or chosen freely [27]. In addition to explicit
set representations, polytopic RCI sets can also be represented
implicitly, e.g., by the Minkowski sum of a finite number of
polytopes [28]. Instead of polytopes, other set representations,
such as ellipsoids [24], [29] or zonotopes [30], [31], are also
used to decrease the computational complexity. However,
most existing approaches are unsuitable for ensuring the
safety of large-scale systems due to their conservativeness,
exponential computational complexity, or limitation to finite
time horizons.

Because formal safety guarantees are model-based, they are
only valid as long as the identified model of the unknown
system is valid [32]–[34]. However, perfect models are usually
unavailable. Thus, control approaches using a finite set of
training data have recently gained interest. For instance, a
conformant model and an RCI approximation of the minimal
RCI set are simultaneously computed in [35]. However, there
is no guarantee that an unseen measurement obtained online
also lies within this RCI set because only a finite training data
set was used for its construction. Thus, additional assumptions
are required to provide formal safety guarantees for an infinite
time horizon. For instance, the disturbance set is assumed
to be known while the system dynamics is unknown [36],
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[37], which is quite unrealistic. The availability of such a
priori disturbance sets is also a standard assumption in most
robust model predictive control (MPC) approaches [18]–[20].
Alternatively, to obtain a margin that ensures safety online,
the tightest estimate of the disturbance set can be multiplied
by a safety factor greater than one [38], [39]. However, it is
unclear how to choose this safety factor without introducing
excessive conservativeness to ensure safety for an infinite time
horizon.

In this paper, we propose an efficient approach for imple-
menting safety filters. In contrast to the existing methods, our
approach is scalable while making no assumptions about the
availability of the disturbance set. In particular, we

• perform offline set membership identification to identify
a conformant linear model based on a finite set of training
data,

• use this identified model to compute an explicit zonotopic
safe set with a corresponding safe backup controller,

• present our minimally invasive safety filter algorithm to
verify safety online when applying the desired input of
the performance controller,

• quickly update the conformant model, the safe set, and the
safe backup controller online because a new measurement
might invalidate the identified model due to the unknown
disturbance set,

• perform these conformance updates in real time even for
medium-sized problems, and

• consider all online computation times for solving op-
timization problems to guarantee safety despite such
computational delays.

This paper is organized as follows: Efficient set represen-
tations and the control goal are introduced in Section II. In
Section III, conformant models are computed based on training
data, our set-based safe backup controller is introduced, and
large safe sets are constructed. Subsequently, our safety filter
algorithm and our online conformance updates are presented
in Section IV, followed by a demonstration of its effectiveness
using four numerical examples in Section V. Finally, conclu-
sions are provided in Section VI.

II. PRELIMINARIES

In this section, we introduce essential representations of
closed, bounded, convex sets. In addition, we recall two
approaches for solving the zonotope containment problem.
Finally, we formulate the control problem.

A. Set Representations
A polytope can be seen as the intersection of halfspaces and

is defined as follows:
Definition 1 (Polytope): A polytope P ⊂ Rn in halfspace

representation is defined by

P = {s ∈ Rn | Hs ≤ h} ,

where H ∈ Rm×n and h ∈ Rm are the data representing the
halfspaces, m ∈ N>0 is the number of these halfspaces, and
the inequality is applied elementwise. We use P = ⟨H,h⟩P
to obtain a more concise notation.

A special case of a polytope is a zonotope, which is centrally
symmetric and defined as follows:

Definition 2 (Zonotope): A zonotope Z ⊂ Rn in generator
representation is defined by

Z = {s ∈ Rn | s = c+Gλ, |λ| ≤ 1} ,

where c ∈ Rn is the center, G ∈ Rn×η(Z) is the generator
matrix with η (Z) denoting the number of generators, the
absolute value is applied elementwise, and 1 denotes a vector
of ones. We use Z = ⟨c,G⟩Z to obtain a more concise
notation.

According to [40], the Minkowski addition of two zonotopes
Z1 = ⟨c1, G1⟩Z ⊂ Rn and Z2 = ⟨c2, G2⟩Z ⊂ Rn and the
multiplication by a matrix M ∈ Rm×n are computed as

Z1 ⊕Z2 = {z1 + z2 | z1 ∈ Z1, z2 ∈ Z2}
=

〈
c1 + c2,

[
G1 G2

]〉
Z
, (1a)

MZ1 = {Mz1 | z1 ∈ Z1}
= ⟨Mc1,MG1⟩Z . (1b)

Because these two important set operations have a polynomial
complexity, zonotopes are well suited for reachability analy-
sis [41], [42], i.e., for representing the set of states a system
can reach.

The parameter vector λ ∈ Rη(Z) with |λ| ≤ 1 is not
necessarily unique for parameterizing any s ∈ ⟨c,G⟩Z ⊂ Rn,
unless G is invertible. In this special case, the zonotope is
called a parallelotope, and the unique parameter vector is

λ = G−1(s− c). (2)

Moreover, a parallelotope with a diagonal generator matrix G
is called an axis-aligned box. For these boxes, (2) can be
efficiently computed because the inverse of a diagonal matrix
is obtained by replacing each element on the diagonal with
its reciprocal. In addition, axis-aligned boxes can be uniquely
represented by their lower and upper bounds, as presented in
the following definition.

Definition 3 (Axis-Aligned Box): An axis-aligned box B ⊂
Rn in interval representation is defined by

B =
{
s ∈ Rn

∣∣ B ≤ s ≤ B
}
,

where B ∈ Rn and B ∈ Rn denote the lower and upper bound
of B, respectively. We use B =

[
B,B

]
to obtain a more concise

notation.
A conversion from the generator representation ⟨cB, GB⟩Z

of the axis-aligned box B to its interval representation
[
B,B

]
is achieved by

[
B,B

]
=

[
cB−diag(|GB|), cB+diag(|GB|)

]
and vice versa by cB = 0.5

(
B+B

)
, GB = 0.5 diag

(
B−B

)
.

Here, the function diag returns a diagonal matrix with the
input as the diagonal if the input is a vector; otherwise, diag
returns a vector of the diagonal elements of the input matrix.
These conversions directly follow from Definitions 2 and 3.

B. Zonotope Containment
We recall two approaches for determining if a zono-

tope Z1 ⊂ Rn is contained within another zonotope Z2 ⊂ Rn,
which is co-NP-complete [43]. The first zonotope containment
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approach transforms Z2 from generator to halfspace repre-
sentation [44], which is usually a computationally complex
task [43]. According to [45], Z1 = ⟨c1, G1⟩Z is contained in
Z2 = ⟨H2, h2⟩P if and only if

H2c1 + |H2G1|1 ≤ h2. (3)

The second zonotope containment approach directly solves
a linear feasibility problem, which allows us to efficiently
incorporate containment constraints into a convex optimiza-
tion problem (COP) [46]. According to [47], ⟨c1, G1⟩Z ⊆
⟨c2, G2⟩Z if there exist Γ ∈ Rη(Z2)×η(Z1) and γ ∈ Rη(Z2)

such that

G1 = G2Γ (4a)
c2 − c1 = G2γ (4b)∣∣[Γ γ

]∣∣1 ≤ 1. (4c)

C. Problem Formulation

In this paper, we consider an unknown, discrete-time, time-
invariant system that evolves according to

xk+1 = f (xk, uk, wk) , (5)

where xk ∈ Rnx is the system state, uk ∈ Rnu is the control
input, and wk ∈ Rnw is the disturbance at time k∆t with time
step k ∈ N≥0 and sampling period ∆t ∈ R>0. The disturbance
always lies within the unknown, bounded disturbance setW ⊂
Rnw , i.e., wk ∈ W for all k. We use w(·) ∈ W to obtain
a more concise notation, i.e., we refer by w(·) to the whole
disturbance sequence and by wk to the value of this sequence
at time step k. We also use this concise notation for other
sequences and their values at sampling times. Moreover, the
unknown system in (5) is constrained by

x(·) ∈ X (6a)
u(·) ∈ U , (6b)

where X = ⟨HX , hX ⟩P ⊂ Rnx and U = ⟨HU , hU ⟩P ⊂ Rnu

are the known state and input constraint sets, respectively,
which contain the origin. Because X and U are typically rep-
resented by axis-aligned boxes, they can be easily expressed
in halfspace, generator, and interval representation.

To gain some knowledge about the unknown system in
(5), sufficiently exciting training data {xk, uk, xk+1}Nk=1 is
available offline [36], [48], where N ∈ N>0 denotes the
number of measurements. To deal with unstable systems, the
training data is not required to be recorded from a single run
of the system but can be obtained by performing multiple short
experiments.

In this paper, the control goal is to determine the minimal
modification ∥ũk − uk∥p of a desired input ũk ∈ Rnu with
k ∈ N≥0 such that the safety constraints in (6) are satisfied,
where ∥·∥p represents any p-norm with p ≥ 1. In the following
section, we present our safe backup control approach that
ensures the satisfaction of (6).

III. SAFE BACKUP CONTROL

In this section, we construct linear models that are confor-
mant to the offline training data. In addition, we introduce our
set-based safe backup controller and compute corresponding
large safe sets so that (6) is satisfied. Throughout this section,
we assume that the offline training data has captured all system
behaviors. Because the system in (5) is unknown, we remove
this unrealistic assumption in Section IV by updating our
conformant model, safe backup controller, and safe set online.

A. Model Conformance

To provide formal safety guarantees, we first identify linear
models that are conformant to the offline training data [34].

Definition 4 (Conformant Model): Let {xk, uk, xk+1}Nk=1

be a finite set of training data. Then, M =
(
Â, B̂, Ŵ

)
is

a conformant model if for all k ∈ N[1,N ] = {1, 2, . . . , N}

xk+1 = Âxk + B̂uk + ŵk (7a)

ŵk ∈ Ŵ, (7b)

where Â ∈ Rnx×nx , B̂ ∈ Rnx×nu , and Ŵ ⊂ Rnx are the
estimated system matrix, input matrix, and disturbance set,
respectively.

To decrease the conservativeness of our safety filter, we
want to find the conformant model M =

(
Â, B̂, Ŵ

)
whose

estimated disturbance set Ŵ has the smallest volume. For
simplicity, this is typically achieved in two steps [38], [49]:
First, a standard system identification is performed to obtain
Â and B̂ [33]. Second, an optimization problem is solved to
minimize the volume of Ŵ . Instead of this two-step approach,
we propose to address both aspects simultaneously by solving

minimize
M=(Â,B̂,Ŵ)

volume of Ŵ (8a)

subject to M is a conformant model. (8b)

Hence, we use state-space representations in contrast to exist-
ing set membership identification methods [39], [50], which
exploit autoregressive exogenous structures.

The volume of a general zonotope Z = ⟨c,G⟩Z ⊂ Rnx

can be computed exactly [51] or estimated using sampling-
based techniques [52]. However, both approaches are compu-
tationally too expensive for large-scale systems, so we must
use a suitable heuristic to cast (8) as an efficiently-solvable
COP [46], [53]. For instance, suitable choices for the cost
in (8a) are the Frobenius norm of G [54] or the 1-norm of
G, which is defined as the maximum absolute column sum.
Nevertheless, we can exactly solve (8) when restricting Ŵ =〈
cŴ , GŴ

〉
Z

to be a parallelotope with a symmetric positive
definite generator matrix GŴ , as shown in the following
proposition.

Proposition 1: Let {xk, uk, xk+1}Nk=1 be a finite set of
training data. In addition, let A⋆, B⋆, c⋆, G⋆ be the solution
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of the COP

minimize
A,B,c,G

− log(det(G)) (9a)

subject to G = GT ≻ 0 (9b)
for k ∈ N[1,N ] :∣∣Gxk+1 −Axk −Buk − c

∣∣ ≤ 1, (9c)

where 0 denotes a matrix of zeros of appropriate dimensions.
Then, M⋆ =

(
Â, B̂, Ŵ

)
is the solution of (8), where Â =

(G⋆)−1A⋆, B̂ = (G⋆)−1B⋆, and Ŵ =
〈
(G⋆)−1c⋆, (G⋆)−1

〉
Z

is restricted to be a parallelotope with a symmetric positive
definite generator matrix.

Proof: Model conformance constraint: Based on (2), the
unique parameter vector λk ∈ Rη(Ŵ) for any ŵk ∈ Ŵ =〈
cŴ , GŴ

〉
Z

is given by λk = G−1

Ŵ

(
ŵk − cŴ

)
with |λk| ≤ 1.

By additionally using (7a), we obtain the model conformance
constraint∣∣∣G−1

Ŵ
xk+1 −G−1

Ŵ
Âxk −G−1

Ŵ
B̂uk −G−1

Ŵ
cŴ

∣∣∣ ≤ 1,

which is equivalent to (9c).
Cost function: Because GŴ is symmetric positive definite,

the volume of Ŵ is proportional to det(GŴ) [51]. In addition,
log(det(M)) equals − log

(
det(M−1)

)
for any symmetric

positive definite matrix M ∈ Rn×n, the inverse of a symmetric
positive definite matrix is also symmetric positive definite, and
det(M) is logarithmically concave on the set of symmetric
positive definite matrices [46], [53]. Thus, the convex cost
function in (9a) selects the conformant model whose estimated
disturbance set has the smallest volume.

A matrix must be inverted when using Proposition 1.
Numerical problems when computing the inverse of a matrix
can be avoided by further restricting Ŵ to be an axis-aligned
box, i.e., by restricting the corresponding generator matrix
to be a diagonal matrix. In this case, (8) is a simple linear
program [46], as shown in the following proposition.

Proposition 2: Let {xk, uk, xk+1}Nk=1 be a finite set of
training data. If A⋆, B⋆, c⋆, g⋆ is the solution of the linear
program

minimize
A,B,c,g

1T g (10a)

subject to for k ∈ N[1,N ] :∣∣xk+1 −Axk −Buk − c
∣∣ ≤ g, (10b)

then M⋆ =
(
Â, B̂, Ŵ

)
is the solution of (8), where Â = A⋆,

B̂ = B⋆, and Ŵ = ⟨c⋆, diag(g⋆)⟩Z is restricted to be an
axis-aligned box.

Proof: Model conformance constraint: For any ŵk ∈
Ŵ =

〈
cŴ , GŴ

〉
Z

, there exists a λk ∈ Rη(Ŵ) with |λk| ≤ 1
such that ŵk − cŴ = GŴλk. These conditions can be equiv-
alently reformulated as

∣∣ŵk − cŴ
∣∣ ≤ diag

(∣∣GŴ

∣∣) because
GŴ is a diagonal matrix and zonotopes are centrally symmet-
ric sets. By additionally using (7a), the model conformance
constraint in (10b) is obtained.

Cost function: The volume of
〈
cŴ , GŴ

〉
Z

equals the prod-
uct of the elements of diag

(∣∣GŴ

∣∣), which is a nonconvex
function. Nevertheless, because the model conformance con-
straint in (10b) is linear, it can be equivalently separated into a

single constraint for each of the nx dimensions. Thus, no cou-
pling exists between any of the nx elements of diag

(∣∣GŴ

∣∣).
Therefore, minimizing the sum of any nx convex functions
whose single arguments are the elements of diag

(∣∣GŴ

∣∣)
also minimizes the product of these elements, resulting in the
smallest volume of Ŵ . We choose these nx convex functions
as identity maps to obtain a simple COP, resulting in the linear
cost function in (10a).

By restricting Ŵ to be a parallelotope with a symmetric
positive definite generator matrix or an axis-aligned box, we
can exactly and efficiently solve the optimization problem in
(8). However, using such restricted set representations might
be too conservative for some applications. To overcome this
potential issue, we propose another set membership identifi-
cation approach that allows Ŵ to be a general zonotope and
approximates the volume minimization of Ŵ by finding the
minimum scaling factor s⋆X ∈ R≥0 such that Ŵ ⊆ s⋆XX .
To cast this problem as a COP, we use the generator scaling
framework [30], i.e., we fix the arbitrary orientations of the
generators of Ŵ and optimize only their scaling factors, as
shown in the following proposition.

Proposition 3: Let {xk, uk, xk+1}Nk=1 be a finite set of
training data. In addition, let A⋆, B⋆, c⋆, s⋆X , λ⋆

1, λ
⋆
2, . . . , λ

⋆
N

be the solution of the COP

minimize
A,B,c,sX

λ1,λ2,...,λN

JM (sX , λ1, λ2, . . . , λN ) (11a)

subject to λmax = max
(∣∣[λ1 λ2 . . . λN

]∣∣) (11b)
0 ≤ sX (11c)
⟨c,Gfixeddiag (λmax)⟩Z ⊆ sXX (11d)
for k ∈ N[1,N ] :

xk+1 −Axk −Buk = c+Gfixedλk, (11e)

where JM is a convex cost function, the function max returns
a vector containing the maximum value of each row, and
Gfixed ∈ Rnx×η(Ŵ) is a user-defined fixed matrix. Then,
M⋆ =

(
Â, B̂, Ŵ

)
is a conformant model, where Â = A⋆,

B̂ = B⋆, and Ŵ = ⟨c⋆, Gfixeddiag (λ
⋆
max)⟩Z with λ⋆

max =

max
(∣∣[λ⋆

1 λ⋆
2 . . . λ⋆

N

]∣∣). In addition, Ŵ ⊆ s⋆XX .

Proof: For any λk ∈ Rη(Ŵ), there exists a λk ∈ Rη(Ŵ)

with |λk| ≤ 1 such that Gfixedλk = Gfixeddiag(|λk|)λk.
In addition, ⟨c̄, Gfixeddiag (|λk|)⟩Z ⊆

〈
c̄, Gfixeddiag

(∣∣λ̄k

∣∣)〉
Z

for any c̄ ∈ Rnx and λ̄k ∈ Rη(Ŵ) with |λk| ≤
∣∣λ̄k

∣∣. By
using these relations, the fact that |λk| ≤ λmax for k ∈ N[1,N ]

because of (11b), the model conformance constraint in (11e),
and the system dynamics in (7a), it follows that the optimal
M⋆ is a conformant model. In addition, the constraints in (11c)
and (11d) enforce Ŵ ⊆ s⋆XX .

It is straightforward to show that the optimal models ob-
tained by solving (10) and (11) are identical when choosing
JM = 1T max

(∣∣[λ1 λ2 . . . λN

]∣∣) and Gfixed = I in (11),
where I denotes the identity matrix of appropriate dimensions.
Thus, the COP in (11) offers more flexibility at the expense
of an increased computational cost.

In summary, we can efficiently compute linear models
that are conformant to the offline training data and have an
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estimated zonotopic disturbance set of small volumes. Based
on these optimal conformant models, we introduce our set-
based safe backup controller and compute large safe sets in
the following subsections.

B. Safe Backup Controller

Because the optimal conformant model M⋆ =
(
Â, B̂, Ŵ

)
is time-invariant, without loss of generality, the initial time is
chosen to be zero throughout this section. When the initial
set is Zx,0 = ⟨cx,0, Gx,0⟩Z ⊆ X , the initial state of the
system x0 ∈ Zx,0 can be expressed by

x0 = cx,0 +Gx,0λx,0 (12a)
|λx,0| ≤ 1, (12b)

where λx,0 ∈ Rη(Zx,0) represents the not necessarily unique
initial parameter vector.

To define a meaningful control problem, we assume that the
tuple (Â, B̂) is stabilizable for the remainder of this paper.
If the assumption is violated, we could increase the number
of measurements N , add more actuators, and follow more
sophisticated experiment design approaches [33], [55]. Then,
based on a stabilizing state feedback matrix K ∈ Rnu×nx , our
set-based safe backup controller is

uk = Kxk + cu,k +Gu,kλx,0, (13)

where Zu,k = ⟨cu,k, Gu,k⟩Z with generator matrix Gu,k ∈
Rnu×η(Zx,0) is the correction input zonotope at time step k,
which will be optimized in Subsection III-C. Thus, in addition
to the zonotopic parameterized control used in [30], our
controller in (13) also consists of a stabilizing state feedback
component to improve the control performance [56].

To ensure safety at all times, we must guarantee that the
states and inputs satisfy the constraints in (6) despite the un-
known, bounded disturbances. Thus, we perform reachability
analysis, i.e., we compute the sets of states and inputs in (7a)
and (13) that are reachable for all x0 ∈ Zx,0 and ŵ(·) ∈ Ŵ .

Before we compute these reachable sets, we introduce the
combined state and input

[
xT uT

]T
. To project a zonotope

of combined states and inputs Z ⊂ Rnx+nu onto the original
state and input space [57], we define the two matrices

Πx =
[
I 0

]
∈ Rnx×(nx+nu) (14a)

Πu =
[
0 I

]
∈ Rnu×(nx+nu). (14b)

For instance, the projection of Z onto the original state space
is computed by ΠxZ . In addition, we introduce the recursively
defined set sequence

R(k,Zx,0,Zu,(·), Ŵ)

=
〈
cR(k,Zx,0,Zu,(·),Ŵ)

, GR(k,Zx,0,Zu,(·),Ŵ)

〉
Z

=

〈[
cx,k

Kcx,k + cu,k

]
,

[
Gx,k

KGx,k +
[
Gu,k 0

]]〉
Z

, (15a)

⟨cx,k+1, Gx,k+1⟩Z
=

[
Â B̂

]
R(k,Zx,0,Zu,(·), Ŵ)⊕ Ŵ, (15b)

where k ∈ N≥0 and Zu,(·) =
〈
cu,(·), Gu,(·)

〉
Z

is the correction
input zonotope sequence in (13). In the following proposition,
we prove that the sets in (15) are the reachable sets of (7a)
and (13) for all x0 ∈ Zx,0 and ŵ(·) ∈ Ŵ =

〈
cŴ , GŴ

〉
Z

,
Proposition 4: For all x0 ∈ Zx,0 and ŵ(·) ∈ Ŵ , applying

the safe backup control input in (13) to the system in (7a)
results in [

xk

uk

]
∈ R(k,Zx,0,Zu,(·), Ŵ),

where k ∈ N≥0.
Proof: We prove that applying the safe backup control

input in (13) to the system in (7a) results in[
xk

uk

]
= cR(k,Zx,0,Zu,(·),Ŵ)

+GR(k,Zx,0,Zu,(·),Ŵ)

[
λx,0

λŴ,k

]
,

(16)
where λx,0 ∈ Rη(Zx,0) satisfies (12) and λŴ,k

∈ Rkη(Ŵ)

satisfies

λŴ,k
=

[
λT
ŵ0

λT
ŵ1

. . . λT
ŵk−1

]T
(17a)∣∣∣λŴ,k

∣∣∣ ≤ 1 (17b)

ŵk = cŴ +GŴλŵk
. (17c)

We proceed by induction:
Base case: For k = 0, we obtain[
x0

u0

]
(12),(13)
=

[
cx,0 +Gx,0λx,0

K(cx,0 +Gx,0λx,0) + cu,0 +Gu,0λx,0

]
(15a)
= cR(0,Zx,0,Zu,(·),Ŵ)

+GR(0,Zx,0,Zu,(·),Ŵ)

[
λx,0

λŴ,0

]
.

Induction hypothesis: (16) and (17) hold for some k ∈ N≥0.
Induction step: For the state at k + 1, we obtain

xk+1
(7a),(17c)

=
[
Â B̂

] [
xk

uk

]
+ cŴ +GŴλŵk

(16),(17a)
=

[
Â B̂

]
cR(k,Zx,0,Zu,(·),Ŵ)

+ cŴ

+
[[
Â B̂

]
GR(k,Zx,0,Zu,(·),Ŵ)

GŴ

] [ λx,0

λŴ,k+1

]
(1),(14a),(15b),(15a)

= ΠxcR(k+1,Zx,0,Zu,(·),Ŵ)

+ΠxGR(k+1,Zx,0,Zu,(·),Ŵ)

[
λx,0

λŴ,k+1

]
, (18)

where a not necessarily unique λŵk
∈ Rη(Ŵ) with |λŵk

| ≤ 1

is guaranteed to exist because ŵk ∈ Ŵ . Similarly, for the
input at k + 1, we obtain

uk+1
(13)
= Kxk+1 + cu,k+1 +Gu,k+1λx,0

(18)
= KΠxcR(k+1,Zx,0,Zu,(·),Ŵ)

+ cu,k+1

+KΠxGR(k+1,Zx,0,Zu,(·),Ŵ)

[
λx,0

λŴ,k+1

]
+

[
Gu,k+1 0

] [ λx,0

λŴ,k+1

]
(1),(14b),(15b),(15a)

= ΠucR(k+1,Zx,0,Zu,(·),Ŵ)

+ΠuGR(k+1,Zx,0,Zu,(·),Ŵ)

[
λx,0

λŴ,k+1

]
,
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X

mRPI
set

ΩmRPI

R((·),ΩmRPI, {0}, Ŵ)

(a)

X
Ω⋆

ΩmRPI

R((·),Ω⋆,Z⋆
u,(·), Ŵ)

(b)

Fig. 1. Two-step safe set approach. The small safe set ΩmRPI can be
safely steered into itself (a), and the optimal large safe set Ω⋆ can be
safely steered into ΩmRPI (b). Reachable sets are shown, with a lighter
gray tone corresponding to a smaller prediction horizon.

which completes the proof of (16). Finally, the result follows
based on Definition 2, (12), and (17).

In summary, we can efficiently compute the sets of states
and inputs in (7a) and (13) that are reachable for all x0 ∈ Zx,0

and ŵ(·) ∈ Ŵ . We use these reachable set computations in the
following subsection to construct large safe sets.

C. Safe Sets

For the remainder of this paper, we assume that the esti-
mated disturbance set Ŵ of M⋆ =

(
Â, B̂, Ŵ

)
contains the

origin. This assumption can easily be satisfied by adding the
constraint 0 ∈ Ŵ to the optimization problems in Subsec-
tion III-A or by performing a suitable coordinate transfor-
mation. Based on this standard assumption, we define the
minimal robust positively invariant (mRPI) set of the system
in (7a) when using the state feedback controller uk = Kxk

for k ∈ N≥0, which is identical to the controller in (13) when
choosing ⟨cu,k, Gu,k⟩Z = {0}.

Definition 5 (mRPI Set): The minimal robust positively in-
variant (mRPI) set of the system in (7a) with uk = Kxk,
k ∈ N≥0, and ŵ(·) ∈ Ŵ is ΠxR(∞, {0}, {0}, Ŵ) [24], [58].

The mRPI set has the valuable property that it is the limit
set for all state sequences [59, Rmk. 4.1]. Thus, it equals
ΠxR(∞,Z, {0}, Ŵ), where Z ⊂ Rnx is any closed, bounded
set. In addition to this important invariant set, we define safe
sets, which are not necessarily RCI sets [24], [25].

Definition 6 (Safe Set): A set Ω ⊆ X is a safe set of
the system in (7a) if a controller exists such that the safety
constraints in (6) are satisfied for all x0 ∈ Ω and ŵ(·) ∈ Ŵ .

We want to find large safe sets to increase the region of
operation of our safety filter. To achieve this in a scalable
way, our safe set approach proceeds in two steps: First, we
compute a small safe set ΩmRPI using the simple controller
uk = Kxk. Although ΩmRPI is not necessarily invariant, it
can be safely steered into itself in finite time, i.e., the states
and applied inputs lie within X and U during this time, as
illustrated in Fig. 1a. Second, we solve a COP whose solution
is the large safe set Ω⋆ that can be safely steered into ΩmRPI in
finite time, as illustrated in Fig. 1b. Subsequently, we describe
this two-step safe set approach in more detail.

For our first step, we require the existence of a small safe

set ΩmRPI ⊆ X with k◦ ∈ N≥0 satisfying

ΩmRPI = ΠxR(k◦,X , {0}, Ŵ) (19a)
for k ∈ N[0,k◦−1] :

R(k,ΩmRPI, {0}, Ŵ) ⊆ (X × U). (19b)

The existence of ΩmRPI is also a widely used assumption in
robust MPC [18]–[20]. If such an ΩmRPI does not exist, the
mRPI set S ⊂ Rnx has the following property: (S ×KS) ̸⊆
(X × U) or S × KS touches the bounds of X × U . In this
case, a different stabilizing state feedback matrix K is required
to satisfy (19). In the following lemma, we show essential
properties of an ΩmRPI that fulfills (19).

Lemma 1: Let ΩmRPI ⊆ X with k◦ ∈ N≥0 satisfy (19).
Then, ΩmRPI with corresponding controller uk = Kxk is a
safe set, i.e., applying these control inputs to the system in
(7a) ensures the satisfaction of (6) for all x0 ∈ ΩmRPI and
ŵ(·) ∈ Ŵ . In addition, ΩmRPI is an over-approximation of the
mRPI set.

Proof: Safe set: By

ΠxR(k◦,ΩmRPI, {0}, Ŵ)
(19b)
⊆ ΠxR(k◦,X , {0}, Ŵ)

(19a)
= ΩmRPI,

we show that ΩmRPI can be steered into itself in k◦ steps,
which is also known as k◦-step recurrent [60]. In contrast to
invariant sets, the state of the system might leave ΩmRPI for
k ∈ N[1,k◦−1]. Nevertheless, during this time, the states and
applied inputs lie within X and U because of (19b). Thus, it
follows by induction that the constraints in (6) are satisfied
for all x0 ∈ ΩmRPI and ŵ(·) ∈ Ŵ when applying the control
inputs uk = Kxk to the system in (7a). Therefore, ΩmRPI is a
safe set.

Over-approximation of mRPI set: Subsequently, we show
by contradiction that ΩmRPI is an over-approximation of the
mRPI set S ⊂ Rnx , i.e., we assume that S ̸⊆ ΩmRPI. Because
0 ∈ Ŵ and 0 ∈ X by assumption, we know that 0 ∈ S and
0 ∈ ΩmRPI. In addition, S is the limit set for all state sequences
of the system in (7a) when using the controller uk = Kxk [59,
Rmk. 4.1]. Therefore, there exists a disturbance sequence ŵ(·)
that steers the state sequence of (7a) starting at 0 to any point
in S and remains at this point. Because S ̸⊆ ΩmRPI, there
exists a state sequence starting in ΩmRPI that leaves ΩmRPI and
never returns to ΩmRPI, which contradicts ΩmRPI being a safe
set. As a result, the assumption S ̸⊆ ΩmRPI is wrong, which
shows that ΩmRPI is an over-approximation of the mRPI set.

Typically, when ΩmRPI satisfies (19), it is a small safe set. To
obtain a large safe set, which increases the region of operation
of our safety filter, we solve a COP in the second step of our
safe set approach. Let s⋆Ω, c⋆Ω, Z⋆

u,(·) be the solution of the
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COP

maximize
sΩ,cΩ,Zu,(·)

JΩ(sΩ) (20a)

subject to Ω = ⟨cΩ, Gfixeddiag(sΩ)⟩Z (20b)
ΠxR(kmRPI,Ω,Zu,(·), {0}) = {0} (20c)
for k ∈ N[0,kmRPI−1] :

R(k,Ω,Zu,(·), Ŵ) ⊆ (X × U), (20d)

where JΩ is a concave cost function, sΩ ∈ Rη(Ω)
≥0 is a generator

scaling vector, Gfixed ∈ Rnx×η(Ω) is a fixed generator matrix,
and kmRPI ∈ N>0 is the time step when ΩmRPI is reached. Then,
the optimal large safe set is Ω⋆ = ⟨c⋆Ω, Gfixeddiag(s

⋆
Ω)⟩Z .

Lemma 2: Let ΩmRPI ⊆ X with k◦ ∈ N≥0 satisfy (19) and
let s⋆Ω, c⋆Ω, Z⋆

u,(·) be the solution of (20) for any kmRPI ∈ N>0.
Then, the controller in (13) with optimal correction input
zonotope sequence Z⋆

u,(·) safely steers the system in (7a)
starting from Ω⋆ = ⟨c⋆Ω, Gfixeddiag(s

⋆
Ω)⟩Z into ΩmRPI in kmRPI

steps, i.e., xk ∈ X , uk ∈ U , and xkmRPI ∈ ΩmRPI for all
x0 ∈ Ω⋆, ŵk ∈ Ŵ , and k ∈ N[0,kmRPI−1].

Proof: We show that all x0 ∈ Ω⋆ can be steered into
ΩmRPI in kmRPI steps by

ΠxR(kmRPI,Ω
⋆,Z⋆

u,(·), Ŵ)

(1),(14a)
= ΠxR(kmRPI,Ω

⋆,Z⋆
u,(·), {0})

⊕ΠxR(kmRPI, {0}, {0}, Ŵ)
(20c)
= ΠxR(kmRPI, {0}, {0}, Ŵ)
[58]
⊆ ΠxR(∞, {0}, {0}, Ŵ)

Lemma 1
⊆ ΩmRPI,

where the superposition principle is exploited in the first step.
In addition, the constraint in (20d) ensures xk ∈ X and uk ∈
U for all k ∈ N[0,kmRPI−1]. Thus, the controller in (13) with
optimal correction input zonotope sequence Z⋆

u,(·) steers all
x0 ∈ Ω⋆ safely into ΩmRPI in kmRPI steps.

In contrast to the COP solved in our previous work [31],
where the terminal constraint ΠxR(kmRPI,Ω,Zu,(·), Ŵ) ⊆
ΩmRPI is used instead of (20c), the number of constraints in
(20) is independent of ΩmRPI. This slight modification is espe-
cially advantageous if the parameter kmRPI is large, resulting in
many additional optimization variables and constraints based
on (4).

To efficiently solve the COP in (20), we subsequently
recommend how to choose the involved parameters. To cover
X , we can uniformly sample from the unit hypersphere and
use the obtained points as columns of the user-defined fixed
generator matrix Gfixed. Because uniform sampling in high-
dimensional spaces is a complex task, it is beneficial to
examine the sparsity of the system matrix [30]. Alternatively, a
viable choice for Gfixed can be the generator matrix of ΩmRPI

because it already incorporates some effects of Ŵ . Ideally,
we want to maximize the volume of Ω in (20a). Thus, using
the sum or the geometric mean of the input vector elements
for the cost function JΩ in (20a) are reasonable heuristics.
For instance, the geometric mean is a monotonic function of

the volume of Ω if Gfixed = I . As shown in Lemma 2, the
parameter kmRPI corresponds to the time step when all states
starting in Ω reach ΩmRPI. Thus, this parameter is used to
balance accuracy and computational complexity, e.g., usually
ΩmRPI ̸⊆ Ω⋆ when choosing kmRPI = 1, as shown in the
following theorem.

Theorem 1: Let ΩmRPI ⊆ X with k◦ ∈ N≥0 satisfy (19).
Then, the COP in (20) is always feasible, and the cost in (20a)
is monotonically increasing with increasing kmRPI ∈ N>0.

Proof: Feasibility: When choosing sΩ = 0, cΩ = 0, and
Zu,(·) = {0}, we always obtain Ω = {0} in (20b). Because
ΠxR(k, {0}, {0}, {0}) = {0} for any k ∈ N≥0, the constraint
in (20c) is satisfied for any kmRPI ∈ N>0. In addition, the
satisfaction of (20d) for any kmRPI follows from 0 ∈ ΩmRPI
and Lemma 1. Thus, the COP in (20) is always feasible.

Monotonically increasing cost: Let s⋆Ω, c⋆Ω, Z⋆
u,(·) be the

solution of (20) for any kmRPI. Subsequently, we show that
s⋆,+Ω , c⋆,+Ω , Z⋆,+

u,(·) is feasible for kmRPI + 1, where s⋆,+Ω = s⋆Ω,
c⋆,+Ω = c⋆Ω, and Z⋆,+

u,(·) is obtained by appending {0} to
Z⋆

u,(·). By reusing the previous solution, the cost in (20a)
of both COPs is the same. Thus, when optimizing over all
feasible sΩ, cΩ, Zu,(·), the cost in (20a) for kmRPI + 1 is
at least as high as for kmRPI. By reusing s⋆Ω and c⋆Ω, the
same Ω⋆ = ⟨c⋆Ω, Gfixeddiag(s

⋆
Ω)⟩Z is obtained in (20b) for

both kmRPI and kmRPI + 1. Because Z⋆,+
u,kmRPI

= {0} and
ΠxR(1, {0}, {0}, {0}) = {0}, the constraint in (20c) is also
satisfied. Fulfillment of (20d) for k = kmRPI is proven by

R(kmRPI,Ω
⋆,Z⋆,+

u,(·), Ŵ)

= R(kmRPI,Ω
⋆,Z⋆,+

u,(·), {0})⊕R(kmRPI, {0}, {0}, Ŵ)

(14), (20c),Z⋆,+
u,kmRPI

={0}
⊆ ΠxR(kmRPI, {0}, {0}, Ŵ)

×ΠuR(kmRPI, {0}, {0}, Ŵ)
Lemma 1, [58]
⊆ ΩmRPI ×KΩmRPI

(19)
⊆ X × U

where the superposition principle is exploited in the first step.
Thus, s⋆Ω, c⋆Ω, Z⋆,+

u,(·) is actually feasible for kmRPI + 1.
Finally, by combining the presented two steps of our safe

set approach, we can prove satisfaction of (6) for the system
in (7a) and all x0 ∈ Ω⋆ and ŵ(·) ∈ Ŵ . To show this, we first
define the resulting correction input zonotope sequence

ZΩ⋆

u,k =
〈
cΩ

⋆

u,k, G
Ω⋆

u,k

〉
Z

=

{
Z⋆

u,k for k ∈ N[0,kmRPI−1]

{0} otherwise
, (21)

where s⋆Ω, c⋆Ω, Z⋆
u,(·) is the solution of (20).

Proposition 5: Let ΩmRPI ⊆ X with k◦ ∈ N≥0 satisfy (19)
and let Ω⋆ be the optimal safe set obtained by solving (20)
for any kmRPI ∈ N>0. Then, applying the control inputs in
(13) with correction input zonotope ZΩ⋆

u,k to the system in
(7a) ensures the satisfaction of the constraints in (6) for all
x0 ∈ Ω⋆ and ŵ(·) ∈ Ŵ .
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Proof: For k ∈ N[0,kmRPI−1], Lemma 2 ensures xk ∈ X ,
uk ∈ U , and xkmRPI ∈ ΩmRPI ⊆ X for all x0 ∈ Ω⋆ and ŵk ∈ Ŵ .
For all k ≥ kmRPI, Lemma 1 guarantees xk ∈ X and uk ∈ U
when using the controller uk = Kxk, which is identical to
the controller in (13) when ⟨cu,k, Gu,k⟩Z = {0}. Thus, the
satisfaction of the safety constraints in (6) is ensured for all
x0 ∈ Ω⋆ and ŵ(·) ∈ Ŵ .

In summary, we can efficiently compute safe sets with cor-
responding safe backup controllers using scalable reachability
analysis and convex optimization algorithms. In the following
section, we incorporate these safe sets and controllers into our
safety filter.

IV. SAFETY FILTER

We want to avoid having big spikes when switching between
a desired control input and a safe backup control input [61].
Thus, our safety filter aims to minimize modifying a desired
control input so that the satisfaction of the safety constraints
in (6) is ensured. We achieve this goal by always enforcing the
state of the unknown system in (5) to stay within the optimal
safe set Ω⋆. Because the desired control inputs are only
known during runtime, we solve an optimal control problem
online, which takes a nonnegligible amount of time [20], [62].
In this section, we explicitly consider such computational
delays instead of assuming that optimization problems can
be solved instantaneously. In addition, we present our safety
filter algorithm. Finally, we propose our online conformance
update to restore formal safety guarantees as soon as we detect
that ŵk /∈ Ŵ with k ∈ N≥0 for the optimal conformant
model M⋆ =

(
Â, B̂, Ŵ

)
.

A. Consideration of Computation Times
If x0 ∈ Ω⋆, Proposition 5 guarantees robust constraint

satisfaction for the system in (7a) and all ŵ(·) ∈ Ŵ . To
compute the safe backup control input in (13) for the initial
set Zx,0 = Ω⋆, we must find the not necessarily unique initial
parameter vector λx,0 ∈ Rη(Ω⋆) satisfying (12).

Obtaining λx,0 can be achieved by solving the linear feasi-
bility problem in (12), which causes a nonnegligible computa-
tional delay that invalidates the formal safety guarantees [20],
[62]. Alternatively, if the extreme points of Ω⋆ are given,
closed-form expressions of λx,0 exist [63]. However, obtaining
the extreme points of a general zonotope is a computationally
complex task [43]. To ensure the scalability of our approach,
we present an efficient method for computing λx,0 without
assuming that an optimization problem can be solved instan-
taneously at time step 0, as shown in the following lemma.

Lemma 3: Let a parallelotope P = ⟨c1, G1⟩Z ⊂ Rn and a
zonotope Z = ⟨c2, G2⟩Z ⊂ Rn be given. In addition, let Γ ∈
Rη(Z)×n and γ ∈ Rη(Z) exist such that (4) is satisfied. Then,
a valid parameter vector λZ ∈ Rη(Z) of Z with |λZ | ≤ 1 for
parameterizing any s ∈ P is λZ = −γ + ΓG−1

1 (s− c1), i.e.,
s can be expressed by s = c2 +G2λZ .

Proof: Based on (2), any s ∈ P can be parameterized
by the unique parameter vector λP = G−1

1 (s− c1) of P with
|λP | ≤ 1. If (4a) and (4b) are satisfied, it follows that

c1 +G1λP = c2 +G2(−γ + ΓλP)

xk

uk

ũk+
1

ūk+1Zk+1

Z̃k+2

Zk+2

Rnx \ Ω⋆

Fig. 2. Set-based safety filter. Because applying the desired input ũk+1

at time step k + 1 might lead to leaving the optimal safe set Ω⋆ at time
step k + 2, it is minimally modified to obtain the safe input ūk+1.

for any λP ∈ Rn. In addition, satisfaction of (4c) implies
|−γ + ΓλP | ≤ 1 for all λP with |λP | ≤ 1. Thus, choosing
λZ = −γ +ΓλP results in a valid parameter vector of Z for
any s = c1 +G1λP .

If we know that x0 lies within a small parallelotope that is
contained in the zonotopic optimal safe set Ω⋆, we can com-
pute λx,0 at time step 0 based on Lemma 3 without solving an
optimization problem. Before presenting our optimal control
problem that explicitly considers all computation times for
solving optimization problems online, subsequently, we give
an overview of our set-based safety filter approach.

Because the desired control inputs are only known during
runtime, we must solve an optimal control problem online.
To explicitly consider such nonnegligible online computational
delays, we verify the desired input not for the current but for
the next time step, as illustrated in Fig. 2. In particular, at time
step k ∈ N≥0, the state xk is measured, and the input uk that
was previously verified as safe is applied until k + 1. During
this time, we want to verify safety when applying the desired
input ũk+1 ∈ Rnu at k + 1. If safety might be violated, we
minimally modify ũk+1 to obtain the safe input ūk+1 ∈ U
that ensures xk+2 ∈ Ω⋆. By evaluating the system in (7a) in
a set-based fashion, the reachable sets in Fig. 2 are

Zk+1 =
{
Âxk + B̂uk

}
⊕ Ŵ

Z̃k+2 = ÂZk+1 ⊕
{
B̂ũk+1

}
⊕ Ŵ

Zk+2 = ÂZk+1 ⊕
{
B̂ūk+1

}
⊕ Ŵ.

We also want to mention that it might be infeasible to find a
safe input ūk+1 because the optimal safe set Ω⋆ = ⟨c⋆Ω, G⋆

Ω⟩Z
is typically not an RCI set.

To verify or, if necessary, minimally modify the desired
input ũk+1, we solve an optimal control problem that considers
all online computation times starting at time step k ∈ N≥0. Let
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ū⋆
k+1, γ

⋆
k+2,Γ

⋆
k+2, c

⋆
Pk+2

, G⋆
Pk+2

be the solution of the COP

minimize
ūk+1,γk+2,Γk+2

cPk+2
,GPk+2

∥ũk+1 − ūk+1∥p (22a)

subject to ūk+1 ∈ U (22b)

Zk+2 =
{
Â2xk + ÂB̂uk + B̂ūk+1

}
(22c)

⊕ ÂŴ ⊕ Ŵ〈
cPk+2

, GPk+2

〉
Z
= para

(
Zk+2

)
(22d)

GPk+2
= G⋆

ΩΓk+2 (22e)
c⋆Ω − cPk+2

= G⋆
Ωγk+2 (22f)∣∣[Γk+2 γk+2

]∣∣1 ≤ 1, (22g)

where the function para tightly encloses the input zonotope
by a parallelotope [64], [65]. Then, the optimal safe input at
time step k + 1 is ū⋆

k+1.
Instead of the standard constraint Zk+2 ⊆ Ω⋆, we use (22d)

through (22g) based on Lemma 3 to ensure that the set-based
safe backup control input in (13) with (21) can be computed
without solving an optimization problem at time step k + 2.
In particular, the required initial parameter vector is

λx,0 = −γ⋆
k+2 + Γ⋆

k+2(G
⋆
Pk+2

)−1(xk+2 − c⋆Pk+2
). (23)

In addition, G⋆
Pk+2

only depends on the generator matrix of
ÂŴ ⊕ Ŵ based on (22d). Therefore, G⋆

Pk+2
and its inverse

(G⋆
Pk+2

)−1 are independent of the current time step k and,
thus, are computed only once. Because the inverse of a
diagonal matrix can be easily obtained, simple axis-aligned
box over-approximations instead of general parallelotopic ones
can also be used in (22d). As a result, we only need to perform
a few simple matrix operations to compute the safe backup
control input in (13) with (21) at time step k + 2. Moreover,
if solving (22) requires a longer time than the sampling
period ∆t to complete, we abort the optimization prematurely
to maintain the validity of our formal safety guarantees.

In summary, the optimal control problem in (22) minimally
modifies the desired input ũk+1 while ensuring that the safe
backup control input in (13) can be computed at time step k+
2 without solving an optimization problem. In the following
subsection, we show how the COP in (22) is integrated into
our safety filter algorithm.

B. Algorithm

We now present Alg. 1 that implements our safety filter.
This algorithm proceeds in two steps: First, the safe input uk

applied to the unknown system in (5) at time step k with k ∈
N≥0 is computed. Second, the COP in (22) is solved to verify
or, if necessary, minimally modify the desired input ũk+1. If
(22) is infeasible, i.e., if ūk+1 equals the empty set ∅, we
use the safe backup control input at time step k + 1. In the
following theorem, we show that Alg. 1 achieves the control
goal formulated in Subsection II-C.

Theorem 2: Let ΩmRPI ⊆ X with k◦ ∈ N≥0 satisfy (19),
let Ω⋆ be the optimal safe set obtained by solving (20), and
let the corresponding optimal model M⋆ =

(
Â, B̂, Ŵ

)
be

also conformant to all online obtained data. In addition, let

Algorithm 1 Safety filter
1: ū⋆

0 ← u0

2: for k ← 0, 1, 2, . . . do
3: get xk and ũk+1

4: if ū⋆
k ̸= ∅ then ▷ use solution of (22)

5: uk ← ū⋆
k

6: kx,0 ← 0 ▷ reset initial time step
7: else ▷ use safe backup control input
8: if kx,0 = 0 then
9: λx,0 ← −γ⋆

k + Γ⋆
k(G

⋆
Pk

)−1(xk − c⋆Pk
) ▷ (23)

10: kx,0 ← k ▷ update initial time step
11: end if
12: uk ← Kxk + cΩ

⋆

u,k−kx,0
+GΩ⋆

u,k−kx,0
λx,0 ▷ (21)

13: end if
14: apply uk to the unknown system in (5)
15: ū⋆

k+1, γ
⋆
k+2,Γ

⋆
k+2, c

⋆
Pk+2

, G⋆
Pk+2

← solve (22)
for xk, uk, ũk+1

16: end for

x0 ∈ Ω⋆,
{
Âx0 + B̂u0

}
⊕Ŵ ⊆ Ω⋆, u0 ∈ U , and the COP in

(22) be feasible for x0, u0, ũ1. Then, the applied control inputs
in Alg. 1 are minimal modifications of the desired inputs so
that the safety constraints in (6) are satisfied for the unknown
system in (5).

Proof: Because M⋆ is also conformant to all online
obtained data, the satisfaction of the safety constraints in (6)
for the estimated system in (7a) implies constraint satisfaction
for the unknown system in (5). Thus, it is sufficient to consider
(7a).

We use our safe backup controller to guarantee safety
for an infinite time horizon. Because the initial time was
chosen to be zero during its construction in Section III, we
appropriately shift the counter k ∈ N≥0 of the correction
input zonotope ZΩ⋆

u,k in line 12 of Alg. 1. Then, applying
the resulting safe backup control inputs to the system ensures
the satisfaction of the safety constraints in (6) based on
Proposition 5.

If the COP in (22) is feasible, the control inputs in line 5
of Alg. 1 are minimal modifications of the desired inputs for
the cost function in (22a). In addition, the state and input
constraints are satisfied for the next time step because of
the incorporated reachability analysis in (22) and Ω⋆ ⊆ X .
Moreover, if the COP in (22) is infeasible, we use the safe
backup controller until it is feasible again.

In summary, Alg. 1 ensures the satisfaction of the safety
constraints in (6) while considering all computation times for
solving optimization problems. This statement is only valid if
the optimal conformant model M⋆ =

(
Â, B̂, Ŵ

)
is valid at all

times, which, however, is constructed offline in Subsection III-
A based on a finite set of training data. Because the system
in (5) is unknown, we have no guarantee that ŵk ∈ Ŵ for
all k ∈ N≥0. Thus, we perform conformance updates online
to restore formal safety guarantees if a model invalidation is
detected, as presented in the following subsection.
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C. Online Conformance Updates

We update M⋆, Ω⋆, and ZΩ⋆

u,(·) online as soon as ŵk /∈ Ŵ
to restore formal safety guarantees, similar to [12]. Restoring
a conformant model can be achieved by solving the COPs
presented in Subsection III-A, including the offline training
data and all online obtained data. Although the number of
constraints scales only linearly with the amount of data, this
approach quickly poses computational and memory problems
as time proceeds. Therefore, an update is needed that is
independent of the amount of online data, which implies
independence of the elapsed time.

We address this issue by fixing Â and B̂ of our offline-
constructed optimal conformant model M⋆ =

(
Â, B̂, Ŵ

)
and

by minimally enlarging Ŵ to restore model conformance. To
enable a fast update procedure, we restrict Ŵ to be a simple

axis-aligned box
[
Ŵ, Ŵ

]
. In general, we denote by s(i) the ith

element of the vector s ∈ Rnx with i ∈ N[1,nx]. If we detect

that ŵ
(i)
k < Ŵ

(i)
or Ŵ

(i)

< ŵ
(i)
k for any i, we set Ŵ

(i)

or Ŵ
(i)

equal to ŵ
(i)
k to restore model conformance. After

updating M⋆, we also check if there still exists an ΩmRPI ⊆ X
with k◦ ∈ N≥0 satisfying (19). In addition, we update Ω⋆

by solving (20) and compute the resulting correction input
zonotope sequence ZΩ⋆

u,(·) in (21).
Because no conformant model is available during these

online updates, the satisfaction of the safety constraints in
(6) can no longer be formally guaranteed. Thus, quickly
performing these updates and reducing the probability of
constraint violation using the previous safe backup controller
is the best we can do in this situation. Therefore, if ŵk /∈ Ŵ ,
we set the control input ū⋆

k in Alg. 1 equal to ∅ as long as our
online conformance update process is running.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of our
safety filter approach using four numerical examples from
the literature. To compute reachable sets, we use our open-
source reachability analysis toolbox CORA [66]. Moreover,
all optimization problems are modeled using YALMIP [67]
with the Boolean parameter “allownonconvex” set to false
and solved using MOSEK [68] with default parameters. To
show the low conservativeness of our large safe sets, we also
compute tight RCI under-approximations of the MRCI set for
the two low-dimensional examples following the approach in
[25] by using the toolbox MPT3 [69]. Our computations are
conducted on a laptop equipped with an Intel Core i7-1185G7
and 32GB memory.

For all four numerical examples, we make the following
choices: The sampling period is ∆t = 0.1 s. In addition,
we increment kmRPI ∈ N>0 based on Theorem 1 until the
cost of the COP in (20) is unchanged for two consecutive
iterations or 50 iterations are reached, which is done to ensure
finite termination of the iterative procedure. This final kmRPI
is used for all subsequent online conformance updates. The
cost in (20a) is JΩ = 1T sΩ so that (20) is a simple linear
program [46]. After solving (20) for the offline training data,

we erase the ith column of Gfixed if the ith element of the
optimal generator scaling vector s⋆Ω is smaller than 0.05. This
erasure is done because these generators of Gfixed significantly
increase the computation times when solving (20) online to
perform conformance updates. However, the shape of the
optimal Ω⋆ is typically only slightly changed as Â and B̂ are
fixed. Moreover, we choose the 2-norm for the cost function
in (22a).

As mentioned in Subsection II-C, the training data is not
required to be recorded from a single run of the system but
can be obtained by performing multiple short experiments.
This useful property allows us to handle unstable systems
efficiently. Because the chosen experiment design [33], [55]
for training data generation is irrelevant to our approach,
for simplicity, we generate the training data by sampling
uniformly from X , U , and W .

A. 2D System without Disturbances

We consider the mass-spring-damper example presented
in [21]. The unknown system in (5) is described by

xk+1 =

[
1.0 0.1
−0.3 0.8

]
xk +

[
0.0
0.1

]
uk + wk.

The disturbance set is W = {0}. The axis-aligned input
and state constraint boxes are described by U = [−2.5, 2.5],
X =

[
−1 −0.4

]T
, and X =

[
1 1

]T
, respectively. The sta-

bilizing feedback matrix K =
[
−4.12 −5.32

]
is computed

using LQR-based controller synthesis based on approximate
system and input matrices that are assumed to be known.
In addition, it is assumed that training data {xi, ui, xi+1}600i=1

is generated by sampling uniformly from X and U . The
initial state is x0 =

[
−0.7 1

]T
and the desired input is

ũk = 2 sin(0.01πk) + 0.5 sin(0.12πk) for k ∈ N[0,200].
By solving the linear program in (10), we obtain the confor-

mant model M =
(
Â, B̂, Ŵ

)
based on the available training

data. Because M equals the unknown model (A,B, {0}) up
to floating-point precision, we never have to update M online.
To cover X , we choose the columns of Gfixed ∈ R2×20 in (20b)
to be 20 uniformly distributed points around the top half unit
circle.

In Fig. 3a, we present the simulation results when choosing
u0 = −0.2 for the initial input. As observed, our safety filter
minimally modifies the desired input only in the first two time
steps. Thus, our method intervenes significantly less than the
safety filter approach in [21], whose performance is shown in
Fig. 3b. To illustrate the low conservativeness of our optimal
safe set Ω⋆ in Fig. 3a, we also visualize a tight RCI under-
approximation of the MRCI set [25].

To compare the set membership identification methods
presented in Subsection III-A, we subsequently assume that
the unknown disturbance set W is not the origin but given
by [−0.1, 0.1]2. In Fig. 4, we show the volumes of the
estimated disturbance sets Ŵ(9), Ŵ(10), and ŴLLS that are
obtained by solving (9), (10), and a linear least-squares system
identification problem with subsequent parallelotopic volume
minimization, respectively. As can be observed in Fig. 4, the
volume of Ŵ(9) is always smaller than the volume of Ŵ(10).
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Fig. 3. Comparison of different safety filter approaches for the 2D
system. Red (black) color corresponds to states for which the desired
input is (is not) minimally modified to always guarantee safety. (a) Our
approach. A tight RCI under-approximation of the MRCI set is visualized
in blue, which shows the low conservativeness of our large safe set Ω⋆.
(b) This figure is taken from [21]. The dotted black curve can be ignored.
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Fig. 4. Comparison of different system identification approaches for the
2D system. In addition to the unknown disturbance set W , we visualize
ŴLLS, obtained by performing linear least-squares system identification
with subsequent parallelotopic volume minimization. Moreover, Ŵ(9)

and Ŵ(10) are obtained by solving (9) and (10), respectively.

In addition, both volumes are monotonically increasing and
converging to the volume of W from below. In contrast to
this monotonic increase, the volume of ŴLLS fluctuates and
even exceeds W . This observation shows the advantage when
performing system identification and volume minimization in
one step.

B. Unstable 3D System

To demonstrate the usefulness of our online conformance
updates proposed in Subsection IV-C, we consider the unstable
system presented in [36]. The unknown system in (5) is
described by

xk+1 =

−0.5 1.4 0.4
−0.9 0.3 −1.5
1.1 1.0 −0.4

xk +

 0.1 −0.3
−0.1 −0.7
0.7 −1.0

uk + wk,

and the state feedback matrix is

K =

[
−2.45 −1.29 −2.40
−0.61 −0.03 −2.18

]
. (24)

We assume that the unknown disturbance set is W =
[−0.04, 0.04]3, and the known state and input constraint sets
are X = [−1, 1]3 and U = [−1, 1]2. The initial state x0 and
the initial input u0 are the origin. The desired input ũk and
the disturbance wk are uniformly sampled online from U and
W for all k ∈ N[0,105].

We generate training data {xi, ui, xi+1}100i=1 by sampling
uniformly from X , U , and W . By solving the linear program

100 101 102 103 104 105

Fig. 5. Online conformance updates of the 3D system. The time steps k
are marked when conformance updates are performed, i.e., when wk /∈
Ŵ is detected.

0 10 20 30 40
0.03

0.035

0.04

0.045

0.05

number of conformance updates

Ŵ
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Ŵ
(3)

(a)

0 10 20 30 40
−0.05

−0.045

−0.04

−0.035

−0.03

number of conformance updates
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Fig. 6. Evolution of the upper (a) and lower (b) bounds of the axis-
aligned estimated disturbance box Ŵ of the 3D system, which is
initialized in (25).

in (10), we obtain the optimal conformant linear model M⋆ =(
Â, B̂, Ŵ

)
with

Â =

−0.5001 1.4013 0.3991
−0.8998 0.3001 −1.5004
1.0997 0.9997 −0.4020


B̂ =

 0.0994 −0.2966
−0.0997 −0.6997
0.6983 −0.9977


Ŵ =

−0.0392−0.0395
−0.0361

 , Ŵ =

0.03900.0389
0.0387

 . (25)

Thus, the state feedback matrix in (24) stabilizes the estimated
system

(
Â, B̂

)
. Nevertheless, any stabilizing feedback matrix

could be deployed, e.g., using LQR-based controller synthe-
sis [70]. Moreover, because Ŵ ⊂ W , model invalidation will
likely occur, requiring us to update Ŵ online. To cover X ,
we choose the columns of Gfixed ∈ R3×70 in (20b) to be 70
uniformly distributed points around the unit sphere.

In Fig. 5, we plot the 38 time steps k ∈ N≥0 when
wk /∈ Ŵ is detected. We update the model, the safe set, and
the safe backup controller at these time steps, as proposed in
Subsection IV-C. Using a logarithmic scale makes it clear that
most updates occur early on.

In Fig. 6, we visualize the evolution of the lower and upper
bounds of the estimated disturbance set Ŵ , which is initialized
in (25). As more uniformly sampled disturbances are gathered
online, the changes in all three dimensions become smaller.

In Fig. 7, we show two-dimensional projections of the initial
optimal safe set and a tight RCI under-approximation of the
initial MRCI set based on the estimated disturbance bounds in
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Fig. 7. Evolution of safe sets of the 3D system. The initial optimal safe
set, the final optimal safe set, and a tight RCI under-approximation of
the initial MRCI set are shown in green, red, and blue, respectively. In
addition, the updated optimal safe sets are visualized, with a lighter gray
tone corresponding to a higher number of updates.

(25). In addition, we visualize the 38 updated optimal safe sets
corresponding to updated conformant models. As can be seen
in the x(1)-x(2)-plot in Fig. 7, the updated safe sets shrink
in some generator directions but also grow in some others.
Because computing a tight RCI under-approximation of the
initial MRCI set takes more than 1 min, these computations
are unsuitable for online updating. Nevertheless, our online
conformance updates, which include updating Ŵ , verifying
the existence of an ΩmRPI ⊆ X satisfying (19), and updating
Ω⋆ and corresponding ZΩ⋆

u,(·), take 57 ms on average with a
standard deviation of 4 ms. Thus, these updates are performed
in real time.

C. Nonlinear Continuous-Time 6D System

To demonstrate the generalizability of our approach, we
consider the nonlinear, continuous-time, longitudinal quadro-
tor model proposed in [30], [71]. The unknown system is
described by the set of ordinary differential equations

ẋ(1) = x(3) (26a)

ẋ(2) = x(4) (26b)

ẋ(3) = u(1)n1 sin(x
(5)) (26c)

ẋ(4) = u(1)n1 cos(x
(5))− g (26d)

ẋ(5) = x(6) (26e)

ẋ(6) = −d0x(5) − d1x
(6) + n0u

(2), (26f)

where x(1) to x(6) represent the horizontal and vertical posi-
tions, horizontal and vertical velocities, roll, and roll velocity,
respectively. The constant parameters are g = 9.81, d0 = 70,
d1 = 17, n0 = 55, n1 = 0.89/1.4, and the axis-aligned state
and input constraint boxes are described by

X =
[
−1.7 0.3 −0.8 −1 −π/12 −π/2

]T
X =

[
1.7 2.0 0.8 1 π/12 π/2

]T
U =

[
g/n1 − 1.5 −π/12

]T
U =

[
g/n1 + 1.5 π/12

]T
.

To satisfy our assumption that X and U contain the origin,
we perform a simple coordinate transformation, i.e., we shift
x(2) by −1.15 and u(1) by −g/n1. We generate training
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Fig. 8. Evolution of safe sets of the 6D system. The initial and final
optimal safe sets are shown in green and red, respectively. In addition,
the updated optimal safe sets are visualized, with a lighter gray tone
corresponding to a higher number of updates.

data {xi, ui, xi+1}100i=1 by using the MATLAB function ode451

to solve (26) and by sampling uniformly from X and U .
In addition, we compute the stabilizing feedback matrix K
using LQR-based controller synthesis [70], where the state
and input weighting matrices are Q = 10I and R = I .
The fixed generator matrix Gfixed ∈ R6×48 in (20b) is taken
from [30]. The initial state is x0 =

[
0 1.15 0 0 0 0

]T
and the initial input is u0 =

[
g/n1 0

]T
. Moreover, the

desired input ũk is uniformly sampled online from U for all
k ∈ N[0,105].

Solving (20) initially for the offline training data takes 19 s.
To enable real-time conformance updates, we slightly simplify
(20), i.e., we restrict Ω and Zu,(·) to be scaled versions of the
optimal initial zonotopes, as shown in Fig. 8. As a result,
our update takes only 145 ms on average with a standard
deviation of 8 ms. Thus, our approach can update formal safety
guarantees at sampling times for nonlinear, continuous-time
systems in real time.

To demonstrate the difficulty of this numerical example, we
compare our results with two existing methods for computing
safe sets. Because the approach in [25] has an exponential
computational complexity with respect to the state space
dimension, we abort the corresponding computations prema-
turely after 24 h. We also use the method in [72], which re-
quires the linear system to be presented in controller canonical
form. Using the corresponding publicly available code, the
transformation of our initial conformant model to this form
involves the inverse of a matrix whose condition number is
greater than 106, which leads to significant numerical errors.

1https://mathworks.com/help/matlab/ref/ode45.html
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D. Continuous-Time 12D System

To demonstrate the scalability of our approach, we consider
the under-actuated, continuous-time quadrotor model proposed
in [29], [73]. The system dynamics is linearized around the
hover condition to obtain a linear model. The resulting twelve
states are given by

• the spatial positions
[
x(1) x(2) x(3)

]T ∈ [−3, 3]3 and
• their velocities

[
x(4) x(5) x(6)

]T ∈ [−3, 3]3, and
• the angular positions

[
x(7) x(8)

]T ∈ [−π/4, π/4]2,
x(9) ∈ [−π, π] and

• their velocities
[
x(10) x(11) x(12)

]T ∈ [−3, 3]3.
In addition, the four control inputs are given by

• the total normalized thrust u(1) ∈ [−9.81, 2.38] and
• the second-order derivatives of the angular positions[

u(2) u(3) u(4)
]T ∈ [−0.5, 0.5]3.

The wind is modeled by the unknown, bounded disturbance[
w(4) w(5) w(6)

]T ∈ [−0.05, 0.05]3 that affects only the
three spatial velocities.

We generate training data {xi, ui, xi+1}1000i=1 by using the
MATLAB function ode45 to solve the system of linear differ-
ential equations and by sampling uniformly from the state and
input constraint sets. In addition, we compute the stabilizing
feedback matrix K using LQR-based controller synthesis [70],
where the state and input weighting matrices are Q = 10I and
R = I . The fixed generator matrix Gfixed ∈ R12×52 in (20b)
is obtained following the approach in [30], i.e., by examining
the sparsity of the system matrix. The initial state x0 and the
initial input u0 are the origin. Moreover, the desired input ũk

is uniformly sampled online from the input constraint set for
all k ∈ N[0,105].

Two-dimensional projections of the initial solution of (20)
are shown in Fig. 9. Because solving (20) initially for the
offline training data takes 40 min, we slightly simplify (20)
analogously to Subsection V-C. As a result, our 20 updates
take 1.01 s on average with a standard deviation of 85 ms.
In summary, our approach quickly updates formal safety
guarantees for medium-sized problems.

VI. CONCLUSIONS

We have presented safety filters that provide formal safety
guarantees for any controller. If the desired input might lead to
leaving our large safe set in the future, it is modified in the least
restrictive way. Unlike most other work on robust controller
synthesis, we make no assumptions about the availability of
the disturbance set. Thus, we perform offline set membership
identification based on a finite set of available training data.
Because a new measurement obtained online might invalidate
the formal safety guarantees of our safety filter, fast online
conformance updating is crucial. In contrast to existing work,
our updates are performed in real time, even for medium-sized
problems. These real-time updates are enabled by designing
our update procedure to be independent of the number of
measurements and by using scalable reachability analysis as
well as convex optimization algorithms. We have demonstrated
the effectiveness, generalizability, and scalability of our safety
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Fig. 9. Initial safe sets of the 12D system. The small safe set ΩmRPI and
the optimal large safe set Ω⋆ are shown in blue and green, respectively.
In addition, the reachable sets R(k,Ω⋆,Z⋆

u,(·), Ŵ) with k ∈ N[1,50]

are shown, with a lighter gray tone corresponding to a bigger k.

filter approach using four numerical examples from the liter-
ature, including a six-dimensional, nonlinear system.
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driven state-feedback design,” in American Control Conference, 2020,
pp. 1532–1538.

[37] S. K. Mulagaleti, A. Bemporad, and M. Zanon, “Data-driven synthesis
of robust invariant sets and controllers,” IEEE Control Systems Letters,
vol. 6, pp. 1676–1681, 2022.

[38] S. Sadraddini and C. Belta, “Formal guarantees in data-driven model
identification and control synthesis,” in Conference on Hybrid Systems:
Computation and Control, 2018, pp. 147–156.

[39] E. Terzi, L. Fagiano, M. Farina, and R. Scattolini, “Learning-based
predictive control for linear systems: A unitary approach,” Automatica,
vol. 108, p. 108473, 2019.
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