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Abstract

This thesis focuses on the use of graph rewriting systems within the context of precast construc-
tions to achieve algorithmic design. By employing a process model to encapsulate the algorithm
logic, rewriting rules can be used to incrementally apply changes to the model represented
in a graph. The process model serves the purpose of handling the sequence of necessary
rule application as well as the geometric parameters of the basic modules. A method was
proposed to handle the geometric conditions mandated by the structure by pre-processing the
modules with the help of the process model, as well as post-processing the resulting graph.
An implementation exploring the viability of this approach was developed using Rhino and
Grasshopper, as well as an internally developed rule engine and algorithm. The implementation
showed the usefulness and flexibility of graph rewriting as a method for algorithmic design but
also pointed out the areas of improvement the approach has.
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Chapter 1

Introduction

Construction projects of any size, small or large, showcase a high complexity due to their
multi-dimensional, collaborative, and long-term nature. This complexity in and of itself poses
a great challenge when it comes to completing such a project within the bounds of the local
building code, supply chains, availability of skilled workers, tight time-frames, and finances.
The industrialization of the construction sector that lead to manual labor being replaced by
machinery and materials becoming cheaper and more easily available has already greatly
reduced overhead and costs and has helped overcome the complexity. Yet one crucial aspect of
the construction process has seemingly become more intricate despite these advantages: the
planning process.

Larger demand for buildings and infrastructure (BAUMANNS et al., 2016) in conjunction with an
ever-increasing amount of regulations, guidelines, and building codes (PREIDEL, 2020) have
made the planning process a progressively more crucial as well as elaborate part of construction.
This leads to a larger necessity of workers with the appropriate expertise and skill to perform the
required tasks.

1.1 Problem Statement

So far, the detailed design of buildings has largely been the domain of adequately trained and
educated engineers, architects and other specialists. The execution of their responsibilities
has been aided in over recent decades by the development and adoption of digital tools
and methods such as computer aided design (CAD) and model-based design and thus has
reduced costs and overhead. But most of the design work still is conceived by the specialists
themselves. Automating the design and planning process can further help to reduce the
workload. One the one hand, even an only partly-implemented automation such as PREIDEL,
2020 or VILGERTSHOFER, 2022 proposed can yield great results and improvement. A full-scale
automation of the entire design process from start to finish on the other hand has yet to be
achieved. The plethora of factors that come into play for such an attempt at automation has
been a major inhibiting aspect.

1.2 Scope and Structure

This thesis aims to develop an approach with which automatic algorithmic design can be
achieved. Using graph rewriting and graph grammars as the basis of the approach, it should
be able to automatically generate usable 3D-models of structures that adhere to the basic
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structural concepts of construction. The approach will be tested within the context of building
construction using precast modules with the help of an implementation that is designed to
answer the following research questions:

- How easily can algorithmic design be achieved with the help of graph rewriting rules, within
the context of modular precast structures?

- How detailed does the surrounding framework for rule application need to be to create
usable structures?

- How well can this approach be adapted to other fields of civil engineering?

The structure of this thesis is as follows:

- Chapter 2 details the current state of the art concerning 3D-modeling, graph systems and
graph rewriting, and process modeling.

- Chapter 3 explains the specific graph rewriting method used for the implementation.

- Chapter 4 describes the implementation and its technicalities in detail.

- Chapter 5 discusses the capabilities, drawbacks and limitations of the implementation.

- Chapter 6 concludes the topic and gives and outlook regarding future research.
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Chapter 2

State Of The Art

2.1 Fundamentals

2.1.1 Geometric and Parametric Modeling

Core component of designing and planning products, whether these are buildings or otherwise,
is a model of the product’s geometry. While historically hand-made 2D-drawings were the norm,
CAD has succeeded such drawings as of the late 80’s (BJÖRK & LAAKSO, 2010). Capable
of both 2D and 3D modeling, CAD software provides multiple ways to represent, modify, and
visualize geometries (SARCAR et al., 2008). The choice of representation is crucial on order to
enable changes in the geometry and the visualization of it in the desired manner. In the following,
a selection of three-dimensional geometric representations will be briefly explained to form a
basis of understanding of what the requirements for our geometry are.

Tessellation is a way of explicitly describing a geometry, meaning that the resulting geometry is
stored as-is. Tessellation does this by discretising the object’s surface with the help of polygons,
though usually triangles are used (PHILLIPS, 2014). This ensues by simply connecting points
on the surface to triangles, with the accuracy of the geometry increasing with the decreasing
size of triangles. This method is simple to understand, implement, and visualize and is used
for visualizing as well as simulating purposes (BORRMANN et al., 2018). It also offers methods
of computing its volume surface area, as well as being able to detect collisions with other
geometries with a triangle-triangle intersection test such as the one proposed by MÖLLER, 1997.
Boundary representations or BREPs for short describe the outside surface (or boundary) of
a 3D volume model by connecting each surface to its neighbors. A (sur)face in this case is
defined by its surrounding edges, which itself are defined by their end vertices (STROUD, 2006).
While modification is possible by directly changing the vertices, both tessellation and boundary
representations suffer the disadvantage of being difficult to modify (BORRMANN et al., 2018).
The major advantage of explicit geometries though is the ease of implementation and resulting
cross-platform support they offer (VILGERTSHOFER, 2022).

In contrast to explicitly describing geometry we can also describe it implicitly by instead outlining
the construction steps instead of the final geometry (OBERGRIESSER, 2016). This happens when
using methods such as Constructive Solid Geometry (CSG), where geometric primitives such
as cuboids, cylinders, and more are combined to result in complex shapes. The primitives are
either united (∪), intersected (∩), or subtracted (\) from one another (FOLEY, 1996). Chaining
these operations together eventually leads to the desired more complex shape, as seen in the
example in Figure 2.2.
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Figure 2.1: Examples of a geometry using BREPs (a) and tessellation (b). Source: VIL-
GERTSHOFER, 2022

Figure 2.2: Examples of a geometry using Constructive Solid Geometry. Both (a) and (b) lead
to the same result using cuboids and cylinders as primitives. Source: VILGERTSHOFER, 2022

In addition to CSG, extrusion or sweeping methods work by extending a 2D-surface along a path.
As seen in Figure 2.3, more complex paths such as rotation as well as interpolation between
start- and endpoints are possible (VAJNA et al., 2018). Implicit representations of geometry offer
an intuitive approach to geometry than their explicit counterparts since they describe how the
geometry is created instead of describe what the geometry is. Implicit geometries can also
be desired as a precursor of parametric modeling, making use of the ease of the modifiability
(OBERGRIESSER, 2016).
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Figure 2.3: Example of various sweeps. (a): Extrusion (b): Rotation (c): Interpolation. Source:
VILGERTSHOFER, 2022

Parametric Modeling

Above mentioned representations primarily focus on creating static geometries. In contrast,
adaptable parametric models offer significant advantages. This kind of modeling is achieved
using parametric constraints, that, as the name suggests, constrain parts of the geometry
to adhere to certain conditions. These constraints include coincident, colinear, tangential,
horizontal, vertical, parallel, perpendicular and fixated (SCHULTZ et al., 2017). Using these
constraints can make the modeling process substantially faster and easier than even implicit
geometries allow, by being able to propagate a change in one geometry to others (SHAH &
MÄNTYLÄ, 1995). Making the length of one part be dependent on the distance between other
parts for example, would not only make the modeling process faster but also more robust since
certain conditions will always have to be met. In the case of a beam being placed between
two columns, we would want the length of the beam to be equal to the distance between the
columns (see Figure 2.4). While the Using parametric modeling is imperative to our approach
since it offers us the tools necessary to dynamically adapt our model.

2.1.2 Building Information Modeling

Building Information Modeling (BIM) is a method of planning, constructing and operating buildings
using digital tools. It aims to increase productivity, reduce costs, and improve the planning
process of building over its entire life-cycle. The life-cycle specifically meaning every stage of the
building from the conception, to planning, construction, operation and demolition (BORRMANN et
al., 2018). BIM achieves this by aggregating all information concerning the building, specifically
tying the geometric information, which is usually represented by a 3D-model, and the semantic
information together. Semantic information is all the information apart from the geometry and
can specify details including, but not limited to connections between components, materials
used, attributes of the materials, and time information for the construction phase. BIM as a
method has seen an increasing amount of use within the industry, especially within the last few
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Figure 2.4: The dimension column_distance is set to a specific value. Meanwhile, the dimension
beam_length is set to always equal the distance between the columns.

years (BORRMANN et al., 2018). Since the future of the construction sector will most certainly
incorporate BIM concepts on a large scale, this approach must follow these concepts or at the
very least be compatible with them.

2.1.3 Graph Theory

Graphs are mathematical structures that can depict relationships between entities. A graph G

always consists of a set of vertices V (also called nodes, as well as a set of edges E (also called
relationships), which itself simply are pairs of vertices: e = x, y|e ∈ E|x, y ∈ V . An edge can be
either directional, meaning that the pair of vertices would be ordered and points from one vertex
to the other (x → y|x, y ∈ V ) or non-directional, in which case the vertices are unordered. Each
subset of edges and vertices Gs = (Vs, Es)|Gs ⊂ G|Vs ⊂ V |Es ⊂ E where the endpoints of Es

only consists of vertices included in V s is called a sub-graph of the original graph G (DIESTEL,
1996). See Figure 2.5 for an example.

Edges can describe the topological relationship between objects (represented by the vertices).
To stay within the construction context, on such example would be a wall and a door each being
represented by one vertex, and a directional edge going from the door to the wall detailing the
relationship of the door being contained in the wall (see Figure 2.6). The vertices as well as the
edges can of course itself contain more information such as a label. In our example, the labels
of the vertices would be Wall and Door respectively, and the label of the directional edge would
be contained_in.

Figure 2.6 merely illustrates as simple an example as possible. A graph can have an infinite
amount of vertices and edges, with all vertices being able to be connected with each other.
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Figure 2.5: An example graph with directional edges. Vertices are labeled with letters while
edges are labeled with numbers.

Figure 2.6: An example graph representing a door contained in a wall.

This structure provides a method of representing information of a complex nature by being
able to associate objects with each other in a non-hierarchical way. This is because the above
mentioned fact that each vertex can be connected to any other vertex, as opposed to there
being a strict hierarchy as to what the relationship between nodes must look like. Of course
one could impose a schema on such a graph structure and enforce certain conditions that
nodes and relationships must follow. A binary tree, for example, is by its nature also a graph
with a certain schema applied. In this case, there must be exactly one root node, with every
node having a maximum of two outgoing relationships and itself only ever having one incoming
relationship. Here we have enforced a certain hierarchy with the help of a schema which can
help with representing information which closely follows certain rules.
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The flexibility ability to encapsulate complex multi-layered data structures enable graphs to be
used within many fields of computer science, for example in the form of databases (NEO4J,
2024). Keeping to the example, all information concerning a building (geometric as well as
semantic) may be encapsulated within such a graph similar to how our door and wall were
connected to each other (ISAAC et al., 2013). Of course the patterns this kind of graph must
follow are far more intricate than what we have described so far. For example, a third node could
be introduced with a label called opening. The opening would then contained in the wall and the
door would be contained in the opening. Furthermore, the geometry of each of these objects
could be represented inside separate nodes each connecting to their respective object, with of
course the geometry itself also potentially forming a sub-graph. One example of a data schema
for BIM that can be depicted using a graph are the Industry Foundation Classes (IFC) (ESSER

et al., 2022; ZHU et al., 2023).

2.1.4 Formal Languages

Before continuing on with graph rewriting, let us briefly visit the concept of formal languages and
formal grammar as a historic background. Originally formalized by Noam Chomsky in the late
50s, formal grammar is a concept in linguistics which describe whether a string of characters is
valid within the context of its formal language. The basis of this concept is formed by rewriting
rules which can transform a set of characters to another one (CHOMSKY, 1956).

Rule1 (R1) : A → Ab

Rule2 (R2) : Ab → Abc

Start Symbol : A

Rule1 → Rule2 → Rule3 : A ⇒ Ab ⇒ Abb ⇒ Abcb

In this example, the string starts out with a single character A which forms our start symbol. A
start symbol is the set of characters from which the rewriting process can be started. Along
with our start symbol we have defined a set of rewriting rules, which each define the kind of
transformation a symbol would undergo once the rule is applied. One of these rewriting rules
is defined by its left-hand-side (to the left of the arrow), or the initial state before rewriting,
and its right-hand-side (to the right of the arrow), or the following state after rewriting. A rule
that is applied always replaces the given left-hand-side with the right-hand-side, provided the
LHS exists within the symbol. In the context of formal grammars this system would be used to
determine whether a string of characters can be created using nothing but the rewriting rules
and a designated start symbol (CHOMSKY, 1956). If it can, the string is a valid within that formal
language. The last part has little to no relevance for our use case, but the system of rewriting that
has been established here cannot only be used inside the field of linguistics, but has also found
wide adoption in mathematics and computer science, with graph rewriting being one example
(HELMS, 2013).
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2.1.5 Graph Rewriting

As explained earlier, graphs can be used to depict and represent information, by representing
objects as vertices and their relationships between them as edges. We have also explored
the concept of rewriting rules that can transform a string into another one. The combination
of these two concepts is what is called graph rewriting. Similar to the aforementioned formal
grammar, graph rewriting uses rewriting rules to transform one graph into another one (HELMS,
2013). These rules, also called transformation rules, behave in a similar fashion to their grammar
counterparts as their general structure is identical. Both have a LHS as well as a RHS, with the
RHS replacing the LHS once it has been matched. The difference being that the LHS of graph
rewriting rules consists of a sub-graph that gets pattern-matched to the existing main graph
G. Meanwhile the RHS consists of a replacing graph that, as the name implies, replaces said
sub-graph in G. G in this case would also function as our start symbol.

Figure 2.7: A basic example of a graph rewriting rule: The LHS sub-graph, consisting of one
vertex connected to another one, which is connected to another one, would be replaced with the
same graph with one more vertex and edge added.

In the case, that G may have multiple sub-graphs that match the LHS, still only one is chosen as
seen in the latter example in Figure 2.8. Which one of the matches is chosen to be replaced
depends on the implementation. One could choose the first available match (which would in turn
depend on the graph structure and the matching algorithm) or a random one. In either case, the
rule is only applied once.

While the purpose of these rules in the context of formal grammars was to validate a string
of characters, graph rewriting uses rules to purposefully transform a graph from one state to
another. This way, a graph can be modified or changed without manually needing to do so by
continuously applying transformation rules to the graph, all while adhering to the conditions set
by the rules. By using graphs as a database for the designs, graph transformation can serve
as an approach for creating designs algorithmically. Of course, accurate and appropriate rules
first need to be defined for the approach to be successful. Yet, they can serve as a suitable way
of adapting engineering knowledge into a computer-readable format, and are thus suited for a
wide range of knowledge-intensive design tasks (HELMS, 2013).
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Graph Rule Result

Figure 2.8: Two examples of graph rewriting rules being applied: in the upper example, a
sub-graph consisting of three vertices connected to each other is matched, and said three
vertices are extended by another. In the second example, any vertex matches the LHS pattern.
Yet, since the rule is only applied once, the matching LHS is only replaced once.

2.1.6 Process Modeling

Process modeling, as the name suggests, describes a process through the means of a model.
Such a model is either used to describe an existing process in the real world, i.e. a fabrication
process, or serving as an assistance during the development of a process to formally illustrate
the inner workings of it, similar to how geometric models can help visualize and understand
certain aspects of designs. In both cases the model can help further optimize the process
with regards to the elimination of bottlenecks, the usage of resources, and its viability. This
works for both real-world processes such a fabrication and business processes, but also for
software-internal processes ROLLAND, 1998. For our case, a process model will be highly useful
to describe, optimize and control the flow of the program during runtime, especially in regards to
rule application. There are many ways to illustrate process models. Including, but not limited
to petri nets (ABEL, 2013), sequence diagrams (AMBLER, 2024) and business process model
notation (ORGANIZATION, 2024).

2.1.7 Precast Structures

In contrast to in-situ concrete, where the concrete mixture is poured on-site, precast concrete
is manufactured in advance off-site. Precast concrete is characterized by a superior control
over resulting material quality as well as a lower overall cost of manufacturing (ALLEN & IANO,
2019). The process of designing and manufacturing precast modules that are only assembled
on-site can be embedded in the broader concept of design for manufacturing and assembly
(DfMA) (NGUYEN et al., 2024), which aims to design the product/building in such a way to ease
the fabrication as well as assembly process (WEISHENG et al., 2021). KIM et al., 2016 have
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found that precast modules are suitable for bridge construction in the UK while ANTONIOU and
MARINELLI, 2020 propose standardizing the use of precast modules for high bridge building.
The modular characteristics of precast concrete as well as their adaptability make it a promising
material for the use of algorithmic design using graph rewriting systems.

2.2 Specific Related Engineering Science Papers

Since we have now established our core concepts that underpin our approach, let us explore
related papers that have either already used graph rewriting in a similar fashion, or have
researched algorithmic design in a tangential way.

2.2.1 Aggregations with Interlocking Parts

TESSMANN and ROSSI, 2019 developed a method for algorithmic design specifically for creating
structures using modular units. Specifically, they use a concept called topological interlocking
(see Figure 2.9) to aggregate parts so that simply by aligning them in a certain way, all degrees
of freedom are constrained. This way, an aggregation of parts can also function for load-bearing
purposes.

Figure 2.9: Topological interlocking assemblies: The main part (magenta) is constrained by its
neighboring parts. Source: TESSMANN and ROSSI, 2019

TESSMANN and ROSSI, 2019 create these aggregation using a self-developed framework called
WASP, which is a plugin for Grasshopper for Rhino. WASP uses interface-based rewriting rules
to assemble parts into an aggregation using a topological connectivity graph. TESSMANN and
ROSSI, 2019 call this combinatorial design since these basic parts are combined sequentially
into a single discrete assembly. Objects are geometrically transformed so that the interface-
planes face each other. This is possible by either using explicit sequence description, stochastic
procedures, or gradient field-driven aggregations. The latter referring to using scalar fields as a
frame for the aggregation (Figure 2.10), by continuously adding parts along the field depending
on the scalar value of neighboring areas inside the field. With user-defined parts, a catalogue
of rewriting rules and a scalar field this approach produces modular assemblies with reversible
joints. TESSMANN and ROSSI, 2019 say that their approach challenges conventional parametric
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design where the final form is defined a priori. In contrast, WASP follows a more sequential
workflow where instructions are continuously executed until outputting the desired form.

Figure 2.10: Aggregation of basic parts into an assembly using basic parts and a scalar field. The
images show the progression of the assembly as more instructions are continuously executed
along a scalar field. Source: TESSMANN and ROSSI, 2019

2.2.2 Semi-Automated Generation of Infrastructure Models

VILGERTSHOFER and BORRMANN, 2017 use graph rewriting rules to automate the planning
process of infrastructure projects across multiple levels of detail (LoD). Different LoDs of a
model are used during various stages and domains of the planning process. To expedite
the propagation of changes in the model of one LoD to all other LoDs, VILGERTSHOFER and
BORRMANN, 2017 employ graph rewriting rules using the GrGen.NET framework to achieve a
method of consistently and accurately applying changes in one model to others. The challenges
faced here are the fact that the dependencies necessary to correctly link each model to each
other are "complex, time-consuming, and error-prone" (VILGERTSHOFER & BORRMANN, 2017)
to define manually inside a more conventional parametric modeling environment (BORRMANN

et al., 2014; VILGERTSHOFER & BORRMANN, 2017). Furthermore, graph systems allow the
representation of engineering knowledge independently from any CAD-systems.

2.2.3 Graph-based mass customization of modular precast bridge systems

One of the most closely related research papers is by KOLBECK et al., 2023 which explores
the viability of graph systems for modular bridge structures. Similar to this thesis, it focuses on
adaptable precast modules as a basic unit for construction to produce scale effects and mass
customization which can in turn be used to optimize the production and planning processes.
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Instead of a graph rewriting approach, KOLBECK et al., 2023 only use graph transformation
without the use of rewriting rules by directly converting a change in a certain parameter into a
transformation of the graph, skipping the rule application part. This is done by translating the
changes inside a steering sketch to the graph system. This resembles conventional parametric
modeling more closely, albeit within a graph system context. KOLBECK et al., 2023 mention that
in the future, an adaption of graph grammar for their approach would be feasible.

Figure 2.11: Transformation of the initial graph state to a state including more details. Source:
KOLBECK et al., 2023.

2.2.4 Graph-Based Version Control

ESSER et al., 2022 propose the use of graph-based systems and graph rewriting for BIM version
control. By representing BIM-data with a graph using the IFC schema, changes made to a
model can also be expressed through changes made to a graph. By translating the contents of a
.ifc-file into a graph structure before and after a change was made, an analysis is conducted to
determine the differences between the two versions. This difference can then be packaged into
a patch. This patch contains, among other things, a LHS and a RHS, as do graph rewriting rules.

This approach does not use graph rewriting as a means to design a building, but rather enables
an asynchronous cooperative workflow. This becomes especially crucial for large scale buildings
and design where multiple contractors are involved in the planning process.

2.2.5 Parametric Building Graph Capturing

ABUALDENIEN and BORRMANN, 2021 use a parametric building graph (PBG) to capture patterns
within a BIM model that can then be matched to other projects or other parts of the same
project. By capturing the objects, their relationships, and their context within a BIM authoring tool
this information can then be used to create a rewriting/transformation rule. A different project
can then be transformed into a graph representation. With both a graph representation and
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a rewriting rule the pattern can be matched in the project and then brought back to the BIM
authoring tool. This serves as a way to encapsulate and deploy architectural and engineering
detail knowledge between projects. ABUALDENIEN and BORRMANN, 2021 find that being able to
bring -successful- detailing changes from one model to another greatly influences the cost and
performance of the building.

Figure 2.12: Transformation of the initial graph state to a state including more details. Source:
ABUALDENIEN and BORRMANN, 2021.

2.2.6 More related works

KOLBECK et al., 2022 have shown that graph rewriting has had numerous appearances for
automated and algorithmic design. Additionally, the works of HELMS et al., 2009, HELMS and
SHEA, 2012 use graph systems to represent and synthesize design concepts in the field of
mechanical engineering. MÜNZER et al., 2013, MÜNZER, 2016 and MUENZER and SHEA, 2017
also uses graph based representations to not only create but also automatically evaluate the
resulting designs and filter valid designs accordingly. And STRUG et al., 2017, ŚLUSARCZYK

et al., 2017 propose using graphs and graph rewriting as a method of capturing and representing
engineering knowledge.

2.3 Research Gap

While the above mentioned research examples all employ graph rewriting and graph representa-
tions in differing yet useful ways, they share common ground as to why graph rewriting is used
in a modeling and design context: the dimension of complexity of large construction projects
can prove difficult to navigate and manage even with parametric modeling, while graph rewriting
rules allow the formal definition and application of changes in a persistent and consistent manner.
VILGERTSHOFER and BORRMANN, 2017 and ESSER et al., 2022 use graph systems to expedite
the planning process by either proposing graph-based version control or change propagation,
but TESSMANN and ROSSI, 2019 and KOLBECK et al., 2023 specifically use graph systems to
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algorithmically create designs, as is the goal of this thesis. This approach stands in contrast to
imperative approaches such as ABUALDENIEN et al., 2021employ for their generative designs.
Yet so far there has not been an attempt made at using graph rewriting and process modeling to
design a full-scale model of a building from the ground up.
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Chapter 3

Methodology

This chapter outlines the various design patterns and methods that in combination should lead
to a functional approach. Specifically, we would like to discover a way to leverage graph rewriting
rules in such a way that they can be used to create a 3D-model of a desired building type. These
rules will be applied sequentially with the help of a process model framework that manages
when and where these rules are applied in the main graph.

3.1 Parts and Components

We will be using parametric parts and components as our core building block for creating
aggregations. Essentially, a part provides a blueprint for creating a component, similar to classes
and objects in object oriented programming. Rule definitions use this abstraction to generally
describe their LHS. Each part has a geometry which can be modified by changing parameters,
as well as one or more interfaces which can connect to the interfaces of other parts. In the
following, the basic part catalogue is outlined:

Figure 3.1: Parts used as basic building blocks including their geometry, parameters and
interfaces. The parameters can modify the geometry while the interfaces indicate surfaces other
parts can connect to.

Based on these parts, components can be created that are given the necessary parameters for
the geometry and interfaces to be initialized and be added to the main graph.
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3.2 Rule Engine

The foundation of this approach consists of the use of graph rewriting rules applied inside a
process model to create parametric 3D models. Thus, having a solid rule engine which suits the
needs of the approach is crucial. There are many graph system frameworks already developed
which not only support graph systems but also graph rewriting, for example GrGen.NET GRGEN,
2024. Existing graph libraries can offer powerful and robust solutions when it comes to rewriting
functionality. Additionally, not needing to implement the rule engine by oneself can be a major
advantage leading to time savings. But, for this approach, the decision was made to implement
a custom-made rule engine suited to the requirements of the approach. Two reasons were the
leading factors for this decision: Firstly, to reduce overhead by only implementing the necessary
components of the rule engine. Secondly, to facilitate the implementation of the necessary
custom functionality enabling the approach. In the following, key details of the rule engine are
listed.

3.2.1 Main Graph

The main graph is the central data structure containing all necessary information to represent
the resulting model. How graphs are structured was illustrated in chapter 2. For our casey
the same rules apply with the additional requirements that the main graph be able to be easily
converted into a visualizable format such as .3dm.

3.2.2 Rule Definitions

As described in the previous chapter, each rewriting rule has a left-hand-side (LHS) which
specifies the sub-graph inside the main graph that is to be replaced by the right-hand-side
(RHS). In general, the LHS can be as complex as one wants it to be. While the ability to define
such complex LHSs can be incredibly useful at times, being able to to keep the rule definitions
as simple as possible proves very valuable later on when wanting to apply them. To formally
describe what the rule definitions look like, each rule specifies a single interface of a specific
part (not a component) as the LHS, and another single interface of a specific part as the RHS.
The interface of the RHS will then be connected to the interface of the LHS, as seen in some
examples in Figure 3.2.

Each and every rule defined must follow the schema below. This gives us the advantage of
keeping the code which handles the rule application simple and manageable. Large LHSs are
more difficult to handle when applying rules to a graph, thus, a simple definition is key. Of course
this inhibits the ability to make large modifications to the graph (and the model) in one go. But
for this approach, a rule confining to the schema in Figure 3.2 is perfectly adequate since we
are aiming to procedurally add to the model in small, incremental steps instead of making large
modifications all at once. An excellent example for this is a column being placed on top of a
foundation (see Figure 3.3). Other kinds of modifications to the model that need to be made
mostly follow the same principle and can be expressed using straightforward rules.
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Figure 3.2: A set of two rules specifying how columns and beams are added to the graph.

Figure 3.3: A column standing on a foundation.

3.2.3 Rule Application

We have now established our rule definitions and the main graph to which they should be applied
to. But for the application to happen a software component is necessary that handles the logic
of graph rewriting. This includes the following:

1. Match the LHS of the rule to a sub-graph in the assembly. Since the LHS definitions will
be extremely simple, this is an easy feat.

2. Create the component included in the RHS. Same conditions as in step 1 apply.

3. Transform the component so that the two interfaces are geometrically identical.

4. Check whether other connections in the model have been closed after the transformation.

3.2.4 Topological and Geometrical Conditions

As described in chapter 2, each rewriting rule has a left-hand-side (LHS) which specifies the
sub-graph inside the main graph that is to be replaced by the right-hand-side (RHS). At the most
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basic level, the LHS is a pure topological construct meaning that the only relevant things are the
nodes themselves as well as the relationships between them. As long as the ’condition’ that
the LHS exists within the main graph is fulfilled, the rule can be applied. Yet for this approach,
there are more aspects to be considered apart from the topology. Let us examine the following
situation:

Figure 3.4: A simple aggregation consisting of two foundations, two columns and a beam.

In this example, two columns are placed on one foundation each, with a beam connecting the
two columns. Assuming that the two foundations are our start symbol, one may be inclined to
think that this aggregation can be created by defining and applying some simple rules, as seen
in Figure 3.2 and Figure 3.5. By doing this, we arrive at a resulting graph that represents model
as seen in Figure 3.4.

Figure 3.5: Assembling the model from Figure 3.4 by using two foundations as our start symbol,
then applying the rules defined in Figure 3.2. The column rule twice followed by the beam rule
once.
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The rules applied here specify that certain components and their respective connections are
added. But what the rules do not explicitly specify are the geometrical conditions that need to
be fulfilled. For example, the bottom surface of the columns as well as the top surface of the
foundations need to be correctly aligned for there to be a connection. Of course this can be
easily achieved by simply transforming the newly added component immmediately so that the
two surfaces (or interfaces) align correctly. Since our rule definitions follow the above mentioned
schema, we must simply move every added component after they have been added to the
model/graph. This corresponds to step 2 in subsection 3.2.3. The same logic is applied inside
the WASP framework for Grasshopper (TESSMANN & ROSSI, 2019). This works well for our
column-foundation example, but we encounter a problem when trying the same strategy for the
beam. Visible in Figure 3.5, the beam is not connected topologically to both columns, even
though it is actually supported by both (in the model). Our rule definition specifies that the beam
will only be connected to one column. But what about the other? This is where an algorithm
triggers which examines whether any other interfaces have been connected/closed after a new
component has been added and transformed. Keeping the example of the beam in mind, this
means that initially it is only connected to one console after is has been created and transformed.
Once that has happened, an algorithm that checks whether the other interface of the beam can
be connected is invoked:

Connection Check

1 / / loop through a l l open i n t e r f a c e s i n the main graph
2 foreach ( OpenInter face i i n mainGraph )
3 {
4 / / loop through a l l open i n t e r f a c e s i n the new component
5 foreach ( OpenInter face j i n newComponent )
6 {
7 / / loop through a l l a v a i l a b l e ru l es i n the cata logue
8 foreach ( R u l e D e f i n i t i o n r u l e i n ru leCata logue )
9 {

10 / / i f the open i n t e r f a c e i n the graph equals the lhs
11 / / and the open i n t e r f a c e of the component equals the rhs o f

the r u l e
12 / / and the geometry i s i d e n t i c a l
13 i f ( i == r u l e . l hs and j == r u l e . rhs and i . geometry== j . geometry )
14 {
15 / / c lose the connect ions
16 i . connec ted In te r face = j
17 j . connec ted In te r face = i
18 }
19 }
20 }
21 }

The algorithm loops through all open interfaces of the assembly, then loops through all available
rules inside the catalogue of rules, proceeds with checking if the open interfaces of the new
component have a rule match with any of the open interfaces of the assembly, and then checks
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whether the geometry of both interfaces are identical. If all conditions are met, the semantic
information that there is a connection between these two interfaces is established. This algorithm
is always part of the rewriting process. Whenever a rule is applied, this algorithm will be executed.

The algorithm mentioned above of course only established the connection should the geometries
of the interfaces be identical. Depending on the circumstances this may not be the case, i.e. if
the beam has the wrong length. If the beam is too short, it cannot be supported by two columns
and only the original connection will be made. This means that we need to ensure that these
geometrical conditions are fulfilled before the rule is applied.

3.3 Process Model

While the rule engine handles the application of a rule, the process model handles what rules
are applied and when they are applied. When looking at some examples of what WASP can
achieve when applying certain rules over and over (see Figure 3.6), the resulting aggregations
are far from what one would call familiar. While WASP provides powerful tools to quickly and
reversibly create such aggregations, this approach needs a way to ensure that certain rules are
applied at a certain stage in the process. This is the purpose of the process model.

Figure 3.6: Example aggregation of parts using the WASP plugin for Rhino. Source: ROSSI,
2024

21



3.4 States

State definitions represent the various states that a process model can be in at a given point
during the runtime. Each state has an assembly that it is tied to, and can also possibly have a
subsequent state. In general, three types of states can be distinguished:

- StartState: This state contains all necessary information and methods to create a valid
start symbol which serves as the base for the rewriting process.

- PlanningState: During this state rules that are to be applied and parameters that are to
be set are defined and prepared.

- AssemblingState: Finally, during assembly all previously defined rules and parameters
are applied and the assembly is modified.

The process model encapsulates instances of these states to compute them sequentially. The
process model always has exactly one StartState.. After the start symbol has been created, a
series of PlanningState-AssemblingState pairs follow. In a planning state, not only are there
rules that are defined, but also parameters of the parts that need to be changed. With rules and
parameters defined, these instructions are executed upon in the following AssemblingState,
where the rule engine will be invoked.

The start- and planning states here are the most crucial parts. A correct start symbol is the
metaphorical (and literal) foundation for the graph rewriting system to actually work, while the
planning states define what changes are supposed to happen to the model. If we recall the
geometrical conditions explained in the previous sections, this is the step where the parameters
must be defined in such a way so that these conditions are fulfilled. Going back to our foundation-
column-beam example, we can set the length parameter of the beam to be equal to the distance
between the columns (subtracting the thickness of the columns first, of course). Once this is
defined correctly, the connection checking algorithm can correctly establish the appropriate
connections.

3.5 Execution

At this point the following parts of the approach have been established:

- Part definitions offer the basic building blocks including geometry and connection interfaces.

- Rule definition give us a simple method of defining rewriting rules.

- The rule engine can apply such rules transform a graph.

- The process model provides the capability of start symbol definition, defining when and
where rules should be applied, as well as parameter input.
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Figure 3.7: The sequence of different states inside the process model. After the StartState, an
arbitrary number of PlanningState-AssemblingState pairs can follow.

What remains to be done is simply to create a graph grammar, or a catalogue of rewriting rules
in order to create the structure of the respective case study. Within this case study, the user
should be able to define their own set of rules, part definitions, and project parameters such
as story height or field length. Furthermore, the rule sequence and part parameters must be
defined for the process model to work. Figure 3.8 illustrates this process.

Defining the graph grammar is use case dependant and must be carefully configured in advance.
Since our rule definitions are as simple as they can be, this usually comes down to making sure
that the rule catalogue covers any single connection that is valid and possible within the case
study. For example, a column can be placed on top of a foundation or deck.

Once the grammar is defined, a process model is defined that contains the start symbol definition,
part parameters and the respective rule sequences. The process model can then be executed
upon.
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Figure 3.8: An example of how the process model controls the algorithm through its states.
Each subfigure represents the result after applying the rules defined in either the start state (a),
column planning state (b), beam planning state (c), or deck planning state (d).
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Chapter 4

Implementation

This chapter details the structure, inner workings as well as the capabilities of the implementation
which was used to explore the viability of the approach detailed in the last chapter. It is built upon
the previous work of Lothar Kolbeck, who laid most of the ground work regarding the rule engine
and the process model. Based on his work, further functionality was added in incremental steps.

4.1 Research Design

The objective of the implementation is primarily answering research question in regards to the
viability of a graph rewriting approach for algorithmic design in construction and to explore the
creation and viability of a framework that can facilitate graph rewriting for parametric modeling.
This framework should be able to control and promote a geometrically sound and correct
placement of objects within the model, as well as proper semantic information. In order to
develop this ’rule application framework’ we can utilize design science.

Design science in contrast to natural sciences aims to achieve a desired end result (in our case,
a formal approach) by first developing one iteration of the design, followed by an evaluation
based on its performance. By looping through this cycle of development and evaluation, we
achieve incrementally better results each time, getting closer to the final desired result (PEFFERS

et al., 2007).

To properly evaluate the different iterations of the implementation, we can define a number of
case studies. The specifics of each case can be used to assess the overall advancement of the
program. If the iteration can deliver the desired result, it can be considered successful. If the
result was unsuccessful, it can give us more insight into the feasibility of the approach. In the
following section, the individual case studies will be specified in ascending order of complexity.
By starting out with case studies of lower complexity, problems of a higher magnitude can be
dealt with in later case studies, when the essential work has already been done.

4.1.1 Case Studies

Case Study 1: One Field Skeleton With Multiple Stories

Adding on top of the previous case, we would like the skeleton to be able to scale to multiple
stories. Meaning, a parameter can be defined in advance specifying the number of stories the
resulting model should have. This case study is somewhat more complex than the previous one,
mainly concerning parametrization aspects instead of graph rewriting.
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Figure 4.1: Desired result for the first case study.

Case Study 2: Two Field Skeleton With One Story

Ignoring the multiple stories of case study 1.1 for now, we will attempt to define the number of
fields that will be used when creating the model. While previously we have placed foundation on
each corner of the plot, we must no potentially place more foundations in between the corners,
for example to span larger distances. This adds more complexity especially in regards to the
alteration of the start symbol, which now must be parametrically changed depending on even
more parameters. Once the start symbol is set and correctly configured, standard procedures
can apply.

Figure 4.2: Desired result for the second case study.

Case Study 3: Multi-Field, Multi-Story Skeleton

Combining the "features" of the two previous studies, this case study attempts to determine the
scalability of the approach.
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Figure 4.3: Desired result for the third case study.
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To begin, let us detail the software components that make up the implementation. We can
subdivide the components into external and internal ones:

- External Software/Libraries:

· Rhino: Parametric 3D modeling tool, used for visualization.

· Grasshopper: Algorithmic modeling & visual programming for Rhino.

· Rhino Compute: Headless geometric computation for Rhino.

- Internal:

· Grammar Meta Model: Contains the rule engine as well as all definitions necessary
for running it.

· Algorithm Meta Model: Contains the process model which encapsulates the algorith-
mic design process.

· Case Study: Respective entry point where the process model is set up.

4.2 External

4.2.1 Rhino 3D

Rhino 3D is a 3D-CAD Software that enables geometric and parametric modeling as well as
visualization. This piece of software serves as the basis for our implementation, providing
the necessary framework for developing and testing the program. While Rhino has extensive
capabilities regarding 3D-modeling in the program itself with the help of a GUI (what it is usually
used for), we will disregard this functionality and solely use it as a platform to compute and
visualize our resulting model by leveraging its compute API.

4.2.2 Rhino Compute

Rhino Compute is a headless geometrical computation library which uses the server-client
pattern. Running in the background in the development environment, REST calls can be issued
to create and manipulate common geometries such as points, planes, surfaces, meshes, and
more. This is what the implementation will use to interface .NET with Rhino. This way, we can
develop all graph transformation and process modeling in a separate piece of software, while
’outsourcing’ geometric computation by making use of Rhinos extensive and solid geometric
kernel. Rhino and its computation library where chosen for their easy integration into the overall
software as well as their performance. But, in theory, any geometry library compatible with
.NET could be used instead. One such example would be the Revit API. Since the geometric
computation only serves as a means to modify and manipulate geometries but is only an external
component, it will not be detailed any further.
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4.2.3 Grasshopper

Grasshopper is a plugin for Rhino adding visual programming functionality. Visual programming
languages provide a way of creating programmable scripts with the help of a GUI. Core building
block of a Grasshopper script as a visual programming language is the so-called ’component’:
A small sub-script which usually takes one or more inputs, processes these inputs, and then
returns one or more outputs. These outputs can then serve as an input for other components.
Grasshopper offers many built-in components including, but not limited to, several types of input
components, basic and advanced math capabilities, and geometry creation and manipulation.
To give a brief example, consider this grasshopper script in Figure 4.4 which creates a simple
cube:

Figure 4.4: A simple Grasshopper script which creates a cube.

We define a number ’0’ with the help of a panel-component and route the number to each input
of a Construct Point component. In parallel, we define another number with the help of a
Number Slider component, and route that integer to another point construction. Feeding these
two points to a Box-2-point component, the geometry of a cuboid with each edge length being
the same (also known as a cube) is created and then visualized in Rhino as seen in Figure 4.5

By changing the value of the number slider, we can change the edge length and thus the
volume of the cube. This way, Grasshopper provides a programmable and scriptable method of
parametrization of 3D-geometry. Furthermore, grasshopper script files can be read and modified
by the Rhino compute library mentioned earlier. By creating the geometries and interface
surfaces with the help of grasshopper scripts, we can quickly achieve the necessary building
blocks for our algorithmic design. By also making use of the rhino compute API, we can leverage
the inherent parametrization of grasshopper scripts by changing the input parameters inside
our algorithm. This implementation will be using grasshopper scripts to model the core building
blocks including including their parametrization, to achieve a simple way of dynamic adaption. In
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Figure 4.5: A cube in Rhino created with grasshopper.

summary, Rhino, Rhino Compute as well as Grasshopper offer us a great basis for creating our
resulting model algorithmically.

4.3 Internal

We are using the Rhino compute API to interface a development platform such as .NET with
the Rhino geometric kernel. This lets us write our own rule engine and process model for our
algorithmic design with the help of standard programming tools such as .NET. In this section, we
will detail the different internal components within this program, which make up the main part of
enabling the graph transformation approach.

4.3.1 Grammar Meta Model

The grammar meta model contains all necessary logic and functionality for creating a graph
representation of the model and modifying it through the means of graph rewriting. It is important
to note that as is this a meta model, meaning that there are no use case specific details. Instead
it contains the core rule engine with which we can apply transformation rules to a given graph as
well as anything that is necessary to apply them. The ’meta’ in this case meaning that it is not
system-specific but instead should be generally applicable to a wide variety of use cases.

Assembly

This is the single central component which provides the information necessary to represent the
model as a graph. It contains a list of components which were aggregated into the assembly
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Figure 4.6: General overview of the projects software architecture.

as well as two methods: one which returns all open interfaces in the assembly (meaning all
interfaces that are not connected to another one) and a method to serialize it to a .3dm file using
Rhino compute, readable by Rhino 7. It is important to consider here that the assembly only
contains a ’flat’ list of components, but no direct information about their relationship to each other.
That information is stored in the components themselves. It is also worth noting that from here
on, any expression mentioning the assembly or modifications to it actually refers to changes
made to a graph.

Parts and Components

A Part object contains general information as in a name, but also details the amount and
type of connections the part has as well as its available input parameters. Also, a file-path
to its corresponding grasshopper script is saved here. The path is necessary to invoke two
methods which populate our parameters and connections by fetching the information from
the grasshopper script. When a Component object is created on the basis of a Part, it can
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Figure 4.7: The architecture of the grammar meta model.

also obtain the geometry from the grasshopper file. Since our grasshopper scripts include
parameters, components created from the same part may differ in their geometry or other
aspects. Components also include methods for adding connections or modifying their geometry.

Similarly, the connections of Parts and Components are of a Part- and ComponentInterface

type, with, again, the ComponentInterface being created from the PartInterface and only the
former containing the geometry. Important here is, that the ComponentInterface also has a
property called OtherConnection. This can be any other ComponentInterface and determines
whether an interface is connected to another one. Remember that information about the
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connections between components was not stored directly in the assembly. Instead, they are
stored here. The ComponentInterfaces are designed in such a way that one interface can either
be connected to a placeholder, meaning that it is not connected anywhere, or to one (and only
one) other ComponentInterface.

Rule Definitions

The above mentioned part-component abstraction lets us easily create components in our
assembly based on a given ’blueprint’, but also lets us elegantly define rule definitions. As
described in the previous chapters, transformation rules need to be given a left-hand- and well
as a right-hand-side. This means that we can define our rules by referencing certain parts and
their interfaces which should be matched in the assembly (LHS), and then referencing a part
and their interfaces which should be added to the assembly (RHS). Defining rules this way
allows for a quick creation of them which is convenient when setting up new case studies. One
drawback of this implementation however is that it only allows for matching to solely one type of
component, and subsequently only adding one component. Should a certain interface be able to
interface with more than one kind of component, we need to define multiple rules. The decision
to keep these rules as simple as possible stems from also wanting to keep the rule engine as a
whole simple and robust. Note that rules themselves are not defined here, only the class with
which they are created. Rule definitions can be aggregated inside a rule catalogue, which we
can hand over to other parts of the software to have all defined rules within a case study readily
available.

Rewriting Handler

This class is where rules are applied to the graph, or, in other words, modifications are made to
the assembly. Here, all formerly described concepts are used to do the following:

- Retrieve a matching open interface via a RuleMatchingResult.

- Create a component and transform it so that both interfaces align.

- ’Close’ both interfaces by setting the OtherConnection of each interface to the other one.

- Check if other connections can be closed after transformation.

Worth noting is the RuleMatchingResult, which takes a single rule definition and the assembly
as an input and can return an open interface matching with the rules LHS in the assembly with
the help of the method GetMatch. Once a rule match is found, the new component is added and
transformed as it is done in Andrea Rossi’s WASP plugin for grasshopper. Finally, the last part
corresponds to the connection-check mentioned in the last chapter.
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4.3.2 Algorithm Meta Model

The algorithm meta model contains class definitions concerning the process model. As already
mentioned, the process model exists to control the flow of the algorithm during runtime, meaning
that while anything concerning graph rewriting is stored in the grammar meta model, the actual
rewriting process is invoked from within here. Again, this part of the program is also on the
meta-level, meaning that it is not system-specific but generally applicable instead.

Figure 4.8: The architecture of the algorithm meta model.

States

The various kinds of states have already been described and explained in chapter 3, and the
same conditions apply here for the implementation. Furthermore, a state must always have
a compute method, which executes all steps necessary to either make modifications to the
assembly or prepare for it. This is guaranteed by implementing an abstract State class which
all other state classes inherit from, mandating that each must implement a compute method.
Modifications to the assembly/graph can only happen during the StartState as well as the
AssemblingState, which is handled by the compute method each time. Meanwhile the compute

method sets and handles parameters and rule sequences in the case of a PlanningState.
There, these sequences and parameters are immediately handed over to the succeeding
AssemblingState. The separation of states where 1: commands are ’queued’ and 2: commands
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are executed (PlanningState and AssemblingState respectively) was implemented to better
abstract the process modeling as well as provide a clear interface for the case study to input its
use case-specific data.

Process Model

The ProcessModel class wraps the states into a single data structure. It contains the list of
states that must always follow a certain pattern. After a StartState where the start symbol is
defined there always follows a PlanningState where sets of rules and parameters are defined.
After a PlanningState there must always be an AssemblingState where these instructions are
executed. After the initial StartState there can be as many PlanningState-AssemblingState

pairs added to the process model as the desired result needs. Wrapping the applications of
transformation rules inside a process model pattern gives us more control over what and when
rules are applied, which is quintessential for our rule application framework mentioned in the
previous chapter.

4.3.3 Case Study

The case study is the part of the program where the concepts and functionalities of the algorithm
and grammar meta model are used to create a model. It involves a main entry point in which
all necessary parts, rules, and parameters are defined as needed by the use case, then wraps
the rules that are to be applied and their parameters into objects either of type PlanningState

or StartState. Finally, after defining the necessary states, each state can be computed which
invokes the rule engine.

Figure 4.9: Example structure of a case study.
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Program

The Program file is the entry point for the entire software. It also serves as a hub for creating
parts, rule definitions, parameters and the process model. To start, all necessary parts such as
foundations, columns, beams and more are defined. On the basis of these, rule definitions are
created and then added to a rule catalogue. Next, the parameters such as plot geometry, story
height and number of fields are set and stored in a dictionary. With parts, a rule catalogue and
parameters, our process model can finally be set up.

Process Model Specification

This subdirectory contains class definitions all inheriting from either the StartState or
PlanningState classes. While the previously explained classes provide the general frame-
work, the methods of setting start symbols as well as defining rule sequences and parameters
are actually declared here. For example, if we want to place a single foundation as our start
symbol, we would do this within the PlaceStartSymbol method of a StartStateSkeleton class
(inheriting from StartState. If we want to define rules that are to be applied, we define those
within the DefineSequenceOfRuleApplications method of a PlanningStateColumns class (in-
heriting from PlanningState.

While most of the logic concerning the creation of the model is handled in the process model
and rule engine, one crucial part is actually dealt with here. The collision checking algorithm
detailed earlier only works when the basic geometry of the components is correct, i.e. the length
of the beam is defined correctly and fits perfectly in between two columns. The logic concerning
this correct parametrization of the parts is a portion of the process model specification, inside
the PartParametersPerRule method to be exact. This needs to be handcrafted by the developer
for each separate PlanningState as well as case study.

Detailed parameters and rule definitions for each case study are explained in the next chapter.

4.4 Algorithm Overview

To get into more detail on how the different software components behave and what they do
during runtime, let us now consider the overall algorithm flow of the program. As seen in
Figure 4.10, the entry point is always inside the case study by defining the parts based on our
grasshopper definitions. Based on these parts and their connections, we can start defining our
case-dependant set of rules and parameters, which then lets us outline our process model with
all necessary start and planning states. With the process model set, we can start invoking the
rule engine by calling the MakeStep method inside a loop. This method computes the current
state inside the list of states until the end is reached, where the resulting graph is serialized to a
.3dm model.
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Figure 4.10: General program flow of the algorithm during runtime.

4.4.1 Details of Select Parts of the Program

Rule Engine

Of course, the most crucial and interesting part of this program lies within this MakeStep method
and all that it entails, as seen in Figure 4.11. As mentioned before, it always invokes the
computation of the current state, while simultaneously shifting the current state to the next in
the list. Should the current state be a StartState, the start symbol as defined in the case study
is added to the assembly. This could be, for example, the placement of the foundations of a
building. Note that there can only ever be one StartState within the process model and it has
to be the first state that is computed. Should the current state be a PlanningState, which will
always follow after a StartState, the rule application strategy/order as well as the necessary
part parameters are set and prepared for assembly. To name just one example, one could set a
number of rules which specify that columns should be placed on top of the foundations, and
that these columns need a certain height corresponding to a pre-defined story height. Yet, no
changes are made to the assembly during this state. This happens if the current state is an
AssemblingState, where the rule application strategy of the previous PlanningState is actually
executed with the help of the rule engine. Each rule is applied in the exact order specified
during the definition of the process model, by first checking the existing assembly for matching
open interfaces, then placing a component compliant with the previously set parameters in
the assembly at the global origin, then transforming that component so that the two matching
interfaces face each other. We place a column within the model (at the origin), change its height
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and then move and rotate that column so that its bottom surface/interface matches with the top
surface/interface of a foundation. After completing the assembling step, the next PlanningState
is computed and the loop continues until there are no more states left to compute.

Figure 4.11: Iterative calling of the rule engine.

Start State Definition

Pivotal for the resulting model is how and in what order the modifications to the assembly are
made. This is where another part of the rule application framework comes into play. The process
model alone already gives us control over when certain rules are applied but what it cannot do is
let us directly define how, or to phrase it better, where the rule is applied. For example, we want
to apply a rule where a column is placed on a foundation. The process model lets us determine
that the rule is applied right after the start symbol (the foundations) are placed. Yet, since there
may be multiple foundations that have open interfaces, the column could be placed on any of
the foundations with the resulting model being fully compliant with what we have set up in our
case study.

When looking at the rewriting algorithm more closely, specifically the RuleMatchingResult, the
first available matching interface is returned when we want to check if a rule can be applied to
the graph. As a reminder, the RuleMatchingResult determines whether there are patterns in the
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Figure 4.12: Appropriate start state definitions for (a) 1x1 fields, (b) 1x2 fields, (c) 2x2 fields.

graph that match to the specified left-hand-side of the rule, and returns the first valid interface.
When searching through the graph, the components are stored in the same order in which they
were placed originally. Using this fact, we can introduce a certain predictability to where the
rule is applied. Staying with our example, the foundations which act as our start symbol were
added in accordance to an algorithm that places them in counter-clockwise order starting from
the global origin. This means that the foundation at the origin point will always be the first to be
returned when looking for a component of ’type’ foundation inside the assembly. Once a column
is placed on top of this component, the interface is no longer open, which in turn means that the
next best interface would be returned when searching for yet another LHS match. In our case,
it would be the interface of the next foundation in counter-clockwise order. We can make use
of this technical detail by examining the start symbol closely and defining our rule application
strategy accordingly. As to why we would want that kind of control over where the rules are
applied, we can reiterate what was explained in the previous section on the basis of our example:
Let us say we have different types of columns that can all be placed on a foundation, but also
want to exactly specify on which foundation a certain type of column should be placed. The
order of the foundations was defined in our StartState, and with that (predictable) knowledge
we can set our rule application strategy in such a way that the correct type of column will be
placed on the correct foundation, as seen in Figure 4.13. However, it cannot be stressed enough
how significant and crucial the correct definition of the start symbol is when approaching it this
way. Should the algorithm which creates the start symbol be in any way invalid or faulty, any
subsequent change made by rule application may also be compromised.
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Figure 4.13: Different types of columns may be necessary even when placing them on the same
type of foundation. In this case, the second column was placed using a completely different rule.

Rule Matching

We have now spoken about how the RuleMatchingResult behaves when it actually finds a
matching open interface. Yet, there may also be the case where the LHS of a rule does not
match anywhere in the graph. Of course, if there is no match then the rule can not be executed
at all, since the RHS cannot attach anywhere. In this case, this step is simply discarded and
the algorithm moves on to the next rule in the rule application strategy. The alternative would
be to halt the program at this point. Yet, this would mean that which, and especially how many
rules are applied needs to be meticulously determined and defined by the developer before the
program is executed. This is cumbersome and unnecessary and also the reason why the former
approach was ultimately chosen. Discarding invalid rules gives us the advantage that we can
set "wrong" or "too many" rules in our application strategy without needing to worry whether the
program will halt. We pay for this luxury with a potential loss in performance since the program
is not being as productive. Yet what we gain in runtime performance when not doing this we lose
many fold in development time.

Connection Checking Algorithm

Furthermore, a sub-algorithm for connection checking has also been implemented. As detailed in
the last chapter, this serves the function of reviewing the geometry for other possible connections
after a rule has been applied. Since the rules we have defined for our use cases all follow a
certain schema (look for a single open interface, attach a single vertex and edge to it), we can
check afterwards whether any other open interfaces now geometrically match.
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4.5 Results

4.5.1 One Field Skeleton With Multiple Stories

Being the simplest of the case studies, the results were successful. In Figure 4.14 we can
see that an assembly was created that fulfils our topological and geometrical conditions. The
red lines between the components indicate that a connection exists between them (inferred
from the otherConnection property), and when examining closely, the geometry is correct at all
points: beams and decks are at the right length, interfaces align with each other (Figure 4.16).
The start symbol is created algorithmically within the context of a StartState and places four
foundations at each corner of a user-defined rectangular plot Each foundation had to be rotated
by 90 degrees compared to the previous one, since the columns that are placed on top also
need to be rotated accordingly. In summary, a process model very similar to the one used in
Figure 3.8 was used, with one additional step to add the deck. Once these states where correctly
defined, they could be packaged into a loop that can repeat that same process for the next level.
This can scale indefinitely (Figure 4.15).

Figure 4.14: Mode resulting from defining one story and unequal side lengths. The red lines
between the parts indicate that they share a connection (e.g. a column is connected to a beam).

The graph grammar, also known as the rule catalogue, is also fairly straightforward to set up and
define. A summary of the rules we need to achieve this result is provided in the following. In
total, eleven rules had to be defined.

- ColumnOnFoundation: Place a column on the foundation.

- BeamOnColumnConsole: Two Rules that place a beam on a console. One for each con-
sole/beam interface combination.

- DeckOnColumn: Four rules that connect the bottom deck interfaces with the top interfaces of
the columns. Since each interface of the deck is numbered, four rules need to be created.

- ColumnOnDeck: A set of rules that places columns on top of the deck. Similar to the
previous set of rules, four rules needed to be created.
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Figure 4.15: Resulting model using a square plot and four stories.

Figure 4.16: Detail view showcasing that beams, decks and joints are correctly dimensioned.

4.5.2 Two Field Skeleton With One Story

This case study introduced a significant amount of complexity to both the start symbol definition
as well as the rule catalogue. Large parts of the previous case study could be kept the same,
but the algorithm that defines the start symbol needed to be significantly extended. It had to
not only place foundations at each corner off the plot, but also in between them. The decision
was made to also solve this with a scalable algorithm that not only works with two fields but
also more. Here again, the correct orientation of the foundations was crucial and can be seen
in Figure 4.17. Furthermore, more column parts where introduced since we now needed to
place columns with three or more consoles (Figure 4.19), which in turn meant that we needed
to introduce significantly more rule definitions than before. In additiona to the rules from the
previous case study, the following needed to be appended, for a total of twenty:
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- ColumnOnFoundation: Analogous to the previous case, with the addition of two more
column types, resulting in a total of three rules.

- BeamOnColumnConsole: Analogous to the previous case. Since there are now two more
potential console interfaces, the total rules amount to eight.

- DeckOnColumn: With two by two fields, up two a number of nine interfaces on the bottom
lead to nine rule definitions.

.

Figure 4.17: The orientation of the foundations and their interfaces indicated by red lines.
While the StartState itself may not change significantly (square geometries), the orientation is
paramount for the subsequent placement of the columns.

4.5.3 Multi-Field, Multi-Story Skeleton

Extending the previous case even more, an attempt was made to now scale the multi-field
skeleton upwards by adding support for multiple stories. While successful (Figure 4.20), the
necessary setup was extensive, with large parts of the rule sequences needing to be defined
manually. The choice of rule definition schema led to there being a drastic increase in the
amount of rules necessary, since there was a higher count of parts and interfaces for this case.
Specifically, the deck had to be adapted to include multiple top interfaces for multiple fields,
which all needed their own rule definition to be able to connect to the appropriate columns. Large
catalogues of rule definitions are difficult to handle, and also make sequence definitions for the
process model more difficult. The following rules were included in the catalogue:
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Figure 4.18: Resulting model for two fields using the above mentioned rule catalogue.

.

Figure 4.19: Images detailing the columns with three or four consoles.

- ColumnOnFoundation: Analogous to the previous case. Total of three rules.

- BeamOnColumnConsole: Analogous to the previous case. The total rules amount to eight.

- DeckOnColumn: With three types of columns needing to be placed on top of the deck with 9
interfaces, 27 additional rules need to be defined.

This case study has shown that the rule sequence definition, while pivotal, is difficult to automate
and often has to be defined manually. Which is, of course, not the goal of this thesis. Reasons
as to why this was necessary will be discussed in the following section and chapter.
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Figure 4.20: Example result using two fields and three stories.

4.6 Implementation Issues

4.6.1 Part Parameters in Grasshopper

Grasshopper allows fine-grained parametrization of parts, but also does not come without its
drawbacks. Consider the following example: A column can have anything between two and
four consoles to place beams on. If the column is placed at the corner of a building it will
most likely have two, while if it is placed somewhere in between it will have three or four. Of
course, we could also parametrize this inside the grasshopper script by simply adding something
like a number slider as an input. This would allow us to dynamically change the number of
consoles depending on the requirements. This is not too difficult to implement in Grasshopper
itself, but a problem arises when trying to interface with the script inside our program: Should
we define the number of consoles to something lower than four, some components inside the
grasshopper script throw an exception as seen in Figure 4.21, since they do not receive their
expected inputs. For example, if we would want to add a NumberOfConsoles parameter to our
column grasshopper script, the error would be thrown when the parameter is too small, as
not every component receives its expected inputs. In this case, certain components having
to do with the duplication of data do not receive any data to duplicate. Rhino still manages to
visualize the geometry adequately, but rhino compute starts throwing errors when parsing the
Grasshopper script, making the program unable to correctly define part parameters. While it
may be possible to resolve this issue, creating individual scripts for all the different types instead
is solution applied here. Yet, this leads to more parts and, more importantly, more rules needing
to be defined. This problem is not limited to columns either, a deck component is supposed to
have a different amount of interfaces on its top depending on the amount of fields where set.

An attempt could be made to fix this issue by instructing the grasshopper scripts to return lists
instead of singular items. This way, one could parse the returned lists for the desired parameters
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Figure 4.21: Error in a grasshopper script: An input parameter is set in such a way that certain
components do not receive their expected input. While Rhino may still be able to visualize the
geometry without any problem, Rhino compute cannot.

and interfaces and most likely remedy the errors. Currently, the implementation suffers greatly
from this issue.

4.6.2 Grammar Definition and Debugging

While our rule definitions were kept as simple as possible, they exhibit a significant disadvantage
once the desired outcome becomes more complex. Since parts were categorized into sub-parts
such as columns with different amounts of consoles or decks with differing amounts of interfaces,
the amount of rules necessary to define to achieve a reliable grammar becomes increasingly
extensive with each new part type we introduce. Any column type must be able to connect to
each interface of the deck part. Assuming three column types (two, three, and four consoles) and
a three-field construction (resulting in sixteen interfaces on the deck) we must define 48 rules
simply to place columns on top of a deck. The considerable amount of rules makes debugging
quite tedious.
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Chapter 5

Discussion

Graph rewriting as an approach for algorithmic design or automated planning offers great
advantages compared to conventional planning methods as well as other algorithmic design
approaches. But the manner in which it is implemented, especially the intricate and small details
of the rule engine and process model, is crucial regarding the capabilities and extendability of
the approach. To start off, let us first answer the research questions we have articulated:

5.1 Research Questions

5.1.1 How easily can algorithmic design be achieved with the help of graph
rewriting rules within the context of modular precast structures?

The approach benefits greatly from a modular construction method as is present in structures
using precast modules. Since each module can easily be represented by a node including its
node properties, the connections between these modules can also be represented using edges.
Within the context of precast structures we can adapt the model to a graph system using these
nodes and edges without too many layers of abstraction (see Figure 2.6). Furthermore, graph
rewriting rules act as a very suitable method of adapting engineering knowledge since the rules
can represent the low-level concepts of construction in a computer- but also human-readable
manner (VILGERTSHOFER, 2022). With low levels of abstraction it is also easy to create the
rewriting rules similar to Figure 3.2 and in turn, create a proper grammar for the type of structure.

Apart from the adaptation of modules into a graph system, the geometry of precast modules also
carries significant advantages. Theo geometry of precast parts can easily be parametrized in
such a way that often by only changing a single parameter the geometrical conditions discussed
in chapter 3 can be satisfied.

To summarize, using precast modules adds little abstraction to the graph adaptation process
and provides simple geometries to parametrize. These in combination make precast structures
a suitable candidate for graph rewriting as a method to achieve algorithmic design.

5.1.2 How detailed does the surrounding framework for rule application need to
be to create usable structures?

This approach employed a rule application framework to manage when and where certain rules
are applied. This was done to ensure that the rules were executed at certain points during the
assembling process leading to the creation of usable structures. In our example of skeletons
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made out of precast modules this was achieved by defining rule sequences and parameters
within the various PlanningStates defined for the process model, as detailed in chapter 3. In
general, everything defined within the process model states is not strictly part of the graph
rewriting process.

Without the definition of rule sequences, the result does not resemble an actual real-world usable
structure, as seen in Figure 5.1. This means that at least for this implementation the surrounding
framework is crucial for the success of the approach. Let us briefly summarize which steps of the
program are part of the surrounding framework and which ones are part of the rule applications:

- Surrounding Framework: Project parameter definition, start symbol definition, rule se-
quence definition, part parameter definition.

- Rule Engine: Rewriting process

As one can see, the implementation relies heavily on the surrounding framework (especially
the process model) to achieve the desired results. While this may have yielded some usable
structures, having to make use of the framework to this extent was not the original intention.
Many of the problems encountered during development, such as connecting a beam to two
columns, correct definition of part parameters, and post-processing of newly added components
where solved algorithmically within the surrounding framework instead of in the rule engine. For
future research, methods on how to solve these problems with graph rewriting must be explored.

Figure 5.1: Example of a resulting model using no process model setup.

Let us conclude this answer with a small, experimental thought: Rewriting rules were originally
intended to formally describe the grammar of languages (CHOMSKY, 1956). Using the rules, the
grammar of an entire natural language (e.g. English) could be formally described, without the
help of any ’surrounding framework’ at all. Transferring this thought over to our graph rewriting
approach in the built environment, there may exist a graph grammar for precast structures that
is so meticulously defined that it always results in a valid precast structure - without the need of
any surrounding framework. But, whether the definition of such an extensive grammar is feasible
is an entirely different question.
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5.1.3 How well can this approach be adapted to other fields of civil engineering?

The approach makes use of various software components that each fulfil a different purpose.
The rule engine handles the graph rewriting process by applying the rules, whose sequence
and parameters were defined inside the process model, which was defined in the respective
case study. Importantly, the rule engine and the process model, or Grammar Meta Model and
Algorithm Meta Model as they were called in the implementation, are entirely case-independent
and can, in theory, be used for any kind of construction as long as it can be described using
rewriting rules.

We have established that any structure made out of precast modules is suitable for this approach
(e.g. bridge construction), yet what about other methods of construction, such as infrastructure?
When planning a road for example, the first part that is drawn/planned is the alignment, the
central axis from which everything else builds off of. Such an alignment consists of various
sections such as straights, circular arcs, and clothoids, each defined by a set of parameters.
If we consider these sections to be our parts or modules we can also define rules, with a few
examples being given in Figure 5.2.

Figure 5.2: Basic examples of what rule definitions could look like in infrastructure planning.

With the crucial parts of the approach being case-independent, it can be confidently said that
graph rewriting has the potential of being applied many fields of civil engineering, as KOLBECK

et al., 2022 have already described. The only limiting factor being, how well the knowledge can
be represented using rewriting rules.
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5.2 Drawbacks and Improvements

Some drawbacks of the implementations as well as potential fixes where already discussed in
the chapter 4. Now, the scope of these issues will be broadened to better discuss the areas of
improvement that this approach has for potential future research.

5.2.1 Rule Definitions

One area mentioned in the last chapter was that of the rule definitions. The simplistic approach
taken in the implementation made the handling and application of rules rather easy, up to a
certain point of complexity. The example given in Figure 3.4 illustrates the complexity quite
well: While simple situations such as columns being placed on foundations are adequately
represented using the rule schema as seen in Figure 3.2, the method crumbles as soon as the
circumstances become even slightly more complex. This is already the case when we want
to place a beam on top of two (already placed) columns. One must remember that rewriting
rules serve as the main way of adapting the real-world engineering knowledge into a computer-
readable form. This in turn means that the rule must be able to represent such knowledge
adequately. Rule definitions as in Figure 3.2 can not represent the fact that a beam must be
supported by at least two columns. The workaround employed by this approach was to check for
other connections after a rule has been applied. Yet, this also necessitated that the geometric
conditions (the length of the beam must equal the distance between the columns) must be met
before the rule was applied. Which, in turn, resulted in a slew of pre-application modifications
that must be made. It is this mixture of pre-processing and post-processing that undermined the
graph-centric approach and made it more imperative than originally intended.

To stay with our beam-length example, the rule definition can of course be adapted to represent
the situation adequately. In Figure 5.4 it is shown that a beam can only ever be added to the graph
if there are two columns with open interfaces. This represents the engineering knowledge more
closely. As for the geometric conditions, one could implement the shape grammar STOUFFS,
2019 employs by using predicates and directives. Predicates being conditions that must be
fulfilled for a rule to be applied that cannot be simply represented in the LHS pattern. Our
geometrical conditions would be such an example. Directives on the other hand, specify a
certain value that must be set upon rewriting that cannot be declared by the shape of the RHS.
The solution proposed in our method by applying a connection check sits somewhere in the
middle: One the one hand, we determine that the geometric conditions must be satisfied before
rewriting is started, on the other hand our specific value (the connection between the second
beam-interface and the second column) is established after rewriting has been completed.
Making the approach more closely resemble the concepts STOUFFS, 2019 has introduced, one
could explore the viability of making the length parameter of the beam dependent on values
of the column nodes. Instead of determining the length during pre-processing and making
the second connection during post-processing, the beam can be (topologically) connected to
both right when the rule is applied (Figure 5.4) with its length inferred afterwards. This can
be achieved by further extending the rule definition to include that the node properties can
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be dependant of the node properties of other connected nodes (Figure 5.5. This approach to
rewriting rules, while not yet tested, could prove to provide more elegantly the necessary tools
to create a suitable graph-grammar for the specific usecase and must be further researched.

Figure 5.3: How a connection between the beam and its two neighboring columns is established
according to the method used in the implementation. After the rule application, a connection
check is issued and the relationship is established.

Figure 5.4: This new proposed rule definition for the placement of a beam resembles engineering
knowledge more closely.

Hierarchical Rule Definitions

By implementing a more general way of defining rules as mentioned above, meaning the
possibility of defining a larger and more complex LHS and RHS, further capabilities can also be
added to this approach. One of these is what ROSSI and TESSMANN, 2019 call hierarchical rules
that aggregate multiple parts into one ’aggregated part’ which can then also be part of a rule
definition. A great example for this could be the need for multiple storeys in a building. Assuming
each level is structurally the same (columns, beam, decks), one level could be ’copy-pasted’ to
the next. Within a rewriting context, this works by aggregating these parts into one. At the same

51



Figure 5.5: The node properties could be dependant on their neighboring nodes. Here, the
length of the beam is conditional to the coordinates of the two columns.

time, we define a hierarchical rule which postulates that this aggregated part can interface with
itself (Figure 5.6).

Figure 5.6: Example application of a hierarchical rule. First, a set of parts is aggregated into one.
Then the rule is applied which specifies that this aggregated part can be placed on top if it self.
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5.2.2 Start State Specification

We have determined that a correct and robust start symbol is the foundation (figuratively and
literally) of the entire algorithm. This leads to the necessity of creating an algorithm that can
deliver said start symbol consistently. Since user-defined parameters may change on a project
by project basis, the algorithm needs to be dynamic in such a way that it can easily handle such
dynamic changes. While certainly anything but impossible, it does create the need to define
larger parts of the model imperatively.

5.2.3 Planning State Specification

Similarly, we run into a related problem when specifying our planning states of the respective
case study. While the rule application strategies of some planning states are a simple as adding
the same rule certain amount of times, other times it is more intricate to specify the correct
rules at the correct position. Again, we need to meticulously determine when and how a rule
should be applied. This puts more emphasis on creating the model ’manually’ by burdening the
developer with creating appropriate algorithms apart from the rule engine. The amount of work
should be reduced by the implementation of larger, more complex rule definitions that alleviate
the need for meticulous rule sequence definition. If, for example, a single rule can place all
columns on the same level, the sequence for that step in the process model is kept simple and
short.

The last two subsections correspond to an issue mentioned in chapter 3. On the one hand, it
is desirable to reduce the amount of ’manual’ work necessary to create a correct result and
instead let the rewriting rules do most of the work. On the other hand, we have established
that some amount of control is paramount and comes with the responsibility of acting on it. In
this balancing act, implementation choices must be carefully considered as they could either
compromise model validity or make the rewriting system progressively obsolete.
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Chapter 6

Conclusion

Graph rewriting systems as a method for algorithmic design promise to be a fitting solution
compared to imperative approaches such as ABUALDENIEN et al., 2021. Rewriting rules
specifically manage to encapsulate engineering knowledge in an intuitive way in order for
humans to be able to create, read and understand them. Also, with rewriting and process
modeling being universally applicable, it creates a solid base for algorithmic design in the future.
But rewriting rules alone may never yield the desired results. The framework (or in the case of
this implementation: the process model) for rule applications that facilitates the rewriting process
must be able to control the flow of the algorithm appropriately so that usable structures get
created. Strong rule engines and rewriting systems exist already today, but an approach on how
to use them for design synthesis to reliably and consistently output such designs has not yet
been formulated to the necessary extent. But the method presented in this thesis has made
another step in this direction.

Graph rewriting in combination with a process model setup may make it possible to develop a
’design engine’ one day that is generally applicable and capable of modeling any kind of building,
design or product, similar to what EICHHOFF et al., 2016 propose. As long as its users provide
a valid grammar as well as a functional process sequence, the core software components of
the rule engine as well as the process model can, in theory, create any kind of design. To take
it even a step further, current regulations, guidelines, and codes could also be adapted into a
graph grammar style alongside their natural language versions. Architects and engineers may
take these ’regulation grammars’ and build upon them to not only algorithmically create their
design, but also make them regulation compliant in the same step. While this may be years, if
not decades away, the implications it has on the way we design and model products of any kind
even today are both crucial and paramount.
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Appendix A

Files

All files necessary to run the implementation are provided in the Sync & Share folder "Masterthe-
sis Benedict Harder". Rhino 7 is required.
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