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Introduction 

A significant challenge for improving hearing devices 

remains noisy environments, where multiple individuals 

engage in simultaneous conversations, the "cocktail party 

problem." Effectively addressing this challenge involves 

identifying the specific speaker to whom an individual is 

listening. Understanding how the brain processes and 

distinguishes sounds is thus a key to improving hearing aids. 

Earlier studies have described auditory responses and 

receptive fields for pure tone to complex stimuli [1, 2]. 

Researchers have employed various methods, including 

invasive and non-invasive techniques like 

electroencephalography (EEG) [3-5]. Despite the inherently 

nonlinear nature of the human brain, treating the system as a 

linear model has successfully discerned the target speaker 

from neural recordings. These methods involve recording 

brain signals in a two-speaker environment to unveil the 

brain's ability to track the features of the attended speaker. 

Encoding speech properties such as envelope, spectrum, and 

phonetics into neural responses [6, 7], known as the forward 

method, has been achieved through system identification. 

Recent research has shown that individuals, when exposed to 

narratives or sentences, exhibit neural activity that aligns with 

the speech envelope of the acoustic stimulus [4, 5, 8, 9]. The 

backward method was introduced such that it would map the 

multi-channel neural signal to acoustic speech, and it has 

demonstrated promising results [10]. Using correlation 

coefficients between predicted and ground truth outputs 

provides a quantitative and objective means of assessing the 

accuracy and reliability of both the forward and backward 

methods. A higher correlation value indicates a strong 

correspondence between the predicted and actual neural 

responses in the forward method. It indicates the accurate 

reconstruction of neural responses from acoustic speech in the 

backward method.   

Moreover, it has been observed that visual input can enhance 

the neural tracking of acoustic speech [11, 12]. We designed 

an experiment in anechoic space to study the roles of attention 

and gaze direction in a two-speaker environment. Employing 

correlation analysis, the investigation aims to uncover the 

impact of attention on target envelope features of speech and 

brain signals using both forward and backward methods. 

Notably, in addition to attention, we explore the potential 

impact of gaze direction on the correlation values between 

predicted and accurate data. By incorporating gaze direction 

into our correlation analysis, we aim to uncover any 

distinctive patterns or variations in how individuals direct 

their attention within the auditory scene. 

Materials and Methods 

Experimental Procedure 

Five native German speakers participated in this preliminary 

study after giving written informed consent. They were 

audiometrically confirmed to be of normal hearing. During 

the experiment, they sat in the center of the Simulated Open 

Field Environment (SOFE) loudspeaker array in the anechoic 

chamber at TUM [13] and placed their heads against a 

headrest to suppress movements. The experiment included 

two concurrent audio streams from audiobooks, one female 

narrating the audiobook “Sophie und Hans Scholl,” and one 

male narrating the audiobook “Ludwig van Beethoven,” both 

published by Amor Verlag GmbH and used with permission. 

The audio recordings were available at a 44.1 kHz sampling 

rate. Silent gaps were truncated to a maximum of 0.5s long, 

and the data were divided into one-minute-long intervals. 

Each audio stream was presented at 55 dBA. Audio streams 

were played from loudspeakers placed at ear height at −20° 

and 20° azimuth, and a 512-taps FIR-filter was used to 

equalize loudspeakers. The experiment consisted of eight 

familiarization runs followed by 24 data collection runs. In 

the SOFE, visual information was displayed with a projector 

on a screen in front of the subject with a width of 4.3 m and a 

height of 2.7 m. The subject sat at a distance of 2.4 m from 

the projection screen and had a visual azimuthal angle 

coverage of ±45°. Each trial commenced with the appearance 

of an arrow for five seconds in the middle of the screen, 

indicating the direction of the attended speech source. 

Subsequently, the arrow disappeared, and a fixation gaze 

point was shown randomly at either the attended or the 

unattended source position. Subjects were asked to pay 

attention to the indicated audio stream while fixating on the 

fixation point during each trial. Simultaneously, EEG data 

were collected. At the end of each trial, participants answered 

a four-choice question regarding the attended speech to 

encourage attention. The directions of target audio, speaker, 

and gaze fixation placement were randomly chosen for each 

trial. 

Data Collection 

The Electroencephalography (EEG) data were recorded from 

five subjects while listening to the stimuli mentioned above. 

64-channel actiCHamp Plus device made by Brain Products 

(10/20-system) was used to collect data at the rate of 1000 

Hz. The channel FCz was selected as a reference. 

Data Preprocessing 

EEG data were first downsampled to 128 Hz and filtered over 

the range of 0.5 −  30 Hz. Data were re-referenced to the 

average of all channels. The speech envelope was extracted 

by a Gammatone filter bank [14]  with 31  channels spaced 

between 80 Hz to 8000 Hz by one equivalent rectangular 

bandwidth. The envelopes were extracted by taking the 

absolute value and raising it to the power of 0.3 [15]. The 

speech envelopes were downsampled to 128 Hz. EEG data 

were analyzed using EEGLAB [16] and Fieldtrip [17] 

toolboxes. 



Stimulus-Response Model (Forward and Backward 

Models) 

Temporal response functions (TRFs) [18] attempt to 

characterize the neural responses of channel 𝑛, denoted as  

𝑟(𝑡, 𝑛), by modeling them as a linear combination of the 

stimulus, 𝑠(𝑡 − 𝜏) at different time delays, 𝜏, with each 

component weighted by 𝑤(𝜏, 𝑛). The model accounts for any 

potential noises or errors in the neural responses by 𝜀(𝑡, 𝑛). 

TRF is also known as the forward model or encoder [10]:  

 𝑟(𝑡, 𝑛) = ∑ 𝑤(𝜏, 𝑛)𝑠(𝑡 − 𝜏) + 𝜀(𝑡, 𝑛)

𝜏

. (1) 

The model predicts neural responses �̂�(𝑡, 𝑛) based on 

minimizing the mean squared error (MSE) between the actual 

and estimated neural responses: 

 𝑚𝑖𝑛 𝜀(𝑡, 𝑛) = ∑[𝑟(𝑡, 𝑛) − �̂�(𝑡, 𝑛)]2

𝑡

, (2) 

practically, using reverse correlation with 𝐒, which is the 

lagged time series of 𝑠:  

 𝒘 = (𝐒𝐓𝐒)−𝟏𝐒𝐓𝒓. (3) 

To address the challenges of an ill-posed estimation problem 

and mitigate overfitting due to the autocovariance matrix 𝐒𝐓𝐒, 

regularization techniques have been employed. One such 

method is Ridge regularization, which introduces a 

hyperparameter known as the "ridge parameter" (λ): 

 𝒘 = (𝐒𝐓𝐒 + λ𝑰)−𝟏𝐒𝐓𝒓 (4) 

This parameter can be fine-tuned during cross-validation to 

optimize the correlation between the original and predicted 

responses. 

The backward method [10, 19] employs a decoder model 

𝑔(𝜏, n) to map the lagged window of neural responses 𝑟(t,n) 

to the audio stimulus 𝑠(t). The reconstructed stimulus �̂�(t) is: 

 �̂�(𝑡) = ∑ ∑ 𝑔(𝜏, 𝑛)𝑟(𝑡 + 𝜏, 𝑛).  

𝜏𝑛

 (5) 

The decoder also operates by minimizing the MSE between 

𝑠(𝑡) and �̂�(t). The models associate a single stimulus feature 

to each of the multiple channels. The regularization procedure 

is similarly applied to the backward method as it is to the 

forward method, involving the replacement of the 

autocovariance matrix of 𝑹𝑇𝑹 and the audio stimulus 𝒔. Here, 

𝑹 represents the lagged time series of neural responses. 

The implementation of the MATLAB-based mTRF Toolbox 

[10] was used. The model, in the forward method 𝑤 and in the 

backward method 𝑔, is obtained to predict the output by 

training on all data features (e.g., response channels).  

Data Analysis 

The lag window was set to a length of 500 ms, with 𝜏𝑚𝑖𝑛 =
−100 ms and 𝜏𝑚𝑎𝑥 = 400 ms to capture the neural response 

components of event-related potentials (ERP) [10]. The 24 

trials of each subject were divided into two distinct groups: 

12 trials when a participant fixated at the same gaze fixation 

place as the attended audio source and the remaining 12 trials 

where the fixation was directed towards the opposite 

direction, denoted as congruent and incongruent for 

simplicity. The training procedure employed a "leave-one-

out" approach, where a single trial served as the test data, 

while the rest were utilized for training. The model for each 

individual training trial was computed, and the average of all 

models was considered as a final model to predict the unseen 

test data. Cross-validation was done for the optimization step. 

Pearson's correlation analysis was employed to assess the 

performance of these models. In the case of the forward 

method, the correlation coefficient between the estimated 

EEG responses and the actual EEG data was calculated for 

each channel and subsequently averaged across all channels. 

In the backward method, the predicted audio envelope was 

correlated with the original audio envelope. Specifically, each 

trial was evaluated to discern whether the attended correlation 

value was higher than the unattended correlation value. The 

resulting binary outcomes were then used to calculate the 

percentage of correctly classified trials for each subject.  

Statistical Analysis 

In order to evaluate the variance of obtained correlation 

values, repeated measures analysis of variance (ANOVA) 

tests are utilized. Prior to conducting the statistical analysis, 

Fisher Z-transformation is applied to account for the non-

Gaussian distribution of correlation values. 

 

Figure 1: Forward model: (left) Correlation values of the predicted 

EEG envelope with the observed EEG envelope for each trial, both 

for the attended and the unattended speech stream, denoted as 

𝑟𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 and 𝑟𝑢𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑. Red points represent correlation values 

corresponding to the scenario where the fixation point was at the 

attended loudspeaker, while blue points illustrate values for the case 

when the gaze point was positioned at the unattended loudspeaker. 

(right) The corresponding accuracies are presented for each subject. 

Results 

Figure 1 and Figure 2 display the Pearson correlation values 

alongside the obtained accuracies of all trials and subjects for 

forward and backward methods, respectively. Accuracy 

values express percent correct when selecting the attended 

speaker based on comparing correlation values of attended 

and unattended. The y-axis represents the calculated 

correlation values for attended envelope decoding (𝑟𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑), 

while the x-axis corresponds to the values of unattended 

envelope decoding (𝑟𝑢𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑). Correlation values for 

congruent are shown in red, and the results of incongruent are 

shown in blue. Our preliminary data of five subjects 

demonstrate the impact of attention on decoding accuracy, as 

evidenced by the predominance of higher 𝑟𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 compared 

to 𝑟𝑢𝑛𝑎𝑡𝑡𝑒𝑛𝑑𝑒𝑑 . Figures 1 and 2 reveal that the distribution of 



correlation points is primarily situated above the identity line, 

indicating closer proximity to the attended values. This effect 

is especially evident in the backward method, as illustrated 

in Figure 2. Upon comparing the value points in red and blue, 

no significant differences were identified in the distribution of 

correlation values for each case, indicating that gaze direction 

had no discernible effect (Forward method: 𝑝 = 0.23477, 

Backward method: 𝑝 = 0.43279).  

 
Figure 2: Backward model: The explanation as Figure 1, but for the 

backward model.  

Conclusion 

In this study, we examined the roles of attention and gaze 

direction. Preliminary findings derived from the study 

comprising five participants suggest a noticeable impact of 

attention on EEG signals, which can be readily recovered with 

linear methods. Gaze direction did not affect EEG decoding 

accuracy. This suggests that attention can be measured 

without the influence of gaze direction in multi-talker 

situations. 
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