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Abstract— Multi-agent cooperative motion planning offers
the potential to improve safety and the overall traffic flow.
However, many approaches for multi-agent driving do not
incorporate traffic rules or do not generalize to arbitrary
scenarios. To address these open problems, we propose a novel
method to negotiate individual rule-compliant driving corridors
and independently plan trajectories for each controlled agent in
them. We incorporate predictions into the conflict negotiation
process to enable decision-making over long time horizons.
Our approach is applicable to arbitrary scenarios, including
mixed cooperative and non-cooperative traffic participants, as
demonstrated through our numerical experiments.

I. INTRODUCTION
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Human traffic participants use non-verbal communica-
tion to resolve situations with potentially conflicting albeit
rule-compliant individual goals. It is obviously desirable
to transfer such capabilities to automated vehicles (AVs).
We present a novel approach that realizes rule-compliant
collaborative behavior by negotiating rule-compliant driving
corridors computed using reachability analysis.

A. Related Work

We first provide a general introduction to multi-agent
planning (MAP), after which we categorize multi-agent
autonomous driving (AD) into various clusters. Finally, we
discuss related work on rule-compliant multi-agent driving.

There are several approaches to MAP (see surveys in
[1], [2]). One thoroughly researched approach is based on
optimal control [3], while another one is focused on applying
machine learning techniques, such as reinforcement learning
[4] and deep reinforcement learning [5], [6]. Geometric
approaches constitute a third cluster of multi-agent AD,
using methods that incorporate geometric reasoning and
reservation-based algorithms [7]–[10]. Methods from game
theory have also been applied to multi-agent driving: Several
works combine level-k game theory and offline trajectory
generation with reinforcement learning. Application scenar-
ios include highways [11]–[13], roundabouts [14], and inter-
sections [15]. The latter use case has also been handled with
auctions [16], [17]. An auction-based negotiation scheme,
which is applicable to arbitrary scenarios, bundles road grid
cells into packages for AVs to bid for [18]. The approach
in [19] uses reachability analysis and invariably safe sets
to allocate safe driving corridors to different agents. One
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approach combines dynamic games similar to Stackelberg
games and aspects of traffic rules to enable multi-agent
decision-making at intersections [20].

A line of work related to multi-agent driving is scenario
synthesis. Logical scenario descriptions can be combined
with optimal control to achieve rule-compliant driving of all
simulated traffic participants [21]. This approach was further
improved by incorporating reachable sets to achieve real-time
capability [22]. However, it does not consider uncontrolled
traffic participants.

An adjacent field of research is traffic simulations, using
tools such as SUMO [23], Carla [24], and OpenTrafficSim
[25]. Traffic simulators are able to handle large amounts of
agents simultaneously and incorporate a variety of traffic
rules. Yet, they only provide rudimentary microscopic motion
planners and physics models. Other simulators, such as [26],
combine machine learning and signal temporal logic to aim
for rule-compliant multi-agent traffic simulation based on a
unicycle dynamics model.

B. Contributions and Structure

Our approach is based on the auction-based negotiation
from [18] for arbitrary traffic scenarios. To the best of
our knowledge, we provide the first approach for multi-
agent rule-compliant driving corridor generation based on
reachability analysis and combinatorial negotiations. Our
approach can be categorized as a hybrid framework for
collaborative motion planning [2], because of the decentral
reachability analysis and motion planning and the centralized
negotiation strategy. Our approach incorporates predictions
to make more informed decisions. The novelties of this work
are:

• We provide the first approach for driving corridor gener-
ation for collaborative motion planning using reachable
sets and combinatorial negotiations that considers for-
mal traffic rules in arbitrary traffic situations.

• The motion planning inside the rule-compliant driving
corridors of the vehicles is decentralized and can easily
be parallelized. In contrast to other approaches, motion
planning in reachable sets becomes faster for critical
situations [27].

• We incorporate predictions from the reachability anal-
ysis to avoid backtracking in the subsequent motion
planning.

In the following section, the problem we solve is formally
introduced. Sec. III introduces required preliminaries. Our
novel approach is presented in Sec. IV. Finally, we evaluate
our approach on numerical experiments in Sec. V.



II. PROBLEM STATEMENT

In this section, we formalize the problem we aim to
solve. Let φ be a traffic rule encoded as a formula in
linear temporal logic over finite traces LTLf constructed from
atomic propositions β, with the future-time connectives X
(next) and U (until), according to the grammar [28]:

φ ::= β | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2. (1)

Let G = {g0, g1, ..., gm′} be a set of grid cells gm, m ∈
{0, ...,m′} of an arbitrarily shaped road network, which can
be bundled into packages Cj ∈ C . Let bn(Cj , t) be the utility
with which vehicle Vn values package Cj . Each package
Cj is assigned to the vehicle Vn with the highest utility
bn(Cj , t), thereby setting the binary variable αn(Cj , t) = 1
at time t. Let LS

n define a rule-compliant set of solution
trajectories τn for Vn such that ∀τn ∈ LS

n : τn |= φ. We also
introduce the operator CELLS(LS

n , t), which returns the cells
part of LS

n at time t.
We aim to find a spatio-temporal assignment of each gm

that solves the optimization problem (2) below, such that the
cumulative utility of all controlled vehicles is maximized,
and no cell is assigned to multiple controlled agents at the
same time. Furthermore, the solution must satisfy traffic rules
defined by (1). We formalize our problem as:

max
bn(Cj ,t)

∑
Cj∈C

αn(Cj , t) bn(Cj , t) (2a)

s.t.

∀gm ∈ G :
∑

{Cj |gm∈Ci}

αn(Cj , t) bn(Cj , t) ≤ 1 (2b)

∀Cj ∈ C : αn(Cj , t) ∈ {0, 1} (2c)

∀Cj ∈ C : αn(Cj , t) = 1 =⇒ Cj ⊆ CELLS(LS
n , t)

(2d)

In summary, we aim to compute collision-free, rule-
compliant multi-agent driving corridors for motion planning.

III. PRELIMINARIES

In this section, we introduce the formal description of rule-
compliant reachability graphs and a negotiation algorithm for
the combinatorial assignment of sets of goods. From hereon,
we assume that all computations are applied to the n-th
vehicle and we neglect the subscript n.

A. Rule-Compliant Reachable Set Computation

We define the reachable set Rk(X0) of a controlled vehicle
V at time step k as the set of states reachable from its set of
initial states X0 while avoiding the set of forbidden states. We
compute Rk(X0) as in [29]. By translating an LTLf formula
into an equivalent non-deterministic finite automaton [28],
[30], rule-compliant reachable sets RS

k,i can be created as
described in [28].

The drivable area Dk(Rk(X0)) is defined as the projection
of Rk(X0) onto the position domain for time step k. For
brevity, we use Dk and Rk from here on. Each Rk is split
into multiple Rk,i, i ∈ N0 to produce convex sets Dk,i,
whose union compose the drivable area Dk [29].

The reachability graph G stores the reachable sets Rk,i

as nodes, referred to as reach nodes from hereon, and the
edges are the temporal relationship between consecutive Rk,i

[29]. Analogously, the rule compliant reachable sets RS
k,i are

stored in a rule-compliant reachability graph GS . By using
the rule-compliant reachability graph, we are able to incor-
porate information from the position and the velocity domain
in the subsequent negotiation. An example reachability graph
is illustrated in Fig. 3.

To employ combinatorial auctions, we create a road grid
G, where a cell gm,k is only created if it intersects the
drivable area of one or more vehicles at a given time step.
Each gm,k is assigned all intersecting RS

k,i at k. Thus, each
gm,k can be assigned to more than one vehicle.

B. Negotiating Combinations of Road Grid Cells
The problem described in (2) is known as the winner

determination problem and has a time complexity of O
(
2|G|)

[18], [31]. However, it can be solved in polynomial time with
O
(
|G|2

)
[31] by ex-ante defining permitted disjoint packages

Cj and disjoint subsets thereof.
This results in a tree structure T visualized in Fig. 2.

Although the disjunctions can lead to a mismatch in supply
and demand, the advantages in the computational effort
outweigh this disadvantage [31], [32]. Each bidder bids for
each Cj and, given T , all Cj are assigned by the highest bid.

Algorithm 1 COMBINATORIALAUCTION [31]
Input: Package tree T , utility function b(·)
Output: Optimal allocation Wopt

1: Wopt.INIT()
2: Cmax ← T.GET DEEPEST NODE()
3: Croot ← T.GET ROOT NODE()
4: while Cmax ̸= Croot do
5: Csiblings ← T.GET SIBLING NODES(Cmax)
6: Cparent ← T.GET PARENT NODE(Cmax)
7: bsiblings ← GET CUMULATIVE UTILITY(b(·),Csiblings)
8: if b(Cparent) > bsiblings then
9: Wopt ←Wopt.EXCLUDE ALL SUBSETS(Cparent)

10: Wopt ←Wopt ∪ {Cparent}
11: else
12: Wopt ←Wopt.PREVENT FROM ENTERING(Cparent)
13: end if
14: T.REMOVE NODES(Csiblings)
15: Cmax ← Cparent

16: end while
17: return Wopt

Alg. 1 facilitates an optimal simultaneous combination
and assignment of goods given T . Let Cmax be the deepest
package node in T , Cparent its parent nodes and Csiblings all
sibling nodes of Cmax including itself, and let Croot be the
root node of T . Intuitively, Alg. 1 checks from the deepest
package upwards whether the value of a package is higher
than the cumulative value of its constituting goods, thus
terminating in finite time.

IV. RULE-COMPLIANT MULTI-AGENT DRIVING

This section describes our approach to achieve rule-
compliant multi-agent driving corridor generation. An



overview of our approach is shown in Fig. 1.

Individual
Rule-Compliant
Reachable Sets

Centralized
Cooperative
Negotiation

Individual
Planning

Fig. 1: Overview of our approach: We first compute the individual rule-
compliant reachable sets for all controlled agents. These reachable sets are
collision free with respect to uncontrolled traffic participants but they may
intersect in the position domain between different controlled agents. We then
perform a centralized negotiation that incorporates predictions (see Sec. IV-
A to Sec. IV-C), thereby resolving potential conflicts between controlled
agents. The collision-free, rule-compliant reachable sets are then used to
extract rule-compliant driving corridors (see Sec. IV-D) which can be used
for individual planning (see Sec. V).

A. Negotiation

We negotiate the rule-compliant drivable area by solving
the winner determination problem using Alg. 1. To this end,
we order all packages C in a hierarchical tree structure as
follows. All gm,k [18]

1) are grouped into one package;
2) are further grouped into connected sets;
3) are further grouped by their lanelets [22];
4) are further grouped in longitudinal spatial intervals;
5) are further grouped in lateral spatial intervals.
Only packages Cj with at least one conflicting cell,

denoted by CC
j , are up for bidding, whereas conflict-free

cells, denoted by CF
j , can be trivially assigned to V . If

a node RS
k,i loses at least one cell gm,k associated with

its drivable area Dk,i, that node is considered lost entirely,
as otherwise, the reachable set propagation as described in
Sec. III-A would become invalid.

When negotiating reachable sets using Alg. 1, an important
detail is that each Dk,i must not exceed a given area. An
intuitive counter-example is a scenario in which two vehicles
only have one RS

k,i for all k ∈ [0, kfinal], which causes one
agent to lose its entire Dk in each negotiation step. Given
the threshold ϵsplit ∈ R>0 for the maximal scalar value of
the drivable area and partition sizes hζ and hη respectively,
each drivable area whose area is greater than ϵsplit is split
along the curvilinear coordinates axes ζ and η into smaller
drivable areas.

B. Using Predictions in Negotiations

We enable cooperative decision-making over multiple time
steps by considering predictions in the negotiation. The
concept is illustrated in Fig. 3, where the elimination of one
node causes other nodes to become invalid.

In Alg. 2, we exploit that GS is a connected, directed,
acyclic graph (DAG) and apply the following graph ma-
nipulation methods for recursively deleting nodes: We first

Package Cj

g0g1g2g3

g9g10

g4g5g6g7g8

(a) Simplified visualization of road grid cells and a package.

{g0, ..., g10}

{g0, ..., g8} {g9, g10}

{g0, ..., g7}

{g0, ..., g3} {g4, ..., g7}

{g0, g1} {g2, g3} {g4, g5} {g6, g7}

All cells

Connected
components

Road
network

Longitudinal
coverage
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(b) Grouping of conflicting cells for negotiation. Note that we do not
negotiate singleton-cell packages to avoid too fine-grained packages.

Fig. 2: Example of a grid-based negotiation tree with reachable sets. Adapted
from [18] to our approach.

gather all nodes that belong to the conflicting package CC
j

and temporarily remove them from a copy of GS (lines 1-5).
Then, we use a breadth-first search (BFS) to go backward
in time in GS and temporarily remove all RS

k,i that would
have lost all their child nodes RS

k,i, if V lost CC
j (line 6)

[33]. We then go forward in time to the final time step and
temporarily remove all RS

k,i that would transitively have lost
all their parent nodes RS

k,i (line 7), which is again a BFS. Let
ρ(GS) be the entire drivable area stored in GS over the entire
time horizon. Furthermore, let ρl(GS ,CC

j , k) be the area over
the entire time horizon that would be lost if CC

j were lost at
time step k, computed as the difference in area between the
original graph GS and the temporarily modified copy (line 8).
Since GS is a connected DAG and our graph traversal
is based on BFS, Alg. 2 has a linear time-complexity of
O
(
|NGS |+ |EGS |

)
[33, Sec. 3.1], where NGS denotes the

nodes in GS , and EGS the edges, respectively.

C. Utility Functions

We do not impose specific constraints on the utility
function used in the negotiation and define a regular-mode
utility function UR(CC

j , k) as well as a survival-mode utility
function US(CC

j , k) as in [18]. If a controlled agent in
survival mode bids for a conflicting package CC

j , only other
controlled agents in survival mode can bid for it to avoid
the respective Dk becoming empty. Let dk(·) be the scalar
value of the area of the drivable area Dk associated to a
package and let CD be the set of all packages that intersect
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Fig. 3: Reachability graph with time steps from k = 0 to k = 4. At k = 2,
the red, rectangular node is in conflict for the given vehicle. Traversing
the reachability graph reveals that the two blue circular nodes with red
rectangular outlines would lose their only child or parent node and are thus
no longer relevant.

Algorithm 2 GRAPHMANIPULATION

Input: Rule-compliant reachability graph GS , package CC
j

Output: Area lost ρl(GS ,CC
j , k)

1: GS
temp ← GS .COPY GRAPH()

2: RS ← CC
j .GET ASSOCIATED NODES()

3: for each RS
k,i in RS do

4: GS
temp ← GS

temp.REMOVE NODE(RS
k,i)

5: end for
6: GS

temp ← GS
temp.REMOVE NODES WITHOUT CHILDREN(RS

k,i)
7: GS

temp ← GS
temp.REMOVE NODES WITHOUT PARENTS(RS

k,i)
8: ρl(GS ,CC

j , k)← GS .AREA()−GS
temp.AREA()

9: return ρl(GS ,CC
j , k)

with the drivable area of a vehicle at time step k before
the negotiation. We introduce the threshold ϵA defining the
minimal allowed cumulative area of Dk before entering
survival mode with the utility US(CC

j , k). Thus, a bid is

bk(CC
j ) =

{
US(CC

j , k), if dk(CD) ≤ ϵA

UR(CC
j , k), otherwise.

(3)

We apply the tie-break strategy from [18] for equal bids.
Let the subscripts min and max denote the minimum and
maximum values in a curvilinear coordinate system for the
functions ζ(·), η(·), and ζ̇(·), which return the curvilinear
longitudinal and lateral position and velocity, respectively;
these bounds are directly obtained from the reachable sets.
Given the logistic function y(·) and weights w ∈ R>0, we
define the following partial utility functions:

• The partial utility function

up(CC
j , k) = wp y

(
ζmax(CC

j )− ζmax(xk−1)
)

(4)

promotes moving forward in ζ-direction along the ref-
erence path Γ towards the goal.

• The partial utility function

uv(CC
j , k) = wv y

(
ζ̇max(CC

j )− ζ̇max(xk−1)
)

(5)

promotes a higher speed in ζ-direction along Γ.

• The partial utility function

ur(CC
j , k) = wr e

−|ηmin(CC
j )| (6)

promotes staying close to Γ in η-direction along Γ, thus
penalizing absolute lateral divergence from Γ.

• The partial utility function

ug(CC
j , k) = wg

ρl(GS ,CC
j , k)

ρ(GS)
(7)

increases the importance of packages that have a bigger
influence on the size of the solution area over the entire
scenario horizon.

Together, these utility functions promote following the
reference path Γ of the curvilinear coordinate system as
closely as possible. Using an abbreviated notation for clarity,
let us define

UR(CC
j , k) =

(up + uv + ur)dk(CC
j ) + ug

(up + uv + ur)dk(CF )
(8)

as the combined utility, where CF is the union set of all CF
j

of vehicle V at time step k. Note that this definition does
not result in a division by zero, as a vanishing collision free
drivable area triggers the survival mode utility from [18].
Once the packages of one negotiation iteration are assigned,
we update the reachability graph GS of all vehicles V ∈ V
in the same manner as described in IV-B.

D. Extracting Driving Corridors

From the negotiated graph GS , we extract driving corri-
dors K, defined as a set of spatially connected subsets of
RS

k,i which are also temporally connected through the edges
in GS [29]. For computational efficiency, we use the grid-
based re-partitioning in [29] as a preprocessing step.

Contrary to previous works in [29], [30], our driving
corridor extraction promotes moving towards the goal state
even in the presence of disjoint drivable areas, a phenomenon
often occurring in multi-agent AD. Let us denote a spatially
connected node by Qk and l(Qk) as the maximum longi-
tudinal position within the drivable area of Qk to define
the longitudinal distance metric between two temporally
consecutive nodes Qk and Qk−1 as

d(Qk, Qk−1) = min{0,−(l(Qk)− l(Qk−1))}. (9)

We apply Dijkstra’s Algorithm with the cost function speci-
fied in (9) to G̃S whose nodes are now spatially connected
nodes Qk. This prioritizes corridors K that move towards
the goal state even in the presence of disjoint drivable areas.
We select the driving corridor with the lowest path costs
from Dijkstra’s Algorithm that intersects the goal polygon or
has the smallest Hausdorff distance to it. If multiple driving
corridors K fulfill this condition, we choose the one with the
biggest cumulative area.

V. EVALUATION

We demonstrate the cooperative rule-compliant capabili-
ties of our approach in mixed-traffic scenarios chosen from



the CommonRoad benchmark suite1. For our demonstration,
we use a planner based on quadratic programming that
treats the longitudinal and lateral planning in reachable
sets consecutively [34] with a double-integrator model with
bounded velocity and acceleration described in [22]. Let
∆xf = xtarget − xkfinal , and R and Q be cost matrices,
respectively and let a ∈ R2 be the vector describing the
longitudinal and lateral acceleration. We use the following
cost function for each controlled agent:

J(xk, uk) =

kfinal−1∑
k=0

aTRa+∆xT
f Q∆xf . (10)

Note that such a consecutive planning approach is not guar-
anteed to be feasible, however the fail-safe concept described
in [35] can be applied.

We consider traffic rules for highway merging, intersec-
tions, and closed roads as defined in [28], [30]; further traffic
rules can be implemented in LTLf [30], [36], [37]. Tab. I
contrasts our approach with the works in [18], [22].

TABLE I: QUALITATIVE COMPARISON OF OUR APPROACH TO [18] AND
[22].

Comparison metrics OURS [18] [22]

Framework Hybrid Hybrid Hybrid
Multi-agent planning ✓ ✗ ✓
Mixed traffic ✓ ✓ ✗
Traffic rules ✓ ✗ ✓
Multiple time steps

✓ ✗ ✗in negotiation

For our numerical experiments, we choose wp = wv =
wr = 1 and wg = 10, ϵA = 5, ϵsplit = 2.5, hζ = 4, hη = 2,
∆t = 0.1s, and a road grid edge size of 0.2m. Moreover,
we use CVXOPT2 to solve the problem given in (10). For
our illustrations, we employ the CommonRoad visualization
scheme shown in Fig. 4.

Initial

State

Goal

State

V1

V2

V3

Controlled

Vehicles

1
2
3

Drivable

Areas

Uncontrolled

Vehicles

Trajectory

Predictions

Fig. 4: CommonRoad visualization legend. The trajectory predictions are
from the perspective of V1.

A. Merging Scenarios

We start by evaluating the merging scenario
ZAM Merge TR MA. V1 and V2 drive in the left lane
while V3 merges into the right lane, as shown in Fig. 5. All
vehicles have the same goal lanelet. Additionally, the initial
velocity of V1 is deliberately chosen higher than the velocity
of V2 to provoke a potential crash situation. Vehicles V1 and

1https://commonroad.in.tum.de/scenarios
2https://cvxopt.org/

k = 0

k = 25

Fig. 5: Merge scenario without uncontrolled traffic participants.

V2 comply with the merging rule by not entering the right
lane. Our approach avoids the potential crash between V1

and V2 by accelerating V2 and breaking V1. Furthermore,
the negotiation allows V1 and V2 to enter the goal lanelet
before V3 since they are faster than V3.

Next, we evaluate the mixed-traffic capabilities
of the merging rule on the real-world scenario
DEU MerzenichRather-2 8814400 T-14549. Here,
V1 and V3 are in the middle lane, V2 is in the left lane,
and a humand-driven car is merging into the road. The
goal state of V1 is deliberately chosen to be close to the
other controlled agents to provoke a crash situation and too
small to stay in it safely. As shown in Fig. 6, the three
controlled vehicles do not try to enter the right lanelet,
thereby obeying the merge rule. Furthermore, since they
all try to be within the goal region but cannot stay in it
safely, they order themselves in a way that each intersects
with the goal region at a different time step. This causes V3

to accelerate and V1 to decelerate, providing space to V2.
Afterwards, all three controlled vehicles move to the left
lanelet again to overtake the slower uncontrolled vehicle.

B. Intersection Scenarios

We evaluate the right-before-left rule3 on the scenario
ZAM Intersection Only Agents which only involves
controlled agents. Vehicles V1 and V3 have to give way to V2

coming from the right. Additionally, there is a crash potential
between V1 and V3. As shown in Fig. 7, the right-before-left
rule is obeyed and V1 and V3 brake while respecting a safe
distance to one another.

Scenario ZAM Intersection-1 2 T-1 models a
mixed-traffic intersection. As shown in Fig. 8, V1 and V2

have the same planning problem as in the scenario with only
controlled agents but also comply with the right-before-left
rule with respect to uncontrolled vehicles.

C. Closed Road with Road Block

We evaluate the closed-road rule on the scenario
DEU Test-1 2 T-1. The right lane is closed and there is
an additional static road block in the middle lane. As shown

3In some countries, at unsigned intersections, the vehicle coming from
the right has the right of way.



Fig. 6: Mixed-traffic merge scenario. In this scenario, we use ∆t = 0.4s
due to the given data source [38].

k = 0 k = 33

Fig. 7: Intersection scenario without uncontrolled vehicles.

k = 0 k = 33

Fig. 8: Mixed-traffic intersection scenario.

in Fig. 9, both vehicles choose the open left lane to evade
the obstacle. Additionally, they increase the distance between
them since both have enough time and space to reach their
respective goals.

k = 0

k = 16

k = 19

k = 36

k = 39

k = 45

Fig. 9: Road block scenario.

D. Dead End

We evaluate the influence of predictions, especially in the
utility function, on the scenario C-DEU B471-1 1 T-6.
The vehicle V1 is deliberately placed at the entrance of a
long dead end, while V2 drives on its left with equal velocity,
which obstructs the necessary lane change of V1 in order to
avoid the dead end. Each vehicle has its respective goal state
in the same lane as its initial state. Without the additional
term in (7) on predictions as in [18], V1 is negotiated into
the dead end, whereas with our novel approach, vehicle V2

overtakes a decelerating vehicle V1, thereby preventing V1

from driving into the dead end, as shown in Fig. 10.

without predictions

with predictions

Fig. 10: The negotiation without predictions cannot avoid the dead end, in
contrast to our approach. Depicted is the last time step k = 47 for both
approaches.

VI. CONCLUSION

We present an approach for collaborative, rule-compliant
driving corridor generation in mixed scenarios of arbitrary
type. The controlled agents plan their individual trajectories
in a decentralized way inside rule-compliant, collision-free
driving corridors. However, our overall approach negotiates
rule-compliant reachable sets over the entire time horizon
in a centralized manner. Our experiments show that our ap-
proach is applicable to different scenario types and different
traffic rules in mixed-traffic scenarios.

Information on the reachable sets of the entire time
horizon is used to make more informed decisions compared
to previous approaches. The generation of the corridors is
transparent, which is important regarding legal issues. To



our best knowledge, this approach is the first presenting
an approach to multi-agent rule-compliant driving corridor
generation by combining reachability analysis, combinatorial
negotiations, as well as predictions.
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