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Kurzfassung

Wir stellen einen auf dem Matrixproduktoperator (MPO) basierenden Zeitentwicklungsal-

gorithmus vor, der anstelle einer Singulärwertzerlegung (SVD) ein auf der QR-Zerlegung

basierende Variationsmethode verwendet. Wir zeigen, dass sich dadurch die Skalierung des

Zeitentwicklungsalgorithmus von d3 auf d2 verbessert, wobei d die Dimension des lokale

Hilbertraums ist. Darüber hinaus, läuft der vorgeschlagene Algorithmus, im Gegensatz zu

der etablierten SVD basierten Trunkierungsmethode, effizient auf GPUs. Dies führt zu einem

zusätzlichen, hardwareabhängigen Speedup.



Abstract

We propose and benchmark a matrix product operator (MPO) based time evolution which

uses a variational QR decomposition based truncation scheme instead of a singular value

decomposition (SVD). This improves the scaling of the time evolution algorithm with respect

to the local Hilbert space dimension d from d3 to d2. Additionally, we demonstrate that the pro-

posed algorithm runs efficiently on GPUs in contrast to the established SVD based truncation

method. This results in an additional, hardware-dependent speedup.
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1. Introduction

Simulating quantum many-body systems in and out of equilibrium is essential for understand-

ing the physics of microscopic systems. The success of the density matrix renormalization

group (DMRG) [1] in finding the ground state properties of one-dimensional systems in terms

of matrix product states (MPS) led to the development of related techniques to describe the

dynamics of quantum many-body systems [2–4]. These methods allow access to experimen-

tally relevant observables, such as structure factors or other response functions, which can be

compared, among others, with data from neutron scattering [5]. By now, the MPS formalism

is an established tool to simulate one-dimensional systems in condensed matter theory.

It has been shown [6–10] that there is potential to accelerate MPS based algorithms by run-

ning linear algebra operations on graphics processing units (GPUs) or tensor processing

units (TPUs). However, many MPS based algorithms rely on the singular value decompo-

sition (SVD), which does not run efficiently in the GPU implementations known to us. A

modified version of the time evolving block decimation (TEBD) algorithm [11] showed that

using a truncation scheme based on the QR decomposition instead of the SVD runs effi-

ciently on GPUs and additionally improves the scaling of the algorithm with respect to the

local Hilbert space dimension d from d3 to d2. While the TEBD [2] is highly successful in

simulating time evolutions of nearest neighbor interacting Hamiltonians, it is not applicable to

long-ranged Hamiltonians. In contrast to that, the matrix product operator (MPO) based time

evolution allows such time evolutions by successively applying the time evolution MPO to the

MPS. Yet, time evolution MPOs were long impractical since naive time-steppers, like an Euler

step, resulted in an error per site which diverges with the system size. However, it recently

has been demonstrated [12] that a modified Euler step allows compact MPO representations

with a constant error per site and hence practical MPO based time evolutions.

In this work, we expand the success of the QR decomposition based truncation method for

the TEBD [11] to the MPO based time evolution [12] for one-dimensional systems. This

is achieved analogously to Ref. [11] by replacing the SVD based truncation method of the

MPO based time evolution algorithm with a variational QR decomposition based truncation

scheme. This improves the scaling of the time evolution algorithm from d3 to d2 and leads to

a significant hardware-dependent speedup when computed on GPUs.

We start in chapter 2 with the theoretical background, reaching from the definition of the SVD

and QR decomposition up to the MPS and MPO formalism. In chapter 3, we introduce the

MPO based time evolution algorithm and implement the QR decomposition based truncation

method. In chapter 4, we benchmark the result of a global quench in the quantum clock

model, followed by a runtime benchmark of the time evolution algorithm and the truncation

schemes on CPU and GPU. Finally, we conclude our findings in chapter 5.
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2. Theoretical Background

In this chapter, we briefly introduce the theoretical background that is used to perform a

MPO based time evolution. We start by facing the computational challenges of simulating

time evolutions of generic quantum many-body states. Followed by the introduction of the

SVD and the QR decomposition, which play a central role in this work. Equipped with these

tools, we proceed with the phenomenon of entanglement in quantum many-body systems.

This leads to the definition of the area law, which forms the basis of the efficiency of the

subsequently introduced MPS and MPO formalism.

2.1. Quantum Many-Body Systems

A generic state |ψ⟩ of a quantum many-body system on a lattice with N sites lives in the

Hilbert space H, which is formed by the tensor product of the local Hilbert spaces Hn, mean-

ing H = H1 ⊗ H2 ⊗ · · · ⊗ HN . The dimension dn of the local Hilbert space Hn is defined

by the number of local basis states |jn⟩. Assuming that each local Hilbert space Hn has the

same dimension dn = d, we can determine the dimension of the many-body Hilbert space H
to dN . The wavefunction of a generic state can be written as

|ψ⟩ =
∑

j1,j2,...,jN

ψj1j2...jN |j1, j2, . . . , jN ⟩ (2.1)

where |j1, j2, . . . , jN ⟩ represents a basis state of the many-body Hilbert space and ψj1j2...jN

the probability amplitude with the normalization condition
∑

j1,j2,...,jN
|ψj1j2...jN |2 = 1. The

time evolution |ψ(t)⟩ of a such generic state |ψ(t0)⟩ needs to comply with the Schrödinger

equation

iℏ
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ (2.2)

where H is the Hamiltonian of the System. If we consider H to be time-independent

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ with U(t, t0) = e−i(t−t0)H/ℏ (2.3)

complies with equation (2.2) where U(t, t0) is the time evolution operator. The time evolution

operator U is unitary, which follows from the probability conservation. Moreover, U needs

to fulfill the composition property U(t2, t0) = U(t2, t1)U(t1, t0) for t2 > t1 > t0 and it must

reduce to the identity matrix as dt goes to zero, meaning limdt→0U(t0 +dt, t0) = 1, where 1

is the identity matrix. (see [13] sec. 3 and [14] sec. 2.1.1, sec. 2.1.2)

Considering the scaling dN of the dimension of the many-body Hilbert space H, we can

calculate the storage space needed to save all coefficients ψj1j2...jN of a generic state |ψ⟩ to

∼ dN bytes. Computing the inner product of two generic states is equivalent to performing

∼ dN double-precision float operations. As a reference, current supercomputers [15] can
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2. Theoretical Background

handle up to ∼ 1017 double-precision float operations per second. While this sounds like a

lot, it is nothing compared to the computational power needed to handle realistic systems

with N ∼ 1023 particles. Consequently, it is impossible to simulate large systems by using

pure brute force. However, we have assumed that the states actually live in the dN Hilbert

space without any limitations. In practice, this is not the case since the vast majority of the

Hilbert space is unreachable for large systems [16]. If we focus only on a certain region of

the Hilbert space, where the states obey the so-called area law, the MPS formalism allows us

to efficiently represent and simulate time evolutions of quantum many-body systems.

2.2. Matrix Decomposition

2.2.1. Singular Value Decomposition (SVD)
Let M ∈ Cm×n then M can be written in the SVD

M = USV † (2.4)

where U and V are m × m and n × n unitary matrix, where the columns of U and V are

eigenvectors of the matrices MM † and M †M . S is a rectangular diagonal m×n Matrix with

non-negative entries, the so-called singular values of M . The number of non-zero singular

values is the rank k of the Matrix M . Note that if M has full rank, then k = min{m,n}.

The SVD can be written in a reduced form where U and V are semi-unitary m × k and

n × k matrices Ured and Vred and S is a k × k square diagonal matrix Sred. This reduced

form is achieved by removing all zero-row- and zero-column-vectors of S, including the ones

where the singular values are zero, together with the respective columns of U and V . These

removed columns and vectors do not contribute to the representation of M . Hence there is

no “loss of information”, meaning ||M −Mred|| = 0. Moving forward, we assume that the

SVD is expressed in this reduced form. Moreover, we assume that the singular values and

the corresponding columns of U and V are sorted in descending order. We can write eq.

(2.4) as

M ≈
η≤k∑
i=1

uiSiv
†
i (2.5)

where ui and vi are the orthonormal column vectors of U and V . The matrixM is represented

exactly for η = k. However, to save memory when storing the matrix M , we can instead save

the matrices U , V and S with η < k. This means we discard some orthonormal column

vectors ui and vi, which is equivalent to truncating the rows of U and V . This results in

a truncation error, which can be calculated to
∑k

i=η+1 Si. Hence, the truncation error is

dependent on the nature of the singular values Si and thusM . The fact that this is the optimal

truncation of the matrix M not only makes the SVD a good tool for image compressions [17],

but also allows us to represent some quantum many-body states more efficiently, as we will

see in sec. 2.3.2.
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2. Theoretical Background

As it will be important later, a remark on the uniqueness of the SVD: The singular values Si
of S are uniquely defined by M . Hence, S is uniquely defined by M . However, U and V are

not uniquely defined by M . First, if there are multiple equal singular values, meaning S is

degenerate, the corresponding columns of U and V can be swapped while they still yield the

SVD. Secondly, any unitary diagonal matrix ϕ can be supplemented into eq. (2.4) to retrieve

a new set of semi-unitary matrices Ũ and Ṽ :

USV † = Uϕϕ†SV † = UϕSϕ†V † = UϕS(V ϕ)† = ŨSṼ † (2.6)

where we used the very definition of unitary matrices and that two diagonal matrices com-

mute. These gauge transformations ϕ are of the form

ϕ =


eiφ1

eiφ2

. . .

eiφk

 with φi ∈ [0, 2π). (2.7)

(see [18] thm. 2.26, [19] thm. 7.46 and [20] sec. 4.1.1)

2.2.2. QR Decomposition
Let M ∈ Cm×n with m ≥ n then M can be written in the QR decomposition

M = QR (2.8)

where Q is a m × n semi-unitary matrix and R is a upper-triangular n × n matrix. Q is

unitary if m = n. For m < n we define the QR decomposition as in NumPy [21], thus

Q is a m × m unitary matrix and R is a m × n matrix with Rij = 0 if m ≥ i > j. For

completeness, we mention that we define the LQ decomposition M = LQ analogously to the

QR decomposition, where L is a lower-triangular matrix. (see [18] thm. 2.17 and [20] sec.

4.1.2)

2.3. Entanglement in Quantum Many-Body Systems

2.3.1. Density Matrix
The density matrix can be used to define mixed and pure ensembles (or states), which is a

property needed in the discussion of entanglement. The density operator ρ of an ensemble

of states |ψk⟩ is defined by

ρ =
∑
k

pk |ψk⟩ ⟨ψk| (2.9)

where pk is the probability weight of the state |ψk⟩ with the normalisation condition
∑

k pk = 1.

The density matrix is obtained from the density operator by choosing a base in the respective

Hilbert space. The density matrix ρ is hermitian and satisfies the normalization condition

tr(ρ) = 1. An ensemble (or state) is called pure when there is only one probability weight

4



2. Theoretical Background

pn = 1 for one state |ψn⟩ and pk = 0 for all other states |ψk⟩ with k ̸= n. Consequently the

density matrix can be written as ρ = |ψn⟩ ⟨ψn| and thus ρ2 = ρ and tr
(
ρ2
)
= 1. Otherwise,

the ensemble (or state) is called mixed. (see [14] sec. 3.4.2)

2.3.2. Schmidt Decomposition
Let us consider the bipartition of the m dimensional Hilbert space H in two subsystems A

and B with their mA(B) dimensional Hilbert space HA(B). The tensor product of the Hilbert

spaces HA and HB composes the Hilbert space H, meaning

H = HA ⊗HB (2.10)

with m = mAmB. Let {|i⟩A} and {|j⟩B} be orthonormal bases of the respective Hilbert

spaces HA and HB. Hence {|i⟩A ⊗ |j⟩B} is an orthonormal base of the Hilbert space H and

any pure state |ψ⟩ ∈ H can be written as

|ψ⟩ =
∑
i,j

aij |i⟩A ⊗ |j⟩B =
∑
i,j

aij |iAjB⟩ (2.11)

where aij ∈ C is an amplitude which satisfies the normalisation condition
∑

i,j |aij |2 = 1 if

the state |ψ⟩ is normalized. To represent the state |ψ⟩ in a more convenient way we write all

amplitudes aij in a mA ×mB matrix ψ, with aij = ψij , perform a SVD of ψ and obtain the

matrices U , V † and Λ (S in sec. 2.2.1). This allows us to write aij as
∑k

α=1 UiαΛαV
†
αj , where

k is the rank of the matrix ψ. Hence we can write eq. (2.11) as

|ψ⟩ =
∑
i,j

k∑
α=1

UiαΛαV
†
αj |i⟩A⊗|j⟩B =

k∑
α=1

Λα

∑
i

Uiα |i⟩A⊗
∑
j

V †
αj |j⟩B =

k∑
α=1

Λα |α⟩A⊗|α⟩B
(2.12)

where we used U and V † to map {|i⟩A} and {|j⟩B} into a new base {|α⟩A} and {|α⟩B}. This

decomposition is called the Schmidt decomposition. The orthonormal base kets |α⟩A(B) ∈
HA(B) are also called Schmidt states and the unique amplitude Λα ∈ R≥0 is also called

Schmidt coefficient or Schmidt value, which satisfies the normalization condition
∑

α Λ
2
α = 1

if the state |ψ⟩ is normalized. As with the SVD, the Schmidt base is unique up to degeneracies

and a gauge transformation ϕ (see eq. (2.7)). Note that the Schmidt decomposition has a

maximum of k = min(mA,mB) terms since there exist only mA(B) orthonormal base kets

|α⟩A(B) which span the Hilbert space HA(B). As we will see in the next section, the Schmidt

decomposition gives us direct insight into the bipartite entanglement of the state. (see [22]

sec. 10.2.1, lem. 10.1.2., [20] sec. 4.1.1 and [13] sec. 2)

2.3.3. Entanglement Entropy
The entanglement entropy of the bipartite system in sec. 2.3.2 is defined as the von Neuman

entropy of the reduced density matrix ρA or ρB

SvN = SvN(ρB) = SvN(ρA) = −tr(ρA log ρA) (2.13)

5



2. Theoretical Background

where the reduced density matrix ρA of a pure state is defined as the partial trace of the

density matrix ρ = |ψ⟩ ⟨ψ|, thus ρA = trB(|ψ⟩ ⟨ψ|). The eigenvalues and eigenstates of ρA
are the squared Schmidt values Λα and Schmidt states |α⟩A of the schmidt decomposition

of |ψ⟩ (see eq. (2.12)). Meaning the reduced density matrix can be written in the spectral-

decomposition ρA =
∑

α Λ
2
α |α⟩A ⟨α|A (equivalent for ρB). Consequently eq. (2.13) can be

expressed as

SvN = −
∑
α

Λ2
αlogΛ

2
α. (2.14)

The larger the entanglement entropy SvN is, the more entangled the subsystem A and B.

If there is no entanglement between subsystem A and B, the entanglement entropy SvN is

zero, meaning there is only one Schmidt value with Λ1 = 1, while all others are zero. In

other words, a pure state |ψ⟩ ∈ H = HA ⊗ HB is not entangled if it can be written as a

product state |ψ⟩ = |ϕ⟩A ⊗ |ϕ⟩B, where |ϕ⟩A(B) ∈ HA(B). Moreover, if subsystem A and B

are entangled, the reduced density matrix ρA(B) represents a mixed state on the respective

subsystem A(B). (see [22] sec. 7.1, sec. 10.3.1 and [13] sec. 2)

2.3.4. Area Law
Let us consider a one-dimensional quantum chain with N sites and d local basis states,

which is “cut” (bipartite) in half in two subsystems L and R, where L(R) represents the left

(right) part of the system. The entanglement entropy of a randomly chosen state |ψrand⟩ ∈
H = HL ⊗ HR is given by SvN ≈ N

2 log d − 1
2 [23, 24]. This means that the entanglement

entropy grows proportional to the size N/2 of the subsystem. More generally speaking, it

grows proportional to the volume of the of the smaller subsystem. This property is called

volume law. In contrast to that, the entanglement entropy of a ground state |ψ0⟩ ∈ H =

HL ⊗HR of a gapped and local Hamiltonian H is independent of the subsystem size, hence

constant [25, 26]. More generally speaking, it grows proportional to the area of the cut, which

is zero for a one-dimensional system. This property is called area law. Even though the

area law states form only a small manifold of the whole Hilbert space H they contain the

low-energy states of gapped and local Hamiltonians. If a state |ψ⟩ ∈ H = HL ⊗ HR is

an area law state, only a small amount of Schmidt values Λα significantly contribute to the

Schmidt decomposition. This allows us to efficiently compress quantum states by truncating

the Schmidt decomposition. In this context, efficiently means that we find a finite η, which is

independent of the system size, for all ε > 0 such that

|| |ψ⟩ − |ψtrunc⟩ || =
∣∣∣∣∣
∣∣∣∣∣|ψ⟩ −

η∑
α=1

Λα |α⟩A ⊗ |α⟩B

∣∣∣∣∣
∣∣∣∣∣ =

√√√√ k∑
α=η+1

Λ2
α < ε. (2.15)

This property shows that we do not need to consider the whole Hilbert space to describe area

law states and allows us to efficiently describe area law states with MPS, as we will see in

the next section. (see [13] sec. 2.1 and [27] sec. 3.4)
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2. Theoretical Background

2.4. Finite Systems in One Dimension

In this work, we limit ourselves to one-dimensional, finite systems. Hence, moving forward,

we consider a one-dimensional quantum chain with N sites. The local Hilbert space of site

n is spanned by d local basis states |jn⟩. In the following, we will give an overview of the

diagrammatic notation of tensor networks followed by the introduction of the MPS and MPO

formalism, which is mainly based on Ref. [13] and [20].

2.4.1. Tensor Network Notation
While the diagrammatic notation of tensor networks is widely used in the field, there are some

minor differences when it comes to the notation and visual representation of tensors. We rep-

resent a tensor Tγ1γ2...γN withN indicies γn by a symbol withN legs, like in Fig. 1(a). A tensor

with two indices is a matrix M and a tensor with one index is a vector v. Moreover, a tensor

with zero indices represents a scalar, which is, for example, the result of a full contraction of

two tensors. Connecting two tensors means contracting the corresponding indices (legs) by

summing over them, thus performing a generalization of the matrix multiplication. For exam-

ple the contraction of two legs γ1 and β2 of two tensors T [1]
γ1γ2 and T [2]

β1β2β3
, as illustrated in

Fig. 1(b), is given by ∑
k

T
[1]
kγ2
T
[2]
β1kβ3

= θγ2β1β3 (2.16)

where θγ2β1β3 is the contracted tensor. Later, we will use “physical” and “virtual” indices where

we write the former as superscript and the latter as subscript. Virtual indices are indices

belonging to matrices. For example, if we contract multiple tensors of the form T
[n]γn
αnαn+1 ,

which are collections of dim(γn) matrices, in a row as shown in Fig. 1(c), we express the

contraction as ∑
α2,α3

T [1]γ1
α1α2

T [2]γ2
α2α3

T [3]γ3
α3α4

= T [1]γ1T [2]γ2T [3]γ3 = θγ1γ2γ3α1α4
(2.17)

where we recognized the sums over α2 and α3 as matrix multiplication and remove the virtual

indices from the tensors T [n]γn
αnαn+1 . Another tensor operation is the reshaping of tensors, where

we change the way how we organize the variables in tensors to use matrix decompositions,

such as the SVD or QR decomposition, on multi-leg tensors. A simple example is reshaping

a d1 × d2 × d3 tensor T γ1
α1α2 into a (d1d2)× d3 tensor T(γ1α1)α2

. In the diagrammatic notation,

we visualize a reshaped tensor by merging the respective legs of the tensor, as shown in Fig.

1(d). Although there are many more details to tensor networks (see [28] sec. 2., sec. 3. and

[29] sec. 5.2), we will stop here and develop the necessary properties and notations on the

fly.

7



2. Theoretical Background

(a)

(c)

(b)

(d)

Figure 1: (a) Diagrametic notation of a tensor Tγ1γ2...γN with N indices (legs) γn, a matrix
M and a vector v. (b) Contraction of two tensors T [1]

γ1γ2 and T [2]
β1β2β3

, yielding the contracted
tensor θγ2β1β3 as written in eq. (2.16). (c) Contraction of three tensors of the same form

T
[n]γn
αnαn+1 yielding the contracted tensor θγ1γ2γ3α1α4 , which can be written as a product of matrices

as in eq. (2.17). (d) Reshaping a three-leg tensor T γ1
α1α2 into a two-leg tensor T(γ1α1)α2

.

(b)

(a)

(c)

(d)

(e)

and

Figure 2: (a) Diagrammatic notation of a state |ψ⟩ as MPS as in eq. (2.18) (b) A state |ψ⟩ in
the canonical form as in eq. (2.25). Also shown is the relation to the mixed canonical form
with eq. (2.26) and the Schmidt decomposition of the bipartite system H = HL ⊗HR, where
α
[L(R)]
n is the MPS of the state |αn⟩L(R). (c) Diagrammatic notation of the hermitian conjugate

of a state |ψ⟩: ⟨ψ| = |ψ⟩†. (d) Orthogonality condition of the left and right semi-unitary form A
and B as in eq. (2.27). (e) Diagrammatic notation of an operator O as MPO as in eq. (2.28).
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2. Theoretical Background

2.4.2. Matrix Product States (MPS)
A generic pure state |ψ⟩ (see eq. (2.1)) can be written as a MPS [30–32]

|ψ⟩ =
∑

j1,j2,...,jN

∑
α2,...,αN

M [1]j1
α1α2

M [2]j2
α2α3

. . .M [N ]jN
αNαN+1

|j1, j2, . . . , jN ⟩

=
∑

j1,j2,...,jN

M [1]j1M [2]j2 . . .M [N ]jN |j1, j2, . . . , jN ⟩
(2.18)

where M [n]jn
αnαn+1 is a tensor with the virtual indices αn and αn+1 and the physical index jn.

To ensure that the product of all χn × χn+1 matrices M [n]jn forms a scalar (to be precise, a

1 × 1 matrix), namely ψj1j2...jN , the bond dimension χ of the boundary legs α1 and αN+1 is

one, hence χ1 = χN+1 = 1. This means the first and last matrices are essentially vectors.

However, defining them as matrices leads to a consistent layout of the MPS. Every site n

has d local basis states |jn⟩ , jn ∈ {1, 2, . . . , d}, which result, for a generic state |ψ⟩, in

d different matrices M [n]jn . The collection of all d matrices M [n]jn is represented by the

already introduced tensor M [n]jn
αnαn+1 . This allows us to represent |ψ⟩ as a tensor ψj1j2...jN in

MPS form, as shown in Fig. 2(a). In general, any pure state can be represented exactly by

a MPS. However, it is evident from app. A, which shows how to obtain the MPS of any pure

state |ψ⟩, that the bond dimension χ grows exponentially with each site up to χ ∼ dN/2 in the

middle of the chain. Nevertheless, the canonical form introduced in the next section links the

MPS with the Schmidt decomposition and allows us to efficiently compress the MPS of area

law states. ([20] sec. 4.1.4 and [13] sec. 3.1)

2.4.3. Canonical Form
The MPS representation in eq. (2.18) is not unique, for example the MPS is invariant under

the gauge transformation

M [n]jn → M̃ [n]jn :=M [n]jnX−1 , M [n+1]jn+1 → M̃ [n+1]jn+1 := XM [n+1]jn+1 (2.19)

where X is a invertible χn+1 × χn+1 matrix. The gauge may be chosen such that the MPS

is in a more convenient manner, in the so-called “canonical form”. The left canonical form

of a MPS can be obtained by proceeding as instructed by Ref. [20] sec. 4.4. We start by

reshaping the tensor M [n]jn
αnαn+1 to M [n]

(jnαn)αn+1
and perform a SVD

M
[n]
(jnαn)αn+1

=
∑
βn+1

A
[n]
(jnαn)βn+1

Xβn+1αn+1 with Xβn+1αn+1 = Λ
[n+1]
βn+1βn+1

(V †)βn+1αn+1

(2.20)

where A[n]
(jnαn)βn+1

and (V †)βn+1αn+1 are semi-unitary matrices and Λ
[n+1]
βn+1βn+1

is a diagonal

matrix containing the singular values of M [n]
(jnαn)αn+1

. We reshape the matrix A[n]
(jnαn)βn+1

to

a tensor A[n]jn
αnβn+1

and treat Xβn+1αn+1 as a transformation matrix for M [n+1]jn+1
αn+1αn+2 to obtain

9



2. Theoretical Background

M̃
[n+1]jn+1

βn+1αn+2
. We use eq. (2.20) to replace M [1]j1

α1α2 in eq. (2.18):

|ψ⟩ =
∑

j1,j2...,jN

∑
α2,...,αN

M
[1]
(j1α1)α2

M [2]j2
α2α3

. . .M [N ]jN
αNαN+1

|j1, j2, . . . , jN ⟩

=
∑

j1,j2,...,jN

∑
α2,...,αN

∑
β2

A
[1]
(j1α1)β2

Xβ2α2M
[2]j2
α2α3

. . .M [N ]jN
αNαN+1

|j1, j2, . . . , jN ⟩

=
∑

j1,j2,...,jN

∑
α3,...,αN

∑
β2

A
[1]j1
α1β2

M̃
[2]j2
β2α3

. . .M [N ]jN
αNαN+1

|j1, j2, . . . , jN ⟩ .

(2.21)

We proceed analogously with the next sites hence for n = 2 we get:

M̃
[2]j2
β2α3

= M̃
[2]
(j2β2)α3

=
∑
β3

A
[2]
j2β2β3

Xβ3α3 ⇒ A
[2]j2
β2β3

and M̃ [3]j3
β3α4

. (2.22)

We iterate over every site in this manner until we reach the last site, where we obtain a 1× 1

transformation matrix XβN+1αN+1
containing the norm of the state |ψ⟩, which complies with

the boundary condition of the MPS. We rename the index α1 to β1 and get

|ψ⟩ =
∑

j1,j2,...,jN

∑
β2,...,βN

A
[1]j1
β1β2

A
[2]j2
β2β3

. . . A
[N ]jN
βNβN+1

|j1, j2, . . . , jN ⟩ (2.23)

which is a MPS in left canonical form. The right canonical form can be obtained analogously

by starting the above algorithm at the last site and iterating to the left with

M
[n]
αn(jnαn+1)

=
∑
βn

XαnβnB
[n]
βn(jnαn+1)

with Xαnβn = UαnβnΛ
[n]
βnβn

. (2.24)

The left and right canonical form is related to the canonical form [33, 34]

|ψ⟩ =
∑

j1,j2,...,jN

Λ[1]Γ[1]j1Λ[2]Γ[2]j2Λ[3] . . .Λ[N ]Γ[N ]jNΛ[N+1] |j1j2 . . . jN ⟩ (2.25)

where Λ[1] = Λ[N+1] = (1) are 1× 1 boundary matrices, with

A[n]jn = Λ[n]Γ[n]jn and B[n]jn = Γ[n]jnΛ[n+1]. (2.26)

As it turns out, the canonical form allows us to read off the Schmidt decomposition of the

bipartite system H = HL ⊗HR, where L represents the left side, containing sites 1 to n− 1,

and R the right side, containing sites n to N . The Schmidt states |αn⟩L and |αn⟩R can

be obtained by contracting all tensors left and right to the diagonal matrix Λ[n] containing

the Schmidt values of the Schmidt decomposition, as visualized in Fig. 2(b). The Schmidt

decomposition can be obtained in a similar manner when the MPS of the state is in a mixed

canonical form, meaning the MPS is formed by A and B tensors, as visualized in Fig. 2(b) as

well.

Note that the QR and LQ decomposition can be used to obtain general semi-unitary matrices

A and B. We replace the SVD in eq. (2.20) (eq. (2.24)) with the QR (LQ) decomposition,

10



2. Theoretical Background

where the semi-unitary matrix Q replaces A (B) and R (L) replace the transformation matrix

X. However, we are not obtaining the Schmidt values and do not map into the Schmidt base

as with the SVD. Hence, we are not yielding the canonical form. We call this form the left and

right semi-unitary form. Although the semi-unitary form is weaker than the canonical form, it

allows us to make use of the orthogonality conditions(
A

[n]
(jnαn)βn

)†
A

[n]
(jnαn)βn

= 1 and B
[n]
(jnαn)βn

(
B

[n]
(jnαn)βn

)†
= 1. (2.27)

This relation holds for the canonical form and the semi-unitary form since, in both cases,

A
[n]
(jnαn)βn

and B[n]
(jnαn)βn

are semi-unitary matrices. By convention, we draw the physical legs

of a bra, which is the hermitian conjugate of the ket MPS, hence ⟨ψ| = |ψ⟩†, as pointing

upwards and denote them as j′n, as demonstrated in Fig. 2(c). Hence eq. (2.27) transfers to

the relation shown in Fig. 2(d). ([13] sec. 3.2)

2.4.4. Compression of a MPS
To compress a MPS of a state |ψ⟩, we truncate the bond dimensions between the sites.

To truncate the bond dimension χn of a bond αn between site n − 1 and n of a MPS in

canonical form, as in 2(b), we keep only the η ≤ χn most relevant Schmidt values Λ
[n]
α

and truncate the corresponding rows of A[n−1]jn−1 and columns of B[n]jn . Mathematically,

the truncation is described by a χn × η (or η × χn) projection matrix Pη to truncate rows

(or columns), which is applied from the right (or left). To keep the state normalized, we

renormalize the remaining Schmidt values. As already mentioned in sec. 2.4.2 the MPS can

only be compressed efficiently, meaning according to eq. (2.15), if the state obeys the area

law. This allows us to limit the required storage space from ∼ dN bytes (see sec. 2.1) to

∼ Ndη2 bytes for an area law state, assuming a truncated bond dimension η for each bond

of the system. ([20] sec. 4.1.3 and 4.5, [13] sec. 3.2)

2.4.5. Matrix Product Operators (MPO)
Similar to the MPS an operator O can be written as MPO

O =
∑

j1,j2,...,jN

∑
j′1,j

′
2,...,j

′
N

vLW [1]j1j′1W [2]j2j′2 . . .W [N ]jN j′N vR |j1, j2, . . . , jN ⟩ ⟨j′1, j′2, . . . , j′N |

(2.28)

where W [n]jnj′n is a D ×D matrix with the physical indices jn and j′n. vL and vR are the left

and right boundary vectors of the MPO. The matrix W [n]jn,j′n contains D2 d× d matrices and

forms the tensor W [n]jnj′n
γnγn+1 . The diagrammatic notation of a MPO can be seen in Fig. 2(e).

In sec. 4.1.1 we show how the MPO of a Hamiltonian, and its corresponding time evolution

operator is obtained. ([20] sec. 5., [13] sec. 3.4)
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3. MPO Based Time-Evolution

In this chapter, we propose, analog to the QR decomposition based TEBD [11], a MPO

based time evolution [12] which relies on the QR decomposition instead of the SVD. We start

by showing how to apply a time evolution MPO to a state represented by a MPS to obtain the

MPS of the evolved state. This procedure is referred to as the time evolution algorithm. A cen-

tral part of this algorithm is the decomposition and truncation of a two-site wavefunction. The

algorithm performing this decomposition and truncation is referred to as truncation scheme,

truncation method, or just truncator. These truncation methods usually rely on a SVD. This

is where the variational QR decomposition based truncation comes into play, which we in-

troduce with and without controlled bond expansion (CBE). Additionally, we implement the

established SVD based truncator as a reference. These three truncation schemes are re-

ferred to as QR+CBE, QR and SVD. Information about the developed object-based Python

library, where the respective algorithms have been implemented, can be found in app. B. We

conclude this chapter by calculating the computational cost for the time evolution algorithm

and the three truncation schemes.

3.1. Time Evolution Algorithm

As a recap, to compute the evolved state |ψt+∆t⟩ = |ψ(t0 +∆t)⟩ of a state |ψt⟩ = |ψ(t0)⟩,
we need to apply the time evolution operator U to the state |ψt⟩ (see eq. (2.3)). The evolved

state |ψt+∆t⟩ can be determined exactly, but the bond dimension χ would grow exponentially

with the time t [35]. To efficiently represent the MPS we want to limit the maximum allowed

bond dimension by χmax. Consequently we only approximate the exact evolved state |ψt+∆t⟩
by an approximation |ϕt+∆t⟩. Thus, we want to find an approximated evolved state |ϕt+∆t⟩
which has a minimum distance to the exact evolved state |ψt+∆t⟩ = U |ψt⟩, hence minimize

the distance

∆2 = || |ϕt+∆t⟩ − U |ψt⟩ ||2 = ⟨ϕt+∆t|ϕt+∆t⟩+ ⟨ψt|U †U |ψt⟩ − 2Re ⟨ϕt+∆t|U |ψt⟩ . (3.1)

The time evolution operator U is unitary and |ψt⟩ assumed to be normalized, thus

⟨ψt|U †U |ψt⟩ can be determined to 1. The approach to minimize the distance ∆ is very similar

to the DMRG algorithm [1], we variationally optimize a two-site wavefunction, represented by

(θt+∆t)
[n]jnjn+1
αnαn+2

=
∑

βn,αn+1

(Λt+∆t)
[n]
αnβn

(Bt+∆t)
[n]jn
βnαn+1

(Bt+∆t)
[n+1]jn+1
αn+1αn+2

(3.2)

of the MPS, while keeping all other tensors fixed. The diagrammatic notation of ⟨ϕt+∆t|ϕt+∆t⟩
and ⟨ϕt+∆t|U |ψt⟩ is shown in Fig. 3(a), where we introduce the left and right environment

L[n] and R[n+1] containing the contraction of the tensors left and right to the two-site tensor

(θt+∆t)
[n]jnjn+1
αnαn+2 . For ⟨ϕt+∆t|ϕt+∆t⟩ we use the orthonormality condition for the left and right

semi-unitary form (see eq. (2.27)) to reduce the term to a local contraction of (θt+∆t)
[n]jnjn+1
αnαn+2

12



3. MPO Based Time-Evolution

and (θt+∆t)
[n]j′nj

′
n+1

αnαn+2
. We optimize ∆2 in eq. (3.1) with respect to (θt+∆t)

[n]jnjn+1
αnαn+2

, hence

∂∆2/∂(θt+∆t)
[n]j′nj

′
n+1

αnαn+2
= 0 to obtain a update rule for (θt+∆t)

[n]jnjn+1
αnαn+2 as is ilustrated in the

diagrammatic notation in Fig. 3(b). Note that we used that the derivative of a tensor network,

which is linearly dependent on a tensor, with respect to that tensor, is the tensor network

where the respective tensor has been removed (see [29] sec. 5.2.3). As shown in Fig. 3(c),

we can determine the approximated evolved state |ϕt+∆t⟩ with the following steps:

(i) First, we calculate the left environment L[1] and all right environments

R[N ], R[N−1], . . . , R[2] with an initial guess for the approximated evolved state |ϕt+∆t⟩,
which we assume to be in the right semi-unitary form (the developed library uses |ψt⟩ as

initial guess for |ϕt+∆t⟩).

(ii) We compute the two-site tensor (θt+∆t)
[n]jnjn+1
αnαn+2 and use a truncation method (for now, we

treat them as a given, we will define them in sec. 3.2) to get the tensors (At+∆t)
[n]jn
αnαn+1

and (Ct+∆t)
[n+1]jn+1
αn+1αn+2 for site n and n+ 1, where we only need the former.

(iii) The tensor (At+∆t)
[n]j′n
αnαn+1

is contracted to the left environment L[n], together with

(At)
[n]jn
αnαn+1 and W [n]jnj′n

γnγn+1 , to retrive the left environment L[n+1]. It is convenient to store

the left environments L[n] for each site n before contracting them to retrieve L[n+1], as

they are needed in the next step.

We perform step (ii) and (iii) for n = 1, 2, . . . , N − 2 and collect the left environments

L[1], L[2], . . . , L[N−1]. Then, we change the direction and go from right to left, starting at

site N − 1:

(iv) We compute the two-site tensor (θt+∆t)
[n]jnjn+1
αnαn+2 and use a truncation method to get the

tensors (Ct+∆t)
[n]jn
αnαn+1 and (Bt+∆t)

[n+1]jn+1
αn+1αn+2 for site n and n+1, where we only need the

latter. Depending on the truncation method, we receive the Schmidt values (Λt+∆t)
[n+1]

for site n+ 1 as well.

(v) Besides using the obtained tensors (Bt+∆t)
[n+1]jn+1
αn+1αn+2 to get the right environment R[n]

for the next step, we save the tensor together with the Schmidt values (Λt+∆t)
[n+1], if

available, to update the initial guess of the approximated evolved state |ϕt+∆t⟩.

We perform step (iv) and (v) for n = N−1, N−2, . . . , 1 and collect the updated right environ-

ments R[N ], R[N−1], . . . , R[2]. Once we reach the first site again, one “sweep” is completed,

and we have an updated approximated evolved state |ϕt+∆t⟩ in the right semi-unitary form. If

we are not satisfied with the distance ∆ between the approximated evolved state |ϕt+∆t⟩ and

the exact evolved state |ψt+∆t⟩ we can, to some extent, improve the approximation with addi-

tional sweeps. We will investigate the improvement of the distance ∆ in dependence on the

number of sweeps on a practical model in sec. 4.1.2. Once satisfied with the approximation

one time step form |ψt⟩ to |ϕt+∆t⟩ ≈ |ψt+∆t⟩ is completed.
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3. MPO Based Time-Evolution

(a)

(b)

(c) (ii)

(iii)

(iv)

(v)

Figure 3: (a) The squared norm ⟨ϕt+∆t|ϕt+∆t⟩ of the approximated evolved state |ϕt+∆t⟩ in
mixed canonical form and its overlap ⟨ϕt+∆t|U |ψt⟩ with the exact evolved state |ψt+∆t⟩ =
U |ψt⟩, where the time evolution operator U is given by an MPO. The left and right environ-
ments L[n] and R[n] contain the contractions left and right to site n and n+1. (b) The update
rule for the two-site wavefunction represented by the two-site tensor θ[n]t+∆t as a result of the
minimization of ∆2 in eq. (3.1). (c) Steps for one sweep: (ii)/(iv) Calculate and truncate the
two-site tensor θ[n]t+∆t to retrieve the left/right semi-unitary form A

[n]
t+∆t/B

[n+1]
t+∆t for site n/n+ 1.

(iii)/(v) Use the obtained tensor A[n]
t+∆t/B

[n+1]
t+∆t to update the left/right environment L/R.
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(a)

(b)

(i)

(ii)

(i)

(c)

(ii)

(v)

(iii)

(iv)

(iv)

(i)-(iii)

"SVD"

EIG

as in (b) 

LQ

QR

SVD

Figure 4: Diagramatic notation on how to obtain the right semi-unitary form B[n+1] for site
n+1 of the different truncation schemes: (a) Algorithm for the SVD based truncation method:
(i) Perform a SVD of the reshaped two-site tensor θ[n]. (ii) Truncate the tensors and assign
them to A[n], B[n+1] and Λ[n+1]. Compute C [n] to have a uniform layout. (b) Algorithm for
the QR decomposition based truncation method: (i) Use the truncated two-site tensor θ[n]

as an initial guess for the tensor M̃ [n+1] at site n + 1. (ii) Contract the two-site tensor θ[n]

with M̃
[n+1]

to get the tensor M [n] and perform a QR decomposition of M [n]. (iii) Contract
the two-site tensor θ[n] with Q

[n]
to get the tensor M [n+1] and perform a LQ decomposition

of M [n+1]. Repeat step (ii) and (iii) with M̃ [n+1] = Q[n+1] to improve the decomposition if
desired. (iv) Assign the tensor Q[n+1] to B[n+1] and compute C [n]. (c) Algorithm for the QR
decomposition based method with CBE: Steps (i)-(iii) are the same as in (b). (iv) Perform a
spectral-decomposition (EIG) of L†L to obtain the matrix V and S, yielding parts of the SVD
of L. Instead of calculating the “left” side U of the SVD we write L as LV V †. (v) Use V †

to map Q[n+1] into the Schmidt base. Contract and truncate the tensors and assign them to
C [n], B[n+1] and Λ[n+1].
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3. MPO Based Time-Evolution

3.2. Truncation Schemes

In this section, we define the three truncation schemes (SVD, QR and QR+CBE) to decom-

pose and truncate a two-site tensor into either θ[n]jnjn+1
αnαn+2 =

∑
αn+1

A
[n]jn
αnαn+1C

[n+1]jn+1
αn+1αn+2 if the

left semi-unitary form of site n is of interest or θ[n]jnjn+1
αnαn+2 =

∑
αn+1

C
[n]jn
αnαn+1B

[n+1]jn+1
αn+1αn+2 if the

right semi-unitary form of site n + 1 is of interest. In contrast to the QR truncator, we ob-

tain A
[n]jn
αnαn+1 or B[n+1]jn+1

αn+1αn+2 in the left or right canonical form including the Schmidt values

(Λt+∆t)
[n+1] for site n + 1 for the SVD and QR+CBE based truncation method. In the fol-

lowing, we explain the truncation methods as if the right semi-unitary form of site n + 1 is

of interest. The left semi-unitary form of site n can be obtained analogously. Moreover, for

simplicity we refer to θ[n]jnjn+1
αnαn+2 as d× d× χ× χ tensor, which is in general not the case. All

three methods are designed to handle any d× d× χ1 × χ2 tensor.

3.2.1. SVD Based Method
Out of the three methods, the SVD based truncation method is the most straightforward one.

We essentially perform a Schmidt decomposition of the bipartite system H = Hn ⊗ Hn+1.

We proceed as illustrated in Fig. 4(a):

(i) We start by reshaping the tensor θ[n]jnjn+1
αnαn+2 into the dχ × χd matrix θ[n](jnαn)(αn+2jn+1)

and

perform a SVD of this matrix: θ[n](jnαn)(αn+2jn+1)
=

∑
β U

[n]
(jnαn)β

S
[n+1]
ββ (V †)

[n+1]
β(αn+2jn+1)

. The

obtained semi-unitary matrices are reshaped into the tensors U [n]jn
αnβ

and (V †)
[n+1]jn+1

βαn+2
.

(ii) Next, we truncate the tensors and assigning them to the sites: A[n]jn
αnγ =

∑
β U

[n]jn
αnβ

(Pη)βγ ,

Λ
[n+1]
γαn+1 =

∑
β(Pη)γβS

[n+1]
ββ (Pη)βαn+1 and B[n+1]jn+1

αn+1αn+2 =
∑

β(Pη)αn+1β(V
†)

[n+1]jn+1

βαn+2
. Fi-

nally, we renormalize Λ
[n+1]
γαn+1 and compute C [n]jn

αnαn+1 =
∑

γ A
[n]jn
αnγ Λ

[n+1]
γαn+1 to get a uniform

layout of the returned tensors of the truncators.

The projection matrix Pη (as introduced in sec. 2.4.4) truncates the bond dimension χ to a

desired value η by keeping the η largest singular values. We dynamically adjusted η ≤ χmax

to the number of Schmidt values, which are bigger than a chosen threshold. Moreover, χmax

is a defined limit for η to avoid a blow-up in the bond dimension. The SVD based truncation

delivers the best possible approximation of the two-site tensor θ[n]jnjn+1
αnαn+2 , as it exactly yields

the Schmidt decomposition. The truncation error can be determined analog to eq. (2.15), by

εtrunc =

√√√√ χd∑
α=η+1

(Λ[n+1])2α. (3.3)

3.2.2. QR Decomposition Based Method
While the QR decomposition gives us a semi-unitary matrix, we do not obtain the Schmidt

values or map into the Schmidt base as with the SVD. Meaning we can not directly perform a

QR decomposition of the two-site matrix θ[n](jnαn)(αn+2jn+1)
since we would have no measure
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3. MPO Based Time-Evolution

on how to truncate the matrices afterward. Instead, we perform a local minimization as intro-

duced in Ref. [11]. We proceed analogously to sec. 3.1; We want to find a state |θapp⟩ which

has a minimum distance to the exact state |θ⟩. Hence, we want to minimize the distance

∆2 = || |θ⟩ − |θapp⟩ ||2 = ⟨θ|θ⟩+ ⟨θapp|θapp⟩ − 2Re ⟨θ|θapp⟩ . (3.4)

We proceed as illustrated in Fig. 4(b):

(i) We start by reshaping the tensor θ[n]jnjn+1
αnαn+2 into the dχ × d × χ tensor θ[n]jn+1

(jnαn)αn+2
. Then

we truncate the leg (jnαn) of the tensor and use it as our initial guess for the tensor for

site n+1: M̃ [n+1]jn+1

βαn+2
=

∑
(jnαn)

(Pη)β(jnαn)θ
[n]jn+1

(jnαn)αn+2
. Note that we start with the initial

guess at site n instead of n+ 1 when the left semi-unitary form of site n is of interest.

(ii) We define the approximated state as |θapp⟩ =
∑

jn,jn+1

∑
βM

[n]jn
αnβ

M̃
[n+1]jn+1

βαn+2
|jn, jn+1⟩,

where M
[n]jn
αnβ

is the tensor at site n. We update M
[n]jn
αnβ

by minimizing eq. (3.4) with

respect to M [n]jn
αnβ

and using the orthonormality condition to get the update rule: M [n]jn
αnβ

=∑
jn+1,αn+2

θ
[n]jnjn+1
αnαn+2 M̃

[n+1]jn+1

βαn+2
. We reshape the updated tensor M [n]jn

αnβ
into the χd × η

matrix M [n]
(jnαn)β

and perform a QR decomposition to obtain the left semi-unitary form for

site n: M [n]
(jnαn)β

=
∑

γ Q
[n]
(jnαn)γ

Rγβ . By reshaping the tensor, we obtain Q[n]jn
αnγ , which is

our new guess for site n.

(iii) Similar to step (ii) we get the update rule for the tensor on site n + 1: M [n+1]jn+1
γαn+2 =∑

jn,αn
Q

[n]jn
αnγ θ

[n]jnjn+1
αnαn+2 . Next, we reshape M [n+1]jn+1

γαn+2 into the η×χd matrix M [n+1]
γ(αn+2jn+1)

and perform a LQ decomposition to obtain the right semi-unitary form for site n + 1:

M
[n+1]
γ(αn+2jn+1)

=
∑

αn+1
Lγαn+1Q

[n+1]
αn+1(αn+2jn+1)

. By reshaping the tensor, we obtain

Q
[n+1]jn+1
αn+1αn+2 , which is our new guess for site n+ 1.

This completes one iteration. The approximation |θapp⟩ can be improved by either fixing

η = χmax and repeating step (ii) and (iii) Nit times with an updated initial guess M̃ [n+1]jn+1

βαn+2
=

Q
[n+1]jn+1
αn+1αn+2 , which scales with Nitχ

3d2, or by increasing η, which scales with χ2ηd2. The

stated scaling factors originate in eq. (3.8) in the upcoming section about the computational

costs. The approximation |θapp⟩ can be quantified by the truncation error εtrunc, as introduced

in eq. (3.5). Once satisfied with the approximation, we can proceed with the final step:

(iv) Finally we renormalize Lγαn+1 , compute C
[n]jn
αnαn+1 =

∑
γ Q

[n]jn
αnγ Lγαn+1 and asign

B
[n+1]jn+1
αn+1αn+2 = Q

[n+1]jn+1
αn+1αn+2 .

The default setting of the developed library is to not improve |θapp⟩, neither with more itera-

tions nor with an adjusted η. We will see how this affects the time evolution in sec. 4.2 by

monitoring the truncation error, which we define as

εtrunc = ||θ − θapp||. (3.5)
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3. MPO Based Time-Evolution

3.2.3. QR Decomposition Based Method with CBE
To improve the QR decomposition based method, we determine the Schmidt values Λ[n+1]

and map Q[n+1]jn+1 into the Schmidt base by performing a spectral-decomposition of L†L.

This allows us to implement a CBE for the QR decomposition based method. To do so we

expand steps (i)-(iii) and replace step (iv) from sec. 3.2.2 by the following steps (as illustrated

in Fig. 4(c)):

(iv) To obtain the spectral-decomposition (EIG in Fig. 4(c)), we calculate the eigenvalues and

eigenvectors of L†L, arrange the eigenvalues in descending order in a diagonal matrix D

and the corresponding eigenvectors in a matrix V to get: L†L = V DV †. We know from

sec. 2.2.1, that performing the spectral-decomposition of L†L yields the singular values

S =
√
D and a unitary matrix V of the SVD of L: L = USV †. Consequently we can

replace the matrix Lγαn+1 from step (iii) in sec. 3.2.2 by USV †. However, we do not have

U , but as it turns out, we do not need it to properly represent θ[n]jnjn+1 , since we can

write L as LV V †. This way, we can map Q[n+1]jn+1 into the Schmidt base and obtain the

Schmidt values S without computing the whole SVD. Note that if the left canonical form

of site n is of interest, we perform a spectral-decomposition of RR† to obtain the unitary

matrix U and write R as UU †R.

(v) According to step (ii) and (iii) from sec. 3.2.2 the two-site tensor can be written as

θ
[n]jnjn+1
αnαn+2 =

∑
γ,αn+1

Q
[n]jn
αnγ Lγαn+1Q

[n+1]jn+1
αn+1αn+2 . Now we replace Lγαn+1 with the expres-

sion derived in the last step and get θ[n]jnjn+1
αnαn+2 =

∑
γ,δ,ζ,κQ

[n]jn
αnγ LγδVδζ(V

†)ζκQ
[n+1]jn+1
καn+2 .

We compute and truncate the tensors C
[n]jn
αnαn+1 =

∑
γ,δ,ζ Q

[n]jn
αnγ LγδVδζ(Pη)ζαn+1 and

B
[n+1]jn+1
αn+1αn+2 =

∑
ζ,κ(Pη)αn+1ζ(V

†)ζκQ
[n+1]jn+1
καn+2 . For the Schmidt values we get Λ[n+1]

γαn+1 =∑
β(Pη)γβSββ(Pη)βαn+1 . We conclude the step by renormalizing C [n]jn

αnαn+1 and Λ
[n+1]
γαn+1 .

A few remarks to steps (iv) and (v): The matrix U of the SVD can be obtained by performing

a spectral-decomposition of LL†. However, the obtained matrix U and the matrix V from step

(iv) would, in general, not be part of “the same” SVD since the matrices U and V are not

unique (see sec. 2.2.1). We can still obtain U with V , since we know that USV † = LV V †

and thus U = LV S−1. This would allow us to map Q[n]jn into the Schmidt base as well, and

we would be able to yield the whole Schmidt decomposition as in the SVD based method

in sec. 3.2.1. But, the inverse S−1 of the Schmidt values is numerically unstable due to the

fact that the Schmidt values can get very small. Nonetheless, it shows why we can truncate

the tensor C [n]jn
αnαn+1 . Even though C [n]jn

αnαn+1 is not the Schmidt base by applying LV = US

to Q[n]jn we receive the Schmidt base scaled by the Schmidt values. Consequently, we can

truncate C [n]jn
αnαn+1 .

With the CBE based truncation method, we can dynamically adjust η ≤ χmax to the number

of Schmidt values, which are bigger than a chosen threshold and limit η by χmax. If η = χd,

the obtained tensor B[n+1]jn+1 from the QR decomposition based method is equivalent to the

one obtained from the SVD based method. In general, we do not use η = χd, since we would
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3. MPO Based Time-Evolution

lose our speedup in the scaling, as evident from eq. (3.8). This means the truncation error

εtrunc is, in general, larger than the one from the SVD based truncation. The truncation error

εtrunc can be determined as in eq. (3.5).

3.3. Computation Cost

The scaling of the computational cost of the time evolution algorithm, as presented in sec.

3.1 is

OAlg = (N − 2)(O(i) + 2Nsw(O(ii)/(iv) +O(iii)/(v))) (3.6)

where Nsw are the number of sweeps and O(ξ) denotes the scaling of the operations in step

(ξ), reaching from (i) to (v) (see sec. 3.1). They are determined to

O(i) = 2χ3Dd+ χ2D2d2

O(ii)/(iv) = χ3d2D + 2χ3Dd+ 2χ2D2d2 +Ttrunc

O(iii)/(v) = χ3Dd

(3.7)

where Ttrunc is the scaling of the truncation shemes in sec. 3.2 which are determined to

TSVD = SVDχd×χd + χ3d = χ3d3 + χ3d

TQR = 2NitQRχd×η + 2Nitχ
2ηd2 + (χη2d) = 4Nitχ

2ηd2 + (χη2d)

TQR+CBE = TQR + η3 + EIGη×η + χη2d+ (χη2d) = 4Nitχ
2ηd2 + χη2d+ 2η3 + (2χη2d).

(3.8)

The expressions in brackets are the additional cost for computing the tensor C, which is only

necessary if we are interested in the truncation error εtrunc. For the cost calculation, we

only consider the tensor contractions and the decompositions as they consume the majority

of the computation time. For the decompositions we assumed the follwoing: the SVD and

QR decomposition scale with m2n for a matrix M ∈ Cm×n with m ≥ n and the spectral-

decomposition (EIG in eq. (3.8)) of a matrix M ∈ Cn×n scales with n3. The LQ decompo-

sition scales analogously and is listed as QR decomposition in eq. (3.8). Concluding that

the algorithm scales with OAlg = O(NNswχ
3d2D) + Ttrunc, where TSVD = O(χ3d3) and

TQR = O(χ3d2) as well as TQR+CBE = O(χ3d2) for D, d < χ = η.
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4. Benchmark

In this chapter, we analyze the time evolution algorithm and the truncation schemes with the

quantum clock model, as it allows a general scaling of the local Hilbert space dimension d.

Before using the model, we examine how many sweeps are needed to obtain a reasonable

result. After that, we proceed analogously to the benchmark of the QR decomposition based

truncation method for the TEBD [11]: We perform a global quench of the d = 5 quantum clock

model to check the agreement between the results of the truncation schemes and proceed

with a timing benchmark of the time evolution algorithm and the truncation methods. The

used hardware for the benchmark is an Intel® CoreTM i7-11850H (32 GB RAM) running on 14

threads and a NVIDIA A100 (80 GB RAM). The CPU calculations run on the NumPy backend

while the GPU calculations run on PyTorch. All simulations are performed in double precision,

meaning complex128.

4.1. Model Implementation

4.1.1. Quantum Clock Model
The Hamiltonian of the quantum clock model for nearest- and next-nearest-neighbor interac-

tions reads

H = −J1
∑
n

(ZnZ
†
n+1 + h.c.)− J2

∑
n

(ZnZ
†
n+2 + h.c.)− g

∑
n

(Xn + h.c.) (4.1)

with the unitary operators

Z =



1

ω

ω2

. . .

ωd−1


and X =



0 1

0 1

0
. . .
. . . 1

1 0


(4.2)

where ω = e2πi/d. The operators X and Z are generalizations of the Pauli matrices, meaning

X = σx and Z = σz for d = 2. Note that X and Z are dimensionless quantities. Conse-

quently, the coupling constants J1, J2, and g have the unit J. While there is research [36] on

the phase transition of the quantum clock model for nearest-neighbor interaction for different

Hilbert space dimensions d, there seems to be no information of the phase transitions for

nearest- and next-nearest-neighbor interactions.

In the following, we derive the MPO for the HamiltonianH and its time evolution operator U by

viewing the MPO as a finite-state machine as introduced in Ref. [12]. We start by expressing

20



4. Benchmark

the Hamiltonian in eq. (4.1) with tensor products as

H =− J1(Z ⊗ Z† ⊗ 1⊗ · · · ⊗ 1+ 1⊗ Z ⊗ Z† ⊗ · · · ⊗ 1+ . . .

+ Z† ⊗ Z ⊗ 1⊗ · · · ⊗ 1+ 1⊗ Z† ⊗ Z ⊗ · · · ⊗ 1+ . . .)

− J2(Z ⊗ 1⊗ Z† ⊗ 1⊗ · · · ⊗ 1+ 1⊗ Z ⊗ 1⊗ Z† ⊗ · · · ⊗ 1+ . . .

+ Z† ⊗ 1⊗ Z ⊗ 1⊗ · · · ⊗ 1+ 1⊗ Z† ⊗ 1⊗ Z ⊗ · · · ⊗ 1+ . . .)

− g((X +X†)⊗ 1⊗ 1⊗ · · · ⊗ 1+ 1⊗ (X +X†)⊗ 1⊗ · · · ⊗ 1+ . . .)

(4.3)

which can be represented as a D = 6 MPO with

W
[n]
H =

1L a1 a2 a3 a4 IR



1 Z Z† 0 0 −g(X +X†) IL

1 0 −J1Z† a1

1 −J1Z a2

−J2Z† a3

−J2Z a4

1 1R

and
vLH =

(
1 0 0 0 0 0

)
vRH =

(
0 0 0 0 0 1

)T

(4.4)

where each variable ai leads to one interaction term in eq. (4.3) and IL(R) places an identity

matrix 1 on the left (right) side of the expression. To obtain the time evolution operator we

need to compute U(∆t) = e−i∆tH/ℏ = eτH with τ = −i∆t/ℏ (see eq. (2.3)). Note that we

set ℏ = 1 and thus ∆t has the unit 1
J . In general, U(∆t) can only be approximated. Ref. [12]

gives instructions on deriving such approximations with a modified euler step. The main idea

is that a Hamiltonian expressed as a sum of terms admits a local version of a Runge-Kutta

step, which allows to improve the Euler step. This leads to a compact MPO representation

with a constant error per site that can be extended to higher-order approximations in O(∆tp).

We use the approximation U I(∆t) with an total error of O(N∆t2). In accordance with [12]

eq. 8 we construct the D = 5 time evolution MPO with the entries Â, B̂, Ĉ, D̂ of W [n]
H to

obtain

W
I[n]
U =




1− τg(X +X†)

√
τZ

√
τZ† 0 0

−√
τJ1Z

† 1 0

−√
τJ1Z 1

−√
τJ2Z

†

−√
τJ2Z

and
vLU =

(
1 0 0 0 0

)
vRU =

(
1 0 0 0 0

)T

(4.5)

The fact that the MPO given by the W I[n]
U is only an approximation to the exact time evolution

operator means that we must choose small time steps ∆t to obtain a good approximation of

the evolved state. Moreover, we mentioned in sec. 2.1 that the time evolution operator needs

to be unitary, which is not the case for our approximation. This means that, in general, a MPS

is no longer normalized after applying the MPO.
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Figure 5: Distance ∆ = ∆0 + δ∆ of a time evolution with ∆t = 0.001 for the d = 5 quantum
clock model with the parameters J1 = J2 = 1 and g = 3 of a system with N = 10 sites for
different truncation schemes (marker shape on the left, linestyle on the right). We start with
the Z = 1 product state at t = 0. On the left every 50th datapoint of ∆0 = limNsw→∞∆
is plotted against the time steps Nt. In addition, all data points of the SVD based truncation
method for ∆0 are shown as a solid grey line. On the right, the deviation δ∆ to ∆0 after
Nsw sweeps is shown for two selected time steps Nt (marker color on the left, line color on
the right). For every time step Nt, a total of Nsw = 20 sweeps are performed. The bond
dimension for all truncation methods is limited by χmax = 62. For the SVD and QR+CBE
method, we discard all Schmidt values smaller than 10−14.

4.1.2. Number of Sweeps
To determine the required number of sweeps to obtain a reasonable result, we analyze the

distance ∆ between the approximated evolved state |ϕt+∆t⟩ and the exact evolved state

|ψt+∆t⟩ = U |ψt⟩ as introduced in eq. (3.1). To account for the not norm preserving time

evolution operator U we normalize the states and get

∆2 =

∣∣∣∣∣∣∣∣ |ϕt+∆t⟩
|| |ϕt+∆t⟩ ||

− U |ψt⟩
||U |ψt⟩ ||

∣∣∣∣∣∣∣∣2 = 2− 2
Re ⟨ϕt+∆t|U |ψt⟩√

⟨ϕt+∆t|ϕt+∆t⟩
√

⟨ψt|U †U |ψt⟩
. (4.6)

where ⟨ϕt+∆t|ϕt+∆t⟩ = 1, since the approximated evolved state |ϕt+∆t⟩ is normalized due to

the nature of the truncation schemes (see sec. 3.2). The distance ∆ can be separated into

two parts. The first one is a factor which can be characterized as ∆0 = limNsw→∞∆ and

thus can not be optimized by the number of sweeps Nsw. In contrast to that, the deviation

δ∆ to this factor ∆0 can be optimized by the number of sweeps Nsw. Hence we express the

distance as ∆ = ∆0 + δ∆.

Fig. 5 shows the behavior of ∆0 and δ∆ of a time evolution, based on the SVD, QR and

QR+CBE truncation scheme, of a system with N = 10 sites in the d = 5 quantum clock

model. We observe that ∆0 is continously ≲ 10−7 for Nt ≲ 250. This represents the regime

where the bond dimension χmax is sufficient to represent the exact evolved state |ψt+∆t⟩.
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However, after Nt ≈ 250, we reach a point where we discard too many Schmidt states

that carry significant weight in the state |ψt+∆t⟩. Consequently, we lose precision, and the

distance to the exact evolved state |ψt+∆t⟩ increases. By analyzing the deviation δ∆ to ∆0

for two selected time steps Nt in dependence of the number of sweeps Nsw, we see that one

sweep reduces |δ∆| from 10−1 ∼ 10−2 to ≲ 10−7 for both time steps Nt. More than one

sweep does not demonstrate to further reduce δ∆.

For all truncation methods the parameter ∆0 fluctuates with a standard deviation ∆0,SD

around a mean value ∆0,mean for Nt ≲ 250. The mean values ∆0,mean of the truncation

methods match up to ∼ 10−8, while the standard deviation ∆0,SD of the QR+CBE and QR

method are almost twice as large as the one from the SVD. At first sight, it might appear as

a contradiction that the QR decomposition based truncation methods partially have a lower

distance ∆ to the exact evolved state than the SVD based truncation method since we men-

tioned in sec. 3.2.1 that the SVD based truncation delivers the best possible approximation

of the two-site wavefunction, which should result in a better approximation of the evolved

state |ϕt+∆t⟩. However, the distance is only computed to the previous time step, which was

calculated with the respective method and not an objectively exact evolved state. Conse-

quently, the QR decomposition based truncation methods can have a lower distance ∆ to

their respective previous state than the SVD based method to theirs.

4.2. Result Benchmark

In Fig. 6, we perform a time evolution, based on the SVD, QR and QR+CBE truncation

scheme, of a system with N = 10 sites in the d = 5 quantum clock model, hence the

same parameters as in sec. 4.1.2. To have a reference for the time evolution algorithm, we

perform the same simulation with TeNPy [13]. The local Z and X expectation value and the

half chain entanglement entropy SvN extracted from the simulation, based on the three differ-

ent truncations methods, match with the ones computed by TeNPy up to a relative deviation

of 10−10 ∼ 10−11 in the regime of acceptable distances ∆ ≲ 10−5, that is until t ≈ 0.3 for

χmax = 62. Moreover the truncation error εtrunc matches up to ∼ 10−8 in the same regime.

Note that there is no data for the entanglement entropy SvN for the QR truncator since we

do not obtain the Schmidt values for this method. In addition, we run the SVD and QR+CBE

based simulation for multiple bond dimensions χmax beyond times where the approximation

of the evolved state breaks down, as quantified by the large distance ∆. The dynamic bond

truncation of the SVD and QR+CBE method work as expected, verified by the progressive

increase of the maximum bond dimension χ in the system until χmax is reached. Also, the

increase in the entanglement entropy SvN for higher maximum bond dimensions χmax is

an expected behavior. Allowing a higher bond dimension means being able to hold more

Schmidt values and thus reaching higher entanglement entropies (see eq. (2.14)). Addition-

ally, we observe a shift of the truncation error εtrunc curve and deviation ∆ curve since we

can well-approximate the exact evolved state for a longer period of time t. Besides that, the

total wall time of the simulations has the same order of magnitude as the TeNPy [13] simula-
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tion, indicating that no significant computational mistakes were made, for example, inefficient

order of tensor contractions. Concluding that the time evolution algorithm works properly and

that all truncation methods lead to a result with similar accuracy within a reasonable wall time.

4.3. Timing Benchmark

In Fig. 7, we perform a timing benchmark of a single update of the MPS from |ψt⟩ to

|ϕt+∆t⟩ ≈ |ψt+∆t⟩, based on the SVD, QR and QR+CBE truncation scheme, of a system

with N = 30 sites in the quantum clock model, where 2/3 of the matrices of the MPS have

full bond dimension χ. Furthermore, we perform a single truncation of an extracted two-site

tensor θ[n]jnjn+1
αnαn+2 with size d×d×χ×χ to obtain the tensor B[n+1]jn+1

αn+1αn+2 without computing the

tensor C [n]jn
αnαn+1 . As predicted in sec. 3.3 we observe a quadratic scaling in the local Hilbert

space dimension d for the QR and QR+CBE based truncation method instead of a cubic scal-

ing as for the SVD based truncation method. Also, as expected, we observe a cubic scaling

in the bond dimension χ for all truncation methods. Furthermore, we can clearly observe an

additional speedup of the QR and QR+CBE based method by performing the simulation on

the GPU. In contrast to that, the SVD based truncation method does not experience a signif-

icant speedup on the GPU. Besides that, we can see that the additional computational cost

of the QR+CBE compared to the QR method is higher on GPU than on CPU. This suggests

that the used spectral-decomposition does not efficiently run on GPU. We see that this effect

weakens for large d, as indicated by the converging data points for the benchmark for d. This

is expected since the scaling χ3d2 of the efficient QR decomposition at some point dominates

the scaling χ3 of the less efficient spectral-decomposition (see eq. (3.8)). We conclude that

the QR decomposition based trunation methods scale as expected with χ3d2 instead of χ3d3

as for the SVD based truncation method and that the scaling of the time evolution algorithm is

indeed limited by the truncation schemes. Moreover, the QR decomposition based truncation

methods run efficiently on the GPU.

Fig. 8 shows that the majority of the computation time (≳ 80%) of the time evolution algorithm

is spent in the truncator for the SVD based truncation method on CPU. In contrast to that,

≲ 40% of the computation time is spent in the truncator for the QR and QR+CBE based

truncation method on CPU. Moreover, we can see that the SVD based truncation method

has a wall time share of almost 100% if the calculation is performed on GPU. Additionally,

we again observe that the spectral-decomposition does not run efficiently on GPU by the

increased wall time share of up to ∼ 95% of the QR+CBE truncation method on the GPU.

Again, this effect weakens for large d. The wall time share of the QR truncator is bigger on

GPU than CPU for small matrices but decreases for larger matrices.
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Figure 6: Time evolution with ∆t = 0.001 of a global quench in the d = 5 quantum clock
model with the parameters J1 = J2 = 1 and g = 3 of a system with N = 10 sites. We start
with the Z = 1 product state at t = 0. Shown are the local Z and X expectation values (top
and middle left), the half chain entanglement entropy SvN (bottom left), the maximum bond
dimension in the system χ (top right), the propagated largest truncation error εtrunc (middle
right) and the propagated distance ∆ (bottom right). Every 400th datapoint is plotted. We
perform Nsw = 1 sweep for all simulations and limit the bond dimension by χmax. For the
TenPy simulation, the SVD and QR+CBE method, we discard all Schmidt values smaller than
10−14. The time in the legend denotes the total wall time for each method, which includes
computing the shown data.
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Figure 7: Timing benchmark for a single update of the MPS, as described in sec. 3.1, from
|ψt⟩ to |ϕt+∆t⟩ ≈ |ψt+∆t⟩ (top) and for the truncation of a single two-site tensor θ[n]jnjn+1

αnαn+2 , as

described in sec. 3.2, to obtain the tensor B[n+1]jn+1
αn+1αn+2 (bottom) for different hardware (marker

color) and truncation schemes (marker shape). We perform the benchmark for the local
Hilbert space dimension d (left) and the bond dimension χ (right). For the single update of
the MPS, we compute a single time step with Nsw = 1 sweep of a system with N = 30 sites
where 2/3 of the bond dimensions χn in the system have a bond dimension of χn = χ for
d ≥ 4 and χ ≤ 1024 or d ≥ 5 and χ ≤ 3125. For the single truncation, we perform an isolated
truncation of an extracted two-site tensor θ[n]jnjn+1

αnαn+2 with size d × d × χ × χ. The presented
time is the total wall for a single time step or a single truncation where only the necessary
operations are performed. This means no additional data like the truncation error εtrunc or
the distance ∆ is computed. The missing data points of the CPU were not obtainable due to
hardware limitations.
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4. Benchmark
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Figure 8: Supplement to Fig. 7: Proportion of wall time which is spent in the truncators for
the timing benchmark of a single update of the MPS (Fig. 7, top).
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5. Conclusion

We applied the QR decomposition based truncation method for the TEBD [11] to the MPO

based time evolution [12] for one-dimensional systems. This was achieved by replacing the

SVD based truncation method of the MPO based time evolution algorithm with a variational

QR decomposition based truncation scheme. We demonstrated that we are able to extract

the same data with similar accuracy but with a scaling of χ3d2 instead of χ3d3 as for the

SVD based truncation method. Additionally, we showed that in contrast to the SVD based

truncation method, the QR decomposition based truncation schemes run efficiently on GPU,

which resulted in an additional, hardware-dependent speedup.

The introduced algorithm could be modified by updating a single-site wavefunction instead

of a two-site wavefunction. The update rule for the single-site wavefunction would be analog

to the one shown in Fig. 3(b). A sweep could be performed by updating the tensor at the

respective site with the semi-unitary tensor obtained by the QR decomposition of the single-

site wavefunction. However, the bond dimension of the system would not be able to grow this

way. One would need to perform a bond expansion of the single-site wavefunction prior to the

QR decomposition. This might be doable with a subspace expansion similar to the one in-

troduced in the single-site DMRG [37]. While one single-site sweep is probably cheaper than

one two-site sweep, obtaining a well-approximated evolved state might cost more. It would

need to be investigated if the additional cost of getting a better approximation of the single-site

update outweighs the cost of the more expensive, faster converging two-site update.

Code availability: The object-based library is available on GitHub [38].

28



List of Figures

1 Diagrammatic notation of tensors networks and tensor network operations. . . 8

2 Diagrammatic notation of the MPS and MPO formalism. . . . . . . . . . . . . 8

3 Description of the time evolution algorithm in the diagrammatic notation. . . . 14

4 Description of the truncation methods in the diagrammatic notation. . . . . . . 15

5 Distance ∆ = ∆0 + δ∆ of a time evolution of a global quench in the d = 5

quantum clock model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Result benchmark of a time evolution of a global quench in the d = 5 quantum

clock model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Timing benchmark of the time evolution algorithm and the truncation methods. 26

8 Wall time share of truncator for a single time step. . . . . . . . . . . . . . . . 27

29



Abbreviations

CBE Controlled Bond Expansion

CPU Central Processing Unit

DMRG Density Matrix Renormalization Group

GPU Graphics Processing Unit

MPO Matrix-Product Operator

MPS Matrix-Product State

SVD Singular Value Decomposition

TEBD Time Evolving Block Decimation

TPU Tensor Processing Unit
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Terms

hermitian M ∈ Cm×n is hermitian if m = n and M =M †. Every eigenvalue of a hermitian

operator is real. (see [39] 7.11 and 7.13)

invertible M ∈ Cm×m is invertible if M has full rank. (see [39] 3.69, 3.117 and 3.20)

rank The rank of a M ∈ Cm×n matrix is the dimension of the span of the rows (columns) of

M in Cn (Cm). (see [39] 3.115 and 3.118)

semi-unitary We call M ∈ Cm×n semi-unitary if m > n and M †M = 1n or if m < n and

MM † = 1m.

singular value The singular values of M ∈ Cm×n are the nonnegative square roots of the

eigenvalues of M †M . (see [39] 7.52 and [19] def. 7.43)

span The span of v1, . . . , vm vectors in Cn is defined as span(v1, . . . , vm) = {a1v1 + · · ·+
amvm | a1, . . . , am ∈ C}. (see [39] 2.5)

spectral-decomposition A hermitian matrix M ∈ Cn×n has the spectral decomposition

M = USU †, where U ∈ Cn×n is a unitary matrix and S ∈ Cn×n is a diagonal matrix

containing the eigenvalues of M . (see [18] cor. 2.20)

unitary M ∈ Cm×n is unitary if m = n and MM † = M †M = 1 and thus M † = M−1. An

equivalent condition is that M preserves norms. (see [39] 7.37 and 7.42)
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Appendix

The appendix can be found on the following pages.
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A. Optaining the MPS of a generic pure state

To obtain the MPS of a generic pure state |ψ⟩ with dN amplitudes ψj1j2...jN (see eq. 2.1),

we proceed as instruceted by Ref. [20] sec. 4.1.3.: We start by writing all dN amplitudes

in a 1 × dN matrix and reshape it into a d × dN−1 matrix ψ, where the coefficients map as:

ψj1(j2...jN ) = ψj1j2...jN . This bipartites our system into two subsystems. We acquire the

Schmidt decomposition by performing a SVD of ψj1(j2...jN ):

ψj1(j2...jN ) =

χ2∑
α2

Uj1α2Λα2α2(V
†)α2(j2,...jN ) =

χ2∑
α2

Uj1α2ψα2(j2...jN ) (1)

where Uj1α2 , Λα2α2 and (V †)α2(j2...jN ) are the matrices obtained by the SVD as introduced

in sec. 2.2.1 and χ2 ≤ d is the rank of the matrix ψj1(j2...jN ). Moreover we define the matrix

ψα2(j2...jN ) = Λα2α2(V
†)α2(j2...jN ). We proceed by writing the d column vectors of Uj1α2 with

dimension χ2 in a collection of d vectorsA[1]j1
α2 and reshape ψα2(j2...jN ) in a χ2d×dN−2 matrix

ψ(α2j2)(j3...jN ) and thus

ψj1j2...jN = ψj1(j2...jN ) =

χ2∑
α2

A[1]j1
α2

ψ(α2j2)(j3...jN ). (2)

Analogously to eq. 1 we perform a SVD of ψ(α2j2)(j3...jN ):

ψ(α2j2)(j3...jN ) =

χ2∑
α2

χ3∑
α3

A[1]j1
α2

U(j1α2)α3
Λα3α3(V

†)α3(j3...jN )

=

χ2∑
α2

χ3∑
α3

A[1]j1
α2

A[2]j2
α2α3

ψ(α3j3)(j4...jN )

(3)

where A[2]j2
α2α3 is a collection of d matrices with the dimention χ2 × χ3, where χ3 ≤ χ2d ≤ d2.

By proceeding in this manner until we reach the last site, we obtain

ψj1j2...jN =
∑

α2,...,αN

A[1]j1
α2

A[2]j2
α2α3

. . . A
[N−1]jN−1
αN−1αN A[N ]jN

αN
. (4)

To be consistent with the representation in eq. 2.18 we transform the χ2 dimensional vector

A
[1]j1
α1 into a 1× χ2 matrix A[1]j1

α1α2 (equivalent for A[N ]jN
αN ) and obtain the MPS of the state as

|ψ⟩ =
∑

j1,j2,...,jN

∑
α2,...,αN

A[1]j1
α1α2

A[2]j2
α2α3

. . . A[N ]jN
αNαN+1

|j1, j2, . . . , jN ⟩

=
∑

j1,j2,...,jN

A[1]j1A[2]j2 . . . A[N ]jN |j1, j2, . . . , jN ⟩
(5)
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B. Information about the developed Python library

The developed object-based Python library can perform a MPO based time evolution of a

MPS with three different truncation methods (SVD, QR and QR+CBE) on two different back-

ends (NumPy [21] and PyTorch [40]). The library and a script showing how to perform a time

evolution for a certain set of parameters are available on GitHub [38].

The used assumptions of the library are the following: The system is one-dimensional and

finite with N sites. There are no periodic boundary conditions between the last and the first

site. The local Hilbert space dimension d as well as the MPO dimension D are identical for

each site.

In general, models that compile with the assumptions above can be implemented by defining

the MPO in mpo_network.py and referencing it in the newly created corresponding model in

model.py. Object templates show how to define a time evolution MPO in mpo_network.py

and a corresponding model in model.py. The implemented models in model.py are the quan-

tum clock model for nearest-neighbor interactions (ClockModel_NN) and nearest- and next-

nearest-neighbor interactions (ClockModel_NNN).

The Image below illustrates the object structure of the library (left) and the relation between

the objects (right). Every object can be used and tested separately, which is why every object

relies on the backend. The backends, defined in backend.py, are a “dictionary” that directs a

generalized function call, like “perform the QR decomposition of matrix M ” to the respective

library (NumPy or PyTorch) in the proper data format. The backend used to run calculations

on the GPU is PyTorch, which relies on toolkits like cuda or ROCm. Consequently, Nvidia or

AMD graphics cards are needed to run the backend on GPU. The MPS and MPO networkork

are defined in mps_network.py and mpo_network.py. The MPS class features many MPS re-

lated functions, for example, calculating the entanglement entropy. The file mpo_network.py

contains a collection of MPOs which are needed for other objects, for example, the mod-

els defined in model.py. The three truncation methods (svd, qr and qr_cbe) are defined in

truncator.py. To perform a time evolution, one needs to use the time_evolution_engine in

algorithm.py, which needs a truncator, a backend to run on and a model to evolve.
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