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1. Introduction

The functions of internal logistics systems (ILS) cover the 
transportation, distribution, and storage of goods. Since these 
activities do not contribute directly to the value of a product, 
the development of ILS is confronted with the challenge to 
minimize the effort required here [1]. To complement 
guidelines derived from approaches such as Lean Logistics, 
simulation has become a well-established tool in the 
optimization of ILS [2]. Apart from that, the importance of 
data-driven approaches has been continuously growing, aiming 
to leverage large and often distributed datasets that are 
generated during the operation of these systems [3]. In this 
context, process mining (PM) plays an important role as it helps 
to consider process data not only from a momentary, but also 
from an event-driven perspective [4]. A significant obstacle for 
the application of PM lies in the quality of available data, 
meaning that its gathering, consolidation, and storage can 
require a large effort [5]. A possibility to meet these data 

quality-related challenges is the use of discrete-event 
simulation (DES) for the generation of process data, which can 
subsequently be used by PM to optimize ILS.

2. State of the art and research objectives

Data science covers a research area that deals with the 
processing and analysis of data to solve real-world problems. 
With regard to ILS, there are several approaches that already 
deal with the particularities of this domain. [6; 7; 8]. PM on the 
other hand combines data science with process science [4]. 
Hence, problems are not evaluated with the objective to depict 
variants of processes that are composed of certain events. In 
this context, process modeling refers to the depiction of events, 
activities, states, and state changes in a system. The most 
important instrument to model these phenomena is the 
sequence flow [9]. A significant challenge which is particular 
to ILS is the fact that many activities are accessed by more than 
one process owner – such as actors, resources, or objects. The 
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representation of those resource-constrained activities is 
needed to model the participation of physical objects within 
events and activities, but many process modeling notations
cannot deal with these requirements [10]. The necessary data
structure for PM to be executed is called event log. This term 
refers to a tabular data representation that contains at least a 
unique identifier for each object considered (case ID), a 
timestamp, and the activity name [4]. Based on this data, PM 
follows three steps: process discovery, conformance checking, 
and performance enhancement [4]. Process discovery means 
that the actual real-world process, also referred to as de facto
process, is deduced from the event log. After that, conformance 
checking represents the comparison between de facto and the 
desired de jure process. Finally, performance enhancement 
refers to an optimization of the de jure process based on the 
findings of the two previous steps. Available process data is not 
always suitable for the application of PM, which is why a 
maturity assessment is necessary to determine its feasibility 
[11]. However, even if the initial maturity of the available data 
is considered sufficient, data preprocessing steps must be 
executed before sensible analyses are enabled [12].

Although PM has so far mainly been used to examine digital 
activities rather than physical ones, there are already some 
applications of this method in the ILS domain. To determine 
the mightiness of those and to discover potential research gaps, 
a systematic literature analysis has been conducted at the 
beginning of this work. Emphasis was put on the combination 
of PM and the analysis or improvement of material flow 
processes. One approach that deals with PM in the ILS domain 
sets its focus on storage processes, where key performance 
indicators (KPIs) are used to check the conformance between 
de facto and de jure processes [13]. Based on this work, storage 
processes can be analyzed in a multi-dimensional manner so 
that a specification in the case-domain, the activity-domain, or 
the time-domain can be executed [14]. Examples for time-
related KPIs are the throughput time or the average throughput 
per time unit [15]. Apart from the evaluation of KPIs, it is also 
possible to develop approaches where qualitative process 
principles are examined, e.g., the adherence to the First-In-
First-Out (FIFO) principle [16]. Another possibility to assess 
the process conformance can be achieved by considering the 
relationship between processes with and without violations of 
the de jure process path, yielding the process fitness KPI [17].

The state of the art in the data-driven process optimization 
within ILS reveals shortcomings regarding insufficient data 
quality. Using DES for data generation has the potential to help 
in overcoming this challenge, also with regard to the real-world 
domain. This work aims for an approach that combines PM and 
DES to an end-to-end framework for practitioners. At the same 
time, the following questions (Q1-3) shall be answered:

Q1: How can discrete event simulation be used to gather data 
for process mining in internal logistics systems?

Q2: Which requirements must internal logistics systems
therefore fulfill?

Q3: How can internal logistics systems be optimized using 
process mining and discrete event simulation?

3. Materials and methods

The approach introduced in this article is composed as 
follows (see Figure 1): The real-world ILS is transformed to an 
abstract model in two ways, first by creating the underlying de 
jure process model, and second by setting up a DES model 
which also works as the executable implementation of the 
process model. The execution of this DES model leads to raw 
data, which is then pre-processed into event logs. Using the 
event logs for process discovery, the de facto process model is 
generated. This allows for a PM-based conformance checking. 
Apart from that, the process model enables the deduction of 
performance indicators. Given a set of alterable parameters and 
implicit process knowledge, these indicators can be used for
performance enhancement. In the following paragraphs, the 
components of this approach are introduced in detail.

Fig. 1. Scheme of relations and data flow between the tools used in the 
developed method

First of all, the different types of data structures must be 
considered. Typical DES software gives users the possibility to 
record event data, which usually covers at least a simulation 
timestamp, an entity ID, the state of the current entity, and 
optionally a list of related entities (see Table 1). This data 
structure can be transformed into an event log as follows: The 
simulation time represents the event timestamp. The state 
information about the entity leads to the activity name. Finally, 
the case ID can be deduced from the entity ID. Common PM 
software also enables the consideration of additional 
information (referred to as event log enrichment), which can be 
used to consider more potential data generated by the DES.

Table 1. Example for output data of a simulation model

Simulation time Entity State Related entity

35.5384 crankcase 1712 put_crankcase_in_transportbox transportbox_14

35.5384 transportbox_14 put_crankcase_in_transportbox

35.5385 transportbox_14 wait_for_forklifttruck
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Transforming the simulation output to an event log is 
already needed for the process discovery. For conformance 
checking, a de jure process model is required, which can be 
developed by analyzing the existing system, potentially 
assisted by practitioners related to the ILS operation. The
approach presented in this work uses an iterative procedure. 
That is, the process model needs to be adapted whenever 
identified improvement potentials lead to alterations in the real-
world process.

Another important aspect of the approach is a sensible 
choice of parameters for the classification of system 
configurations. To improve the ILS by generating a better de 
jure process during the performance enhancement stage, 
system configurations must be generated that have the potential 
to show improved performance when considering suitable 
metrics. A tradeoff must be found between a small number of 
configurations to be tested (to reduce the effort for the 
application) and a large number of possibilities (to make sure 
that no potentially advantageous configuration is overlooked). 
Therefore, a set of sensible parameters must be chosen at first.

For the variation of parameters, methods from data science 
such as clustering and decision trees can be applied to decide 
which variations should be made in which order. In addition to 
that, parameters can be classified with regard to their influence 
on the system behavior. To that end, local parameters mainly 
affect a certain subsystem such as a storage section or a 
handling station, whereas global parameters can significantly 
alter the behavior of the entire system. Hence, the variation of 
local parameters can follow a certain rationale so that 
alterations are always made first in those parts of the system 
where the current bottleneck can be localized according to the 
previous process analyses. Such local parameter adaptions can 
be assumed to leave the remainder of the ILS as it was before. 
However, when comparing configurations with different sets of 
global parameters, several suitable combinations must be tested 
and optimized to find a reasonable optimum. Speaking in terms 
of decision trees, every global parameter represents its own 
tree, whereas the number of branches per decision step stems 
from the number of local parameters considered. To make a 
decision regarding promising parameter variations, the ends of 
all branches on the latest layer of each decision tree must be 
compared to each other. Common logistics KPIs allow for the 
evaluation of system configurations after various improvement 
steps (see Table 2).

Table 2. Examples of generic performance metrics for logistics systems
Overall Overall, 

transportation
Storage All, especially 

storage
All

Profit (per time 
unit)

Throughput time 
(average, 
maximum)

Storage utilization 
/ filling level

Inventory turnover Required workers, 
material

Flexibility, e.g., 
every part every 
interval

Flow rate (average, 
maximum)

Inventory range Stock level 
(average, 
maximum)

Degree of 
successful 
deliveries

Throughput Storage time 
(average, 
maximum)

Process 
conformance

Utilization

Reliability

Availability

Since the variation of parameters leads to alterations in the 
system behavior, it is theoretically necessary to adapt both the 
de jure process model as well as the DES model in every step 
of the approach (see Figure 2). This means that the system 
complexity underlies boundaries and exceeding these lets the 
manual work effort grow to an unreasonable amount from the 
application perspective. Even Boolean parameters double the 
number of possible system configurations for each parameter 
added, whereas numerical parameters come with a potentially 
infinite number of configuration sets. This circumstance alone 
reduces the degree to which the approach can be automated
(even if fully automated, the generation and execution of 
millions of simulation models is not reasonable), and it is the 
reason why an iterative procedure is even necessary.

4. Case study

The proposed approach was tested within a use case scenario 
that is related to an ice cream production system in a university 
cafeteria (in particular, the internal logistics aspects of this 
system), in the following referred to as “MensaGelato”. Apart 
from different types of ice cream, several sauces and toppings 
are offered to the customer. The sub processes cover filling, 
transportation, storage, and provision of the ice cream. They 
are fully automated, and the whole system is supposed to 
combine low waiting times for customers, a high product 
quality, low costs, and the prevention of food waste (see 
Figure 3).

All components (ice cream, sauce, and toppings) are filled 
one after another in individual workstations. Transport between 
those is executed by continuous, automated conveyors. Two 
storage subsystems are available: Storage 1 for intermediate 
products (ice cream without sauce and topping) and Storage 2 
for finished products. Finished products that have been 
assigned to a customer order are transported to the provision 
and handed over to the customer. Storage 2 stores ice cream 
that is finished but not assigned to a customer order to reduce 
waiting time. This does, however, increase the risk for food 
waste: at the end of each workday, all remaining ice creams in 
both storages must be disposed.

In the simplest configuration of the system, all three 
workstations are coupled linearly, and there is no possibility for 
transportation units (TU) to overtake each other. Sorting and 
storage activities are not executed (configuration 0, see Fig. 3). 
Thus, for the optimization of the system, the following 
possibilities exist:

• Parallelized assembly of filling stations using sorters (with 
different possibilities for the sorting rationale) to create 
redundancies

• Sorters for the skipping of one or two filling stations (sauce 
or topping) if they are not required for the particular 
product

• Storage systems (with numerous options for configurations 
such as the number of storage spots, the choice of product 
configurations to be stockpiled, or the order strategy for 
replenishment)
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Fig. 2. Depiction of the developed method as a process model with sub processes: overview, “map system”, “prepare optimization”, “execute optimization”, with 
a further explanation of the sub process “execute decision tree”

For the case study in this article, 18 parameters were chosen. 
This includes the choice for a parallelization of ice cream 
filling stations and sauce filling stations, the creation of 
redundancies for sauce or brittle filling stations, or the choice 
to activate an ice cream storage. In order to determine unique 
references for all possible system configurations, a consistent 
numbering scheme has been selected.

In order to assess the different configurations and to 
evaluate how the case study ILS can be optimized, the 
following process properties were considered:

• Throughput: A high throughput also indicates that many 
customers are using the system. Since long waiting times 
in the queue prevent customers from ordering, it is thus 
also related to the throughput time from order to provision.

• Profit: Revenue and costs determine the profit. The 
revenue is influenced by the number of ice creams sold
(assuming there are no different prices for the types of ice 
cream), whereas the costs depend on the resources used for 
their production (such as filling stations or conveying
technology) 

• Process fitness: The activity “dispose ice cream” causes 
food waste and is therefore considered undesired. 
However, when a certain type of ice cream should be ready 
for provision in the storage after a customer order, but the 
storage place is empty and the ice cream must thus be 
reproduced, this increases the customer waiting time. Thus, 

a high process fitness requires a well-balanced stock level 
in the storage

5. Results

Since variations of global parameters have a strong 
influence on the entire system’s behavior, they were not to be 
varied during the optimization cycle. Instead, for all possible 
combinations of global parameters, one initial configuration 
was created. In the subsequent optimization, for all those 
configurations, only the local parameters were altered. Two 
binary variables were classified as global parameters (two 
storages that could either be active or inactive), which led to 
four initial configurations. For example, the initial 
configuration with configuration ID 2 (with the first storage 
being active and the second one being inactive) came with an 
average waiting time (arithmetic mean) of 10 minutes that 
customers needed to spend before their order had been fulfilled. 
The food waste in this configuration was only 0.1 %, but since 
6.6 % of ordered ice creams needed to be produced after 
customer order, the overall process fitness was 93.3 %. 
5.9 minutes on average were spent in the buffer before the 
filling station for toppings, making it the largest lever for 
optimization. This initial configuration was not able to serve a 
large number of customers, and due to the high costs, it came 
with a negative profit (loss) of 257 monetary units (see 
Table 3).
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Following the optimization of configuration ID 2, 
subsequent optimization potentials could either address the
possibility to skip filling station 3 for TU that do not get any 
topping (configuration ID 18), or to create a redundancy for 
this station and parallelize two instances of it 
(configuration ID 10). The results showed better performance 
for configuration ID 10 in almost all aspects, so it was the 
preferable alternative (see Table 3). After this optimization, the 
filling station 2 for sauces became the new bottleneck. All of 
those parameter variations could be applied to four different 
decision trees that are caused by the variation of global 
parameters (two storages that can either be active or inactive). 
The decision tree algorithm iteratively checked for the 
parameter that promised the largest improvement potential 
when altered, and then detected the more performant system 
configuration compared to the previous step. This procedure 
was repeated until a variation had been tried for every 
parameter. Continuously following the best solution that could 
be found after a certain parameter variation step (for each of 
the four decision trees), four final configurations could be 
determined (see Table 3) – e.g., configuration ID 233757 was 
deduced from initial configuration 2. It is important to note that 
each of them has at least one KPI where it outperforms the 
others, so that no alternative is dominant compared to at least 
one other possibility. Hence, the final choice which 
configuration to implement relies on the importance that the 
user assigns to the different criteria.

Fig. 3. MensaGelato, initial configuration: de jure process model

6. Discussion and Concluding Remarks

The main objective of this work is the generation of process 
data via DES that can then be used for PM applications and 
thus contribute to process optimizations. PM helps to compute 
additional KPIs such as the process fitness, that enable deeper 
insights into the process. The KPIs in Table 3 show that each 
configuration generates a higher profit, causes shorter average 
waiting times for customers, and follows the de jure process 
with a higher process fitness than configuration 0. Hence, the 
concept of iterative process optimization leads to improved 
KPIs indeed. The decision-tree based process framework for 
the identification of optimization configurations reduces the 
manual effort that is caused whenever the process model needs 
to be adapted. By using the simulation model for data 

generation and thus as data source for process discovery, the 
effort for the DES model creation is offset by the achieved 
availability of additional event data for PM applications. At the 
same time, the use of PM helped to systematically improve the 
de jure process model, which also yielded benefits for the DES-
supported system optimization.

Table 3. MensaGelato, performance metrics for several configurations
Variation 
step No.

Configura
tion ID

Profit Waiting 
time ()

Waiting 
time (95 
%)

Waste Process 
fitness

0 2 -257 10.3 min 14.9 min 0.09 % 93.3 %

1 18 -117 9.4 min 15.5 min 0.08 % 93.4 %

1 10 362 7.0 min 10.7 min 0.07 % 92.8 %

final 233756 1406 3.9 min 5.4 min 0.00 % 100.0 %

final 233757 1560 2.9 min 6.5 min 0.36 % 79.4 %

final 102686 1329 3.5 min 5.0 min 0.02 % 93.0 %

final 233759 1423 2.6 min 6.1 min 0.33 % 76.1 %

The results of this work lead to the answers to the three 
initial questions:

Q1: A clearly defined structure of event logs can be 
achieved by recording process data during simulation 
experiments, and this data can be used for process mining. 
These data are of high quality with respect to their 
completeness, uniformity, and uniqueness, so that hardly any 
selection, cleaning or dimensional reduction are necessary.

Q2: Given the increasing complexity of ILS, it needed to be
investigated which conditions have to be fulfilled so that a 
mapping between PM and DES can take place. Therefore, for 
example, the size and complexity of the system, the similarity 
of the sub processes, and the level of maturity with regard to 
digitization were relevant. The actual benefit of the procedure 
depends on many other issues, for example: the dimension of 
problem complexity resulting from the number of system 
parameters, the set of relevant KPIs (how they can be deduced 
from the real system and if additional tools like PM are needed 
at all), or the effort for modeling and simulating the system

Q3: Predefined parameters and KPIs play an important role
for the systematical optimization of ILS using PM and DES, as 
they can be easily integrated into an automated, methodical 
procedure. Conformance checking delivers additional useful 
KPIs such as the process fitness. The use of guidelines, e.g., 
from Lean Logistics, was not discussed in this work, as their 
application is not dependent on the procedure used and is also 
possible in this case, especially during the development of 
improvements.

The validity of the described case study example is 
examined using two criteria [18]: Internal validity describes the 
fact that all relevant influence criteria have been considered to 
describe the phenomena that occur in the system. One 
important factor that has not been considered in this study is 
the human influence. That means, the approach proposed in this 
article is mainly suitable for ILS with a high degree of 
automation, such as automated storage and retrieval systems, 
or storage racks with stacker cranes. In spite of many examples 
in internal logistics where the human influence cannot be
neglected, there are still numerous potential fields of 
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application left for the proposed framework. Apart from that, 
the KPIs considered cover issues related to Lean Management, 
sustainability, and operations management. Thus, from 
multiple stakeholders’ perspectives, relevant aspects are 
considered in this approach. External validity describes the 
generalizability of the case study example to other systems 
within the ILS domain. To this end, the case study contained 
subsystems and modules that are relevant for the entire domain 
and appear in other, real-world systems as well, such as 
continuous conveyors and sorters, workstations with upstream 
buffers, as well as storage systems. The degree of detail can be 
seen as intermediate. That is, considering the automation 
pyramid, it was detailed enough to consider actual routing 
decisions [19]. It was however coarse-grained enough so that 
no programmable logic controllers or sensors and actuators 
need to be modelled, which would have let the modeling effort 
grow to an unreasonable level.

For further research works, among other aspects, the 
application of the presented approach in specific real-world 
examples is necessary to provide a thorough assessment of its 
feasibility. Therefore, a case study ILS process should contain 
the most relevant logistics activities, while at the same time 
being structured and quantifiable enough to set up a reasonable 
simulation model. Related research activities show that the 
manufacturing of vehicles such as cars or motorcycles is often 
conducted in an environment which possesses all necessary 
material flow activities. Hence, such processes could be the 
goal of research case studies in the future.

The proposed approach allows for a DES-supported PM 
optimization of ILS but requires significant manual effort by 
practitioners at several points. Implicit process knowledge is 
still necessary to assess the feasibility of optimized system 
configurations. This means the framework supports human ILS 
operators in their tasks rather than replacing them. Apart from 
that, working with the DES and PM software can also not be 
fully automated. Since these software technologies usually 
have been developed by different companies that did not have 
a combined use of the two technologies in mind, a seamless 
integration is not fully possible in most cases. Scripts or macros 
can help to reduce the work effort especially with regard to data 
transformations.

7. Outlook

Data science-approaches such as PM are often part of entire 
procedure models that suggest the execution of certain steps in 
a certain order. One of those steps is the initial data 
preprocessing. In this work, a framework is presented that 
contains earlier process steps regarding the data generation. 
This yields data in a desired shape with a scope that can be 
selected by the user. Thus, issues with data generated in real-
world ILS regarding data quality and data maturity can be dealt 
with. To further automate the procedure, the construction and 
evaluation of decision trees could be directly connected to the 
adaption of simulation and process models. In addition to that, 
future logistics processes have an increased probability to be 
confronted with unpredictable behaviors and randomness, for 

example regarding technical breakdowns or resource scarcity 
in the supply chain. The appropriate consideration of such 
phenomena is another interesting topic for future works.
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