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Abstract

This dissertation proposes a novel approach for the recognition of compound 2D objects in images under
real-time conditions. A compound object consists of a number of rigid object parts that show arbitrary relative
movements. The underlying principle of the approach is based on minimizing the overall search effort, and
hence the computation time. This is achieved by restricting the search according to the relative movements of
the object parts. Minimizing the search effort leads to the use of a hierarchical model: only a selected root
object part, which stands at the top of the hierarchy, is searched within the entire search space. In contrast, the
remaining parts are searched recursively with respect to each other within very restricted search spaces. By
using the hierarchical model, prior knowledge about the spatial relations, i.e., relative movements, between
the object parts is exploited already in an early stage of the recognition. Thus, the computation time can be
reduced considerably. Another important advantage of the hierarchical model is that it provides an inherent
determination of correspondence, i.e., because of the restricted search spaces, ambiguous matches are avoided.
Consequently, a complicated and computationally expensive solution of the correspondence problem is not
necessary. The approach shows additional remarkable features: itis general with regard to the type of object, it
shows a very high robustness, and the compound object is localized with high accuracy. Furthermore, several
instances of the object in the image can be found simultaneously.

One substantial concern of this dissertation is to achieve a high degree of automation. Therefore, a method
that automatically trains and creates the hierarchical model is proposed. For this, several example images that
show the relative movements of the object parts are analyzed. The analysis automatically determines the rigid
object parts as well as the spatial relations between the parts. This is very comfortable for the user because a
complicated manual description of the compound object is avoided. The obtained hierarchical model is used
to recognize the compound object in real-time.

The proposed strategy for recognizing compound objects requires an appropriate approach for recognizing
rigid objects. Therefore, the performance of the generalized Hough transform, which is a voting scheme to
recognize rigid objects, is further improved by applying several novel modifications. The performance of the
new approach is evaluated thoroughly by comparing it to several other rigid object recognition methods. The
evaluation shows that the proposed modified generalized Hough transform fulfills even stringent industrial
demands.

As a by-product, a novel method for rectifying images in real-time is developed. The rectification is based on
the result of a preceding camera calibration. Thus, a very fast elimination of projective distortions and radial
lens distortions from images becomes possible. This is exploited to extend the object recognition approach in
order to be able to recognize objects in real-time even in projectively distorted images.






Zusammenfassung

In der vorliegenden Arbeit wird ein neues Verfahren vorgestellt, mit dem zusammengesetzte 2D Objekte in
Bildern unter Echtzeit-Anforderungen erkannt werdemen. Ein zusammengesetztes Objekt besteht aus
mehreren starren Einzelteilen, die sich relativ zueinander in beliebiger Art bewegarrk” Das dem Ver-

fahren zugrunde liegende Prinzip basiert auf der beglictien Verringerung des Suchaufwandes und dient
somit dem Ziel, die Berechnungszeiaiwend der Erkennungsphase zu minimieren. Die Umsetzung dieses
Zieles wird durch die Einschrikung der Suche entsprechend der relativen Bewegungen der Objektteile er-
reicht. Dies fihrt zu der Verwendung eines hierarchischen Modells: Lediglich das Objektteil, das an der
Spitze der Hierarchie steht, wird innerhalb des gesamten Suchraumes gesucht. Die verbleibenden Obijektteile
werden hingegen innerhalb eingesautikter Suchatime relativ zueinander unter Verwendung eines rekur-
siven Verfahrens gesucht. Durch den Einsatz des hierarchischen Modells kann Vonbissdie @umlichen
Beziehungen, d.h. die relativen Bewegungen, zwischen den Objekiteilen bereits in eineulsehrAhase

der Erkennung genutzt werden. Dadurch wird die Rechenzeit entscheidend reduziert. Ein weiterer grof3er
Vorteil des hierarchischen Modells ist die arehte Bestimmung der Zuordnung: Durch die eingesdhr”

ten Suchaume werden Probleme, die durch auftretende Mehrdeutigkeiten hervorgerufen wendiem,w™
vermieden. Eine komplizierte und rechenintensivasirig des Zuordnungs-Problemahwend der Erken-
nungsphase abrigt sich somit. Das vorgestellte Verfahren besitzt weitere bemerkenswerte Eigenschaften: Es
ist nicht auf eine bestimmte Objektart besatikt, sondern ist nahezu auf beliebige Objekte anwendbar. Das
Verfahren zeichnet sich au3erdem durch eine hohe Robustheit aus wglielhtnés, das zusammengesetzte
Objekt mit hoher Genauigkeit im Bild zu lokalisieren. DBer hinaus &finen auch mehrere Instanzen eines
Objektes im Bild simultan gefunden werden.

Ein wesentliches Anliegen dieser Arbeit ist es, einen hohen Automatisierungsgrad zu erzielen. Aus diesem
Grund wird eine Methode entwickelt, die es erlaubt, das hierarchische Modell automatisch zu trainieren und
aufzubauen. Hieui'werden einige Beispielbilder, in denen die relativen Bewegungen der Objektteile zu sehen
sind, analysiert. Durch die Analysefrien sowohl die starren Objektteile als auch die Relationen zwischen
den Teilen automatisch ermittelt werden. Dieses Vorgeheswuiserst komfortabel, da sich eine komplizierte
manuelle Beschreibung des zusammengesetzten Objektes durch den Benbtigr &4s somit abgeleitete
hierarchische Modell kann schlieRlictrfdie Erkennung in Echtzeit genutzt werden.

Die in dieser Arbeit vorgeschlagene Strategie zur Erkennung zusammengesetzter Objekte setzt die Nutzung
eines Verfahrens zur Erkennung starrer Objekte voraus. Deshalb werden einige neue Modifikationen der gene-
ralisierten Hough-Transformation, einem Voting-Mechanismus zur Erkennung starrer Objekte, vorgestellt, die
die Leistungsdhigkeit der generalisierten Hough-Transformation verbessern. Die erzielte Leishiggsft

wird durch einen Vergleich mit weiteren Erkennungsverfahrarsfiarre Objekte eingehend evaluiert. Es zeigt

sich, dass die modifizierte generalisierte Hough-Transformation strengen industriellen Anforderunggn gen”

Gleichsam als ein Nebenprodukt der vorliegenden Arbeit wird eine neue Methode zur Rektifizierung von
Bildern in Echtzeit vorgestellt. Die Rektifizierung basiert auf dem Ergebnis einer zuvor dunbhigef”
Kamerakalibrierung. Dadurch ist esoglich, sowohl projektive Verzerrungen als auch radiale Verzeich-
nungen des Kameraobjektives in Bildern sehr effizient zu eliminieren. Die Rektifizierung kann dann genutzt
werden, um das Objekterkennungsverfahren dahingehend zu erweitern, Objekte auch in projektiv verzerrten
Bildern in Echtzeit zu erkennen.
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Chapter 1

Introduction

Using a hierarchical model for the recognition of compound objects provides higher efficiency and inherent
determination of correspondence in contrast to standard methods, and hence facilitates real-time applications.
This is the thesis of this dissertation.

The high relevance of the increasing automation process in the field of industrial production is undisputed.
The already available high potential of automation can be attributed, amongst other things, to the progress
in computer vision in general and in machine vision in particular. One of the most important topics in ma-
chine vision, and hence in industrial automation, is object recognition, i.e., objects of the real world must be
automatically recognized and localized in digital images by a computer.

The thesis refers to the recognition of compound objects in real-time. To emphasize the novel aspects of
this dissertation and to explain the basic idea behind it, definitions of the two decisive terms “real-time” and
“compound objects” are given:

The term “real-time” is used in many applications with different semantics. A definition of real-time from a
computer science point of view is given in (SearchSolaris.com 2002):

“Real-timeis a level of computer responsiveness that a user senses as sufficiently immediate
or that enables the computer to keep up with some external process (for example, to present
visualizations of the weather as it constantly changes). . |-tiea describes a human rather

than a machine sense of time.”

Based upon this definition it is obvious that the upper boundary for the length of the processing time interval
that makes a process real-time capable is application dependent (Russ 2000). Thus, operating in real-time is
not about being “real fast” because the time interval may range from microseconds to megaseconds (Jensen
2002). In the field of video processing, for example, often the video frame rate (about 30 ms) is decisive,
whereas, in remote sensing one would rather speak of online processing instead of real-time. This is because
the image sequences that are dealt with in remote sensing are based on arbitrary time patterns and are not
necessarily equidistant in time. Hence, it is not unusual that the real-time or online analysis of remotely
sensed data takes several minutes or even hours.

In this dissertation “real-time” primarily demands from the object recognition process a computation time that
enables the computer to keep up with an external process. The object recognition approach, however, should
not be related to any specific application. I.e., the time constraint must be derived from an external process
that is application independent. Since the process of image acquisition is an indispensable step in every
application, it is reasonable to take the video frame rate of common off-the-shelf cameras as reference, which
typically is 1/30th of a second. In a multitude of applications new information is available not in each frame
but only in each third or fifth frame, for example. With this it is possible to give at least a coarse definition of
what “real-time” means in this dissertation: the computation time of the object recognition process should be
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in the range of a few hundredths of a second to a few tenths of a second using common standard hardware.
This requirement considerably complicates the development of an appropriate object recognition method. By
using a hierarchical model, as it is proposed in this dissertation, the gain in efficiency facilitates real-time
applications.

In contrast, the definition of “compound object” is considerably simpler. First of all, it should be pointed out
that in this dissertation 2D objects are considered because the recognition of 3D objects, as it is performed
in the field of robotics, for example, is not necessary for most applications in industry. The term “compound
object” implies that the object consists of a number of object parts. Furthermore, the object parts are allowed to
move with respect to each other in an arbitrary way. The term “movement”, in a mathematical sense, describes
a translation and a rotation. Following this definition, objects can be classified into the two ctasapsund
objectsand non-compound aigid objects Rigid objects may also consist of several object parts, but the
constellation of the parts is fixed, i.e., the parts do not move with respect to each other. In contrast, compound
objects consist of several object parts that are rigid objects. Additionally, the constellation of the object parts is
variable. For instance, a wheel of a car can be seen as a rigid object consisting of the two parts, the rim and the
tire. The car itself can be seen as a compound object consisting of the body and the four moving wheels: the
wheels rotate and change their distance to the body because of the shock absorbers. Because the movements
of the object parts, and hence the appearance of the compound object, is not&mpoion, ‘an efficient
recognition of compound objects in images is complicated dramatically in contrast to the recognition of rigid
objects. Furthermore, a correspondence problem arises when dealing with compound objects that additionally
hampers the recognition: even if the wheels of the car have been recognized, it is not immediately clear which
of the four wheels is the front left wheel, for example. Therefore, this correspondence problem must be solved
in a subsequent step taking into account the constellation of all object parts. For example, one is unable to
assign the label “front left” to one of the four wheels until the body of the car is recognized. Unfortunately,
solving this correspondence problem is complicated and computationally expensive, especially for compound
objects that consist of a large number of similar object parts. Consequently, real-time computation would
be impossible. By using a hierarchical model, however, additionally to the gain in efficiency an inherent
determination of the correspondence is ensured, and hence the correspondence problem becomes dispensable.

To summarize, the main novel aspect described in this dissertation is the development of an approach that
combines the ability to recognize compound objects with the ability to perform the recognition in real-time.



Chapter 2

Scope

In this chapter the scope of this dissertation is introduced. The conceptual formulation for the work is illus-
trated by giving several example applications that are discussed in detail (Section 2.1). At first, the require-
ments for the object recognition approach are derived from the example applications, and are completed by
additional constraints (Section 2.2). The concept of the object recognition approach that is described in this
dissertation is subsequently introduced (Section 2.3). After that, the background of the work, which considers
the general conditions under which the dissertation has originated, is explained (Section 2.4). The chapter
is concluded by a short overview in which the structure of this dissertation is described. This may help the
reader to arrange the single sections of this work into an entire framework and to understand the interrelation-
ship between individual working steps without losing touch with the central theme (Section 2.5).

2.1 Example Applications and Motivation

2D object recognition is used in many computer vision applications. It is particularly useful for machine
vision, where often an image of an object must be aligned with a (well-defimed]el of the object. In
general, the model contains a certain description of the object that can be used for recognition. For instance,
a model can be represented by a CAD model, a gray scale image, extracted features like points, lines, or
elliptic arcs, or any other description. In most cases, the result obtained by the object recognition approach
directly represents the transformation of the model to the image of the object. Object recognition delivers
the transformation parameters of a predefined class of transformations, e.g., translation, rigid transformations,
similarity transformations, or general 2D affine transformations (which are usually taken as an approximation
of the true perspective transformations an object may undergo). This definition implies that object recognition
not only means recognizing an object, i.e., deciding whether the object is present in the image or not, but
additionally means localizing it, i.e., getting its transformation parameters. The transformation refers to an
arbitrary reference point of the model and is often referred fmasin the literature (Rucklidge 1997). In the
remainder of this dissertation no distinction will be made between the two separate processes of recognition
and localization: recognition will always include the process of localization.

The pose that is returned by the object recognition approach can then be used for various tasks, ranging from
alignment, quality control, inspection tasks over character recognition to complex robot vision applications
like pick and place operations. In the following, several example applications are introduced in order to
elaborate the conceptual formulation for this dissertation and to derive the most important requirements that
should be fulfilled.

A typical inspection application is illustrated in Figure 2.1. The task is to count the number of leads of the
integrated circuit (IC) and additionally check the distances between neighboring leads to ensure that short
circuits are avoided. Before these measurements can be performed the pose of the IC must be determined in
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(a) Inputimage (b) Inspected leads of the IC

Figure 2.1: Example that illustrates the role of object recognition in inspection tasks. The leads of the integrated circuit
(IC) in (a) are to be inspected. The measurement windows (black), the extracted edges of the single leads (white), and
the results of the measurement are shown in (b).

the image by using an object recognition approach. In this case, the print on the IC is an obvious distinct object
that can be used to build a model for the recognition process. A single image of the object should be sufficient
to automatically build the model in order to keep the model creation as simple as possible. Because the relative
position of the leads with respect to the print is approximately constant and kapwori, two measurement
windows can be opened, which include the leads on both sides of the IC. This can be done after the pose of the
print has been determined by the recognition approach. Within the measurement windows subpixel precise
edges are computed and used to count the leads and to measure the distances between neighboring leads (see
Figure 2.1(b)). If one takes a closer look at Figure 2.1(a), a non-uniform illumination can be observed in the
image, which is due to a light source that was not perfectly mounted, leading to a stronger illumination of
the lower left corner of the image. A uniform illumination that additionally is constant over time is highly
desirable in most applications. Unfortunately, sometimes a controlled illumination is hard to achieve if one
refrains from using an expensive set-up. Thus, it becomes obvious that the object recognition method must be
robust against these kind of illumination conditions. For visualization purposes only, the contrast of the image
in Figure 2.1(b) is lowered. This auxiliary visualization step is performed whenever additional information is
plotted within a gray scale image and the original image contrast makes it necessary. Therefore, this must not
be confused with a meaningful image processing operation under any circumstances.

Figure 2.2 illustrates one possible role of object recognition in the field of optical character recognition (OCR).
Here, the task is to read the digits below the “disc” label. In many implementations, object recognition is not
directly applied to recognize the characters. Instead, OCR is performed as a classification process, in which
sample characters are trained and used to derive a set of classification parameters for each character. Often,
these parameters are not rotationally invariant. Hence, it is only possible to read characters that have the same
orientation as the characters used for training. In general, this assumption regarding the orientation is not
valid. A brute-force solution is to train the characters in all possible orientations. However, the computation
time for training and recognizing the characters increases. Additionally, the recognition rate decreases since
the risk of confusion is higher. For example, it is not immediately possible to distinguish the letters “d” and

“p” if they may appear in arbitrary orientation. A more sophisticated approach uses object recognition in a
preliminary stage. In the example of Figure 2.2, the parameters are trained using characters that have been
horizontally aligned. The CD label shown in Figure 2.2(a), however, may appear in arbitrary orientation.
Therefore, the image must be rotated back to a horizontal orientation before the OCR can be applied. This
process is often calledormalization Object recognition can be used to obtain the orientation angle by which

the image must be rotated. Because the digits below the “disc” label are not known, but must be determined,
they cannot serve as object for the recognition process. In contrast, the appearance of the “disc” label itself
is constant and is an ideal pattern that can be searched in the image. As can be seen from this example, the
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Result of OCR: 61406

() Inputimage (b) Result of the OCR

Figure 2.2: Example that illustrates the role of object recognition in optical character recognition (OCR). The digits below
the “disc” label in (a) are to be read. To simplify the classification of the characters, the image is horizontally aligned
according to the orientation of the recognized “disc” label (b).

recognition approach should be robust against a moderate degree of image noise. After the label has been
recognized, the image is normalized, i.e., horizontally aligned by rotating it by the negative orientation of
the found label. The result is shown in Figure 2.2(b). Although in this case the entire image is rotated for
demonstration purposes, normally, it is sufficient to only rotate the part below the disc label to speed up the
process. Finally, the region of interest, i.e., the part of the image, in which the OCR is to be performed, can
be restricted to the image region directly below the label. Based on these two examples, it can be postulated
that the recognition approach must be invariant to object orientation.

Another frequently arising problem is to check the quality of various kinds of prints. For example, it is es-
tablished by law that food must have an appropriate durability indication, e.g., “Best Before:”, “Best Before
End:”, or “Use By:", followed by the corresponding date. Therefore, it is important that the date on food
packagings is easy to read, and hence the corresponding print must not have severe quality faults. To men-
tion another example, companies are very intent on handing out their products only with a perfectly printed
company logo, because otherwise the imperfections of the logo are directly attributed to possible imperfection
of the company by the potential customer. Figure 2.3(a) shows the print on a pen clip that represents the
company logo “MVTec”. In this example, the rightmost character “c” shows a substandard print quality in
the upper part of the character. A typical way to examine the print quality is to compare the gray values of
the print that is to be checked with the gray values of an ideal template, which holds a perfect instance of the
print (Tobin et al. 1999). Absolute gray value differences that exceed a predefined threshold are interpreted as
severe quality faults and returned by the program. The alignment of the ideal template over the print that is to
be checked can be achieved using object recognition by selecting, for example, the entire print as the object to
be found. From this it can be reasoned that even if parts of the object are missing, as is the case when dealing
with print faults, the recognition method must still be able to find the object. This is a hard but important
requirement, since the case of missing parts is anything but rare, especially in the field of industrial quality
control. Furthermore, especially in the field of quality control the colors of the object may vary, for example,
depending on the used pressure during the print, on the amount of ink on the stamps, or on the color mixture.
Thus, not only a non-uniform illumination but also the change of the object itself affects the gray values of
the object in the image. Therefore, the object recognition approach should be robust against general changes
in brightness of the object. Finally, the returned pose of the object can then be used to transform the ideal
template to the desired position and orientation. Especially in this application the real-time aspect becomes
important since the operational capacity in the pen production is very high, and hence fast computation for the
object recognition is demanded.

Based on this example, another demand on the recognition method can be derived which deals with sub-
pixel object translations. The principle of the effect of subpixel translation is shown in Figure 2.4(a) using
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(a) Inputimage (b) Result of the print quality control

Clip not OK

EC

Figure 2.3: Example that illustrates the role of object recognition in quality control. The quality of the print on the label
of the pen clip in (a) is to be checked. An ideal template of the print is transformed according to the result of the object
recognition and compared to the input image. Gray value differences that exceed a predefined threshold are returned as
errors (b).
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Figure 2.4: The effect of subpixel translation on the gray values is shown in (a). Pixel precise object recognition methods
induce errors in the case of subpixel translations (b).

a synthetic example, where a horizontal edge of the letter “M” is considered. For the ideal template a white
background (gray value 255) and a black foreground (gray value 0) are assumed. Let the horizontal edge of
the letter exactly fall on the border between two neighboring vertically arranged pixels. Then a sharp hori-
zontal edge with a gray value jump from 0 to 255 arises. If the letter is translated in a vertical direction by
1/2 pixel in both directions using a step width of 1/10 pixel, the gray value of the corresponding pixel smoothly
changes. Consequently, the originally sharp horizontal edge becomes more and more blurred. When using
a pixel precise object recognition method, the subpixel translation would be undetectable, leading to a max-
imum difference of 1/2 pixel between the true vertical location and the vertical location that is returned by
the recognition method. The resulting absolute gray value difference between the print and the incorrectly
transformed ideal template are plotted in Figure 2.4(b). The gray value differences, in this case, reach am-
plitudes of 127, which make a reliable detection of defects in the print almost impossible. In contrast, such
effects are avoided when using a subpixel precise object recognition method. Further examples that show the
need for subpixel precise object recognition can be found in image registration and feature location measure-
ments in photogrammetry, remote sensing, image sequence analysis, or nhondestructive evaluation (Tian and
Huhns 1986).

The example application illustrated in Figure 2.5 introduces further important aspects to be considered in
object recognition. Here, the three metal parts shown in Figure 2.5(a) must be picked by a robot. From this
example it follows that the object recognition method should also be able to recognize several instances of
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Pick at: ( 26.27, 32.65) [mm], 185.50°
Pick at: ( 87.32, 52.40) [mm], 82.33°
Pick at: ( 81.55, 41.20) [mm], 257.34°

(a) Inputimage (b) Pick points for the robot

Figure 2.5: Example that illustrates the role of object recognition in pick and place applications. The metal parts shown
in (a) are to be picked by a robot. The pick points are marked in (b). It is important to note that the recognition approach
must cope with projective distortions and overlapping objects.

the object in the image at the same time. Additionally, the different metal parts may overlap each other, and
hence the recognition approach must also be able to handle occlusions up to a certain degree. This problem
is equivalent to the situation where parts of the object are missing, as occurred in the example application
of Figure 2.3. Furthermore, the image plane of the camera is not parallel to the plane in which the objects
lie during image acquisition. This deviation from the nadir view leads to projective image distortions that
consequently influence the appearance of the objects in the image and make the recognition much more
difficult. After the metal parts have been localized by the recognition method, the world coordinates of the
pick points (see Figure 2.5(b)) are transmitted to the robot. More common pick and place applications can be
found in the semiconductor industry where circuit boards are automatically equipped using robots.

Up to now, only examples with non-compound objects have been introduced. In the following, the motivation
for recognizing compound objects will be elaborated based upon further example applications. These exam-
ples are also useful to elaborate the definition of compound objects that was given in Chapter 1. Because in
the following rigid objects must be distinguished from compound objects, the model representation of a rigid
object is referred to asgid modeland the model of a compound objectcasnpound modeéh the remainder

of this dissertation.

To give a first example, the application of quality control shown in Figure 2.3 is used. However, in contrast
to the previously discussed example, now the considerations are extended to multiple occurrences of the
pen clip (see Figure 2.6). Because the printing process of the logo was performed in two steps by applying
two independent stamps, one for each color, misalignments within the print may occur between the dark
gray letters “M Tec” and the light gray letter “V”. Keeping the application of quality control in mind, it

is necessary to perfectly align the ideal template to the print. The misalignment within the print, however,
causes a discrepancy between the appearance of the print in the image and the object description in the model
that is used to recognize the object. This discrepancy cannot be described by one global 2D transformation
— which is typically used in the recognition process — because different parts of the object are transformed
individually. This leads to difficulties during object recognition and during the detection of print quality faults.
One solution is to split the object, i.e., the entire print, into two separate objects, one representing the dark gray
letters and the other the light gray letter, respectively. The object recognition approach is then started twice
(once for each object), resulting in two independent poses for the two objects in the image. The drawback of
this solution is that available information regarding the relations between the two objects is not exploited. In
this example, such information could be, e.g., that the letter “V” is somewhere in between “M” and “Tec".
The consequence of ignoring this information is a loss of efficiency, since both objects must be searched in
the image without prior knowledge. This loss in most cases is already important when dealing with objects
that consist of two separate object parts — as in this example. Considering the real-time requirement, the
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Figure 2.6: The logo “MVTec” is an example of a compound object that consists of the two object parts “M Tec” and “V".

more object parts that are involved, the more important it becomes. As a consequence, the object recognition
approach should be able to handle compound objects that consist of several object parts. The relations between
the object parts should be explicitly modeled and taken into account during the recognition process as prior
knowledge in order to obtain a high efficiency and to be able to fulfill the real-time requirement even for
compound objects.

To get an idea of a more complex compound object, an example is presented in which the object consists
of more than two object parts. In Figure 2.7 several prints of a label are shown that are used to mark the
minimum durability on food packaging. The readability of the print can be checked by using a similar method
as explained in the application of quality control shown in Figure 2.3. When taking a look at the images given

in Figure 2.7 one can discern that the label, which represents the object, can be decomposed into five object
parts: the rectangular border, the string “BEST BEFORE END:”, and the three two-digit numbers of which
the last two are supplemented by a preceding slash. Obviously, a few images are already sufficient for a human
being to identify the object parts into which the label decomposes. The number of required images depends on
the relative movements that are shown in the images. The relative movement between two object parts must
be shown in at least one image. For example, if the movements between all object parts are already included
in two images then these two images are sufficient to detect the object parts. The object recognition approach
should be able to automatically identify the object parts of compound objects using a sufficient number of
example images — as shown in Figure 2.7. Furthermore, the relations between the single object parts and
a search strategy should also be derived automatically by using the same example images. Based on this
information, the compound model should be created. The compound model can then be used to recognize the
compound object in an image. To give an example, one possible search strategy is to search for the rectangular
border at first, and then restrict the search for the remaining parts to the image region lying inside the border.

In Figure 2.8, a last example of a compound object is introduced. It shows a circuit board equipped with
five electronic modules, which are visualized in the upper left image by enclosing white ellipses. A typical
application within the production process is to check whether all modules are present on the board and whether
they are in the correct position and orientation in order to guarantee the perfect operation of the board. Because
the positions and orientations of the electronic modules vary slightly from board to board, the five modules do
not describe one rigid object, but can be put together into one compound object. Hence, in this example the
compound object cannot be described by one physical object in the real world, but instead can be understood
as a virtual object containing the five electronic modules. Thus, a compound object does not necessarily
correspond to a real world object but can be seen on a more abstract level. Furthermore, in this example the
background is strongly textured, which additionally complicates the object recognition.

The presented examples give an insight into the broad spectrum of applications that can be automated to a
high degree using object recognition or that at least profit from object recognition in one of various ways.

In order to make these advantages available to a large number of users, special knowledge of the user about
image processing or computer vision must not be required. Furthermore, the degree of automation should be
as high as possible to limit the user interactions to a minimum. Consequently, the motivation from a practical
point of view, upon which this dissertation is based, is to develop an object recognition approach that is easy
to use.
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Figure 2.7: The compound object decomposes into five object parts: the rectangular border, the string “BEST BEFORE
END:”, and the three two-digit numbers, of which the last two are supplemented by a preceding slash.
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Figure 2.8: The five electronic modules, which are visualized in the upper left image (white ellipses), slightly vary their
position and orientation on the circuit boards. They can be represented by one compound object.

2.2 Requirements

Following the discussion of the example applications (Section 2.1), the requirements that an object recognition
approach should fulfill will now be summarized. They are completed by additional requirements that have to
be considered in industry.

However, before listing the demands some general remarks must be mentioned. Firstly, one of the aims of this
dissertation is to develop an object recognition approach for a broad spectrum of applications. Consequently,
there must be no special requirements on the necessary hardware in order to maximize the field of possible
applications. Usually, only three hardware components should be necessary for real-time object recognition:
a camera, a computer, and a frame grabber. Starting with the first component, it should be sufficient to use
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Figure 2.9: The object recognition is restricted to planar objects. Projective distortions are caused by deviations from the
nadir view (a). By rectifying the image the projective distortions can be eliminated (b).

off-the-shelf cameras. In a majority of cases monochrome cameras are used to deliver the video signal in
one of the two most prevalent analog video fornR& 170 monochrome equivalent t§TSQ with an image
resolution of 64& 480 pixels andCCIR(monochrome equivalent AL) with a resolution of 76& 576 pixels.

On the one hand, these cameras do not demand high financial investments and are therefore best qualified to
satisfy the condition of a broad applicability. On the other hand, the use of these cameras prohibits object
recognition approaches that are based on color information. As the second component, standard personal
computers systems are already available in most companies and deliver high performance for low cost. No
special image processing hardware should be needed. The frame grabber, as the last component, simply acts as
an interface between camera and computer. It takes the video signal, which can be understood as a continuous
stream of video frames, and grabs one or more images out of the sequence, whenever triggered to do so. In
the case of analog cameras, the frame grabber additionally converts the analog signal into a digital signal that
can be processed by the computer. Common frame grabbers use an 8-bit quantization. Thus, in the case of
monochrome cameras, gray scale images with a maximum of 256 different gray values are obtained.

Secondly, it is sufficient in many applications — especially in industry — to recognize planar objects (Steger
2001). Therefore, this dissertation only deals with the recognition of 2D objects. Since in the real world no
2D objects exist, the meaning of “2D” in the context of this dissertation is discussed in the following. In
general, the mapping of a moving object into an image can be described by two separate transformations. The
first describes the transformation of the object in the real world (like 3D translation, 3D rotation, 3D scaling,
etc.). The second describes the mapping of the object from the real world (3D) into the image plane of the
camera (2D). The two transformations are abstracted in Figure 2.9(a). The 3D object is symbolized as a box
that may be transformed in 3D space to different positions and orientations. Assume that the object is planar,
i.e., its thickness is small relative to its distance from the camera. Assume furthermore that the transformation
in the real world can be described by a 2D transformation (like 2D translation, 2D rotation, 2D scaling, etc.)
within the plane that is spanned by the planar object. Consequently, also all possible appearances of the object
are restricted to lie within that plane. This plane will be calidxject planen the following. In Figure 2.9(a)

the planar object is represented by the upper surface of the box containing the string “Object”. Since the
box moves on a planethe upper surface moves on the object plahthat is parallel ta at a distance that
corresponds to the height of the box. Consequently, the mapping from the real world into the image plane
is a homography and can be described by a projective transformation between two planes (ignoring any lens
distortions for the moment).

Using camera calibration, the projective distortions of the object plane in the image can be eliminated by
transforming the image plane back into the object pldnsee Figure 2.9(b)). This process will be referred
to asrectificationin the following. Subsequently, the object recognition approach only needs to cope with
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the remaining 2D transformation of the planar object in the real world. In the example applications presented
so far, the 2D transformation can be described by a rigid motion (translation and rotation). In practice, it
is sufficient that the 3D object has at least an approximately planar surface: although a minor unevenness
introduces additional perspective distortions that cannot be eliminated by the rectification these distortions are
negligible as long as the deviation from the nadir view is also sufficiently small. What is important is that all
transformations the 3D object may undergo must lead to a 2D transformation of the planar object surface. In
the following, the object will be equated with its planar surface since the 3D object as a whole is irrelevant for
further considerations in this work. To give some examples, in Figure 2.1 the IC represents the 3D object with
the print on the IC as the planar object surface, in Figure 2.2 the CD cover represents the 3D object with the
“disc” label as the planar object surface, in Figure 2.3 the pen clip represents the 3D object, with the logo as
the planar object surface, and in Figure 2.5 a metal part represents both the 3D object and the (approximately)
planar object surface.

Now, after the general conditions have been stated, the requirements for an object recognition approach are
given:

e The object recognition approach should be able to handle compound olfzmtgoound objects should
not be treated as a set of independent objects that ignore the relations between them but should be explic-
ity modeled leading to an increased computational efficiency. Furthermore, the correct correspondence
of the object parts should be given by the approach.

e Objects should be recognized in real-timEhis is strongly connected with the previous requirement
because without modeling the relations between object parts, real-time computation is hard to achieve
when dealing with compound objects. Nevertheless, this requirement additionally implies the existence
of an object recognition approach that is able to recogriifé objects in real-time since a rigid object
can be seen as a degenerated compound object with only one object part. Because the computational
complexity of object recognition approaches depends on the image size, the real-time demand must be
related to a maximum occurring image size. Bearing the above considered hardware requirements in
mind, RS-170 or CCIR images are assumed in this dissertation. Hence, objects should be recognized in
real-time when using images that have a size of not substantially larger than YB3 pixels.

e The model representation of a rigid object should be computed from an example image of the object.
Keeping in mind the claim that the object recognition approach should be easy to use, the computation
of the rigid model should only ask for a single model image of the object. This is the most comfortable
way because usually it is too costly or time consuming to compute a more complicated model, e.g, a
CAD model, or to transform a given CAD model into a model representation that can be used for object
recognition.

e The model representation of a compound object should be computed from several example images of
the compound objectn contrast to the previous requirement, the model representation of compound
objects is more complicated to compute since movements between object parts cannot be detected from
a single example image. Nevertheless, in order to keep the model computation as simple as possible
for the user, it should be sufficient to make several example images available. The object recognition
approach should then be able to automatically derive the relations between the object parts from the
given example images and to derive the compound model.

e The object recognition approach should be general with regard to the type of oljeet.approach
should not be restricted to a special type of object. Thus, the model, which represents the object, should
be able to describe arbitrary objects. For example, if straight lines or corner points were chosen as
features to describe the object it would be impossible to recognize ellipse-shaped objects.

e The object recognition approach should be robust against occlusions up to a certain dégieds
often highly desirable in cases where several objects may overlap each other or in cases where object
parts are missing.
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The object recognition approach should be robust against changes in brightness of an arbitrary type
up to a certain degreelllumination changes often cannot be avoided and are, for instance, caused by
non-uniform illumination over the entire field of view, changing light (position, direction, intensity),
objects with non-Lambertian surfaces, etc. Furthermore, changes in the color of the object itself also
lead to changes in brightness in the image.

The object recognition approach should be robust against clu@utter in this context means any
additional information in the image, aside from the object that is to be recognized. This information
can, for example, be a strongly textured background or additional objects that are visible in the image,
and which are possibly similar to the object of interest.

The object recognition approach should be robust against image nSisee noise cannot be avoided
in the image, the approach should be robust against noise up to a certain degree.

Objects under rigid motion should be recognizerhis is closely related to the requirement of real-
time computation. In general, the more degrees of freedom the transformation of an object includes
the higher the complexity of the recognition approach and therefore the higher the computation time to
recognize the object. Hence, the real-time demand is coupled with the allowable degrees of freedom.
In this dissertation rigid motion (translation and rotation) is considered, i.e., the object recognition ap-
proach should be able to find the object at arbitrary position and orientation. This does not imply that the
approach cannot be extended to more general transformations like similarity transformations or affine
transformations. However, there is a trade-off between the real-time demand and the transformation
class.

The approach should cope with deviations from the nadir vi@ften, it is not possible to mount the
camera with a viewing direction perpendicular to the plane in which the object appears. The resulting
projective distortions should be managed by the recognition approach.

The returned pose parameters should be of high accurBlacis means that the pose parameters should

not be restricted to discretely sampled values but go beyond any quantization resolution. For example,
the position parameters of the object should not be restricted to the pixel grid but should be subpixel
precise. The same holds for the object’s orientation.

Finally, all instances of an object should be found in the imadee approach should not only find the
“best” instance of an object in an image but return all instances that fulfill a predefined criterion. In the
remainder of this dissertation found object instances in an image will be referrednatetses

2.3 Concept

In this section, the concept of the proposed object recognition scheme is introduced. The basic idea is that
the recognition of compound objects can be seen as a framework in which the recognition of rigid objects
is one important component. In Figure 2.10, an overview of the concept at a generalized level is given. The
concept is split into three blocks representing three approaches that can be characteemsetasalibration

and rectification(see Figure 2.10(a)yecognition of rigid objectgsee Figure 2.10(b)), anekcognition of
compound objectésee Figure 2.10(c)). The type of the graphical representation is chosen so that the input
data, the processing steps, and the output data of the three blocks are distinguished. Furtheroftiree the
phaseis visually separated from thenline phase In the offline phase, computations that can be done in a
preliminary step and have to be carried out only once for a specific object are performed, e.g., creating the
model description of the object. Therefore, these computations are not time-critical. In contrast, computations
that are performed in the online phase have to be executed whenever the model is used to find the object in the
image. Thus, these computations must be performed in real-time. In the following, the three main blocks are
introduced and the relations between the blocks are indicated.
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Figure 2.10: The concept of the object recognition described in this dissertation
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The first block represents the camera calibration and the rectification (see Figure 2.10(a)). Itis only relevant if
the camera was not mounted perpendicular to the plane in which the objects lie or the camera exhibits severe
radial distortions. Otherwise this block can be omitted. The idea behind the calibration is to eliminate pro-
jective distortions by rectifying distorted images before the images are passed to further processing steps (see
Figure 2.10(b) and Figure 2.10(c)). This has the considerable advantage that all further processing steps do
not need to concern themselves with projective distortions at all. The disadvantage is that an additional image
transformation and a re-sampling step have to be performed, which are, in general, very time consuming. In
order to reduce this additional computation time, this process of rectification is split into an offline phase and
an online phase. In the offline phase, the camera calibration is computed using several images of a known
calibration target and eectification maps derived from the calibration data. This is a time consuming step,

but it has to be performed only once for a specific camera pose and a specific object plane. The rectification
map can be seen as a kind of look-up table that facilitates a fast rectification of an input image in the online
phase. The resulting rectified image is free of radial and projective distortions.

In the second block the general design of an approach for recognizing rigid objects is described (see Fig-
ure 2.10(b)). Here, in the offline phase, the rigid model is derived from an image of the object. The image part
that shows the object is referred tormsdel imageand — if necessary — has been rectified in a preceding
step using the rectification map. The rigid model can then be used in the online phase to recognize the object
in one or more (rectifieddearch imagesWhile the rectification of the model image in the offline phase is not
time-critical the rectification of the search images in the online phase must be performed in real-time.

The third block describes the concept of the approach for recognizing compound objects (see Figure 2.10(c)).
Generally, the model of a compound object is referred to as compound model. In the proposed approach the
compound model shows a hierarchical structure, which is also indicated by the thesis “Usergrahi-

cal modelfor the recognition of compound objects provides higher efficiency and inherent determination of
correspondence in contrast to standard methods, and hence facilitates real-time applications”. Therefore, the
compound model that is generated during the offline phase will also be referretiezashical model The
hierarchical model generation comprises the extraction of rigid object parts on the basis of the model image
and several example images. The most important thing to note is that for each rigid object part a rigid model
is generated by employing the offline phase of the recognition of rigid objects (see Figure 2.10(b)). Hence, the
offline phase of recognizing rigid objects is embedded in the offline phase of recognizing compound objects.
Consequently, the resulting hierarchical model holds a rigid model for each part of the compound object. The
relations between the parts and the search strategy for the online phase are automatically derived by analyzing
the example images and complete the hierarchical model. Analogous to the offline phase, the online phase
of recognizing rigid objects is embedded in the online phase of recognizing compound objects. An important
characteristic of the online phase for compound objects is, however, the computation of an individual search
space for each object part in order to minimize the search effort. This computation is based on the hierarchical
model using the relations between the parts and the derived search strategy.

Consequently, the concept of recognizing compound objects represents a framework in which an approach for
recognizing rigid objects is embedded as a substantial part. This modularity facilitates the interchangeability
of the latter approach without affecting the concept of recognizing compound objects. Thus, the concept of
recognizing compound objects is independent from the chosen embedded approach. As another consequence,
the requirements listed in Section 2.2 that do not explicitly refer to compound objects have to be fulfilled,
not only by the approach for recognizing compound objects, but also by the approach for recognizing rigid
objects.

2.4 Background

In this section, the background and the general external conditions from which the dissertation has originated
and under which it was developed are explained. This is essential because these conditions influence several
aspects of the work.
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The author’s work has been supported by the software comgdfec Software GmbMunich, Germany).

Their main productHALCON represents a machine vision tool that is based on a large library of image
processing operators (MVTec 2002). The implementation of the presented approach is partly based on image
processing operations that are provided by the HALCON library. The motivation for MVTec Software GmbH

in supporting the author's work was, on the one hand, to extend their existing knowledge in the field of
object recognition in general. On the other hand, a new approach for the recognition of compound objects
that can be directly included in the HALCON library should be developed and implemented. HALCON is
mainly applied to specific tasks that arise in industry. A selection of the typical example applications are
demonstrated in Section 2.1. Thus, the requirements listed in Section 2.2, and hence the derived concept of
this work introduced in Section 2.3, are indirectly influenced by industrial demands.

Two approaches for recognizing rigid objects have been developed approximately simultaneously with the aim
of fulfilling the established requirements: on the commercial sidesliape-based matchiri§teger 2002) has

been developed at MVTec Software GmbH, and on the scientific side, the author has developeditiee
generalized Hough transforin the context of this dissertation (Ulrich et al. 2001b). Because of these close
relationships, the developments have not been completely independent of each other but have overlapped in
a few areas. Both approaches are introduced in the dissertation, where the main focus is on the modified
generalized Hough transform. The overlapping points will only be explained once. However, the approach
for recognizing compound objects is then built on the basis of the shape-based matching because the latter has
already been thoroughly tested and included in the HALCON library.

2.5 Overview

In the following, a brief overview of the dissertation is given. According to to the concept outlined in Fig-

ure 2.10 the next three chapters correspond to the three main tasks. Chapter 3 describes the camera calibration
and the rectification. It comprises the introduction of the used camera model, the calibration, as well as the
novel rectification process. This chapter is then concluded with a small example. Chapter 4 addresses the
recognition of rigid objects. An extensive review of recognition methods is carried out and the generalized
Hough transform (Ballard 1981) as a promising candidate is selected and further examined. The drawbacks of
the generalized Hough transform are elaborated and analyzed. In the following sections, several novel mod-
ifications are introduced to eliminate the drawbacks. The respective modifications are applied, resulting in a
modified generalized Hough transform. Finally, after the shape-based matching is introduced, an extensive
performance evaluation compares the modified generalized Hough transform and the shape-based matching
with several other approaches for the recognition of rigid objects. In Chapter 5 the new approach for recog-
nizing compound objects is explained. A review of the respective literature is followed by an overview that
broadly describes the pursued strategy. A more detailed description of the single processing steps is subse-
guently given focusing on the main novel aspects of this work. This chapter is then concluded with several
examples that show the advantages of the new approach. Finally, in Chapter 6 some conclusions are given.
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Chapter 3

Camera Calibration and Rectification

Geometric camera calibration is a prerequisite for the extraction of precise 3D information from imagery in
computer vision, robotics, photogrammetry, and other areas.

Since in this dissertation only 2D objects are considered, the benefit of using 3D camera calibration for the
purpose of 2D object recognition should be addressed first. The first point has already been discussed in
Chapter 2 and must be considered when the image plane is not parallel to the plane in which the objects
occur, which results in an homographic mapping between the two planes. In order to eliminate the resulting
projective distortions in the image, one has to know the 3D poses of both planes in the real world. The second
point addresses the problem of lens distortions, i.e., the physical reality of a camera geometrically deviates
from the ideal perspective geometry. Therefore, whenever precise measurements must be derived from the
image data, these deviations must be considered. In the case of compound objects, quantitative statements
about the relative poses of the object parts in the real world must be made. This is important in order to
facilitate a correct automatic computation of the hierarchical model. Hence, it is essential to perform a camera
calibration in a preceding step. The remainder of this chapter is organized as follows: In Section 3.1, a short
review of camera calibration techniques is given in order to select the appropriate method for the task of
recognizing compound objects. Section 3.2 describes the applied camera model and the involved parameters
and in Section 3.3 the calibration process is briefly explained. In Section 3.4, a hovel way to rectify images
based on the calibration result that facilitates real-time computation is introduced. The rectified images are
free of lens distortions and free of projective distortions of the object plane. Finally, Section 3.5 concludes
with an example.

3.1 Short Review of Camera Calibration Techniques

One aspect of camera calibration is to estimate the interior parameters of the camera. These parameters de-
termine how the image coordinates of a 3D object point are derived, given the spatial position of the point
with respect to the camera. The estimation of the geometrical relation between the camera and the scene is
also an important aspect of calibration. The corresponding parameters that characterize such a geometrical
relation are called exterior parameters or camera pose. Thus, the camera parameters describe the interior and
exterior orientation of the camera. In this work, camera calibration means to determine all camera parameters.
It should be noted that sometimes camera calibration only comprises the determination of the interior camera
parameters, as in the field of photogrammetry and remote sensing. Literature provides several methods of
camera calibration. In photogrammetry two basic approaches can be distinguished: laboratory methods and
field methods (Heipke et al. 1991). The interior orientation of metric cameras is usually determined under
laboratory conditions. The interior orientation of metric cameras is constant and the image coordinate system
is defined by special fiducial marks within the camera. Field methods can be further subdivided into testfield
calibration, simultaneous self calibration, and system calibration. Testfield calibration is carried out for non-
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and semi-metric cameras prior to image acquisition. The object coordinates of several control points within
the testfield are known and used to derive the orientation of the camera within a photogrammetric block adjust-
ment. In (Ebner 1976), a simultaneous self calibration is presented where the interior orientation parameters
are determined simultaneously with the desired object space information. Finally, system calibration com-
bines testfield and simultaneous self calibration where images are acquired that show both the testfield and the
object and that are evaluated in one step (Kupfer 1987).

In machine vision, mainly non-metric digital cameras (e.g., off-the-shelf CCD cameras) come into operation
because of their lower prices, higher flexibility, and manageable size in contrast to metric and semi-metric
cameras. Because their interior orientation is not kneawmiori and cannot be assumed to be constant, the
requirement for laboratory calibration methods is not fulfilled. Hence, in most cases, cameras are calibrated
using field methods. The advantages of simultaneous self calibration are its high accuracy and that no control
point coordinates in object space need to be knawpriori (Wester-Ebbinghaus 1983). However, several
images taken from different camera poses must be acquired in order to perform the calibration. This contra-
dicts the claim of the object recognition approach to be simple and easy to use. Camera calibration should
be possible in industry, even during system operation without unmounting the camera. Another limitation of
simultaneous self calibration is that it requires a high number of corresponding points in the images, which
are not available in all cases. The requirements for testfield calibration are less stringent than the requirements
for simultaneous self calibration. Nevertheless, high accuracies are also possible. The geometric quality of
solid-state imaging sensors was already verified in (Gruen and Beyer 1987), where an accuracy of 1/10th of
the pixel spacing was achieved with a planar testfield. In (Heipke et al. 1991), it was shown that the calibration
using a 3D testfield even fulfills the stringent accuracy requirements of photogrammetric tasks. Accuracies up
to 1/50th of the pixel spacing could be verified with a 3D testfield in (Beyer 1987). Also in (Beyer 1992) and
(Godding 1993) 3D testfields are applied for camera calibration. Unfortunately, the construction of the 3D
testfield and the precise determination of the object coordinates of the control points within the testfield are
very time consuming and costly. Generally, the assignment of the measured image coordinates to the control
points must be done manually because the correspondence problem in 3D is difficult to solve. The uncomfort-
able handling of such targets is another drawback that rules out the use of 3D testfields in this work. Although
in general, the accuracy achieved by a planar 2D testfield is lower in comparison to 3D testfields, there are
several arguments for preferring the use of a 2D testfield for calibration: it is more robust, much easier to
produce, less expensive to gauge, and simpler to transport. Furthermore, the extraction and assignment of the
control points in the image can be done automatically since the correspondence problem in 2D is much easier
to solve.

In order to perform the camera calibration, one has to select an appropriate camera model where the imple-
mented parameters describe the physical mapping process with sufficient accuracy. According to the literature,
different approaches for camera calibration are suitable for different camera models. In (Weng et al. 1992), the
existing techniques are classified into three categobé@gct non-linear minimizatiomelates the parameters

to be estimated with the 3D coordinates of control points and their image plane projections and minimizes
the residual errors using an iterative algorithm (Brown 1966, Faig 1975, Wong 1975). The advantages of this
type of technique are that the camera model can be very general to cover many types of distortions, and that a
high accuracy can be achieved. However, because of the non-linearity of the resulting equations, a good initial
guess is required for the iteration. ¢fosed-form solutiongparameter values are computed directly through

a non-iterative algorithm by defining intermediate parameters that can be determined by solving linear equa-
tions. The final parameters are subsequently computed from the intermediate parameters (Abdel-Aziz and
Karara 1971, Wong 1975, Faugeras and Toscani 1986). On the one hand this enables a fast computation, on
the other hand, in general, distortion parameters cannot be considered and poor results are obtained in the
presence of noise. In (Abdel-Aziz and Karara 1971), the direct linear transformation (DLT) has been extended
to incorporate distortion parameters. However, the corresponding formulation is not exact. Birakyep
methodsinvolve a direct solution for most of the calibration parameters and some iterative solution for the
remaining parameters. In (Tsai and Lenz 1988), a two-step method is presented that is able to handle radial
distortions. In (Weng et al. 1992), the two-step approach is extended to also take more general distortions into
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account and in the second step not only the remaining but all parameters are estimated iteratively.

The radial lens distortions of spherical lenses often cannot be eliminated even when using a lens design that
comprises a system of lenses aligned on the optical axis. Radial lens distortions cause concentric circles that
are centered at the optical axis to be mapped as circles with distorted radius. The influence of radial symmetric
distortions is about one magnitude higher than the influence of other distortions, e.g., decentering distortions
or thin prism distortions (Weng et al. 1992). Furthermore, the overall influence of distortions on small images
in comparison to photogrammetric images is much lower. Because of these two reasons, it is essential, but also
sufficient, for the camera calibration within the object recognition approach to model the radial distortions.
Nevertheless, the camera lens should be of a reasonable quality and should not show severe distortions in
order to keep the non-modeled part of the distortions as small as possible.

The approach proposed in (Lanser et al. 1995) is able to handle radial distortions and combines the advantages
of a 2D testfield with the higher accuracy of the 3D testfield. This is achieved by simultaneously evaluating
several images that show the 2D testfield in different distances and poses. The used iterative approach, which
is one representative of the direct non-linear minimization technique, allows high accuracies for the desired
camera parameters. Because the term “testfield” is unusual in computer vision, the more common term “cal-
ibration target” will be used instead. The requirement for several images does not contradict the demand
of ease of use, because it is not difficult for a user to move an appropriate 2D calibration target to different
poses and take severadlibration imagesof it while the camera position remains unchanged. Because the
relative pose of the calibration target in the images does not need to be lanriami, the camera calibration

can be easily performed in practice, even in mobile or autonomous systems. Based on the above mentioned
arguments this approach is chosen to perform the camera calibration within the object recognition approach
developed in this dissertation. A detailed description of this approach is given in the following section.

3.2 Camera Model and Parameters

In order to calibrate a camera, a model for the mapping of the 3D points of the world to the 2D image
generated by the camera, lens, and frame grabber is necessary. In the approach described in (Lanser et al. 1995)
the camera model of (Lenz 1987) is used, where a pinhole camera with radial distortions is assumed. The
camera model describes the perspective projection of a 3D worldgiiinito the pixel withrow andcolumn
coordinate(r, c)T of the image (see Figure 3.1).

The perspective projection can be divided into three steps. In the first step the 3D worlgh'pamtrans-
formed from the world coordinate system (WCS) into a 3D ppiift” = (z, vy, z)T of the camera coordinate
system (CCS). The transformation is described by the exterior camera parameters, which comprise a rotation
R and a translation:

p““"=R-pY+1t . (3.1)

In the second step, the 3D poipt®™ in the CCS is projected into the image plane by assuming a pinhole
camera and using the equations of perspective transformation:

u= E, v=fZ, (3.2)
z

where the effective focal lengthis the distance between the image plane and the optical center. Equation (3.2)
idealizes the perspective transformation by ignoring any lens distortions. In Figure 3.1 the worlg'p@nt
projected through the optical center of the lens to the peintthe image plane, which is located at a distance
of f behind the optical center. If no lens distortions were pregentould lie on a straight line fromp®
through the optical center (see Figure 3.1). Lens distortions cause theppmirite at a different position.
Because in the present camera model radial distortions are considered, the “rea(’ﬂp@)ﬁtin the image
coordinate system can be calculated by:

2u 2v

i = b= . 33
" 14+ /1 —4k(u2 +v?) ! 14+ /1 —4k(u2 +v?) (33)




20 CHAPTER 3. CAMERA CALIBRATION AND RECTIFICATION
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Figure 3.1: Perspective projection of the world point p* to the point p in the image plane when using a pinhole camera
according to (Lenz 1987)

Here, the radial distortions are described by the parametiérx is negative, the distortions are barrel-shaped,
while for positivex they are pincushion-shaped. This model for the lens distortions has the advantage that it
can be easily inverted in order to calculate the correction of the distortions analytically:

u v

S S — 3.4
B 1+ k(a2 + 02)’ Y 1+ k(a? + 02) (34)

Finally, in the third step, the 2D image poifit, ) ' is transformed into the pixgh = (r,c) ' of the image
coordinate system:

r=—+cy, c:g—l—cx, (3.5)
Sy Sy

wheres, ands, are scaling factors that describe the horizontal and vertical spacing of the CCD elements on
the sensor. The poirft, cy)T is the principal point of the image, which also defines the center of the radial
distortions. The parameteys , s, sy, ¢, andc, are independent of the exterior orientation of the camera,
and hence represent the interior camera parameters. They describe the intrinsic mapping characteristics of
the camera. The parametefss,, ands, are not independent from each other since a changecan be
compensated by an appropriate change,iands,. Thus, they cannot be determined simultaneously. Since
s, is usually known because the video signal is sampled line-synchronously by the frame grabber, this datum
defect can be eliminated by keepirg fixed within the minimization process described in the following
section.

Completing this section, it should be mentioned that in some applications cameras with telecentric lenses
are used instead of pinhole cameras. In contrast to pinhole cameras, telecentric lenses show no perspective
projection but parallel projection, i.e., no perspective distortions occur. The camera model for those kind of
lenses can be easily adapted changing equation (3.2) to

u=x, V=Y. (3.6)

As can be seen, the effective focal length is no longer valid for telecentric lenses. Furthermore, the distance
z of the object to the image plane has no influence on the image coordinates. Consequently, when using
telecentric lenses in object recognition the restriction that objects always must appear in the same 3D plane
is dispensable. Even 3D objects can be recognized at arbitrary position if their rotation in 3D object space is
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restricted to rotations around the viewing direction of the camera, because then the resulting mapping in the
image can be described by a simple rigid motion. The diameter of telecentric lenses, however, must have at
least the same size as the parallel projection of the extent of the object. The following considerations refer to
pinhole cameras but can be easily adapted for the use of telecentric lenses.

3.3 Camera Calibration

In this section, the approach for camera calibration proposed in (Lanser et al. 1995), which uses the model
introduced in the previous section, is briefly explained. This approach extends the single image calibration
(SIC) to a multi image calibration (MIC) and is able to handle numerous images of the calibration target. At
first, the calibration using single images is introduced, and afterwards, the necessary modifications for the
multi image calibration are explained.

In the SIC a single image of a 2D calibration target withcircular black colored marks is used (see Fig-

ure 3.2). The centers of the circular marks represent the 3D control points. The 2D coordinates of the control
points in the planar calibration target are known with high accuracy. The coordinate system of the control
points also defines the coordinate system, in which the pose of the camera, i.e., the exterior orientation, is
computed. The square border allows the inner part of the calibration target to be found automatically. Circu-
lar marks are used because their center point can be determined with high accuracy. The circular marks are
mapped to ellipses under projective transformations. It should be noted that, in general, the extracted centers
of the ellipses do not coincide with the projected centers of the circular marks. Therefore, an analytical cor-
rection must be applied in order to increase the accuracy (Kager 1981). Finally, the array layout of the rows
and columns of the circles facilitates the determination of the correspondence of the control points and their
projections in the image.

Figure 3.2: 2D calibration target with 49 circular marks

The approach is based on minimizing the sum of squared distars/een the projected 3D centers of the
marks and the extracted 2D centers in the image by using a parameter adjustment. desthe 3D centers
of the marks andn,; the extracted 2D centers in the image. Eaehis projected into a (sub)pixel point in
the image using the projection : R® — R2, which is a function ofr = (R, t, f, x, sm,sy,cm,cy)T and
comprises equations (3.1), (3.2), (3.3), and (3.5):

N
e(x) = Z |77 — 7(m;, x)||> — min . (3.7)
1=1

Because of the given non-linear relationship, suitable starting values for the unknown camera parameters must
be known. Starting values for the interior camera parameters can be obtained from the specifications of the
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CCD sensor and the lens. For the calculation of the starting values for the exterior camera parameters the
interested reader should refer to (Lanser et al. 1995).

The exact camera parameters can then be calculated using standard linear least-squares optimization routines
(Koch 1987) or preferably non-linear methods, e.g., based on the Levenberg-Marquardt algorithm (Levenberg
1944, Marquardt 1963, Press et al. 1992), because of their better convergence behavior, and hence higher
tolerance to unprecise starting values.

During the minimization process within the SIC, flat minima often occur because of correlations between the
camera parameters. This problem occurs, for example, if the 3D plane of the calibration target is approxi-
mately parallel to the image plane. In order to stabilize the result and to improve the accuracy, the SIC is
extended to evaluate several calibration images of the calibration target simultaneously resulting in the MIC.
A similar approach can also be found in (Beardsley et al. 1992).

To get an accurate result, several images (in practice, 10-15 images are sufficient) should be taken, in which
the calibration target is moved so that all degrees of freedom are used while the camera remains fixed. The
detection of the marks in the image and the calculation of the starting values of the exterior camera parameters
is performed independently for each calibration image. It is important to note that, although the camera
remains fixed, the exterior camera parameters are specific for each image. This is because the world coordinate
system, in which the pose of the camera is described, is defined by the calibration target, which moves from
image to image. During the adjustment within the MIC, the different exterior camera parameters of all images
and the constant interior camera parameters are estimated simultaneously using one of the above mentioned
optimization routines. The experiments in (Lanser et al. 1995) showed that the maximum distance between
the projected 3D centers of the marks and the corresponding image points was about 1/10th of a pixel after
the adjustment. A camera with a 2/3 inch sensor, a 12.5 mm lens, and images of siz&768vas used in

these experiments.

3.4 Redctification

In this section, the novel method for rectifying images in real-time is introduced. The rectification is based on
the previously determined camera parameters and eliminates projective as well as radial lens distortions. To
achieve real-time computation, the projection is split into two phases. In the offline phase, the mapping of the
projection is computed based upon the camera parameters, and stored within a look-up table, which is called
rectification map In the online phase, the rectification map can be applied to an inoaiggnél image in

order to rectify the image in a very short period of time.

3.4.1 Computation of the Rectification Map

The rectification process corresponds to a projection of the image onto a 3D projection plane in the WCS.

The projection plane, which corresponds to the rectified image, is defined in the WCS with respect to the
3D plane of the calibration target as shown in Figure 3.3. Thus, the calibration target should be placed on
the object plane in at least one of the images that are used for calibration. The origin of the WCS can be
translated by a vectar = (o, 0y, oz)T to an arbitrary position that defines the position of the upper left pixel

of the rectified image. If an appropriate value &gris chosen, planes parallel to the calibration target can be
rectified. Therefore, it is, for example, possible to take the thickhegthe calibration target into account: in

order to rectify the object plane and not the plane described by the calibration targeist be set te-¢. In

order to complete the definition of the rectified image, one has to specify the pixélisizeorld units and the

size of the rectified image by the number of ro#sand the number of columrs. In general, the value for

d should be chosen according to the information content of the original image, i.e., the pixels in the rectified
image should approximately have the same size (in object space) as in the original image on average. This
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Figure 3.3: The plane of the calibration target is used to define the plane of the rectified image. Each pixel of the rectified
image can be computed in 3D world coordinates (p*) as a linear combination of the two 3D basis vectors e” and e“. The
parameter d corresponds to the length of e” and e, respectively, and defines the pixel size of the rectified image in object
space in world units, e.g., meters.

minimizes the loss of information while keeping the rectified image of manageable size. Thp'pixelk’),
r=0,...,R—1,¢ =0,...,C — 1 of the rectified image can be calculated in the WCS:

pw(TI,C/) _ O+’I"/ e’ +CI . e , (38)
wheree” ande® denote the 3D basis vectors of the spanning rectification plane with leihgth
e =(0,d,0)", e =(d0,0)" . (3.9)

The 3D pointp®(r’,¢’) can then be transformed into the 2D image pgint (r,¢) " of the original image

using equations (3.1), (3.2), (3.3), and (3.5). Since the transformation of the WCS into the CCS is a 3D
rigid transformation, angles are preserved by the transformation. Therefore, it is possible to speed up the
computation by pre-calculating the translated origimand the two 3D basis vectoes ande® in the CCS

using equation (3.1):

Ocam - R- o+ t, er,cam = R- 61"’ ec,cam = R- eC . (310)
Thus, the pixels of the rectified image can be directly obtained in the CCS
pe(r',d) = 0™ + 1" el + (- eSO (3.11)

and transformed into the 2D image pont= (r, c)T of the original image by using only equations (3.2), (3.3),
and (3.5). This procedure is applied to all pixels in the rectified image yielding a back-projected rectified
image within the original image (see Figure 3.4(a)). Tieskward projectionis essential, because in the
forward projection where the original image is projected into the rectification plane, gray values of pixels in
the rectified image may remain undefined.

In general, the resulting row and column coordingteg) of the 2D image point® are not integer values.
Therefore, the gray value of the rectified image must be re-sampled from the original image using the gray
values in the neighborhood ¢f Bilinear interpolation is a common re-sampling method. It represents a
compromise between computation time and accuracy in comparison to other methods like nearest-neighbor or
higher order polynomial interpolation (Mikhail et al. 2001). The method uses the four neighboring pixels of

p as sampling pointsp; = (r1,¢1) ", py = (r1,¢2) ', p3 = (r2,c1) ', andp, = (r2,¢2) ", wherery = |r],

rp = [r], c1 = |c], andez = [c¢]. Figure 3.4(b) illustrates the principle of bilinear interpolation. et c)

andg’(r’, ¢) be the gray value of the original image and the rectified image, respectively.gTénr’) can

be finally obtained applying bilinear interpolation:

g (') =wig(r,c1) + wag(ri, c2) + wsg(ra, c1) + wag(ra, c2) . (3.12)
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Figure 3.4: The rectified image is projected back into the original image (a) and re-sampled (b). It should be noted that
because of radial distortions, lines are not necessarily projected to lines.
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Figure 3.5: The process of computing the rectification map is summarized in two steps. In the first step, the pixels of the
rectified image are projected back into the original image. In the second step, the linearized coordinates [ of the projected
pixels, the four corresponding interpolation weights w;, and the domain D of the rectified image are stored within the
rectification map.

The weightsw; can be computed as
w; = (1—=Ar)(1—-Ac), wy=(1-Ar)Ac, ws=Ar(l—Ac), ws=ArAc, (3.13)

whereAr = r — rp andAc = ¢ — ¢;. As one can see, the rectification of an image is a computationally
expensive procedure starting with the projection and ending with the computation of the interpolation weights.
Hence, real-time computation is impossible to achieve when using this straightforward method. A more
sophisticated technique exploits that the camera pose is constant during the acquisition of images for object
recognition in most cases. Therefore, the back-projection of the pixels of the rectified image into the original
image remains unchanged, and hence the interpolation weights are constant for each pixel of the rectified
image. Consequently,(r’, ), ¢(r’, '), and the corresponding weighis(r’, ¢') only depend on the pixel
coordinates of the rectified image and can be stored in the rectification map. The rectification map, which
is displayed in Figure 3.5, consists of five 2D arrays that are of the same size as the rectified image itself
(R x C). In the first array, théinearized coordinaté of p; is stored, which can be calculatedi&s’, /) =

ri(r’,d) - C + e1(r’, ). The linearized coordinate is used because images are stored as linearized arrays,
which has the advantage of a higher efficiency. From the linearized coordinate and the known image width
the row and column coordinates can be recalculated. The remaining four arrays hold the interpolation weights
wq(r', ).

Because, in general, the forward projection of the rectangular outline of the original image does not result in
a rectangular outline in the rectified image, additionally, the image dolain R? of the rectified image

must be stored within the rectification map. The image domain only contains those pixels of the rectified

image that are mapped into the (rectangular) domain of the original image, and can be efficiently stored using
run-length encoding (Habacker 1995, dfine 2002). The processes described so far can all be attributed to
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Figure 3.6: Deviations from the nadir view cause projective distortions in the object plane.

the offline phase and only need to be executed once for a specific camera and object plane configuration. In
the following, the online phase of the rectification is described.

3.4.2 Rectification Process

The input data of the online phase, i.e., in the rectification process, are the image that must be rectified and the
rectification map that holds all necessary information for the rectification. The derivation of the rectification
map already implies the process of computing the output data, i.e., the rectified image. Therefore, only some
short remarks are given. At first, a new image is created where the image domain is set to the image domain
of the rectification magD. Then, for each pixefr’, )" within the image domain the gray valy&r’, ¢’) is
computed only from the four corresponding gray values of the original image), g(r,c+ 1), g(r + 1, ¢),

andg(r + 1, ¢ + 1) multiplied by the respective weights;(r',¢’), i = 1,...,4, using equation (3.12). The
coordinates- andc are obtained from the linearized coordinate, ¢') and the image width. Thus, this ex-
tremely lean computation comprises the entire process of rectification in a compressed form and facilitates
real-time computation. The rectified image is not only free of radial and projective distortions in the object
plane but — as an additional feature — also exhibits square pixels since the pixel spacing is estimated inde-
pendently during camera calibration in each direction. Non-square pixels would also lead to deformations of
an object in the image. This deformation is not constant but dependents on the object orientation, and hence
is critical for object recognition.

3.5 Example

In this section, an example is given, not only to prove the high efficiency of the rectification method, but also
to accentuate the need for considering the radial distortions within the camera model.

The label of the example application of Figure 2.7 in Section 2.1 is taken as the test object. Here, it is assumed
that it is not possible to mount the camera perpendicular to the object plane. This causes projective distortions
of the object plane as can be seen from Figure 3.6, where the “deformation” of the label depends on the pose
of the label in the image.

In order to rectify the images, the camera must be calibrated. Here, a calibration target of size 3am

was used and images that show the target in 15 different poses were taken. Figure 3.7 shows three of the
15 calibration images (64@ 482 pixels). The 3D coordinates of the center points of the black circles are
known and used as control points within the camera calibration as described in Section 3.4. The computation
time for the whole camera calibration was about 2s on a 2 GHz Pentium 4, including the segmentation of
the calibration target, the calculation of the starting values in all images, and the final parameter estimation
using the Levenberg-Marquardt method (Press et al. 1992). The resulting interior camera parameters in this
example aref = 13mm,x = —1095.2[1/nf] (i.e, slightly barrel-shaped distortions),, = 7.3um, 5y =
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Figure 3.7: Three examples of the 15 calibration images that were taken from the calibration target. The extracted ellipse
centers of the projected marks are assigned to the given 3D circle centers of the calibration target and used to estimate
the camera parameters. The calibration target in the left image is used to define the object plane to be rectified.

Figure 3.8: Rectified versions of the images shown in Figure 3.6. The average rectification time was 8.3 ms on a 2 GHz
Pentium 4.

7.3um, ¢, = 321.422 pixels, and, = 236.303 pixels. To get an impression of the achieved accuracy of
the estimation, the 3D control points are projected back into the image using the estimated parameters and
compared to the extracted ellipse centers resulting in a mean distance of 0.027 pixels.

Now, the rectified image can be defined. The pose of the calibration target in the left image of Figure 3.7
defines a plane that is offset from the object plane by the thickhes®.63 mm from the calibration target.
Therefore, the: component of the origim, must be set te-0.63 mm in order to correctly rectify the object

plane. Additionally, the pixel siz€ is chosen to be 0.32 mm to obtain a suitable size of the rectified image.

To ensure that the upper left pixel of the original image is contained in the image ddmaiirihe rectified
image,o, ando, are set to -9.4cm each. Finally, the heighiand widthC' are chosen appropriatelyz(=

527,C = 515). Now, the computation of the rectification map can be performed using the interior camera
parameters, the exterior camera parameters according to the left image of Figure 3.7, and the chosen values
for o, d, R, andC'. In the example it took approximately 120 ms to compute the rectification map.

Since all time-consuming computations of the offline phase have been completed, now, in the online phase
images can be rectified in real-time. The three example images of Figure 3.6 are rectified by applying the
computed rectification map in an average time of only 8.3 ms per image. The result is shown in Figure 3.8.

Finally, two experiments are carried out to show that firstly, the achievable accuracy of the camera parameters
depends on the number of acquired calibration images and that secondly, it is essential to include the radial
distortions within the camera model.

For the first experiment, a basic set of 10 selected calibration images out of the entirety of 15 images is formed.
Then the number of images is varied from 1 to 10 and for eaef!, 10 sub-sets containing’ images are

taken from the basis set. It should be noted that only one sub-set of 10 images can be fotfmed 1D.

The camera calibration is then performed for the different number of images for each of the 10 sub-sets. The
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Figure 3.9: Standard deviation of the estimated effective focal length (a) and the radial distortions (b) versus the number
of images. In (c) subpixel precise edges are shown, once taking the radial distortions into account (white solid), and once
ignoring the radial distortions (white dashed).

standard deviation of the estimated interior camera parameters are then calculated fdr éacan example

of the result, the standard deviation of the effective focal lerfgdind of the parametet, which describes the

radial distortions, are plotted in Figure 3.9(a) and Figure 3.9(b), respectively. From both plots it appears that
even for a small number of calibration images, the accuracy of the camera calibration increases considerably
in comparison to the SIC. In this example, the calibration using only a single image is not meaningful: the
standard deviation of is o,, = 1782.0 1/n3, which is too high for precise measurements. This is because

the used calibration target is relatively small and the radial distortions within a small part of the image are
approximately constant, and hence hard to determine. Therefore, it is essential to base the calibration on
several images where the calibration target should appear in different parts of the image. The same holds
for the effective focal lengthf{ = 13 mm), the standard deviation of whichdgs = 2mm. Generally, the
achievable accuracy depends on the number of used images and on the accuracy of the extracted ellipse centers
in the calibration images. However, it is also apparent from the plots, that continuously increasing the number
of images does not necessarily increase the accuracy much. The maximum achievable accuracy is restricted
by the distortions that are not considered in the camera model.

For the second experiment, the rectified image of the label that is displayed in Figure 3.8 on the right is used
to demonstrate the effect of radial distortions. In Figure 3.9(c), the enlarged detail of the image containing
the upper right corner of the label is shown. This image part is far enough away from the principal point to
exhibit significant radial distortions. Subpixel precise edges are extracted in the image using the approach
presented in (Steger 1998) and visualized as white solid lines. In a second step, the image is rectified with
x set to 0 when computing the rectification map. In the resulting rectified image, subpixel precise edges are
again extracted and overlaid on the image of Figure 3.9(c) as white dashed lines. From the displacement of
the edges, it is obvious that ignoring the radial distortions in this example would lead to position errors of up
to 2 pixels. In general, the position errors induced by radial distortions are in the range of 1 to 4 pixels using
off-the-shelf lenses. Thus, it is absolutely essential to model and eliminate the radial distortions in the images.
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Chapter 4

Recognition of Rigid Objects

This chapter deals with the recognition of rigid objects. An extensive review of the respective literature is
given (Section 4.1). The novel approach for recognizing rigid objects, the modified generalized Hough trans-
form, is explained in detail (Section 4.2). Furthermore, a second new approach, the shape-based matching,
which is proposed in (Steger 2002), is introduced (Section 4.3). The shape-based matching is not included in
the review because of its exceptional position within this dissertation: firstly, some aspects of its development
are closely related to the modified generalized Hough transform and secondly, it is used as module within
the implementation of the proposed approach for recognizing compound objects. Finally, an extensive per-
formance evaluation compares the modified generalized Hough transform and the shape-based matching with
several existing approaches (Section 4.4).

4.1 Previous Work

Visual object recognition cannot be formulated as a single problem. Too many different paths lead to visual
object recognition, resulting in a diversity of approaches to the problem. In (Ullman 1989), some of these
paths are listed: the recognition of an object can be done either on the basis of its characteristic shape, color
and texture, location relative to other objects, or characteristic motion, for example. These primarily visual
stimulations can be supplemented by other sources, e.g., by the use of prior knowledge, expectations, and
temporal continuity, or other reasoning. In this section, the diversity of object recognition approaches is
reviewed. The focus is set on approaches that are based on shape, color, or texture. These are the most
common and important aspects of visual recognition, and therefore of object recognition.

4.1.1 Classification of Object Recognition Approaches

Although object recognition is quite natural, it is difficult to define the term “object recognition” in a simple,
precise, and uncontroversial manner. Sometimes object recognition means identifying individual specific
objects. For example, in the industrial applications introduced in Chapter 2, individual objects like a specific
IC, the “MVTec” logo, or a specific metal part are to be recognized. In other cases, recognition means
identifying the object as a member of a certain class. For instance, in photogrammetry and remote sensing,
houses, roads, cars, vegetation, or other classes of objects must be recognized in aerial or satellite imagery. A
global frame including a detailed review and evaluation of automatic object extraction from aerial imagery is
given in (Mayer 1998). This kind of recognition requires the existence of object properties that are, on the one
hand, specific enough to distinguish between different classes of objects but are, on the other hand, also general
enough to comprise the object variety within one class. Another frequently arising task in object recognition

is to decide which object or which class of objects is present in the image. This can be seen as a classification
process that is based on a large database of objects or object classes. In (Cohen and Guibas 1997), for
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instance, Chinese characters are recognized in images by comparing them to a database of images comprising
500 possible characters.

In the scope of the present work, object recognition means identifying individual specific objects and not
classes of objects and, furthermore, is not interpreted as a classification process. Nevertheless, even in this
restricted domain, several terms are commonly used in the literature. The terms imply different applications,
but can all be summarized under “object recognition”. In Table 4.1, some examples are listed where the terms
“object” and “recognition” are treated separately: each of the two terms can be replaced by one of various
expressions. For example, “object” is often substituted by “image”, “pattern”, or “target”, while “recognition”

is often substituted by “alignment”, “matching”, or “detection”. These expressions can be combined arbitrarily
within the same row of Table 4.1, resulting in various paraphrases for the term “object recognition”. The table
further discriminates between terms that imply a 2D approach (first row) and terms that are used in both, 2D
and 3D approaches (second row). For example, “image alignment” assumes a 2D approach, while the term
“target recognition” is used in 2D and 3D approaches.

| object | recognition |
D image 'al|gnment / re_glstratlon / _
retrieval / comparison / matching
2D /3D object / pattern / recognition / matching /
template / target / shape localization / detection / alignment

Table 4.1: “Object recognition” — a term including various semantics

Apart from the classification of object recognition approaches that distinguishes between 2D and 3D ap-
proaches, several other classification schemes are possible. In (Ullman 1989), object recognition approaches
are divided intanvariant properties methogd®bject decomposition methqdsmdalignment methodsvhere

also combinations between the methods are allowed. In invariant properties methods, the overall recognition
process is broken down into the extraction of a number of different properties (that are invariant to a particular
kind of transformation), followed by a final decision based on these properties. Object decomposition meth-
ods rely on the decomposition of objects into constituent parts, where in a first stage the parts are recognized
and in a second stage the initial classification of the individual parts is used to recognize the object itself by
including knowledge about the relations between the parts. For example, in the first stage, straight lines are
searched in the image, which can be used in the second stage to recognize rectangles by exploiting knowledge
about the relations between the lines. Finally, alignment methods try to find a particular transformation that
will maximize somesimilarity measure The similarity measure is often callstmilarity metricif it fulfills

the requirements for a metric, i.e., non-negativity, symmetry, and triangle inequality (Bronstein et al. 2001).
The similarity measure describes the similarity between the transformed model and the image. The model
is systematically compared to the image using all degrees of freedom of the chosen class of transformations.
The maxima of the similarity measure are used to decide whether an object is present in the image and to
determine its pose.

Another way to classify object recognition methods in general, and alignment methods in particular, is to use
the criteriafeature spacesearch spagesearch strategyandsimilarity metric(Brown 1992). Feature space
describes the information that is used for object recognition (e.g., gray values, points, lines, elliptic arcs, etc.).
Search space is the class of transformation the object is allowed to undergo in the image. Search strategy
describes how to find the correct transformation within the search space and, finally, similarity metric is used
to evaluate the transformations.

In the following, the criteriorfeature spacds used to classify the reviewed approaches intensity-based
low level feature-basedndhigh level feature-basedn intensity-based approaches, the raw gray values are
used as feature, low level features are, e.g., edge pixels, points, or gray value gradients, and high level features
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comprise lines, polygons, elliptic arcs, or object parts for instance. The approaches that use intensity or low
level features are further subdivided into those that use area-based and non-area-based strategies, respectively.
In area-based strategiesach pixel in the model image and in the search image is involved in the matching
process, whereas imon-area-based strategiesbjects are represented in a more efficient way. The advan-

tage of this classification is that, in general, the algorithm’s complexity and the computational complexity of
the object recognition approach can be directly deduced from its corresponding class. While intensity-based
approaches often use simple algorithms, low and especially high level features often demand a more com-
plex class of object recognition approaches. Furthermore, approaches that involve area-based strategies are
often connected with a high computational complexity, while non-area-based strategies in general facilitate
faster computations. Since in this dissertation it is differentiated between the recognition of rigid objects and
the recognition of compound objects there are two sections about previous approaches. In the following, only
approaches dealing with the recognition of rigid objects will be reviewed, while approaches dealing with com-
pound objects will be reviewed in Chapter 5. Because of the almost unlimited number of different approaches,

in the following subsections only the most important approaches for recognizing rigid objects will be included

in this review.

4.1.1.1 Approaches Using Intensity Information

The simplest class of object recognition methods is based on the raw intensity information of the model
image and the search image. In the case of 8-bit gray scale images, the intensity information is given by
the gray values in the image. These methods are also often chléedi methoddecause they recover the
unknown pose parameters directly from the measurable image quantities at each pixel in the images (Irani and
Anandan 1999). This is in contrast to the feature-based methods, which first extract a set of distinct features
from the images, and then recover and analyze their correspondences.

Alignment methods are probably the most popular methods that are used for object recognition. They can be
used in both intensity-based approaches as well as in feature-based approaches. A comprehensive survey is
given in (Brown 1992). The principle of alignment methods will be explained in the following./Tebe

the model image with area of definitidd” c R? and* the search image with area of definiti@f ¢ R2,
respectively. The alignment method transforni& and D™ to all discrete transformatiors; € 7~ within

a specific transformation class (e.g., translations, rigid, similarity, affine, or perspective transformations)

and computes the similarity measuré(7;) between the transformed model imagés = T;(I™) within

D™= TZ-([)’”) and the search image for each of the discrete transformations. Thus, a high similarity results in
apeak inM. The transformationg; that result in local maxima a¥/(7;) and that exceed a certain threshold

are treated as matches and represent the poses of the object instances in the image. Consequently, the run time
complexity of alignment methods can be formalized®d$§l;|0™), where|T;| denotes the number of discrete
transformations and™ the number of operations performed in the respective similarity measure. What also
follows is that the accuracy of the obtained pose parameters is restricted to the resolution of the sampling
that is applied td/ in order to get the discrete transformatidfis This is insufficient for many applications

(cf. Section 2.2). Unfortunately, the resolution of the sampling cannot be chosen arbitrarily fine because the
finer the chosen resolution the more discrete transformations must be computed and checked for similarity,
which leads to an increasing computation time. There are several more practical methods to refine the pose
parameters. Some of them will be introduced in Section 4.1.2. Furthermore, it is often useful to separate the
translation parZ* of 7 from the remaining transformatioris \ 7* when dealing with alignment methods.

The model image that has been transformed by the remaining transformations is translated according to the
pixel grid of the search image. This avoids unfavorable gray value re-sampling. In order to simplify further
discussions? is assumed to only represent translations. Consequévitignly depends on the translation
parametergz, y) ' € D* that translate the model image within the search image.

Throughout the remainder of this dissertation the area of definition will also be referredaemainor region of interes{ROI)
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Area-Based Strategies.  One of the most frequently applied intensity-based similarity measures in align-
ment methods is theross correlationBrown 1992). It is calculated using the following expression:

CC(z,y) = Z I (u,0)I*(x + u,y +v) . 4.2)
(u,v)eD™

This corresponds to an image convolution/éfvith a non-mirrored convolution magk® and approximately
describes the squared Euclidian gray value distance (Cha 2000). The run time complexity of this kind of
alignment methods i®(n°n™), wheren™ = |D™| andn® = |D?| denote the number of image points
(pixels) in the domain of the model image and the search image, respectiVgly= n*, o™ = n"™). On

the one hand, this similarity measure always returns a high value for bright search image regions, no matter
how similar the images are. On the other hand, it is not invariant to changes in brightness. Therefore, in most
applications its normalized versio& (C'C) is applied: the meap and the standard deviatianof the gray

values in the model image and in the search image, respectively, are incorporated to achieve invariance to
linear changes in brightness, i.8/CC(z,y) = 1= I*(z + u,y +v) = al™(u,v) + b, (a > 0):

1 m —ym IS _ S
n (u,v)eD™ g g (Z’, y)

This zero-mean normalized cross correlation, which corresponds to the well-lkcwvatation coefficient

has the additional advantage that it maps the similarity between images to an interval ¢fl], where 1
denotes a perfect match. It will be simply referred tonasmalized cross correlatiom the following. Other
forms of normalizing the cross correlation can also be found in literature, e.g., (Aschwanden and @bbgenb”
1992, Martin and Crowley 1995), each with its own characteristics.

The computation of the normalized cross correlation is relatively expensive. Because of its convolution char-
acter, the computation of the unnormalized cross correlation can be accelerated by transfGtramay/

into the Fourier domain (e.g., by using the FFT (Fast Fourier Transformation) (Ballard and Brown 1982))
and multiplying the resulting Fourier transforms (Anuta 1970 = F~1{F(I*)F*(I™)}, whereF and

F~1 are the Fourier transform and the inverse Fourier transform, respecti#élgymbolizes the conjugate
complex and accomplishes the reversall®fto get a mirrored filter mask. Unfortunately, the normalized

form of cross correlation does not have a simple and efficient frequency expression and is therefore much
more difficult to compute. Several methods that try to overcome this problem have been developkige.g.,

pass filtering(Lewis 1995, ahne 2002)phase correlationKuglin and Hines 1975, Foroosh et al. 2002), or

a subsequent normalization after the convolution (Lewis 1995). Because of the problems that occur when
dealing with correlation in the frequency domain, the normalized cross correlation is still computed in the
spatial domain in most cases (Gonzalez and Woods 1992). Thus, several methods have been investigated to
speed up the computation in the spatial domain, e.g., by appropriately rearranging (4.2) or bypss#noda
correlation (Radcliffe et al. 1993). However, the major drawback of approaches using the normalized cross
correlation is its limited robustness against occlusions and clutter as well as against non-linear changes in
brightness. Attempts have been made to improve the alignment reliability by utilizing image preprocessing
prior to the execution of the normalized cross correlation (Bacon 1997). Unfortunately, there is no suitable
preprocessing strategy that is appropriate for the general case. Furthermore, the robustness against clutter
cannot be improved by such methods.

Another class of alignment methods usesshm of absolute or squared gray value differen{@own 1992)
or one of its various derivatives. For instance, the sum of absolute gray value diffetgacess computed
as follows: .

SAD(z,y) = — > [I™(w,v) = Pz +uy +v)| . (4.3)

(u,w)eD™

Thus, SA D indicates the average difference of the gray values and therefore represents a measure that maps
the dissimilarity between two images to a positive value that is not limited by an upper boundary (apart from
the maximum gray value that can occur). This complicates making statements about the quality of matches.
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In contrast to the correlation it is a measure of dissimilarity. Nevertheless, it will subsequently be referred
to as similarity measure because simple negation or inversion can be applied to straighten out this dilemma.
Like the normalized cross correlation, the sum of gray value differences is also sensitive to occlusions and
clutter. However, it is faster to compute. Additionally, some speed-ups can be incorporated. For example, in
(Cha 2000), a method that quickly eliminates most transformations from consideration is proposed. Hence,
the computation of the sum of gray value differences can be restricted to the remaining transformations.

In contrast to cross correlation, the sum of gray value differences can be made invariant only either to ad-
ditive changes in brightness (e.§.,| (1" (u,v) — p™) — (I*(x + u,y + v) — ©*)|) or to local multiplicative
changes (e.g.y_ |[I"™(u,v) — u™/u*I*(xz + u,y + v)|). However, linear changes in brightness cannot be
taken into account in a simple way. In (Lai and Fang 1999c), the sum of gray value differences is made robust
against linear changes in brightness by modeling the varying brightness with low-order polynomials. Robust-
ness against a moderate amount of occlusion and clutter is obtained by computing the similarity measure in a
statistically robust manner.

Several experimental results of a comparative study regarding the normalized cross correlation and the sum of
gray value differences can be found in (Aschwanden and Gugdgeab92). Also different modifications and
normalization technigues are included in the study. They analyze the robustness of the similarity measures
by simulating different types of image distortions. It is shown that similarity measures that are based on the
normalized cross correlation are more robust against all types of tested distortions than similarity measures
that are based on gray value differences. In particular, changes in lighting conditions cause problems when
using difference-based measures. An alleviation to this problem is found in the use of more complicated
normalization techniques. However, under certain assumptions the computational requirements to implement
these functions are only slightly better than for the normalized cross correlation.

Non-Area-Based Strategies.  Intensity-based approaches that are combined with non-area-based strate-
gies can lead to less computational effort and higher robustness. The principle is that not all pixels within
the model image and the search image are used to calculate the intensity based similarity measure. Instead,
only a small selected fraction is used. For example, in (Edwards and Murase 1998), the region of overlap
between modeled objects is determined and excluded from the calculation to increase the robustness against
occlusions. However, an expensive iterative processing is needed since the region of overlap is not known
a priori. Furthermore, occlusions that occur because of missing object parts or because of an overlap with
non-modeled objects cannot be taken into account. In (Li et al. 1997), the computation of the cross correlation
is restricted to only a few pixels dependent on the image contrast in these pixels. This not only decreases the
computation time but also increases the robustness against occlusions and clutter. However, applying the FFT
for efficiently computing the correlation is no longer possible.

4.1.1.2 Approaches Using Low Level Features

There are two main motivations for using features in object recognition approaches, which can be directly
concluded from the weak points of most intensity-based approaches. The first motivation arises from the
relatively high sensitivity to occlusions and clutter of most intensity-based approaches. Several features can
be found that enable higher robustness against such variations. The second motivation can be attributed
to the fact that features combined with non-area-based strategies are able to represent an object in a more
compressed, and hence efficient form. Recognition approaches can take advantage of this property in order to
achieve less computational effort.

When regarding alignment methods, a difference in the approaches that use features and approaches that use
intensity information should be mentioned. In feature-based approaches, there are, in general, two ways for
an alignment method to obtain the features of the transformed model image using the discrete transformations
7;. The first possibility is to transform the model image and to calculate the features in the transformed model
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image. In the second possibility, features are only calculated in the untransformed model image and merely the
features themselves are transformed. While the second method is faster, it usually suffers from quantization
effects or unpleasant properties of the feature extractor (e.g, inaccuracy or non-isotropy).

Area-Based Strategies. A first class of feature-based alignment methods concentrates on gray value
statistics. For example, gray value histograms (Ballard and Brown 1982) that are derived from images can
be interpreted as features that are used to compute the similarity between the images, since the raw gray
value information is not directly used within the similarity measure. A similarity measure that is based on the
difference between two histograms is invariant to rotations. Histograms of angular measurements are used in
(Cha and Srihari 2000) to recognize handwritten characters. In (Bhat and Nayar 1998), a similarity measure is
proposed that uses an ordinal measure as feature, where images are represented by their gray value ranks. For
illustration purposes, the gray values of an imégee written sequentially, e.gl,= (5, 10, 50, 40). Then the

gray values are sorted and the image is represented by its rankirgd, 2, 4, 3). This representation can be

used in alignment methods, where, not the gray values themselves, but the rankings of the model image and
the respective part of the search image are compared by applying a rank correlation coefficient (Gideon and
Hollister 1987). Similarity measures that are based on gray value rankings have the advantage that they are
invariant to changes in brightness that do not affect the ranking such as linear changes. Another advantage is
that the ranking is less sensitive to outliers, which leads to a higher robustness against occlusions and clutter
in comparison to the normalized cross correlation or the sum of gray value differences. However, in general,
the mapping of an image to its gray value statistics is not an injective function: for example, when using
histograms, the spatial arrangement of the pixels is lost. This may lead to a large number of false positive
matches, i.e., a high similarity value between obviously dissimilar images, especially in the case of image
clutter.

In (Kaneko et al. 2002), a similarity measure for alignment methods is proposed that is basethorethent

sign correlation In the first step, the two images to be compared are encoded into corresponding binary
images. For this, a procedure is applied that maps local gray value changes into 1 if the gray value of a
neighboring pixel (e.g., the right neighbor) is higher than the gray value of the current pixel, and into O
otherwise. This increment sign is used as the feature to represent the images. In the second step, a binary
correlation coefficient is computed based on the binary representations of both images. It is shown that this
measure is robust against occlusions and changes in brightness. The disadvantage of this method is the high
reduction of information from (in general) 8 bit to 1 bit. This results in an increased number of false positive
matches, especially in the case of small model images, where the discriminative power of the increment sign
correlation is poor. Furthermore, in the case of model images showing regions of approximately constant gray
values, the increment sign is more or less random. This reduces the correlation coefficient even if the images
are similar.

Another class of approaches performs an intensity-based similarity measure not directly on the raw gray values
but on derivatives of the gray values. For example, in (Martin and Crowley 1995), the cross correlation and the
sum of gray value differences are computed on the first derivative magnitude (gradient magnitude) and the sum
of second derivatives (Laplacian). It is shown that the decision whether one should use the raw gray values,
the gradient magnitude, or the Laplacian for applying the cross correlation depends on the requirements of
the task. In the frequency domain, an ideal first derivative grows linearly with increasing frequency, while

a second derivative grows quadratically. Therefore, a correlation of first derivatives has a more precise peak
than a correlation of raw intensity images, but is more sensitive to high frequency noise. A second derivative
doubles the effect. Experiments in (Martin and Crowley 1995) showed that using the gradient magnitude
usually provides more stable results in comparison to the use of raw intensity values or of the Laplacian.
The approaches presented in (Scharstein 1994, Crouzil et al. 1996, Fitsch et al. 2002) extend the principle of
these ideas by using the gradient direction as feature. For example, in (Fitsch et al. 2002), angles between
gradient directions are used as similarity measure. This results in invariance to changes in brightness, since,
the gradient directions are unaffected by changing brightness. It also shows robustness against occlusions and
clutter. In this approach, however, the object representation by the chosen feature is not very efficient since
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for each pixel in the model image the orientation is computed and used in the similarity measure. Thus, the
number of features is equal to the number of pixels. Therefore, there is no real improvement regarding the
computation time in comparison to the intensity-based approaches.

Non-Area-Based Strategies. = The number of features that are involved in the matching process of non-
area-based strategies is less than the number of pixels. Several classes of feature-based object recognition
methods that are reviewed in this section use the object's edges as geometric feature, which will also be
referred to as the objeshapein the following discussions. A review of edge extraction algorithms is not
given here. Instead, the reader should refer to standard text books (Ballard and Brown 1982, Gonzalez and
Woods 1992, Habacker 1995, dfine 2002). Usually, the edge pixels are defined as pixels in the image
where the magnitude of the gradient is maximum in direction of the gradient. In most cases, edges are
extracted in two steps. At first, the image is convolved using an edge filter that provides the first partial
derivatives of the gray values in row and column direction. An edge filter responds to gray value changes in
the image by taking the neighboring gray values into account, e.gildherts(Gonzalez and Woods 1992),
Sobel(Gonzalez and Woods 19923 anny(Canny 1983, Canny 1986Reriche (Deriche 1987), oLanser

(Lanser and Eckstein 1992) filters. The edge magnitudan be computed from the first partial derivatives
when using a gradient-based edge detection:

) 5

In the second step, a threshold is applied on the edge magnitude, which is a measure of the contrast in the
image. This results in the segmented edge regions of the image.

Other recognition methods use points as geometric features. They can also be extracted from an image in var-
ious ways, e.g., using so-calléaterest operatorsFor a comprehensive overview and evaluation of different
interest operators the interested reader should refer to (Heipke 1995, Schmid et al. 2000).

The first class of non-area-based strategies does not use the shape of the object, but is based on global image
transforms. Both the model image and the search image are transformed into the frequency domain, e.g., using
a wavelet-based transformation (Bronstein et al. 2001, Wang 2001): the original images can be represented
as a linear combination of the respective wavelet functions. By truncating the wavelet coefficients below a
certain magnitude, image data can be sparsely represented. However, a loss of detail must be expected. A
set of such coefficients can be used as feature vector for object recognition. Approaches that use wavelet
techniques can be found in (Jacobs et al. 1995) and (Wang et al. 1995), for example. The major drawback of
these methods is that because of their global nature, it is difficult to compare the model image to only a part of
the search image. Consequently, robustness against occlusions or clutter is hard to achieve when using global
image transforms.

The second class of approaches works on an object as a whole, i.e., on a complete object area or shape.
Therefore, these methods are often called global object methods. The use of geometric moments is a very
popular representative of this class (Teh and Chin 1988). Geometric moments are used in several object
recognition applications as features, e.g., (Liao and Pawlak 1996). By combining moments of different orders,
one can find features that are invariant to rotation, scaling, or other transformations of the objects. Some
examples are area, circularity, eccentricity, compactness, major axis orientation, Euler number (Veltkamp and
Hagedorn 1999). These invariant features can be computed in the model image as well as in the search
image and can be represented in a feature vector. The feature vector of both images can then be used to
compute the similarity between both images using an appropriate distance measure. The main advantage of
object recognition based on moments is that the class of transformatioas be reduced by transformations

that are covered by the invariants of the selected moments themselves. Thus, the computational effort can
be reduced considerably. Unfortunately, the computation of the moments itself is very time consuming in
general. This often annihilates the advantage of the reduced parameter space. A closely related method uses
the principle component analysis, which decomposes the object shape into an ordered set of eigenvectors (also
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called eigenshapes). The eigenvectors of the object in the model image and in the search image can be used to
compute a similarity measure to recognize the object. Finally, in another global object method, the shape of
the object is represented by its contour parameterized by the arc-length (Mokhtarian et al. 1996). The contour
is successively smoothed using a Gaussian kernel. The characteristic behavior of the contour while applying
the smoothing is exploited and used as an object-specific feature. This feature is invariant to orientation and
moderate scale changes of the object and robust to noise. However, an important drawback of all global object
methods is that the complete object to be found in the search image must be clearly segmented, which is in
itself an ill-posed problem. Consequently, most of these methods fail in the case of occlusions and clutter.

Another class of approaches performs object recognition using alignment methods. The most elementary
similarity measure that can be applied to alignment methods based on image edges is binary correlation.
Here, the intersection of edge pixels in the transformed model image and the search image is a measure
of similarity. The advantage of a simple computation is overshadowed by a high sensitivity to small edge
displacements. l.e., a high similarity measure is only obtained if the edges of model and search image are
almost perfectly identical. A method that relaxes this stringent requirement, and hence is less sensitive to small
edge displacements, is presented in (Borgefors 1988). The algorithm matches points in the transformed model
image and the search image by minimizing a generalized distance between them. Although the algorithm is
designed to cope with arbitrary binary images, in most cases edges are used as features. The result of the
edge extraction are two sets of poiR$' > pi"*,i = 1,...,n™ andP*® 3 pj,j = 1,...,n" representing the
edge pixels in the transformed model image@el edggsand the search imagedarch edggsrespectively,
wheren™ andn?® are the number of edge pixels in the corresponding images. The average distance between
the two sets of pixel®™ andP? is then used as similarity measure to find the pose of the object in the image.
Unfortunately, the distance computation between two point sets is computationally expensive. Therefore, in
(Borgefors 1988) a more efficient solution is applied that exploits the distance transfannme(2002) for the
matching: in the search image, each non-edge pixel is assigned a value that is a measure of the distance to the
nearest edge pixel. The edge pixels have a value of zero. Fast algorithms using iterative local operations are
available for computing the distance transform (Soille 1999). Since the true Euclidean distance is expensive
to compute, it is approximated by using integer values (Danielsson 1980, Borgefors 1984). Assuming that the
horizontal and vertical distance of neighboring pixels @nd the diagonal distancedg, then integer values
for d andd are chosen appropriately in order to approximate the Euclidean distancé? &4 v/2. Well
known combinations are, for instancé,= 1, d* = 2 (city block distance)d = 1, d = 1 (chess board
distance), and = 3, d% = 4 (chamfer distance). To compute the average distance betw&amndP*, the
edge pixelsP™ of the transformed model image are superimposed on the distance-transformed search image
and the distance values of the pixels in the distance image that areAit lare added. In (Borgefors 1988),
the distance measur@ between two sets of points is computed using the chamfer distance and the root mean
square average:

1 &,
el vy, (4.5)

=1

wherev; = minpseps |p;* — pjll are the distance values hit by the model edges,|fantis the underlying
norm of the chosen distance metric. To compensate the unit distance of 3 in the chamfer distance, the average
is divided by 3. For speed reasons, the implementation of (Borgefors 1988) uses a hierarchical structure by
applying image pyramids. The principle of image pyramids will be explained in Section 4.1.2. There are
some major drawbacks, which are inherently connected with this similarity measure. It is not a symmetric
measure. l.e., a different similarity value is obtained depending on which point set is used to compute the
distance transform and which point set is superimposed on the distance-transformed image. If the distance
transform is computed on the search image, then the distance measure is not robust against partial occlusions.
The reason for this is that some missing edge pixels in the search image cause the corresponding edge pixels
of the model to get a high distance value. This increases the root mean square average in a non-proportional
way. Additionally, the distance measure is not sensitive to even severe clutter, which would be desirable.
E.g., if all pixels in the search image would represent edge pixels, then the distances of all model edge pixels
would be zero. Assume now that the distance transform is computed on the model image. Then, on the one

B(vaps) -
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hand, the distance measure is not robust against moderate clutter. On the other hand, it is not sensitive to even
severe occlusions, which would also be desirable when considering the case that no edge pixels are present
in the search image. Concluding, a good distance measure (similarity measure) should be, on the one hand,
sensitive to occlusions and clutter, i.e., the distance measure (similarity measure) should increase (decrease)
when occlusions and clutter increases. On the other hand, it should be robust against occlusion and clutter,
i.e., the distance measure (similarity measure) should not increase (decrease) in a hon-proportional way. The
Hausdorff distanceoroposed in (Huttenlocher et al. 1993) and (Rucklidge 1997) tries to remedy the above
mentioned shortcomings. In (Huttenlocher et al. 1993) the Hausdorff disténseefined as

H(P™,P?%) = max(h(P™,P*%),h(P*,P™)) , (4.6)

where
m S\ . m S

h(P™,P?) = P B, lpi" — pjll (4.7)
andminpieps |pi" — pjll again can be efficiently obtained by computing the distance transforRr ofthe
functionh(P™, P?) is called thedirectedHausdorff distance fror®™ to P*. It identifies the poinp]* € P™
that is farthest from any point d?° and measures the distance frgifi to its nearest neighbor i®°. By
computing the directed Hausdorff distance in both directions and taking the maximum of both, the Hausdorff
distance is a symmetric measure. Furthermore, it is sensitive to both occlusions and clutter in the search image
because one of both directed Hausdorff distances is affected and the maximum of both is taken. However, since
the maximum of all edge distances is taken in (4.7) it still shows no robustness against occlusions and clutter.
Therefore, in (Rucklidge 1997) thpartial directed Hausdorff distance is proposed:

H(P™PY) = fth min [[p}" —pjll . (4.8)
p;”E'Pm p‘;GPs J

where fth, . , g(x) denotes thef-th quantile value ofj(x) over the sett, for values off between zero and

one. Hencef denotes the fraction of points that are used to compute the partial directed Hausdorff distance.
For example, the 1-th quantile value is the maximum and the 1/2-th quantile value is the median. Thus, when
f = 1, the partial directed Hausdorff distance corresponds to the unmodified directed Hausdorff distance.
Consequently, the partial undirected Hausdorff distance is defined as

HIPIR(P™, P*) = max(h/F (P™, P*), bR (P*, P™)) . (4.9)

Here, fr and fr are theforward fractionandreverse fraction respectively, and define the fractions for the
evaluation of the directed distances. This measure is robust againgt 100-)% occlusions and 14Q —
fr)% clutter in the image.

The Hausdorff distance has undergone several further improvements and extensions, including, for example,
sophisticated search strategies, computational shortcuts, and enhanced robustness (Huttenlocher et al. 1993,
Olson and Huttenlocher 1996, Paumard 1997, Rucklidge 1997, Huttenlocher et al. 1999, Kwon et al. 2001,
Sim and Park 2001). To enhance the robustness against clutter, attempts have been made to also include
the angle difference between the model edges and the search edges into the Hausdorff distance (Olson and
Huttenlocher 1995, Olson and Huttenlocher 1996, Olson and Huttenlocher 1997, Sim and Park 2001). Unfor-
tunately, the computation is based on several distance transforms, and hence is too computationally expensive
for real-time object recognition.

Another class of feature-based object recognition methods are summarized under thetiegischemes

One of the most important representatives of this clapsse clusteringalso known as thgeneralized Hough
transform(GHT) (Ballard 1981), which uses the edge position and direction as features. Its principle is based
on the well-knownHough transform(Hough 1962), which is a voting scheme to detect analytical curves

in images. Comprehensive surveys of different Hough transform techniques are given in (lllingworth and
Kittler 1988) and (Leavers 1993). Because an analytical description of objects is not always available, or
not even possible, the conventional Hough transform is only of limited use for object recognition. Therefore,
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Ballard (1981) generalizes the Hough transform to detect arbitrary shapes. Here, the parameters that describe
the analytical curve in the classical Hough transform are replaced by parameters that define the class of allowed
transformationg . By taking the edge direction into account, not only the number of false positives is reduced,
but also a speed-up is obtained. Strictly speaking, the gradient direction is computed instead of the (tangential)
edge direction. Let;" andd; be the associated gradient directions at the model edgepdiand the search

edges poinp?, respectively. Similar to the edge magnitude (4.4) the gradient direction of the edge can be
computed, for example, from the partial derivatives obtained from an arbitrary gradient-based edge filter:

Ol(z,y)/dy
Ol (z,y)/0x

To perform the GHT, in the offline phase a look-up talifetdble) is computed by using information about
the edge positions and the corresponding gradient directions in the model image:tdlble is generated as
follows: At first, an arbitrary reference poiat™, e.g., the centroid of all model edge points, is chosen. Then
the displacement vectors; = o™ — p;* are calculated for all edge poing§®,: = 1,...,n". Finally, r; is

stored as a function df” in the R-table. Informally speaking, thB-table contains the position of all edge
points in the model image with respect to a reference point sorted by their corresponding gradient direction.

6 = arctan (4.10)

For the online phase a two dimensional accumulator adrés/set up over the domain of translations. Thus,

A represents the sampled parameter spacg.olin general, each cell of this array corresponds to a certain
pixel position of the reference point’ in the search image. For each edge ppgin the search image the
displacement vectors; that are stored under the corresponding gradient diregfibr- 67 are selected from
theR-table. For the selected vectors, the cpgaL r; in A receive avote, i.e., they are incremented by 1. Thus,

at each edge pixel in the search image all possible candidates for the reference point are calculated. This is
repeated for all edge pixels in the search image. Finally, each célhis a value that specifies the likelihood

that the reference point is located in the cell. Thus, local maxin¥thmat exceed a certain threshold represent
object instances found in the search image.

The advantage of the GHT is the high robustness against occlusions, clutter, and against changes in brightness
of an arbitrary type. The GHT is more efficient in comparison to conventional alignment methods because it
does not explicitly compute all translations of the model image to test the similarity. In contrast, it restricts the
search to the relevant information in the search image, i.e., the edge information. This is achieved by using
the relative position of the model edges with respect to the reference point (i.e., the displacement vectors) as
translation invariant feature. Thus, the transformation cfas$ the alignment method can be reduced by the
sub-class of translations. For example, if the class of rigid transformations is chosen then the model image
needs to be only rotated to all possible object orientations. Nevertheless, in the conventional form the GHT
requires large amounts of memory for the accumulator array and long computation times to recognize the
object if more general transformation classes than translations are considered.

Many algorithms have been suggested to reduce the computational load associated with the GHT. Davis
(1982) proposes a hierarchical Hough transform in which sub-patterns, i.e., simple geometric objects, such
as line segments, instead of edge points are used as basic units. In a similar way, a local classification of the
instances of detected contours is performed in (Cantoni and Carrioli 1987). The implementations of these
approaches are complicated since local classifications of sub-patterns are required. It is also difficult to find
the desired sub-patterns in a search image accurately, especially in the presence of noise. In (Ballard and
Sabbah 1983), a two-level approach is proposed that takes similarity transformations into account, in which
the factors of scaling and rotation are estimated first from the lengths and directions of the line segments
in the search image before the GHT is applied. However, accurate extraction of line segment data from
the image is a difficult task. A fast GHT is described in (Jeng and Tsai 1990), where the basic GHT is
performed on a sub-sampled version of the original image and a subsequent inverse GHT operation is used
to finally determine the pose in the original image. In this approach the edge direction is ignored during the
inverse GHT. Thus the robustness against clutter is reduced. The method proposed in (Thomas 1992) uses
displacement vectors relative to the gradient direction to achieve orientation invariance. Hence, besides the
invariance of the conventional GHT to translations, invariance to rigid motion is obtained because one more
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degree of freedom withiff is eliminated. This method is extended to scale invariance in (Kassim et al. 1999)
without adding an extra dimension in parameter space. This is obtained by incrementing a line of cells in
the accumulator array that correspond to a range of defined scales instead of incrementing a single cell. In
(Lo and Tsai 1997), even a perspective transformation invariant GHT is proposed using only a 2D parameter
space. However, the solution is connected with long computation times for the recognition of perspectively
distorted planar objects. This prohibits a use for real-time applications. Furthermore, when using one of these
methods, which are based on the projection of the parameter space to fewer dimensions, information about
the projected dimensions, e.g., orientation and scale of the object, is lost and must be reconstructed using a
subsequent computation step. In (Ma and Chen 1988), analytical features that consist of local curvature and
slope are used to reduce the 4D parameter space of similarity transformations to two 2D parameter spaces.
This approach reduces the computational complexity but also has some limitations. The memory requirement
is as high as in the case of the conventional GHT, the accuracy of the curvature estimator and the gradient
operator can adversely affect the performance, additional computations in the image space are required, and
the algorithm fails for shapes that are composed mainly of straight lines (i.e., zero curvature).

Another voting scheme that is also often appliedy@metric hashingWolfson 1990, Cohen and Guibas
1997). Here, the object is represented as a set of geometric features, such as edges or points, and their geo-
metric relations are encoded using minimal sets of such features under the allowed transformation class. The
geometric hashing method described in (Wolfson 1990) is illustrated for a 2D object using affine transfor-
mation as transformation class. The object is described by interest points, which are invariant under affine
transformation, e.g., corners, points of sharp concavities and convexities, or points of inflection. Thus, two
sets of interest points are obtained, one in the (untransformed) model imagel(pointy and one in the

search imagesgarch points In the offline phase, a model description is constructed from the model points

by choosing any triplet of non-collinear pointgg, e10, andeg;. The point triplet defines an affine basis, into
which all other model points can be transformed by representing each modeppaasta linear combination

of the affine basis:

p;" = a;(e1o — epo) + Bi(eor — eoo) + €no - (4.11)

The obtained coordinate pdit;, 3;) is invariant under affine transformations. Tfie 3)-plane is quantized

into a two-dimensional hash-table and the chosen point triplet is recorded in all cells of the table that are
associated witlio;, 3;). To achieve robustness against occlusions, the calculation must be repeated for several
different affine basis triplets while using the same hash-table. In the online phase, an arbitrary triplet of
non-collinear search pointe, €/, €p;) IS chosen and used to express the other search points as linear
combination of this affine basis. Thus, for each search paira coordinate paird(;, 3;) is obtained. Each

triplet (eqo, e10, eo1) in the cell of the hash-table that is associated With, ;) receives a vote. The affine
transformation that maps the triplétg,, €70, €p;) to the triplet(ego, e10, €o1) that received the most votes

is assumed to be the transformation between the model points and the search points. The advantage of such
methods is that several different objects can be searched simultaneously without affecting the computation
time of the online phase. However, in the case of clutter there is a high probability for choosing a point triplet

in the search image that is not represented in the model image. Thus, to achieve a higher robustness, also in
the online phase several point triplet must be selected subsequently. This increases the computational effort.

Another approach that is closely related to geometric hashing but is not a real voting scheme is described in
(Hartley and Zisserman 2000). It is based on a robust estimator RANSAC (RANdom SAmple Consensus).
Continuing the example of affine transformations, a sample point triplet is selected randomly in the model
image and in the search image and the affine transformation is computed between these two triplets. The
support for this candidate transformation is measured by the number of points in the search image that lie
within some distance threshold to the transformed model points. This random selection is repeated a number
of times and the transformation with most support is deemed the searched transformation between the model
and the search points. Hartley and Zisserman (2000) showed that RANSAC can cope with a high rate of
outliers, e.g., clutter in the search image, even for a relatively small number of randomly selected samples.
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4.1.1.3 Approaches Using High Level Features

A prominent class of object recognition methods represents an object not only by isolated features but also
takes the relations between the features into account. The relations between features can be seen as self-
contained high level features. In (Li 1999), for example, invariants under a certain class of transformations
serve as features and relations. The approach further distinguishes between invariants of order one, (represent-
ing a single feature, i.e., an invariant property or invariant unary relation), invariants of order two (representing
relations between two features, i.e., an invariant binary relation), invariants of order three (representing rela-
tions between three features, i.e., an invariant ternary relation), and so on. For each class of transformations,
invariant relations of different order can be found. Under rigid motion, the curvature (e.g., of a curve or a
surface) is an invariant unary relation, whereas the distance between two points is an invariant binary relation.
Under similarity transformations, the length ratio between two lines or the angle between two lines are pre-
served and are therefore invariant binary relations, whereas the three angles in a triangle constitute an invariant
ternary relation. The cross-ratio for four points on a line is an invariant quaternary relation that is preserved
under perspective transformation, and so on. This information can be represented in a graph, where the nodes
represent the unary relations and the edges between the nodes represent the relations of higher order. Thus, the
object recognition problem is transformed into the problem of determining the similarity of graphs, which is
also known agraph matchingIn (Bunke 2000), it is shown that graphs are a versatile and flexible represen-
tation formalism suitable for a wide range of object recognition tasks. Unfortunately, the complexity of graph
matching is NP-complete, i.e., it cannot be solved in polynomial time. Therefore, several algorithms have
been developed that try to minimize the computational effort by finding either optimal solutions, which in the
worst-case take exponential time (Ullmann 1976, Messmer and Bunke 1998), or approximate solutions, which
are not guaranteed to find the optimum solution (Christmas et al. 1995). To give an example application, in
(Kroupnova and Korsten 1997) an algorithm is proposed to recognize electronic components on printed circuit
boards using graph matching, where the nodes in the respective graph represent region attributes (color, shape)
and the edges in the graph represent spatial relations between the regions (adjacent to, surrounds). However,
because graph matching algorithms either are extremely slow or fail to find the optimum solution, they are not
really well suited for a robust real-time object recognition system.

Some of the approaches that use high level features can be interpreted as a natural extension of the approaches
that deal with low level features as introduced in the previous section. Geometric hashing, for instance, can
be extended to cope with higher level features like lines, for example. In (Procter and lllingworth 1997), 3D
objects are recognized using edge-triple features. 3D polyhedral objects can be decomposed into triples of
connected straight edges, which are projected as three straight, connected lines into the image. The two angles
formed by these three consecutive lines are invariant under 2D similarity transformations. Images of the object
are taken from different viewing angles to build the hash table. For each edge-triple the two angles are used
to index the hash table. In the corresponding cell of the hash table the current viewing angle of the model is
stored. In the search image connected line triples are extracted and used to vote for the viewing angles stored
in the associated cell of the hash table. The viewing angle that receives most votes can be used to compute the
transformation of the object in the search image. By using high level features, namely edge-triples, instead
of points, objects can be represented by a smaller number of more meaningful structures. This reduces the
computational effort of the voting process and also the sensitivity to noise. However, the preprocessing, i.e.,
the extraction of the lines, is computationally more expensive than the use of low level features. Furthermore,
the method is restricted to polyhedral or partially polyhedral objects.

To climb the next rung on the ladder of feature hierarchy, in (Vosselman and Tangelder 2000) complete 3D
CAD models are used to describe the object. An approach is designed to recognize parts of industrial instal-
lations like straight pipes, curved pipes, T-junctions, and boxes. CAD models of these parts can be composed
from simpler CAD model primitives like cylinders, boxes, cones, and spheres. The CAD models are projected
into the image using a hidden line algorithm and fitted to the extracted edges in the search image using a
constrained least-squares adjustment, resulting in accurate pose parameters. However, the requirement for the
existence of a CAD model contradicts the requirement for an easy model generation.



4.1. PREVIOUS WORK 41

4.1.2 Methods for Pose Refinement

For many applications it is insufficient to determine the pose of an object with an accuracy that is limited

to the chosen quantization of the transformation class. Therefore, several methods have been developed to
refine the discrete pose parameters of alignment methods in a subsequent step. Often the pose refinement is
restricted to the transformation class of translations. In general, the sampling of translations is done according
to the pixel grid, and hence methods to refine the translation parameters are referredipisalrefinement

methods. In (Tian and Huhns 1986), four different subpixel refinement methods are distinguished: correlation
interpolation, intensity interpolation, differential methods, and phase correlation.

In correlation interpolation the similarity measures at the sampled pixel positions are used to locally fit an

interpolation surface. Often a second-order interpolation function can provide an accurate representation
(Tian and Huhns 1986). In the refinement step the maximum of the surface is analytically computed, yielding

a subpixel precise object position.

Intensity interpolation locally adapts the parameter quantization. If a position accuracy of 0.1 pixel is desired,
then the model image is successively translated by 0.1 pixel steps in the neighborhood of a found match.
Because of the subpixel translation, the gray values of the translated model image must be computed by
re-sampling the original gray values.

The idea behind differential methods can be also interpreted as exploiting the well-kpdieal flow (cf.,
e.g., (dihne 2002)) for the use of object recognition. The optical flow was originally applied in the analysis of
image sequences in order to detect object motion. It is based dmigigness constancy assumption

where Iy and I; are two images taken at timg andt; and (Ax, Ay)T is the displacement vector, which
describes the object movement during the time- ¢ at a location(x, %) ". This equation assumes that the

gray values in imagé; are identical to those ifiy but occur at a different position in the image as it happens
when projecting object movement into the image plane. Transferring this relationship to object recogsition,
corresponds td™ and I, to I°, respectively, and the displacement vector represents the desired pose param-
eters. In order to incorporate changes in brightness, a generalized brightness model is used in (Szeliski and
Coughlan 1997):o(x + Az,y + Ay) = ali(x,y) + b, wherea andb model the global linear change in
brightness. However, this model cannot account for spatially varying brightness variations. To overcome
this restriction, a dynamic model is applied in (Negahdaripour 1998), which describes the pararpetgfs
andb(z,y) as a function of location. This model is, for example, applied in (Lai and Fang 1999a, Lai and
Fang 1999b) for object recognition, using affine transformations as transformation class. This is achieved by
writing the displacement vectdiAz, Ay) " as a function of the affine transformation parameters and substi-
tuting this, together witl(x, y) andb(x, y), into (4.12). The transformation parameters, and hence the object
pose, can then be accurately calculated by using a robust estimation. Good starting values for the parameters
are needed, because there is a non-linear relationship between the observed gray values in both images and
the unknown transformation parameters. This requirement is less problematic when dealing with image se-
guences where the object pose in two consecutive image frames changes only slightly. However, it is of more
importance in object recognition, because in general no such prior information is available. Therefore, optical
flow is an ideal candidate for pose refinement when starting values for the parameters are obtained from any
other pixel precise recognition method.

Phase correlation can be used to detect subpixel shifts with a higher accuracy than it is possible with the
original normalized cross correlation when using correlation interpolation methods. It exploits the fact that

a shift in the spatial domain is transformed in the Fourier domain into linear phase differences (cf., e.g.,
(Stocker 1995)). In (Foroosh et al. 2002), a more sophisticated method is proposed that is based on the idea
that in down-sampled images phase correlation does not concentrate in a single peak but rather in several
coherent peaks mostly adjacent to each other and centered at the (subpixel) object position. The position and
the magnitude of the peaks can then be used to determine the exact object pose.
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Another class of refinement approaches tries to minimize the geometrical distance between the features in the
model and the search image by using robust parameter estimation (Wallack and Manocha 1998). As for the
above described minimization of gray value differences (Lai and Fang 1999c) also here starting parameters are
needed, which can be obtained by a preceding pixel precise recognition method. The advantage of minimizing
the geometrical distance between features is the inherent robustness against changes in brightness. Thus, it is
dispensable to model the changes in brightness as required in approaches that use intensity information, as in
(Szeliski and Coughlan 1997), for example.

4.1.3 General Methods for Speed-Up

Some general improvements that can be used to speed up object recognition approaches and that are not
restricted to a special approach are introduced in the following.

In alignment methods, for example, most similarity measures can be computed using a recursive implemen-
tation when dealing with rectangular model image domdifis which makes the computational complexity
independent of the size of the model image.

Another way to speed up the computation is to introduce stopping criteria (Barnea and Silverman 1972): the
computation of the similarity measure for a certain model image transformation can be immediately stopped
as soon as it is certain that the predefined threshold for the similarity measure cannot be reached for this
transformation. In this way, the computational cost is decreased considerably.

Reducing the number of discrete model image transformations is also often desirable, especially when dealing
with transformation classes that are more general than translations. Therefore, it can be reasonable to combine
similar model transformations into one common representative transformation. The similarity measure is then
only computed for the representative instead of for all transformations separately. The combination of similar
transformed model images can be achieved, e.g., applying the Karhunen-Loeve decompaosition proposed in
(Uenohara and Kanade 1997), or any other principal component analysis.

Furthermore, the search for objects is usually done in a coarse-to-fine manner, e.g., by using image pyramids.
Often objects can be more easily recognized in images that have a very low sampling rate. There are two
main reasons for this (Ballard and Brown 1982). Firstly, the computations are fewer because of the reduced
image size. Secondly, confusing details, which are present in the high resolution version of the image, may
disappear at the reduced resolution. However, to be able to accurately determine the pose of an object, detailed
image information is required, which is only revealed at the higher resolutions. This naturally leads to the use
of image pyramids in object recognition, where the search for objects is started at a low resolution with
small image size, and refined at increasing resolutions until the highest resolution at the original image size
is reached. The basic idea to compute an image pyramid is based on the Nyquist theorem. This theorem
states that the highest frequency that can be represented in a sampled version of a signal is less than one-
half of the sampling rate. Thus, in the original image only frequencies below 1/2 [1/pixel] are represented.
In a first step the original image is smoothed using a low pass filter that eliminates frequencies exceeding
1/4 [1/pixel], e.g., by applying a Gaussian filter kernedidé 2002). In a second step the smoothed image
can be sub-sampled using a sampling interval of 2 pixels, without violating the Nyquist theorem, i.e., without
created aliasing artifacts. These two steps are repeated iteratively, which results in a series of images with an
image area successively reduced to one fourth. This series is c@ladssian PyramidJdhne 2002) and can

be seen as a multi-scale representation of the original image (Lindeberg 1994). As a matter of course, also
other smoothing filters can be applied. Because in real-time object recognition the computation time plays
a decisive role, often the mean filter is used instead of the Gaussian filter because it is less computationally
expensive and serves as a sufficiently accurate approximation to the Gaussian filter. The few artifacts coming
from the deviation of the mean filter from the optimum low-pass filter are accepted for the gain in speed.

In (Tanimoto 1981), some possible techniques are introduced to apply image pyramids to alignment methods.
In general the object is searched in an image pyramid ugitigrsive descenthe search is started in a coarse
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(high) level, and continued in a local area at the next finer (lower) level where the similarity measure in the
coarse level is promising. Depending on the application, the pyramid search strategy can be to obtain either
the first match where a certain threshold for the similarity measure is exceeded, the best match with globally
maximum similarity, or all matches that exceed the threshold. Furthermore, the pyramid search strategy
can make use of standard search techniques like depth-first search, breadth-first search, or forward-pruned
search. Finally, in (Tanimoto 198Hescent policiesnd sensitivity policiesare distinguished. A descent

policy specifies which descendants of a pixel are to be tracked down the pyramid. Since one pixel on a coarse
resolution corresponds to four pixels on the next finer resolution one can track, for example, all four pixels.
However, this would lead to an exploding number of matches to track. Another more efficient possibility
would be to only track the pixel that yields the best match of the four pixels while disregarding the others. To
increase the probability of locating the sought object location correctly, the similarity measure is additionally
computed for pixels that are adjacent to the four directly descending pixels. Sensitivity policies specify the
threshold for the similarity measure at each pyramid level. The threshold can be chosen to be constant for all
levels, adaptive, regarding the similarity of the matches on the previous higher level, or as a function of the
pyramid level. The last strategy requires the balancing of conflicting requirements. On the one hand, it seems
desirable that thresholds increase as the search goes deeper, because it can be expected that objects becom:
sharper and return higher similarity values. On the other hand, when image noise is present, zooming in on
objects reveals high-frequency noise, which lowers similarity values. Thus, the threshold should decrease at
the fine pyramid levels.

4.1.4 Conclusions

It becomes obvious that the power of object recognition approaches that are based on intensity information
lies in their simple and straightforward implementation as well as in their robustness against certain intensity
transformations. Furthermore, no feature correspondence problem arises as in the case of several feature-based
approaches. However, intensity-based approaches are computationally expensive and are not robust against
occlusions or clutter, especially when area-based strategies are involved. In contrast, approaches based on low
level features often combine a higher robustness with efficient computations, especially in the case of non-
area-based strategies. High level features are often not of a general nature but only applicable to a specific
type of object. They often imply complex and computationally expensive algorithms to compute the features

or to solve the correspondence problem. Some object recognition approaches inherently return the pose of
the object with high precision, while other approaches have to be complemented by an additional refinement
method. Furthermore, the often inefficient brute-force computation of several object recognition approaches
can be speeded up by using approach-specific sophisticated short-cuts during the online phase. Additionally,
some general methods for speed-up, like the use of a coarse-to-fine approach, are applicable to most object
recognition approaches.

The GHT as one representative of the class of non-area-based object recognition methods that uses low level
features is particularly efficient because of its inherent translation invariance. Only the edge position and the
edge direction are involved as features, and not higher level features. Therefore, the feature extraction time
should be manageable even for real-time applications. The GHT is also robust against occlusions, clutter,
and changes in brightness up to a certain degree. Furthermore, a low rate of false positives can be expected
from this method because the edge direction is taken into account. Obviously, the GHT as a rigid object
recognition method shows a very high potential to serve as core module within the approach for real-time
recognition of compound objects. Therefore, in the following section the GHT will be analyzed in more detalil
and several novel maodifications will be proposed to enhance its performance. In the subsequent section the
shape-based matching, which was excluded from the review in this section because of its special role within
this dissertation, will be introduced. To assess the performance of the modified generalized Hough transform
and of the shape-based matching, their performances will be evaluated and compared to the performances of
several other approaches in the last section of this chapter. For this, three of the reviewed standard approaches
are selected. In spite of some known drawbacks of these approaches, it is highly desirable to include them in
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the evaluation because they are widespread methods and used in the majority of industrial object recognition
applications. By this, a common denominator is created that facilitates the comparability of the presented

evaluation with other evaluations that also include one of the three approaches. Additionally, three commercial
high-end recognition tools will be evaluated. They have not been included in the review since no detailed

information about their principle is available. Nevertheless, their performance helps to emphasize the high
potential of the new approaches.

4.2 Modified Generalized Hough Transform

The principle of the GHT as well as some inherent advantages have already been addressed in Section 4.1.1.2.
However, the discussion has been done on a very coarse level of detail. On the one hand, this level of detall
should be sufficient to understand the general principle and to compare the GHT to other object recognition
approaches. On the other hand, it is not detailed enough to enable the reader to obtain a comprehensive im-
pression of the GHT. However, a comprehensive impression is essential to understand the modifications that
have been applied within the scope of this dissertation in order to improve the GHT. The goal of the mod-
ifications is to make the GHT fulfill the requirements concerning the recognition of rigid objects introduced

in Section 2.2. Therefore, in the following the principle of the GHT is explained in more detail. Further-
more, the inherent advantages and drawbacks of the GHT are elaborated and used as basis for the proposed
modifications. Some modifications are based on the ideas of the previously introduced methods concerning
pose refinement (cf. Section 4.1.2) and speed-up (cf. Section 4.1.3). These ideas are picked up and are further
extended.

4.2.1 Generalized Hough Transform
4.2.1.1 Principle

The conventional Hough transform (HT) is a standard method to efficiently detect analytical curves (e.g.,
lines, circles, ellipses) in images. Although the GHT is built on the idea of the HT, they both are independent
methods. Therefore, in this dissertation only the idea of the HT and its relations to the GHT are introduced. For
further details, the interested reader should refer to (Hough 1962) or to standard text books like (Ballard and
Brown 1982, ahne 2002).

To introduce the HT, the problem of detecting straight lines in images is considered. A straight line can be
described by the points:, y) " that fulfill

r=x-cosp+y-sing . (4.13)

Thus, the line is represented by its distance to the origand its orientationy (see Figure 4.1(a)). Fig-

ure 4.1(b) shows an image after edge segmentation in which lines should be detected. Each edge pixel in
the (z, y) image space describes a sinusoidal curve inthg) parameter space, which is also referred to as
Hough spacen the literature. This can be seen from (4.13) by treatirendy as fixed and letting and ¢

vary. Thus, the corresponding sinusoidal curve in the parameter space represents all lines in image space that
meet in the same image poifit,y) ". In Figure 4.1(c) the sinusoidal curves of the two example edge pixels
shown in Figure 4.1(b) are displayed. All image points on the same line intersect at the same point in the
parameter space. This relation between image space and parameter space is exploited in the HT. For this, the
parameter space is divided into rectangular cells and represented by an accumulator array. In the first stage,
each edge pixel is transformed into the Hough space and the corresponding cells are incremented. The second
stage is an exhaustive search for maxima in the accumulator array. The maxima represent the parameters of
the straight lines in the image. Figure 4.1(d) shows the resulting accumulator array, where higher values of the
cells are visualized by brighter gray values. The maximum represents the found straight line. The extension of
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Figure 4.1: Example that illustrates the detection of straight lines using the HT. Lines are parameterized using a polar
coordinate representation (a). The edge pixels of the segmented image (b) are transformed into the Hough space (c).
The corresponding cells in an accumulator array are incremented and the maximum is extracted (d).

this technigue to detect curves other than straight lines is straightforward. By using the gradient direction as
additional information fewer cells need to be incremented, which results in faster computations (Ballard and
Brown 1982). For example, when detecting straight lines, points in image space can be transformed to points
in parameter space. The main advantages of the HT are that it is relatively unaffected by gaps in the curves
and by noise (Ballard and Brown 1982).

In contrast to the HT, the GHT is not restricted to analytical curves. The parameters that describe an analytical
curve in the HT correspond to the pose parameters of the object in the GHT. In the offline phase of the GHT,
the R-table is built from a model image that shows the object to be recognized. Thus, in the special case of
the GHT theR-table represents the model that will be later used to recognize the object in the search image
during the online phase. In the following, a simple example will illustrate the principle of the GHT. In the
example, the transformation class is restricted to translations to simplify the explanations. In Figure 4.2(a) a
model image is given, in which the object is defined by a ROI, which in this example is the inner part of the
black rectangle. In a preprocessing step of the offline phase, edge filtering is performed on the model image,
resulting in the edge magnitude and gradient direction. By applying a threshold on the edge magnitude, the
model edges (pixels or points) are obtained, which are shown in Figure 4.2(b). Additionally, the gradient
direction is visualized by using different gray values. This is all the information that is needed to compute the

R-table.
o Rmll T
(a) Model image and ROI (b) Model edges (c) Search image (d) Search edges

Figure 4.2: In the offline phase, based on a model image (a) edges are extracted and their gradient directions are
computed (b). For visualization purposes the gradient direction is encoded with different gray values. In the online phase,
also for the search image (c) edges and the corresponding gradient directions are computed (d).

The principle is illustrated in Figure 4.3. At first, an arbitrary reference paiht= (o}’, oZl)T is chosen. In
general,0™ is selected to be the centroid of all model edge points,é’8.= 1/n™ 3 p!". For each model
edge point the displacement vector

ri=0"—p", VYi=1,...,n" (4.14)

is calculated. The displacement vectors are then stored R-thble as a function df”, wheref;” denotes the
gradient direction at the model edge paqifit. For this purpose, the range of possible gradient directions must
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be quantized using quantization intervals of sixé. In general, the gradients occur in arbitrary direction,
and hence the range of possible gradient directions corresponds to the intgf/aB60°[. Each rowk of
the R-table is then assigned one quantization inte@glk = 0,...,n’ — 1, leading to an overall number of

n? = g—’g rows. Finally, the displacement vectey of the model edge poing;” is recorded in the row of the

R-table that contains the associated gradient directjon

The exampleR-table in Figure 4.4 is built by using four selected model edge points. Here, the quantization
interval for the gradient directions was setA&® = 60°. Since the gradient directions at the two poip$s
andp3’ are identical, both associated displacement vectors are recorded in the same row whhiakitee

Y
“ G & [ n ]
0| O, AO[| {ri| 0" € O¢}
1 [ A0,2A0[ | {ri]| 0" € O1}
2 | [2A0,3A0] | {ri| 0" € Oz}
> X
(a) Model edges (b) R-table

Figure 4.3: Information about the model edges (a) is used to build the R-table (b).

BT

0|[ 0° 60]

1|]60,120[ | ro, 73

2 | [120°, 180]

3| [180°,240[ | 74

4 | [240°,300] | 1

5 | [300°, 360°]

b
(a) Four selected example model edge points (b) ExampleR-table withAf = 60°

Figure 4.4: Example that illustrates the offline phase of the GHT. The gradient directions at the four selected example
model edge points are 67" = 280°, 63 = 65°, 65° = 65°, 6, = 200°. The associated displacement vectors r; are
recorded in the appropriate row of the R-table according to their gradient direction.

For the online phase a two dimensional accumulator afrég/set up over the domain of translations, repre-
senting the sampled parameter space or Hough spateifyure 4.5 shows the principle of an accumulator
array for the example search image of Figure 4.2. This is similar to the HT, however, each cell of this array
now corresponds to a certain range of positions of the referenceqgvoiat(o;, o?j)T in the search image. In
general, the size of the cells is adapted to the pixel grid, i.e., each cell represents one pixel. The accumulator
array is initialized by setting the values of all cells to 0. For each edge pixelthe search image the rain

theR-table that corresponds to the gradient directios selected. Each displacement vector that is recorded

v

within the selected row represents the position of one reference point candig¢ate,, oy)T relative top}
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in the search image. Formally, the displacement vectors are adggdrtorder to obtain the reference point
candidates:
0ij=p;+ri, Vi=1,...,n° V{il0f" € O}, k[(0; € Of) . (4.15)

Finally, each cell in the accumulator arraythat is hit by one reference point candidate receives a vote, i.e., its
value is incremented by one. After the voting process, each cdllhas a value that describes the likelihood

that the reference point is located in this cell. Thus, local maximatimat exceed a certain threshold represent
found object instances in the search image. Figure 4.5 shows the principle of the online phase by means of
seven selected search edge points. In Figure 4.5(a) the cells of the accumulator array are overlaid on the
search image of Figure 4.2. For illustration purposes, in this case one cell covers several pixels. For example,
the edge directiord] at pointp] is 65°. In the R-table of Figure 4.4(b) the respective gradient interval is

©1 = [60°,120°[, and hencé: = 1. The two displacement vectorg andr; that are recorded in row = 1

are added to the point positigsi and the two obtained reference point candidates are used to increment the
two corresponding cells. Figure 4.5(b) shows the final accumulator array after the voting process, where the
number of votes are entered in each cell. The cell with maximum number of votes represents the position of
the reference point, and hence the found object instance in the search image.

¢ c

X

(a) Accumulator array and voting process (b) Final votes (empty cells have zero votes)

Figure 4.5: Example that illustrates the online phase of the GHT. The gradient directions at seven selected example
search edge points are 67 = 65°, 65 = 65°, 65 = 200°,0; = 280°, 02 = 65°, fg = 200°, and 65 = 280° (a). According to
the gradient direction the displacement vectors in the respective row of the R-table are added to the point positions, and
the corresponding cells receive a vote (b).

4.2.1.2 Advantages

The GHT shows several inherent advantages already in its original form. In contrast to alignment methods that
use an arbitrary similarity measure, it is not necessary to translate the model image to all possible positions of
the object in the search image. Instead, the translation is regarded implicitly since the model edges are stored
relative to the reference point. This saves significant computation time.

Further savings in computation time are achieved by taking the gradient direction information into account.
Thus, for one edge point in the search image only the model edge points with similar gradient direction instead
of all model edge points are used for incrementing the respective cells. Considering the gradient direction leads
to another important advantage. The robustness against clutter is increased considerably, i.e., the probability
of false positive matches is decreased. This effect is illustrated in Figure 4.6, which shows the accumulator
array after the voting process. In contrast to Figure 4.5, now one cell corresponds to one pixel. The number of
votes in each cell is visualized as height in the 3D plots. Figure 4.6(a) shows the result of the voting process in
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the case that no gradient direction information is taken into account. This can be simulated by creRting an
table that consists of only a single row, i.A§ = 360°. Consequently, for each edge pixel in the search image

all displacement vector are used for voting, independent of their associated gradient direction. Although the
artificially created search image is free of noise and the two additional objects differ from the searched object,
the accumulator array shows noisy regions and some additional (albeit small) peaks. The signal-to-noise-ratio
(SNR), calculated as the peak-signal-to-peak-noise in this case is 3.3. In Figure 4.6(b) the same situation is
applied, however, the gradient direction was quantized using an interval sixé ef 5°. One can see that

the noise in the accumulator array has diminished significantly. The almost doubled SNR of 6.5 confirms the
visual impression. In this example, an acceptable SNR is obtained even if no gradient direction is considered,
and hence the intrinsic peak can be easily distinguished from the noise in the accumulator array. However,
one can imagine the problems when dealing with noisy, highly textured images, which contain additional
objects that are similar to the object to be found. In such cases the gradient direction is an absolutely essential
information.

r 0 [

(a) Neglecting gradient direction (b) Considering gradient direction

Figure 4.6: The accumulator array shows several peaks after the voting process. The signal-to-noise ratio (SNR) can be
significantly increased by considering the gradient direction information. In this example, the SNR almost doubles from
3.3 (a)to 6.5 (b).

Another advantage of the GHT is its high robustness against occlusions. At first glance, one may think that
occlusions in the search image affect the position of the reference point (e.g., the centroid), and hence cause
the voting process to fail. However, this is not the case. In contrast to moment-based approaches, for example,
which require the object as a whole to be present in the image, the GHT is tolerant against a certain degree of
occlusions. Looking at the principle of the GHT again, the reference point in the search image is not computed
as the centroid of all edge points but is the result of the maximum search after the voting process. If some
of the edge pixels in the search image are missing because of partial occlusions, the peak height is merely
reduced in proportion to the fraction of occluded edge pixels. This is a rather intuitive behavior.

Furthermore, the GHT is robust against changes in brightness of an arbitrary type up to a certain degree.
Since the recognition is based on the image edges instead of the raw gray value information, changes in
brightness do not affect the recognition unless the edge magnitude falls below the threshold that is applied
to edge segmentation. The features that are used in the GHT are edge position and gradient direction. Both
features do not change dramatically when the brightness or the contrast in the image changes. However, if the
contrast is too low in some object parts of the search image fewer edges will be segmented. This leads to the
same effect as partial occlusions. Nevertheless, if the contrast is too low in the entire image the GHT fails to
recognize the object, unless the segmentation threshold is set to a lower value.

4.2.1.3 Drawbacks

In this dissertation objects must be found under the transformation class of rigid motion. Unfortunately, the
GHT was originally designed to cope with object translations only. If one wants to recognize objects that may
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appear in an arbitrary orientation the GHT must be extended accordingly: now for each possible orientation
©*® of the object in the search image a sepaRxtable is generated by using a certain orientation gtepto

sample the range of possible orientations. Dependinygiand the orientation range in which the object may
appear, a number d?-tables is generated at discrete orientatipnsr = 0,...,n% — 1, wheren?® denotes

the number of discrete orientations, and hence the numbRitalbles. Finally, eacR-table is labeled with

its associated orientatiop,.. In the online phase;¥ separate 2D accumulator arrays are built, one for each
R-table. All single 2D arrays can be put together into one 3D accumulator array. The first two dimensions
represent the position of the reference peihind the third dimension represents the orientation of the object
©*® in the search image. The voting process is then performed forRtalhle separately, where the votes are
entered in the respective 2D hyperplane of the accumulator array that is associated with theRetaipémt

The position of local maxima in the 3D array that exceed a threshold describe the position and orientation
of found object instances. Obviously, the computational effort in the online phase increases linearly with the
number ofR-tables, and hence with the number of rotation steps.

Thus, one weakness of the GHT algorithm is the — in general — huge parameter space represented by the
3D accumulator arrayl when allowing rigid motion. Assume an image of size 36576, a rotation step

of Ay = 1°, and an object that may appear at an arbitrary orientation. Hence, the number of discerned
orientation steps? is 360. Consequently, the accumulator array would contain886 x 360 = 159- 10°

cells. This involves large amounts of memory to store the accumulator array as well as high computational
costs in the online phase for the initialization of the array and the search for local maxima after the voting
process.

Another crucial part is the large number of voting everit€¢ that have to be performed. The average number
of voting events is
nm
nvote = n“"nsﬁ , (4.16)

wheren? = % again is the number of different gradient direction intervals, and hence the number of rows
in the R-tables. Assuming a non-cluttered search image, i.e., no additional edges are present, afid=thus
n", the effort for incrementing the respective cells in the accumulator array increases quadratically with the
number of model edge pixets™. This behavior hinders real-time performance, especially for large or highly
textured objects.

Additionally, the conventional GHT is sensitive to image noise. Although the edge position is relatively
unaffected by a moderate degree of noise, the gradient direction is much more sensitive. Since the gradient
direction is directly involved as feature within the GHT, image noise also has an impact on the performance
of GHT. Especially, when the size of the gradient direction inter2slss chosen small, the robustness may
significantly decrease.

Finally, the properties of the GHT lead to the fact that the accuracies achieved for the returned pose parameters
depend on the quantization of the transformation class of rigid motion. Thus, in the mentioned example the
accuracy of object position is limited to the pixel size and the accuracy of object orientation is limited to 1
Unfortunately, in practice the quantization cannot be chosen arbitrarily fine because of memory requirements
and computation time. Furthermore, the robustness against clutter would decrease considerably when increas-
ing the resolution of the accumulator array. This is because the peak would be dispersed over an increasing
number of cells in the accumulator array.

In the following, the mentioned problems will be tackled, resulting in a modified Generalized Hough Trans-
form (MGHT) (Ulrich et al. 2001b, Ulrich et al. 2001a): a multi-resolution model and search strategy in
combination with an effective limitation of the search space is introduced in order to increase the efficiency,
and hence meet the real-time requirements. Furthermore, a technique for refining the returned pose parameters
without noticeably decelerating the online phase is presented. In addition, some crucial quantization problems
and their solutions to increase the robustness of the GHT are discussed.
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4.2.2 Computation of the R-tables

First of all, some general comments on the computation oRHtebles for the different object orientations
should be made. Feature extraction is a prerequisite for applying the principle of the GHT for object recog-
nition. In this dissertation the edge magnitude and the gradient direction are computed using the Sobel filter.
This filter represents a good compromise between computation time and accuracy: it can be computed in less
time than, for instance, the Lanser or Canny filters. Its anisotropic response and its worse accuracy can be
balanced by the proposed approach: it will be shown in this section that the effect of the anisotropy can be
reduced considerably by selecting an appropriate method for the computationRtdbkes. The residual
anisotropy and the worse accuracy can be balanced by choosing an adequate quadtizafitre gradient
directions, which will be explained in Section 4.2.5. Both the edge magnifwaded the gradient directiof

are computed from the first partial gray value derivatives amdy direction, which are returned by the Sobel

filter. The edge pixels are segmented by applying a thresisid on the edge magnitude. This threshold

must be set by the user because it is highly correlated with the task of the application and with the type of
object to be recognized. A subsequent non-maximum suppression eliminates the edge pixels that are no local
maxima in the direction of the gradient. For this, the current edge pixel is compared to the two adjacent pixels
in the gradient direction. However, because of the discrete structure of the image, still two pixel wide edges
may occur. Therefore, the number of edge pixels can be further reduced by computing the skeleton based on
a medial axis transform (Ballard and Brown 1982). Thus, by using only the most representative edge pixels
in the R-table the computational effort during the online phase can be kept small.

To allow object rotation, for each object orientatipra separat®-table must be built. In general, this can

be accomplished by following one of four possibilities. The four possibilities arise by combining one of two
methods to build th&-tables with the decision whether tRetables are built within the offline phase or within

the online phase.

The first method to build th&-tables is to compute thB-table for the model image as described before,
yielding a prototypeR-table. TheR-tables of all discrete orientations. are then obtained by applying simple
transformations on the prototypgetable, as proposed in (Ballard 1981). For this, the limits of all gradient
intervals©;, 0 < k < n’ of the prototypeR-table are just incremented by the current rotation aggle
Furthermore, all displacement vectors within the prototigeable are rotated by,.. The second method

to build theR-tables is to rotate the model image itself and generate-table based on each of the rotated
model images. When using the Sobel filter the latter method has a crucial advantage. By deri@ngties

from the rotated model images the error caused by the anisotropy of the Sobel filter can be eliminated since
the anisotropy is the same in the rotated model image and in the search image, and hence the error cancels out.
In contrast, the advantage of the first method is its lower computational effort, since only a “small” number of
displacement vectors must be rotated but not the entire image.

Furthermore, both methods can be applied either in the offline phase or in the online phase leading to four
different combinations. Pre-computing tRetables in the offline phase is more memory-intensive since all
rotatedR-tables must be stored in memory. However, it facilitates a substantially more efficient object recog-
nition during the online phase since no rotations must be performed online. In this dissertatitabies

are derived from the rotated model image in the offline phase. This, on the one hand, optimizes the com-
putation time of the online phase and, on the other hand, eliminates the anisotropy error. Hence, the second
computation method is combined with computing Bitables offline.

Table 4.2 summarizes the four possibilities and additionally points out the respective advantages and draw-
backs. The combination used in this work is emphasized in bold type.

It should be noted that in some applications it might be less important to achieve real-time computation but to
keep the required memory amount as small as possible. Then it would be preferable to compute the required
R-tables online. Furthermore, in such cases it might be desirable to use the first computation method to allow
a reasonable computation time of the online phase even though the anisotropy error must be accepted.
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| ComputingR-tables offline | ComputingR-tables online |

First computation method . :
- o fast offline phase o very fast offline phase

L. Egrr?qpr:gggl m[:;(;tgtype Retable ¢ high memory for model e low memory for model
2. transforming prototypeR-table . very fast online phase . slqw online phase

for all orientations e anisotropy error e anisotropy error
Second computation method e slow offline phase e very fast offline phase
1. rotating model image e high memory for model e low memory for model
2. computingR-tables from rotated|| o very fast online phase o very slow online phase

Images e NO anisotropy error e NO anisotropy error

Table 4.2: Four different possibilities to compute the R-tables when allowing object rotations

4.2.3 Increasing the Efficiency
4.2.3.1 Multi-Resolution Model

To reduce the size of the accumulator array and to speed up the online phase, the original GHT is embedded in
a coarse-to-fine framework using image pyramids as described in Section 4.1.3. This coarse-to-fine approach
affects both the offline phase and the online phase. In the offline phase, it leads to the generation of a multi-

resolution model. The construction of this multi-resolution model will be described below.

At first, an image pyramid of the model image is generated. II’gtbe the model image at pyramid level

I,1 =0,...,n" — 1, wheren! denotes the number of involved pyramid levelg;" represents the model
image /™ at original resolution. For increasing values/dhe resolution, and hence the image dimensions,
are successively halved. To obtain the imdgfeat pyramid level, the imagel;” ; is smoothed using a mean
filter of size 2x 2 in order to meet the Nyquist theorem, and sub-sampled using a sampling interval of 2 pixels,
as described in Section 4.1.3.

When determining the optimum value faf two conflicting objectives must be balanced. On the one hand,

the number of pyramid levels should be chosen as high as possible to obtain a high potential for speeding
up the recognition process. On the other hand, the object on the top pyramid level, which has the lowest
resolution, must still be recognizable. l.e., the object must still exhibit significant characteristics that keep it
distinguishable from other objects in the image. Formally, the number of pyramid levels must be maximized
under the constraint that object characteristics are preserved. To avoid burdening the user with an additional
input parameter and to ensure a high degree of automation, in the following a method that automatically
computes:! will be introduced. Obviously a meaningful description of the object is impossible if the number

of model edge pixels on the current level falls below a certain threshold. This represents the first criterion that
must be fulfilled. Several practical tests have shown that pyramid levels containing less than ten model points
can be discarded.

A minimum number of edge pixels is a necessary but in no way a sufficient requirement. Therefore, a more
sophisticated approach must be applied when evaluating the requirement for preserved object characteristics.
The principle of this second criterion is illustrated in Figure 4.7.

At first, an image pyramid is computed on the model image using the maximum number of levels, i.e., the
top pyramid level is only one pixel wide in at least one dimension. Figure 4.7(a) shows the first four pyramid
levels of the example model image. On all pyramid levels edges are segmented (see Figure 4.7(b)). For each
pyramid level that fulfills the criterion of a minimum number of model edges pixels, the edges are scaled
back to the original resolution and a distance transforahié 2002) is computed on the scaled edges using

the chamfer distance (cf. Section 4.1.1.2) for high accuracy. Figure 4.7(c) shows the scaled edges and the
associated distance transforms, where brighter gray values represent higher distances. Finally, the model
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(a) Pyramid of model image

St

(b) Segmented model edges on each pyramid level

(d) Model edges at original resolution superimposed on the distance transform

Figure 4.7: The number of pyramid levels is computed automatically by measuring the deformations of the model edges
on the respective pyramid levels (D(0) = 0%, D(1) = 1%, D(2) = 3%, D(3) = 9%).

edges at the original resolution are superimposed on the distance-transformed image and the mean distance of
the original model edges to the (scaled) edges at the current level is calculated by summing up the underlying
gray values (see Figure 4.7(d)). Hence, this is a measure of how much the model edges are deformed by the
smoothing that comes with the image pyramid. The average distance is normalized by dividing it by the size
of the object. This takes into account that small objects are already less distinctive and therefore allow only
small deformations while bigger objects can cope with higher deformations without loosing their distinctive
characteristics. The object size is represented by the ragliofsa circle that has the same area as the ellipse

that has the same moments as the model edges at original resolution. Thus, the normalized average distance
is a measure of deformatiafi(/) that describes how much the original shape is degenerated on pyramid level

[. D(l) is computed as:

S ming—y e ([P — AT

D) = 3nMry

(4.17)

9

wherep’y, j = 1,...,n" are the model edge points at pyramid lekell - || is the chamfer distance, and
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Figure 4.8: The number of pyramid levels are calculated for four examples. From the model image (a) edges are ex-
tracted (b). The edges of the highest accepted pyramid level that fulfills the criterion D(l) < 10% (c) and the edges of the
lowest non-accepted level (d) are shown.

A(p]), 1) is the scaling of the model edge points from the current lelekk to the original resolution:
Az, l) =2z . (4.18)

The division by three in (4.17) again compensates the unit length of the chamfer distance. Eifialinust

not exceed a certain threshold for all involved pyramid levels. This threshold is generic and independent from
the object and can be determined empirically. Several experiments involving different types of objects with
various sizes have shown tha{() should not exceed 10% in order to avoid strong deformations.

In order to visualize the theoretical results, four practical examples are presented in Figure 4.8. Figure 4.8(c)
shows the edges of the top pyramid level that has just been accepted by the algorithm. One can see that in
most cases the result of the automatic determination of the number of pyramid levels is very intuitive, except
maybe for the example in the third row, where one might chose the fourth instead of the third level as top
pyramid level. However, the deformation measig}) of 10.4% indicates a narrow decision.

After the pyramid of the model image has been derived, the generation of the multi-resolution model can be
started. While generating the model, one has to distinguish between the topleyeaind the lower levels.

In the online phase, also for the search image an image pyramid is derived by computing the same number of
pyramid levels as for the model image. A breadth-first search is then applied: the recognition process starts at
the top pyramid level of the search image without any prior information about the transformation parameters
o® and ¢° available. Therefore, the conventional GHT is applied to the top pyramid levelto@\¢evel

strategy all cells in A that are local maxima and exceed a certain threshold are storedtel candidates

and used to initialize approximate values on the next lower level. Thus, the coarse values on the top level are
subsequently refined by tracking the match candidates down through the pyramid to the highest resolution of
the original search image. Using the breadth-first strategy, all match candidates are refined at the current level
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before the candidates are tracked to the next lower level. The breadth-first strategy is preferable for various
reasons, most notably because a heuristic for a best-first strategy is hard to define, and because depth-first
search results in higher recognition times if all matches should be found (Steger 2002).

Unfortunately, the GHT in its conventional form is not very well suited for the use of image pyramids because
the prior information cannot be used in a straightforward way, as it is the case when using alignment methods,
for example. This is the reason why only for the top level Rag@ble is built in its conventional form as
described in Section 4.2.2. Whereas on the lower ley€ls, to /5" a modified strategy is employed to
efficiently take advantage of the prior information, i.e., approximate transformation parameters, obtained from
the next higher level. ABbwer levels strategyduring the refinement only the respective best match within a
local neighborhood of the approximate transformation parameters in parameter space is further tracked (see
the description of the descent policy of Section 4.1.3). This strategy combined with the top level strategy
facilitates finding all matches in the image while keeping the computational effort low. The problems of
using image pyramids within the GHT will be discussed in the following section. Additionally, the proposed
solutions will be introduced.

4.2.3.2 Domain Restriction

The use of image pyramids in alignment methods naturally comes along with a significantly increased effi-
ciency of the online phase. This is because the parameter space on the lower levels can be restricted to a local
neighborhood around the approximate transformation parameters. The similarity measure needs then to be
computed only for a small number of object poses specified by this local neighborhood. In contrast, the GHT
only profits from the restriction of the parameter space in one of the three dimensions: the approximate value
for the object’s orientation can be used to apply drRlables that are labeled with an orientation that is close

to the approximate value. However, the two dimensions describing the object’s position cannot be restricted
in this straightforward manner. This is because of the inherent property of the GHT that it eliminates the two
degrees of freedom by the position invariant description of the edge points with respect to the reference point.
Thus, there is no explicit translation of the model image over the search image that could be restricted, which
is the case when using alignment methods. Therefore, a more sophisticated approach must be applied to take
advantage of the approximate pose parameters in all three dimensions.

Figure 4.9 may help to understand the principle that is illustrated in the followings.et (o3, 6;)T ando®

be the approximata priori values of the pose parameters at the current pyramid level, which are obtained from
the upper level for a given match candidate. To refine the parameters in the current level, it is unnecessary
to take the edge pixels in the entire image into account. Ins@adnd° can be used together with the
knowledge about the position of the edge points with respect to the reference point to optimally restrict the
image domain: the approximate position of the edge points that belong to the match candidate can be computed
in the current level. In this way the domain for edge extraction on the current level can be restricted to the
neighborhood of the approximate edge position of all match candidates, where the neighborhood is defined
by the propagated uncertainties of the approximate pose parameters. Thus, the restriction is not directly
applied to the parameter space but to the image space by restricting the image domain. The uncertainty of
the approximate parameter values are expressed by the associated standard de\gi;ati@ggs andogs.

These values can be derived from the corresponding maximum énrpég, anddyp that are to be expected

when tracking the match candidate down one level. The maximum errors of position and orientation are
visualized in Figure 4.9(a) by a gray square and a gray sector, respectively. Assuming an approximately equal
distribution of the tracked parameters within the interval[-e8, +¢], respectively, the standard deviation
(Bronstein et al. 2001) can be computed by

+o0 ) +8 52
oy = / (x — pz)" f(z) dx 26/636 dz 7 (4.19)

— 00
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Figure 4.9: Approximate pose parameters are obtained from the upper pyramid level and can be used to calculate
approximate edge positions (a). The uncertainty of the pose propagates to the edge position (b). The envelope of the
error ellipses thus obtained for all edge points describes a region in which edge points lie with a certain probability (c).

finally leading to
oz o oy - dp
O—O;_ﬁ y 005—% y U@s—ﬁ .
The values for the maximum errors have been derived from several tests. During the tests it turned out that it
is sufficient to sebx anddy to 3 pixels anddp to 3Ap. The approximate position of each model edge pixel in
the search imags; = (#$,4;)" can be obtained by transforming the associated negated displacement vector
according to the approximate pose parameters (see Figure 4.9(a)):

(4.20)

p; =06°— R(@°)r; . (4.21)

Here, r; represents the displacement vectors obtained from the non-rotated model image. The covariance
matrix for the two coordinates @¥; is easily computed by applying the law of error propagation. The corre-
sponding error ellipse (Gotthardt 1968) is obtained from the eigenvectors and eigenvalues of the covariance
matrix (see Figure 4.9(b)). The error ellipse represents the boundary of a confidence region ipwlgsh

with a probability of 39%. A more appropriate probability can be obtained by scaling the axis of the ellipse

by a factor of 3.44 leading to a confidence of £~(34%4/2) — 99.7% (Gotthardt 1968). Finally, the envelope

of all single confidence regions describes the image domain that the edge segmentation can be restricted to for
the current match candidate, where on average only 0.3% of the edge pixels are missed (see Figure 4.9(c)).

Unfortunately, the exact computation of the envelope region, as is was described above, is extremely time
consuming. Furthermore, the assumption of the equal error distribution is not entirely correct. Therefore, it
is advisable and meaningful to simplify the computations. The strategy is illustrated in Figure 4.10. Again
the approximate position of the model edge pixels in the search image is given (see Figure 4.10(a)). The
idea is based on blurring the model edges according to the maximum errors of position and orientation. The
maximum errors in positionz, oy are taken into account by dilating the edges using a structuring element of
size(26x +1) x (26y + 1) (see Figure 4.10(b)). A dilation is a morphological region operation that efficiently
expands the input region using a certain structuring element (Soille 1999). Assumingthdt: = oy

the dilation provides a region that is expandeddhiyp both directions. The resulting dilated region is then
successively rotated in both directions until the two extremes of the maximum error in orientatioare
reached. The final region is obtained by merging all rotated regions (see Figure 4.10(c)). Since the sequence
of the blurring affects the result, the blurring is done a second time by starting with the rotation and dilating
in the second step. The two resulting blurred regions are merged by computing the union of the two regions.

The blurred region can be pre-computed in the offline phase, where for each pyramid level different from
the top level and for each discerned orientation one region is computed. For the top pyramid level no blurred
regions need to be computed because no prior information will be available. In the online phase, the respective
blurred region is selected according to the pyramid level and the approximate object oriegtatiad is
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Figure 4.10: The computation of the blurred region is done in two steps. The model edges (a) are dilated (b) and
successively rotated (c) according to the maximum errors of the approximate pose parameters.

superimposed on the current level of the search image at the positioh &f several candidates are to be
tracked, for each candidate the blurred region is superimposed. Edge extraction is then applied to the union
of all superimposed regions. This increases the efficiency of the online phase dramatically, because not only
the edge extraction is speeded up but also the voting process itself, since fewer edge pixels are involved. In
addition, the size of the accumulator arraycan be narrowed down according to the maximum errors of the

a priori parameters. This decreases the memory amount considerably. For each candidate that has to be refined
in the current level, an accumulator array merely of §2& + 1) x (20y + 1) x (2d¢ + 1) is necessary.

Using the values proposed above, the array now has dimensions Gf ¢ 7 for each candidate instead of

using one single array of size 768576 x 360, for example.

Figure 4.11 illustrates the use of the blurred region during the online phase. In this example, three image
pyramids are used. On the top pyramid level the conventional GHT is performed, which results in two match
candidates. The position and orientation of the two candidates are visualized in Figure 4.11(a) by black
circles and arrows, respectively. By tracing the two candidates down one level, approximate pose parameters
are obtained in level 1. To optimally restrict the image domain, the two corresponding blurred regions are
superimposed based on the approximate poses (see Figure 4.11(b)). On this level the bottom match does not
receive enough votes, and hence is discarded. Thus, on level 0 only one match candidate remains, for which
the blurred region again is used to restrict the image domain accordingly (see Figure 4.11(c)).

(a) Level 2 (top level) (b) Level 1 (c) Level O

Figure 4.11: The blurred region is superimposed at the approximate pose of the match candidates at lower pyramid levels
to restrict the image domain for further processing.

While already in this artificial example the increased efficiency becomes clear, the restriction of the image
domain becomes even more effective when dealing with highly cluttered search images or with objects that
are small in relation to the image size. Furthermore, the use of the blurred region not only speeds up the online
phase but also increases the robustness against clutter on lower pyramid levels. The reason for the increased
robustness is that edges that are not in the neighborhood of the expected object edges are completely ignored.
To avoid that already on the top pyramid level candidate matches are falsely eliminated, the threshold for the
minimum number of votes should be slightly decreased for the top level.
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4.2.3.3 Tiling the Model

A second improvement of the GHT leads to a further increase of efficiency. The principle of the conventional
GHT combined with the multi-resolution approach results in redundant voting events on lower pyramid levels.
This can be avoided by exploiting the prior information once more. The problem is shown in Figure 4.12(a).
Again, the prior information is displayed as the gray square, which represents the maximum error of the
approximate position parameters from the level above. This area will be referred tosgmpthgimate zone

The three edge pixelg;, p5, andp; have identical gradient directions. Thus, if any of those edge pixels is
processed in the online phase of the conventional GHT each of the three associated displacememt; yvectors
r9, andrj is added and the corresponding three cells of the accumulator array receive a vote. Consequently,
it would be impossible to narrow the accumulator array to the approximate zone. One possible solution is
to check during the voting process whether the added displacement vectors fall in the approximate zone or
not. This query and the summation of the vectors would take too much time to ensure real-time performance.
Therefore, the opposite approach is taken: already in the offline phase the information about the rough location
of the edge pixels relative to the reference point is calculated and stored within the model. This is done by
overlaying a grid structure over the model image and splitting the image into tiles. In Figure 4.12(b) the
tiles are displayed as squares. For each tile that is occupied by at least one edge pixel a Re¢phlatis
generated (the squares with bold border in Figure 4.12(b)). The displacementwgisttinen stored in the
associatedR-table. Thus, unnecessary voting steps in the online phase are already avoided in the preliminary
stage of the offline phase. Analogously to the blurred regions, the tiles are computed for all pyramid levels
except for the top pyramid level and for all discrete orientations. Accordingly, the final model that is used for
object recognition consists of a multitude Rftables: on the top pyramid level of the model image for each
guantized orientation orRe-table is built. Whereas, on the lower pyramid levels for each quantized orientation
and for each occupied tile a separBttable is created.

r s - "
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(a) Disregarding prior information (b) Taking prior information into account

Figure 4.12: The GHT in its conventional form cannot take prior information about the transformation parameters into
account. Therefore, many unnecessary voting steps are executed (a). By using a tile structure, unnecessary voting steps
are avoided (b).

In the online phase, for the current edge pixel that is to be processed the associated tile is calculated using
the relative position of the current edge pixel to the approximate position of the reference point. Finally, only

the displacement vectors in tRetable of the respective tile (and with appropriate gradient direction) are used

to calculate the cells that receive a vote. Besides the decreased computational load in the online phase the
tiling further increases the robustness against clutter because unnecessary voting events are suppressed. In the
current example (see Figure 4.2), a speed-up of 78% is achieved when using tiles of Zip@éls. An even

higher gain in efficiency can be expected for objects that show a high number of edge pixels with identical
gradient direction.
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Summarizing the most important points, the conventional GHT is not suited for the use of image pyramids
in a straightforward way. However, by applying a multi-resolution model that includes the domain restriction
with the blurred region and the avoidance of unnecessary voting steps with the tile structure, the advantages
of image pyramids also become accessible to the GHT. The multi-resolution model reduces the memory
requirements in the online phase drastically and facilitates real-time object recognition. Several tests that show
the correctness of the latter statement will be described in the performance evaluation, which is presented in
Section 4.4. Furthermore, another important advantage of the proposed multi-resolution model is the increased
robustness against clutter.

4.2.4 Pose Refinement

In this section, a method for pose refinement that breaks the limits on the achievable accuracy that are induced
by the quantization of the parameter space is described. After the voting process on the lowest pyramid
level, matches that correspond to cells in the accumulator array and that are local maxima exceeding a certain
threshold of votes are obtained. Therefore, the accuracy of the position paranjetady;, is limited to the

cell size used in the accumulator array on the lowest pyramid level, which in general corresponds to the pixel
grid. Analogously, the accuracy of the orientation parametes limited to the step sizé y that is used to

rotate the model image on the lowest pyramid level. The proposed refinement method is based on the idea of
correlation interpolation (Tian and Huhns 1986) that was introduced in Section 4.1.2. However, the proposed
method is not restricted to refine the object position, as it is the case in (Tian and Huhns 1986), but is able
to simultaneously refine position and orientation. Furthermore, not a correlation measure but the votes in the
accumulator array are used for interpolation. To refine the position and orientatidac¢henodel principle
(Haralick and Shapiro 1992) is applied. It states that an image can be thought of as a continuous gray level
intensity surface, where the acquired digital image is a noisy sampling of a distorted version of this surface.
To apply this principle to pose refinement, the 3D parameter space is assumed to be a 3D continuous intensity
surfacef(x,y, ¢), where the intensitieg describe the likelihood that the object is present in the image at
pose(z,y, ). The accumulator array is the sampled versiorfi,ah which the intensities correspond to the
number of votes in the cells. To represent the discrete accumulator array by a continuous function, a second
order polynomial is locally fitted to the accumulator array at the position of the discrete local maximum, which
also defines the origin of the local coordinate system:

f(z,y,0) = ko + kix + koy + ks + kax? + ksxy + kexo + kry? + ksyo + kop? . (4.22)

The coefficientsk, . . . , kg can be determined efficiently using the 3D facet model masks presented in (Steger
1998), where for each coefficient a3 x 3 filter mask is designed. Thus, the votes ina33« 3 neighborhood

of the local maximum ind are used to estimate the ten parameters (see Figure 4.13(a)). The pose refinement
can finally be obtained by analytically computing the maximum of the continuous function (4.22). Fgr this,

is rewritten as:

]{54 %]{55 %kG Z kl
f(xvil/,@) - (.’E7y7 ()0) %k5 k7 %kS Yy + (xvya ()0) kQ +k0 . (423)
ske ks ko ® k3
The maximum is defined as the point where the gradiertwdnishes:
2k4 k‘5 k@ T kl
Vi(,y,0)=| ks 2k ks y |+ | k2 | =0. (4.24)
k@ k‘g 2k9 (%2 k3

Finally, the subpixel precise position of the maximum in the local coordinate system is obtained by solving
(4.24) with respect tdz, y, ¢). This corresponds to the problem of solving & 3 linear equation system:

. Uy ks ke \ [ —ky

Yy = ]C5 2]{;7 k‘g —]{52 . (425)
2 ke ks 2kg —k3



4.2. MODIFIED GENERALIZED HOUGH TRANSFORM (MGHT) 59

The obtained values fd, y, ) should lie in the range df-1, +3] x [ 3, +3] x [~ 3, +3] to be accepted as

a meaningful result. The final refined pose is then obtained by adding the coordinates of the maximum in the
local coordinate system to the discrete pose parameters (see Figure 4.13(b)). The reason for choosing a second
order polynomial is that it represents the shape of the maximum in the accumulator array sufficiently enough.
Furthermore, the existence of a unique extremum, in which one is interested in, is ensured. Because the above
computations are only applied to local maxima in the discrete accumulator array, it is ensured that the fitted
polynomial always exhibits a maximum rather than a minimum. Only the final matches on the lowest pyramid
level need to be refined. This is the reason why the additional computation time for the pose refinement is

almost negligible.

Maximum

of f(x.y.9)

Corrections for
pose refinement

(a) 3x 3 x 3 sub-cube oA (b) Extracted maximum

Figure 4.13: Applying a 3D facet model mask on the 3 x 3 x 3 neighborhood of a local maximum in the discrete parameter
space A (a). The object pose is refined by adding the coordinates of the maximum to the discrete pose parameters (b).

4.2.5 Quantization Effects

When applying the principle of the GHT several problems are caused by the quantization of the parameters in
the accumulator array and of the gradient directions irRi@bles. A similar difficulty occurs when using the

tile structure described in Section 4.2.3.3. In this section, these problems will be analyzed and the respective
solutions will be proposed.

4.25.1 Rotation

Two contrary objectives must be balanced for the determination of the orientation steépsigken rotating

the model image during model creation. On the one hangshould be chosen large to reduce the number of
R-tables, and hence the computational load in the online phase. On the other Hapds i€hosen too large,
objects that appear between two discrete orientation steps may be missed in the online phase. Informally
speaking, the peak height in the parameter space must not drop down considerably if the object appears in
the middle of two sampled orientation steps. The optimum valuéMordepends on the object, especially

on its size. More precisely\p can be increased for decreasing object size. Formalizing the statements, in
the optimum case all displacement vecteyof the model should hit the same cell dfin the online phase,
independent of the object orientation. For this, the positions of the reference point candidatesh are
obtained by adding the displacement vectors, may only vary within the range of one cell. Assuming that one
cell corresponds to one pixel, the maximum allowable distarafes from the center of the cell is 1/2 pixel in

x andy, respectively. The maximum allowable value fop can be written as a function ef(see Figure 4.14):

€

)
,rmax

Ay < 2arcsin 7””% ~ 2 (4.26)
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Object edge at ¢ = ¢,
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Figure 4.14: The orientation step A¢ depends on the distance of the model edge points p}* from the reference point o™.
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Figure 4.15: In (a), the model image, the reference point (white dot), and the extracted model edges (white) are shown.
The optimum orientation step for an object is computed based on the histogram of the displacement vector lengths (b).
For a chosen allowable weakening factor n the associated orientation step can be computed (c).

with
r™® = max ||r . (4.27)
i=1,....nMm
Thus, ™ is the farthest distance of all model edge points to the reference @8intvhich serves as the
fixed point of the rotation.

The drawback of equation (4.26) is that the worst-case of only one isolated model edge point with a high dis-
tance to the reference point is already sufficient to cause a very fine quantization of the orientation. However,
a coarser quantization would only decrease the peak height by one vote if the distance of the remaining edge
pixels is significantly smaller. Because of the resulting large memory amounts and time consuming computa-
tions caused by a very fine quantization, a more tolerant computatip @d required. Here, the distances of

all model edge pixels are taken into account instead of usingréitly as representative for the whole object.

As previously mentioned, i\ is chosen too large, the peak in the corresponding cellwill be weakened
because some of the reference point candidates will miss the cell. By solving (4.26) with resfi&€t eoe

can compute for a given orientation st the maximum allowable distance of the edge points from the
reference point in order not to weaken the peak. Consequently, the weakening,faatobe formalized as

the fraction of displacement vectors that have a length that does not exceed the maximum allowable distance:

wap = Ll = &}

nm
wheres = 0.5. The maximum possible peak hei@it®* that corresponds to the number of model points and
that is achieved when (4.26) is fulfilled, will then be reduced to

(4.28)

L'(Ap) =n(Ap) - T™M (4.29)
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By evaluatingn(Ayp) or, optionally,I'(A¢) for different values of the orientation stelp, a characteristic

curve for the current object is obtained, as shown in Figure 4.15. One possibility to choose an appropriate
value forAy is to specify a minimum value fay or I" that is still tolerable in the online phase. Becayde

a fractional value, and hence is limited to the rangéof], it is more intuitive for the user to specify a value

for n rather than fol". Settingn to 1 means that the same value fhy as when using (4.26) is obtained.
However, the use of (4.28) instead of (4.26) facilitates a more intuitive and flexible calculation of the optimum
orientation step for a specific application.

The proposed computation is either executed for all pyramid levels separately, or as an approximation, only
for the original resolution, wherAy is successively doubled for the next higher pyramid level.

4.2.5.2 Translation

Unfortunately, the height of the peak i also depends on subpixel translations of the object. Under ideal
conditions the peak in the parameter space is equal’tolf the object in the search image is translated by
subpixel values in: andy relative to its position in the model image the peak height decreases because the
votes are dispersed over more than one cell. This effect reaches its maximum at a subpixel translation of
1/2 pixel in each direction, which diminishes the peak to 25% of its original height. Figure 4.16(a) illustrates
this behavior.

Under the assumption that the neighborhood of the peak is rotationally symmetric the peak height can be
made independent of subpixel translations by smoothing the 2D hyperplanes of the accumulator array, i.e.,
¢ = const., by a mean filter of size 2 2. In Figure 4.16(b) the effect is illustrated. Although, in general,

the number of votes per cell is reduced because of the smoothing, the peak height is independent of the
subpixel translation of the object. However, the threshold for the extraction of local maxima must be adapted

accordingly.
subpixel .- subpixel
100 translation ‘ translation
Y —_— 25%125% —
o 25%
25%(25%
2%2 mean filter
(a) Without mean filtering (b) Applying a 2x 2 mean filter

Figure 4.16: Subpixel translations of 1/2 pixel in both directions disperse the original peak (100%) over four adjacent
cells, leading to a diminished peak height of 25% in each of the four cells (a). This effect is eliminated by applying a
2 x 2 mean filter to the votes in the 2D accumulator arrays, which results in peak heights that are independent of subpixel
translations (b).

4.2.5.3 Gradient Direction

The optimum quantization of the gradient direction within fReables depends on various factors. The

size A# of the gradient direction intervals defines the range of gradient directions that are treated as equal
during the voting process. The smaller the interval, the faster the computation, because, on average, fewer
displacement vectors are contained in the same row oRtteble. Hence, fewer voting events must be
performed for a given gradient direction in the search image. However, an interval that is chosen too small
leads to instable results. This problem will be discussed in the following. The discussion is based on the
computation of the maximum gradient direction error that is expected to occur in the search image. From this
error conclusions about the optimum valueX# can be drawn.
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The first point to consider is the error of the gradient directions due to noise in the image. The gradient
directions are computed from the first partial directional derivativesandy direction returned by the Sobel
filter:

ol (z,y)/dy
= _— 4.
f = arctan 9l(x.1)/0z (4.30)
where
1 0 -1
olw,y) _ ) _ L@y | 2 0 -2 (4.31)
ox NS . 0 -1
and
~1 -2 -1
ollz,y) _ L= I@y+| 0 0 o]. (4.32)
Oy N? 1 2 1

N¥ is the normalization factor for the Sobel filter. In the scope of this dissertatidris set to 4, without
any restrictions, in order to obtain intuitive edge magnitudes. The derivative fior example, is explicitly
computed as follows (it is important to note that the filter masks are mirrored during convolution):

1
L = qs(-le-lLy+)+I@+Ly+1)- (4.33)
—2I(x —1,y)+2I(x +1,y) —
The derivative iny is computed accordingly. Now, assume that the gray values are independent from each

other and show a constant standard deviatigrin the image. Then the standard deviationIgfcan be
determined by applying the law of error propagation to (4.33). Finaﬁy,andai are obtained as:

2 12 5

O'%z = O'Iy = WO’[ . (434)

In order to derive the standard deviation of the gradient directjdhe partial derivatives of (4.30) with respect
to I, and, must be computed:

00 I, 0 I,

=y LT 4.35
oI, L>+12° 0, L*>+17 (4.35)

Applying the law of error propagation to (4.30) results in:

90 \? a6 \”
2 2 2
op = <—8LE) o1, + <—8Iy> o1, - (4.36)

By plugging (4.34) and (4.35) into (4.36) and applying some simplification steps, finally, the standard devia-
tion of the gradient direction is obtained:

2V/3
o) = ———F——
NS\ T2 412

It is obvious thatry increases with lower edge magnitudeé= /12 + Iyz). Fortunately, during edge segmen-

tation only pixels with an edge magnitude exceeding the thresh®ld are selected for further processing.
Therefore, an upper boundary feg can be computed (assuming® = 4):

or . (4.37)

3
o9 < 2;{7;%

or . (4.38)
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Figure 4.17: The standard deviation o4 of the gradient direction obtained from the Sobel filter depends on the edge mag-
nitude . The experimentally obtained values show a very good correspondence with the values computed analytically
from (4.38).

The standard deviatiosn; depends on the utilized camera and can be determined experimentally. For this,
several images (e.g., 50) of the same scene under identical exterior circumstances are acquired. For each pixel
the gray value standard deviation can be computed over the collection of images. An empirical value for

can then be obtained by computing the average standard deviation over all pixels. This procedure needs to be
executed only once for a specific camera (assuming a constant integration time) and therefore does not hamper
the applicability of the proposed approach. Off-the-shelf cameras of higher quality show typical vaklags for

in the range of1.5,2]. The practical correctness of the analytically derived valuesfavas experimentally
confirmed. An artificial image showing a gray value edge with a length of 1000 pixels was created. Random
noise with Gaussian distribution was added to the image usiag standard deviation. The gradient direction

was computed using the Sobel filter and the standard deviation of the gradient direction was derived over the
1000 edge pixels. This procedure was repeated 100 times and a mean standard deviation was computed. The
experiment was executed for edge magnitugdesthe range ofl, 70]. Figure 4.17 displays the mean standard
deviations obtained from the experiments for two selected valuesiofdependence on the edge magnitude.
Additionally, the values obtained analytical from (4.38) are plotted. Evidently, theory and practice show a
very good correspondence.

After having derived the standard deviation of the gradient direction, the maximum error induced by noise in
the image can be determined. By assuming an approximately normal distribution of the computed gradient
direction, one can specify the desired percentage of gradient directions that should lie within a certain interval.
For example, if at least 95 percent should fall inside the interval then its boundaries?age + 20y, i.e., the
maximum gradient direction err@f” induced by noise in the image is

£ =20 . (4.39)

Practical experiments have confirmed that assuming a confidence interval of 95 percent was sufficient for all
tested examples.

The second influence that must be taken into account is the inherent absolute accuracy of the Sobel filter,
i.e., the difference between the real partial derivatives and the Sobel response. Since the Sobel filter is an
anisotropic filter, its absolute accuracy depends on the current gradient direction. The anisotropy error is
eliminated to a high degree by rotating the model image instead of the displacement vectors when deriving
the R-tables for the different object orientations, as proposed in Section 4.2.2. However, the anisotropy error

within the range of one orientation stépp still remains. The error of the gradient directies depends on

the frequency in the image and on the actual gradient direction itself, and can be computed with the following
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formula (&hne 2002):

(mf)°
43

eq(f,0) ~ — sindf + O(f4) | (4.40)

where f € ]—1,1[ is the frequency normalized to the maximum frequency that can be sampled (Nyquist
frequency). Therefore, errors with highest magnitude of about 11.8 degrees are obtained. This is the case when
applying the Sobel filter to image structures with frequencies close to the Nyquist frequengy—+.€L., and

with gradient directions of = 7 (z + %), z € 7. Although the cas¢ = 1 cannot occur in practice because

the Sobel filter would return zero edge magnitude, the assumjtion1 is reasonable in order to represent

the asymptotically worst-case scenario. The anisotropy errors are eliminated when calculanghtes in

the proposed way. Thus, if the object appears in the search image in exactly the same orientation from which
anR-table was computed, using a sampled orientatiprthe errors cancel out. In general, objects do not care
about the sampled orientations but appear in arbitrary orientations. Consequently, each sampled orientation
©r must represent a range of object orientatigns— %, or + %]. Therefore, it is of interest, how much

the error of the gradient direction changes within this range of orientations. For this, (4.40) is differentiated
with respect td@. Ignoring higher order terms and assuming the worst-case by s¢ttmd one obtains:

2

ey(0) = % cos40 . (4.41)

Accordingly, the maximum change of the gradient erro%zs obtained at) = 27, z € Z. Assuming an
orientation step ofAy, the maximum change of the anisotropy erférthat may occur within one range of
orientationsy, — %, Or + %] with respect to the reference orientatippis

Ayp 2

£ = — meax(e'g(e)) = A(p;r—4 . (4.42)

The third and most evident influence on the gradient direction directly arises from the orientatiakhystep
itself. Assume that aR-table was generated at the discrete orientationif the object appears at orientation

o £ %‘E in the search image all gradient directions at corresponding edge points also change by the same
valuei% in comparison to the gradient directions that are stored irRtkeble. Therefore, the maximum

error on the gradient direction that is caused by the quantization of the object orientation is given by

_ Ap

Ap
¢ 2

(4.43)

Finally, the resulting maximum erraf of the gradient direction is the sum of all single errors (see Fig-
ure 4.18(a)):

£ = e ehe (4.44)
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Imagine that in the offline phase the displacement veetas stored in rowk of the R-table, and hence the
associated gradient directigff’ is in the interval©,. Furthermore, assume th@t exactly lies at the upper
boundary of the intervab,. Because of the error of the gradient directions, in the online phase the gradient
direction at the corresponding edge point in the search image may chafAgfe+tc in the worst-case and
therefore leave the intervél,. Consequently, in the conventional GHT the displacement vectors of the wrong
row in theR-table are used to increment the cells. In contrast, the correct displacement meatould re-
main unconsidered. Thus, whenever a certain gradient direction occurs in the search image, it is not known
whether it is distorted by an error or not. This means that it is impossible to reliably compute the correct row
of the R-table. The optimum solution to this problem would be to consider all those displacement vectors for
voting where the associated gradient direction at most differsffrom the computed gradient direction in



4.2. MODIFIED GENERALIZED HOUGH TRANSFORM (MGHT) 65

the search image. Unfortunately, this solution would slow down the computation in the online phase consid-
erably because additional comparisons would have to be performed. A more efficient solution is to generate
overlapping gradient direction intervals, as shown in Figure 4.18(b). For a correct computation, the overlap
size must be chosen to ein both directions of the interval. This ensures that in spite of potential errors

in the gradient direction the right displacement vectors are chosen. To realize the overlap, the displacement
vector with gradient directiod;” that is within the intervab;, and hence stored in rovof the R-table, is
additionally stored in neighboring rows of the table. The neighboring rows are chosen so that they completely
cover all possible gradient directions, which are given by the intehal [0 — &, 0" 4 £]. This ensures

that in the online phase the computedable row contains the correct displacement vector with a very high
probability (95%).

(a) Gradient direction error (b) Overlapping intervals

Figure 4.18: The associated gradient directions of the displacement vectors that are stored in interval ©; of the R-table
may be distorted by the maximum error ¢ in the search image and therefore exceed the border of the interval (a). This
can be avoided using overlapping intervals, where the correct overlap is £ in both directions (b).

Once the overlap size has been correctly computed, the intervah8iiself can be chosen arbitrarily without
risking the loss of any displacement vectors in the online phase. However, the computation time of the
online phase directly depends dtf). The smaller the interval size, the faster the computation is. For the
reason of simplifying further considerations, in the following the tile structure will be disregarded without
any restrictions on the generality. Then, the number of voting events that must be performed on average for
one edge pixel in the search image (for one specific object orientation, i.e., for one sRealfie) can be

quantified (cf. (4.16)):
Al 2 A + 2¢
vote m m
Rt =T (1 + 0) =n o . (4.45)

From this, it is clear that the number of voting events, and hence the computation time in the online phase,
increases linearly witth@, reaching its minimum foA# = 0. Unfortunately, the memory requirement for one
R-table increases with decreasidg). Sincen'’!¢ in (4.45) represents the average number of displacement
vectors that are stored in one row of tRetable, and since there a%% rows altogether, the number of
(multiply) stored displacement vecton$ in one singleR-table is

2 2¢
r_ p,vote =27 __ m 1 = . 4.4
nt=n"r=n ( + AH) (4.46)
It is essential to note that” is proportional to the memory that is needed to store Ritable. This means
that there is a trade-off between computation time (4.45) and memory requirement (4.46) when choosing an
appropriate value foAfd. SettingAf = 2¢ is an empirically determined suitable compromise. This means
that each displacement vector is stored twice in dd¢hble.
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Another factor that affects the gradient direction is subpixel translations. Taking the edges as 2D curves in the
image, the magnitude of the gradient direction variation that is caused by subpixel translation mainly depends
on the curvature of the edges. In Figure 4.19 an example of subpixel translationyndttection shows

this effect. Here, the gradients of the corner pixel and the pixel below significantly change because of the
translation. One possible solution for this problem is to introduce only “stable” edge points into the model.
l.e., those pixels are introduced whose gradient directions at most vary in a small range. The stable points can
be found by translating the model image by 1/2 pixel in each direction and comparing the computed gradient
directionsf® with those of the untranslated imagfe The edge pixels with small differences, iJ6%—6!| < ¢,

form the model. This ensures that the errors that are induced by subpixel translations are already covered by
the appropriately chosen overlap size of the gradient direction intervals. All other edge pixels are disregarded
when computing th&-tables. A more pragmatic approach of finding the stable points is to directly threshold
the curvature of the edge pixels. However, a suitable value for the threshold is difficult to find. It should be
noted that if the fraction of edge pixels that are to be eliminated by the above criterion is too high then the
threshold for the maximum differences should be relaxed. This is important in order to be still able to handle
arbitrary objects (especially objects that exhibit high curvature in most edge pixels).

subpixel
edge position translation ~—
. in y direction P
edge pixel N - HN
gradient directions

Figure 4.19: Subpixel translations affect the gradient directions, particularly in regions with high edge curvature.

4.25.4 Tile Structure

A problem similar to the quantization of the gradient directions occurs when using the tile structure described
in Section 4.2.3.3. To simplify further considerations, the size of the tiles should be chosen so that the uncer-
tainty of the approximate position is taken into account. Il.e., the dimension of the tilesiiratigg direction

should be 2x and 2y. Furthermore, it must be ensured that an errencinddy of the approximate position

o does not result in omitting the relevant edge pixels as a consequence of considering the wrong tile. This
problem is illustrated in Figure 4.20(a). In this example, the model consists of three edge pixels that are stored
in tile 3 within the model (for illustration purposes only, the reference point in this example differs from the
centroid). However, in the online phase, the approximate positi@nroéy vary within the range aofx and

oy. Now, assume that the approximate position is not computed at its true location but displacéd dyd

+dy. To compute the respective tile numbers for the voting process, the tile structure is then centered at the
displaced approximate position, leading to the fact that the calculated tile number for the three edge pixels
would now be 5 and 6 instead of 3. However, in these two tiles no displacement vectors are stored, and thus
no voting event would be executed. Consequently, the match candidate would be deleted.

The solution is illustrated in Figure 4.20(b). To avoid omitting relevant tiles (tile 3 in this example), certain
neighboring tiles of the calculated tile must be considered additionally during voting. Since not all of the
neighbors need to be taken into account a look-up table that holds the relevant tiles to be checked is con-
structed. For example, the two edge pixels on the left of Figure 4.20(a) fall into tile 5. It is easy to see that
edge pixels occurring at this position may only belong to tiles 2, 3, 5, or 6. Therefore, these four tiles must
be taken into account during the voting process. The associated tiles can be calculated for each edge pixel in
each tile in the offline phase and are stored together with the tile structure. This look-up table is computed for
all lower pyramid levels. Finally, in the online phase, for each edge pixel on lower pyramid levels the corre-
sponding tiles are investigated by just reading the entry in the look-up table. This facilitates a fast computation
while keeping the memory requirement low.
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(a) Edge pixels changing their tiles (b) Tile number look-up table

Figure 4.20: In (a) the three edge pixels are originally contained in tile 3. Because of the maximum error éx and éy of
the approximate position 6, the edge pixels might move to neighboring tiles. With this, the tiles 5 and 6 are occupied and
should be taken into account during voting. The problem can be solved using overlapping tiles, which are realized by
creating a look-up table, where for each pixel in each tile the tile numbers that must be taken into account during voting
are stored (b).

4.2.6 Implementation Details

To complete the description of the MGHT, some remarks that mainly concern the practical implementation
of the proposed approach will be made. At first, some additional points that have not been explained so far
will be discussed. Afterwards, a short summary of all necessary and possible user interactions provided by
the implementation is given.

The first point to discuss is the threshold for the number of votes that a local maximum must achieve in
the accumulator array in order to be treated as a match candidate. This threshold strongly depends on the
maximum degree of occlusion that may occur in the search image because the number of votes decreases
proportionally to the percentage of object occlusion. Therefore, the user must specify this threshold in order
to balance between computation time and allowable occlusions. If the threshold is set to a low value, then on
the one hand objects that are occluded to a high degree can be recognized, but on the other hand in general
more match candidates must be tracked through the pyramid. The most intuitive way for the user to determine
the threshold value is to specify the rati&#” < [0, 1] to which the object must be visible in the image.

With this, the number of votes can be transformed into a score yahet reflects the visibility of the object.
Unfortunately, because the accumulator array is smoothed after the voting process, the values of the cells
do not represent the number of votes any more. Consequently, the threshold cannot be computed by simply
multiplying the number of model edge pixels (or twice the numbekdf = 2¢) with s™". Therefore, a

method to experimentally specify the peak height in the smoothed accumulator array is applied: already in the
offline phase the object is recognized in the model image and the smoothed peak height is stored within the
model as the reference peak height. In the online phase, the smoothed values of the accumulator array are then
normalized by the reference peak height, yielding the score valldis value can be directly compared to

the user-specified threshodd”. It should be noted thatmay exceed the value of 1 in cases of heavy clutter

in the image since randomly distributed votes that are caused by the clutter may falsely increase the actual
peaks of the match candidates. Furthermore, on higher pyramid levels the score value of the match candidates
may decrease although the object is completely visible. This effect can be attributed to the fact that image
pyramids are not invariant to translations (Lindeberg 1994). Hence, the user-specified ths&éhaohdist be

slightly reduced on higher pyramid levels in order to avoid that matches are missed.

Because a breadth-first strategy is applied, the computation time when searching for several instances simul-
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taneously does not dramatically increase in contrast to searching only for one single instance. Consequently,
a second point that should be remarked concerns the number of matches that should be found during object
recognition. Here, the user can choose between two options. The first option is to return all matches that have
a score exceeding the specified threshdté'. The second option allows the user to introduce additional in-
formation about the maximum numbef*" of objects instances that may appear in the search image. This
information can be used in the breadth-first search to eliminate a high number of match candidates during the
tracking through the pyramid. This results in a high gain of computational efficiency. One way to eliminate
match candidates is to count the number of candidates that exceed the theg€hald the current pyramid

level. If this number is higher than the user-defined maximum number of object instances, extra match candi-
dates with lower score values are excluded from further processing. The score values of the candidates do not
behave in a predictable manner during the tracking through the pyramid. Thus, a candidate with lower score
on a higher pyramid level can turn into a candidate with higher score on a lower pyramid level. For this reason,
a more tolerant heuristic is applied. A match candidate is only eliminated if it additionally fulfills the condi-
tion that its score is significantly lower than the lowest score of non-eliminated match candidates. Finally, on
the lowest pyramid level only the™* pest match candidates that additionally fulfill the requirement for the
minimum score are returned as matches.

The last point to mention is the mutual overlapping of matches. In practice, sometimes one instance of an
object in the search image returns more than one match. For example, when dealing with objects that exhibit
symmetries, several matches are returned at similar positions, but at different orientations. In order to avoid
this behavior, the user can specify a fraction by which two returned matches are allowed to overlap each other
at most. The actual overlap fraction between two matches is approximated by the overlap between the two
smallest enclosing rectangles of the two objects at the pose of the respective matches. If the computed overlap
fraction exceeds the user-specified maximum overlap, the match with lower score value is eliminated.

In the following, all necessary and possible user interactions or parameter settings of the MGHT are summa-
rized.

¢ Input data passed to the offline phase (model generation):

— The model image in which the object is defined by an arbitrary region of interestbe pro-
vided. Usually, the ROI is specified by the user. Another possibility would be to generate the ROI
automatically using suitable segmentation techniques.

— The usemustspecify the threshold for the minimum edge magnitg@i&” that is used for edge
segmentation. As previously mentioned, this value depends on the application and cannot be
determined automatically.

— The camera-specific noisg of the gray values in the imagaustalso be provided in order to
automatically compute the optimum quantization of the gradient direction intervals used in the
R-tables.

— Optionally, the domain of the transformation clasay be restricted by the user, i.e., the range
of possible object orientations can be restricted to a certain interval to avoid unnedesahhy
generations. Thus, the memory requirement of the model and the computational effort in the
online phase is reduced.

— In general, the automatically determined values for the reference ¢g6irthe number of pyramid
levelsn!, the orientation step\y, and the size of the gradient quantization intenasare suit-
able for most applications. Nevertheless, the usayoptionally overwrite these values in order
to receive a higher flexibility.

¢ Input data passed to the online phase (object recognition):

— The search imagaustbe provided, where an arbitrary R®kyrestrict the image domain for edge
extraction. Thus, the user may introduce additional prior knowledge about the object position as



4.2. MODIFIED GENERALIZED HOUGH TRANSFORM (MGHT) 69

well as the object orientation, which can be specified during model generation, to speed up the
recognition.

— The minimum scora™" mustbe provided to specify the minimum peak height for match candi-
dates.

— Also in the search image edge extraction is performed. Therefore, the minimum edge magnitude
canbe optionally specified if it differs from the value set in the online phase. It is important to
note that the automatic computation Af is based ony™™", which was specified in the offline
phase.

— The maximum number of matcheg**** canbe specified in order to speed up the computation.

— The maximum allowable overlap between different matatesehe specified to eliminate multiply
found object instances.

Finally, for each match the object pose and the associated score value is returned. The pose is represented by
the object positior;, oy, and the object orientatiop®, wherey*® is 0 if the orientation of the object in the
search image is identical to its orientation in the model image.

4.2.7 Conclusions

To give an idea of the improvement of the MGHT in comparison to the conventional GHT, the memory
requirement and the computational complexity of both methods are computed for a typical practical example.
For this, a search image size of 6800 pixels, a tile size of % 7 pixels, 3000 model points at the original
resolution, and four image pyramid levels are assumed. The result is summarized in Table 4.3. For the MGHT
the memory requirement of the model increases from 4.3 MB to 30.8 MB in comparison to the conventional
GHT, which is mainly caused by the tile structure. However, in the online phase, the memory requirement
shrinks from 480 MB to 0.5 MB because of the use of image pyramids. Since image pyramids are used and the
computation time is optimized by the proposed approach the computational complexity of the online phase
is reduced considerably: theoretically, the MGHT is about 16.000 times faster than the conventional GHT
in this example. However, in practice the recognition time is reduced from 45.60s to 0.07 s on a 400 MHz
Pentium II, which corresponds to a factor of still 650. The difference to the theoretical value can be explained
by the increased memory access within the MGHT in contrast to the conventional GHT. Nevertheless, a
tremendous improvement is still observable.

| GHT | MGHT |
Memory Requirement [MB] (Offline)|| 4.3 30.8
Memory Requirement [MB] (Online)|| 480 0.5
Computation Time [s] 45.60| 0.07

Table 4.3: Improvement of the modified generalized Hough transform (MGHT) in comparison to the conventional gener-
alized Hough transform (GHT) according to memory requirement and computation time

In summary, the MGHT that has been presented in this section eliminates the major drawbacks of the conven-
tional GHT while keeping its inherent advantages and fulfills the stated requirements concerning the recogni-
tion of rigid objects listed in Section 2.2. A comprehensive performance evaluation, including a comparison
with other rigid object recognition methods, will be presented in Section 4.4 in order to support the theoreti-
cally derived improvements. Although the descriptions in this section have been restricted to deal with rigid
motion as the transformation class, the MGHT can be easily extended in a straight forward way to be able to
cope with more general transformations, like similarity or affine transformations. Therefore, also applications
that require parameter spaces of higher dimensions can benefit from the proposed modifications.
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4.3 Shape-Based Matching

As mentioned in Section 2.4, simultaneously to the development of the MGHT, a new similarity measure
has been developed. This similarity measure is already included in the HALCON library and is referred to
asshape-based matchin@BM). In this section, the new similarity measure, an improved method for pose
refinement, and some implementation details are described. Further details can be found in (Steger 2001,
Ulrich and Steger 2002, Steger 2002).

4.3.1 Similarity Measure

The model of the SBM consists of a set of model poips = (z7,y™)" as in the case of the MGHT.
Additionally, the model is complemented by the associated gradient direction vel§tors (t;,u;)", i =

1,...,n™, wheret; = IV ‘Pi” andu; = I, ‘p;n. Figure 4.21 illustrates the principle of this similarity
measure by means of the example that has already been introduced in Section 4.2.1. Here, the third pyramid
level is displayed (see Figures 4.2, 4.7(a), and 4.7(b)). In the offline phase, edges are extracted from the model
image, which is shown in Figure 4.21(a), and their associated gradient direction vectors are computed. The

resulting edges and the normalized gradient direction vectors (white arrows) are shown in Figure 4.21(b).

gradient direction vectors d*(x, y) of search image

model edge pixels p ~ At 2Xx %t 7 tx ot ottt

|

\

\
gradient direction vectors

d" of the model image at
the model edge pixels

(a) Model image (b) Model edges (c) Search image

Figure 4.21: In the shape-based matching edges are extracted and the associated gradient direction vectors are com-
puted (b) from the model image (a). The search image is edge filtered, resulting in a gradient direction vector at each
model edge pixel (c).

The search image, which is shown in Figure 4.21(c), can be transformed into a representation in which a
gradient direction vectod®(x,y) = (v(z,y),w(z,y))" is obtained for each image poiat,y)". In the
matching process, the transformed model must be compared to the search image at a particular location using
a certain similarity measure. The basic idea behind the similarity measure within the SBM is to sum the
normalized dot products of the gradient direction vectors of the transformed model and the search image over
all model points. From this, a matching scorés obtained at each poiritz,y) " in the search image. In

Figure 4.21(c) the normalized gradient direction vectors are displayed as black arrows at each pixel in the
search image. A threshold on the similarity measure has to be specified by the user. For this, a similarity
measure with a well-defined range of values is desirable. The following similarity measure achieves this goal:

1 &8 (dld (e + 2™y + "
s(z,y) = n—mz < ( ) (4.47)
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where(-, -) represents the dot product between two vectors. Therefarey) represents the averaged cosine

of the angle differences between the gradient directions of the transformed model points and the respective
gradient directions in the search image. The cosine takes into account that the gradient direction is influenced
by image noise. The effect of the resulting small angle differences on the similarity measure is reduced by the
low sensitivity of the cosine to small arguments, which yields a high robustness against noise. Figure 4.21(c)
also shows the calculation of the matching scete y) for two example positions of the object in the search
image. At the true position (upper left) the angle differences between the direction vectors are small, and thus
the cosine will be close to 1 at each model edge pixel. The reason for the small differences can be attributed
to artificially added noise in the search image. At the second example position (lower right) the corresponding
gradient directions show significantly higher differences, leading to cosine values that are much smaller than 1.

This similarity measure shows several inherent advantages. Because of the normalization of the gradient
direction vectors, the similarity measure is invariant to arbitrary changes in brightness since all vectors are
scaled to length one. Itis essential to note that edge filtering is applied to the search image, but no segmentation
is performed, i.e., no threshold on the edge magnitude is applied. This has the advantage that the similarity
measure not only exhibits robustness but true invariance against changes in brightness of an arbitrary type:
there is no risk that any edge pixel falls below an edge threshold if the contrast is too low. This constitutes
the major advantage in comparison to all the object recognition methods that rely on segmented features in
the search image, like, for instance, the Hausdorff distance or the GHT. Furthermore, this measure is robust
against occlusion and clutter because in case of missing features, either in the model or in the search image,
noise will lead to random gradient direction vectors, which, on average, will contribute nothing to the sum
(see (Steger 2002) for further discussions concerning this topic).

Focusing on (4.47) again, the similarity measure will return a high score if all the direction vectors of the model
and the search image align, i.e., have the same direction. A score of 1 indicates a perfect match between the
transformed model and the search image. Furthermore, the score roughly corresponds to the portion of the
object that is visible in the search image.

4.3.2 Implementation Details

An important feature of this similarity measure is that it does not need to be evaluated completely when object
recognition is based upon a threshel®” for the similarity measure. Let; denote the partial sum of the dot
products up to thg-th model point:

L (dl & ()
Y — T . : . (4.48)
Zud -1 d° (@ + 2y + g™

Obviously, all the remaining terms of the sum are all smaller or equal to 1. Therefore, the partial score can
never reach the required scor@” if s; < s™" — 1+ j/n™, and hence the evaluation of the sum can be
discontinued after thgth element whenever this condition is fulfilled. This criterion speeds up the recognition
process considerably.

Nevertheless, further speed-ups are highly desirable. Another criterion is to set the condition that at each
partial sum the score is better thafi™, i.e., s; > s™"j/n™. When this criterion is used, the search will

be very fast, but it can no longer be ensured that the object recognition finds the correct instances of the
object. This is because if missing parts of the object are checked first, then the partial score will be below
the required score. To speed up the recognition process with a very low probability of missing the object, the
following heuristic can be used: the first part of the model points is examined with a relatively safe stopping
criterion, while the remaining part of the model points is examined with the hard thresttig/n™. The

user can specify a parametgrwhich represents the fraction of the model points that are examined with the
hard threshold. This parameter will be referred togesedinesdelow. If g = 1, all points are examined

with the hard threshold, while fay = 0, all points are examined with the safe stopping criterion. With this,
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the evaluation of the partial sums is stopped whenayex min(s™" — 1+ (j/n™,s™"j/n™), where

¢ = (1-gs™n)/(1— g). The term greediness is chosen because it appropriately reflects the intention of the
parameter: ify is set to 1 the search is very greedy, i.e., the search strongly tends to early abort the evaluation
of less promising transformations in order to reduce the computation time. However, the risk of missing a
match is high.

To further speed up the recognition process, the model is generated in multiple resolution levels, which are
constructed by generating an image pyramid from the original image — in the same way as in the MGHT.
Because of runtime considerations, again the Sobel filter is used for feature extraction. To take rigid transfor-
mations into account the model is also created for different object orientations. Fa@/tHi¥;" has proven

to be an appropriate value for the orientation step &ize(cf. Section 4.2.5.1). In the online phase, an image
pyramid is constructed for the search image. To identify potential matches, an exhaustive search is performed
for the top level of the pyramid. With the termination criteria using the thresk6id, this seemingly brute-

force strategy actually becomes extremely efficient. After the potential matches have been identified, they are
tracked through the resolution hierarchy until they are found at the lowest level of the image pyramid.

Furthermore, the same method for pose refinement that is applied to the MGHT can be used in the SBM
(cf. Section 4.2.4): once the object has been recognized on the lowest level of the image pyramid, its pose
parameters position and orientation are extracted to a resolution better than the discretization of the search
space by fitting again a second order polynomial (in the three pose variables) to the similarity measure values
in a 3x 3 x 3 neighborhood around the maximum score.

4.3.3 Least-Squares Pose Refinement

If an even higher accuracy is desirable than the accuracy that can be achieved by using the pose refinement
described in Section 4.2.4, a least-squares adjustment can be applied. Here, the sum of squared distances be-
tween the transformed model points and the points in the search image is minimized. For this, itis necessary to
extract the model points as well as the corresponding points in the search image with subpixel accuracy. How-
ever, an algorithm that performs a least-squares adjustment based on closest point distances would not improve
the accuracy much since the points would still have an average distance significantly larger than 0 tangentially
because the model and search points are not necessarily samples at the same points and distances. Therefore,
for each transformed model point the closest point in the search image is found and the squared distance of
that point to a line defined by the corresponding model point and the corresponding tangent to the model point

is minimized. l.e., the directions of the model points are taken to be correct and are assumed to describe the
direction of the object’s border. The tangents are defined by the edge ppints(z,y™) T in the model im-

age and the perpendicular to the corresponding normalized gradient direction \Berded” || = (£, a;) .

Hence, the tangents are given by the pojatsy) " that satisfyt; (v — 27) + u;(y — ™) = 0. The Hessian

normal form is used to compute the distance between each tangent and the potential corresponding edge point
p; = (x;?, y;?‘)T in the search image. Finally, the sum of squared distances is minimized:

m

d*(a) = Z[@(wi(a) — ") + 4;(y;(a) — y")]* — min . (4.49)

Here, a represents the vector of the unknown (inverse) pose parameters; angd Y; (a) the transformed
corresponding edge point of the search image. It should be noted that instead of transforming the tangents at
the model points by the pose parameters, the points in the search image are transformed back using the inverse
pose parameteks in order to simplify the calculations.

The potential corresponding edge poipfsin the search image are obtained by a non-maximum suppression

of the edge magnitude in gradient direction and are further extrapolated to subpixel accuracy (Steger 2000).
Thus, a segmentation of the search image is further avoided in order to maintain invariance against changes
in brightness. The model points are transformed according to the pose parameters that have been obtained
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from the polynomial fitting (cf. Section 4.2.4). Because the points in the search image are not segmented
and correspondence is based on smallest euclidian distance, spurious points in the search image may be
brought into correspondence with model points. Therefore, to make the adjustment robust, only those edge
points in the search image perpendicular to the local tangent direction are taken into account. Furthermore,
corresponding edge points that have a distance larger than a statistically computed threshold are ignored in
the adjustment. Since the point correspondences may change by the newly estimated pose, an even higher
accuracy can be gained by iterating the correspondence search and the parameter adjustment. Typically, after
three iterations the accuracy of the pose no longer improves.

4.4 Performance Evaluation of the MGHT and the SBM

In this section, an extensive empirical performance evaluation of the two developed approaches, the MGHT
and SBM, is presented.

To assess the performance of the two approaches, they are compared to six different 2D object recognition
techniques that are already available. For this purpose, three standard similarity measures are chosen because
they are frequently used methods in industry and therefore are rather well known: the sum of absolute dif-
ferences (SAD) and the normalized cross correlation (NCC) as two standard intensity-based approaches and
the Hausdorff distance (HD) as a standard feature-based approach. They constitute a common basis that fa-
cilitates the comparability of the subsequent evaluation with other evaluations that also include one of these
standard approaches. Furthermore, including the three standard approaches in the performance evaluation is
scientifically interesting because no direct comparison of the three approaches could be found in literature.
Additionally, to be able to evaluate the potential of the two new approaches, three commercial high-end recog-
nition tools have been included in the evaluation: @@ometric Model Finde(GMF) developed byatrox

Electronic Systems LtdMatrox 2002) as well aBatMax® (PM) andPatQuick® (PQ), both developed by

Cognex (Cognex 2000). The analysis of the performance characteristics of rigid object recognition methods
is an important issue (cf. (Ulrich and Steger 2001)). Firstly, it helps to identify breakdown points of the al-
gorithms, i.e., areas where the algorithms cannot be used because some of their underlying assumptions are
violated. Secondly, it makes an algorithm comparable to other algorithms, thus helping users to select the
appropriate method for the task they have to solve. In the special case of this dissertation a performance
evaluation of rigid object recognition methods is essential in order to select the approach that is best suited to
serve as a module within the approach to recognize compound objects.

The remainder of the chapter is organized as follows. After a short introduction of the respective methods,
several criteria that allow an objective evaluation of object recognition approaches are introduced. Three
main criteria are used to evaluate the performance and to build a common basis that facilitates an objective
comparison (cf. (Ulrich and Steger 2002)): the robustness, the accuracy of the returned pose parameters,
and the computation time. Thereby, it is distinguished between the robustness against occlusions and clutter
and the robustness against arbitrary changes in brightness. Experiments on real images are used to apply the
proposed criteria. For this, in a first step, the experimental set-up for the evaluation measurements is explained
in detail. In a second step, the results are illustrated and analyzed.

4.4.1 Additionally Evaluated Object Recognition Methods
4.4.1.1 Sum of Absolute Differences

The special implementation that has been investigated to evaluate the sum of absolute gray value differences
considers rigid motion and makes use of image pyramids to speed up the recognition process. The average
distance is used as dissimilarity measure using the formula given in (4.3). Since the SAD is a measure of
dissimilarity, the resulting average difference is also denoted aseimdahe following. Hence, in contrast to
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all other methods this measure is not normalized to a certain interval, but can take arbitrary values, where an
error of 0 denotes a perfect match. The position and orientation of the best match, i.e., the match with smallest
error, is returned. Additionally, it is possible to specify the maximum etf6f of the match to be tolerated,
similar to s™" when using a similarity measure. The lowgt* is chosen, the faster the recognition is
performed, since fewer matches must be tracked down the pyramid. Subpixel accuracy of position and the
refinement of the discrete orientation are calculated by interpolating the minimam of

4.4.1.2 Normalized Cross Correlation

For the purpose of evaluating the performance of the normalized cross correlation the implementation of the
Matrox Imaging Library(MIL) — as one typical representative — was used. The MIL is a software develop-
ment toolkit ofMatrox Electronic Systems Lt@Matrox 2001). Some specific implementation characteristics
should be explained to ensure the correct appraisal of the evaluation results: The algorithm is able to find a pre-
defined object under rigid motion. A hierarchical search strategy using image pyramids is used to speed up the
recognition. The quality of the match is returned by calculating a score vakie-asaz(NCC,0)? € [0, 1],

where NCC'is the value of the NCC as it is obtained when using (4.2). The subpixel accuracy of the object
position is achieved by a surface fit to the match scores around the peak. The refinement of the object ori-
entation is not comprehensively explained in the documentation. However, it is supposed that the refinement
of the obtained discrete object orientation is realized by a finer resampling of the orientation in the angle
neighborhood of the maximum score and recalculating the NCC at each refined orientation.

4.4.1.3 Hausdorff Distance

The original implementation by Rucklidge (Rucklidge 1997) was utilized to rate the performance of the Haus-
dorff distance. The core of the implementation uses the partial HD (cf. (4.8) and (4.9)). The program expects
the forward and the reverse fraction as well as the thresholds for the forward and the reverse distance as input
parameter. Both, the model image and the search image must be passed in binary form to the algorithm.
Therefore, edges are extracted in advance using a minimum edge magyfittidey applying the same pre-
processing steps as in the case of the MGHT and the SBM to ensure a high comparability of the approaches.
Since the method of (Rucklidge 1997) returns all matches that fulfill the given score and distance criteria, the
best match was selected based on the minimum forward distance. If more than one match had the same min-
imum forward distance, the match with the maximum forward fraction was selected as the best match. The
forward fraction was interpreted as score vadue [0, 1] during the evaluation in order to measure the quality

of the match. A score of 1 denotes a perfect match in the sense that all model pixels fulfill the selected forward
distance. The implementation is not able to recognize rotated objects but only allows to recognize translated
objects with fixed orientation. Furthermore, no subpixel refinement is included. Generally, it seems to be
very difficult to compute a refinement of the returned parameters directly based upon the forward or reverse
fraction. Although the parameter space is treated in a hierarchical way there is no use of image pyramids,
which makes the algorithm very slow.

4.4.1.4 Geometric Model Finder

The Geometric Model Finder uses edge-based geometric features to find objects in images. Unfortunately, no
detailed information about the principle of the GMF is available from its documentation (Matrox 2002). The
default threshold that is used for edge extraction in the model image as well as in the search image can be
influenced by a parameter that allows to chose the detail level, and hence whether a medium (default), a high,
or a very high number of edges are to be extracted. This parameter of the GMF is similar to the threshold
for the minimum edge magnitudg™” used in the MGHT, the SBM, and the HD. To measure the quality

of a match, a score valuec [0,1] is computed and returned. The minimum score that must be reached by
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a match candidate can be set by choosifitf. Finally, the object pose is returned with subpixel accuracy.
However, as a last important parameter to mention, the accuracy level can be controlled choosing between a
medium and a high accuracy. The high accuracy is gained at the expense of a slower computation.

4.4.1.5 PatMax and PatQuick

As described in their documentation (Cognex 2000), Paffard PatQuic®R use geometric information.

The main difference between the two approaches is that PQ is a faster but less accurate version of PM. Both
methods apply a three-step geometric measurement process to an object: At first, it identifies and isolates
the key individual features within the model image and measures characteristics such as shape, dimensions,
angle, arcs, and shading. Then, it matches the key features of the model and the search image, encompassing
both distance and relative angle. By analyzing the geometric information from both the features and spatial
relationships, PM and PQ are able to determine the object’s position and orientation precisely, i.e., the accuracy
is not limited to a quantized sampling grid.

The model representation, however, which can be visualized by PM and PQ, apparently consists of subpixel
precise edge points and respective edge directions. From this, one can be led to conclude that the two ap-
proaches use similar features as the SBM, in contrast to their documentation.

To speed up the search, a coarse-to-fine approach is implemented. Indeed, there is no parameter that enables
users to explicitly specify the number of image pyramids to be used. Instead, the pat@aetergrain limit

can be used to control the size of the features to be used during recognition and, therefore, the depth of the
hierarchical search. This parameter has a similar meaning as the number of pyramid levels, but it cannot be
equated with. To indicate the quality of the match, a seoee[0, 1] is computed, where 1 again represents a
perfect match.

4.4.2 Robustnhess

The first criterion to be considered is trabustnesof the approaches. This includes the robustness against
occlusions and clutter as well as the robustness against arbitrary changes in brightness.

Experimental Set-Up.  For all subsequent experiments an IC (see Figure 4.22(a)) was chosen as the object
to be found. Only the part within the bounding box of the print on the IC is used as ROI, from which the
models of the different recognition approaches are created (see Figure 4.22(b)). For the recognition methods
that segment edges during model creation (MGHT, SBM, HD), the threshold for the minimum edge magnitude
™™ in the model image was set to 30 for all experiments. The detail level of the GMF was set to medium,
which is the default value and results in approximately the same edges that are obtained when applying a
threshold of 30 to the edge magnitude. All images that were used for the evaluation are of sizel®52

pixels. The experiments were performed on a 400 MHz Pentium Il. For those recognition methods that use
image pyramids (MGHT, SBM, SAD, NCC), four pyramid levels were used to speed up the search. The
algorithm presented in Section 4.2.3.1 found this number of levels to be the optimum for the IC. This number
also agrees with human intuition. For PQ and PM the automatically determined value for the pacaarsir

grain limit was assumed to be the optimum one, and hence no manual setting was applied.

To apply the criterion of robustness, two image sequences were taken, one for testing the robustness against
occlusions and clutter, the other for testing the robustness against changes in brightness. The recognition rate
was defined as the number of images in which the object was recognized at the correct pose divided by the

total number of images, and hence is an indicator for robustness against occlusions. The false alarm rate

was defined as the number of images, in which the object was recognized at an incorrect pose divided by the

total number of images, and thus is an indicator for robustness against clutter. Such matches are called false
positives.
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Figure 4.22: An IC is used as the object to be recognized (a). The model is created from the print on the IC using a
rectangular ROI (b).

Figure 4.23: Six of the 500 images that were used to test the robustness against occlusions

The first sequence contains 500 images of the IC, in which the IC was kept at a fixed position and orientation
and was occluded to various degrees with various objects, so that in addition to occlusion, clutter of various
degrees was created in the images. Figure 4.23 shows six of the 500 images. In the corresponding model
image of this sequence, the size of the bounding box that defines the ROI is 180 pixels at the lowest
pyramid level and contains 2127 edge pixels extracted by the Sobel filter. For the approaches that segment
edges in the search image (MGHT, HD, and GMF) the parameter to control the edge extraction was set to the
same value as in the model image.

Additionally, the relation between the actual degree of occlusion and the returned score value is examined,
because the correlation between the visibilitgf the object and the scorecan also be seen as an indicator

for robustness. If, for example, only half of the object is visible in the image then, intuitively, also the score
should be 0.5, i.e., one would expect a very high correlation in the ideal case. For this purpose, an effort
was made to keep the IC in exactly the same position in the image in order to be able to measure the degree
of occlusion. The true amount of occlusion was determined by extracting edges from the search images and
intersecting the edge region with the edges within the ROI in the model image. Since the objects that occlude
the IC generate clutter edges, this actually underestimates the occlusion.
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Figure 4.24: Three of the 200 images that were used to test the robustness against arbitrary changes in brightness

To test the robustness, the transformation class was restricted to translations, in order to reduce the time
required to execute the experiment. However, the allowable range of the translation parameters was not
restricted, i.e., the object was searched in the entire image. It should be noted that the recognition rate would
be lower and the false alarm rate would be higher when allowing rigid motion instead of translations only.
This is because the probability for an arbitrarily rotated model to match a clutter object is higher than for the
model at a fixed orientation. Nevertheless, restricting the experiment to translations is legitimate because it
can be assumed that the resulting percentage change in both rates compared to rigid motion is approximately
the same for all approaches. Consequently, a qualitative comparison is ensured. For the MGHT, the SBM,
the NCC, the HD, PQ, and PM different values for the parameter of the minimum score were applied. As
previously mentioned, in the case of the HD the forward fraction was interpreted as score value. Initial tests
with the forward and reverse fractions set to 0.3 resulted in run times of more than three hours per image.
Therefore, the reverse fraction was set to a constant value of 0.5 and the forward fraction was successively
increased from 0.5 to 0.9 using an increment of 0.1. The parameters for the maximum forward and reverse
distance were set to 1 pixel. For the other three approaches the minimuns%¢breas varied from 0.1 to

0.9. In the case of the SAD the maximum mean e¢f&ff* instead of the minimum score was varied. Since the
mean erroe is not limited to an intervale™** was varied from 10 to 50 using an increment of 10. Tolerating
higher values foe would result in hardly meaningful matches, i.e., an occluded object instance could not be
distinguished from clutter in the search image. Furthermore, extremely expensive computations would be the
consequence, which would make the algorithm unsuitable for practical use. Since the robustness of the SBM
depends on the parameter greediness, additionally the value for greediness was varied in the range of 0 to 1
using increments of 0.2.

To test the robustness against arbitrary changes in brightness, a second image sequence of the IC was taken.
The sequence contains 200 images including various illumination situations, e.g., spot lights, reflections, non-
uniform illumination, different ambient light intensity, etc. Three example images are displayed in Figure 4.24.
Because of the smaller distance between the IC and the camera, the ROI is nei4BHixels and contains

3381 model points on the lowest pyramid level. The parameter settings of all methods are equivalent to the
settings for testing the robustness against occlusions. However, since the MGHT segments the search image,
additionally the threshold for the minimum edge magnitude in the online phase is varied from 5 to 30 using an
increment of 5. The same holds for the GMF, where the detail level was set to medium, high, and very high,
respectively. Furthermore, in the case of the SAD the range of values for the maximum meafi'€rwas

limited from 10 to 30 since higher values showed no significant improvements.

Results. At first, the sequence of the occluded IC was tested. A complete comparison of all approaches
concerning the robustness against occlusion is shown in Figure 4.25. The recognition rate is plotted versus
the minimum score™” and the maximum errar™**, respectively. For the SBM the greediness was set to 0

at first, in order to receive the best obtainable recognition rate. As one would expect, the number of correctly
recognized objects decreases with increasing minimum score for all approaches. Thus, the higher the degree
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Figure 4.25: The recognition rate indicates the robustness against occlusions. The recognition rate depends on the
chosen value for s™" and ™", respectively.

of occlusions the smaller the parameter of the minimum score must be chosen in order to correctly recognize
the occluded objects. The opposite holds for the maximum error in the case of the SAD. In Figure 4.25 the
inferiority of the intensity-based approaches (SAD, NCC) to the feature-based approaches becomes clear. The
NCC does not reach a recognition rate of 50% at all, even if the minimum score is chosen small. The approach
using the SAD as similarity measure also shows a poor behavior: although the expectation is fulfilled that the
robustness increases when the maximum error is set to a higher value, even relatively high values for the mean
maximum error (e.g., 30) only lead to a small recognition rate of about 35%. Admittedly, a further increase
of the maximum error results in higher recognition rates. However, no real improvement is achieved since
meaningful results of matches exhibiting maximum mean errors of 50 gray values are hardly imaginable. This
suspicion will be confirmed later. The HD, which incorporates the standard feature-based approach in the
evaluation, shows significantly better results, especially for high valug&®f This can be explained by the

fact that in the case of severe occlusions, clutter edges in the search image reduce the otherwise high distance
values of the forward distance and therefore lead to higher values for the forward fraction. The MGHT and the
SBM both show very high recognition rates. They are only beaten by the GMF, which achieves the best result
in this particular test. It is worth noting that the robustness of the MGHT hardly differs from the robustness
achieved by the SBM even when using a greediness of 0. Comparable results are obtained by PM and PQ,
which both, however, are significantly inferior to the MGHT, the SBM, and the GMF.

The robustness against occlusions of the SBM depends on the greediness paraRigtee 4.26 shows the
recognition rate for different values gf Apparently, the greediness parameter must be adjusted carefully
when dealing with occluded objects. For a given minimum score of 0.5, for example, the recognition rate
varies in the range between 48% and 82%, corresponding to the two extreme greediness values of 1 and O.
However, already greediness values of 0.8 and 0.6, improve the recognition rate significantly to 64% and 70%,
respectively.

Up to now, only the robustness against occlusions was analyzed. This constitutes only one component of two
inherently associated attributes. Imagine a degenerated recognition method that simply returns matches at
each possible object pose within the class of transformations. In this case, the robustness against occlusions
would be perfect, because even if the object is not present in the image, i.e., the object is occluded by 100%,
it still would be found. Consequently, the second component that must be considered is the robustness against
clutter, which on its own is also insufficient because a degenerated recognition method that never returns
any match shows a perfect robustness against clutter. Hence, a high quality recognition approach combines
robustness against occlusions as well as against clutter. Analogously to the recognition rate the robustness
against clutter can be quantified by the false alarm rate. rébeiver operating characteristits a perfect

feature to simultaneously evaluate the robustness against occlusions as well as against clutter, since it plots
the false alarm rate versus the recognition rate.
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Figure 4.26: Recognition rate of the SBM additionally depends on the greediness parameter g in the case of occlusions.
The “greedier” the search, the more matches are missed.
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Figure 4.27: The receiver operating characteristic simultaneously evaluates the robustness against occlusions and clutter.

In Figure 4.27 the receiver operating characteristic curves of the respective approaches are shown. Here, the
transformation class was restricted to translations. For arbitrary object orientations an even higher false alarm

rate must be expected. This is because the probability of a clutter object fitting the arbitrarily rotated object is
higher than fitting the object at one specific orientation.

The HD shows a very poor behavior because already for a low recognition rate of about 35%, false positives
are returned. The false alarm rate reaches its maximum of about 32% at a recognition rate of 73% (not visible
in the plot because of axis scaling). Also the NCC returns false positives even for low recognition rates. The
SAD does not return any false positive for recognition rates less than 35%, which corresponds to a maximum
mean error of 30 (see Figure 4.25). However, as already suspected in the previous analysis, the false alarm rate
increases considerably if higher maximum mean errors are tolerated. PQ on the one hand returns stable results
for recognition rates up to approximately 70%. On the other hand the false alarm rate dramatically increases
for higher recognition rates, culminating in 11% false positives for the maximum achieved recognition rate of
89% (also not visible in the plot). Better results are obtained by PM, which only returns a few false positives
(2.6%) even when high recognition rates (93%) are achieved. In comparison, the GMF performs worse for
lower recognition rates since the false alarm rate starts to increase already for a recognition rate of 50% and
reaches its maximum of 3.4% false positives. This depreciates the high recognition rates, which are obtainable
with this approach, considerably (see Figure 4.25). Finally, the two developed approaches, MGHT and SBM,
exhibit the highest robustness against occlusions and clutter of the evaluated object recognition methods. Even

for very high recognition rates of 95% and 98% the false alarm rates remain below 0.6% (three images) and
0.2% (one image), respectively.
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Figure 4.28: Returned values for score s and error e, respectively, plotted versus the visibility v of the object. In the ideal
case the correlation coefficient p should be 1 (in the case of the score values) and —1 (in the case of the error values),
respectively.

Figure 4.28 displays the returned values for the seoamd mean erroe, respectively, plotted versus the
estimated visibilityv of the object. l.e., the correlation between these two quantities is visualized. For the
plots, s™™ was set to 30 (50 in the case of the HD) arftf* was set to 40. False positive matches are not
visualized in the plots. To facilitate the visual evaluation, additionally, for the approaches returning a score
value, the ideal curves representing 100% correlation are plotted;’{%!,= v/100. In the case of the NCC

the score value is computed &s- max(NCC, 0)?, and hence the associated ideal curvgd¥! = (v/100)?

(cf. Section 4.4.1.2). Images in which no match was found are denoted by a score or error value of 0, i.e.,
the corresponding points lie on theaxis of the plots. To precisely measure the correlation, additionally the
correlation coefficienp (Bronstein et al. 2001) is computed from corresponding values of correctly found
objects.

It can be seen from the plot regarding the SAD that the error is negatively correlated with the visibility —
as expected. The corresponding valuedoe —0.76 proves the visual impression. Nevertheless, the points
are widely spread and far from an ideal virtual line with negative gradient. In addition, despite of a very high
degree of visibility many objects were not recognized. One possible reason for this behavior could be that in
some images the clutter object does not occlude the IC yet, but casts its shadow onto the IC, which strongly
influences this metric. The magnitude of the correlation coefficient obtained for the NCC is comparable to
that obtained for the SAD. Furthermore, also here the points in the plot are widely spread and many objects
with high visibility were not recognized.

Most of the remaining approaches show a significantly higher positive correlation. This again confirms the
higher robustness of the feature-based approaches compared to the area-based approaches. As the rules ex-
ception, the correlation coefficient obtained for PQ has a relatively low value. The plot of PM shows a better
behavior, leading to a higher value fpr However, also here the points are not close to the ideal line but
spread by a higher amount in comparison to the MGHT, the SBM, the HD, and the GMF. These approaches

all show similar results and a point distribution that is much closer to the ideal one. In addition, objects with
high visibility are recognized with a high probability. However, again it becomes clear that in a few cases
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Figure 4.29: The recognition rate indicates the robustness against arbitrary changes in brightness. The recognition rate
depends on the chosen value for s™" and ™", respectively.

of higher object visibility the MGHT and the SBM cannot recognize the object. Conversely, the HD and the
GMF can recognize the objects. But one has to keep in mind the corresponding false alarm rates.

In the following, the robustness against arbitrary changes in brightness is analyzed. Figure 4.29 shows a
comparison of the recognition rates of the respective approaches. For the MGHT, the SBM, and the GMF, the

respective best parameter settings are applied, i.e., the threshold for the edge extraction for the MGHT was set
to the smallest value of 5, the greediness of the SBM was set to 0, and the highest detail level was used for the
GMF.

The SAD shows even worse recognition rates than in the case of occlusions: now, the best recognition rate
that could be obtained using a maximum error of 30 was only 11%. By comparing this value to the result
obtained for a maximum error of 20, which is also 11%, it is obvious that even by further increasing the
maximum allowable error no meaningful improvement can be reached. In contrast, the recognition rate of the
NCC is substantially better. Obviously, the robustness of the NCC against changes in brightness is higher than
against occlusions. This can be attributed to its normalization, which compensates at least global changes in
brightness. The result obtained by the HD is superior to that of the NCC. Especially, in the case of large values
for the minimum score it shows good results. However, for lower values it cannot reach the performance of
the remaining approaches. If the minimum score is set low enough, the recognition rate of the MGHT even
surpasses that of the SBM, PQ, and PM, reaching a result comparable to the GMF. For higher values its
recognition rate decreases rapidly. PM and PQ show approximately equivalent results, both of which are
inferior to the SBM for almost all values of*™”. Also here, the GMF achieves a very high and approximately
constant recognition rate even for large valuessf.

In the case of the MGHT and the GMF the recognition rate additionally depends on the chosen threshold
for the edge extraction in the search image. As in the case of occlusions the recognition rate of the SBM
additionally is influenced by the greediness parameter. Therefore, Figure 4.30 shows the recognition rates of
the three approaches for different parameter settings.

The MGHT (see Figure 4.30(a)) allows to specify the minimum edge magpnittitfe The recognition rate

of the MGHT strongly depends on the chosen threshold for edge extraction in the search image. As expected,
higher recognition rates are obtained for lower values of the minimum edge magnitude, because fewer edge
pixels fall below the threshold™™. The higher the minimum edge magnitude, the more edge pixels are
missed, because dimming the light as well as stronger ambient illumination reduces the contrast. Thus, this
effect is comparable to the effect of higher occlusion. Therefore, a high recognition rate can be obtained
by setting the minimum score to a lower value or by choosing a lower threshold for the edge magnitude. For
example, a minimum score of 0.5 and an edge threshold of 10 leads to a recognition rate of 84%. Nevertheless,
the true invariance of the SBM against changes in brightness could not be reached by the MGHT. In the case of
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Figure 4.30: The recognition rate in case of changes in brightness additionally depends on the threshold for edge extrac-

tion in the search image. The threshold can be set by ™" for the MGHT (a) and by the detail level for the GMF (b). For
the SBM (c) the greediness g influences the recognition rate.

the GMF (see Figure 4.30(b)) the influence of the edge extraction is less distinct. Nevertheless, if the medium
detail level is chosen, the recognition rate decreases by more than 15%. The recognition rate of the SBM (see
Figure 4.30(c)) in the case of changing brightness is less sensitive to the chosen greediness pettzameter

the case of occlusions. Only, when settintp 1 and choosing high values fef*" a significant deterioration

in the recognition rate is observable. Disregarding the result obtained with greediness set to 1, the discrepancy
is smaller than 10%.

4.4.3 Accuracy

The second evaluation criterion is thecuracyof the approaches. The accuracy is determined by comparing
the exact (known) position and orientation of the object with the returned pose parameters of the different
candidates. Since the HD does not return the object position with subpixel accuracy this criterion is only
applied to the remaining candidates. Additionally, the least-squares pose refinement (LSPR), which has been
presented in Section 4.3.3, is taken into account in order to evaluate the gain in accuracy that is achieved
by this method. Therefore, in the following the results denoted by SBM refer to the pose refinement that is
obtained by the polynomial fitting, whereas LSPR implies the additional improvement of the pose parameters
that is obtained by the least-squares adjustment in the SBM.
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Experimental Set-Up.  To evaluate the accuracy, the IC was mounted onto a table that can be shifted with
an accuracy of m and can be rotated with an accuracy of 0.7’ (0.01286Figure 4.31 illustrates the
experimental set-up. Three image sequences were acquired: In the first sequence, the IC was shjitad in 10
increments to the left in the horizontal direction, which resulted in shifts of about 1/7 pixel in the image. A
total of 40 shifts were performed, while 10 images were taken for each position of the object. The IC was
not occluded in this experiment and the illumination was approximately constant. In the second sequence,
the IC was shifted in the vertical direction with upward movement in the same way. In this case, a total of
50 shifts were performed. The intention of the third sequence was to test the accuracy of the returned object
orientation. For this purpose, the IC was rotated 50 times for a total of 5/&fin, 10 images were taken at

each orientation.

Figure 4.31: To test the accuracy, the IC was mounted on a precise zy-stage, which can be shifted with an accuracy of
1 um and can be rotated with an accuracy of 0.7’ (0.011667°).

The search angle for the object orientation was restricted to the range36f; +30°] for all approaches,
whereas the object position again was not restricted. Since no occlusions were gfésentild be uniformly

set to 0.8 for all approaches. For the SAD* was specified to be 25. The greediness parameter of the SBM
was set to 0.5, which represents a good compromise between recognition rate and computation time. For the
GMF, the accuracy level was varied from medium to high.

Results. To assess the accuracy of the extracted object position, a straight line was fitted to the mean
extracted coordinates of position. This is legitimated by the linear variation of the position and orientation
of the IC in the world, which can be assumed when using the pregigestage. Because the IC is shifted

in world units (xm) while the recognition approaches return the position of the IC in pixel coordinates, the
exact position of the IC is only known in world units but not in pixel coordinates. Because this scaling is
unknown, the slope of the straight line cannot be set to 1 but must be estimated during the line fit. In contrast,
to assess the accuracy of the extracted object orientation the straight line does not need to be estimated but
can be computed directly. This is because the unit in which the IC is rotated on the stage and the unit in
which the recognition approaches return the object orientation are identical, and hence no scaling needs to be
considered. The residual errors, i.e., the differences of the extracted position and orientation to the straight
lines, shown in the Figures 4.32 and 4.33, are a well suited indication of the achievable accuracies.

As can be seen from Figure 4.32, the position accuracy of the MGHT, the SBM, the LSPR, the NCC, the
GMF (both accuracy levels), and PM are very similar. The corresponding errors are in most cases smaller
than 1/20 pixel. The conspicuous peaks in both error plots of Figure 4.32 occur for all these approaches with
similar magnitude. Therefore, and because of the nearly identical lines, it is probable that the IC was not
shifted accurately enough, and hence the error must be attributed to a deficient acquisition. Nevertheless, it
can be concluded that the error in position in most cases must at least be smaller than 1/20 pixel, which is
sufficient for most applications. However, the high and oscillating error of about 1/10 pixel when using the
SAD cannot be attributed to this deficient acquisition. This error occurs because of subpixel translations that
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Figure 4.32: Position accuracy plotted as the difference between the actual = coordinate of the IC and the x coordinate
returned by the recognition approach while shifting the IC successively by 1/7 pixel to the left
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Figure 4.33: Orientation accuracy plotted as the difference between the actual object orientation of the IC and the returned
angle by the recognition approach while rotating the IC successively by approximately 1/9° counterclockwise. The different
scalings of the plots should be noted.

influence the gray values especially in high contrast areas of the image. Finally, PQ shows the highest errors
in the z coordinate of all approaches in the test, reaching a maximum error of 1/5 pixel. Since the egrors in
approximately have the same magnitude as they are not presented.

Figure 4.33 shows the corresponding errors of the returned object orientation. Here, the SBM complemented
by the LSPR, the GMF, and PM are superior to all other candidates. They reach maximum errors between
1/50¢° and 1/100 in this example. Furthermore, the improvement of both the LSPR in comparison to the SBM
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and the high accuracy level of the GMF in comparison to the medium accuracy level becomes visible. The
error of the SBM is reduced to 42% when using the LSPR. Similarly, the high accuracy level of the GMF
results in orientation errors that are about 84% in magnitude of the errors when using the medium accuracy
level. The remaining approaches return a less accurate object orientation. The corresponding maximum errors
of the MGHT, the SAD, the NCC, and PQ are abouf1/)") in this example. However, it should be remarked

that the accuracy of the MGHT can be easily improved by the LSPR in a similar way as the SBM because the
same features (edge position and orientation) are used in both methods. Thus, a similar accuracy level can be
expected when applying the LSPR to the MGHT.

4.4.4 Computation Time

The computation timeepresents the third evaluation criterion. Indeed, it is very hard to compare different
recognition methods with this criterion because the computation time strongly depends on the individual
implementation of the recognition methods. Nevertheless, in conjunction with the achievable robustness and
accuracy the associated computation times at least allow a qualitative comparison. The HD was excluded
from this test because the implementation does not use image pyramids, which results in unreasonably long
recognition times. This would lead to an unfair comparison.

Experimental Set-Up.  In order to test the third criterion, the configurations that were used for testing

the robustness against occlusions (cf. Section 4.4.2) and for testing the accuracy (cf. Section 4.4.3) are used.
The computation time of the recognition processes was measured on a 400 MHz Pentium Il for each image
of the sequences and for each recognition method. Therefore, one has to keep in mind that the measured
recognition times would reduce to a fraction on current computers (e.g., a 2.8 GHz Pentium 4). However, it
can be assumed that the relation of the recognition times between different approaches approximately remains
unchanged.

The computation time of the SBM was measured for two greediness values of 0 and 1 with using the se-
guence for testing the robustness in order to be able to estimate the increase in computational cost for a gain
in robustness. Furthermore, in order to assess the correlation between the size of parameter space and compu-
tation time, the two sequences for testing the accuracy (horizontal shift and rotation) are used a second time
without restricting the angle interval fe-30°, 30°], but searching the object in the full range of orientations
([0°,360]).

In this context it should be noted that the MGHT and the GMF are the only candidates whose implementa-
tions are able to recognize the object even if it partially lies outside the search image. The other approaches
automatically restrict the range of possible object positions to those at which the object completely lies within
the search image. Therefore, particularly in the case of large objects both methods are disadvantaged when
comparing their computation times to those of the remaining approaches. This should be kept in mind when
analyzing the results.

Results. At first, the computation time of the respective approaches during the robustness test is analyzed.
In Figure 4.34 the mean computation tiffi@ver the 500 images of the sequence is plotted for three different
values ofe™?* (SAD) ands™" (others), respectively. This facilitates an easy assignment of the computation
times to the recognition rates displayed in Figure 4.25. Because for real-time applications the maximum time
to find the object is often of interest, additionally, the maximum computation time is plotted. One can see that
the approaches can be divided into two groups, where the approaches within the same group exhibit similar
recognition times. In the first group (MGHT, SBM, NCC, PM, PQ) the mean recognition time varies in the
range from 18 to 59 ms. In general, the low&F" is chosen, the higher the robustness against occlusions
(see Figure 4.25), but the higher the computation time. It also becomes evident that PQ is faster than PM.
Furthermore, a greediness value of 1 speeds up the SBM in comparison to a greediness value of 0, especially
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Figure 4.34: Mean and maximum recognition times of the respective approaches when applying the sequence for testing
the robustness against occlusions. The computation time of each approach is represented by three bars, each associated
with a certain value for ¢™** (SAD) and s™" (others), respectively. The different scalings of the two plots should be noted.

if s™" is chosen small, i.e., a high number of match candidates must be tracked through the pyramid. In the
second group (SAD, GMF) the mean recognition time is much higher. Evetfif of the SAD is set to the
relatively small value of 30, where the associated recognition rate is only 34%, the maximum computation
time already exceeds one second. If higher recognition rates should be obtained (at the expense of higher false
alarm rates) the computation time may even reach several seconds. The high recognition rates of the GMF
have already been depreciated by the associated high false alarm rates. Additionally, its computation time
reaches several seconds. Hence, the performance of the GMF suffers from a further depreciation. However,
in contrast to all other approaches the computation time increas&¥"ifis set to a higher value. During
evaluation it became obvious that the GMF is slowed down considerably if the object cannot be found or if
the scores is nears™™. From this, it can be deduced that the implementation of the SAD and the GMF are
not suited for real-time object recognition.

Figure 4.35 shows the respective mean and maximum computation times when applying the accuracy test.
Again, the MGHT, the SBM, PM, and PQ show fast computations. Furthermore, the mean computation time
of the SBM extended by the LSPR only marginally increases in comparison to the SBM. The computation
time of the LSPR, which is represented as the difference between the computation time of “SBM+LSPR” and
“SBM"” in the plots, does not depend on the size of the parameter space: it is constant for a given object, and
is 8ms in the case of the translation sequence and 10 ms using the rotation sequence. Therefore, the larger
the parameter space the smaller the influence of this constant part becomes. In contrast, again the SAD and
the GMF are substantially slower. However, because the object does not show partial occlusions in the two
sequences, the GMF is not slowed down to a high degree as in the occlusion case. This isdiétauseset

to 0.8 and the score hardly differs from 1. Becaef8&" was set to 25, the robustness of the SAD would be very

poor. Thus, also the SAD would show much longer recognition times if higher robustness was desired. When
looking at the result of the NCC an increase of computation time is noticeable when searching the rotated
object. During evaluation it became evident that the more the IC is rotated relative to the reference orientation
in the model image the longer the computation time of the NCC became. Obviously, the implementation of
(Matrox 2001) does not scan the whole orientation range at the highest pyramid level before the matches are
tracked through the pyramid, but starts with a narrow angle range close to the reference orientation. Hence,
the computation time of the NCC is not directly comparable to the other approaches, because the orientation
range of[—30°; +-30°] and[0°; 360°[ is not really scanned. Hence, a comparable computation time would be

still higher.

From the time increas&T when extending the angle search range fren30°; +30°] to [0°; 360°[ con-
clusions can be drawn about the ability of the approaches to deal with more general transformation classes.



4.4. PERFORMANCE EVALUATION OF THE MGHT AND THE SBM 87

600 = . . . 600F— . . . :
Bl (30°+30°] | & B [30°+30°] o&f &
B 0360 | ; e s S I |
Ll [ Maximum ~ Y 1 Ll ] Maximum I
500 5 R 500 A= ©
N /L/ & v
I < 17
& 400} )
<
Fo§
g N
S U
£ . R &
;S
~ ~
Y A// 4
ol
0 0
MGHT SBM SBM+ SAD NCC GMF GMF PM PQ MGHT SBM SBM+ SAD NCC GMF GMF PM PQ
LSPR medium high LSPR medium high
(a) Sequence of horizontally shifted IC (b) Sequence of rotated IC

Figure 4.35: Mean and maximum recognition times of the respective approaches when applying the sequence of the
shifted IC (a) and that of the rotated IC (b). The computation time of each approach is represented by two bars, where
the left bar and the right bar correspond to the restricted and the unrestricted orientation search range, respectively. The
associated time increase AT is printed in percent.

The percentage increase of the mean computation time is printed in Figure 4.35. As can be seen from Fig-
ure 4.35(a) the computation time of the GMF merely increases by 4% and 3%, respectively. Obviously, the
GMF ignores the restriction of the orientation search range and always recognizes the object within the full
range of orientations. This makes the use of prior knowledge about the object orientation more difficult. With
this discovery the computation time of the GMF that is plotted in Figure 4.34 is overestimated because the
GMF cannot profit from the parameter space restriction as the remaining approaches. Nevertheless, the com-
putation is much too slow for real-time applications. Because of the implementation characteristics of the
GMF and the NCC, only the MGHT, the SBM, the LSPR, the SAD, PM, and PQ can be compared objectively
when usingAT as criterion. Here, the MGHT shows the smallest time increasé £ 56%), which indi-

cates an advantage of the MGHT over the remaining approaches if the parameter space increases. The time
increase of the SBM extended by the LSPR is lower than that of the SBM because of the constant part of the
LSPR. Also, the computation time of PM only increases moderately. For most methods, a similar behavior
is obtained when searching for the rotated IC (see Figure 4.35(b)). Also here, the MGHT seems to be the
method that is most suited when dealing with large parameter spaces. The corresponding time increase is only
29% in this case. The computation times of PM and PQ and the associated valdeE &e significantly

higher than in the case of the shifted IC. The reason for the totally different computation times when using
the two sequences is the automatic computation of the coarse grain limits (cf. Section 4.4.1.5). During the
first sequence that uses the shifted IC the grain limit of both methods was automatically set to 3.72, while
during the second sequence that uses the rotated IC the grain limit was automatically set to only 2.92. This
results in an increased complexity. There is no obvious reason for this difference, because the object was the
same in both cases. Experiments have shown that the automatic computation of the grain limit may result in
a completely different value if the ROI of the model image is shifted by just one pixel without changing the
number of edge points within the region.

4.45 Conclusions

The aim of the performance evaluation in the framework of this dissertation was to select the approach that
is best suited to serve as a module within the approach for recognizing compound objects and that fulfills the
stated requirements listed in Section 2.3. Therefore, in the following for each evaluated recognition approach
the most important results are summarized.
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There are two main reasons why the HD is unsuited regarding the stated criteria. Its strong trend to return
false positive matches leads to a very low robustness against clutter. Furthermore, there is no easy way
to refine the pose of the HD directly from the distance values by interpolation. No fair statements about
the computation time can be made because of the mentioned implementation characteristics. As a positive
property, the acceptable robustness against occlusions should be mentioned, which, however, is depreciated
by the bad receiver operating characteristic.

The SAD also exhibits several drawbacks. A reasonable robustness against occlusions is only obtained in
combination with increasing false alarm rates and dramatically long computation times, which make real-time
applications impossible. Furthermore, it is in no way robust against changes in brightness. This could already
be derived from the corresponding formula (4.3). Finally, the accuracy obtained by interpolating the score
values is only mediocre.

In contrast, the robustness against changes in brightness of the NCC is higher because of its normalization.
However, the low robustness against occlusions as well as the trend to false positive matches limit its applica-
bility decisively. While the position accuracy is very high the returned object orientation is less accurate.

The GMF achieves the highest robustness of all approaches against both occlusions and changes in brightness.
Unfortunately, the associated high false alarm rates and a computation time that reaches several seconds are
substantial arguments against the use of the GMF.

PM shows a good compromise between robustness, accuracy, and computation time. However, its receiver
operating characteristic is significantly worse than that of the MGHT and the SBM. The obtained accuracy is
very high and the computation time is also satisfactory.

Although PQ is faster than PM, its receiver operating characteristic is worse. This must be attributed to its
tendency to return false positive matches. Furthermore, the speed-up is won at the cost of a reduced accuracy.
Especially, the position accuracy is the worst in the test.

Finally, the two developed approaches MGHT and SBM both show a very well balanced behavior regarding
robustness, accuracy, and computation time. The receiver operating characteristics of both are the best of all
approaches in the test. They combine highest robustness against occlusions with highest robustness against
clutter. Also, the robustness against changes in brightness of the SBM is only beaten by the GMF. If smaller
score values are tolerated the MGHT also shows high robustness against changes in brightness, which, how-
ever, cannot keep up with the true invariance of the similarity measure used within the SBM. Both methods
show highest position accuracy in the test. The accuracy in orientation of the SBM is already high and can
be further increased by the LSPR. The MGHT shows lower orientation accuracy, which, however can keep
up with the SAD, NCC, and PQ, and could be further improved by using the LSPR. Finally, the computation
time of the MGHT and the SBM on average is the fastest of all approaches in the test. Here, the MGHT seems
to be best suited for extending the parameter space to further dimensions.

Aside from these conclusions, it should be pointed out that some of the results might change if, for example,
other implementations of the approaches, other parameter constellations, or other image sequences are chosen.
Therefore, the presented evaluation is more of a qualitative nature than of a quantitative one. Nevertheless,
the results are very objective and help to find the optimum approach for a specific application.

The approach for recognizing compound objects, which will be introduced in the following chapter, has

a modular design and is therefore independent of the used module for recognizing rigid objects. For the
implementation of the approach for compound objects the SBM was selected because, apart from the argument
that the SBM is already part of a commercial software and thoroughly tested, its true invariance against
changes in brightness is a second argument to prefer the SBM to the MGHT. The advantage of the MGHT
when dealing with higher dimensional parameter spaces is less important since only rigid motion is considered
in this dissertation.



Chapter 5

Recognition of Compound Objects

This chapter describes the novel approach for recognizing compound objects. At first, a review of the respec-
tive literature is given (Section 5.1). After a coarse description of the approach (Section 5.2), the single steps
are described in detail (Sections 5.3-5.5). Finally, several examples show the high performance of the new
approach (Section 5.6).

5.1 Previous Work

Approaches dealing with the recognition of compound objects are rarer to find in literature than those dealing
with rigid objects. In the following, the most important approaches will be described.

A prominent class of object recognition methods deals with constrained objects in general and articulated
objects in particular. Although approaches of this kind mainly deal with the recognition of 3D objects it is
worth to include them in the present review because some of the proposed ideas might be also useful in 2D.
A constraint object is an object that is composed of a set of rigid object parts. The constellation of the parts
is restricted by constraints of an arbitrary type. In articulated objects these constraints are special kinematic
constraints, e.g., rotational or translational joints.

Most methods that deal with the recognition of articulated objects like (Grimson 1989, Lowe 1991, Li and
Lee 2002) are too restrictive for the recognition of compound objects because the presence of joints in com-
pound objects cannot be assumed in general. Several methods try to recognize articulated objects by decom-
posing the object into its parts and estimating the pose of each part separately. In a subsequent step the con-
straints between the parts are checked (Grimson 1987, Grimson 1989, Kratchounova et al. 1996). Although
these approaches are attractive because of their simplicity, the performance suffers: the information about
the constraints is not exploited during the recognition process. Also, solving the correspondences would be
computationally expensive because of its combinatorial character. In (Hel-Or and Werman 1994a, Hel-Or and
Werman 1994b), an approach is presented that covers articulated or other more general constrained models.
Here, the process of solving the correspondence problem is fused with the process of checking the constraints.
This is done in a recursive process where the pose of the current object part is predicted using a Kalman
filter. The prediction is based on the poses of the parts for which the correspondence problem has already
been solved. The predicted pose is then compared to all matches of the current part by computing a distance
measure. The match with minimum distance is selected. The whole process is repeated for all object parts.
By successively selecting the best match for all object parts, the computational effort that is associated with
the correspondence problem is reduced considerably. However, in some cases it might be dangerous to fix the
pose of the current part in an early stage. Especially, if the prediction relies on the poses of only a few parts
this may cause problems. The major drawback of these methods is that the recognition process itself ignores
the information about the constraints between the parts. Thus, approaches of this kind assume that all possible
matches of all object parts are already given as input data.

89
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The approach presented in (Li and Lee 2002) is able to recognize articulated objects. Each rigid object
part is represented by an attributed graph. Also from the search image one attributed graph is generated and
automatically partitioned into small subgraphs. In general, the subgraphs do not coincide with the object parts.
Graph matching is then performed between one of the subgraphs and the graphs that represent the object parts.
The graph matching is performed using a Hopfield network. Alternatively, other optimization techniques can
be applied to the problem of graph matching, e.g., genetic algorithms (Suganthan 2002). The matching results
are stored and a different subgraph is selected. Another matching is performed and the result is added to the
previous ones and so on. A decision on the final result is made by interpreting all accumulated results. The
obtained poses are clustered to eliminate spurious matches. By accumulating the results of several matches the
robustness against noise, occlusions, and ambiguities is increased. Unfortunately, the graph matching process
is very time consuming, and hence unsuitable for real-time object recognition. Furthermore, information about
the constraints is not exploited during the recognition process but only considered afterwards.

In (Felzenszwalb and Huttenlocher 2000), an object is represented by a collection of parts arranged in a
deformable configuration. The deformable configuration is represented by spring-like connections between
pairs of parts. The globally best match in an image is found. This is done by minimizing an energy function
that takes into account both the “spring” forces between the parts and the match quality for each part. Thus,
the approach is able to solve the correspondence problem efficiently. However, information about the relations
between the parts is ignored during the recognition process itself. Hence, there is no speed-up in comparison
to simply matching each part separately: it takes several seconds to find the object, which is too slow for real-
time applications. Furthermore, the model must be set up manually, which prevents the practical use. Another
drawback is that only the best match can be found, and hence the approach fails if more than one instance of
the object is present in the image.

A hierarchical recognition of articulated 3D objects is presented in (Hauck et al. 1997). They assume that the
pose of a static part is given and determine the poses of the remaining parts recursively. The relations between
the object parts are represented by rotational or translational joints. By making use of the relations and
already obtained information the efficiency of the recognition is increased. For this, the possible 3D poses of
the remaining parts are successively predicted and projected into the image using a hierarchical representation
of the object parts. Thus, self-occlusions of the object parts can be taken into account by eliminating possibly
occluded image features from the recognition process. Additionally, the search space is restricted to the
predicted poses, which increases the efficiency. However, the manual generation of the 3D model is complex
and time consuming. Furthermore, only articulated objects can be handled by the approach. Moreover, the
3D pose of the static part must be knowpriori in the camera coordinate system in order to correctly project

the 3D poses of the remaining parts. Finally, the approach fails if object parts are undetectable because then
the pose prediction is impossible. Nevertheless, the idea of the hierarchical representation together with the
recursive search promises to increase the efficiency also of 2D object recognition approaches.

Another category of approaches deals with the recognition of elastic, flexible, or deformable objects (Jain et al.
1996, Pilu and Fisher 1997, Lee and Street 2000, Duta et al. 2001, Sclaroff and Liu 2001, Belongie et al. 2002).
These approaches are mainly used to recognize natural objects that slightly change their appearance. Often
this change in appearance cannot be modeled by a global transformation but requires to take into account local
deformations. For example, in medical imaging these approaches can be applied to the registration of MRI
(magnetic resonance imaging), CT (computed tomography), PET (positron emission tomography), FMRI
(functional magnetic resonance imaging), ultrasound imaging, etc. Apart from human organs, a recognition
of plants or animals is facilitated by these methods. However, these methods fail to model compound objects,
which do not show real deformations because their object parts themselves are rigid.

Another approach for recognizing deformable objects is given in (Gavrila and Philomin 1999). Here, a de-
tection method for objects with varying shape is described. The method uses a shape hierarchy to capture
the variety of object shapes. It is based on the idea that similar object shapes can be grouped together and
represented by a prototype shape. Thus, in the offline phase a hierarchy is computed from a set of training
shapes using stochastic optimization techniques. In the online phase, matching is performed with this proto-
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type, rather than with the individual shapes. This is done by involving a simultaneous coarse-to-fine approach
over the shape hierarchy and over the transformation parameters. To increase the performance, the existing set
of training shapes can be extended with generated “virtual shapes” (Gavrila and Giebel 2001). This improves
the representational capability of the prototype shapes. Approaches of this kind are suitable for compound
objects that consist of only a few parts with only small relative movements. The relative movements could be
seen as shape variations of the compound object. However, more object parts with even moderate movements
would lead to a combinatorial explosion of the number of required models.

5.2 Strategy

The approach for recognizing compound objects proposed in this dissertation is based on a hierarchical model
representation of the compound object (Ulrich et al. 2002). The strategy behind the approach can be split
into three stages. Figure 5.1 displays a flowchart for each stage in a very condensed form. In the first stage
the hierarchical model is trained based on several example images (see Figure 5.1(a)). Here, the rigid object
parts of the compound object are extracted and the relations between single object parts are derived. It should
be noted that the result of training the hierarchical model is not the hierarchical model itself: in fact, only
the relations between the object parts are trained. The relations represent one essential component of the
hierarchical model. This should be kept in mind during further discussions. The second stage incorporates
the actual creation of the hierarchical model based upon the trained relations (see Figure 5.1(b)). Here, a
distinguishedroot part is selected from all object parts using certain criteria. Furthermore, the optimum
hierarchical search strategy is found, with the root part at the top of this hierarchy. Finally, in the third stage
the hierarchical model is used to find the compound object in the search image (see Figure 5.1(c)): In order
to achieve real-time capability, only the root part is searched within the full parameter space. Whereas, the
remaining parts are searched with respect to each other only within a restricted parameter space according
to the extracted relations. Consequently, the offline phase includes the first two stages, while the third stage
represents the online phase. In this section, a coarse description of the three stages will be given in order
to introduce the underlying strategy. The description will then be elaborated on a finer level of detail in the
following three sections.
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Figure 5.1: Condensed flow charts represent the three stages of the proposed approach for recognizing compound ob-
jects. The offline phase includes training (a) and creating (b) the hierarchical model. The object recognition (c) represents
the online phase.

In Figure 5.2 the detailed flowchart of the algorithm to train the hierarchical model is presented. A model
image!™, in which the compound object is defined by a ROI, and several example images: 1,... n°
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represent the major input data to the algorithm. To enhance the illustrative power of the following expla-
nations, an artificial example is used, which further clarifies the intermediate processing steps and results.
Figure 5.3 shows the input data of the example. All images are of size<82. Taking a closer look at

the example images two inherently connected observations can be immediately made. Firstly, the compound
object (man) obviously consists of several rigid object parts (head, upper body, two arms, two hands, two
legs, and two feet). Secondly, the parts move with respect to each other to different degrees. The objective
of the first offline phase, i.e., the training of the hierarchical model, exactly is to simulate the human visual
perception. This process includes extracting the rigid object parts together with the relations that describe the
mutual movements.

Therefore, analyzing the process of visual perception may help to reproduce the human observations. For
the following discussions it is essential to strictly distinguish between components and parts: One object part
consists of one or more components. The components that belong to the same object part do not show any
relative movements, while different parts move with respect to each other. Assume that there is no prior
knowledge about the compound object. Consequently, if one focuses on the model image and disregards the
example images, one is unable to determine the rigid object parts since no information about the movement
is available. However, it is possible to decompose the object into small components. In this example, the
following components are perceptible: hat, face, two arms, two hands, two legs, two feet, square margin of
the upper body, and six components, one for each letter printed on the upper body. This means, that in this
example the decomposition is done on the basis of image regions that exhibit a homogenous gray value. When
extending the field of view to the example images, a human tries to match the corresponding components of
the model image in the example images. Finally, the components that do not move with respect to each other
in all example images are unconsciously and immediately merged into rigid object parts by the human brain.

With this knowledge it is possible to model the extraction of rigid object parts as shown in Figure 5.2. At
first, the domain of the model image defined by the ROl is initially decomposed into small components. The
resultingn® components are described ByROIs that refer to the model image. For each of the components a
rigid model is generated using an arbitrary suitable object recognition approach. The pose of each component
is then determined by the recognition approach in each example image and storeccémti@nent pose

matrix of sizen® x n°. From the component pose matrix the components that do not show any relative
movement in all example images are determined. The rigid object parts can then be extracted by merging the
ROIs of the respective components. Also, for the resultibig< n°) object parts, rigid models are generated

and used to determine the pose of each part in each example image in an analogous way as for the components.
This results in theart pose matrixof sizen® x n?. Finally, the relations between the parts can be extracted

by analyzing the part pose matrix. The relations are stored in the soplatien matrixof sizen? x n?. l.e.,

for an arbitrary pair of object part®, ¢) the relative movement of pagtwith respect to pant is stored in row

p and columny. The relation matrix together with the ROIs of the extracted model parts represent the output
data of the training process.

As an example, Figure 5.4 shows the relations of the left arm and the upper body, respectively, to all other
object parts, i.e., the two corresponding rows of the relation matrix are visualized. Hence, the relative move-
ments of the object parts with respect to the left arm and the upper body are displayed. For visualization
purposes, these movements are projected back into the model image. The object parts are symbolized by their
reference points. The relative positions of the part’s reference points is symbolized by enclosing rectangles,
and the relative orientations by circle sectors. A relative orientatior? @ Gbcalized at the “3” of a clock’s

dial and the center of the clock’s dial is visualized at the mean position of the respective part. For example,
when looking at Figure 5.4(a) one can see that the relative movement of the left hand with respect to the
left arm is smaller than the relative movements of the other parts. Furthermore, the relative movements with
respect to the upper body displayed in Figure 5.4(b) on average are smaller than the movements with respect
to the left arm.

Inthe second stage of the offline phase the information trained in the first stage is used to create the hierarchical
model. The process is illustrated in the flowchart of Figure 5.5 in a generalized form. The model image and
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Figure 5.2: Training the hierarchical model (first stage of the offline phase)

the output data of the training are passed as input data to the process. Because the orientation ranges of the
object parts in the search image do not need to coincide with the orientation ranges used during training, again
rigid models that cover the desired orientation range are generated. In order to find an appropriate root part,
the rigid models of all parts are analyzed using certain criteria, which will be introduced later in this work.
Based on the root part and the relations, an optimum hierarchical search strategy can be found by minimizing
the search effort in the online phase. Here, it is assumed that in the online phase the extent of the relative part
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(a) Model image (b) Example images

Figure 5.3: Input data of the artificial example. A rectangular ROI defines the compound object in the model image (a).
Six example images show the movements of the respective object parts (b).

Figure 5.4: Relations visualized for the left arm (a) and the upper body (b) in the model image. The object parts are
symbolized by their reference points (small circles). The relations are visualized as rectangles (relative positions) and
circle sectors (relative orientations).

movements is less or equal than the extent of the relative part movements represented in the example images. If
this assumption fails, the automatically derived relations must be extended manually by appropriate tolerance
values. Then, the relations between partsdq represent the search effort that must be spent to search part

g relative to parp under the assumption that the pose of pad already known. For example, if the poses

of the left arm and of the upper body in the search image are known it would be more efficient to search the
left hand relative to the left arm instead of searching it relative to the upper body (see Figure 5.4). Finally,
the hierarchical model comprises the rigid models of all object parts, the relation matrix, and the optimum
hierarchical search strategy.
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Figure 5.5: Creating the hierarchical model (second stage of the offline phase)

(a) Hierarchical model

(b) Search Tree

Figure 5.6: The hierarchical model comprises the rigid models of all object parts, the relations between the parts, and the
hierarchical search strategy (a), which is represented by a hierarchical search tree (b).

Figure 5.6 visualizes the resulting hierarchical model for the example case. It uses the head as the root part.
Assuming a minimum search effort in the future search image, it further searches the upper body relative to
the head, searches the two arms, and the two legs relative to the upper body, and searches the hands and the
feet relative to the arms and the legs, respectively. To valuate the overall search effort, the relations between
the parts that are adjacent in the search tree are visualized, i.e., they are connected by a edge in the tree. Thus,
during the online phase the reference points of the respective object parts must only be searched within the
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Figure 5.7: Object recognition (online phase)

small rectangular regions and within an orientation range visualized by the circle sectors.

Finally, the process of object recognition is displayed in the flowchart of Figure 5.7. Analogously to the online
phase of rigid object recognition, the search image and the model — which now is a hierarchical model — are
passed as input data to the algorithm. At first, the rigid model of the root part is selected from the hierarchical
model and used to determine the pose of the root part in the search image. Since no prior knowledge about the
pose is available the rigid object recognition approach must search the root part by scanning the full parameter
space of positions and orientations.

Once the root part is found, the remainim¢y— 1 parts can be searched within a restricted relative search space.
Thus, for each parj the predecessor pastin the search tree is selected. Assume, for example, that a depth-
first search is applied to the search tree presented in Figure 5.8(a). After the pose of the head is determined,
the next part to search & 2) would be the upper body, i.e;,= “Upper Body”. The associated predecessor
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(a) Depth-first search (b) Search image and found object instance

Figure 5.8: A depth-first search is applied to the search tree. In (a) the search order is indicated by numbers. In (b) an
example search image and the corresponding found object instance is displayed. The poses of the individual object parts
are visualized by superimposing the edges of the parts at the returned pose in white.

part in the search tree is the head, and hensé'Head”. The parameter space that must be scanned by the
recognition approach to search pait defined by the pose of partand the relation between the paptand

g. The rigid model of part; is selected from the hierarchical model and used to determine the pose of part
within the restricted parameter space. The whole process is repeated for each part, finally obtaining the poses
of all object parts. An example search image of size 5812 and the corresponding found object instance is
displayed in Figure 5.8(b). It should be noted that it is not necessary that the absolute orientation of the object
in the search image is covered within the example images, since only relative movements between object parts
are trained.

To give an impression of the advantage when using the proposed hierarchical model, the recognition time
for this example was 20 ms on a 2 GHz Pentium 4. In contrast, the brute-force method that would search all
parts in the entire search space independently from each other would take 310 ms (using the SBM in both
cases). The second obvious advantage should also be pointed out here: because of the inherently determined
correspondence, which is provided by the hierarchical model, the returned match of the compound object
implicitly covers a topologically sound representation. In contrast, when searching the parts independently,

it is not immediately possible to distinguish between the matches of the left and the right arm, for example.
Furthermore, if several object instances are present in the image, it is hard to assign a match of a certain object
part to the correct instance of the compound object.

Although the basic idea of the approach seems to be very simple, several difficulties that are not obvious at
first glance occur. They will be discussed in the following sections together with the detailed explanation of
the previously introduced steps.

5.3 Training the Hierarchical Model

5.3.1 Initial Decomposition

In the first step, the compound object must initially be broken up into small components. The condition
the initial decomposition must fulfill is that each object part must be represented by at least one component.
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Otherwise the algorithm is unable to find the rigid object parts automatically since only a merging of com-
ponents but no further splitting is provided by the algorithm. Therefore, an over-segmentation, which leads
to a high number of small components, is strongly desirable. Unfortunately, very small components may falil
the property of being unique or even seldom, which is a generally demanded quality for a featurergtf. (F”
ner and Gilch 1987)). This makes it difficult to determine the pose unambiguously during the training phase.
However, this problem can be solved by the proposed approach, as will be shown later.

Several decomposition and grouping methods that can be found in literature are suitable for the task of
initial decomposition. In general, grouping means the search for closely related primitives in the image.
Gestalt psychology has uncovered a set of principles that guide the grouping process in the visual domain
(Koffka 1935, Wertheimer 1938, Rock and Palmer 1990). These principles are based on different criteria
that must be satisfied by related primitives. Such criteria can require that related primitives exhibit similar
properties (e.g., size, color, shape) or that certain relations between the primitives are fulfilled (e.g., prox-
imity, connectivity, parallelism, symmetry, good continuity). Although it has been proven that these prin-
ciples indeed work, a satisfactory understanding of how they operate still needs to be found. Computer
vision has taken advantage of these principles, e.g., in the field of perceptual organization and grouping
(Ullman 1979, Marr 1982, Witkin and Tenenbaum 1983, Lowe 1985). In photogrammetry, grouping is ap-
plied in the extraction of various objects from aerial imagery. Only to mention a few examples, grouping
is utilized for runway detection in airport scenes (Huertas et al. 1990), building detection (Lin et al. 1994),
and road detection (Steger et al. 1997, Baumgartner 1998, Wiedemann and Hinz 1999). Unfortunately, an
optimum selection of criteria is not possible in general, but is highly correlated with the application task.
However, the approach for recognizing compound objects must fulfill the demand to be general with regard to
the type of object. Consequently, without additional knowledge about the object no optimum grouping criteria
or combination of criteria that could be used to extract components from the model image are available.

Nevertheless, for the purpose of decomposition a method is proposed that is on the one hand general enough
to work with most objects and on the other hand still results in meaningful components. This method solely
uses the connectivity and proximity criteria, where the edges in the model image serve as primitives. For this,
edges are extracted within the ROI in the same way as it is done during the model generation of the MGHT
or the SBM (cf. Section 4.2.2). The connected regions of the resulting edges are computed using a standard
image processing algorithmaldiie 2002). They represent the component hypotheses. Connected regions
that are smaller than a certain threshold (20 edge pixels has proven to be a suitable value) are eliminated
in order to avoid meaningless components that must be attributed to image noise or that are generally hard
to identify. To apply the second criterion of proximity, for a certain component hypothesis the fraction of
edge pixels that only have a small distance (e.g., 5 pixels) to another component hypothesis is computed.
If this fraction is high enough (e.g., 50%) the two component hypotheses are merged. The attentive reader
may see the correspondence between this fraction and the forward fraction used in the Hausdorff distance
(cf. equation (4.9) in Section 4.1.1.2). This step is repeated iteratively until no more components fulfill the
criterion for merging.

In Figure 5.9(a) the result of the edge extraction with the subsequent computation of connected regions is
shown. In this case 22 hypotheses are generated. Since some pairs of components are closely neighbored they
are assumed to form one component. Furthermore, the dot on the letter “j” is too small to be able to represent a
meaningful component and is therefore eliminated. The final result, which contains 18 components, is shown

in Figure 5.9(b).

The proposed strategy assumes that the edges in the model image of two different rigid object parts are
neither connected nor close to each other in the above specified sense. While this assumption is true for
a multitude of compound objects, its validity cannot be guaranteed in general. This is why the result of the
above described method must be at least validated by user interaction and possibly substituted by a completely
manual definition of the components. A manual definition can be done by passing several ROIs to the training
algorithm, one for each component.

Another possibility is to allow the user to introduce prior knowledge. E.g., the user could choose among
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(a) Component hypotheses (b) Final Components

Figure 5.9: Component hypotheses are obtained by edge extraction and computation of connected edge regions (a).
The hypotheses are numbered consecutively. The final components are obtained by eliminating small (11) and merging
closely neighbored (7+8, 9+10, 13+14) hypotheses (b).

several offered decomposition and grouping methods, which can be easily incorporated in the approach. For
example, in (Shapiro and Haralick 1979, Abe et al. 1996, Latecki andrhpkt 1999, Rosin 2000) 2D object
shapes are partitioned into subparts by using the shape convexity as criterion. They base on the assumption
that meaningful subparts exhibit a high convexity. Other partitioning schemes approximate the shape as the
best combination of primitives such as polygons or constant curvature segments (Wuescher and Boyer 1991).
Another class of approaches uses the curvature as splitting criterion (Hoffman and Richards 1984, Siddiqi and
Kimia 1995, Singh et al. 1999). Here, the object shape is broken up into smaller parts at the points of minimum
negative curvature. Approaches of this kind are able to split connected shapes. Hence, the requirement that
the edges in the model image of two different rigid object parts must not be connected can be discarded.

5.3.2 Rigid Models for the Components

In the second step, for each component a rigid model is generated. The use of image pyramids in object
recognition — so used in the SBM — is a desirable feature in order to achieve real-time performance. How-
ever, one has to take care of unfavorable scale-space effects that occur when dealing with image pyramids.
A scale-space representation can be seen as a generalized form of image pyramids. It comprises a continu-
ous scale parameter and preserves the same spatial sampling at all scales, i.e., no sub-sampling is performed.
Furthermore, only the “optimum” Gaussian kernel is applied for low-pass filtering (Lindeberg 1994).

In scale-space the edges of the components are influenced by neighboring edges. This is uncritical in most
cases when dealing with large objects, as is usually the case in rigid object recognition. In large objects
there are still enough edges left that are not influenced by neighboring edges, and hence still provide a good
match. However, some problems occur when dealing with small objects, like the components: the ratio of
edge pixels of a component that is influenced by neighboring edge pixels can become high, i.e., the influence
of neighboring edges increases. The principle of this scale-space effect is illustrated in Figure 5.10. The
scale-space behavior of the 1D profile of an ideal step edge is shown.2Hepgresents the profile direction,

y the gray values, and the size of the Gaussian smoothing kernel, and thus the degree of smoothing. In the
original image, i.e., for = 0, the subpixel precise edge position istat 2.0. Assuming that no further

gray value changes appear in the neighborhood of the edge (see Figure 5.10(a)), the edge position remains
unchanged even for successively stronger smoothing. Accordingly, when transferring this to the case of rigid



100 CHAPTER 5. RECOGNITION OF COMPOUND OBJECTS

model generation, the edge position would be the same on each pyramid level. Unfortunately, this assumption
is not valid in general. If, for example, a rigid model is to be created from the component that represents the
left arm (see component number 3 in Figure 5.9(b)) the outer square of the upper body (component number 4)
influences the scale-space behavior, and hence the model creation on higher pyramid levels. In Figure 5.10(b)
a second step edge is added to the profile and the edge position in scale-space is computed again. It can
be seen that the higher the smoothing is, the larger the displacement of the original edge position becomes.
This is uncritical if the left arm would always appear at the same relative pose with respect to the upper
body because the edge displacement in scale-space would be the same in the model image and in all example
images. However, in some example images the left arm moves with respect to the upper body, and hence the
representation of the left arm in the pyramid of the example image differs from the representation in the model
image. Especially, in the case of small components this may lead to a severe dissimilarity on higher pyramid
levels between the information stored in the model and that represented in the search image. This possibly
causes the recognition method not to find the component.
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(a) Undisturbed model edge (b) Disturbed model edge

Figure 5.10: Scale-space behavior of an ideal 1D edge profile. For homogeneous gray values in the neighborhood, the
edge position remains constant in scale-space (a). In contrast, the edge position is disturbed if gray value changes appear
that are close to the edge, e.g., caused by a neighboring edge (b).

The problem could be avoided if no image pyramids were applied in the recognition method. However, the
long computation times involved are definitely unsuitable for the practical use, even for the offline phase.
Therefore, an alternative solution is proposed: the disturbing gray value inhomogeneities in the neighborhood
of the model edges are eliminated. This is achieved by successively expanding the gray values of the model
image that are adjacent to a component edge pixel in the direction of the edge gradient.

Figure 5.11(a) shows the principle of gray value expansion. The component edge region is dilated by one
pixel, obtaining the pixels that are adjacent to the edge region. The gray values of the adjacent pixels are used
as seed values that are expanded to the neighborhood. Thus, the gray values of the edge pixels and those of
the adjacent pixels remain unchanged to ensure an extraction of the component edges that is the same as in the
original image when applying the Sobel filter. For the gray value expansion, the already dilated edge region

is successively dilated by one pixel. After each dilation, the gray values of the pixels that are added by the
dilation are calculated from the already available gray values of the preceding dilation step. For this purpose,
the gray values of the preceding dilation that are within :a 3 neighborhood are averaged. Furthermore,

to avoid artifacts that would lead to pseudo edges during model generation, a 1D smoothing of the newly
calculated gray values is applied in a second step. In Figure 5.11(b) the part of the model image showing the
left arm is displayed. The edges of the upper body and of the left hand would influence the model generation
for the component representing the left arm. Figure 5.11(c) shows the result after applying the gray value
expansion. The neighboring image structure, and hence the disturbing influences are eliminated.

To guarantee that all disturbing influences are eliminated, the size of the expansion must be chosen appropri-
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Figure 5.11: Successive gray value expansion is applied to the component edges in order to eliminate disturbing gray
value inhomogeneities of the neighborhood (a). In (b) the left arm in the model image is shown. The extracted component
edges are superimposed in white. After applying the gray value expansion to the component edges, the neighborhood is
free of disturbing influences (c).

ately. If, for exampley! pyramid levels are used in the proposed way, the gray values at both sides of the
component edges must be expanded by at IéﬁqﬁiZels to fully eliminate the influence of all neighboring
image structures.

The gray value expansion provides acceptable results in almost all cases. However, in rare cases pseudo edges
are introduced by the algorithm. This may happen whenever two progressing gray value fronts of strongly
different intensities collide. This often negligible effect can be weakened by stronger smoothing at the line of
contact. Another problem arises in the case of strongly blurred edges. The expanded gray values would lead to
lower edge magnitudes on higher pyramid levels in comparison to the original gray values. Both problems can
be avoided by, alternatively, using other, more sophisticated approaches (Elder and Zucker 1998, Elder 1999).
They explicitly model the edges by determining the edge location, magnitude, and blur scale of the underlying
intensity change. After modifying the modeled edges, e.g., by deleting disturbing edges in the neighborhood,
the image can be reconstructed from the remaining modeled edges.

Finally, two rigid models are built for each of the components. The first one is created based on the image
in which the disturbing edges have been eliminated, the second one is based on the original image. This is
because it is not known in advance whether the neighboring edges of a component belong to the same or
to another rigid object part. However, eliminating edges that belong to the same rigid object part is critical
because this again would lead to differences in the model and the example images. Using two models covers
both cases, and hence leads to a higher probability that all components are found later in the example images.
The consequence that the search for the components leads to duplicate matches is uncritical since it is com-
pensated by the algorithm described in the following sections. In general, false positive or double matches are
preferred during the training of the hierarchical model in comparison to missing a match.

5.3.3 Pose Determination of the Components

The rigid models of the components are used to search the components in each example image using the rigid
object recognition approach. Because for each component two models are used, most components are at least
found twice. Furthermore, one component may be found several times in an example image because of three
reasons. Firstly, if a component exhibits rotation symmetry, like the components 3, 4, 5, 6, 7, 13, 14, 15, 16,
17, and 18 in Figure 5.9(b), it is found several times at similar positions but at different orientations. Secondly,

if two or more components are similar to each other, like component pairs (3,5), (13,14), (15,16), and (17,18),
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in general each component is found at its correct pose as well as at the pose of the similar component(s).
This also includes partial similarities, i.e., one component is similar to a fraction of another component. The
component representing the left leg (15), for example, will be found four times in each example image because
of its rotation symmetry of 180and its similarity to the right leg (16). Thirdly, a component may also show
similarities to image clutter, where, in general, smaller components are more likely to show similarities to
clutter than larger components. Consequently, the result of the component search is not unique.

In the following section, an approach that solves the ambiguities by selecting the most likely pose for each
component in each example image is presented. Here, the component poses that are able to represent the
compound object in a least “deformed” way in comparison to the compound object in the model image are
supposed to be more likely. The deformation is caused by the relative movement of the components. In
(Ullman 1979), this problem is called the correspondence problem, where correspondence is the process that
identifies elements in different views as representing the same object (component) at different times (in differ-
ent images), thereby maintaining the perceptual identity of objects in motion or change. Thus, the movement
of the components that is introduced when comparing their poses in the model image and in an example
image is interpreted as apparent motion. Ullman (1979) proposes to solve the correspondence problem by
minimizing the overall apparent motion. This is the basis for further considerations.

In the following, the exact solution for solving the ambiguities is presented. Upon closer examination, the
problem of finding the most likely poses turns out to be a graph matching problem between a model graph
G™ and a search grapfi*. The model graph represents the compound object in the model image, where
the nodes in the graph represent the components, which are labeled with the associated component number.
Furthermore, each node is linked to all other nodes by arcs, where an arc between two nodes is labeled by the
relative position and orientation between the two associated components in the model image. Accordingly,
G* represents the poses of the component matches in an example image. In general, the number of nodes in
G* is higher than inG™ because of ambiguous matches. Furthermore, only the nodesthmat correspond

to poses of distinct components are linked by arcs. Again the arcs are labeled by the relative poses of the
components. Finally, the task of solving the ambiguities corresponds to figdingithin G*. The special

class of graph matching that can be applied to this problem is often dak&ect subgraph isomorphism
(Kroupnova and Korsten 1997) error-correcting subgraph isomorphisfMessmer 1996) in the literature.

A comprehensive introduction to graph matching is given in (Messmer 1996jJraph isomorphisnis a

bijection between the nodes of two graphssubgraph isomorphismaf G andG* tries to find a subgraph

G*' of G* and a graph isomorphism fro™ to G*’. An efficient algorithm is presented in (Ullmann 1976).
Finally, anerror-correcting subgraph isomorphisia more tolerant and is able to find an optimum subgraph
isomorphism even if the two graphs are different to each other. The solution is often realized by introducing
graph edit operations with associated costs. The goal is to find a sequence of edit operations with minimum
cost that must be applied &™ for a subgraph isomorphism to exist.

In the present case, because the number of nod@$ ia higher than inG™, a subgraph isomorphism must

be found. Furthermore, the subgraph to findsihdiffers from the model grapt”* because the components

may move with respect to each other. Hence, an error-correcting subgraph isomorphism is the right choice.
The graph edit operations comprise modifying the relative poses between the components and deleting nodes
for the case that a component is missing in the example image. Unfortunately, finding an error-correcting
subgraph isomorphism is known to be NP-complete, and thus its time complexity is exponential in the number
of nodes. In (Messmer and Bunke 1998), an algorithm is presented that reduces the computational load at
the cost of exponentially increasing memory requirement. Both alternatives are not suitable for a practical
solution of the ambiguities. Therefore, in the following an approach is presented that on the one hand shows
only polynomial time complexity and on the other hand provides acceptable results. The idea is based on
rating the single component matches, where matches that lead to less plausible configurations are penalized.
The problem of solving the ambiguities can then be seen as uniquely assigning a match to each component
such that the overall rating is maximized, while simultaneously considering certain constraints. For this, the
component matches are represented as a bipartite graph (i.e., a graph with two subsets of nodes). The solution
is then obtained by applying bipartite graph matching using linear programming.
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Figure 5.12: Matches of each of the 18 components in the fourth example image indicated by superimposed white edges.
The orientations of the matches are indicated by white arrows. The match numbers are displayed by white numerals.

5.3.3.1 Rating of Matches

Let n¢ be the number of components ahf] = (o]", ¢!"*) the pose of componetitin the model image, with
positiono}", orientationy”, andi = 1,...,n° In the implementation using the SBM the orientatiofi of

all components is 0 since the orientation in the model image is taken as the reference. The coinpagent

be foundn; times in the current example image because of symmetries, similarities, or clutter. The poses of
the associated matches dtgy, = (o, ¢f,), with k = 1,...,n;. Figure 5.12 shows the matchés . of

all 18 components in the fourth example image. Here, the duplicate matches that arise from the use of two
models per component are neglected for illustrative purposes. However, theses matches can be treated in the
same way like any other ambiguous matches that are introduced because of symmetries or similarities. For
instance, component 15 (left leg) is found four times: at the correct pose (match 1), at the same position, but
rotated by 180 (match 2), and at the position of the right leg at the two respective orientations (match 3,
match 4).
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The decisive point of the idea behind the approach for finding the most likely match of each component in the
example image is based on rating the associated poses of all matches. The rating is performed by penalizing
the matches that are less plausible by using a cost value. For this, the (unambiguous) poses of the components
in the model image are taken as the reference, forming the reference component configuration. In the example
image, a match receives a cost value that describes the quantified change in the component configuration that
would be introduced when this match is assumed to be correct. This follows the above described principle of
minimizing the overall apparent motion, where the apparent motion corresponds to the overall configuration
change.

In the following, the single steps that are used to compute the cost¥gjueof theko-th match of component
io will be explained. At first, the parameters of the 2D rigid transformation that transform{ggseato E;
are computed, resulting in a rotation matfwith rotation anglex and a translation:

0,k0

t = of — R(a) o . (5.2)

In the second step, the reference component configuration is projected into the example image by transforming
the poses of all componenisproviding the projected posaéd! = (o™, p™'):

™ = R(a) o™+t (5.3)

7

o = o't (5.4)

o

Figure 5.13 shows the projection of the reference component configuration into the example image for each
of the four matchegy = 1, ..., 4 of componeniy = 3.

S

S
£
S

(a) Match 1 (b) Match 2

(c) Match 3 (d) Match 4

Figure 5.13: Projection of the reference component configuration into the example image for each of the four matches of
component 3 (left arm)
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The projected pose of componerntan then be compared to a certain matdqit = 1,. .., n;) of the compo-
nent: in the example image by computing a distance meagure

WM}, Big) = [0 — 0 4|12 + w (o — 5,)% (5.5)

where|| - || denotes the euclidian vector length ands a weighting factor to balance the difference in position

and orientation. A suitable value far can be obtained, for example, based on the quantization of the object
orientationAy. Assuming a position quantization of 1 pixel,could be set to AA, for example. Because

the correct match of componehis not knowna priori, the distance measugg M/}, E; ;) is computed for all
matchest. The match with minimum distance is assumed to be correct and is used to compute the cost value
;. k- This assumption is the only difference to the exact computation using the previously explained error-
correcting subgraph isomorphism, and is uncritical unless the true component configuration in the current
example image does not differ extremely from the reference component configuration. Finally, the associated
distance value is used in the computation of the cost vélye, of matchkg of component:

Wig ko = ij{lin ¢(M{,Ez,k) . (5.6)

=1 T ng

The computation of the cost value is repeated for each mgteimd each componenig by applying (5.1)—

(5.6). In some applications it might be desirable to apply a threshold on the cost value and eliminate the
corresponding matches in order to reduce the sensitivity to outliers. The cost values are then used in the
following algorithm to find the most likely match of each component using a global optimization.

5.3.3.2 Identification of Physical Instances

A simple way to get the most likely match of componénivould be to select the match, whereW; ;.

is minimal fork = 1,...,n;. Although thislocal optimizationwould assign one unigue match to each
component, one important condition would be neglected. It would be still possible that several matches of
different components are assigned to the spmssical instancén the example image. A physical instance
represents an arbitrary structure in the example image to which components are matched. The problem is
illustrated in Figure 5.14, where the compound object from the previous examples is reduced to an upper body
and two legs in order to keep the explanations as clear and simple as possible. Furthermore, a clutter object
has been added to the example image. Thus, four physical instances are present in the example image: the
upper body, the two legs, and the clutter object.

If the match with the lowest cost value would be selected for each component, components 2 and 3 match
the same physical instance (the actual instance of the right leg) in the example image. However, a desirable
result would assign component 2 to match 1 and component 3 to match 3. Therefore, the tabébal a
optimizationis to find for each componemthe matchk; such that

net

> Wiy, — min (5.7)
=1

subject to the constraint that multiple matches are avoided, i.e., that at most one component is matched to a
certain physical instance.

A prerequisite to solve the proposed minimization is to check whether two or more matches are assigned to
the same physical instance. For this purpose, the similarities and symmetries of the components are analyzed
in a preliminary stage. This is achieved by a pairwise matching of the single components to each other. All
ordered pairs of components are selected. From the edges of the first component an artificial gray value
image is generated by applying the algorithm of gray value expansion explained in Section 5.3.2. The second
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component is searched within the artificially generated image. If there are any matches then the relative
pose of the second component with respect to the first component is computed and stored as the result of the
analysis. After the relative poses of all pairs have been computed, the matches in the example image can be
examined. If the relative pose of two components in the example image is identical to the relative pose that has
been obtained as the result of the previous analysis (within a certain tolerance), it is known that the matches
are assigned to the same physical instance. For example, if the right leg is searched within the artificial image
created from the left leg two matches are returned. Because in this example the two components are identical,
the two resulting relative poses &i®,0) ", 0°) and((0,0) ", 18C°). With this information the respective six
matches of each of the both components in the example image can be assigned to three physical instances.

(a) Model image (b) Components

(c) Example image

Figure 5.14: Example to illustrate the problem of multiple matches. From the model image (a) components are ex-
tracted (b) and searched in the example image (c). The matches of the components 1-3 are shown in (d)—(f), respec-
tively, by white numerals. The match with respective minimum cost is selected for each component and displayed in
(g9)—(i). Components 2 and 3 match the same physical instance in the image.

5.3.3.3 Building the Bipartite Graph

Based on the previous considerations, a bipartite graph with the set of fiodaa be generated, which
represents the problem in a structured form. A bipartite graph is distinguished by the propeviysttatfies

V = V1 U Vs, whereVy; NV, = (), and each arc connects a nodelinto a node inl,. Hence, no pair

of nodes that are within the same 3tor V, are directly connected. The graph representing the current
example is shown in Figure 5.15. Here, three set of nodes are displayed. The first tWo setd 1/ ™%
represent the components and the matches of the components in the example image, respectively. Each arc
is weighted by araffinity valueV; , = —V, 4, i.e., the higher the affinity value the more likely the match.
Thus, minimizing the overall cost is equivalent to maximizing the overall affinities. Furthermore, the matches
are grouped according to their associated physical instance, leading to the third set of/f¢tiesvhere

nPhys < pmaet Here,n?"s = |VPh3| is the number of physical instances afd® = [V = S n, is

the total number of matches in the example image. Finally, the bipartite graph is formed by the two sets of
nodesV ¢ and VP and is displayed in Figure 5.16(a). Consequently, each nod@’itf may be the head

of several arcs.
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component 1: component 2: component 3:
upper body left leg right leg

match 3 of component 1

physical instance: physical instance: physical instance: physical instance:
upper body left leg right leg clutter

Figure 5.15: A bipartite graph with two sets of nodes V¢ and V?"* represents the ambiguous matches in the example
image (see Figure 5.14(d)—(f)). V“ is the set of nodes representing the components (three circular nodes in the upper
row). The 16 small oval nodes in the lower row represent the single matches of the components. The matches are
grouped according to their associated physical instance, leading to the set of nodes V*"*¥¢ representing the physical
instances (four big oval nodes in the lower row).

component 1: component 2: component 3: component 1: component 2:  component 3:
upper body left leg right leg upper body left leg right leg
W5
Uy Wi W,

/ / / / /
physical physical physical physical physical physical physical physical
instance: instance: instance: instance: instance: instance: instance: instance:

upper body left leg right leg clutter upper body left leg right leg clutter
(a) Bipartite graph (b) Solution

Figure 5.16: In (a) the bipartite graph of Figure 5.15 is displayed in a condensed form. The result of the bipartite graph
matching contains the most likely component configuration (b) in the example image.

5.3.3.4 Bipartite Graph Matching using Linear Programming

Now, the problem of solving the ambiguities can be formulated as a bipartite graph matching probléeiif from

to VPhs  Informally speaking, in graph theory a matching is a set of arcs, where a node is the head of at most
one arc. This constraint exactly takes the original desire into account that a physical instance is assigned to at
most one component. It should be noted that some physical instance, which may, for example, be caused by
image clutter, may not have a corresponding component. When solving the ambiguities, a second constraint
must be considered: a node is the tail of at most one arc. This ensures that to each component at most one
match, and hence at most one physical component, is assigned. Because of possibly missing components in
the example image, some components may not have a physical instance. Finally, since it is desirable that as
many components as possible are found in the example images, the task is to find a set of arcs with maximum
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size and with maximum overall affinity that simultaneously fulfills the two stated constraints. The result of this
special class of bipartite graph matching is displayed in Figure 5.16(b). Here, the solution includes three arcs
that represent match 1 of component 1, match 1 of component 2, and match 3 of component 3. To convince
oneself of the intuitive correctness of the solution, one can take a look at the respective matches displayed in
Figure 5.12(d)—(f). Now, also component 2 is found at the correct pose.

The graph matching problem can be solved applying methods of linear programming. Linear programming
is concerned with maximizing a linear objective function of continuous real variables, subject to linear con-
straints. Formally speaking, the task is to find a veatet (x1, x>, ..., z,:)! of n® variables that maximizes

the function

a'z — max (5.8)

subject to the primary constraints
;>0 ,Vi=1,...,n" (5.9

and simultaneously subject t8 additional constraints of the form
Ax <b | (5.10)

with a = (a1, az,...,an:)", b= (b1,b2,...,b,)", and then® x n® matrix A (Bronstein et al. 2001).

In order to transfer the bipartite graph matching problem into the form of linear programming, a vasiable
is assigned to each arc in the graph, where 1,... ,n° andk = 1,...,n;. Thex; are the unknowns to
be estimated within the linear programming. If the arc that represents rhaithomponent is part of the
solution, z; ;. will be 1, otherwiser; ;, will be 0. Thus, the objective function (5.8) is

(& n1
Z @Ng - Ty — Mmax , (5.11)
i=1 k=1

3

with the aim of a maximum number of matches with maximum overall affinity. Several additional constraints
must be taken into account. Because the primary constraint only considens that 0, additionallyrn™*
constraints

rip <1 ,Vi=1,...,n° Vk=1,...,n (5.12)

must be formalized explicitly (cf. (5.10)). This ensures that < [0, 1], but a meaningful solution requires

x; 1, to take binary values (i.ex; , € {0,1}) only. Fortunately, this is ensured by a theorem frioneger
programming(Garfinkel and Nemhauser 1972). This also becomes immediately evident when recalling the
linearity of the objective function: the inequality constraints can be geometrically interpreted as a convex
polyhedron in thex™* -dimensional parameter space. Consequently, the position of the maximum is restricted
to lie at a vertex of the polyhedron, in whiah ;. is always either 0 or 1 (ignoring the special case in which
the level lines of the objective function are parallel to an edge of the polyhedron).

Next, the constraint that to each component at most one match is assigned is introduced. Thus, the sum of
all z; . that are associated with the arcs leaving the same component node must be smaller or equal to 1 (cf.
(5.10)):

ng
dmp <1l Vi=1,...,n°. (5.13)
k=1
This results im* additional inequality constraints. However, in the casea 0k 1 the constraint for compo-
nent; can be omitted since it is already represented in (5.12).

The final constraints ensure that each physical instance is assigned to at most one component. This can be
formalized by restricting the sum of afl; ;, that are associated with the arcs ending in the same physical
instance to be smaller or equal to 1. I.ng-t‘“t be the number of matches that are assigned to the physical
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(a) Model image (b) Example images

Figure 5.17: Ambiguities solved by linear programming. The model image and the reference component configuration is
shown in (a). Similar components are distinguished by different line widths for visualization purposes. For each example
image the result of the linear programming assigns an unambiguous pose to each component (b).

instancej and letz; (j,1) be the variabler; ;, that represents thieth match that is assigned to the physical
instancej. Then the constraint can be formalized as (cf. (5.10)):

nmat

J
@i l) <1 V=1, 0" (5.14)
=1

Thus, the resulting linear programming problem is described by the objective function (5.11), which must
be maximized subject to the constraints described by (5.12)—(5.14). Several efficient standard algorithms are
available in the literature for linear programming. One of the most popular representativessistiiex
method(Press et al. 1992, Bronstein et al. 2001). Although it has been proven that its theoretically worst
case runtime complexity is exponential, it merely shows polynomial time complexity on average for practical
problems. Nevertheless, several “true” polynomial-time algorithms have been developed, e.g., (Karmarkar
1984). Since the description of one of these algorithms would go beyond the scope of this dissertation the
reader is referred to the literature. Finally, the result of the linear programming provides a value far, gach

that is either 0 or 1. In the present example,aql). are returned as 0 except 1, x21, andx3 3, which are
returned as 1, as one would expect (see Figure 5.16(b)).

It should be noted that the algorithm is able to handle missing components by choosing the constraints in
the proposed way. However, it requires that at most one instance of the compound object is present in each
example image since otherwise the algorithm would pick out the best component matches from different

instances.

Returning to the original example, the ambiguities are solved for each example image individually according

to the above described method. Hence, a unique pose for each component in each example image is obtained.
The final result for all example images is shown in Figure 5.17. The unique poses are stored withir ttfe
component pose matrix.

By solving the ambiguities during the training of the hierarchical model the correspondence problem that
would arise during the online phase when searching the object parts independently from each other is already
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implicitly solved within the hierarchical model. Thus, one can say that the correspondence problem is shifted
from the online to the offline phase with the considerable advantage that a real-time recognition of compound
objects is made possible.

5.3.4 Extraction of Object Parts

The rigid parts of the compound object may be represented by several single components because of the
over-segmentation during the initial decomposition. Therefore, the initial components that belong to the same
rigid object part, and hence exhibit identical apparent movement over all example images, can be merged
by analyzing the unique poses obtained in the previous section. The merged components represent the rigid
object parts. The strategy comprises two steps. In the first step, for each pair of comperents, the
probability that the two components belong to the same object part is computed in a statistically founded
manner, resulting in a square probability matrix of sifex n¢. In the second step, the probability matrix is
clustered using a pairwise clustering algorithm. The obtained clusters represent the desired object parts.

Let M;, = (o}, ¢}}) with position o] = (ng,yg’f)T be the pose of componert in the model image

and E;, = (of,, ;) with positionof, = (xfl,yfl)T the corresponding unique pose in the example image.
Accordingly, the poses of a second compongrdre M;, and E;,, respectively. Furthermore, assume that
accuracy information is available for each pose. The accuracies are represented by hed¥ariance
matricesK fl and K fz, which contain the variances and covariances,af, andy. If the used recognition

method does not return any accuracy information for the pose parameters, the accuracy must be specified
empirically (e.g., by applying tests with various objects of different size and shape). The reference position and
orientation of the components in the model image are assumed to be error-free. Starting with this information,
the probability that the two components belong to the same object part can be computed.

At first, the parameters andt of the rigid transformation that transforiv;, into £;, are computed (cf. (5.1)

and (5.2) in Section 5.3.3.1). By applying the transformation to the pdgethe projected posé’;, of
componenti,; in the example image is obtained (cf. (5.3) and (5.4) in Section 5.3.3.1). The assumption
that both components belong to the same object part would require that comppaanlti, have moved
identically with respect to the model image, and heEgez E;,. In general, this requirement is not fulfilled,

even for components of the same object part because of the limited accuracy of the object recognition method.
One method to get a kind of probability value for the current pair of components is to compute a distance
measure betweeh;, and E;,. The drawback of this method is that it is hard to decide up to which distance
the components can be treated as belonging to the same part. A better result can be obtained by computing a
real probability value;, ;, € [0, 1]. This is achieved by applying methods of hypothesis testing. Stating the
hypothesist;, = E;, requires

ag, —x5, = 0 (5.15)
v, =y, = 0 (5.16)
o5 —¢f, = 0. (5.17)

1 0 0-1 0 O 0
H = 0 1 0 0 -1 0 y L = (wfg',y%',@fgl,fo,ny,gofg)T,w = 0 . (518)
0O 0 1 0 0-1 0

For further processing, the covariance matfﬁfz’ of the projected pos&;, is needed. It can be obtained
by applying the law of error propagation to the covariance maiffx with respect to equations (5.1)—(5.4):
Kfz’ = AKflAT. Here, A is the 3x 3 Jacobian matrix, which contains the partial derivatives of the pose
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parameters i, , With respect to the pose parameterdif. After some simplificationsA reads as follows:

1 0 Az osin Ap™¢ + Ay o cos Ap™*°
A= 0 1 —Axq 9 cos Ap"™¢ + Ay o sin Ap™* , (5.19)
0 0 1

with Axy 2 = 27} — 27, Ay12 =yl — y;', andAp™© = ¢f — ¢ Now, the associated covariance matrix

of « can be composed:
K¢ o0
oo (58 520

where0 represents a 3 zero matrix.

With the results obtained by the previous calculations all information to perform the actual hypothesis testing
is available. At first, a test valug is computed (Koch 1987):

T = 1(Hx)T(Ierg[,,l,Ier)*1Hx, (5.21)
T

wherer = 3 denotes the number of equations in the hypothesis (5.15)—(5.17). The tes'valu€,, ,, has

a (Fisher)F-distribution with the parametens andn denoting the degrees of freedom. The parameter
corresponds to the number of equationand the parametet to the redundancy involved in computing the
accuracies of the pose parameters. If a valuenf@s not available, e.g., because the accuracy information

has been obtained by empirically tests instead of a preceding parameter adjustment, it is assumed that the
accuracies have been determined by using an infinite large set of samples. Consequentty, and the

F distribution degenerates to thé-distribution withT - » ~ x2. Hence, the probability;, ;, that the two
components belong to the same object part can be written as

T T-r
Piviy =1 / Foa(tydt "= 1- / NI D (5.22)

with F,.,,(t) andx?(t) representing the probability density function of the respective distributions. For prac-
tical considerations, the evaluation of (5.22) can be reduced to the calculation of the associated incomplete
gamma function (Press et al. 1992).

The probability matrix that is obtained by repeating the computations for each directed pair of components is
not symmetric, i.e.p;, i, # Di,i,- 1His at first glance non-intuitive observation becomes evident when exam-
ining the transformation described by (5.1)—(5.4) more closely. The small example in Figure 5.18 facilitates
the discussion. Assume that the pose of the two components shown in Figure 5.18(a) are determined in the
example image shown in Figure 5.18(b). In the first step, the poses of component 1 in the model image and
the example image, respectively, are used to compute the rigid transformation parametégs={i.¢), In

the second step, component 2 is projected into the example image using the calculated transformation (i.e.,
ip = 2). The projected pose of component 2 only differs in orientation from its true pose (see Figure 5.18(c)).
A different observation can be made if component 2 is used to compute the transformation parameters and
component 1 is projected accordingly (i.&.,= 2, i = 1). The projected pose of component 1 not only
differs in orientation but additionally differs in position from its true pose. Hence, in the second case the asso-
ciateddirectedprobability value is significantly lower. In order to receive a symmairidirectedprobability
measure, the minimum of both corresponding directed probabilities is taken since a rigid object simultane-
ously requires that both directed probability values are small. Finally, because a high probability value is
required for components of the same object part in all images, either the minimum value or a more robust
guantile value over all example images is computed. Consequently, another demand on the example images
can be derived. Assume that the minimum probability value is decisive. If in all example images two object
parts accidently move in the same manner, then the algorithm will mistakenly assume that the two parts can
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(a) Model image (b) Example image (i1 =1 (d)ip =2

Figure 5.18: Non-symmetry of relative movement. The poses of the two components that are extracted from the model
image (a) are uniquely determined in the example image (b). In (c) component 2 is projected according to the pose of
component 1. The true and projected pose only differ in orientation. However, when projecting component 1 according to
the pose of component 2, additionally a translation difference occurs (d).
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Figure 5.19: The symmetric probability matrix contains information about the probability that a pair of components belongs
to the same rigid object part (a). After clustering the matrix, ten rigid object parts are obtained (b). It should be noted that
the numbers in (a) representing the components and the numbers in (b) representing the obtained object parts must not
be confused.

be combined in one rigid part. Therefore, different object parts must show a relative movement in at least one
example image in order to be detected as two separate object parts.

In Figure 5.19(a) the finally obtained symmetric probability matrix is shown after computing the minimum
over all example images. One can see that the pairwise probability for belonging to the same object part is
high for the hat and the face as well as for the components forming the upper body. In contrast, the remaining
probabilities are approximately zero.

In the second step the components are partitioned into groupsysters such that the probability between
components in the same cluster is high and the probability between components in different clusters is small.
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The clusters finally represent the rigid object parts. In the following, the computed probability matrix is also
referred to as a similarity matrix, where the similarity expresses the rigidity between components. Many
different clustering algorithms for similarity matrices, or dissimilarity matrices, respectively, have become

available. A comprehensive overview is given in (Jain et al. 1999). To find the rigid object parts, a hierarchical
agglomerative clustering algorithm is applied to the similarity matrix (actually, it is sufficient to take the upper

triangular matrix into account):

=

Initialize n¢ clusters, each containing one component.

2. Find the maximum entry in similarity matrix. If the maximum similarity is less than a thregioit
return clusters and stop calculation.

Merge associated pair of clusters into one cluster.

Update similarity matrix to reflect the merge operation.

. If at least two clusters are left, go to step 2, else return clusters.

o s w

The update of the similarity matrix stated in step 3 means recalculating the similarity values between the
new cluster and the remaining clusters using a celimkage metric The linkage metric characterizes the
similarity between a pair of clusters. The most popular methods either usintjle-link average-link or
complete-linkalgorithm (Berkhin 2002). In the single-link algorithm, the similarity between two clusters is

the maximum of the similarities between all pairs of components drawn from the two clusters. Accordingly,
the complete-link algorithm takes the minimum similarity and the average-link algorithm the average similar-
ity. On the one hand, the complete-link algorithm is too stringent, and hence often fails to link components
belonging to the same object part. On the other hand, the single-link algorithm suffers from a chaining effect:
in spite of a very low probability value the two associated components may be merged into the same cluster
if the low probability is bridged by other components. In contrast, the average-link algorithm has proven to
be a suitable compromise, and hence is applied to cluster the components. Finally, the number of returned
clusters specifies the number of rigid object partswithin the compound object. The result is shown in
Figure 5.19(b), where the probability matrix of Figure 5.19(a) has been clustered using a thg@&hdior

the probability of 0.5 (cf. step 2 of the clustering algorithm). The 18 components have been clustered into 10
object parts. Now the hat and the face form one object part. Furthermore, the components of the upper body
belong to the same object part.

Finally, for the object parts that consist of exactly one component the pose of the component is adopted by
the object part in each example image. For those object parts that consist of more than one component the
poses must be explicitly determined. Simply taking the average pose over all involved components within
a cluster would introduce errors. To avoid these errors, a new rigid model is created for the corresponding
object parts from the model image and used to search the object parts in all example images. This can be
realized in a similar manner as for the components. However, the search can be focused on a very restricted
parameter space since an approximate pose is known. Therefore, the computational effort is negligible and no
ambiguities must be solved. After this step, for each rigid object part the pose parameters in each image are
available and stored within the&e x n? part pose matrix for further analysis.

Some concluding remarks concerning the image rectification should be mentioned. In order to ensure a correct
computation of the probability values, it is necessary that the model image and all example images are free of
distortions. Therefore, it is essential that all images are rectified with the approach presented in Chapter 3 in
order to eliminate radial and projective distortions. Otherwise the distortions would lead to pseudo-movements
between components that belong to the same rigid object part, and hence would result in small probability
values. Consequently, also the search images in the subsequent online phase must be rectified because the
extraction of the relations, which will be described in the following section, is also based on the (rectified)
example images. Nevertheless, in some very time-critical practical cases it may be desirable to refrain from
image rectification. Therefore, if no significant projective distortions are present one can compensate existing
radial distortions using one of two possibilities. The first possibility is to appropriately reduce the threshold
p™™ for the probability value. The second possibility is to appropriately increase the standard deviations of
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the pose parameters, which are used in the hypothesis test. Consequently, small relative movements between
object parts cannot be distinguished from effects caused by the radial distortions any longer. However, if
no small movements must be expected and detected this is a suitable possibility in practice to avoid the
rectification and to further speed up the online phase.

5.3.5 Analysis of Relations between Object Parts

Now that the poses of the object parts are available in each example image, information about the relations
or the relative movements between the single object parts can be extracted. To compute the relation between
object parts; andi,, the pose of object paf} is computed in the local coordinate system of object part

Let (04, ¢4, ) and(o;,, ¢i,) be the poses of the two object parts in an example image or in the model image.
The transformation into the local coordinate system can be described by a rotation Raiitk rotation

anglea and a translation:

0 = —on (5.23)
t = —R(e) o, . (5.24)

The pos€o;,’, i,’) of object parti; in the local coordinate system is obtained as:

OZ'QI = R(a)-04,+t (5.25)
gpig' = @, ta. (5.26)

If equations (5.23)—(5.26) are applied in the model image and all example images the relative movement of
parti, with respect ta; becomes available.

The extraction of the relations between two object parts is exemplified in Figure 5.20. Here, the pose of the
right leg defines a local coordinate system into which the pose of the left arm is transformed for all images.
The reference point of the transformed left arm describes a movement within the local coordinate system. To
guantify the position relation, the convex hull of the transformed reference points could be used. Hence, the
polygon of the convex hull would describe the border of the area within which the reference point of the left
arm is assumed to appear in the local coordinate system. Furthermore, the enclosing angle interval of the
orientation of the transformed left arm is assumed to describe the orientation relation. On the one hand, these
assumptions imply that the example images cover the extrema of all possible relative movements. If it is not
guaranteed that this requirement is fulfilled it is advisable to add appropriate tolerance values manually to
the automatically computed relations. Otherwise object parts could be missed during the search in the online
phase. On the other hand, even one outlier could unnecessarily inflate the convex hull and the enclosing angle
interval, respectively. This would result in a sub-optimal online phase because of an increased computation
time. Although this is less critical in comparison to missing object parts, it sometimes is desirable to avoid
outliers by applying a statistically robust elimination of single extreme poses.

In the later online phase the left arm only needs to be searched within the parameter range described by the
relations if the right leg has been found before. The number of polygon points in the convex hull may take
values that correspond to the number of used images. Thus, the use of the convex hull would be accompanied
by a high computational load within the online phase. This is because all polygon points would have to
be transformed appropriately in order to compute the ROI in which the reference point is to be searched.
Therefore, the smallest enclosing rectangle of arbitrary orientation is used instead to describe the position
relation. Although the convex hull would be able to describe the relations in a less wasteful way, the rectangle
is preferable also because the negligible loss in efficiency is justified by relaxed demands on the example
images.

Finally, the computations are repeated for each directed object pair and the extracted smallest rectangle and the
orientation angle interval are stored within the x nP relation matrix. The smallest rectangle is represented
by its centroide; , , its semi axes:; ;, andb; , , and its orientation3; ;.. The orientation angle interval

11,12’ 11,12 11,027 11,8
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Figure 5.20: Example showing the extraction of the relative movement of the left arm (i2) with respect to the right leg (i1).
The position relation is described by the smallest enclosing rectangle of the reference points, the orientation relation by
the smallest enclosing angle interval.

r,maxr

is represented by its boundarigg; " and ¢};"'*". Apart from the position and the orientation relation
additional information about the mean and the standard deviation of the relative movements are stored. The
result is shown in Figure 5.21.

After this step, the training of the hierarchical model is completed. The result comprises the relation matrix
as well as the ROIs of the object parts. Each ROI refers to the associated edge region of one object part in the
model image. The result represents the input data for creating the hierarchical model.

5.4 Creating the Hierarchical Model

5.4.1 Rigid Models for the Object Parts

The first step to create the hierarchical model is to generate a rigid model for each object part. Although

already during the training models have been created, the orientation range for which the models have been
built does not necessarily coincide with the desired orientation range during the online phase. For example,
the user may introduce prior knowledge about the possible orientation of the compound object in the search
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Figure 5.21: The relations of all pairs of object parts are visualized. Each picture represents an object part ¢; for which
the relative movements of the remaining parts i, are displayed.

image. This is similar to the model creation for rigid object recognition (cf. Section 4.2.6) and may help
to keep the memory requirement of the model small. However, when dealing with compound objects the
guestion arises how the orientation of a compound object is defined. In this dissertation the orientation of the
compound object is equated with the orientation of a user-specified reference object part. For the reference
part the user may specify the orientation range for which the associated rigid model should be created. The
orientation ranges of the remaining object parts are then automatically defined by the relations between the
parts. Because the search order is unknawpriori, a worst case estimation is used to get the orientation
ranges of the remaining object parts.

5.4.2 Optimum Search Trees

Based on the relations, an optimum hierarchical search strategy can be found by minimizing the computational
search effort in the online phase. One major part of the optimum hierarchical search strategy is represented
by the optimum search trees. In this section, the definition and computation of the search trees is explained.

The relation between pait andi; is used to compute the relative search efft ;  that must be spent in
order to search paf} relative to part,. The computation of the search effort depends on the kind of applied
rigid object recognition method. If either the MGHT or the SBM is used the search effort is approximately
given by:

nm,top
ro_9gl Lo . (phmar _ priminy T
Qil,ig _2ai1,i2 2b11,12 (9011,12 Wiy ,ia ) 4nl. 1 A top (527)
2 . (p
22

The search effo®; ;. is proportional to the area of the rectangle multiplied by the size of the orientation angle
interval, both given by the relations. Hence, this product represents the size of the continuous 3D parameter
space to be scanned. Because of the quantization of the parameter space and the use of image pyramids,

the search effort of paib is reduced by a factor that depends on the number of pyramid Ieﬁlzebfnd the
guantization of the orientation on the top pyramid level given by the orientatiormpéj?. Finally, the search

effort increases linearly with the number of model edge pohﬁ;té"p that remain at the top pyramid level. It
should be noted that the search effort is not symmetric,e., # Q7 , (for details see Figures 5.18 and
Figure 5.21 of Sections 5.3.4 and 5.3.5, respectively).
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(a) Directed graph (b) Subgraph of (a) (c) Optimum search tree

Figure 5.22: The object parts and the relations between them are represented in a directed graph (a). For illustration
purposes a small subgraph is selected showing four nodes and the corresponding weights (b). The minimum spanning
arborescence of the graph represents the optimum search tree (c). Here, part 9 was selected as the root part.

Assume that parf serves as root part, i.e., partis the only part that will be searched within the entire
search space during the online phase. Then, the task for finding the optimum hierarchical search tree for the
preselected root pajtcan be equated with minimizing the overall relative search eftort

nP
Qg = Z# Q;(i),i — min , (5.28)
i=1,i#]

whereQ;(l. i denotes the effort to search object parélative to its predecessor paiti). By definition, the

root part oﬁoes not have a predecessor part, and hence is excluded from the calculation. Informally speaking,
this optimization problem means to find a predecessor part for each object part suﬁl‘} thahinimized.
Furthermore, it must be ensured that in the online phase the pggé) dfas already been determined before
searching for part. Consequently, the search in the online phase can be represented by a tree, where the root
node represents the root part, which is searched within the entire search space, and the other nodes represent
the parts that are searched relative to their associated predecessor part.

To solve this optimization problem, one may think of the object parts and the relations between them as a
complete directed grapf(V, E), whereV denotes the set of nodes witti| = n? and E is the set of arcs

with |E| = nP(n? — 1). A complete directed graph is a directed graph where each two ripdesl i, are
connected by the two ards;,i,) and (i2,i1). The nodes in the graph represent the object parts, the arcs
represent the relations. The aig, (») is weighted by the search effcfr)j-l’i2 and the arci, i1) is weighted

by QF . . Figure 5.22(a) shows the corresponding graph of the example.

22,11 °
The optimum search tree can now be obtained by computing the minimum spanning arboresc¢emgthof
respect to a certain root nogdeln the relevant literature, the teramborescencés used synonymously with the
termtree, however, itimplies that the tree has directed arcs. The minimum spanning arborescence in a directed
graph is defined as a directed spanning fié®’, E’), whereE' is a subset of such that the sum at; ,, for
all (i,42) in £ is minimized. The directed spanning tree is defined as a graph that connects all nodes with
nP — 1 arcs, i.e., each node, except the root node, has exactly one incoming arc. To illustrate this definition, in
Figure 5.22(b) a detailed view of a small subgraph with four nodes is shown. After selecting part 9 as the root
part, the minimum spanning arborescence is calculated. The result is shown in Figure 5.22(c). It is easy to
convince oneself that in the result three arcs are contained, where each non-root node has exactly one incoming
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Figure 5.23: All possible spanning arborescences of the subgraph shown in Figure 5.22(b) with part 9 as root part

arc and that the overall sum of weights associated with the result is 10735. This is the minimum weight among
all possible directed spanning arborescences rooted at part 9. For illustrative purposes Figure 5.23 shows all
possible spanning arborescences of the respective subgraph. As can be seen, there are 16 different ways to
connect the three nodes to the root node. The result of Figure 5.22(c) suggests that after the upper body (part 9)
is found in the image, it is most efficient to search the left arm (part 1) and the left leg (part 5) relative to the
upper body and to search the left hand (part 3) relative to the left arm.

The minimum spanning arborescence can be seen as the equivalent to the well-known minimum spanning
tree in an undirected graph (@, ;, would be symmetric one would obtain a undirected graph). The two
most prominent algorithms to efficiently compute the minimum spanning tree are the Kruskal and the Prim
algorithm (Graham and Hell 1985, Clark and Holton 1994). Unfortunately, these algorithms cannot be used
or even extended to cope with directed graphs. Solving the problem of finding the minimum spanning ar-
borescence in a directed graph is much more complicated in comparison to solving the equivalent undirected
problem. A polynomial algorithm for the minimum spanning arborescence was independently proposed in
(Chu and Tseng-Hong 1965), (Edmonds 1967), and (Bock 1971). In (Tarjan 1977) and (Gabow et al. 1986),
efficient implementations of the algorithm are presented. The implementation used in this dissertation is pre-
sented in (Fischetti and Toth 1993). It makes use of simple data structures leading to a run time complexity of
only O(n?), wheren is the number of nodes in the graph. For a detailed description of the algorithm or of the
implementation the interested reader should refer to the cited literature.

Root _

Qr =39-10° Qr =29.10° O =39-10° Op =29-10° Qr, =30 - 103

Figure 5.24: The minimum spanning arborescences for each of the ten object parts serving as root part and the associated
overall search efforts are shown. Additionally, the relations between two adjacent nodes are superimposed.
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It is obvious that for different root partsdifferent minimum spanning arborescences are obtained with dif-
ferent overall weight@;. Therefore, for each root part the associated minimum spanning arborescence is
computed. Figure 5.24 shows the result for each of the ten object parts serving as root part. It should be
noted that although in this example the same two object parts are directly connected in all minimum spanning
arborescences it is not necessarily the case in general.

5.4.3 Root Part Ranking

To complete the optimum hierarchical search strategy, the question remains, which part to choose as the root
part. One criterion for a suitable root part is a small overall search e#fprof the associated minimum
spanning arborescences.

However, Q;T only describes the search effort that must be spent during the relative search. Therefore, the
effort Q;O"t that must be spent to search the root gatself must be considered as a second criterion:

. nTtop
ngm =R-C- (Sognam B Sogﬁm) ' nl,flj top ’ (5.29)
4% - Ay
J
where R andC' are the number of rows and columns in the search image, and hence describe the position

search range for the root object part, while/"** — @}”m) describes the orientation angle search range.

As a third criterion the uniqueness of the root part must be considered. The root part should exhibit as few
symmetries and as few similarities to other object parts as possible. Assume that the left leg (part 5) serves as
root part in the online phase and is searched within the full orientation search range. Because of its rotation
symmetry and its similarity to the right leg, it would be found at four different poses (ignoring possible clutter

in the search image). When looking at the associated search tree the upper body and the left foot must be
searched relative to each of the four poses of the left leg. Consequently, the search effort in the online phase
increases with the number of symmetries and similarities. Therefore, the symmetries and similarities of all
object parts are determined using the analysis described in Section 5.3.3.2, which matches object part
itself and to all other object parts. Assume that object pdras been foun@tjym times on itself and@im

times on other object parts during the analysis. Then, the search effort of the relative @?amh;t be
multiplied by (njym + nj.im) in order to approximately estimate the influence of the non-uniqueness of the
root part on the search effort. One could argue that it is sufficient to only multiply the relative search effort of
the parts that are adjacent to the root part since the search can be aborted if the adjacent parts are not found.
However, the multiplication of the overall relative search effort is legitimated since the object recognition,
which will be described in Section 5.5, should be able to cope with occlusions. Thus, the search cannot be
stopped if one object part is missing.

Finally, the search effo; that is associated with the root paris obtained:

Qj — Q;oot 4 (nsym + n;im)Qr

; v (5.30)

By sorting the possible root parts with respectpin ascending order one obtains a root part ranking that
expresses the suitability of all object parts to serve as the root part. In Table 5.1 the respective ranking of
the example is presented. It can be seen that the head (part 10) and the upper body (part 9) are best suited
to serve as the root part. This is because they both do not show any rotation symmetry or similarity to other
object parts and because five pyramid levels can be used during the search. In contrast, taking one of the two
hands (part 3 or part 4) as root part would result in the highest search effort: they both exhibit symmetries and
mutual similarities. Furthermore, only three pyramid levels can be used because of their small size.

After this step, the creation of the hierarchical model is completed. However, a manual selection of the root
part by the user is still reasonable. This is because the selection of a suitable root part also depends on the
application (cf. Section 5.5.1). Therefore, the root part ranking is returned in order to help the user to select the
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appropriate root part for his specific application. Consequently, the search trees for all root parts are stored in

the hierarchical model. In the online phase, the search tree that is associated with the user-specified root part
is selected from the hierarchical model and used to search the object. Summing up, the hierarchical model

consists of the rigid models of the object parts, the relations between the parts, and the hierarchical search
strategy. The hierarchical search strategy is represented by the optimum search trees, which are given by the
minimum spanning arborescences, and the root part ranking.

Rank\\1\2\3\4\5\6\7\8\9\10\
Rootpartj| 10/ 9| 7 | 8| 5|6 | 1|2 ]| 3 4
Q;-10°| 4 |5]21|21]26]27|32]32] 140 140

Table 5.1: The root part ranking expresses the suitability of the object parts to serve as the root part. Parts 10 and 9 are
best suited, whereas parts 3 and 4 would result in the highest search effort.

As a last point, a special case should be discussed that, however, is rather rare in practice: assuming a com-
pound object that consists of identical object parts, then no distinct root part can be determined. For example,
a chain consists of several identical links. In this case, the presented approach cannot be used because solving
the ambiguities during the training would fail. This is because there is no preferable configuration of the links
since the overall configuration itself is ambiguous. However, even if a hierarchical model is available its use
would not be advisable because the root part would be found as many times as links are contained in the chain.
Then, for each found instance of the root part the hierarchical search would be started, which leads to a high
computational effort. Fortunately, in this case the use of the hierarchical model is not necessary. In contrast,
it is sufficient to search only one single link in the image. The search already returns all instances of links,
and thus the matches of all object parts. Hence, no further (relative) searches need to be performed. However,
the correspondence problem still needs to be solved. It should be noted that in most cases when dealing with
objects that consist of identical parts, it is possible to determine an auxiliary root part. For example, if several
identical modules on a circuit board must be recognized, it is desirable to use the hierarchical model, and
hence profit from the inherent determination of the correspondence. This can be achieved by including an
additional object part in the compound object, e.g., a different module, a corner of the circuit board, a fiducial
mark, or any other print on the board. The additional object part can then serve as the root part.

5.5 Object Recognition

After the hierarchical model has been generated in the offline phase, it is used to efficiently search the com-
pound object in an arbitrary search image during the online phase. In addition to the high efficiency, the in-

herent determination of the correspondence of the object parts within the hierarchical model makes a solution
of ambiguities during the online phase unnecessary. Section 5.5.1 outlines the principle of the hierarchical
object recognition. Section 5.5.2 describes extensions for the handling of special problems that can occur
during recognition.

5.5.1 Principle of Hierarchical Object Recognition

The recognition of the compound object in a given search image is based on the hierarchical model. As
additional input data the user may specify the root part that should be used during the search if it differs from
the first entry in the root part ranking. Furthermore, the user may restrict the search space within the search
image. The recognition of the compound object is then split into two steps. In the first step, the root part

is searched within the user defined search space. In the second step, starting from the pose of the root part,
the poses of the remaining parts are determined during the relative search according to the search tree that is
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associated with the specified root part. As another parameter, the search order that is applied to the search
tree can be chosen to be, e.g., breadth-first search or depth-first search (see Figure 5.8(a) in Section 5.2). The
search order assigns each object part a number that describes its position within the search order.

Despite the automatically computed root part ranking, a manual selection of the root part may still be rea-
sonable. This is because the computation of the root part ranking is only based on the endeavor to minimize
the search effort. However, the selection of the root part not only affects the computation time, but the root
part plays another decisive role in the case of occlusions or missing object parts: it is important that the root
part of the compound object instance in the search image is recognized. If the root part cannot be recognized,
e.g., because of occlusions or because it is missing in the search image, then the recognition of the remaining
parts becomes more difficult. Therefore, in case severe occlusions or missing parts must be expected, the
user should ensure to select a root part that is not only accompanied by a small search effort but also by a
high possibility to be recognized. Because this selection depends on the object and the application, and thus
requires background information, it cannot be automated. Nevertheless, for the case that no such prominent
object part can be specified, e.g., because all object parts are approximately equal, in Section 5.5.2.4 a solution
that is able to cope with the case of a missing root part is proposed.

In the following, the principle of the hierarchical recognition is explained in more detailg;Let=1,...,n?

be the object part at positiarwithin the search order and, i = 2,...,n? be the associated predecessor part
within the search tree. For example, the root part is at the first position within the search order, and hence is
represented by;. It should be noted that the root part does not have a predecessor part in the search tree.
The aim of the recognition is to return one hierarchical match for each instance of the compound object in the
search image. A hierarchical match comprises the matches of all object parts that belong to the same object
instance. Therefore, it contains at most one pose for each object part. Each match of the root part instantiates
one hierarchical match, which at this time only contains the respective pose of the root part. Then, according
to the search order the next object pgris successively selected. The search space forgpéstcalculated

based on the pose of the associated predecessop;parhe search space is split into the position search
space for the reference point and the orientation search space. The position search space is described by the
rectangle that is given by the position relation betweenpaahdg; transformed according to the pose of part

pi- Accordingly, the orientation search space is given by the transformed orientation relati¢a; Lef, ) be

the pose of the predecessor part in the search image. Then the position search space;fix negtesented

by the rectangle that is described by the parametgtsi,,, b,,, andg,;:

cy = o, +R(pp)c, . (5.31)
ag, = ap, 4 (5.32)
by = by g (5.33)
By = ©p, +Bpa - (5.34)

The orientation search space is described by the angle int[e:rggéﬂ, ]

Co = Pt (5.35)

Yo = Pt ol (5.36)
Finally, partg; is searched by scanning the computed search space. The obtained pose is stored within the
hierarchical match. If there are several hierarchical matches (e.g., because multiple instances of the root

part have been found) the search space is computed for each hierarchical match separately. This process is
successively repeated for all object parts.

To rate the quality of the hierarchical match, a score valie computed by weighting the returned score
valuess,, of the single object parts:

np
S=Y fauSq » (5.37)
=1
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wheref,, = w,/ Z;T‘:pl wg, represents the weighting factor of object parandw,, is the respective weight.

If an object part could not be found its score value is set to 0. Because the score values of the single parts
approximately indicate the fraction of occluded edge pixels, it is reasonableutq, detthe number of model

edge pixels of the associated object part. Thus, the contribution of a single part to the score is proportional
to the number of its model edge pixels. According to the recognition of rigid objects a minimum score value
s™" can be set by the user. Consequently, a hierarchical match can be discardgdlattet parts have been
searched whenever the following condition holds:

545 <s™ (5.38)

wheres; = Z{:l fq:54; denotes the score that is obtained from the parts that have been searched already.
The score that is at most reachable by the remaining parts is denoted-a ;-ij“ fq;- For this, perfect
matches, i.e.s,, = 1, are assumed for the parts that still have to be searched. By evaluating (5.38) after each

searched object part, unnecessary computations can be avoided, which leads to an increased efficiency.

Finally, for each found instance of the compound object the precise poses of all found object parts that belong
to the associated hierarchical match are returned. Furthermore, the score value of the compound object as well
as the score values of all object parts are returned.

A difference between the SBM and the MGHT should be noted when dealing with restricted search spaces
as in the case of the hierarchical search. Because the MGHT shows inherent translation invariance, it is
difficult to benefit from the prior information about the object position given by the position search space. This
problem is similar to the problem that occurs when tracking matches through the pyramid (cf. Section 4.2.3.2).
Unfortunately, the principle of the blurred region cannot be applied in the proposed way because the position
search spaces of the object parts vary in dependence on the corresponding predecessor part. This would
require an exploding number of blurred regions to store within the hierarchical model. In order to avoid
huge amounts of required memory, the domain restriction must be either computed in the online phase or
completely neglected. However, both alternatives increase the computation time. Hence, using the SBM
for the recognition of compound objects is more efficient than using the MGHT. Apart from that, similar
results can be expected for both approaches, however, a lower robustness against changes in brightness must
be accepted when the MGHT is used.

5.5.2 Practical Extensions
5.5.2.1 Missed Object Parts

Sometimes it may happen that one object part cannot be found. Consequently, its pose is not available to
restrict the search space for the object parts that reside directly below the missed object part in the search tree.
On the one hand, it should be avoided to search the respective parts within an unrestricted search space. This
would lead to an increased computation effort and to possibly ambiguous matches. On the other hand, the
approach should be robust against occlusions. Therefore, three different strategies that make the search for
an object part possible even if the pose of the predecessor is unavailable have been implemented: The first
strategy is to step back in the search tree until a found object part is available. The search is then performed
relative to the pose of this object part. Thus, in the worst case the search is performed relative to the pose
of the root part. The second strategy is to perform the relative search from the pose of the (already found)
object part from which the search effort of the relative search is minimal. In a third (trivial) strategy all object
parts that reside below the missed object part in the search tree are not searched at all but are also treated as
missing. The second strategy is applied as default. However, the user may select the appropriate strategy for
his specific task.

In some applications it is desirable that a pose is obtained even for the object parts that could not be found.
Based on the poses of all found object parts within the hierarchical match the most likely pose of a missed
object part can be calculated. For this, a weighted mean pose is calculated using the mean and standard



5.5. OBJECT RECOGNITION 123

deviation of the relative movements that have been computed in Section 5.3.5. From the pose of one found
object part and the mean value of position and orientation relation to the missed part, the mean pose of the
missed part can be calculated. This calculation can be done with respect to each found object part. The most
likely pose is obtained by computing the weighted mean of all obtained mean poses, where the weight is

proportional to the inverse variance of the relative movement.

5.5.2.2 Multiple Matches

In some cases it may happen that multiple instances of one object part are found despite the restricted search
space. In this case the current hierarchical match is duplicated according to the number of found matches.
Each match of the object part is then assigned to a different hierarchical match. The search is continued for
all hierarchical matches.

Figure 5.25 shows a small example to illustrate the search for a compound object. It should be noted that
the root part (upper body) is symmetric, i.e., its pose is ambiguous, and that in the search image shown in
Figure 5.25(b) a clutter object is present that is similar to the left hand.

(a) Hierarchical model (b) Search image

Figure 5.25: A compound object consisting of five object parts. In (a) the hierarchical model is visualized. Additionally,
the position in the search order of each part is displayed. In the search image (b) a clutter object is present.

The progress of the search is shown in Figure 5.26. At first, the root part, which is the upper body in this
example, is searched within the entire search space. Because the root part is rotationally symmetric, it is
found twice. Thus, two hierarchical matches are initialized. They are shown in the first row of Figure 5.26.
Because the contribution of the upper body to the edge pixels in the entire compoundfgbjsd.6, the

scores is 0.6.

The next part in the search order is the left arm. The respective search space in both hierarchical matches is
additionally visualized in the first row. Because of the symmetric constellation of the arms with respect to
the upper body, the left arm is found in both hierarchical matches (see second row of Figure 5.26). However,
the search for the left hand leads to different results in both hierarchical matches. The search using the first
hierarchical match results in two matches for the left hand, because of the additionally present clutter object in
the image. Consequently, the first hierarchical match is duplicated once, yielding a third hierarchical match.
The two matches of the left hand are then assigned to the first and the third hierarchical match, respectively.
Because the score returned for the clutter object is less than 1, the score of the third hierarchical match is only
53 = 0.78 in contrast t@3 = 0.8 of the first hierarchical match. The search for the left hand using the second
hierarchical match remains unsuccessful. The right arm, which is the next part in the search order must be
searched relative to the pose of the upper body. However, the pose of the upper body is identical in the first
and the third hierarchical match. Therefore, the search needs to be performed only once for both hierarchical
matches. This prevents an increase in computation time when dealing with multiple matches. In contrast,
the search for the right arm in the second hierarchical match must be performed. The last step is the search
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Figure 5.26: Search for the compound object using the hierarchical model. Found instances of object parts are rep-
resented by white edges. The orientation of the match is displayed as a white arrow. The search space is displayed
using white rectangles and circle sectors. After the j-th part has been searched, the score §; is computed (f;; = 0.60,
fae = 0.15,f4, = 0.05, fg, = 0.15, and fg; = 0.05).

for the right hand. Finally, three hierarchical matches are returned. The first and the third hierarchical match
only differ in the match of the left hand. Therefore, the two corresponding sceresl(00 ands = 0.98)

differ only slightly. The second hierarchical match represents a rotated instance of the compound object with
occluded hands. Consequently, the corresponding score is lewe0(90).

5.5.2.3 Elimination of Overlapping Matches

Sometimes it is desirable that hierarchical matches that represent the same instance of the object are elim-
inated. In the previous example (cf. Section 5.5.2.2), only the first hierarchical match should be returned.
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Therefore, in a subsequent step after the search, the hierarchical matches are checked for mutual overlap.
If the overlap fraction between two hierarchical matches exceeds a user-specified threshold the hierarchical
match with the lower score is eliminated. To compute the overlap fraction, the object part matches are rep-
resented by their smallest enclosing rectangle. For each hierarchical match the union region of the smallest
enclosing rectangles of all object part matches is computed. The overlap is computed by intersecting the union
regions of two hierarchical matches. The overlap fraction is then obtained by dividing the area of the intersec-
tion region by the area of the smaller of both union regions. In order to save computation time, one can take
profit of the fact that the overlap fraction for duplicated matches is 1 at the time of duplication. Therefore, it

is sufficient to only check those object part matches for overlap that are different. Furthermore, the smallest
enclosing rectangles for each object part can be computed in the offline phase. For the overlap check in the
online phase they only need to be transformed according to the pose parameters of the object part matches.
This facilitates an efficient computation of the overlap fraction.

5.5.2.4 Missed Root Part

An important point to discuss is the treatment of a missed root part. In some applications it cannot be ensured
a priori that the root part of each instance of the compound object is found. Thus, the hierarchical search
cannot be started. Consequently, the compound object cannot be found by the approach even if all object parts
except the root part are visible.

Therefore, if the user specifies that the root part may be missing a special extension of the approach is applied.
In this extension the search is not restricted to the use of a single root part. In contrast, the search is performed
by successively selecting different root parts in accordance with the root part ranking. For each selected root
part the associated search tree is used to search the remaining parts. The number of root parts that must be used
can either be selected by the user or determined automatically based on the minimum score. If, for example,

k root parts have been searched it is still possible that some instances of the compound object have not been
detected yet. This is possible for object instances with exactly thedgect parts occluded. Consequently,

the score that can maximally be achieved for such object instances corresponds to the sum of weighting factors
of the remainingn? — k root parts. Thus, no further root part needs to be searched when this sum is smaller
than the user-specified minimum score.

Some particularities that arise when using several root parts should be discussed in the following. Firstly, the
increasing computational effort must be mentioned. Fortunately, some matches of the current root part can
be immediately eliminated without instantiating a new hierarchical match. This is done by checking whether
a match of the current root part is identical to an already found match during the relative search of a previ-
ously used root part. The respective matches of the current root part can then be eliminated without the risk
of missing an instance of the compound object. Thus, the computational effort can be reduced considerably.
Nevertheless, the effort is still higher in comparison to the use of only a single root part. Therefore, the com-
putation time is compared to the brute-force method that searches all object parts in the entire search space:
Let Q2 be the average computational effort of searching an object part in the entire search space. Accordingly,
let Q" be the average computational effort of searching an object part relative to another part in a restricted
search space, and her@é < (), in general. Furthermore, let™ be the number of object instances in the
search image. The computational effort using the proposed hierarchical model with the extension of missing
root parts can then be estimated as:

(1 — s™™MnPQ + n™ (nP — Q" . (5.39)

Here,(1 — s™")nP is the number of root parts that must be searched within the entire search space to ensure
that all object instances with a score exceediff§f® are found. For each found instance the relative search
must be performed far? — 1 object parts. In contrast, the computational effort using the brute-force method
can be estimated as:

nPQ . (5.40)
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Consequently, the search using the hierarchical model is more efficient than the brute-force method if the
following condition holds (assuming the worst casebf— oc):
Q’r‘

e (5.41)

5 Q

This condition is not very restrictive, and hence fulfilled in most applications. For example, assuming that
at least 50% of the compound object is visibg'(* = 0.5) andQ"/Q = 0.05, which is still a high ratio,

the search using the hierarchical model is faster than the brute-force method if fewer than ten instances are
present in the image. Apart from this it should be kept in mind that the substantial advantage of the inherently
determined correspondence of the object parts still remains even when using several root parts.

A last point that must be taken into account when dealing with several root parts is the possibility to introduce
prior knowledge by the user about the pose of the first root part in the search image. This knowledge is used
to restrict the search for the first root part. To take advantage of this prior knowledge when performing the
search for other root parts, the search space for the other root parts must be explicitly determined. For this,
the restricted search space of the first root part is propagated through the search tree that is associated with
the first root part. The propagation is performed by successively accumulating the relative search spaces to
the user-specified search space over the path in the search tree that starts at the first root part and ends at the
current root part. The orientation search space is trivially computed by successively adding the orientation
search spaces. Figure 5.27 shows the more complex calculation of the position search space of the second root
part based on the user-specified search space of the first root part. In Figures 5.27(a)—(d) the exact calculation
is shown in detail. The user-specified orientation search péte, ©*] for the first root part is propagated

to the range of reference positions of the second root part.
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Figure 5.27: Computation of the position search space for the second root part based on the user-specified search space
for the first root part. The exact computation is shown in (a)—(d). Because of the expensive computation, an approximate
solution is shown (e)—(Q).

For one specific position of the first root part within the user-specified position search space the circular arc
on which the centroids of all rectangles must fall that describe the position of part 2 can be calculated. Let
1,2 = arctan(y12/x1,2), wherez » andyy » are the coordinates of the vecidf, that describes the relative
position of part 2 with respect to part 1. Then the circular arc is defined by the rm% and the angle
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interval [p*, ¢°], with the start angle® = o2+ 7" and the end anglg® = ¢; 2+ ©7'**. Ateach point on

the circular arc the rectangle that describes the relative position search range of part 2 is superimposed. The
envelope of all rectangles describes the position search space of the second root part based on one specific
position of the first root part (see Figure 5.27(c)). To take all possible positions of the first root part into
account, the resulting image region must be enlarged by using the Minkowski addition (Pratt 2001) with the
user-specified position search space of the first root part as structuring element. The reference point of the
structuring element must correspond to the previously specified position of the first part. The result is shown

in Figure 5.27(d). One can see that the exact computation of the position search space is rather expensive.
Therefore, an approximate solution is proposed. The single steps are shown in Figures 5.27(e)—(g). The
user-specified search space for the root part as well as the relative search spaces are approximated by the
smallest enclosing circles with radiug andr,. Consequently, the search region for the second root part can

be represented by an annulus sector with an inner radijis;gf| — r1 — 2, an outer radius dfcj ,|| +71+72

and an angle interval dfy®, ¢¢|. Finally, two semi-circles with radius; + r, must be appended at both

ends of the annulus sector. Although the resulting approximate position search space is larger than the exact
solution, it can be computed much more efficiently. Therefore, one can take profit from the user-specified
prior information about the position and orientation of the first root part even when using other root parts.

5.6 Examples

Because of the novelty of the proposed approach for recognizing compound objects, there exist no compara-
ble recognition methods, and hence a comparison with the performance of other approaches is not possible.
Fortunately, many properties of the compound object recognition approach are inherited from the underlying
rigid object recognition approach. l.e., in principle the results of the evaluation in Section 4.4 can be trans-
ferred. However, a remark on the robustness should be annotated. The calculation of the score value of the
compound object differs from the calculation in the rigid case. This influences the robustness of the approach
since the score value is used to decide on the presence of an object instance. Furthermore, the user-specified
parameters influence the robustness of the approach: depending on the selected treatment of missed object
parts, and depending on the handling of missing root parts, the robustness against occlusions changes. This
should be kept in mind by the user when specifying the corresponding parameters. Nevertheless, it is possible
to evaluate the computation time in comparison to the brute-force method that searches all object parts in
the entire search space independently from each other. In this section, selected examples that emphasize the
considerable advantages of the proposed approach are presented. The image size in all exampld8 640

All computations are performed on a 2 GHz Pentium 4.

In the first example (see Figure 5.28), the company logo that was already introduced in Figure 2.6 is used as
the compound object. The model image, a ROI that contains the entire print on the pen clip, and 10 example
images are passed as input data to the process of training the hierarchical model. The example images show
the relative movement of the light gray letter with respect to the dark gray letters. As the first intermediate
result the automatically found components are visualized in Figure 5.28(a) by superimposing their edges on
the model image in white. For each letter a separate component was detected. During the pose determination
of the components in the example images no ambiguities occurred because the components are free of any
similarities or symmetries. In Figure 5.28(b) the extracted object parts that are obtained from clustering the
similarity matrix are shown. The threshold for the minimum probabjityf” was set to 0.5. As one would

expect, the dark gray letters are clustered into one rigid object part. Although no rectification was applied to
the images in this example, the relative movement between both parts was large enough to be easily separated
from pseudo movements that are caused by the radial distortions. The complete training process took 25 s.

In the next step, the hierarchical model was created. Because the logo is expected to appear only in a very
limited orientation range, the model was created in a small angle interval. This was done by restricting the
expected orientation angle of the part that represents the dark gray lette/20fo+20°]. In Figure 5.28(c)

the object parts are represented by their reference points. The part that represents the dark gray letters was
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Figure 5.28: Recognition of the print on a pen clip. The pose of the light gray letter varies with respect to the dark gray
letters.

selected as root part by the approach. One can see that the relative movement of the light gray letter is very
small in position as well as in orientation. Because only two object parts are involved in this example, the
search tree is degenerated to only two nodes with one single connection (displayed as a bold black line).
Generating the hierarchical model took 6 s.

Finally, the hierarchical model was used to search the object in 20 different search images that are distinct from
the example images that were used to train the hierarchical model. Figures 5.28(d)—(g) show four examples,
in which the returned poses of the parts are visualized by their edges superimposed in white. The average
computation time of the recognition process was 21 ms if one object instance was present in the image and
27 ms if two instances were present (as, e.g., in Figures 5.28(f) and (g)). The recognition of the root part took
15 ms, the recognition of the second part for each instance about 6 ms. In contrast, the independent recognition
of both parts without using the hierarchical model would take about 30 ms (one instance) and 37 ms (two
instances), respectively. Therefore, a speed-up of about 40% is received when using the hierarchical model.
Although in this case the improvement in computation time that is obtained by the use of the hierarchical
model is not enormous, there is still the additional advantage of the inherently determined correspondence.
Thus, whenever more than one object is present in the image, the correspondence between the found object
part instances and the correct compound object is implicitly given.

The second example (see Figure 5.29) deals with the circuit board that was introduced in Figure 2.8. In this
example, the object parts are specified manually by the user because obviously an automatic extraction of
the components using the proposed approach would fail. Therefore, instead of one ROI, now five ROIs are
passed to the algorithm, each representing one object part (see Figure 5.29(a)). The associated object parts’
edges are shown in Figure 5.29(b). To train the hierarchical model, 12 example images were provided. Also
in this example no rectification was needed. Because two of the five electronic modules are identical (part 3
and part 5), the approach had to solve the occurring ambiguities during the training. It took 24 s to train the
hierarchical model. The creation of the hierarchical model was restricted to an orientation angle interval of
[-45°, +45°]. The final hierarchical model is displayed in Figure 5.29(c). Part 2 was recommended by the
approach to serve as the root part, from which part 4 is searched. The pose of part 4 is then exploited to restrict
the search space of part 1, from which finally part 3 and part 5 are searched. Because of the relatively small
size of the object parts, the model creation only took 3 s.
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Figure 5.29: Recognition of electronic modules on a circuit board. The relative position and orientation of the modules on
the board vary slightly.

In the online phase, the compound object was recognized in several search images. On average, it only took
20 ms to find the object, of which 14 ms must be attributed to the recognition of the root part and only 6 ms
to the recognition of all remaining parts. In comparison, without using the hierarchical model the search
would take 240 ms and the correspondence would remain unsolved. Thus, an impressive speed-up of 1100%
is obtained. This example demonstrates the obvious substantial advantages of the hierarchical recognition.

In the third example (see Figure 5.30), the print on the label that was already shown in Figure 2.7 is used
as the compound object. However, in this example the camera was not mounted perpendicular to the object
plane, resulting in severe projective distortions (see Figure 3.6). Therefore, a camera calibration was necessary
in order to rectify the images. As described in Section 3.5, 15 images of a calibration target were taken to
calculate the rectification map (see Figure 3.7). The rectified images were defined by choosing an image
size of 515x 527 with a pixel size of 0.32 mm. The camera calibration took 2 s and the computation of the
associated rectification map 120 ms.

Based on the rectified model image and the rectified example images the training was started. The compound
object was defined to be the print on the label, and hence a rectangular ROI that encloses the entire print in the
model image was passed to the training algorithm. The rectified model image together with the result of the
initial decomposition is shown in Figure 5.30(a). One can see that each letter of the string “BEST BEFORE
END” and each digit of the date “29/11/02” represents one component. Additionally, the inner and the outer
rectangle of the black border were found to constitute two separate components. 18 rectified example images
were made available and were passed to the training.

The object parts that were returned after analyzing the example images are displayed in Figure 5.30(b). Again,
the threshold for the minimum probability was set to 0.5. Because the letters of the string do not exhibit any
relative movement, they were clustered into one rigid object part. The same holds for the inner and the outer
rectangle of the border. Furthermore, the date was grouped into three rigid object parts. In this example,
several ambiguities were successfully solved by the algorithm: both rectangles, the letters “S”, “N”, and “O”
as well as the digit “0” and the slash “/” show rotation symmetry, and hence are found at least twice in each
example image. Furthermore, there are several mutual similarities between different components: the letters
“B",“E", as well as the digits “1”, “2", and the slash “/” appear more than once. Additionally, the letter
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Figure 5.30: Recognition of the print on a label under projective distortions. The rectangular border, the string, and three
parts of the date move with respect to each other.

“O” and the digit “0” show high similarity. Because of the large number of components, it took 12 minutes

to train the hierarchical model. One possible way to speed up the training is to restrict the search space of
the components. Here, the example images have been acquired such that the orientation of the components
varied only slightly. Thus, the orientation search space during the training could be restricted to the interval
[—20°, +-20°], which resulted in a computation time of 3 minutes. Furthermore, ambiguities due to orientation
symmetries are avoided.

The subsequent creation of the hierarchical model was not restricted to an orientation range, but performed
within the full orientation range of 360 The resulting search tree and the associated relations are displayed in
Figure 5.30(c). The rectangular border of the label was recommended by the approach to serve as the root part
despite its rotation symmetry. Indeed, the search would be slower if the string would be chosen as root part
because the number of associated pyramid levels of the string is one less than that of the rectangular border.
The suggested search tree implies to search the string and the middle part of the date relative to the pose of
the border. Finally, based on the pose of the middle part of the date the two remaining parts of the date are
searched. The computation time to create the model was 16 s.

The online phase in this example consists of the rectification of the search image and the subsequent search
with the hierarchical model. In the Figures 5.30(d)—(g), four search images are shown. To validate the resulting
matches, the edges of the found object parts are projected back from the world coordinate system into the
original search image and displayed in white. One can see that despite the severe distortions and the relative
movements of the object parts the compound object was correctly recognized in all search images. The
complete online phase took only 51 ms on average: 8 ms for the rectification, 33 ms for the search for the
root part, and 10 ms for the relative search for the remaining parts. Without the hierarchical model the search
would take 512 ms. Consequently, the speed-up that is achieved in this example is higher than 900%.

In a last example (see Figure 5.31), a DIP switch module containing 12 switches represents the compound
object. Because each switch can be toggled either on or off, the appearance of the entire module changes.
Therefore, in order to train the relations between the single object parts it is sufficient to use 12 example
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Figure 5.31: Recognition of a DIP switch module. Each switch can be toggled either on or off. Thus, the print on the
module and all switches move with respect to each other.

images. In each example image another switch is toggled on, while the remaining switches are all toggled off.

A rectangular ROI that encloses the print and all switches on the module is passed to the training algorithm.
Also, in this example no rectification was necessary. In Figure 5.31(a) the automatically detected components
are superimposed on the model image. Here, matches must be expected that are highly ambiguous: because
all switches show identical square shapes, each switch was found at 48 different poses in each example image.
Nevertheless, the algorithm was able to solve all ambiguities correctly. In Figure 5.31(b) the final extracted
object parts, which have been determined by setting the threshold for the minimum probability to 0.5, are
shown. The entire print is combined in one object part, while each switch is represented by a separate object
part. The computation time for training the hierarchical model was 11 minutes. When restricting the search
for the components to the interval [pf20°, +20°] the computation time can be reduced to 31s.

Again, the hierarchical model is created without restricting the orientation range. The result is shown in
Figure 5.31(c). As one would expect the print on the module is best suited to serve as the root part. The search
tree suggests to search each switch relative to the pose of the root part. The time to create the hierarchical
model was 17s.

Finally, several search images that show different numbers of objects have been acquired. Four examples are
shown in the Figures 5.31(d)—(g). Up to three objects appear simultaneously in the image. As a matter of
course, also modules with arbitrary switch configuration that deviate from the configuration in the example
images can be found. Because occlusions must be expected, the threshold for the minimum score of the root
part was set to a low value of 0.6. In contrast the minimum score of the switches was set to 0.8. Lower values
would lead to false positive matches because the switches differ only slightly from their white background.
With these parameter values, all instances were found correctly. Of course, occluded switches could not be
found. The recognition of the object took 22 ms (root: 14 ms, others: 8 ms), 38 ms (root: 22 ms, others: 16 ms),
or 45ms (root: 23 ms, others: 22 ms), depending on whether one, two, or three instances were found. The
times for recognizing the parts independently without the hierarchical model would be 166 ms, 346 ms, and
682 ms. Furthermore, additional time would be necessary to solve the ambiguities. The gain in computation
time can be expressed by the associated speed-ups of 650%—1400%.

Another advantage of the approach is that some objects can be recognized even if their size changes. Normally,
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Figure 5.32: Recognition of objects with varying size. The white pads on the die in (a) can be represented by four corners
that move with respect to each other (b). Analogously, the metal angles in (c) can be represented by six corners (d).

this would require a recognition approach that is able to handle similarity transformations. However, the
proposed approach can model the changes in scale as relative movements. Figure 5.32 shows two examples.
In the first example the white pads on the die must be recognized. The pads may occur at different sizes. Four
appropriate model parts can be defined by passing four ROIs to the training. Each ROI contains one corner of
the rectangle. Hence, by choosing the corners of the rectangle as model parts exploits the fact that angles are
preserved under similarity transformations. It is sufficient to train the model with two example images one
showing the smallest occurring pad and one showing the largest occurring pad. Thus, the trained relations
between the parts cover all possible object scales. Analogously, in the second example metal angles must be
recognized. Here, six object parts that represent the six corners are involved. Again, two example images are
enough to train the model. Actually, it would be sufficient to recognize only two object parts in both examples

to determine the pose of the object. The scale of the object can be determined from the distance between the
two object parts. If more than two object parts are used the computation of the scale becomes ambiguous. In
this case the scale can be determined in a least-squares adjustment by minimizing the distances between the
scaled model and the returned poses of the object parts. In a similar way objects that are transformed by more
general transformation classes can be recognized. However, instead of angles other appropriate geometric
invariants must be found.
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Conclusions

In this dissertation, a novel approach for recognizing compound objects in real-time is proposed. A compound
object is defined as a number of rigid object parts that show arbitrary relative movements. The basic idea
behind the approach is to minimize the search effort, and hence the computation time, by restricting the
search in accordance with the relative movements of the object parts. This naturally leads to the use of a
hierarchical model: only the root object part, which stands at the top of the hierarchy, is searched within the
entire search space. In contrast, the remaining parts are searched recursively with respect to each other within
very restricted search spaces. By using the hierarchical model, prior knowledge about the spatial relations,
i.e., relative movements, between the object parts is exploited already in an early stage of the recognition.
Thus, the computation time is reduced dramatically. Furthermore, the hierarchical model provides an inherent
determination of the correspondence, i.e., because of the restricted search spaces, ambiguous matches are
avoided. Therefore, a complicated and expensive solution of the correspondence problem is not necessary.

The proposed strategy for recognizing compound objects requires an appropriate approach for recognizing
rigid objects. In an extensive review of rigid object recognition methods, the generalized Hough transform
proves to be one of the most promising candidates. Its inherent translation invariance, as well as the high ro-
bustness, are the most important advantages. Nevertheless, it is shown that there are still several modifications
necessary to fulfill industrial demands. The method is extended to recognize objects at arbitrary orientations.
This leads to high computation times and large amounts of required memory. Therefore, several effective ex-
tensions to increase the efficiency are proposed. The use of image pyramids, which leads to a multi-resolution
model with an associated coarse-to-fine search, is a major improvement. It is shown that the benefit achieved
by the use of the multi-resolution model can be further augmented: a method for optimally restricting the
image domain that is processed during the coarse-to-fine search is proposed. By splitting the model into tiles,
redundant processing steps are avoided and the gain in efficiency is further increased. Additionally, several
new methods to enhance the degree of automation and robustness are proposed. Finally, the obtained dis-
crete values for the object position and orientation are analytically refined to achieve a high accuracy. It is
shown that this modified generalized Hough transform is about 650 times faster than the conventional gener-
alized Hough transform in a standard example. The performance of the new approach is evaluated thoroughly
by comparing it to three standard approaches and three high-end recognition tools. Furthermore, a second
new approach, the shape-based matching (Steger 2002), which was developed simultaneously to the modified
generalized Hough transform, is introduced and included in the evaluation. The evaluation shows that both
new approaches are considerably superior to existing standard approaches. Their behavior with respect to
robustness, accuracy, and computation time is better balanced in comparison to all other approaches, except
for one high-end recognition tool, which shows comparable results. From this discussion it can be seen that
both approaches fulfill the industrial requirements discussed in Section 2.2. Furthermore, it follows that the
modified generalized Hough transform is more than simply a by-product of this dissertation. In contrast, it
can be seen as one of the best stand-alone recognition approaches for rigid objects. The field of applications
that can benefit from this new approach is almost unlimited. Not only applications that use the conventional
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generalized Hough transform can be improved, but most applications that require rigid object recognition can
achieve a high performance with this approach.

The shape-based matching is chosen to serve as a module within the approach for recognizing compound
objects because it has already been thoroughly tested and included in a commercial software library. Further-
more, in contrast to the modified generalized Hough transform, it shows true invariance against changes in
brightness. To achieve a high degree of automation, the hierarchical model is automatically trained. For this,
some example images that show the relative movements of the object parts are automatically analyzed and
used to determine the rigid object parts as well as the spatial relations between the parts. This is very com-
fortable for the user because a complicated manual description of the compound object is avoided. During
the subsequent creation of the hierarchical model, the optimum hierarchical search strategy is automatically
derived. The strategy includes a rating of the ability of each object part to serve as the root part: parts that
facilitate a fast search when used as root part receive a good rating. Additionally, for each part that might
be selected as the root part, an associated search tree, which represents the hierarchical search, is automati-
cally computed. The hierarchical model that is finally obtained is used to recognize the compound object in
real-time. By default, the part with the best rating is selected as root part. However, in order to exploit prior
knowledge about possibly occluded object parts, the root part may be selected by the user and passed as input
parameter to the search. In this case, the ratings of the root parts may assist the user while specifying the
desired root part. The search is then performed in accordance with the search tree that is associated with the
specified root part.

The training of the hierarchical model is performed in several steps by following the principle of human visual
perception. At first, the compound object is split into several small components. Then, the components are
recognized in the example images. Components that do not exhibit any relative movements are merged into
rigid object parts. Finally, the relations between the parts are determined. It is shown that the high degree
of automation during the training of the hierarchical model is accompanied by several problems that must be
solved. One major problem is the non-uniqueness of the components, which, e.g., can be caused by rotation
symmetries or mutual similarities of the components. Thus, one component may be recognized several times
in the same example image. To solve this correspondence problem, a new method that uses a global criterion
is proposed to estimate the likelihood of the found instances. Finally, it is shown that the correspondence
problem can be transformed into a bipartite graph matching problem, which can be solved efficiently using
linear programming. Thus, for each component, the most likely instance is obtained with respect to the global
criterion. Because the correspondence problem is already solved during the training, the resulting hierarchical
model provides an inherent determination of the correspondence. Consequently, solving the correspondence
during the object recognition is unnecessary, which is a considerable advantage of the proposed approach. To
obtain the rigid object parts, the probability that two components belong to the same object part is computed.
This computation is performed in a statistically sound manner by using hypotheses testing. The resulting
square probability matrix is clustered and the corresponding components are merged into object parts.

The creation of the hierarchical model includes the derivation of the search trees that minimize the search
effort. It is shown that this problem can be translated into the problem of finding the minimum spanning
arborescence in a directed graph. This guarantees an exact and efficient solution. Finally, several practi-
cal extensions that must be considered during the hierarchical search conclude the approach for recognizing
compound objects.

Furthermore, as a by-product a method for rectifying images in real-time is proposed. By combining this
method with camera calibration, a very fast elimination of projective distortions and radial lens distortions
from images becomes possible. Thus, the recognition of compound objects is extended to deal with projective
transformations of the object plane. Itis shown that the rectification is performed in less than 10 ms on standard
hardware using RS-170 or CCIR-sized images. Thus, it facilitates the real-time recognition of objects even
under severe projective distortions. The new method is not restricted to object recognition but could also
be used in several other applications that require fast computations. Whenever more than one image must
be rectified with the same mapping, a gain in computation time can be achieved by the proposed method.
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Moreover, the method can be used to eliminate arbitrary distortions that are not necessarily caused by lens
distortions or projective distortions. For example, distortions that are caused by non-planar object surfaces
can be eliminated. Once the rectification map is built the image of the curved surface can be unwrapped into
a plane in real-time. Consequently, the further processing needs to focus only on “planar” algorithms, and

hence can be simplified significantly.

Several examples show that the proposed approach for recognizing compound objects fulfills the real-time
requirement. The computation time varies between 20 ms and 51 ms in the presented examples, which corre-
sponds to an improvement of up to 1400% in comparison to standard recognition methods.

To summarize, the approach is able to recognize compound objects, to perform the recognition in real-time,
and to provide an inherent determination of the correspondence between object parts. Furthermore, it exhibits
a very high degree of automation. The approach is general with regard to the type of object, and shows a very
high robustness against occlusions, clutter, and changes in brightness. The pose parameters of all object parts
are returned with high accuracy. Even objects under projective distortions can be recognized. Finally, several
instances of the object in the image can be found simultaneously. There is no other approach available that
demonstrates comparable features.

Nevertheless, the proposed approach shows room for some promising extensions that are worth mentioning.
They are discussed in the following.

The first point concerns the accuracy of the pose parameters that are returned by the rigid object recognition
approach. Although the accuracy is not precisely known, the approach for training the hierarchical model
requires such accuracy information. For the current implementation, the accuracy values have been determined
empirically and set to a constant value. Unfortunately, the accuracy depends on several factors that were not
taken into account. For example, the accuracy depends on object characteristics like the object size, the
number of model points, the object shape, the histogram of the gradient directions, or object symmetries. One
way to make accuracy information available would be to perform several empirical tests while using objects
with different characteristics, determining the achieved accuracy, and model the accuracy as a function of
the characteristics. Other influences that are not correlated with object characteristics cannot be considered
by this method. Another possibility would be to derive the accuracy based on the score values in parameter
space. For example, the curvature of the local maximum could be an indicator of the achievable accuracy.
Unfortunately, initial tests have shown that this is a very weak indicator.

A second possible extension would be to merge object parts that only show a small relative movement into
one rigid object part on higher pyramid levels. This is because the relative movement decreases for higher
pyramid levels with respect to the quantization of the parameter space. The resulting larger object parts would
increase the robustness because, in general, larger objects can be found with higher reliability. Furthermore,
it would enhance the efficiency because larger object parts allow the use of more pyramid levels.

Another improvement deals with the rectification. When using recognition approaches that perform a segmen-
tation of the search image during the online phase (like the modified generalized Hough transform) a further
speed-up could be achieved when dealing with image distortions: the rectification in the online phase can be
restricted to the features, like edge position or edge orientation, in order to avoid the complete rectification of
the entire image. This would, however, result in only a moderate speed-up of the entire recognition process
since the contribution of the proposed rectification to the overall computation time is small. Unfortunately,
the shape-based matching is not suited to take advantage of this improvement because no segmentation of the
search image is performed, and hence no speed-up can be achieved.

Finally, in some applications it is desirable to recognize an object under more general transformations than
rigid transformations. For example, if the distance between camera and object is variable, or if the object itself
occurs in different sizes, an additional scaling must be considered, which results in similarity transformations.
The recognition of rigid objects and compound objects can be extended in a straightforward way to take
scaling into account. However, extending the automatic training of the hierarchical model turns out to be
more complex. The rigidity assumption of object parts must be relaxed. Consequently, the rating of the
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matches during the solution of the ambiguities would have to be redesigned.

In conclusion, it should be pointed out that the principle of the proposed approach for recognizing compound
2D objects can be applied to the recognition of 3D objects from 2D images as well. There are different
approaches for recognizing 3D rigid objects, e.g., (Procter and lllingworth 1997, Vosselman and Tangelder
2000, Pope and Lowe 2000, Blaskhd Fua 2001). By using one of these approaches, the training and the
creation of the hierarchical model can be performed in the same way as in the 2D case. Consequently, also
the recognition of compound 3D objects can benefit from the use of the proposed hierarchical recognition.
The computation time is reduced considerably. This is especially important in 3D because, in general, more
complex and time consuming algorithms are involved than in 2D. Furthermore, the correspondence problem,
which is much more complicated in 3D, must be only solved once during the training but not during the
recognition process itself. Thus, real-time applications in 3D, e.qg., in the field of autonomous mobile systems
(Lanser et al. 1997), augmented reality (Blaskid Fua 2001), or 3D object tracking (Torre et al. 2000) can
profit from the proposed approach.
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