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Zusammenfassung

Das Ziel dieser Arbeit ist eine zuverldssige Modellierung der Wellenausbreitung bei der Bauwerk-
Bodenwechselwirkung in der Strukturdynamik. Dazu gehdrt sowohl die ausreichende Erfassung
der Verhdltnisse in unmittelbarer Bauwerksumgebung (Nahbereich), als auch die zutreffende
Beschreibung der Ausbreitungsvorgange in die weitere Bauwerksumgebung (Fernbereich). Fur den
Fernbereich (Halbraum) werden Integraltransformations-methoden benutzt. Eine flexible
Beschreibung der Verhéltnisse in unmittelbarer Bauwerks-umgebung wird am besten durch die
Behandlung mit der Finite-Element-Methode erzielt. So sind fast keine Einschrankungen
hinsichtlich der Geometrie und der Lastannahmen hinzunehmen.

Abstract

The aim of this work is a reliable modelling of the wave propagation in dynamic soil-structure in-
teraction. A small FEM domain will be introduced to model the structure and its surrounding area,
while The Integral Transform Method (ITM) is used to model the Half-space. With this Coupling
Method (ITM-FEM) there is no more limitation in case of local irregularities.
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with respect to the space variable. An overbar indicates complex number.
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Chapter 1

Introduction

1.1 General Remarks

The effect of soil-structure interaction is recognized to be important and cannot, in general, be ne-
glected. Especially when we deal with critical facilities like nuclear power plants. The soil is a semi-
infinite medium, an unbounded domain. For static loading, a fictitious boundary at a sufficient dis-
tance from the structure, where the response is expected to have died out from a practical point of
view, can be introduced. This leads to a finite domain for the soil that can be modelled similarly to
the structure. The total discretized system, consisting of the structure and the soil, can be analysed
straightforwardly. However, for dynamic loading, this procedure cannot be used. The fictitious
boundary would reflect waves originating from the vibrating structure back into the discretized soil
region instead of letting them pass through and propagate toward infinity. This need to model the
unbounded foundation medium properly distinguishes soil dynamics from structural dynamics.

1.2 Overview

In 1904, Lamb studied the problem of vibrating force acting at a point on the surface of an elastic
half-space. This study included cases in which the oscillating forces R acts in the vertical direction
and in the horizontal direction.

In 1936 Reissner analysed the problem of vibration of a uniformly loaded flexible circular area rest-
ing on an elastic half-space. The solution was obtained by intergration of Lamb’s solution for a
point load. Based on Reissner’s work, the vertical displacement at the centre of flexible loaded area
can be calculated.

The classical work of Reissner was further extended by Quinland (1953) and Sung (1953). As men-
tioned before, Reissner’s work related only to the case of flexible circular foundation where the soil
reaction is uniform over entire area. Quinland derived the equations for the rigid circular founda-
tion and Sung presented the solutions for the contact pressure, flexible foundation and types of
foundations for which the contact pressure distribution is parabolic.

In soil structure interaction the structure usually is calculated by means of FEM approach. Often,
particularly in cases of nonlinearity, a part of the soil is considered as belonging to the structure.

Numerical methods were also developed to solve this soil-structure interaction problem, Holzl6h-
ner (1969), Luco (1972), Dasgupta (1976) , Gaul (1976), Gazetas (1983), and Triatafyllidis (1984) are
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the pioneers in this area. The most two successful numerical methods are Finite Element Method
and Boundary Element Method.

With the ‘consistent boundary’ or ‘thin layer’ description, Waas (1972), Kausel et al. (1975), for
plane or axial symmetric layers on a rigid ground, an approach was developed in the frequency do-
main which works with exact expressions in the horizontal directions, and the accuracy of which
corresponds to FEM in regards of the vertical direction. The concept of ‘infinity elements’, Bettes
(1992), too is conceived for an application in the frequency domain. Decaying functions are used as
shape functions in order to approximate the wave propagation to infinity.

For application in the time domain several approaches were developed by Wolf (1988), Lysmer &
Kuhlemeyer (1969), Underwood & Geers (1981), Haggblad & Nordgreen (1987) and Schapertons
(1996).

The BEM can be applied in the frequency or in the time domain. In the first case — except the case
of a simple periodic excitation — the results are to be subjected to a Fourier (or Laplace) inverse
transformation, in the second case additionally to the discretization of the boundaries also a discre-
tization in time necessary. The frequency domain approach is described for instance in Banerjee &
Kabayashi (1992). Comparisons between time and frequency domain approaches are described by
Wolf (1988). In the last thirty years a lot of research was done in this field which is documented up
to 1996 in two review articles by Beskos (1987 and 1997). The theory and application is shown in
different books, e.g. Manolis & Beskos (1988), Dominguez (1993), Antes (1988).

The BEM was applied to the half-spaces including cavities or obstacles, trenches and inclusions
etc., e.g. Kobayashi & Nishimura (1982), Tan (1976), Wong et al. (1977), Sanchez-Sema et al.
(1982), Zhang & Chopra (1991). The soil foundation interaction was treated e.g: in Dominguez
(1978), Huh & Schmid (1984), Ottenstreuer (1982), Karabalis (1989), Karabalis & Huang (1994).
The BEM has also proved its efficiency for the nonlinear problem of unilateral contact, Antes et al.
(1991).

Another method, FEM -BEM COUPLING, is typical for soil structure interaction problems as
mentioned earlier. The building described by FEM and the soil represented by FEM have to be
coupled at their common interface by observing the compatibility of stresses and deformations. An
overview over the large number of different possible approaches (2D, 3D, rigid or deformable
foundations, structure on the surface or embedded structures, time domain, frequency domain etc.)
is given in the review articles Beskos (1987, 1997), Gaul & Plenge (1992), Antes & Spyrakos (1997),
von Estorff (1991), Auersch & Schmid (1990).

Another coupling method in this soil structure interaction is ITM-FEM COUPLING. In its basic
form the ITM approach is applicable only for completely regular situations. In order to overcome
this limitation for the case of local irregularities the ITM-approach can be combined with FEM (A
part of the soil can be considered once again as part of the "structure™). Zirwas in 1996 developed
this coupling method for 2-D Problems.

The response of a (layered) half space, regular except an excavated region, can be derived from a
calculation of the regular (layered) half space without this excavation. To do this, the continuum is
loaded by an unknown force distribution built up by shape functions along a properly selected in-
ternal surface.

By an application of the ITM one can evaluate the respective response at an additional fictitious
surface chosen exterior to the excavation-soil-interface in a certain small distance to the already
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mentioned internal surface. The relations between stresses and displacements at the fictitious sur-
face can be used to derive elements of a matrix, which represents the response of the exterior space
in regard to this surface. Between this surface and the top surface, a small FEM domain shall be
introduced (figure 1.1). Taking into account the filter characteristics mentioned above, the size of
this FEM domain and of the corresponding elements could be chosen in accordance with the nec-
essary error limitations.

urface
NS

fictitious surface

Figure 1.1 FEM Mesh

Finally the "structure” and the additional small FEM domain taking account of the derived matrix
acting at its exterior surface have to be analyzed. In this approach the soil behavior is included by
the additional FEM domain between the soil- "structure™-interface and the fictitious exterior sur-
face where relations are introduced which describe the half-space. A transition to the time domain
can be realized by means of an additional FT, which leads to a description by means of a convolu-
tion.

In the present works, based on Zirwas’ works, will be developed a coupling method, ITM-FEM for
3-D structure

1.3 Subjects Covered

The second chapter of this work will cover the background theory of modelling soil as a half-space
including layered half-space and solution for volume forces in the half-space in frequency domain.

In the third chapter a dynamic matrix for excavated half-space is developed using Integral Trans-
form Method. Here will be introduced a substitute model for soil, substructure and upper structure.

The coupling process between ITM and FEM will be described in chapter four, and some test will
be done to prove this Coupling Method.

In chapter five, a simple practical example will be taken to show the advantage of this method and
the results will be shown graphically to easier the interpretation.

The summary of this work is written in the last chapter with some conclusion and suggestion.




Chapter 2

Modelling of Soil

In this chapter the soil will be considered as a semi-infinite medium in z-direction with unbounded
domain in x- and y-directions. The material properties are assumed to be isotropic, homogeneous
and linear elastic, and the material damping will be independent of frequency. Although the soil is
assumed as unbounded homogeneous half-space, the properties are allowed to vary with depth but
remain constant within the individual layers. This configuration is called a layered half-space. In the
following, the fundamental equations of elastodynamics are summarized.

2.1 Propagation of Waves in Continuum

The state of stress in an elemental volume of a loaded body is defined in terms of six components
of stress, expressed in a vector form as

{d" :[JXX o, 0, T, T, sz] 2.1)

where o,,,0,,,and g, are the normal components of stress, and 7 and r,, are the com-

ponents of shear stress. Stresses acting on a positive face of the elemental volume in a positive co-
ordinate direction are positive; those acting on a negative face in a negative direction are positive; all
others are negative. A positive face is the one on which normal vector is directed outward from the
element points in a positive direction.

Xy'TyZ’

Corresponding to the six stress components in equation (2.1), the state of strain at a point can be
divided into six strain components given by the following strain vector:

{6} ! = [gxx Eyy “:zz yxy yyz yzx] (22)
The stress-strain relationship for elastic, isotropic and homogeneous material is given by

o, =A+2ue,, T,y =2UE,,

o, =AA+2ue, T, =2Ue, (2.3)
JZZ = AA + 2/'1822 TZX = 2/’I‘c"ZX
with
A = EXX + gyy + EZZ (2'4)
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and
_du _ov _ow
SXX Ty - z " Ao
ox Yooy 0z
(2.5)
_1{0u . ov _1(dv  ow _1(6W auJ
yx =~ t yz__ —t— x T A —t =
Y20y ox o 2\0z oy 2\ ox oz
Hand A are Lame constants and expressed by
E
=G = 2.6
H 2(1+v) (29)
Ev
= 2.7
i+ 0)i-20) @7
with v as Poisson ratio and E as Young’s modulus.
The equations of motion in terms of stresses in the absence of body forces are given by
a 2
00, 9Ty 0T, _ pa LZJ (2.89)
0X ay 0z ot
2
o7, N do,, N a7, _ pa v (2.8b)
ox oy oz ot?
a 2
65L+T”+aqz=pa? (2.8¢)
0X oy 0z ot
Substitution of equations (2.3), (2.4) and (2.5) into the preceding equations yields
a°u oA
— =+ pu)—+ u0 2.9a
poz=(Aru) ru (2.99)
d°v oA
Z =+ u) =+ u?v 2.9b
P =T a)g (2.90)
d*w oA
= (A + py)—+ u0w 2.9c
pz =Aru) i (2.90)
with
2 2 2
0% = 4 9 9 (2.10)

2+ 2+ 2
ox° o0y° oz

Differentiating equations (2.9a), (2.9b), and (2.9c) with respect to X, y, and z, respectively, and add-

ing,
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2 2 2 2
p0_2 ou, ov, ow :(/]+,u)a§+a?+a? +/JD26—U+6—V+6—W (2.11)
ot"{ox o9y o0z ox= ody° o0z ox oy 0z

or

0°A _ (A +2u)
ot? 0

0%A (2.12)

This second order partial differential equation is known as longitudinal or dilatational wave or P-wave
equation in an unbounded medium and implies that the dilatation is propagated through the me-

dium with velocity:
c, = |12 (2.13)
p
To obtain the shear wave velocity, we express the rotations as
R (L L 214
2\ 9y oz Yoo2\0z  ox 2\ ox oy

and then we take equation (2.9b) and differentiate it with respect to z. After that we take again
equation (2.9c) and differentiate it with respect to y, subtracting one from another, we get :

2
0@ Ky (2.150)
ot P

Using the process of similar manipulation, one can also obtain two more equations similar to equa-
tion (2.15) :

o :%Dzwy (2.15b)
2
aat‘fz :%Dza)z (2.15¢)

These are the distortional wave or shear wave or S-wave equations where rotations @, , &) and ¢ propa-
gate with a velocity

c. = K (2.16)
0
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2.2 Damping

Consider a classical analytical model of a linear SDOF system consist of spring-mass-dashpot
model. When this system is subjected to harmonic excitation, p,e'“, its equation of motion is

mi +cU + kU = pe' (2.17)

The bar in the equation above shows that u is a complex number. In this text, the bar designates
complex number.

The complex frequency response H (c) is evaluated as

Hlw)= (- rz)i i(2¢r) 219

@, = \/E (2.19)
m

with

C _cm
=~ =" 2.20
=T (2.20)
r=% (2.21)
a)n
Another way to introduce a damping mechanism is by using complex stiffness
mi +k(L+iy)a = p,e' (2.22)

where yis the structural damping factor. The complex term k(L+iy)u represent both the elastic
and damping forces at the same time. This complex stiffness k(1+iy) has no physical meaning,
however, in the same engineering sense as the elastic stiffness.

The complex frequency response H (w) for equation (2.22) is

oy 1
A= )4y (2.23)

By comparing the denominators of equations (2.23) and (2.18) we see that the factor y in the for-

mer corresponds to the factor (2¢r) in the latter. Since, when damping factors are small (as is gener-
ally the case in a structure), damping is primary effective at frequency in the vicinity of resonance, it
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can be seen that, under harmonic excitation condition, structural damping is essentially equivalent
to viscous damping with

_y -y
=2 QL 2.24
{ o 5 (2.24)
5
(=0 y={=0
4 ]
v=0.2

Frequency Response [H|

0 0,5 1 15 2 2,5 3

Frequency Ratio, r

Figure 2.1 Response of system with structural damping factor and viscous damping

From figure 2.1 we can see that the differences between forced vibration with structural damping

factor y and forced vibration with viscous damping ratio ¢ are not significant. Therefore it is rea-
sonable to use complex stiffness for damping mechanism. Another way to get the complex stiffness

is by simply replacing the real modulus of elasticity E with the complex value of E :

E=E(l+i27) (2.25)

where ¢ is damping ratio. This method will be used here.

2.3 Equation of Motion and Wave Equation in Elastic
Half-space

Equation (2.9a), (2.9b), and (2.9c) represent the equations of motion of an isotropic, homogeneous
elastic body in the absence of body forces, in matrix form we can write these equations as
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62
]+ (1) ()0 2,00 4B 220
with
=l u, o (2.27)
o d0 0
== = = 2.2
) [ax oy az} (2)
9> 9> 0’
02 =(0ygo)’ = 2.2
< >|1 > aXZ ayZ +622 ( 9)
100
l]=]0 1 0 (2.30)
0 01

These Lamé’s equations consist of three coupled partial differential equations, and these equations

can be uncoupled using Helmholtz’s potentials

Ut =(o)" @+ [xJ{uh

with
W=lw, v, wJ

and
0 %
XI=| & o -2
_g_y % 0

where @ and W are potential functions. Substituting Eq.(2.31) into Eq.(2.26) gives

(0) (2 + 2000 - p )+ [x{ur*{wh - ol = {0

This equation will be satisfied if each vector vanishes, thus giving

qun—izdb =0
CP

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
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o2{wh -2 @} =0 (2.36)

These two equations are analogue with the wave equations from (2.12) and (2.15)- (2.17), i.e. P-
wave and S-wave equation with velocities ¢, , equation (2.13) and c,, equation (2.18).

If we look at equation (2.31), the four potential fields ®, W,, W, and W, are not uniquely deter-

mined by the three displacement u, , u, and u, . As a special gauge W, is set to zero, then equation
(2.31) can be written as

X

(2.37)

X - l.IJy,Z
y Y - l.IJX,Z
,\Z - l.IJX,y +

c o c
1
e 8 €

1))

z y.X

To solve these equations the Integral Transform Method (ITM) using Fourier Transform will be
used here and schematically described in figure 2.2.

; Fourier Transformation ] ;

Lame diff. Eq » Ordinary diff. Eq
i Usual FEM or Analytical
| BEM procedure Solution
v I

Response < Inverse Fourier Transformation Transformed response

Figure 2.2 Characteristic of the applied ITM procedure

The Fourier Transform f (k,) of afunction f(x) is defined by the integral :

f(k,)= [ f(x)e™" dx (2.38)

This formula can be interpreted as linear operator transforming f (x) to f(k,). In the case of a

function with several independent variables, multiple integrals are used, concerning the transfor-
mation of each variable. By performing an integral transform (the symbol o—e will be used here
for Fourier Transform) on the governing equations and boundary conditions of the problem, we
obtain ordinary differential equations instead of partial differential equations;
(x.y,z,t)o—e(Kk,k,z,a) . Thus it is easier to find solutions satisfying the boundary conditions in the
transform domain. Afterwards we have to invert the solutions, by inversion formula, in the initial
domain, symbolized by e—o.

The Inverse Fourier Transform is defined by :




Equation of Motion and Wave Equation in Elastic Half Space 11
F(x) == [ (k, )e""dk, (2.39)
27T =

By a threefold Fourier transform x o—e k, , yo—e k and to—e w equation (2.35) and equation
(2.36) are transformed and one arrives at the transformed domain and now we have ordinary dif-

ferential equations regarding the z-direction

)z
[ﬁ—k 2_kyz}b+0 (D:O

0z°

it
(iz k- kfj@i + aa::i =0
For the above differential equations, the solutions can be given as
® = Ae™ + A
P =B e* +B,e ™
with

/\f:kf+ky2—k§ : Ag:kf+k§—ksz

@ w
k, =— ; k,=—
C, C,

Transforming equation (2.37) gives the displacement equations in transformed domain

8>
|
>

=}
1

X X y.z

=~ =
S
>

Uy Iy Yy

@, ik, W, +ik, ¥,

A

Substituting equations (2.42) and (2.43) into equation (2.46) give

a,] [k, ik, 0 0 -1, A
a, [=|ik, ik, A, -4 0 0 |§c
a,] |A -A -ik, -ik, ik ik,

with
{C}T — [A:Lez)l1 Aze—z)l1 BXlez)lz sze—z)lz Bylez/lz Byze—z/lz]

and the stresses in transformed domain can be written as

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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6,] -2 -4k,® -2k’ -2k’ 0 0 ~2ik A, 2ik A,
a, -2k, -4k,? =2k, -4k®  2ik,A,  -2ik,A, 0 0
g, | B 2k * -k’ 2k,* -k, -2k, A, 2k, 2ik A, - 2ik, A, e
G, -2k, - 2k,k, ik A, ik A, —ik, A, ik, A,
G, 2ik A, -2k, A A HKS A HKS —kk, ~kk,
Ox] | 2ikA -2ik A, k,K, Kk, =A -k -4 -k
(2.49)
with
k, =4k, +k,* (2.50)

The unknown coefficients A,, A,, B,,, B,, B,, and B, in equation(2.48) can be determined from
the boundary conditions in the original domain.

2.4 Layered Half-space

This half-space configuration is allowed to have layers, so it is possible to model soil configuration
which consist of horizontal layers resting on a half space. The properties vary with depth but re-
main constant within the individual layers. In a layered half-space, it is better to use constants

A, B, instead of A ,B, according to
Ale/llz — Ale/hhe—/hhe/hz — Kleal(z—h)
BlieAlz — Blie/lzhe—)lzhe/lzz — glie)lz(z—h) (2.51)
h>z

with h is the depth of the layer. The displacement in the transformed domain in Eq.(2.47) can be
rewritten as :

6.7 [ikere™" ike™ 0 0 -G W
G, |=|ik,ert™ ik et pehl) e 0 0 |4C}(252)
G, | Aet —pe™ -kt -k ik et ik e

with

" =[A A B, B, B, B, (2.53)

With the help from Finite Element Method, embedded structures can be modelled and analysed.
Figure 2.3 shows the possibility of structure configuration that can be analysed by this coupling
method (ITM-FEM).
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Figure 2.3 Soil-structure interaction system with layered half-space
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2.5 Forced Vibration of The Layered Half-space

We shall now consider a problem of forced vibration of the half-space caused by volume forces.
The equation of motion of an isotropic, homogeneous elastic body by the presence of body forces
{q}, can be written as

w1+ G+ K0 (0) - p 21T b = 4 25)
with

{d=M a0 qf (2.55)

If we divide the above equation with u, we get

{Dzh] +(x +1)0) (O) —Cizgt—Z[l]}{u} H{ p (2.56)

S

with

K= (2.57)

{d=[p, », 0J =—%{q} (2.58)

and ¢ is the velocity of shear wave from equation (2.16). Equation (2.54) above is an inhomogene-
ous partial differential equation with inhomogeneous part{p} . Thus, from this equation we have

two parts of the solutions; the homogeneous solution, if {g} ={ § and the particular solution if

CECE

Figure 2.4 shows a volume force {g that has 5 force contributions; {g}{ a}{, ¢{. b, and {aJ}
which act on surface I',,I,,I;,I", and I, respectively;

¢ {a td & hi{+lal4a (259)
r=r,or,or,or,or, (2.60)

The forces {q} that act on surface I" are intended to approximate the stresses on the half-space that

are produced by the structures above. The form of I" as given in figure (2.4) is chosen in order to
represent an excavation, but we can also choose another form like open box or other reasonable
forms. Fictitious loads are introduced as Fourier series with unknown coefficients (Cimn)
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Figure 2.4 Forces in the layered half-space

Regarding equation (2.59), equation (2.58) can be rewritten as
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{={nt tdt pltind +ps (261)

with

{p} = Z 25(z+x a ) H (x+y+(b, -b))-H(- x+y—(by—bx))][ﬁH(z)—H(z—h)]@i(axx+’°‘vy]{tmn}
(2.62)

{py=3 Zé(z x-a,)JH(x+y+ (b, -b)-Hx+y-(b,-b)]dH (@) - H(z- h)]@[:niny}{tmn}

n=Nm (2.63)
(b3=3 26(z+y a,)H(x+y -, -b,)- (x—y+(by—bx))]tﬁmz)—H(z—h)]fei[a*“ayy}{tm}
(2.64)

{pd = Z Za(z y-a,)JH(x-y (b, ~b))- (x+y+(by—bx))][ﬁH(z)—H(z—h)]@i[zxgyJ{tmn}

n=-N m=

(2.65)
{pd = Z Zé(z h) fH (x+b,) = H(x=b,)] fH (y +b,) ~H(y - b)]@{ax+ay]tm”} (2.66)
{tmn} = [txmn tymn thﬂ]T (267)

and H is Heaviside distribution.

2.5.1 Particular Solution for Upper Layer

Transforming the forces in equation (2.61) and the equation of motion in (2.56) regarding the two
coordinates X, y o— k, kK and time t o— w, and extending the load {p}{ p}{ g{. b, and

{ps} over the whole domain —o0 <z < +o0 |, gives

{p(x,y,2} o—= {B(K, K, 2)}

Using Maple® Package Program, one can obtain the load in transfomed domain, and can be written
as:
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bl=> [A glormal _ pgtor il 4 j=1934
n=—N m=
(2.68)
N M _ )
-3 5 Ao _gafren e} )=
n=-N m=-M 0'10'2
with
(N=[A A A Al=lio -ia ie? -ia) (2.69)
+(al+a2) _azAb_(al"'az)ax +(al_ +0’2Ab—(0'l—0’
_(al"'az) +0‘2Ab+(0’1+0’2)ax _(al_ —O’zAb+(O'l—0’
[«] = (2.70)
+(az+al) +alAb_(a2+al)ay +(0'2— _alAb_(az_a
_(az"'al) _alAb+(a2+al)ay —(0'2— +O’1Ab+(0’2—0’1
m m
a, =k, - S k= (2.71)
Ab=b, —b, (2.72)
The transformed equation of motions one has :
a,
el 2le]+ 2ol e
ﬁz
with
—2kZ —kkZ —K2 +k? —(L+K)k,k, 0
[d]=] -@+x)kk, - 2k2 kK2 —k? +K? 0 (2.74)
0 0 (k2 +Kk2 -k?)
0 0 ik, (1+K)
[d,]=| o 0 ik, (1+K) (2.75)
ik, (L+k) ik, (L+K)
1 0 0
[d]=]0 1 0 (2.76)

0 0 2+«
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For the particular solution of equation (2.56) we use the same exponential function as for the load-
ing:

{7} :i i Z({Ulj} A e {y b A @“ﬂ”“i)‘) 2.77)

j=1 n==N m=-M

with
=, v, Uyl (278)
{UZj}T:[UZXj U,y UZZj] (2.79)
Substituting Eq.(2.77) into Eq.(2.73) gives
[Dy] 0] | [U3] _ [t}
{[0] [Dzj]H{Uzj}} {{tmn}} (250
with
(R +k2)-@+n)k? ~(L+ KKK, ~(L+ KK K,
[D,]=| -@+K)kK, (R +x2)-a+i)K? ~(L+ KK Ky, (2.81)
- KKK, —@rkky —(RHk2) -+
(R +2)-a+ k2 ~(L+K)KK, ~(L+K)K K,
[D,1=|  —@+K)kk, ~(2+k2) -+ i)k ~ L+ KK ks, (2.82)
~(L+ KK K, —@HRk Ky, — (B2 )@+ KK,

To get {Uy} & {U,} we have to invert [D,] and [D,]

(22 +x2 )+ @+ (k2 +K2) ~@+K)kK, ~ @+ KKK,
[b,]? =ﬁ —@+Rk K, 2wk )+ @+ )k +K2) — @Rk Ky,
€hj — (KKK, 1+ KKK, (2 +x2 )+ @+ k2 +k2)
(2.83)
(22 +x2 )+ @+ )2 +K2) W+ Kk, — (LK K5,
o, ] : t @Rk K, 2 +k2 e @) +K2) A+ Kk K,
€hoj — 1+ Kk, Ks, — (1K) K, (2 +x2 )+ @+ (k2 +k2)
(2.84)

with




Particular Solution for Upper Layer 19

-+ KR +k3 - @+ R +42 S

det, = ) (2.85)

det,. = —(L+K)k? (/\§ +K3, )2 -(2 +K)(/\§ +K3, )3 2.86)
J (/\§ tK 51)

v} =[o, "t (2.87)

u.}=[p, "t (2.89)

Substituting equations (2.87) and (2.88) into equation (2.77) gives the particular solution of equation
(2.73).

2.5.2 Homogeneous Solution

The homogeneous solutions for a system shown in figure 2.3 consist of two parts ; {0 h} &{ L]}{ :

the first is for the upper layer and the second is for the half-space. We will base our homogeneous
solution on equation (2.46) and must satisfy these 9 boundary conditions below

i°(z=0)+7"(z=0)=0

TP (z=0)+1,,(z=0)=0

6P (2=0)+6"(2=0)=0

th(z=hy+1}(z=h)- 7}, (z, =0) =G,

£ (z=h)+ 7" (z=h)- " (2, =0) =g, (2.89)
52(Z h) +67,(z=h) =67, (2, =0) = G,

i°(z= )+L]h(z:h)—l]h (z,=0)=0

p(z—h)+u (z=h)- (z =0)=0
GP(z=h)+a)(z=h)- (z =0)=0

'~<

On the upper layer z=0, regarding equations (2.49) and (2.51), we can write the stress equations in
transformed domain as

{6 .-, =[al{c) (2.90)

with
{oh,=lihe=0 @=0 d.@=0) 291)

{c_:J}T = [Kll AZl §xll BXZl gyll By21 (292)
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2ik Ae " =ik A, Kk e Kk, = +k2e " -2, +k?)
[A]= | 2ik A —2ik A, (2 +kZe7RN 2 4k —k ke Kk,
(k2 —K2le™" 2k2—kZ -2ik Ane 2k A, 2k Ane =2ik A,
(2.93)
R =kZ+k2 -k} (2.94)
2 =K2+k2 -k (2.95)
And for the particular solution
{67} =[cls} s (2.96)
with
AnlT ~ ~ ~
{6 =lte=0) f2z=0) 62(2=0) 297)
0 0 gk, pg 0 0
[Gl=| 0 0 ik, 0 g O (2.98)

iAk, 1Ak 0 0 0 A+2u

X y

87, =[6r@=0) a°z=0) G’(z=0) G°,(z=0) 4, (z=0) a7, (z=0)] (299)

The vector {S} L=, Nas to be calculated from equations (2.77), (2.87), (2.88) and as we see from these
three equations, {S} ,_, is dependent from {t, }

On the boundary z = h and z,=0, the displacement and the stresses in transformed domain are:

Upper Layer,z=h

with

{Oh}z:h = [Az]{éj}

@, =lan@=h) a@=h) @ (z=h)

ik, ike™" 0 0 —Ay Aye

[A) =ik, ike™" A, -AeT=" 0 0
Ay —Ageh -k, —ike™" ik, ik

X

and the stresses, regarding equations (2.49) and (2.51)

(2.100)

(2.101)

(2.102)
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{6'}... =[a)c) (2.103)
with
o =lth@=n #@=n &iz=n) (2.104)
2k Ay —2ik A KK, ke (2, 4K2) — (A +k2)e
[A]= | 2ik Ay —2ik Age ™ A2 +k2 (R k2R —kk, Kk e
2k? K2 (2kZ K2R —2ik, A, 2k Aue" 2k A, =2k Aue
(2.105)

And for the particular solution, {0“’ p} L= ; the stresses at z=h, can be calculated analogue with equa-
tions (2.96)-(2.99).

Lower Layer / Half-space, z,=0

a1, . =[al{c) (2.106)
with
o} =la,@=0 @, =0 a,@c=0) (2.107)
) =[r, B, B, (2.108)
ik, 0 A,
[A]=]ik, -1, 0 (2.109)
-A, ik, ik, |
and the stresses
{61}, -, =[alc) (2.110)
with
{51h};:o = [thlzl(zl =0) #,,(z=0) &, (2= 0)] (2.111)

—2ik, A, kek,  —(A2+k2)
[A]= | -2ik, A, A2+K2 -k, (2.112)
2k? -k2 2ik A, -2k,
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Regarding equations Substituting equations (2.90) - (2.112), boundary conditions in equation (2.89)
can be rewritten as

(A} ={ 5 (t.d )} (2.113)
with
[A ] [0]
[Al={[ A ] [A] (2.114)
[ A ] [A]

& =l & (2115

(2.116)

By inverting [A] , we can get {C} from

e} =[A sec (t.d )} (2.117)
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2.6 Examples for Forced Vibration of The Layered Half-

space

2.6.1 Special Cases, h =0

If the depth where the forces act, h in figure 2.4 is equal to zero, h = 0, means that the forces act on
the surface of half-space. The particular solutions disappear and we have only homogeneous solu-
tions for this problem. The boundary conditions from equation (2.89) become:

~ h — — ~
Jxlzl (Zl - O) = ~0s,
~ h — — ~
aylzl (Zl - O) - _qSy
0-221 (21 = O) =05,

Substitution of these equations into equation (2.110) gives :

0, =2ik, A kK,
-{ad =6, |=[AC) = 1| —2ik A R4k
G, 2k2 -k2  2ik A,
and
a Ay,
{Cz} =| By :_[As]_l{as}
By22

Substitution of {52} into equation (2.47) gives :

1= [F]dad

z

O O

=)

with

ik o4 0 Aen
El=- ke™ -re™ o
—Ae™n —ik e ke

—(A; +k5)
—kk,
—2ik, A,

A]”

As

B
B

x22

y22

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)
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—2ik A, - 2ik A, 2k? —k?
B 1 K.k, (42,4, - 2k? - k?) ACAN, - (262 —k2 )2 +k2)
[A]™ =~ : . : - 2ik A,
o s A A
AN, - (K2 -k +k) Kk, (A, - 2k2 - k?) |
; - 5 - 2ik A,
L AZ /‘2 i
(2.123)
D =2k —K2)+ 4k2A0, (2.124)

k

X, ty?

It can be seen from equations (2.123)-(2.124) that for given k and z, the displacements in the

transformed domain 4,,d,, and 4, are in functions of forces in transformed domain p,, ps, .

and P, and the matrix [If ] is constant and behaves as “flexibility matrix™ in transformed domain.

It means that for given k, k, & z, we only have to calculate [If ] once, and then we can obtain any

response 0,0, & 0, due to the loading Ps,, Ps, & Ps, by simply multiplying {pg} by [F 1.

Analogue for stresses, matrix [Ifg] can be obtained by substituting {éz} into equation (2.49), gives :

{6} =|F, |dad (2.125)
with

lo}=ler o o1 o, an, ol (2.126)

-2k~ kR 0 2ik, A8

_(Zkyz —%k 2V Ay _Ziky/]ze—/lzzl 0
= 2k.* -k Zﬁe‘”ﬂl 2ik A e~ —2ik A e i

Fo]=- S v K2 L (2127
[ U] /’12 _ 2kxkye—ﬁlzl ikXAze—/lzz1 iky/\ze—/{ﬂl [ﬁAs] ( )

- 2iky/\1e_A121 (AZZ + kyz)g‘”zzl _ kxkye_}lﬂl

| -2kAe™ ke =kl

These [lE ] and [Ifa] matrices are helpful to calculate the stiffness matrix if the load {qs} acts on
the surface. By using these matrices we can avoid inverting matrix [A] oxe 1IN equation 2.114 for
every loading {g} and every depth, z,. Instead, we just have to invert matrix [A;],,, once, and

then using this [AJ]™ to get | F Jand [ Ifg] for every different z,.
This is also the reason why computing half-space problem with layer takes much more computing-

time rather than half-space without layer. For n additional layers we will have 6n additional interface
conditions.
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To illustrate the mechanism of this “flexibility matrix” some examples with single load and block
load will be taken and shown in figure 2.5 — 2.11.

Figure 2.6 shows the imaginary and real parts of vertical displacement of a single vertical unit load,
P= 1 with different frequencies. What we see here actually is an element of the “flexibility matrix”

I.e. |333. It is clear from figure 2.6, that if we scale the frequency with factor c, it will also scale the
wave number k, with factor ¢, because as we see from equation (2.45 ), k; has a linear function of w

k,=— (2.45)
Figure 2.7 shows vertical unit load spectrum in transformed domain. The total load is the same
(10000 kg) but the width (b) of the block force is varied.

The equation of a block load in transformed domain (K, , k,) from equation 2.68 can be written as

4sin(bk, )sin(bk, )
k.K,

q= (2.125)

It can be seen from equation above that the change of b has influence in the wave number of the
load spectrum.

/ b

Figure 2.5 Unit block load

Figure 2.8 shows vertical displacements of a single load (with total load = 10000 N) in transformed
domain; Gz(kx,ky) . As we notice this spectrum for z = 0, actually it is a multiplication : (vertical
displacement spectrum of a single unit load in figure 2.6 for =50 rad/s) x ( load spectrum in figure
2.7 for b =0) x 10000 N.

For another loading configuration, b=10, as shown in figure 2.10, the displacements for z = 0 can
be obtained by multiplyng (figure 2.6 for cw=50 rad/s) x (figure 2.7 for b=10m) x 10000 N.
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As we notice the unit vertical displacement spectrums, G, in figure 2.8, for z=0 in the area
between the peaks (the peak of the spectrum is near to k, = -k, and +Kk, with k=0.49), the real

part the values is almost zero and outside the peaks area are non zero postive. But for imaginary
part, the value between the peaks are non zero negative and the rest is almost zero. Because the
most influence areas in this two spectrums (real and imaginary parts) have different sign, it can be
understood, why the back transform of these spectrum have also an opposite sign shape. In figure
2.9, we can see, that the peak of the real part of U, has positive sign, but the peak of imaginary part
has negative sign.

And based on this matter, it can also be understand, that if the changes of the displacement
spectrum’s shapes happen at the non zero zone, they can strongly influence the back transform of
these spectrum.

From figure 2.7, we compare the load spectrum for b = 0 and b = 10 , at the peak area
-k, <k, <+k,, they still have the same sign, and they begin to have different sign outside the
peak area.

Now, if we analize the displacement spectrums for b=10 and z=0 in figure 2.10, for the real part,
the most influence area of the spectrum is outside the peak, and a significant change of this area,
from positive (figure 2.8, real part, b=0, z=0) to mostly negative (figure 2.10, real part, b=10, z=0)
do change the result of the back transform, from positif sign (figure 2.9, real part, b=0, z=0) to
negative sign (figure 2.11, real part, b=10, z=0).

The imaginary part (figure 2.10, b=10, z=0) has no sign changes at its influence area (compare to
figure 2.8, imaginary part, b=0, z=0), that is why the shape of the back transform does not have
sign changes (figure 2.9, imaginary part, , b=0, z=0 compare to figure 2.11 ). The peak still has
negative sign.
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Figure 2.6 Vertical displacements in transformed domain from a single unit load
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Figure 2.7 Load spectrums in transformed domain
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Figure 2.8 Vertical displacement of a single load in transformed domain
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Figure 2.9 Vertical displacement of a single load in original domain
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Figure 2.10 Vertical displacement of a block load in transformed domain
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Figure 2.11 Vertical displacement of a block load in original domain
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2.6.2 Examples for Volume Forces in The Half-space

Figure 2.13 shows the vertical displacement in transformed domain of real and imaginary parts
caused by internal load as indicated in the figures, and figure 2.14 shows the vertical displacement in
original domain also from real and imaginary parts. These displacements are the results of a loading
condition with b,=0, h = 5m (see figure 2.4) with total load 10000 kg. Density p is taken 2000
kg/m3, Poisson ratio, V= 0.2, modulus elasticity, E = 5. 10" N/m? and damping ratio &= 2 %.

As comparison, another loading condition with the same total load and parameters but different
b,=5m is shown in figure (2.15) and (2.16). It can be seen that the maximum displacement in the
second loading condition is smaller than the first one, because in the second condition, the loading
area is 4 times larger, so the unit load is 4 times smaller than the first.

It is interesting to compare the spectrums in figure 2.13 with spectrums in figure 2.15. If we see the
peak of the spectrums they have different sign. The peaks in figure 2.12 have negative signs but the
peaks in figure 2.14 have positive sign.

This phenomenon can be explained if we take a look at figure 2.12. This figure shows load spec-
trums in transformed domain for b = 14 ~ 20. For b = 20 at k, = k, = 0,49, we have a negative
value, but from figure 2.7 for b = 10 at k, = k,= 0,49 we have a positive value.

Load Spectrum, P, =1

1,1
1 A

0,9
0,8 l
0,7
0,6
0,5
a 0,4
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0,2

==
s

0,1
0 AR SR W/ Do
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4 35 -3 26 -2 15 -1 05 0 05 1 15 2 25 3 35 4
kyatky, =0

(—b=14 —b=15 —b=16 —b=17 —b=18 —b=19 —b =20

Figure 2.12 Load spectrums in transformed domain




34 Modelling of Soil

As can we see from equations (2.116) and (2.117), the displacement responses of loads in the half-
space are also as a function of load spectrum. Although the relationship is not so simple as load on
the surface of half-space (equation (2.122)), but it is clear that they depend to the load spectrums
too.

The loads in figure 2.13 and 2.14 have a total width of 10 m, and the loads in figure 2.15 and 2.16
have a total width of 20 m. If we want to compare the displacement, intuitively we should consider
a load spectrum with b=10 m (figure 2.7) for the load with a total width 10 m, and a load spectrum
with b=20 m (figure 2.12) for the load with a total width 20 m.
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Chapter 3

Dynamic Matrix of Excavated Half-space

3.1 Model and Substitute Model

Figure 3.1 Structure-soil system and the displacement of soil on the contact area

39



40 Dynamic Matrix of Excavated Half-space

The dynamic soil-structure system in figure 3.1a above consists of two substructures, the actual
structure Q (part of soil and building structure), and the soil with excavation Q. I" is the contact

area between Q, and Q. The gravity forces and other forces from structure Qg that act on I" and
cause displacements u,, with " as the deformed contact area as shown in figure 3.1b.

Now it will be introduced a substitute model for Q (soil with excavation) and Q, (part of soil and
building structure) with the condition that the substitute model has the same displacement u - .

In this substitute model, Q_will be modelled by finite element meshes and Q will be replaced by a

dynamic matrix that has to be coupled with the dynamic matrix from FE. This substitute model is
shown in figure 3.2.

Q(ITM)

Figure 3.3 Half-space with force q on surface " and displacement U - as in structure-soil system

In order to derive the dynamic matrix from soil with excavation, a model shown in figure 3.3 is
introduced. This model is a half-space without structures and without excavation, which has arbi-

trary forces {q,} on surface I". This {q,} is considered to cause displacement {U } .
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The differential equations of this model can be written as :
62
pO i+ (+ 1) (0)-p 011 U =4} (3.0)

with

fad" =} {a} { 4] (3.12)
Ul =fug {u} { U] (3.1b)

Equation (3.1) is identical with equation (2.54), i.e. the differential equation of forced vibration of
layered half-space. But, because we have made a discretisation on surface I, in order to develop a

dynamic matrix, the components of {q.} and {U,} are now written as matrices in equations (3.1a)

and (3.1b). The superscripts denote the direction in x, y and z. Based on this model will be devel-
oped a dynamic matrix of half-space system with excavation. The idea will be described below.

3.2 Substructure Matrix [D°°]

Figure 3.4a shows a volume forces g that acts on a surface " in the half-space as described in
section 2.5. T'¢ is an arbitrary second surface in the half-space in a reasonable distance below the

surface I, chosen with the aim to be outside the region of “singularity effects” which may be
caused by the fictitious load g .

From equations (2.47) and (2.49) regarding the boundary conditions as described in section 2.5, we

can determine the displacements and stresses in transformed domain on surface I,
{6rs (k k w} and {Grs (k k w} . With two fold Fourier back transform; k, e—o x and k e—o

X1 Ny XNy

y, we can get stresses and displacement in initial domain x and vy, ie. {ars (x,y,a)} and

{urs (x, y,a)} .

If we take off a part of the half-space between the top surface and surface ', we will get a system
in equilibrium as shown in figure 3.4b, with volume load {qr} on surface I and stresses{ars} on
surface I .

Figure 3.4c shows a half-space with excavation with stresses {ars} on surface Iy caused by the
load {q,} on surface I . Itis clear from figure 3.4 that a=b[lc, and it is shown that the stresses
{Jrs} and the displacement {urs} are controlled by load {q,} . From this relation, we will develop
a dynamic matrix for surface I’ .
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Figure 3.4. Volume Forces in the half-space

The total load {qr} can be written as a two dimensions Fourier series with C, . as Fourier coeffi-
cients:

+M +N

fat=2 2 2 Cunltnd N}

I=x,y,z m==M n=-N (32)

To form the dynamic matrix of surface I's we make a discretisation with u_as nodal displace-
ments of surface I's. If we have N, -nodes on this I, the total DOF from this surface is

N, =3xN and if we write C,,, in equation 3.2 as matrix {C}, it will have dimension of
N,=3X(2M+1)x(2N+1).
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As matrices the relationship between {C} and {U rs} can be described as follow:

{U rs} N1 = [TR] leNz{C} Nox1 (3.3)
[TR] is the transformation matrix from basis {C} to displacements {U rs} .

Similar with {q,} in equation 3.2, total displacement {U rs} and total stresses {Trs} on surface
[, ,that are caused by {q,} , have also a linear combination, and can be written as :

+M  +N

=3 > 3 Coften(:} =V {0 (3.4)

1=x,y,zm=-M n=

with [U Imn] = [{ Uy-m-n (rs } { uzMN( rs)}] (3.4a)
{C}T = [CX—M—N "'CzMN] (3.4b)

and

fri}= ¥ 3 Scunf (=Ml @5)

I=x,y,zm==—M n=

with [Tionl ={tesnn (P} {tan T} (3.59)

{ tin (I' } is resultant stress acting on surface I’ and has three components in X, y, and z direc-
tions:

(o S (O 0 S T 0 S (T (O 36)

The resultant stresses {t,} at point P on surface A can be calculated by from :

{t} =[o]dn} (3.7)

with £ =l t, t.l (3.8)
XX Z-yx Ty

[J] =1, O, T, (3.9
Ty sz 0,

=[co{n,y cof{n,y) cofn, 3] (3.10)

{r} is the normal direction of surface A at point P.
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Now, using virtual work of the stresses on surface I (given in symbolic notation), we want to
derive the dynamic matrix of this surface :

,=[ ou.} .fr} ar (3.11)

0{U rS}T 0\Trg

0{C} J{C} G{C} {C}

From equations 3.4 and 3.5, we can see that :

o} _ o, id)

o{c} o{c} = [T (3.11)
ag;(r:s} - a([u(;?g]}{c} )_,.] (3.12)

0. =8 [ Wil Trd or. J&t =4 "] {9 313)
with

[Dm] = L [Ulmn]T[Tlmn] dr (3.14)

[D“] Is the dynamic matrix of the excavated half-space.

3.3 Special Case, h =0

3.3.1 Point Unit Load

As has been discussed before in section 2.6.1, now in figures 3.5 — 3.7 will be shown again some
parts of [If ] from equation (2.122) but with different damping ratio using the program that is de-
veloped for calculating dynamic matrix for soil with excavation, but with special condition that h=0
for z,=0m, Im and 5m, with density of soil, o = 2000 kg/m2, modulus elasticity, E = 50.10° N/m?,
Poisson’s ratio, 1= 0.4 , damping ratio, =5 %, and cw= 50 rad/sec.
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3.3.2 Uniform Block Load

An example as shown in fig. 3.8 is used to illustrate the advantage of ‘flexibility matrix’ [IE ] to obtain
the displacement with p= 100 kg/m2, o = 2000 kg/m3, E = 50.10° N/m2, v=04, £=5%, and
w= 50 rad/sec.

p,=100 kg/m2

A

 YYVVVYVYVYVYVYY

N|
|

L
A 10m

Figure 3.8a Vertical uniform load on half-space

The spectrum of load in transformed domain p, (k,,k, ) is shown in figure 3.8
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Figure3.8b Load spectrum p_ (k, ,k,)

To get the displacement response spectrum in transformed domain Gx(kx,ky)at z = 0, we only
have to multiply p, (k,,k,) in figure 3.8b by If in figures 3.5a and 3.5d, because p, (k,,k,)=0

and p, (k,,k,)=0. The same procedures are also applied to d,(k,,k,) and d,(k,,k,)as shown
below
0, (k. k) =Ry (k, k) 0P, (K, k)
a, (k. k )= Ky, ky) EP, (K, . Ky ) (3.16)
G, (K, k,) = F, (k. k) 0B, (K, Kk, )

To get the response in original domain (x , y) we do the two folds inverse Fourier transform:
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0, (k,. k,) o= u,(x,Y)
G, (k, k,) e U, (x,Y) (3.17)
0, (k,. k,)e—o u,(x,y)

The displacement spectrums in transformed domain (k,, k) are shown in figure 3.9 and figure
3.10 show the displacements in original domain (X, y).
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Figure 3.10a Real part of horizontal displacement uy(x,y)
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Figure 3.10c Real part of vertical displacement u,(x,y)
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Figure 3.10f Imaginary part of vertical displacement u,(x,y)




Excavated Half-space 57

3.4 Excavated Half-space

To show the advantages of this Integral Transform Method (ITM), a Half-space with excavation will be
taken as an example. At the bottom of the excavation will be loaded by different loading. The cho-
sen parameters for the half-space are :

Density, p = 2000 kg/m3
Modulus elasticity soil, E =50.10° N/m2
Poisson’s ratio, u=04
Damping ratio, E=5%
Frequency, w= 50 rad/s

The excavation has 5 m depth with bottom area of 10m x 10m and loaded with a uniform load p =
100 kg/m2 as shown in figure 3.11 below:

| 20m N
/l
p=100 kg/m?2

A\ A\ 5m

YYVVVVVYVYY

| |
™ 10m L

Figure 3.11 Loaded half-space with excavation

To develop the dynamic matrix of this half-space with excavation, here is used 3 x 3 Fourier series
for P with 1024 x 1024 points used for the Inverse Fast Fourier Transform (IFFT).

One of the advantages of ITM is that we got the response not only locally, but globally. That means
that principally we can get the whole response of the half-space, depends on how many points we
used when we do the back transform (IFFT).

Figure 3.11 — 3.14 shows the response of uniform loading above. Figure 3.11 shows the real part
response of U,, U, and U,, and figure 3.12 shows the imaginary part. Here we can see that both
parts of the response U, and U, are actually the same, because we have a symmetric loading toward
axis Xand Y.
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Figure 3.14 Real part of deformed structure
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Figure 3.15 Imaginary part of deformed structure




Chapter 4

Dynamic Soil-Structure Interaction with
I TM-FEM Approach

The dynamic soil-structure interaction is discretized schematically as shown below. Subscripts are
used to denote the nodes of the discretized system. The nodes located on the soil-structure inter-
face are denoted by h, and the remaining nodes of the structure by s.

The dynamic system consists of two substructures, the finite element structure and the soil with
excavation. To differentiate between the various subsystems, superscripts are used when necessary.
The structure is indicated by FE and the soil with excavation by oo .

Z5

e Nodes located on the structure
o Nodes located on the structure-soil interface ro (ITM )

Figure 4.1 Soil-structure interaction system

4.1 Substructure Matrix [p]

The dynamic matrix of the FE structure is calculated as
[o7] =[K]@+2£i)- w?[M] (4.1)
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where [K] and [m] are the static stiffness and mass matrices respectively. The damping ratio &,

which is independent of frequency, is assumed to be constant throughout the structure. The corre-
spondence principal as described in Sec.2.2 is used here.

[D7€] can also be decomposed in to submatrices| D | ,[D;E] ,[D,,FSE and [DhFhE] . The equa-
tions of motion of the FE structure are formulated as :

o} _ 5] ] ffure
{[p]H DH[” 42

4.2 Coupling Between FEM and ITM

FE
Dss

FE
Dhs

Assumed that on the interface area there is no external loading, the structure in figure 4.1 can be
separated into two substructures Q. and Q_ as shown in figure 4.2 with condition that on the
interface :

o -0’ =0 (4.3a)
or in discretized system
{pre} 4 pd =0 (4.3b)
and
urt =uy (4.4)

00

From equation 3.3 the relation between {C,_ } and {uh} can be written as :

{us} =[mric} (45)

Using variational method for the internal potential we can write :

e i8] (o] (R b

Substitution of equations (4.4) and (4.5) into (4.6) gives
furs)

o] [l

Wbt o) o 9] 7

| 5]

FE
Dss

FE
Dhs

FE
Dsh

FE
th
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Figure 4.2 Two Substructures system in equilibrium

Now we have a new dynamic matrix of FE-meshes [5 FE] with new DOF

) ot ] (48)

From section 3.2 we already had the dynamic matrix from the half-space :
[P = [ M U (4.9)

If there is no external load on the interface area, we can combine the two substructures as

b Hiwroet bt ] 6 (@10




Full Half-space as ITM-FEM Couple Structure 65

4.3 Full Half-space as ITM-FEM Couple Structure

A half-space with excavation combined with FEM structure that fills this excavation is taken as an
example for this ITM-FEM couple structure. Schematically the structure is shown in figure 4.3. The
FEM mesh with the load is shown in figure 4.4.

The real and imaginary parts of vertical displacement on the surface are shown in figure 4.5, and in
figure 4.6 show comparison between ITM and ITM-FEM.

_ 10m <
I~ 7]
P=100 kg/m?

Qe IITIWHIIWY, S

NA VLV T T T/
NN [ [/ 5m

7
X
X
\

5m 10m 5m

Q

00

Figure 4.3 Full half-space with ITM-FEM combine structure

Figure 4.4 FEM Mesh with load on the surface
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Figure 4.5 Real and imaginary part of vertical displacement on the surface
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Figure 4.6 Comparison between ITM and ITM-FEM
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As another test for this couple structure, an eccentric load will be applied. The load configuration is
as shown in figure 4.7. withby=1m,b,=5mandh=5m.

bo

Figure 4.7 Load configuration

The results are shown in figure 4.8. From these figures we can see that if the load is still above “the
bottom area of the excavation”, the results is still reasonable (compared with the reference line
bo/bx = 0, centric position of the load). If the load has reached above “the ramp area”, to have
good results, more members of the series in developing the dynamic matrix for the half-space
would be needed.
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Figure 4.8 vertical displacement of eccentric load




Chapter 5

Application Example

5.1 Problem Description and Modelization

A steel radar antenna tower with 4 embedded rigid concrete foundations is shown in figure 5.1 (the
tower is simplified with only elements). The tower has 30 m height experiences a horizontal load
10kN on its top in x-direction.

The material properties are assumed to be isotropic, homogeneous and linear elastic, and the mate-
rial damping will be independent of frequency.

Soil properties:
E = 50e6 N/m?
u=04
£ = 2000 kg/m3

Concrete properties:
E =210 N/m?
u=0.17
p = 2400 kg/m?

Steel properties:
E =211 N/m?

p = 7850 kg/m3

The tower and part of soil are modeled with FEM using a package program; GT-STRUDL. The
steel tower is modeled by space-truss with 3 DOF per joint. The embedded foundation and part of
soil are modeled using 3-D solid elements IPLS (Isoparametric Linear Solid) and TRIP (Triangular
Prism).

The IPLS is a six-sided element with all faces being quadrilaterals. It has 8 nodes with 3 DOF in
each node. The displacement expansion yields a cubic field within the element and linear along the
edges. The IPLS is a compatible element.

The TRIP is a solid element with two triangular faces and three quadrilateral faces. It has 6 nodes
with 3 DOF in each node.. The displacement expansion on the quadrilateral faces is quadratic while
on the triangular faces the expansion is linear. The field is also linear on all edges yielding a com-
patible element.
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For the part of soil and the steel structure that modeled by Finite Element, 5 % damping ratio is
used. Correspondence principle as described in section 2.2 is used here. Assumed no viscous damp-
ing is present, so the dynamic matrix from FE is expressed by

D] =[k ] +2¢i) - a?[m ] (5.1)

where [K FE] is the stiffness matrix of FE mesh, [M FE] is the mass matrix of FE mesh, ¢ is the
damping ration and c« is the frequency (a value of 50 rad/sec is used here) .

/T
10 kN
30m
v
A ' AN
- ZZ ZZ) 3m
ij 7m
\ | |
Mam ™ 7m g o em

Figure 5.1 Steel tower with 4 embedded rigid foundations

The finite element mesh has 1607 joints and 1324 elements, consists of 4 space truss elements,
1020 IPLS elements, 300 TRIP elements, with 4821 total DOF. This FE mesh is shown in figure
5.1
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Figure 5.2 Finite element mesh

5.2 Results and Discussions

After having the dynamic matrix from FE analysis, this dynamic matrix is coupled with dynamic
matrix from integral transform analysis with procedures that have been described in chapter 4. The
results of this FE-IT analysis are shown in figure 5.3 — 5.6.
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Figure 5.3a Real part of horizontal displacement u, on the surface

210

—
¥ 30 ap X

Figure 5.3b Imaginary part of horizontal displacement u, on the surface
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Figure 5.4a Real part of horizontal displacement u, on the surface

Figure 5.4b Imaginary part of horizontal displacement u, on the surface
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Figure 5.5b Imaginary part of horizontal displacement u, on the surface
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Figure 5.6a Real part deformed soil with excavation
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Figure 5.6b Imaginary part deformed soil with excavation
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It can be seen from figures 5.3 — 5.5 that the physical behavior of the deformed structure are anti-
symmetric about y—axis and symmetric about x-axis although the mathematical description are not
SO.

Figure 5.3a and 5.3b show the horizontal displacements u, . It can be seen that the signs of u, in the
four embedded foundations are equal one to another, and they are symmetric about x-axis. It can
be understand, while we have a symmetric tower structure, the 4 steel structure elements are identi-
cal and the load is also symmetric about x-axis. So the load will be equally transferred to each of the
abutments. These horizontal displacements u, are schematically shown in figure 5.7, it can be un-
derstand that the physical behavior and the mathematical descriptions (the signs) of u, are symmet-
ric about x-axis. The physical behavior of u, is anti-symmetric about y-axis though they have the
same signs.

anti-symmetric
<>

symmetric $ » X

Figure 5.7 Horizontal displacements u, in each quadrant

Because we apply the load only in x-direction, the sum of reaction in y-direction will be equal to
zero. The mathematical descriptions (the signs) of u, will be anti-symmetric about y-axis and x-axis,
like shown in figure 5.4a and 5.4b, but the physical behaviour of deformed structure (consider only
u, ) will be symmetric about x-axis but anti-symmetric about y-axis, like shown in figure 5.8.

anti-symmetric

symmetric $ » X

Figure 5.8 Horizontal displacements u, in each quadrant
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In z-direction, the sum of reaction is also equal to zero, because there is no external load in this
direction. While the direction of the load is perpendicular to y-axis, the reactions and displacements
u, will be symmetric about this y-axis. The real part and imaginary part of vertical displacements are
shown in figure 5.5a and 5.5b respectively. The mathematical descriptions (the signs) of u, and the
physical behavior of deformed structure are symmetric about x-axis but anti-symmetric about y—
axis and they are shown schematically in figure 5.9.

anti-symmetric

symmetric $ » X

Figure 5.9 Vertical displacements u, in each quadrant

Figure 5.6a and 5.6b show the real and imaginary parts of deformed soil with excavation and the
sections of them.

One thing that should be highlighted from these results is that this IT-FE Coupling Method gives a
more complete result. Using this method, we get not only the results from structure and part of
soil, but also the sound results of the influenced surrounding area.
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Summary

One of the most remarkable advantage of this IT-FE Coupling Method is that this approach will
not only lead to a deeper understanding of the dynamics of the process under consideration and
correspondingly to a higher reliability of the corresponding results, but that it can also lead to a
new, efficient solution techniques for problems which are not so well suited for an application of
Finite Element Method.

As has been discussed before, further advantage of this method is that the complete solution is
given. This method does not only give the response of the structure and parts of soil that are mod-
eled by Finite Element, but give also the surrounding area response. We only have to calculate the
dynamic matrix (for a certain frequency) of the homogeneous soil with excavation once, and what-
ever the structure above it, that is modeled by FEM, does not change this dynamic matrix that is
developed with the aid of ITM.

Just like logarithmic tables in the old time, one had to make this tables with much efforts, but after
that one can easily use these tables. So it is with this dynamic matrix of the excavated half-space.

From the examples before, we can see that in soil structure interaction problems, this method is
quite powerful and give a sound results.

If a transform technique is used, the original problem is transferred to a new domain, which often
allows to arrive at a new understanding of the problems: effects become visible which remain hid-
den in the original description, the calculations in the transformed domain often are very simple.
However, the inverse transform necessary to return to the original domain may demand a consider-
able computational effort, especially if we have layered half-space problems.

Regarding to computational time, this Integral Transformed Method still needs to be accelerated.
Respective technique for instance an application of the Wavelet Transform in the context of IFT is
available, but not yet integrated.
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