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Abstract 
 

When a given 3D city model, consisting of mainly buildings and roads, is viewed at reduced scale, its 
objects not only become smaller but tend to conflict due to small area available. Generalization plays 
an important role to overcome these effects and helps in preserving the required legibility. Various 
operations are performed during generalization on these objects. One of the primary requirements for 
generalization is structure recognition. It not only involves structure recognition of individual object 
but various objects in neighborhood as well and includes many spatial relations among them. 
Although importance of structure recognition for 2D generalization has been reported in literature but 
little has been studied and reported for 3D structure recognition. This work aims at recognizing 3D 
settlement structures for automatic generalization, an innovative extension to 2D. The recognition 
procedure has been divided into three levels namely micro, meso and macro and is based upon 
individual buildings, buildings in neighborhood and buildings at cluster level having similar properties 
such as settlement blocks as well as psychophysically perceived groups. Any of these three levels of 
structure recognition demands that comprehensive information about the buildings should be known a-
priori. Therefore first of all different buildings are recognized from the data available using a bottom-
up approach. It starts with recognizing ground plans of buildings and which in turn, along with other 
information, are used to recognize different roof types and finally entire buildings are recognized in a 
similar way. After building recognition, their structure description has been studied in detail, which 
gives rise to various measurable parameters of individual as well as buildings in neighborhood. These 
parameters not only characterize individual building but also many spatial relations among them. 
Structure recognition at clustered level is studied next and it involves the recognition of group of 
buildings as a whole. The human visual system can detect many clusters of patterns and significant 
arrangements of image elements. Perceptual grouping refers to the human visual ability to extract 
significant image relations from lower-level primitive image features without any knowledge of the 
image content and group them to obtain meaningful higher-level structure. Various perceptual 
grouping principles have been applied to identify these clusters of groups. After a comprehensive 
study of structure recognition, their findings are then applied to 3D generalization. Among the various 
generalization algorithms such as aggregation, displacement, simplification, exaggeration, typification, 
aggregation is chosen here as it almost uses most of the results from structure recognition. Various 
constraints resulting from spatial relations have been already found in 2D aggregation. However, 
unlike in 2D, where there is only one view, the third dimension leads to many additional views and 
these different views become the source of additional conflicts. Apart from various views, color, 
texture and other small parts (window, chimney, balcony etc.) of the building also add to the existing 
constraints. Various additional rules have been obtained based upon these constraints. These rules 
along with the results of structure recognition have been used to trigger the aggregation operation. 
Finally, a conclusion has been drawn from the observations and the results of structure recognition and 
its importance to generalization. Further, its various shortcomings, problems encountered during 
research and future work have also been highlighted towards the end of thesis. 
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Zusammenfassung 
Wird ein dreidimensionales Stadtmodell, das vorwiegend Gebäude und Straßen enthält in einem 
kleineren Maßstab betrachtet, so werden die Objekte nicht nur kleiner, sondern sie geraten aufgrund 
des geringen Platzangebots in Konflikt miteinander. Die Generalisierung spielt eine wichtige Rolle, 
um diese Probleme zu überwinden und die notwendige Lesbarkeit zu erhalten. Verschiedene 
Operationen werden während der Generalisierung dieser Objekte durchgeführt. Eine der primären 
Anforderungen an die Generalisierung ist die Strukturerkennung. Dies betrifft nicht nur die Erkennung 
von Strukturen einzelner Objekte, sondern auch mehrerer benachbarter Objekte und beinhaltet viele 
räumliche Beziehungen zwischen ihnen. Obwohl über die Bedeutung der Strukturerkennung für die 
zweidimensionale Generalisierung in der Literatur berichtet worden ist, gibt es bisher nur wenig 
Forschungen und Publikationen über die dreidimensionale Strukturerkennung. Das Ziel dieser Arbeit 
ist ein Beitrag zur Erkennung dreidimensionaler Siedlungsstrukturen für die automatische 
Generalisierung, eine innovative Erweiterung der zweidimensionalen Methoden. Der Ablauf der 
Erkennung wurde in die drei Stufen mikro, meso und makro unterteilt und bezieht sich auf einzelne 
Gebäude, Gebäudekomplexe und Gebäudeanhäufungen, welche ähnliche Eigenschaften aufweisen, 
wie zum Beispiel Siedliungsblöcke sowie psycho-physische menschliche Beobachtungen. Das 
Erkennungsverfahren wurde in die drei Stufen mikro, meso und makro unterteilt und basiert auf dem 
individuellen Gebäude, benachbarten Gebäuden und Gebäudeanhäufungen, die ähnliche Eigenschaften 
haben wie Siedlungsblöcke und psychophysische Beobachtungen von Menschen. Jede dieser drei 
Stufen der Strukturerkennung setzt umfangreiche Informationen über die Gebäude voraus. Deshalb 
werden zuerst mit Hilfe eines Bottom-up-Ansatzes unterschiedliche Gebäude aus den vorhandenen 
Daten identifiziert. Es beginnt mit der Erkennung von Gebäudegrundrissen, die der Reihe nach 
zusammen mit weiteren Informationen dafür verwendet werden verschiedene Dachtypen zu erkennen 
und schließlich in ähnlicher Form ganze Gebäude. Im Anschluss an die Erkennung der Gebäude 
wurde deren Strukturbeschreibung im Detail untersucht, was zu einer Vielzahl messbarer Parameter 
individueller Gebäude, wie auch benachbarter Gebäude führte. Diese Parameter charakterisieren nicht 
nur einzelne Gebäude, sondern auch viele räumliche Beziehungen zwischen ihnen. Als nächstes wird 
die Strukturerkennung von Gebäudeanhäufungen untersucht, die die Erkennung von Häusergruppen 
als ganzes beinhaltet. Das visuelle System eines Menschen kann viele Häufungen von Mustern und 
signifikante Anordnungen von Bildelementen detektieren. Perzeptuelles Gruppieren bezieht sich auf 
die menschliche visuelle Fähigkeit aus, auf einem niedrigen Level befindlichen, primitiven 
Bildmerkmalen ohne jegliches Vorwissen über den Bildinhalt signifikante Bildbeziehungen zu 
extrahieren und diese zu gruppieren, um aussagekräftige Strukturen auf einem höheren Level zu 
erhalten. Verschiedene perzeptuelle Gruppierungsprinzipien wurden zur Identifizierung dieser 
Gruppenanhäufungen angewendet. Nach einer umfassenden Untersuchung der Strukturerkennung, 
wurden die Ergebnisse in der dreidimensionalen Generalisierung angewendet. Unter den 
verschiedenen Generalisierungsalgorithmen wie Aggregierung, Verschiebung, Vereinfachung, 
Vergrößerung und Typisierung wurde hier die Aggregierung ausgewählt, da sie am umfangreichsten 
Ergebnisse aus der Strukturerkennung verwendet. Viele Einschränkungen, die aus den räumlichen 
Beziehungen resultieren sind schon bei der zweidimensionalen Aggregierung gefunden worden. Im 
Gegensatz zum zweidimensionalen Raum jedoch, in dem es nur eine Betrachtungsebene gibt, führt die 
dritte Dimension zu vielen zusätzlichen Betrachtungsebenen, die den Ausgangspunkt für weitere 
Konflikte bilden. Außer durch die verschiedenen Betrachtungsebenen werden die bestehenden 
Einschränkungen noch durch Farbe, Textur und andere kleine Teile der Gebäude (Fenster, Rauchfang, 
Balkon, etc.) erweitert. Basierend auf diesen Einschränkungen sind zusätzlich verschiedene Regeln 
festgelegt worden. Diese Regeln und Ergebnisse der Strukturerkennung wurden zur Aktivierung der 
Aggregierungsoperation an einem Beispiel verwendet. Am Ende wurde aus den Beobachtungen und 
Ergebnissen der Strukturerkennung und ihrer Bedeutung für die Generalisierung ein Schluss gezogen. 
Zusätzlich wurden gegen Ende der Dissertation die unterschiedlichen Nachteile und Probleme, die 
während der Forschung aufkamen und die zukünftige Arbeit hervorgehoben. 
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Chapter 1  
 

Introduction and objectives of the work 

 

1.1 Introduction 

Humans perceive their environments primarily in terms of visual variables. What makes an object 
similar or different from another object is its structure. Most of these objects are made of many parts 
or primitives and therefore an object’s structure can be characterized by relationships between these 
primitives. A structure is an entity made up of a number of parts having inter-relationship among them 
that are held together in a particular way and has a base or foundation. Its shape or size remains fixed 
and can change only if the material it is made from can bend or stretch. These structures can be natural 
as well as manufactured. Natural structure include human beings, trees, plants and formations in rocks, 
such as caves and manufactured structures which are made either in a workshop, on a production line 
or assembled on site. A 3D city model consists mostly of buildings and roads. Each object is a 3D 
structure, which in turn consists of geometric and topological data. When these structures are 
represented geometrically, it involves a graph having nodes, edges and associated numerical quantities 
(such as a numerical value labeling the nodes and edges). Moreover, there are consistency constraints 
governing the relation between the combinatorial structure and numerical quantities. This means that 
perturbing the numerical values without taking into account the combinatorial structure can lead to 
qualitatively different or inconsistent structure. 

Structure recognition of 3D graphical objects is an important problem that can be hardly solved 
without intelligence. It is the identification of these objects and aggregate objects, their spatial and 
semantic relations and their relative importance. The importance of these spatial relations for the 
recognition of structures embedded in a complex environment cannot be ignored. Structure 
recognition has been applied to various fields such as computational biology where protein's unique 
3D structure is recognized (Boris 1997), cartographic generalization, structure recognition of on-line 
handwritten documents (Moin 1997) and many others. Cartographic generalization of 3D city models 
is one of the burning problems that need further attention. 

3D city models represent an abstraction of reality and are the most powerful tools to quickly provide 
information about places and spatial relationships to people searching for geographical information. 
Computer generated perspective views are often simply referred to as 3D maps. Although this term is 
not yet strictly found in the cartographic literature, there are specific reasons why it should be used. 
These views are referred as 3D, because we perceive the presented scene with our human perception 
system in a three-dimensional perspective way, even when the scene is depicted on two-dimensional 
media. And, “maps”, because these products integrate and display spatially-arranged phenomena in 
accordance with cartographic symbolization conventions (Haeberling 1999) and (Haeberling 2003). 
Nevertheless, although they possess cartographic characteristics, 3D maps should be considered a 
map-related representation. Since 3D maps for a city are produced at large scale (~1:5000) so that 
individual buildings are easily recognizable and therefore in that context 3D maps may be defined as 
“map like representation of the large scale city model on a digital media adhering to the cartographic 
rules”. 

When 3D maps are reduced from larger scale to smaller scale, their objects find less space to be 
accommodated in the available area and tend to conflict with each other. In order to preserve the 
legibility of the maps, certain objects have to be deleted, aggregated and so on. These objects cannot 
be manipulated randomly and at will but a comprehensive knowledge about their structure and spatial 
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relations with their neighbors is needed. It is here where the cartographic generalization plays an 
important role. It is a multi-step process based on manipulation of graphic characteristics of 3D 
objects. Depiction of these objects on the screen depends upon the generalization process it has passed 
through. Main emphasis should be the criteria that the general structure of these objects after the 
generalization should be preserved.  

According to the conceptual framework (Brassel 1988), the overall process of map generalization 
consist of five steps: Structure recognition, process recognition, process modeling, process execution, 
and data display. The generalization constraints (scale reduction factor, map purpose, data quality, 
etc.) provide control for these tasks. The purpose of structure recognition and process recognition 
essentially is to determine the relevant structures and the relative importance of the map elements of 
the input map, and identify the generalization operators that should be used to solve the given 
generalization problem. 

In the early 1960s, when only paper maps existed, generalization was a manual operation. 
Cartographers distinguished between graphic and conceptual generalization. The first would mainly 
deal with the geometry and the second would in addition result in a change of the legend items as well. 

In the beginning of the 1980s, automatic generalization was performed only at an experimental level 
and required much interactivity e.g. every object needed individually to be generalized with either 
specific or non-specific generalization algorithms. Dealing with spatial relationships between objects 
was not of primary interest in this phase. Generalization was still at its semi-automatic stage. 

However, during mid eighties, as the automation of generalization continued, need of structure 
recognition became more important and eventually inevitable. For example, which road has to be 
deleted or kept, highly depends upon its proximity to nearby objects. The generalization concepts 
illustrated in the subsequent sections underline the importance of structure recognition. 

 

1.2 Generalization processes and their dependencies on 
structure recognition 

Generalization processes require maintaining the overall structures and patterns presented with the 
source map or database. It may be regarded as a process of increasing the level of abstraction relative 
to the original surveyed form of the geographical features. These various processes and sequence of 
their application depends upon its structure and surrounding objects. Thus the recognition of the 
structure, mainly implicit and previously unknown, has been an important task to achieve a better 
generalization outcome (Jiang 2004). It takes place as soon as features or feature classes are 
represented on a medium for communication. Most of the important processes are described below: 

 
I.Simplification. It involves the smoothing and elimination of small and unimportant features as 
shown in figure 1, parts, those are too small on the surface of a building, are removed in order to make 
it readable at a given scale. For example, small windows, doors and chimneys come under these 
details and can be removed by keeping a threshold on the size of the features. Structure recognition 
provides this information about the size, area and volume of various parts of the buildings and helps in 
deciding their removal. 

 

 

 

 

 
Figure 1: 3D simplification 
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II. Exaggeration. It is used to enlarge parts of objects as shown in figure 2, either because they are very 
small and do not satisfy the geometric constraints and because such parts are important and of special 
interest (Jones 1995). Structure recognition gives complete information of the part to be enlarged. 

 
 
 
 
 
 
 
 

 
 
Figure 2: Exaggeration 

III. Graphic aggregation. It involves the representation of a group of objects with another 
representation as shown in figure 3. It requires all the individual building details such as roof type, 
ground plan etc and proximity information, which can be only obtained through structure recognition.
      

 

 
 
 
 
 
 
 

 
Figure 3: Aggregation 

IV. Displacement is a local transformation of a set of objects in order to solve proximity conflicts as 
shown in figure 4. The displacement may arise because of aggregation and exaggeration operations. 
For example, there may be a building situated close to a road (Thick black curve in figure 4). It is 
desired to exaggerate road so that now it is represented by two lines (two dotted lines). While doing 
so, it may result in a conflict with the nearby building and therefore forcing in its displacement. 
Certainly local transformation of such a building is not possible without its structure recognition. 

 

 

 

 

 
 
 
 
Figure 4: Displacement 

 

V. Typification. The major aim of typification is to reduce feature density, form variations and the level 
of detail while maintaining the representative distribution pattern and visual impression of the original 
feature group. It involves the replacing of a large number of similar objects by a small number (Sester 
2001; Anders 2003), as shown in figure 5, while ensuring that the typical spatial structure of the 
objects is preserved. Different parts of the city exhibit different cluster densities. These differences 
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have to be preserved, if not enhanced, by typification. It requires not only the structure recognition of 
individual objects but of a group as well forming a cluster. 

                     

 
 
 
 
 
 
 
 
      
 

 
 
 
 
 
 
  Figure 5: Typification 

 
VI. Selection: When the map scale is reduced, the density of the objects increases and therefore decision 

should be made on which objects should be selected (Kreveld 1997), (Harrie 2002). An intellectual 
process and decides which classes of symbols will be necessary to serve the visualization purpose. 
While doing so, no modification takes place to the symbols as shown in figure 6. However, the 
distribution pattern must be preserved. Structure recognition again plays an important role in 
preserving the patterns. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 Figure 6: Selection  
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1.3 Need for structure recognition 

These various generalization processes, discussed above, may affect the general topological structure 
of the objects continuously. For example, aggregation corresponds to joining a group of different 
features into a higher-order feature. Simplification may change the general shape of an individual line, 
which may cause changes in the relationship of this line with other components of the map. Similarly 
other process, viz. typification, displacement, selection may have the same effect. In fact, it can be 
viewed as a set of metric transformations on the geometric representations of spatial objects, intended 
to improve data legibility and understanding. Before various generalization algorithms, based upon the 
various processes described above, structure recognition is the most important task to be done. 
According to (Brasset 1998) and (McMaster 1992), it is the process of determining what to generalize, 
why, and when to generalize it. Brassel, Weibel, and Dutton (Brasset 1998), (Weibel 1997a) and 
(Weibel 1998) recommend integrating structure recognition into an overall framework to determine 
the generalization objectives. (McMaster 1992) used structure recognition, an aspect of what they call 
cartometric evaluation, to identify the typical geometric conditions that would trigger a generalization 
procedure, 

 

 When crowding of various graphic objects happen, i.e. congestion. 

 When some of the graphic objects seem to fuse together, i.e. coalescence 

 When the graphic objects overlap each other such as a building try to overlap a nearby road. 
I.e. conflict. 

 Complication, as aspect of special-cases, which are not easy to identify a-priori inconsistency, 
when objects are wrongly transformed differently under similar cartographic conditions 

Since the beginning of the era of digital generalization, efforts have been made to develop algorithms 
for various aspects of generalization. During the first period of generalization (1960-1975) these 
efforts were devoted to a rather narrow aspect of the overall problem (Weibel 1991) such as line 
simplification, selection and displacement of point and line symbols. Nevertheless, research on 
generalization needs to go beyond the development of these geometric operators and effort should be 
made to develop algorithms, which incorporate context information (an object is not generalized in 
isolation, but in relation to other objects). During 1980s, however the considerations began to move 
towards the more conceptual aspects and structure recognition was an important concept among them. 
They addressed the need that generalization algorithm should incorporate the additional constraints to 
preserve the general structure of the objects and to keep them consistent at different levels. 
(Monmonier 1989) stated “the lack of efforts in generalization in computer- assisted cartography 
stems not only from the computational complexity of the problem but also from only a vague 
understanding of the objectives and principles of map simplification”. He regarded the automatic 
recognition of essential feature characteristics as the major obstacle to fully automated cartographic 
generalization. 

Structure recognition has the primary goal to extract, quantify, and formalize the explicit and implicit 
knowledge embedded in a 3D structure such as 3D buildings, among buildings in spatial or semantic 
proximity, within a settlement block or an apparent distribution pattern. Only when the spatial 
characteristics of settlement structures are captured and made available for computer programs, it is 
possible to develop a comprehensive generalization system. It will contain not only a set of 
generalization operations, but also necessary constraints and rules. Further, it will help for the 
automatic detection of instances for generalization, determination of required generalization operations 
as well as their access sequences, and fine-tuning of the valid parameter ranges in combination with 
the iteration degree of each individual operation. Another goal of structure recognition lies in the 
application of its results as an objective indicator of generalization quality. 

The information gained from this study will help in formulating the constraints and rules for 3D 
generalization. It will help us in deciding what operator is needed for an object or a group of objects. 
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Since we know, beforehand, each and every detail (e.g. type, topological, semantic and contextual 
information) of the objects being generalized, it will facilitate in great way to pursue generalization 
and consequently give better results. 

  

1.4 Approach 

Brassel and Weibel (Brassel 1988) proposed a conceptual framework that identifies the major steps of 
the manual generalization process and transposes these concepts into the digital realm. It contains the 
following approach: 

� Structure recognition: This process aims at the identification of objects and aggregate objects, their 
spatial and semantic relations and their relative importance.  

� Process recognition: The second step is to define the relevant generalization processes. This 
involves the identification of the types of data modifications and the parameters controlling these 
procedures. 

� Process modeling: Next step is called process modeling, which compiles rules and procedures from 
a process library.  

� Process execution: Digital generalization takes place under this step, where the rules and 
procedures are applied to the source database in order to create the generalized target database.  

� Data display: The last process converts the target database into a fully symbolized target map. 

 

It is a complex research issue that has existed as a design problem ever since the first maps were made. 
Lots of work has been done (Meng 1997), (Meng 1998) on 2D generalization but comparatively very 
less has been reported for 3D generalization. A framework has been proposed in this dissertation that 
highlights the issue related to 3D generalization based upon structure recognition of buildings. At first, 
structure description of individual buildings, buildings in neighborhood and buildings forming a 
cluster is studied. A different set of parameters is required at each level. Structure recognition of 
individual buildings, simple as well as complex, is discussed in great details using Artificial Neural 
Network techniques. It is followed by structure recognition of group of buildings forming a cluster 
exhibiting perceptual grouping behavior. A set of new rules and constraints are developed based upon 
structure recognition and consequently algorithms are implemented for aggregation. 

 

1.5 Proposed research 

The first and primary goal of this research is the recognition of 3D settlement structures using a 
hierarchical approach. This step aims at the identification of various building types, their spatial and 
semantic relations, and their relative importance. A new approach using Artificial Neural Network 
(ANN) is applied for the identification of various kinds of 3D buildings. Based on this recognition 
process and keeping in mind the work done for 2D generalization, new rules and constraint are derived 
which form the basis for new algorithm for 3D aggregation.  

 

1.6 Organization of the thesis 

In the next chapter, the background to the problem at hand is reviewed. Various method applied in 
structure recognition have been analyzed along with their drawbacks. Its importance to generalization, 
covering one, two and three-dimensional, is also discussed by reviewing the pertinent literature.  
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Structure recognition is introduced in chapter 3 by categorizing different buildings based upon their 
roof style and shapes. Various parameters are needed to define them before proceeding to recognize 
their structure. Structure description of buildings is divided into three parts, viz: micro, meso and 
macro levels, and each level is discussed in details.  

Chapter 4 gives an overview of the Artificial Neural Networks that are applied to structure recognition 
of buildings. 

In chapter 5, the implementation of the hierarchical structure recognition of 3D building, using 
Artificial Neural Network (ANN) approach, is addressed. A comprehensive methodology is discussed 
and explained. The whole process is completed using real 3D data of an area of the city of BONN, 
Germany, comprising different buildings. 

In chapter 6, structure recognition of group of buildings forming a cluster is studied. These clusters are 
formed based upon perceptual grouping mechanisms.  

In chapter 7, different constraints and rules are developed based upon the results of structure 
recognition obtained in chapter 5 and 6 and consequently aggregation algorithm has been developed 
and implemented. Its results are also presented and discussed here. 

Chapter 8 first summarizes what has been done in this research. The results and the conclusions of our 
investigations are stated and their limitations are discussed. Finally, new ideas on how to continue 
further research on this topic are given. 
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Chapter 2  
 

The State of the Art of structure recognition 
 

2.1 The State of the Art of structure recognition 

Understanding how biological visual systems recognize an object is one of the ultimate goals in 
computer science and is largely based on the matching of descriptions of shapes (Riesenhuber 2000). 
Literature survey has revealed that a lot of research has been done for object centered structure 
recognition of 2D objects and less effort has been applied to the view centered structure recognition of 
3D objects. This chapter will concentrate on some of the popular methods. Among the various 
methods available, shape descriptors such as Fourier descriptor and wavelet descriptor, moment 
invariants and Geon theory have been widely used to describe shape irrespective of position, 
orientation and scale. A brief review is done here by giving introduction, their applications and both 
advantages & disadvantages. 

 

2.1.1 Structural description theory 

Humans are able to comprehend novel images of objects and scenes, often under highly degraded and 
novel viewing conditions. This is achieved in a fraction of a second. It is done when human mind puts 
together primitives (features that allow specific recognition) in a system that breaks down objects into 
simple 3D shapes. This fact is the basis of structure description theory. Based upon this theory, Marr 
and Nishihara were the first to develop a reasonably complete structure-based approach to object 
recognition (Marr 1978). They proposed a general method for shape recognition, in which objects are 
represented by a set of generalized cylinders as shown in figure 7. This set of generalized cylinders is 
organized as a hierarchy, where smaller parts are at the lowest levels. In other words, an object can be 
decomposed into axes of generalized cones depending on the nature of detail required. Following three 
steps are involved in recognition: 

� Single-model axis. The first step in the model is identification of the main axis of the object. 

� Component axes: The axes of each of the smaller sub-portions of the object are identified. 

� 3D model match: Finally, a match between the arrangement of components and a stored 3D 
model description is performed to identify the object 

Thus for example, to differentiate between a flat roof and gable roof buildings, the decomposition 
would result in an arrangement of axes of differing lengths representing generalized cones which in 
turn approximate the roof, walls and windows of the buildings. The axes of the objects are derived 
mainly from the occluding contour or silhouette of the image. 
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Figure 7: The catalogue (Marr & Nishihara, 1978) 

Although object comparisons are fastest if the main axis of an object is the same as the object it is 
being judged against, however this technique is restricted to the set of objects that can be described as 
generalized cones with a clear main axis and a constant-shape cross section 

2.1.2 Geon theory 

Another more recent and elaborate structural object recognition theory, which allows more complex 
basic shapes than cylinders is, of Biederman and his co-workers (Biederman 1987). According to this 
theory, objects as perceived, are decomposed into 3D primitives called geons, together with the 
skeleton structure connecting them. The theory proposes a hierarchical set of processing stages, 
leading to object recognition. In the first two stages, images of objects are decomposed into edges, 
then into component axes, oriented blobs, and vertices. Following this, 3D primitives such as cones, 
cylinders and boxes are identified. A central concept in Biederman's approach is that a set of 
generalized cones or "geons" (short for geometrical ions) are 3D perceptual primitives. He defined a 
family of 36 geons by image properties of the silhouette contours in the 2D plane, by co-linearity, 
symmetry, parallelism, curvature, and co-termination (the contours meet at a point, e.g. a cone). The 
next stage extracts the structure that specifies how the geon components interconnect. The 
decomposition of an object results in a Geon Structural Description (GSD), consisting of geons, their 
attributes, and their relations with adjacent geons. It is this structural description that contributes to 
viewpoint invariance. Therefore if two views of an object result in a similar GSD, then they should be 
treated as equivalent by the object recognition system. Figure 8 illustrates a subset of geons and some 
simple objects constructed with geons. 



  State of the Art    

                                                                                                           
                                                                                                                       10

 

Figure 8: A set of generalized cones or "geons" (Biederman, 87) 

According to geon theory, color and texture are surface properties of geons that play a secondary role 
in object classification. These properties may aid in the recognition process, but do not constitute the 
defining characteristics. 

One advantage of the geon theory is that its demands on the sketch are not unreasonable. Carving 
objects into parts, labeling the parts as geons, and ascertaining their arrangement are not 
insurmountable problems, and vision researchers have developed models of how the brain might solve 
them. Another advantage is that a description of an object’s anatomy helps the mind to think about 
objects, not just to blurt out their names. People understand how objects work and what they are for by 
analyzing the shapes and arrangements of their parts. However, Biederman’s feature set is severely 
limited in its application to many natural objects (Schyns 1998). It doesn’t allow discriminations 
between many similar categories, and objects within the same category will not necessarily be 
represented by the same geon structure. These limitations are a problem not for Biederman’s theory 
alone but also for any approach that cannot adapt its building blocks flexibly to categorical constraints. 

2.1.3 Shape descriptors 

A descriptor is a representation of a feature and defines the syntax and the semantics of the feature 
representation. They are also commonly used for shape recognition. Following is the brief introduction 
of the various descriptors: 

2.1.3.1 Fourier descriptor  

Fourier descriptor is used for shape description. These Fourier descriptors are used to describe the 
boundary of a shape in 2D space using the Fourier methods. 

Here one starts with taking N points digital boundary of a shape on xy-plane e.g. a facet of a 3D 
object. These N points may represent all the pixels occupied by the boundary or a set of sample from 
them. Let   

Α = {P(Xk¸ Yk), k=1....N} 

Be the set of these points with coordinates (X,Y) represented in xy-plane. If the labels on each axis be 
replaced by name as horizontal axis for “real”, and the vertical axis for “imaginary”, then the graph 
consist of complex numbers. 

These points can be represented as s(k) where 

1,....2,1,0for  )( ���� NkiYXks kk  



  State of the Art    

                                                                                                           
                                                                                                                       11

Although the interpretation of the sequence has been recast, the nature of the boundary itself has not 
been changed. The advantage of this representation is that it reduces a 2D into a 1D problem, i.e. there 
are now N complex numbers instead of 2*N real numbers. 

Applying discrete Fourier Transform of s(k) gives  
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The complex coefficients a(u) are called the Fourier descriptors of the boundary. Applying inverse 
Fourier transform to a(u), s(k) will be restored. 
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However, not all coordinate values are necessary to reconstruct the original image. One can “drop” the 
Fourier descriptors with higher frequencies because their contribution to the image is very small. 
Expressing this as an equation, 

 

This is equivalent to setting a(u) = 0 for all terms where k > M-1, where M<N. 

The more descriptors you use to reconstruct the original image, i.e. the larger the M, the closer the 
result gets to the original image. In practice, an image can be reconstructed reasonably well even 
though not all the descriptors are used. 

The Fourier descriptor is a widely used all-purpose shape description and recognition technique 
(Granlund 1972) and (Winstanley 1998). The shape descriptors generated from the Fourier coefficients 
numerically describe shapes and are normalized to make them independent of translation, scale and 
rotation. These Fourier descriptor values produced by the Fourier transformation of a given image 
represent the shape of the object in the frequency domain (Wallace 1980). The lower frequency 
descriptors store the general information of the shape and the higher frequency the smaller details. 
Therefore, the lower frequency components of the Fourier descriptors define a rough shape of the 
original object 

The Fourier transform theory can be applied in different ways for shape description. To apply the 
Fourier descriptor technique to cartographic data, the points are stored as a series of complex numbers 
and then processed using the Fourier transform resulting in another complex series of the same length 
N(Keyes 2001). If the formula for the discrete Fourier transform were directly applied each term 
would require N iterations to sum. As there are N terms to be calculated, the computation time would 
be proportional to N2 . Therefore, the algorithm chosen to compute the Fourier descriptors was the Fast 
Fourier Transform (FFT) for which the computation time is proportional to NlogN. The FFT algorithm 
requires the number of points N defining the shape to be a power of two. 

However, the Fourier descriptor has several obvious shortcomings in shape representation. Since the 
Fourier basis is not local in the spatial domain, a local variation of the shape can affect all the Fourier 
coefficients. 
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2.1.3.2 Wavelet descriptors 

Wavelet descriptors are used to describe the boundary of the shape. (Pfeiffer 1995) showed that these 
descriptors are more suitable than Fourier descriptor for describing the boundary of the shape. (Wunch 
1995) presented the wavelet descriptors in the framework of an application for the multi-resolutional 
recognition of handwritten characters. The features were obtained by computing the wavelet transform 
for the boundary of the characters. The experiment showed that wavelet descriptors work more 
robustly than the Fourier descriptors as far as different writing styles are concerned. It also provides 
better coarse shape features at the low frequencies as well as detail features at high frequencies. 
Besides, it offers a natural multi resolution representation of the signal so that a multi resolution 
matching can be employed. Disadvantage with it, however, is to normalize the input signal so that the 
starting point is fixed at a specific position. 

The use of wavelet descriptors involves intensive computation in the matching stage as these wavelet 
descriptors are not rotation invariant. For example, both (Tieng 1997) and (Yang 1998) use best 
matching method to measure similarity between two feature vectors of the two shapes, this is 
impractical for higher dimensional feature matching. Therefore, wavelet descriptors are more suitable 
for model-based object recognition than data-driven shape retrieval, because the speed is essential for 
shape retrieval, which is usually conducted online. 

2.1.3.3  Shape context descriptor 

Shape context descriptor (Malik 2002) describes the coarse distribution of the rest of the shape with 
respect to a given point on the shape. Finding correspondences between two shapes is then equivalent 
to finding for each sample point on one shape the sample point on the other shape that has the most 
similar shape contexts. Once the correspondence at sample points is given, it can be extended to the 
complete shape by estimating an aligning transformation that maps one shape onto the other. Consider 
the set of vectors originating from a point to all other points on a shape. These vectors express the 
configuration of the entire shape relative to the reference point. If there are n points, a coarse 
histogram hi of the relative coordinates of the remaining n-1 points is given by 

bin(k)}  )p - (q : p{q #  (k)h ii i ���  

Where bin(k) are used as they make the descriptor more sensitive to positions of nearby sample points 
than to those of points farther away. The above equation tells us that the shape context of an image 
point pi is a histogram, which describes the relative position of the remaining points. This shape 
context at a reference point captures the distribution of the remaining points relative to it, thus offering 
a globally discriminative characterization. Corresponding points on two similar shapes will have 
similar shape contexts and therefore enable us to solve for correspondences as an optimal assignment 
problem. Given the point correspondences, a transformation that best align the two shapes can be 
estimated. The main problem with the shape context shape descriptor is that they are very sensitive to 
image distortions. 

2.1.4 Moment invariants 

An image of a 3D object may be described and represented by means of a set of its moments. The set 
of moments of an object can be normalized to be independent of the object primary characteristics, 
namely, translation, rotation, and scale. Hence, moments can be used to recognize 3D objects. These 
moments can provide characteristics of an object that uniquely represent its shape. Several techniques 
have been developed that derive invariant features from moments for object recognition and 
representation. These techniques are distinguished by their moment definitions, such as the type of 
data exploited and the method for deriving invariant values from the image moments. It was Hu (Hu 
1962) that first set out the mathematical foundation for two dimensional moment invariants and 
demonstrated their applications to shape recognition. They were first applied to aircraft shapes and 
were shown to be quick and reliable (Dudani 1997). These moment invariant values are invariant with 
respect to translation, scale and rotation of the shape. Hu defines seven of these shape descriptor 
values computed from central moments through order three that are independent to object translation, 
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scale and orientation. Translation invariance is achieved by computing moments that are normalized 
with respect to the centre of gravity so that the centre of mass of the distribution is at the origin 
(central moments). Size invariant moments are derived from algebraic invariants but these can be the 
result of a simple size normalization. From the second and third order values of the normalized central 
moments a set of seven invariant moments can be computed which are independent of rotation. 
Moment invariants have found wide application in pattern invariant recognition since it was proposed. 
The main difficulty in the application of moment invariants is in their computation. 

2.1.5 Template matching 
Template matching is the process by which the mind identifies objects in comparison to, a particular 
kind of, stored mental representation. According to the theory, the mind carries around a vast 
storehouse of images that can be compared with visual input. An object is identified by "matching" the 
mental image. Thus, in classic form, template matching involves comparing the input with a pictorial, 
global, or non-decomposed representation of objects. (Rainsford 2002) explored this idea, inspired by 
the Danish Mapping Agency KMS for the generalization of rural buildings, to select from a set of 
templates, a building outline that best characterizes a more detailed form. These rural buildings are 
represented using a series of simple alphabetic templates with similar shapes as shown in figure 9. The 
use of the templates in effect creates caricatures of the farm building outlines as shown in figure 10 
that shows the original building in grey and a fitted template in outline. It requires the recognition of 
polygon shapes as well as the simplification procedure (to generalize).  

 

 

Figure 9: The templates I,F,P,G,E,L,U,O,T [Rainsford, Mackaness, 2002] 

A single building polygon is chosen and matched against a set of defined templates. These template 
shapes can be stretched or flattened to achieve satisfactory results. 

 

       Figure 10: Template matching [Rainsford, Mackaness, 2002] 

The template-fitting scheme first uses a two-step process of simplification followed by a template 
selection procedure as shown in figure 11(Rainsford 2002). Some building shapes have central 
courtyards or “holes” in them, by counting these holes, an appropriate template group I,L,U,T,F,E 
group (one ring) or O,P (2 rings) is selected. Internal angles of the simplified and squared polygons are 
measured and recorded in a sequence to characterize their shape. Therefore based on the number of 
holes in the object, the number of vertices and the sequence of internal angles, the choice of the 
templates is progressively narrowed down.  



  State of the Art    

                                                                                                           
                                                                                                                       14

 

Figure 11: Template matching process [Rainsford, Mackaness, 2002] 

Even though this process was used for 2D shapes, it still requires a lot of simplifications before 
vertices, angles and loops are measured. It fails when two near identical shapes (like E and F) are to be 
recognized. 3D buildings with angles less than 900 (especially roofs) will make the recognition more 
difficult as this process deals with right angles only.  

2.1.6 Feature analysis 

Feature analysis theories provide an alternative to the template approach. In the feature analysis 
approach, shapes are represented in memory as configurations of distinctive and separable parts called 
features (Bassett 2003). For example, a capital ‘A’ has a horizontal line and two diagonal lines (in 
opposite orientations). This is true of A's in almost all fonts and styles, even though they may differ 
dramatically in terms of the intensity arrays they might produce.  

Feature models differ from template models in two major aspects. First, shapes are stored in memory 
as structural descriptions (a list of features and their relationships) instead of templates (in an 
intensity-array format). Second, feature models insert an additional stage of preprocessing between 
selection and recognition. In this stage, the intensity array in iconic memory is analyzed to identify the 
features in the array and note how those features are related. As a result, both the current input and the 
structural descriptions stored in long-term memory have the same format--lists of features and feature 
relationships. Thus, whereas the matching process in the template model compares two intensity 
arrays, the matching process in the feature model compares two feature lists.  

Feature analysis has several advantageous properties. First, it provides a relatively robust solution to 
the problem of shape variability. Two members of a category may have many superficial differences 
and yet share the same underlying features. Second, feature analysis provides an intuitively (and 
experimentally) more plausible mechanisms for making similarity judgments. One case where this can 
be especially valuable involves an encounter with an unfamiliar pattern. Both the template matching 
and feature analysis models were designed mostly to recognize alphanumeric characters. Their 
suitability for 3D objects is less investigated. 

2.2 Current application of structure recognition in 
generalization 

A basic level of understanding of the structure of map objects is necessary for its successful 
generalization. During the cartographic generalization, geographic objects cannot be considered one 
by one but in relation to each other. The relations are either hierarchical or non-hierarchical. The most 
important hierarchical relations, according to (Mustiere 2002) are: 

� Part of a group: In a map, lots of objects take a more precise meaning by being a part of a group than 
on their own. For example, in certain studies a highway interchange may be more significant than the 
isolated road sections it contains. Identification of significant groups is very important during 
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generalization. First, some generalization processes cannot be done while looking at objects one by 
one and therefore must be preformed at the group level (such as merging and typification). Second, the 
fact of being part of a significant group can influence the way the elements of the group are 
generalized. 

� Being inside a particular area: This type of spatial contexts considers the property of being inside an 
area that can be qualified by some global characteristics. For example, a garage is within the area of 
building or near to it. 

� Non-hierarchical relations: deal with another type of spatial context those influences the 
generalization process based on the local relations that a given object have with its surrounding 
objects. For example, a building near a road, a building is aligned with a road. These relations 
influence the generalization process in different way. 

It is therefore important to understand what type of relations may exist between objects in order to 
understand how they influence the generalization process thereby underlying the importance of the 
notion that structure recognition is an inseparable part of automatic generalization. The structure 
recognition along with the knowledge of scale space plays an essential role in determining the local 
and global constraints, identifying generalization operations and their calling sequences, defining 
iteration degree of each operation as well as parameters of individual algorithms involved in each 
operation. Following paragraphs reveal the importance of structure recognition in generalization 
involving different dimension. 

2.2.1 Structure recognition and 2D generalization 

According to the conceptual framework by (Brassel 1988), the overall process of map generalization, 
as stated earlier, is thought of consisting of five steps: Structure recognition, process recognition, 
process modeling, process execution, and data display. The generalization constraints (scale reduction 
factor, map purpose, data quality, etc.) provide control for these tasks. The purpose of structure 
recognition is essentially to determine the relevant structures and the relative importance of the map 
elements of the input map, and identify the generalization operators that should be used to solve the 
given generalization problem. It was during 1980s when the importance of structure recognition was 
gradually realized during line generalization. The model by (Brassel 1988) was extended by McMaster 
and Shea (McMaster 1992), decomposes the generalization process into three operational areas: a 
consideration of the philosophical objectives why to generalize, a cartometric evaluation of when to 
generalize, and the selection of appropriate spatial and attribute transformations which provide 
techniques on how to generalize. The area on when to generalize is equivalent in scope to the structure 
and process recognition in the model of (Brassel 1988). In the area of how to generalize, a list of 
various operators is proposed as described in first chapter. 

In 1997, 2D generalization took a great leap ahead when structure recognition was extensively applied 
by (Mackaness 1997) using a new technology called “agent”. Here the significant groups are explicitly 
represented and their interconnected generalization and the parts are managed. The agent approach 
uses a multi-level, pyramidal model of agents. Single agents (like buildings) are called micro agents. 
On top of these micro agents, meso agents are designed, that correspond to groups of spatially 
organized features: a set of aligned buildings, a building block (set of buildings surrounded by roads), 
a town, etc (figure 12). Micro agents perform individual generalization without considering their 
surroundings: they apply generalization algorithms to themselves, like dilation or simplification, in 
order to satisfy their internal constraints. It means the recognition of internal structural of a graphic 
object is essential for micro agents. The constraints that involve several agents are designed and 
handled at the level of meso agents, e.g. a building block agent is in charge of handling the overlap 
conflicts between its roads and buildings. Therefore, structure knowledge for the objects in 
neighborhood is also needed and has to be known in advance for the meso agents. 
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Figure 12: Pyramidal structure of AGENT (Duchene 2003) 

The agent system incorporates a strategy, which aims to resolve conflicts not by describing in great 
detail how certain conflicts should be resolved, but by describing the desired final characteristics, i.e. 
structure recognition, of the feature. For example, the system might incorporate the desired outcome 
that no building should be smaller than a certain size, that it should not be closer than a certain 
distance to another building and that it must not be moved by more than a certain distance from its 
original starting position. The outcome of any generalization operation or set of operations is 
compared against this set of guidelines. This comparison is used to decide whether further operations 
are required, or whether the result should be discarded and a different operation applied. In this way, 
individual map features can be generalized in a way, which is sensitive to their particular situation; 
with similar features potentially having quite different operations applied to them. 

(Duchene 2003) proposed modified approach which goes beyond the limits of pyramidal organizations 
listed above, by proposing another organization of agents to handle the relational constraints. 
Relational constraints are applied to a relation between two geographic objects, e.g. the constraint that 
prevents symbols overlaps. This approach is suitable for low-density areas such as rural areas, where 
the pyramidal approach does not work well. Here the structure recognition of graphics objects in 
neighborhood relations is more important. 

As in the approach of the agent, agents here also need capacities of introspection in order to assess and 
satisfy their internal cartographic constraints. The major difference is that the consideration of the new 
capacities is also needed by agents in order to tackle their relational constraints. A relational constraint 
of an agent always involves the agent itself, and another agent that is within its neighborhood. This is 
why, in order to assess their relational constraints, agents need capacities of perception of their 
environment, as well as an explicit representation of this environment.  

Moreover, to decide how to act in order to solve a relational conflict, an agent needs to gather 
information about itself (its state, what it can do or not), but also about the other agent involved in the 
conflict. In some cases, it is not able to compute all the information itself and needs to get it from the 
other agent. This is why new agents need to communicate with their neighbors as illustrated in Figure 
13. The road agent which is a dead-end (yellow) can compute its symbol overlap with the building 
agent (black). The building agent can compute its proximity with the red road. In order to undertake 
the right action, the dead-end agent needs to know that the building is stuck. Otherwise, it should wait 
for the building to move away, because it is a cartographic rule that, a priori, moving a building has 
fewer consequences than moving a road. The information can be transferred from the building to the 
dead end thanks to a dialog such as "Move away! No, I cannot". This is why the agents need to have 
conversations, i.e. "task-oriented, shared sequences of messages that they observe, in order to 
accomplish specific tasks" 
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Figure 13: AGENT communication [Vincent 2003] 

 

Three kinds of relational constraints are considered: 

Moreover, an internal constraint of positional accuracy for the buildings that prevents a building from 
moving too far away from its original position is considered. 

Advantage of these innovations is that the representation of an agent's environment by means of 
constrained zones is of great help to choose a position that satisfies several relational constraints at a 
time. Moreover, it is very encouraging that the system and the system stemming from the agent project 
can work together. It must be noted here that whatever is the approach used, agents need to know 
structure recognition of the objects on which they are acting upon. 

2.2.2 Structure recognition and line simplification 

Cartographic generalization can largely be considered as a classification problem, since both structure 
recognition and process recognition are indeed classification tasks. It was during 1980s, when line 
generalization algorithms considered the importance of structure recognition. For example, during line 
(road) simplification, its structure recognition was required so that its different parts can be simplified 
or even exaggerated (accident prone bends). 

ANN are good at classification and by understanding generalization as a special type of classification 
problem, it should be possible to exploit the specific strength of ANNs in classification therefore 
(Weibel 1994), applied ANN for line generalization. They adopted the criteria for the ANN input 
representation used by (Mokhtarian 1992) which specifies that a general-purpose shape representation 
method should satisfy the following criteria, although these criteria were formulated for use in 
computational vision (e.g., for the recognition of objects):  

The major reason why these requirements should be met is to avoid an overload of the network. 
Otherwise, two lines with the same shape, but linearly transformed, would not be recognized as 
identical and stored twice. The computation of form properties is important because the network only 
then can extract parts of learned lines. It shows that structure of the linear features are implicitly 
recognized which governs the subsequent generalization using neural network. 

 

 

� Non-overlap constraint. No overlap should occur between (1) roads and buildings, (2) buildings and 
buildings. 

� Proximity constraint. The distance between roads and buildings, and buildings and buildings must 
respect a given separability threshold (parameter of the system, 0.1mm on the map in our case). 

� Topology constraint. A building is not allowed to "jump over a road". 
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2.2.3 Structure recognition and displacement 

(Monika 2000) applied Least Squares Adjustment theory (Jodio 1990) for the displacement of Map 
symbols. Displacement is also modeled as an optimization procedure, where the position of objects 
has to be optimized with respect to some given constraints. Different objects have to be displayed on a 
map – for reasons of legibility certain constraints have to be satisfied, e.g. minimal object sizes and 
minimal object distances have to be enforced. Least Squares Adjustment offers a straightforward 
framework to introduce different kinds of these constraints. In one step, all these constraints are solved 
simultaneously, resulting in one optimized solution with the feature that all residuals are distributed 

Constraints can be two-fold. On the one hand, there are the exterior constraints in terms of minimal 
distances between objects that have to be enforced. On the other hand, there are the internal constraints 
of the objects, namely form parameters of the objects. The following set of constraints is introduced in 
the system. 

These constrains are derived only after a successful structure recognition of the map symbols which 
yield these form parameters and proximity. 

All these observations R are introduced into the conventional LSA. They form the Jacobean Matrix 
A. As these functions are not linear, they have to be linearised with respect to given approximate 
values. Each observation has a corresponding accuracy (or weight), described in the matrix P. These 
weights describe how well the observation has to be enforced. They can be used to describe different 
object properties: the objects can be movable or fix, or they can be deformable or stiff. The stiffness is 
ensured by assigning a high weight to the internal form parameters of the object (object sides and 
angles). The introduction of the unknowns as additional parameters allows the assignment of 
accuracies. This can be used if an object is considered non-movable by assigning high weights to its 
coordinates. 

After all the observation equations are set up, the solution of the unknown parameters X is gained by 
solving the following equation: 

X  = (ATPA)–1 ATP(R - f (Xo)) 

Where A is the Jacobean Matrix of the derivations of the functions according to the unknowns, P is 
the weight matrix, R are the observations and f(Xo) is the value of the function calculated at the 
approximate value Xo. 

As distance constraints between all the objects are formulated, this ensures that a global solution is 
found, where a displacement of one object occurs in accordance with all its surrounding objects. 

2.2.4 Structure recognition and buildings generalization 

Automatic generalization of 3D buildings based upon scale space has been tried by (Mayer 1998) 
where the formally well-defined theory of scale-spaces is introduced and structure recognition is the 
prerequisite. More specifically, an approach is proposed by him, which simplifies two dimensional 
(2D) as well as 3D building outlines employing vector-based morphology and discrete/continuous 
curvature space. The proposed approach renders it possible to preserve and even enforce right angles. 

� Form parameters: object sides, angles, orientation, 

� Distances between objects: minimal distance that has to be enforced and critical distance, that 
indicates that the objects have to be merged (by setting the distance to zero) 

� Additional parameters: the coordinates. 
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In continuation of above work, (Forberg 2003) proposed an approach for the simplification of 3D 
building data, which extends the idea of scale spaces applied in image analysis. Two scale spaces, a 
3D version of mathematical morphology and the so-called 3D curvature space are applied separately, 
as both are suited for the simplification of different object structures. However, a rather complex 
analysis is needed for curvature space, which may dramatically slow down the generalization process. 
In a new approach introduced in (Forberg 2004a), the advantages of mathematical morphology and 
curvature space have been united in one process. Here, if the distance between two neighboring 
parallel facets falls below a predefined threshold, one or both facets will be moved towards each other 
until they merge into the same plane (Fig. 14). Such a “parallel shift” may lead to the simplification of 
all parallel structures including the split or merge of different object parts, the elimination or 
adjustment of local protrusions, step as well as box structures.  

 

 
Figure 14: Parallel facets under a certain distance are shifted towards each other, until the facets of the 
building merge. (Forberg 2003) 

For the results shown in Fig. 15, two kinds of weighted movements are used. If the area of a facet is 
smaller than a third of the area of its partner facet (this threshold is chosen intuitively), it will be 
shifted the whole distance. Otherwise, both facets will be shifted half of the distance. In this way, a 
shape simplification and adjustment take place simultaneously, which may slightly emphasize certain 
structures. The selection of a facet pair and the specific shift distances are based on the analysis of the 
relations between the facets.  

If there are several pairs of parallel facets with the same smallest distance, one pair is selected 
randomly for the parallel shift. Therefore, the result is not always predictable. In case of small box 
structures, this problem can be avoided by shifting only the smaller facet the whole distance. Since the 
result remains the same now in spite of random choices, the symmetry of box structures can be 
preserved. However, the weighting does not work for all cases. The 4th building from the left of Fig. 
15 shows a special case for this problem, where one facet has the same distance to two parallel facets. 
The random selection of the partner facet has led to an unexpected result, the elimination of one of two 
nearly symmetrical building parts. A human would most likely to close the gap instead. 
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Figure 15: Results for the simplification based on parallel shifts. Object parts marked in red are not only 
eliminated, but adjusted as well, so that the characteristic shape is preserved and slightly emphasized. 
Objects marked in green reveal the problem caused by random selection of one facet for the movement 
(Forberg 2003) 

The simplification using the parallel shift works only on strictly parallel structures. In order to simplify 
object parts with non-orthogonal structures, particularly roofs, a method for enforcing right angles is 
developed in (Forberg 2004b), according to which the inclined roof-facets are forced to become 
horizontal or vertical by rotating around one of their edges, i.e. the eaves or ridges. Among these two 
kinds of edges (taper-edge), which edge will be chosen for the rotation process and whether a 
horizontal or a vertical flattening (taper-orientation) occurs depend on the combination of two 
neighboring facets, the facet sharing its eaves and the facet sharing its ridges. 

Recently a concept was introduced by (Thiemann 2002) for the generalization of individual 3D 
building which rely on surface simplification based upon edge, vertex and face reduction so that there 
is not appreciable difference between the original and the generalized building. The building is 
modeled as a combination of the main body and the features. These features are combined using 
Booleans operators especially union and difference and in some cases interaction. It presents a step-
by-step procedure consisting of a segmentation of the building parts of a CGS representation, which 
are subsequently generalized. Apart from simplification by smoothing and omitting other 
generalization are also used such as emphasizing, aggregation, classification and displacement. As 
these operators require information about the importance of the objects and therefore have to be 
extracted from geometry (size, form) and topology (i.e. structure recognition). Non-spatial attributes 
are also used. 

Different models are generated based upon LODs in order to achieve visual continuous representation 
and only incremental changes are stored to minimize the storage as shown in figure 16. 
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    low detailed Level               high detailed Level 

 

       nothing     difference          LOD1       difference         LOD2        difference   LOD3 

       

           add objects         add objects           add objects 

            delete objects           delete objects 

            scale objects      scale objects 

            move objects              move objects 

                 ……            …….. 

 
Figure 16: Differential multi scale data structure: storing differences between adjacent levels of detail 

The comprehensive literature survey on structure recognition and its application in cartographic 
generalization has clearly shown the importance of structure recognition for generalization. Although 
structure recognition has been implicitly applied for all 2D generalization concepts and 3D building 
simplification but it is difficult to find enough literature, where 3D structure recognition and 
generalization are studied in details. The next chapter will concentrate on structure description of 
different 3D buildings where various measurable parameters are identified based upon various 
relations among these buildings. 
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Chapter 3  
 

Structure description of 3D buildings 

3.1 Structure description 

Structure description of 3D objects is the first step towards its structure recognition and it includes 
information about the global shape of an object, as well as the relationships among the object’s part. 
As objects can be recognized by their structural descriptions, therefore it is necessary to study 
structure description of 3D buildings. A 3D city model consists mainly of buildings and roads. There 
are a great number of building types in the world but the focus of the study in this thesis is on 
European buildings only. These buildings exhibit enormous variation in their geometric structural and 
shape. A different set of parameters is needed to describe each of them. Main emphasis is to maintain 
topology with explicitly described spatial relations. The geometric model is a straightforward 
description method. Various kinds of geometric models are described in the literature and each model 
required different parameters to describe 3D objects. Following are the most commonly used models. 

3.1.1 Geometric model of buildings 

The geometry of the buildings in urban area in particular, varies from simple to complex in shape and 
structure, from small to large in size, connected with the internal representation (i.e. deep structure) 
and external structure (i.e. surface structure) of the buildings. Individual 3D buildings regardless of 
their complexity can be described in one of the following ways (Lang 1999), (Thiemann 2004). 

a. Voxel model: A 3D building is organized as a matrix composed of voxels. Each voxel can be 
attached to one or more semantic attributes. The voxel model shares the same advantages and 
disadvantages with 2D raster data. On the one hand, it can model the arbitrarily complex 3D 
buildings and allows direct access as well as simple image processing operations. On the other 
hand, it requires large storage capacity and long rendering time even if data compression 
methods such as octree have been applied. 

b. Parametric model: A 3D building is partitioned into a number of standard bodies such as cuboid, 
sphere, cylinder, cone, and pyramid, which can be completely described by a few parameters 
such as side length, width, radius and height. The absolute position of the building is defined by 
six further parameters of rotation and translation. Parametric description is suitable for the 
description of simple buildings, which are characterized by their planar roof surfaces and the 
orthogonal relationship between walls and ground plans.  

c. Constructive solid geometry (CSG): The solid geometry of a 3D building is constructed through 
Boolean operations such as intersection, difference, union or inversion of elementary building 
parts. The sequence of operations is stored in the CSG tree. Usually the length of the sequence 
reflects the relative complexity or irregularity of the corresponding 3D building.  

d. Solid representation (Srep): The geometry of an arbitrarily complex 3D building is described by 
a Tetrahedral Network (TEN) composed of the regular or irregular topological elements 
tetrahedron, triangle, edge and vertex (Song, Liu and Niu 2004). Analogue to TIN, a TEN is 
usually based on the principle of Delaunay Tetrahedral Tessellation (DTT). Also, constrained 
DTT can be realized in which characteristic points, structure lines and planar facets of the 
building serve as vertices, edges and meshes of tetrahedrons. The most popular algorithm for 
constrained DTT is the “Boundary Face Subdivide (BFS)” algorithm. It uses the initial input 
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vertices to form an initial TEN, then inserts constraining vertices into the mesh until all the 
constraining lines and facets are recovered. 

e. Polyhedral models: These general models can be used to represent all types of buildings 
bordered by flat surfaces(Forberg 2002). Usually they are represented by means of their 
surrounding boundaries. This so called boundary representation (b-rep) consists of information 
about each of the faces, edges, co-edges and vertices of the building, and how they are 
connected as shown in figure 17. This is a suitable representation for graphics since the surfaces 
to be visualized are readily available. Based on this model, buildings with different structures 
and roof styles can be drawn. The properties of these individual entities are described in table 1. 

 

 

   Figure 17: Important elements of the building(Forberg 2002) 

 

Building parts Description 

VERTEX Vertices are described by 3D coordinates and are connected by 
edges. 

EDGE In a manifold solid object, every edge is related to exactly two faces 
and two co-edges. 

CO-EDGE A co-edge is a directed edge. The two co-edges related to an edge 
always point in opposite directions along the edge and are 
associated with a loop of one of the faces. 

LOOP A loop is a connected series of co-edges and describes a boundary 
of a face. Generally, loops are closed, having no start or end point. 

FACE  A face is a bounded portion of a surface. 

BODY Body is the highest level of model object and in our case describes 
the entire object that is composed of faces. 

 
Table 1: Building parts as per b-rep model (Forberg 2002) 

3.1.2 Semantic model of buildings 

The structure of polyhedral buildings is shown in the geometry layer of the semantic network (figure 
18). Polyhedrons, e.g., buildings, consist of their surrounding regions called faces. The boundary of a 
region consists of lines (edges, co-edges), which connect points (vertices).  
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Figure 18: Semantic model of buildings 

 

3.2 Semantic modeling of a 3D city 

When modeling a 3D city the main characterizing structure of the individual objects as well as the 
semantic relations between them has to be preserved. A semantic network on the conceptual level 
(Brachmann 1997) is developed and is shown in figure 19. A typical European city consists of 
different kinds of buildings and houses and after the World War II, the variety of these buildings has 
increased to many folds due to industrialization. A visible renovation of the old town, the erection of 
new and transformation of old industrial sites into commercial buildings has taken place. In the city's 
social structure, the most evident changes are the ongoing gentrification of the old town and the new 
kind of sharp segregation arisen with the new single family housing areas. Therefore, a city area can 
be segregated into various categories such as residential, commercial, industrial, and agricultural 
depending upon many factors. According to the density, the residential area is divided into small 
houses and highly constructed buildings comprising of many apartments. Residential house density 
and their height give information about the population density and are in directly proportional. Height 
of the house also indicates income level of the residents. In case of higher income, the house would be 
higher and bigger and have good and different shapes. These houses are relatively away from the city 
center and owned by mostly native peoples. They also located little away from the main road and 
connected to it by small road. 

On the other hand, high-storied buildings consist of many apartments and highly populated. On an 
average, people are not rich and have middle level income. These people are not native but have come 
from other parts for doing job. These buildings are relatively near the center of the city. They are 
located near to the maid roads around it. It has also a relatively big garden near it and possibly a small 
river passing nearby. Commercial areas are always in the central part of the city and well approached 
by roads from all directions. It is again very densely populated. The buildings are multistoried and of 
the same shape and height. Industrial buildings are located outskirt of the city and approached by 
small roads linked to main roads. They are aloof and surrounded by open field area 
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Figure 19: Semantic network of settlement (Brachmann 1997) 

 

3.3 Building types based upon shapes and roof styles 

Buildings, which are the major constituent of the city, are manmade objects and reveal a high 
variability in structure. A building can be represented as a combination of several simple building 
parts such as roof, walls, ground plan, windows etc. Each part in turn is represented by sets of vertices, 
edges and faces. When there are no attributes attached to them, they correspond to point, line and 
region respectively. A point is defined uniquely by its coordinates in a coordinate system on R2. An 
arc is a straight-line segment with two distinct points,  
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a start point and an end point. A line is a finite sequence of simple arcs a1, a2...an such that the end 
point of the arc ai coincides with the start point of the arc ai+1, for every 1≤ i≤ n-1. The endpoints of a 
line are called nodes. If nodes of a line coincide, it is called closed, otherwise it is called open. A 
simple closed line has a non-crossing interior. A region is a connected subset of 2D space which is 
characterized by a simple closed line called the outer boundary, denoted by l0 and potentially a set of 
simple closed lines called the inner boundaries, denoted by li for i>0, such that  

The region then can be expressed by the formula (Vasilis 1997) 

∩ i>0 (ex(li)∩in(lo)) 

Geometrically and Semantically these building parts can be divided into three levels of 
abstraction (Lang 1999) 

 

   Vertex  edge  face 

    
   Figure 20: Feature level  

 

    
 

Figure 21: A corner containing vertex, edge and face 

� No two such lines intersect. 

� Neither of them is contained in the internal set of the other and  

� All of them are contained in the internal set of the outer boundary.  

� Feature level. Feature level contains features, namely attributed vertices, edges and faces as 
shown in figure 20. Attributes for edges and faces, for instance, are the orientation 
classifications such as horizontal, oblique and vertical. Faces have an additional attribute 
describing its role: valid values among others are wall, roof and floor. These features can be 
represented spatially as well as non-spatially. In general, the set of spatial parameters are 
divided into positional parameters on one hand, describing location and orientation, and form 
parameters on the other hand like length, width, and height.  

� Feature aggregate level. Feature aggregate level contains feature aggregates, which are induced by 
vertices, edges and faces, and contain all their direct neighbors. Each aggregate is defined by a 
feature graph, given by a set of features and adjacency relations. A corner, for instance, contains one 
vertex and all its adjacent edges and faces (figure 21).  

� Building level. This level contains complete building. A typical city model consists of buildings 
of different roof styles, shape, sizes, colors, textures etc. The most prominent among them is roof 
style and therefore these buildings can be classified into a known set of groups based upon their 
different roof styles: 



  Structure description of 3D buildings    

                                                                                                           
                                                                                                                       27

 

3.3.1 Types of roof 

The following major roof types are identified in a typical European city model: 

a. Flat roof: Flat roof consists of only one single plane. In term of faces, it has four faces (walls) 
joined together at right angles and one face (roof) lying at the top upon them (see figure 22.a).
  

b. Gable roof: Gable roof is composed of two intersecting planes that form a peak (the ridge) 
between the planes (figure 22b). In other words, roof consists of two rectangular faces joined 
together at an acute angle and two triangular faces inserted between the gapes of two (see 
figure 20.b).  

c. Salt box roof: Salt box roof consists of two faces - the small front face and the large rear face. 
Front face makes an angle of approximately 450 and rear face makes an angle of 200 with the 
ground wall (see figure 22.c). 

d. Cross gable roof: Cross gable roof consists of pairs of gable roofs set at right angle to each 
other. The description of roof faces is the same as that of gable roof (see figure 22.d). 

e. Gambrel roof: Gambrel roof is similar to a gable roof. However, rather than having a single 
ridge at the peak, a gambrel roof has three ridges, one at the peak and the two along the 
sloping sides. Therefore there are four faces joined together making acute angles with each 
other and two other arc-shaped faces inserted perpendicularly between the four faces (see 
figure 22.e). 

f. Hip roof: Hip roof is similar to a gable roof but has four surfaces instead of two. It is made of 
four intersecting planes. Two rectangular faces are joined together at acute angle and two 
triangle shaped faces are inserted perpendicularly on either side of them (see figure 22.f). 

g. Dutch hip roof: Dutch hip roof is a combination of a hip and a gable roof with its central 
section made of gable roof (see figure 22.g). 

h. Shed roof: Shed roof is one that starts at the eaves of the existing roof and continues at a lower 
pitch. It has only one slanted face emerging from the existing roof and leaning on the wall 
faces (see figure 22.h). 

i. A-frame roof: A-frame roof uses a steep roof to form the walls of the upper level. It consists of 
two rectangular faces, which form the roof as well as walls in A-shape. Two triangular shaped 
faces, forming front and rear part of the buildings are inserted perpendicularly to rectangular 
faces (see figure 22.i). 

j. Mansard roof: A mansard roof has two slopes on each of the four sides. The lower slope is 
steeper than the upper slope. The upper slope is usually not visible from the ground. There are 
eight faces making up the roof. Four lower faces are acutely joined to form the lower portion 
of the roof and other four faces making upper portion of the roof like hip roof (see figure 22.j). 

k. Pyramid roof: A pyramid roof is built on a square base with eaves of the same length. It is 
made of four intersecting planes. In another words, roof planes consist of four triangular faces 
joined together such that they meet at a single point (see figure 22.k).  

l. Hip with cross gable roof: Hip with cross gable roof is a mixture of hip and gable roof with 
hip roof at the center and gable crossing it (see figure 22.l). 

m. Lean to wall roof: Lean to wall roof has one sloped roof face with upper end leaning against 
the wall face (see figure 22.m). 
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   Figure 22 : Different roof types 
 

3.3.2 Building types 

One of the most important criteria for defining classes of buildings is its shape complexity. Here, for a 
city model, buildings can also be classified based upon different types of roof and shape complexity. 

 

1. Simple buildings: These usually corresponding to individual housing with different roof style 
and ground plan (figure 23). It has normally rectangular ground plan and orthogonal walls. 
Even it doesn’t have rectangular ground plan, it can still be broken into different rectangles. 
Roof is also made from planer faces combined together to form a given style. As these 
buildings are occupied by a single family, so mostly they are 1-2 story buildings. 

 

 

a.  Flat b. Gable c. Salt box d. Cross gable 

e. Gambrel f. Hip g. Dutch hip h.  Shed 

i. A-frame j. Mansard k. Pyramid l. Hip with cross gable 

m. Lean to wall
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Figure 23: Simple building types  

2. Complex buildings: They are amalgamation of buildings in a town centre. These Buildings are 
formed from a group of small buildings joined together (figure 24). For example, U-Type, L-
type or Trapezium building is formed due to clustering of many adjacent buildings. Two 
buildings are joined together in the middle through a common path, thus forming a bridge 
building.  

 

 

 

 

   

 

   

 

   
Figure 24: Complex building types 

Flat Gable Salt box Cross gable 

Gambrel Hip Dutch Hip Shed 

A-frame Mansard 
Pyramid Hip with cross gable 

Lean to wall Dutch hip 
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Closed square 
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Bridge 
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3.4 Building parameters 

A set of measurable parameters is required to characterize the size and shape of a building. The 
minimum number of parameters varies from building to building. According to (Suveg 2001), 
following are the details of parameters for each type of buildings. 

i. Flat type: The minimum set of parameters required for flat type building are its side length l and 
width of the ground plan w, height of the body h, x,y,z coordinates of building reference point 
and the number of faces. (figure 25). 

 

    Figure 25: Some of the parameters of flat building  

ii. Gable roof: The minimum set of parameters required for gable building are its side length l and 
width of the ground plan w, different heights (h1,h2) of the body, x,y,z coordinates of building 
reference point, the height of ridge, the number of faces, angle between the faces α and the roof 
type (figure 26). 

 
Figure 26: Some of the parameters of gable building 

iii. Hip building: The minimum set of parameters required for hip type building are its side length l 
and width of the ground plan w, height of the wall h2, height of the ridge h1, x,y,z coordinates of 
building reference point, the number of faces, angle between the faces α and the roof type 
(figure 27). 
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Figure 27: Some of the parameters of hip building 

iv. Mansard: The minimum set of parameters required for mansard type building are its side lengths 
(l1,l2) and width of the ground plan w, three different heights (h1,h2,h3) of the body, x,y,z 
coordinates of building reference point, the number of faces, angles between the faces α and the 
roof type (figure 28). 

 

Figure 28: Some of the parameters of mansard building 

v. Lean-to-wall building: The minimum set of parameters required for lean-to-wall type building 
are its side length l and width of the ground plan w, two different heights (h1,h2) of the body, 
x,y,z coordinates of building reference point, the number of faces, angle between the faces and 
the roof type (figure 29). 
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   Figure 29: Some of the parameters of lean-to-wall buildings  

vi. Pyramid: The minimum set of parameters required for pyramid type building are its side length 
and width of the ground plan, two different heights (h1,h2) of the body, x,y,z coordinates of 
building reference point, the number of faces, angle between the faces and the roof type (figure 
30). 

 

Figure 30: Some of the parameters of pyramid buildings 

vii. A-Frame: It is similar to gable roof building but the roof sides touch the ground to make shape 
similar to letter A. The minimum set of parameters required for A-Frame building are its side 
length l and width of the ground plan w, height of the body h, x,y,z coordinates of building 
reference point, the number of faces, angle between the faces and the roof type (figure 31). 
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   Figure 31: Some of the parameters of A-frame building  

viii. Gambrel: The minimum set of parameters required for Mansard building are its various lengths 
(l1,l2,l3) and width of the ground plan w, three different heights (h1,h2,h3) of the body, x,y,z 
coordinates of building reference point, the number of faces, angle between the faces and the 
roof type (figure 32). 

 

Figure 32: Some of the parameters of gambrel building 

ix. L,U,T building: The minimum set of parameters required for L,U,T buildings are various side 
lengths (l1,l2) and widths of the ground plan (w1,w2), height of the body h1, x,y,z coordinates of 
building reference point, the number of faces and the roof type (figure 33). 
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   Figure 33: Some of the parameters of  (L,U,T buildings) 

3.5 Hierarchical approach to structure description 

Structure description of objects in a city model can be divided into three levels namely micro, meso 
and macro level based upon structure recognition at individual building, buildings in neighborhood 
and buildings at cluster level. The following paragraphs study these levels in details.  

 

a. Micro level: It applies to individual objects (buildings). A building exhibit a large number of 
significant edges, junctions, parallel lines, faces and closed figures composed of polyhedrons 
(Kada 2002). The higher-level features of the buildings exhibit apparent regularity and 
relationship, and play important role in structure recognition. An individual 3D building can be 

characterized by 

Measurable parameters for buildings are: 

1) Junctions: L and U type junctions are formed when different faces of the building are attached 
side by side and are approximately at right angle to each other. 

a. Roof type 

b. General shape 

c. Positional parameters describing position and orientation  

d. Form parameters like length, width, height, surface area, volume 

e. Orthogonal walls (in most cases)                                       

f. co terminations 

g. L  and U junctions 

h. Parallelism of faces 

i. Shape symmetry 

j. Shape regularity 

k. Straight line segments 
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2) Parallel edges and faces: Most of the buildings have faces and edges ( i.e. walls), other than the 
roof plane, are parallel and orthogonal to each others.  

3) Shape regularity: Shape regularity is defined in term of its edge linearity and shape convexity. 
Regularity of a building is measured by its convexity measure defined by the ratio of the area of 
the shape to the area of its convex hull (Christophe 2002). 

RS = Area(Shape)/ Area (Convex hull) 

 Where RS is the measure of shape regularity and always varies from 0 to 1. 

4) Shape symmetry: Most buildings have very strong symmetry where the left side of the structure 
is exactly the same as the right side. Although it is typically viewed as a discrete feature where an 
object is either symmetric or non-symmetric, however visual perception treat symmetry as a 
continuous feature, relating to statements such as `one object is more symmetric than another' or 
‘an object is more mirror symmetric than rotational symmetric’. With this notion in mind, it can be 
viewed as a continuous feature and a Continuous Symmetry Measure (CSM) is defined to quantify 
the "amount" of symmetry of different shapes and the `amount' of different symmetries of a single 
shape. Computational methods have been developed (Zabrodsky 1992) to compute the CSM 
values of a shape P: 

CSM (P) = d(P,ST(P)) 

Where ST is the Symmetric Transform defined as the symmetric shape closed to P in term of the 
metric d. 

5) Length, width and height: These are the basic important measurable parameters of a building.  

With these positional and form parameters, we are able to recognize an object from different 
viewpoints. The minimum values, where the different parts of the object are distinguishable are known 
as minimum dimensions. For a 2D map, the minimum dimensions mentioned in (Hake 2002) are for 
paper maps whereas corresponding values for 3D are for a computer screen resolution. Therefore, 
these values are little more than its counterpart in 2D for the obvious reasons. These minimum 
dimensions of the single 3D object at a given scale are given in the table 2. 

   Parameter Minimum (or Threshold) size 

Length, width lmin =0.40mm, wmin = 0.40mm 

Height 
hmin = 0.45mm 

Angle αmin = 5o 

Area Amin = lmin* wmin 

Volume Vmin = lmin*wmin*hmin 

 
    Table 2: Minimum dimensions 

 

6) Orthogonality: Though not all, most of the buildings have orthogonal boundary walls. 
Orthogonality of the walls can be measured by calculating the normal to each wall and measuring 
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the angle of the various junctions formed between the various walls of the building. Normally the 
value measured should be between 80o to 100o as shown in figure 34. 

 

 

 

 

 

 

 

 

 Figure 34: Orthogonality of a building 

7) Area & volume: Building area and volume are other easily measurable parameters. While area 
can be calculated using building length and width, volume uses its height also. However, when the 
building is not a perfect cube, calculating volume using length, width and height gives incorrect 
result. Therefore finding the convex hull of the building and then calculating its volume gives 
better result.  

8) Shape deviation: Though most of the building shapes may match to one of the shapes described 
above, but a building may not match exactly into one of the above categories and their deviation 
has to be measured. Therefore a new index, called shape index, Γ, is defined to measure this 
deviation, using ground plan of the building, as follow: 

Γ = 1 - [area (E and S) / area (E or S) + NE/NS ] 

Where E is the original shape from above category and S is the shape to be compared as shown in 
figure 35. NE is the number of rings (loops) of E and NS is the number of rings of S shape 
       

 

    Figure 35: Shape deviation 

Most of the parameters (viz. orthogonality, area, volume etc.) above discussed can be calculated using 
ACIS Geometric modeler functions (www.spatial.com) and remaining parameters functions have been 
implemented. Table 3 gives the list of the functions, from ACIS and self implemented, used to 
calculate these parameters: 

 

 

 

 

 

α 

normal
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Sr. no Function name Description 

i. api_get_vertices Gets all vertices related to an entity 

ii. api_get_faces Gets all faces related to an entity 

iii. api_get_loops Gets all loops related to an entity 

iv. api_get_edges Gets all the edges related to an entity 

v. api_get_lumps Gets all lumps related to an entity 

vi. api_get_tco-edges Gets all the co-edges related to an entity 

vii. GetBldgRoofType(); Gets roof style  

viii. GetBuildingArea(); Gets area of the building 

ix. IsBodyOrtho(); Returns if the building is orthogonal 

x. GetBodyColor(); Gets the color of the building 

xi. GetBodyType(); Gets the type of the building 

xii. api_point_in_body Check if a given point is within the building

xiii. api_entity_extrema Gets the extreme range of the building 

xiv. Parallel Check if the walls are parallel 

xv. GetRoofHeightNExtent Gets the roof height, wall height and extent 
of the building 

xvi. PtToPtDist Distance between two points in a building 

xvii. api_get_entity_box Gets the bounding box 

xviii. Get_owner_transf Gets general 3D affine transformation of 
building 

 
     Table 3: Minimum dimensions 
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b. Meso level: It applies to an object in relation to its neighbors. The following set of spatial 
relationships among the neighbors can be identified:  

These spatial relations among the buildings are shown below in figure 36. 

 

Figure 36: Neighborhood relations 

Measurable parameters at this level are: 

1) Distance and proximity: Distance and proximity are closely related terms. Both of them may 
give rise to conflict between two objects. Every distance related conflict is also a violation of the 
proximity constraints but not vice versa (Peter 2001). While a distance conflict requires being 
resolved (e.g. because two vertices of a object are too close to each other), proximity expresses 
rather an option; we can, for instance, aggregate two objects of the same category because they lie 
within a specified distance of each other. The shortest distance at which we still can clearly 
visually separate two objects or identify all parts of one object depends upon the chosen target 
scale and the viewpoint. Beside this, it is also influenced by various other map controls, for 
instance, screen resolution. 

a. Proximity    

b. Relative orientation 

c. Nearest neighborhood 

d. Roof style contrast 

e. Shape contrast 

f. Height difference 

g. Aloof 

h. Alignment 

i. Size contrast 
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2) Height difference: Height difference is always measured from ground to the highest point of the 
two buildings irrespective of their different roof types i.e. plane or gable. Minimum height 
difference is also user-defined and scale dependent. 

3) Nearest Neighborhood (NN): Nearest neighborhood gives the number of nearest neighbors to a 
given object and distance between them. Two cases are: 

� restricted by extent of neighborhood by distance 

� restricted by extent of neighborhood by direction 

If there is no nearest neighbor of an object, it implies that it is an isolated entity and helps us to 
decide whether it should be deleted or exaggerated depending upon its importance.  

4) Relative orientation: It gives the angular difference between two nearest faces of the neighboring 
buildings. The minimum angle, that makes two objects distinguishable, depends upon scale, 
screen resolution and the viewpoint of the user. 

5) Mutual alignment: Mutual alignment of two objects is also a deciding factor in determining if 
they will be eligible for generalization. 

  

6) Aloof: It means there is no nearest neighbor (i.e. within a given distance) to a given object as 
described above and is treated as aloof.  

7) Roof style contrast: Two neighbor objects may have their roof of different styles.  

8) Building type contrast: Different types of two neighbor buildings 

Using Voronoi diagram and Delauney’s triangulations method, we can find most of the proximity 
related parameters such as nearest neighbor, distance between them, angle between them and their 
alignment as shown in figure 37. 

 

Figure 37: Proximity measurements using delauney triangulations ( L. Meng, 2002) 
 
 
Table 4 gives a set of implemented functions used to measure various proximity parameters 
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 Sr. no      Function name Used for 

i. Angle_between Orientation 

ii. FindDistancefromEntity Proximity, aloof 

iii. EntitiesHghtDiff Height difference 

iv. GetBuildingArea Building size 

v. GetLowerExtreme Alignment 

vi. GetUpperExtreme Alignment 

vii. GetBodyColor Color of the body 

viii. BodySmall Size of Building 

ix. BodyWideApart Proximity 

x. api_entity_entity_distance Distance between two buildings 

xi. D3GenDelaunay2D Runs Delauney algorithm 

xii. GetTriangleQuantity Returns the number of triangles  

xiii. GetTriangle Returns a given triangle 

xiv. GetVertex Gives the vertex of the given 
triangle 

 
Table 4: Proximity functions 

These minimum dimensions for above parameters related to proximity are given in the table 5. 

Parameter Minimum size 

Distance ∆d min = 0.30mm 

Height difference 
∆hmin = 0.40 mm 
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Angle αmin = 5o 

Mutual Aaignments  ∆f min = 0.30 mm 

    
Table 5: Proximity parameters 

c. Macro level: Macro level applies to clusters of objects having similar properties such as 
settlement blocks and is based on psychological observations of humans. Different parts of the 
city exhibit different cluster densities and these differences have to be preserved. Macro level 

structure recognition helps to maintain this. While doing so, the main emphasis is on: 

Measurable parameters for an object are: 

a. Building roof type, 

b. Building shape 

c. Building colors and texture 

d. Building height 

e. Building similarity 

f. Building size 

All these parameters of individual building are already known in the meso level and have been 
utilized in recognition of building structure forming a cluster in chapter 6. But before that, these 
buildings are recognized using ANN in chapter 5 and chapter 4 gives a brief introduction ANN 
before they are applied in chapter 5. 

a. Shape, size, and regularity.  

b. Height and vertical regularity.  

c. Roof shape and color.  

d. Adjacency to other structures.  

e. Unique, deterministic features  
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Chapter 4  
Artificial neural networks and structure 

recognition 
The lack of efficient automated generalization tools in GIS is due to the fact that generalization is a 
difficult task (Sébastien 1999). One of the reasons is that it is guided by a lot of geographic and 
cartographic knowledge. The approach of building expert systems has proved efficient in numerous 
fields where knowledge requires to be introduced. In recent past, lot of research work has been done in 
identification of 2D cartographic objects and generalization using various AI techniques. Being 
inspired, an attempt has been made here in recognition of 3D buildings using ANN. However, it is 
necessary here to give a brief introduction of the technique so that an understanding of the whole 
technique is made more easier and simple before it is being applied in next chapter. 

4.1 Neural network overview 

The brain is composed of a very large number (~ 1010) of massively interconnected neurons (Haykin 
1994). There is an average of several thousand interconnects per neuron, although it varies 
enormously. Each neuron is a specialized cell as shown in figure 38, which propagates electrochemical 
signals. A neuron has a branching input structure (the dendrites), a cell core, and a branching output 
structure (the axon). The axon of one cell is connected to the dendrites of another via synapses. When 
a neuron is activated, it fires an electrochemical signal along the axon. This signal crosses the synapses 
to other neurons, which may in turn fire. A neuron fires only if the total signal received at the cell core 
from the dendrites exceeds a certain level, the firing threshold. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 38: Parts of neuron 

 

dendrites 

axon 

 cell core 
part of axon 
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4.2 Artificial neural network 

An artificial neural network (ANN) is an information-processing paradigm inspired by the way the 
densely interconnected, parallel structure of the mammalian brain processes information. There are 
many definitions of ANN given in literature: 

According to (Haykin 1994), ANN is a massively parallel-distributed processor that has a natural 
propensity for storing experiential knowledge and making it available for use. (Nigrin 1993) sees an 
ANN as a circuit composed of a very large number of simple processing elements that are neurally 
based. Each element operates only on local information. Furthermore, each element operates 
asynchronously, i.e. there is no overall system clock. From (Zurada 1992) point of view, ANNs are 
physical cellular systems, which can acquire, store and utilize experiential knowledge. 

Intuitively ANN are collection of mathematical models that emulate some of the observed properties 
of biological nervous systems and draw on the analogies of adaptive biological learning. The key 
element of the ANN paradigm is the novel structure of the information processing system. It is 
composed of a large number of highly interconnected processing elements that are analogous to 
neurons and tied together with weighted connections that are analogous to synapses. 

To capture the essence of biological neural systems, an artificial neuron is defined as follows:  

It receives a number of inputs, either from original data or from the output of other neurons in the 
neural network. Each input comes via a connection that has a weight as shown in figure 39. These 
weights correspond to synaptic efficacy in a biological neuron. Each neuron also has a single threshold 
value. The weighted sum of the inputs is formed and the threshold subtracted to compose the 
activation of the neuron, also known as the post-synaptic potential or PSP. The activation signal is 
passed through an activation function, also termed transfer function, to produce the output of the 
neuron 

 

 

 

 

 

 

Figure 39: Parts of nerve cell 

 

It can be seen from the above, that there is an analogy between biological (human) and artificial neural 
networks. The analogy is summarized in table 6.  

However, it should be stressed that the analogy is not a strong one. Biological neurons and their 
neuronal activity are far more complex than might be suggested by studying artificial neurons. Real 
neurons do not simply sum the weighted inputs and the dendritic mechanisms in biological systems 
are much more elaborate. Also, real neurons do not stay on until the input changes and the outputs 
may encode information using complex pulse arrangements. 
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Sr.no Biological neurons   Artificial neurons 

1.  Neuron Processing unit 

2.  Dendrites Combination function  

3.  Cell core   Transfer function   

4.  Axons Element output   

5.  Synapses Weights 

 
 Table 6 :Biological Vs artificial neurons 

ANN are able to detect similarities in inputs, even though a particular input may never have been seen 
previously. This interpolation capability also holds for noisy input data. ANN may be used as a direct 
substitute for autocorrelation, multivariable regression, linear regression, as well as trigonometric and 
other regression techniques.  

When data is analyzed using an ANN, it is possible to detect important patterns that are not previously 
apparent to a non-expert. Thus, the ANN can act as an expert. To detect a pattern, the ANN must first 
be trained by processing a large number of input patterns and showing it what output results from each 
input pattern. Once trained, the ANN is able to recognize similarities when presented with a new input 
pattern, resulting in a detected pattern. 

4.3 Classification ANN 

A typical ANN has N inputs and one output (figure 40). The input layer is composed not of full 
neurons, but rather consists of the data values that constitute inputs to the next layer of neurons. The 
next layer is called a hidden layer. There may be several hidden layers. The final layer is the output 
layer. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 40: ANN structure 
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Using the network architecture as basis, there are three major types of neural networks:  

The network architecture can be further subdivided according to whether the network structure is fixed 

or not. There are two broad categories:  

Yet another criteria for classifying ANN models is according to the modes of learning adapted. 
In this case, there are two major categories:  

� Supervised learning – Supervised learning (Andina 2001) is performed under the supervision of an 
external teacher as shown in figure 41. Generally speaking, the teacher has the knowledge of the 
environment or the system. It guides the neural network in adjusting its parameters. The desired 
output pattern corresponding to an input is presented to the net during training in order to guide 
learning. The net learns in the training phase by adjusting its weights such that the actual net 
output becomes more similar to the desired net output. The perceptrons and back propagation 
networks are classic examples of supervised learning models. 

� Recurrent networks - The units are usually laid out in a 2D array and are regularly connected. 
Typically, each unit sends its output to every other unit of the network and receives input from 
them. Recurrent networks are also called feedback networks. Such networks are "clamped" to 
some initial configuration by setting the activation values of each of the units. The network then 
goes through a stabilization process where the network units change their activation values and 
slowly evolve and converge toward a final configuration of "low energy". The final configuration 
of the network after stabilization constitutes the output or response of the network. This is the 
architecture of the Hopfield Model (Hopfield 1982).  

� Feed forward networks – These networks distinguish three types of units: input units, hidden 
units, and output units. The activity of this type of network propagates forward from one layer to 
the next, starting from the input layer up to the output layer. Being sometimes called multilayered 
networks, feed forward networks are very popular because this is the inherent architecture of the 
Back Propagation (BP) Model. 

� Competitive networks – These networks are characterized by lateral inhibitory connections 
between units within a layer such that the competition process between units causes the initially 
most active unit to be the only unit to remain active, while all the other units in the cluster will 
slowly be deactivated. This is referred to as "winner-takes-all" mechanism. Self-Organizing Maps 
(SOM), Adaptive Resonance Theory (ART), and Rumelhart & Zipser's competitive learning 
model are well-known examples for this type of network (Haykin 1994).  

� Static architecture – Most of the seminal work was based on static network structures, whose 
interconnectivity patterns are fixed a priori, although the connection weights themselves are 
still subject to training. Perceptrons, multi-layered perceptrons, self-organizing maps, and
Hopfield networks all have static architecture.  

� Dynamic architecture – Some neural networks do not constrain the network to a fixed structure 
but instead allow nodes and connections to be added and removed as needed during the learning 
process. Some examples are Grossberg’s Adaptive Resonance Theory and Fritzke’s Neural Gas. 
Adding-pruning approaches to multi-layered Perceptron networks have also been widely 
studied.  
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Figure 41: Supervised learning (Andina 2001) 

 

 

  

 

 

    
 
Figure 42 : Unsupervised learning (Andina 2001) 

It also makes sense to classify neural network models (Seng 2000) on the basis of their over-all task:  

� Unsupervised learning – When the desired output pattern is not available to guide learning or
some ANN models do not need category information to accompany each training pattern, is called 
unsupervised learning (figure 42). But after learning, such information would still be required in 
the interpretation and labeling of the resultant networks. Classical examples of these are Kohonen’s 
self-organizing maps and Grossberg’s Adaptive Resonance Theory.  

� Pattern association – The neural network serves as an associative memory (Seng 2000)by 
retrieving an associated output pattern from some given input patterns. The association can be 
auto-associative or hetero-associative, depending on whether or not the input and output patterns 
belong to the same set of patterns.  

� Classification – The network seeks to divide the set of training patterns into a pre-specified 
number of categories(Seng 2000). Binary output values are generally used for classification; 
although continuous-valued outputs coupled with a labeling procedure can do classification just 
as well. For binary output representation, each category is generally represented by a vector 
(sequence) of 0’s; with a single 1 whose position in the vector denotes the category.  

� Function approximation – The network is supposed to compute some mathematical 
function(Seng 2000). The network's output represents the approximated value of the function 
given the input pattern as parameters. In certain areas, regression may be the more natural term 
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There are other criteria for classifying neural network models, but these are less fundamental than 
those mentioned above. Some of these include the type of input patterns (binary, discrete valued, real 
valued), or the type of produced output values (binary, discrete-valued, real valued). 

4.4 Characteristics of ANN 

ANN have different architectures (Seng 2000) with learning schemes and varying weight update 
modalities, used to perform different tasks. Yet, some basic characteristics can be attributed to ANN:  

This chapter gives a brief introduction into ANN but enough to understand the recognition of 3D 
structure using them. Following chapter devoted to 3D building structure recognition using ANN. 

� Inherent parallelism - In practically all ANN, many of their units work in parallel. 

� Parity of components - To a very a large extent, the units of ANN have the same structure and 
behave similarly;  

� Access to local information - ANN are composed of units that are interconnected with each other. 
Any given unit’s level of activation and eventual output depends exclusively on its current state and 
the outputs of the other units to which it is connected. Whatever happens to other units in the system 
that are not connected to a given unit will not directly affect its actions.  

� Incremental learning - ANN do not learn a given concept in one cycle. Instead, the network 
parameters undergo several small changes, and, over the time, they reach their final values. 

� Over learning - ANN has the drawback of over learning. It could cause memorization where the 
network might simply memorize the data patterns and might fail to recognize other set of patterns. 
Thus, early stopping is recommended to ensure that the network learn accordingly.   
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Chapter 5  
 

Neural network approach to 3D building 
recognition 

5.1 Knowledge abstraction 

All the steps of 3D visualization not only involve a knowledge representation, but also include a 
knowledge abstraction. One of the important steps in 3D visualization is generalization which 
comprising of a knowledge representation process, when objects are symbolized, and a knowledge 
abstraction process, when objects relevant to the theory construction are identified. According to 
(Sébastien 1999), “Knowledge abstraction in generalization is the identification of abstracted 
geographic objects relevant to the theory construction that will be done from the map. "Objects" have 
to be taken here in a very wide sense: they may represent any basic geographic objects (like a house, a 
road…) or any set of basic objects having a geographical meaning (the set of streets of town, a street 
and the buildings along it…)”. This chapter addresses the identification of various types of buildings, 
simple as well complex, using ANN. 

 

5.2 Recognition of 3D buildings 

A building is represented here using “B-rep". As described in previous chapters, this format is a 
layered description of geometric objects. The first layer contains vertices, the second layer one-
dimensional edges, third layer consist of 2D faces and so on. 

Using this representation, solids can be described unambiguously by their surface and topologically 
orienting it such that it is possible to tell, at each point of the surface, on which side of the surface the 
interior of the solid lies. This includes a topological description of the connectivity and orientation of 
vertices, edges, and faces, and a geometric description for embedding these surface elements in space. 
Further, the topological description specifies vertices, edges, and faces and indicates their incidences 
and adjacencies. The geometric description specifies, for example, the equations of the surfaces of 
which the faces are a subset. Most of the information available about a building using this 
representation will be used as the inputs to the ANN.  

A 3D building consists of different parts, e.g. ground plan, walls, roof and building as a whole. Out of 
them, walls are mostly rectangular and have orthogonal faces and therefore not included in the 
recognition process. To recognize other features of the buildings, a hierarchical approach is followed. 
It involves recognition of: 

� Ground plan 

� Roof type 

� Simple building 

� Complex building 
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A city model of BONN is taken for recognition. It consists of approximately 400 different buildings 
ranging from simple to complex. 

 

 
Figure 43: Nussalle area of city BONN (built up by the institut für photogrammetrie Bonn, 

universität Bonn) 

As shown in the figure 43, most of the buildings of the Nussalle area of the city seem to be complex. 
In fact, it is found that they are formed due to the grouping of many simple buildings and not even a 
single complex building is found to have a single structure. It means these, in turn, are made of 
different simple buildings as shown in figure 44.  

 

 

Figure 44: Different buildings 

These simple buildings are named as Gable, Hip, Prism, Flat, Lean-to-wall and Hexagon. A complex 
building may be formed by a set of these simple buildings after their rotation, translation and scaling. 
It is therefore imperative to recognize individual simple buildings, which is then followed by the 
recognition of complex buildings.  

Flat Gable Hip 

Prism 
Lean-to-wall Hexagonal 
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5.3 Recognition of simple buildings 

For the sake of understanding the whole process of recognition comprehensively, recognition of 
buildings is described before recognition of their roofs and ground plans. It is worth to mention that 
both of them have already been recognized using other existing building parameters. They will be 
described in brief thereafter. Neural Network tool “NeuNet”, a free downloadable software package 
from (http://www.smartcode.com), is used for this purpose. Input data contains 250 different buildings 
and is stored in a mdb file as this software requires its inputs in this format. Since the existing data is 
in sat format, therefore a conversion utility has been developed to convert the sat format to mdb 
format. Out of them 100 buildings are selected for training the ANN and rest of the buildings are used 
for the prediction of results. A set of parameters is extracted for each building using its structure 
description studied in chapter 3 and is shown in table 7. These parameters are used as input for ANN. 
However as the ANN predicts the output from the given set of inputs but it is difficult to know how 
many and what kind of inputs it requires to give the desirable results. Therefore, an incremental 
approach of adding parameters to its input is selected to train it till it gives the acceptable output. In 
the beginning of the trial, only coordinates of the individual buildings are chosen as input but the 
output was not up to the desired mark. Therefore, other parameters are added step by step until a 
satisfactory result is obtained. Table 7 shows various parameters selected as possible inputs to the 
ANN: 

Sr.no Input Description 

i. ID Primary key field ( 0-250) 

ii. X,Y,Z Coordinates of the building 

iii. GroundType (1-square or rectangular, 2-hexagon) 

iv. TotalVertices Total number of building vertices 

v. NoOfFaces Total number of the faces of a building 

vi. FaceAngle Angle between the roof faces, if any 

vii. RoofType (1-flat,2-gable,3-hip,4-prism,5-hexagon,6-lean-to-wall) 

viii. BuildingId (1-flat,2-gable,3-hip,4-prism,5-hexagon,6-lean-to-wall) 

 
Table 7: Possible parameters as input to NN 

The parameters shown in black have been used together for the successful predictions; parameters (in 
blue) are not used. As explained above, parameters are added incrementally after each training cycle 
until a satisfactory result is achieved. Further addition of remaining parameters is of no use and 
therefore is not used. Parameter in green is the output. Figure 45 shows the window for entering the 
parameters. Once the parameters are selected, the software reads data from the input file and display it 
as shown in figure 46. When the program begins to learn, it initializes its various parameters viz. 
number of neuron in hidden layers and maximum & minimum values of the other various inherent 
parameters. But for better results, these parameters are manually set by clicking the advance button in 
figure 45. A new window pops-up which displays these default values with the options to change 
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them. These parameters are changed as per the requirement and depending upon the extreme values of 
parameters. 

 

Figure 45: Input & output selection window 

Another option, the software offers is that any number of parameters are added to the input but only 
selective parameters are chosen for the learning as shown under the Available Fields of the figure 45. 
It makes easier to add and remove various parameters while looking for the best possible combination. 
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Figure 46: Screen shot of input parameters window 

5.3.1 Splitting of input data 

After initialization, ANN has to be trained properly to predict the desired results and for this input data 
has to be divided into training and test sets. For training set, about 100 data records are selected from 
the total of 250 records and remaining records are used to predict and test the result. The splitting of 
the data is shown in figure 47 below. Although more than 500 records of different buildings was 
available but only 250 records are chosen for the complete process. It is due to the fact that software 
only accepts a maximum of 250 records. However, these records are selected randomly from all the 
data available. It is possible to overlap the test and training data and is only desirable when the input 
data is not sufficient in records. It is required that training data should at least have minimum of 10 
records of data for proper learning of the network but the test data can be as low as one record. On the 
other hand, too big data is also not desirable, as it will slow down the learning process. Therefore, 
intuitively an value of 100 records for training and 150 records for testing are taken here. 
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Figure 47: Training and testing pattern selection 

5.3.2 Neural network training 

It is necessary to initialize various control parameters of network before it begins learning (NeuNet 
2001). Figure 48 shows these parameters and their explanation is as follows: 

- Learn rate is rate is the rate at which network learns. 

- Momentum is required to speed up calculations significantly which in turn helps in speeding the 
convergence and avoiding the local minima. It smoothens the weight changes and suppresses cross-
stitching, that is cancels side-to-side oscillations across the error valley. When all weight changes are 
in the same direction the momentum amplifies the learning rate causing a faster convergence; 

- Verify rate 

This setting determines how many training cycles are made before a verify cycle is run. It is necessary 
to evaluate the current network and report the error. The best setting depends on the speed of computer 
and the number of records and fields in your training set.  

- Best Error 

This error indicates the Root Mean Square (RMS) error for the best verify cycle thus far. It is also 
called “Standard Error of Estimate“ and is calculated as SquareRoot {SumOfAll[(Actual-Predicted)2] / 
NumberOfPredictions}. As this calculation is performed using normalized values, so it may be stated 
as percent. The blue coloring on the History Graph shows which previous cycle produced the Best 
Error.  

- Current Error 

This error indicates the Root Mean Square (RMS) error for the most recent verify and is called 
“Standard Error of Estimate“. It is calculated as SquareRoot of {SumOfAll[(Actual-
Predicted)2]/NumberOfPredictions}. As this calculation is performed using normalized values, so it 
may be stated as percent. The number that appears in this box is constantly graphed in the History 
Graph. 

- History of Error Graph 

This graph shows a history of the prediction error achieved during the previous verify cycles. The blue 
coloring marks which previous cycle was saved as the best. 
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Figure 48: History graph of prediction errors 

Training begins with all weights set to random numbers. For each data record, the predicted value is 
compared to the desired (actual) value and the weights are adjusted to move the prediction closer to 
the desired value. Many cycles are made through the entire set of training data with the weights being 
continually adjusted to produce predictions that are more accurate. Learning of the network is 
controlled by setting three parameters viz. learn rate, momentum and verify rate as shown in history 
graph in figure 48. This graph shows a history of the prediction error achieved during the previous 
verify cycles. Learn rate and momentum are best set during training run in the beginning and it is 
better to set learn rate always greater than momentum. If learn rate and momentum are set too low, the 
training will be very slow with a smooth, gradual improvement. On the other hand if learn rate and 
momentum are set too high, the training will be very choppy, and chaotic. Verify rate determines how 
many training cycles are made before a verify cycle is run and is necessary to evaluate the current 
network and report the error. Once the training begins, it starts giving current status of the training by 
reporting current error and best error. Best error indicates the Root Mean Square (RMS) error for the 
best verify cycle thus far and is also called "Standard Error of Estimate" whereas current error 
indicates the Root Mean Square (RMS) error for the most recent verify.  

5.3.3 Scatter graph 

This graph provides both numeric and graphical report showing the accuracy of network predictions 
(figure 49). 
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Figure 49: Scatter graph 

The closer the scattering (red dots) is to the blue diagonal line, the more accurate are the predictions. 
The band shown by faint yellow lines indicates a certainty band, as defined by the RMS Error. 
Approximately 2/3 of the testing set should lie within this certainty band. Correlation coefficient is a 
number between zero and one that indicates how well the prediction is correlated to the actual. A value 
of one indicates perfect prediction whereas value of zero indicates no relationship between prediction 
and target. 

5.3.4 Predictions 

Once the learning is over, prediction results can be seen immediately as shown in figure 50. It has 
completed 23000 cycles to predict these results and has taken a total time of approximately 3 seconds 
on MS Window platform with PENTIUM III machine. 

It shows that prediction results are very good and close to the expectations for building types 1,2,5 and 
6. However there is a little confusion in predicting two building types (i.e. hip and prism). These two 
buildings have more in common (i.e. ground plan, number of vertices, and number of faces) and are 
different in only their face angles among the input parameters. This problem can be solved by either of 
the following two ways. Firstly it may be achieved by changing the various control parameters i.e. 
momentum, learning rate and verify rate and allowing more iteration to learn it better. However, it has 
been shown that by doing so, network goes to over-learning stage, which is not desirable. Second way 
of improving the performance is by introducing more input parameters so that variations become more 
among them. Experiment has shown that when the additional parameter, roof type, is added and the 
whole process was repeated by keeping the control parameter unchanged, results have been excellent. 
Following figure however shows result without adding roof types and kept purposefully to convey the 
importance of adding additional parameters. 
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Figure 50: Prediction results of building types 

It completes the whole cycle of the learning and predicting of different building types. The complete 
process is described in detail for the recognition of buildings. As the recognition of roofs and ground 
plan will follow the same principle, therefore, it will be described in brief and the more emphasis will 
be given to the results. 

5.4 Recognition of roofs 

In recognition of roof, same data is taken but different set of parameters is chosen. Following 
parameters in table 8 are the possible inputs and due to the reason stated above, only parameters in 
black are selected as inputs: 

          Sr. No    Input              Description 

1. X,Y,Z Coordinates of the building 

2. GroundType (1-square or rectangular, 2-hexagon) 



  Neural Network approach to building recognition    

                                                                                                           
                                                                                                                       57

3. TotalVertices Total number of building vertices 

4. NoOfRoofFaces Total number of the faces of a roof 

5. FaceAngle Angle between the roof faces, if any 

6. RoofType (1-flat,2-gable,3-hip,4-prism,5-hexagon,6-lean-to-wall) 

7. BuildingId (1-flat,2-gable,3-hip,4-prism,5-hexagon,6-lean-to-wall) 

 
Table 8: Building parameters for roof type recognition 

After training the ANN with above parameters, it has been tested with different set of roof styles. 
Figure 51 shows the results for recognition of various roof styles. 

 

Figure 51: Prediction results 

5.5 Recognition of ground plan 

The current data contains buildings with only two ground types viz. rectangular and hexagonal. To 
recognize them, only the coordinates of the buildings are used as shown in figure 52. 
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Figure 52: Input & prediction parameters for the recognition of ground plan 

After training the ANN with above parameters, it has been tested with different set of ground plans. 
Results are obtained as shown in figure 53. 

 

Figure 53: Prediction results of ground plan 
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5.6 Recognition of complex buildings 

Complex buildings as described in chapter 3, are composed of simple buildings, as these buildings are 
located in so close vicinity that whole group forms a complex structure. Figure 54 shows a complex 
building that is formed from more than 30 simple buildings shown in figure 43. 

 

Figure 54: A complex building (wire frame & solid) 

Recognition of such buildings is a tedious task as it involves the extraction of complete information of 
simple buildings joined to form these complex buildings. Fortunately complete information about the 
individual buildings is already available as described above in recognition of simple buildings but the 
difficult task still remains as how to get the identification of participating buildings. Well known 
algorithm like Delanauey Triangulation have been applied unsuccessfully by taking centers of the 
simple buildings as its input. Since these buildings are of various length and shape, difficulty was 
faced in deciding the cut-off value of edge distance. Too small value gave more than one cluster of a 
complex building and too large value resulted in cluster of simple buildings comprising complex 
building plus few others near by buildings. 

A new algorithm is developed which takes care of the shortcoming of the above algorithm. It starts 
with a single building and finds its immediate neighbors. Once the immediate neighbors are found, 
next step involves the finding of immediate neighbor of these newly found neighbors and the process 
repeats until there is no more neighbor. It gives rise to the cluster of simple buildings forming a 
complex building. The whole process repeats itself for the next cluster until there is no more clusters 
left. A flowchart of the algorithm is shown in figure 56. This algorithm has been implemented in C++ 
under the Window environment. To test it, again the same set of buildings of city BONN is used as 
input. Figure 55 shows some of the important clusters obtained. 

 

Figure 55: A clustered buildings 
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Figure 56: Clustered algorithm 
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Each color represents a cluster indicating a complex building. As the complete information of the 
participating buildings is known now, the next step is to remove the redundant information in them. 
For example, two building which are very close, the two intersecting faces (walls) have the same 
vertices and therefore redundant vertices has to be removed. Secondly, as only the outer faces are 
required, any inner face if any, has to be removed. It is done by applying convex hull to the entire 
complex buildings so that just the outer vertices are found. Therefore, convex hull algorithm is applied 
and figure 57 shows a convex hull wire frame for one of the above building. 

 

Figure 57: Convex hull 
Other parameters, which are known now and can be applied as inputs to ANN are: 

 

These parameters may be added systematically and gradually until the best possible result is found in a 
manner described above. However, the lack of sufficient amount of data, it is not possible to carry out 
the process for complex building recognitions. 

A hierarchical approach for 3D building recognition using ANN is successfully studied here. The next 
chapter is focused on study of rules and constraints of 3D aggregation. A different set of constraints 
and consequently is formed based on the findings done in the preceding chapters.

� Ground plan 

� Various roof heights 

� Roof styles 

� Roof face angles 

� Building area 

� Number of wall faces 

� Number of roof faces 

� Number of ground faces 
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Chapter 6 

3D structure recognition at cluster level 
As stated earlier in the preceding chapters, a 3D city model mostly consists of buildings and roads. 
These buildings are orderly arranged along the roads and therefore may be perceived as a whole 
immediately, but are not explicitly represented as an internal description of graphics. These non-local 
structures may be salient and of strong visual appeal, thus they seem to be of some cognitive relevance 
to a viewer. It is, therefore desirable to develop methods to detect these structures automatically in 
order to support their generalization. Following sections study two approaches for determining the 3D 
structure of objects that appears to have formed a group. 

 

6.1 Structure recognition using cluster algorithm  

A clustering algorithm is usually applied to determine the macro level structure. Among the various 
algorithm techniques, Minimum Spanning Tree (MST) (Ahuja 1993) is a suitable. It takes a graph 
consisting of weighted edges and nodes as input and result in minimum weighted sum of edges. This 
set of edges contains long as well as small edges. The deletion of large edges results in disjoint sets of 
nearest buildings.  

The center of a ground plan of the building is treated as node and the link between various nodes 
serves as edges. MST algorithm is applied twice to obtain the desire clustering. First MST algorithm is 
used to obtain cluster based on spatial proximity.  

 

 

 

 

        

    

Proximity clustering 

 

 

   Shape clustering 

 
   Figure 58: Neighborhood relations 

Prior requirement of the MST is the information about the nearest neighborhood, which can be 
obtained through Delauney Triangulation method.  

MST is then executed second time to obtain the set of minimum weighted edges based upon similarity. 
Long edges are then removed to obtain the spatial clusters. Size (or shape) based clustering is obtained 
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by running the MST second time. Similarly, any other parameter described in chapter 3, such as color, 
texture, height of the buildings can be a criterion for second time MST to find the required clusters. A 
complete sequence of operations is shown in figure 58.  

 

6.2 Structure recognition using perceptual grouping  

Perceptual grouping is very important for object recognition and human visual system uses wide 
variety of perceptual grouping mechanism to describe its structure. Even with no high level or 
semantic knowledge available, the human visual system spontaneously organizes elements of the 
visual field. It happens due to the grouping of low-level features leading to a higher-level structure. 
These higher-level structures may be further combined to yield another level of higher-level structures 
and this process may be repeated until a meaningful semantic representation is achieved that may be 
used by a higher-level reasoning process. In the absence of information for perceptual grouping, it is 
difficult for humans to make an intelligent decision regarding the structure or recognition of an object. 
These phenomena have been studied by Gestalt psychologists who observed how some arrangements 
of picture elements tend to be seen as 'belonging together', thereby forming natural groups. Often these 
may appear to stand out from the surrounding elements, i.e. as 'figures' against 'grounds' (Thomson 
2000).  

Direct analogies have therefore been identified between the Gestalt perceptual grouping principles and 
the procedures required for successful map generalization. This is especially so, since they provide a 
means of predicting what the result of a generalization process should look like so that it can be 
readily comprehended by a map user (DeLucia 1987). 3D structure recognition is not dependent upon 
only one process of perceptual grouping but must use the hierarchy of perceptual grouping processes 
based upon following concepts:        

i. Grouping by proximity: Similar objects that are close together in space appear to belong together and 
tend to be perceived together. In a given city model, most of the buildings are situated very close. 
These buildings, when viewed from a certain height above the ground, tend to form a particular shape. 
These buildings should be clustered together. 

Most of these buildings are located along the roads. In fact, there is hardly any building that is not 
connected by a road. This property of the city model is exploited here for the perceptual grouping. 
This exercise gives different clusters as the whole buildings in the city are divided into groups 
pertaining to road proximity. Once these clusters, named first level clusters, are obtained, various 
grouping principles are applied to them.  

Once a first level cluster of buildings along a given road is detected, then second level clusters based 
upon proximity among buildings can be found.  

Proximity measurement: Proximity of the buildings can be easily found by using Delaneuay 
triangulation method. Another method, an easily computable, is used as follow: 

If dmin is the distance between two buildings and smin1 and smin2 are the lengths of shortest sides of the 
buildings (figure 59), then measure of proximity can be defined as 

  

smin1 

Mprox = 1 – min ((1, dmin/min(smin1, smin2))         dmin                           smin2 

       Figure 59: Proximity measurement 

and always has value between zero and one. Group of buildings along a given road and satisfying a 
given value of Mprox form a cluster. 
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Figure 60 shows a cluster of buildings with different shapes along the roads. It gives rise to four 
clusters of buildings lying either side of the roads. Once these cluster are formed, principle of 
proximity is applied which give rise to second level cluster. These clusters, once recognized, can be 
used for generalization. For example, buildings lying within a specified distance are clustered as 
shown by encircled boundaries in figure 60 may be generalized.  

           

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 60: Grouping by proximity 

 

ii. Grouping by continuity: There is a tendency in our perception to follow a direction, to connect the 
elements in a way that makes them seem contiguous or flowing in a particular direction as a line or a 
smooth curve (Brassard 2000). Therefore the principle of perceptual of good continuation demands 
that map symbols that appear to follow in the same direction (as in a straight line or simple curve) 
should be grouped together.“ Here again cluster of buildings along roads are taken as shown in figure 
61. Different clusters are formed. After applying the principle of continuation and without violating 
other constraints, each cluster may be generalized to a single curved building block. 
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   Figure 61: The principle of continuation 

Continuity measurement: is used to identify all the buildings along a given side of the road and draw a 
line segment with length equal to the length of the building and orientation similar to the orientation of 
building as shown in figure 62. This gives us a number of segments as shown below: 

 

  Figure 62: The principle of continuity measurement 

If  l1 and l2 are the length of two segments and dgap is the gap between them and Φ is the angle between 
them, then the significance of continuation, Mcon, is given by    
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COS2(Φ) is equal to one when both the lines are perfectly continuous and gradually reduces to zero as 
the line segments become discontinuous.  

iii. Grouping by parallelism: Buildings lying along both sides of a given road are clustered together. A 
pair of building on either side of the road is taken and their parallelism is calculated as follow: 

Let δmax is the maximum width and δmin is the minimum width between the two closest faces of two 
nearby buildings as shown in figure 63, then measure of parallelism  

Mpas = 1 – min(( 1,δmin/δmax)) 

           δmin 

       δmax 

    
Figure 63: Principle of parallelism 

A sum of all values Mpas divided by total number of pairs gives the quality of measurement. 
Comparisons of quality of parallelism after and before generalization reflect the quality of 
generalization. Upon generalization and applying the principle of parallelism, we get the result as 
shown in figure 64. Generalized buildings are still parallel to the roads 

iv. Grouping by similarity: Similar objects tend to be seen together as forming a group (Brassard 
2000). Figure 64 shows four rows of different buildings. These buildings may have same roof style, 
color or texture. Different clustered may be obtained based upon either of these attributes. Figure 64 
shows the cluster obtained via similarity. The resulting clusters bounded by dotted colored boundaries 
are also shown there in, where the aggregation is among the buildings along rows and column as well 
may be done.  

                                

 

                   

 

                        

                                   

 

 

Figure 64:Principle of similarity 

v. Grouping by orientation Buildings oriented along horizontal and vertical axes, or ones that are 
symmetric, are more often perceived as figures. Figure 65 shows such an example of an area of 
Munich city, where groups of buildings arranged and orientated in such a way that the whole 
arrangement appears in certain forms (i.e. circle, square etc. shown with different colors in the figure). 

C  o   l   u   m  b   i  a            S  t  r  e  e  t 

G  r  e  a  t   J  o  n  e  s         S  t  r  e  e  t

K  e  n  m  a  r  e S  t  r  e  e  t 
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Figure 65: Principle of orientation  

vi. Grouping by co-linearity: Structure recognition requires that buildings to be clustered should be 
within a desirable limit of co-linearity. The measure of the co-linear relationship is determined by 
summing up the deviations of the centers of the buildings from the line passing through the center of 
first building in the direction of other buildings as shown below in figure 66: 

 

 

γi 

 

 

    Figure 66: Principle of co-linearity 

The measure of continuity Mcol  is given by 
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Mcol   =   �
�

n

i
n

0
/1 � i 

The smaller the value of Mcol  better is the co linearity. Most of the buildings lying along a roads are 
co-linear or within the desired limit and are clustered. 

These processes play an important role in 3D generalization as will be evident shortly in next chapter 
where their effect on generalization in general and aggregation in particular are described in details. 

The following table 9 gives a set of functions used to cluster buildings along both side of the road.
          

Sr. no Function name Usage 

i. GetRoadID  Get the Id of Road 

ii. DistFromRoad Get distance from road to a building 

iii. CountRoads Counts the total number of roads 

iv. IsEntityRoad Returns the entity (Road or Building) 

v. UpdtRoadProximity Compute proximity of all buildings to a nearest 
road 

vi. GetLeftOfRoad() Get buildings left of a road 

vii. GetRightOfRoad Get buildings right of a road 

viii. RoadBasedBldngClustering Compute clustering with respect to all the roads 

ix. DisjointCluster Get clusters using MSN tree algorithm 

 
   Table 9: Clustering functions 

A structure recognition method has been studied here to find perceptually salient non-local structures. 
3D buildings are grouped according to the gestalt principles of proximity, good continuation, and 
similarity based upon their shape, color, size or orientation. It completes the structure recognition of 
individual objects and objects in a group. This knowledge is utilized in the next chapter where rules 
are formed to govern generalization.  
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Chapter 7  
3D aggregation based upon structure recognition 
When a 3D scene, irrespective of its theme, is displayed on screen at a reduced scale, its contents do 
not decrease proportionally to the scale ratio applied. It, therefore, results in an increasing density of 
the contents due to small space available at smaller scale. That is where the generalization plays an 
important role. Generalization is the process of creating a legible map at a given scale from a more 
detailed geographical dataset. It is done in such a manner that the character or essence of the original 
features is retained at successively smaller scales. Though the purposes and benefits of generalization 
are manifold, it is indeed a complex decision-making process, which must be intelligently steered by 
goals and rules from the geographical application domain, such that the generalized representation 
conveys knowledge consistent with reality. 

In recent past, lot of work has been done in 2D generalization (Beard 1991), (Weibel 1995), (Blanca 
1995) and (Sarjakoski 1999), which defines a set of operations to be performed to achieve the desired 
result. Nevertheless, 3D generalization is altogether perceived differently. A given 3D urban area 
mostly consists of roads and buildings and these buildings are of different styles and features. Further, 
the city area may be viewed from different angles and at different heights. Therefore, generalization in 
general and aggregation in particular must deal with all these issues. 

 

7.1 Operations of 3D generalization 

Major operations of generalization include simplification, aggregation, typification, displacement, 
enhancement and symbolization. Simplification may be described as the elimination of unwanted 
details. Aggregation and typification reduce feature density at a given level of detail while maintaining 
the representative distribution pattern and visual impression of the original feature group. 
Displacement is implied to avoid conflicts among the nearest objects, whereas enhancement and 
symbolization aim at exaggerating important objects. Although all of these operations have been 
successfully implemented in 2D but only a few of them have been studied in 3D. In recent years, one 
of the important operations, 3D simplification has been introduced by (Forberg 2003) where they 
suggested an approach for the simplification of 3D building data. Here the idea of scale spaces applied 
in image analysis has been extended. Two scale spaces, a 3D version of mathematical morphology and 
the so-called 3D curvature space are applied separately, as both are suited for the simplification of 
different object structures. In a new approach introduced in (Forberg 2004a), the advantages of 
mathematical morphology and curvature space have been united in one process.  

All of these operators use algorithm, which satisfy certain constraints to achieve the desire results so 
that generalized objects are displayed without, and conflict among them. These constraints require 
comprehensive structure recognition of the objects involved. As studied in previous chapters, structure 
recognition not only helps in derivation of measures from 3D individual buildings (i.e. area, volume, 
height, roof type, building type etc) and derivation of measures from two adjacent building (i.e. 
proximity) as well as buildings in group but also helps in derivation of constraints and the calculation 
of various associated parameters. These constraints are then become the source for the derivation of 
various rules for different generalization concepts. In this chapter, various kinds of constraints are 
found for 3D generalization, however, different rules are developed for aggregation as an example.  
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7.2 Constraints of 3D generalization 

Constraints form the basis of rules. A constraint, as defined by (Ruas 1998), can be specified as 
something to maintain or something to avoid. Many constraints can be expressed in either way, such 
as “maintain a certain separation between two buildings”, or “avoid overlapping of two buildings.“ 
Further, a constraint can be independent or contextual. Independent constraints consider only one 
object, e.g., a building’s area must exceed a minimum size. Contextual constraints consider relations 
between objects, e.g., two buildings cannot occupy the same location. In general, we can classify 
constraints into the following categories: 

- Graphic constraints arise from feature and symbol geometry. They specify basic size and 
proximity (i.e. area and distance) properties and are mainly dictated by graphic limits as well as 
the shapes and sizes of features. Examples for an individual feature include its minimal size, 
minimal width, minimal height, and minimal length. If multiple features are involved, graphic 
constraints define minimal separability and help to enforce proximity relations (Ruas 1998).  

- Topological constraints ensure that basic topological relationships (connectivity, adjacency, 
containment) between features are maintained (Ruas 1998). For individual features self-
intersecting lines and polyhedron boundaries should be avoided. When multiple features are 
involved, spatial transformations should not alter the topological relationships of the remaining 
features, even when these only indirectly represent the original features.  

- Structural constraints define criteria that describe both spatial and semantic structure and inter-
dependencies (Ruas 1998). Spatial structure on the level of individual features relates to shape 
(i.e. internal structure of feature) and its preservation (convexity/concavity of area).  

- Perceptual constraints relate to aesthetics and complex perceptual aspects. They arise due to 
enforcement of visual balance (when typifying, aggregating etc.).  

According to (Ruas 1998), all these constraints can also be classified into three categories: 

Constraints on roads and buildings have been studied here separately and is an extension of the 
constraints for roads and buildings in 2D as defined in (Ruas 1998): 

7.2.1 Constraints on roads 

Roads are the inherent part of the city and occupy considerable area of 3D city scene. When the scene 
is viewed at smaller scale, these roads try to mingle with each others and nearby building objects and 
therefore become source of constraints. Important road parameters, which lead to various constraints, 
are distance between a road and adjacent building (i.e. road shift), its orientation with near by objects, 
width of the road, density of roads, and its distance from nearby road. Table 10 shows the minimum 
values for them.  

 

 

� Macro level. Macro constraints characterize regional or overall map space; related to scope 
of semantic constraints; 

� Meso level. Meso constraints characterize a neighborhood treated as a unit on a map, usually 
involving several to dozens of features of various types; related to scope of structural 
constraints; and 

� Micro level. Micro constraints characterize a neighborhood defined by a feature, part of one 
or several that can be treated in isolation; related to scope of geometric and graphic 
constraints. 
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Parameter Minimum (Threshold) value 

Road shift from building ∆Smin = 0.30 mm 

Orientation Фmin = 5o 

Road width wmin = 0.30mm 

Road shift from nearby road ∆Rmin = 0.30 mm 

Density of roads ηmin = 0.20 mm-1 

 
Table 10: Road parameters 

Based on these parameters, followings are the constraints defined for roads at three levels. 

(1) Micro constraints (road segments) 

� Accuracy 

 Roads should not move away to a large extent from their initial position. Small displacement, 
∆Smin, may be permitted to avoid conflict with adjacent buildings. 

� Orientation 

 A road should preserve its initial main orientation, with respect to adjoining buildings and 
streets. A road can be broken into various parts with dominant orientations. The orientation of 
these parts is then compared with the generalized parts of the roads. The deviation should not be 
more than the allowed value, Фmin.  

� Shape 

 A road should preserve its characteristic bends and its ups and downs, which depends on the 
predefined minimum dimensions. If a road has a bridge over or under it, it should be 
maintained. Again, Фmin and width of the road will help in preserving the shape. 

� Size  

 Road width should be large enough (> ωmin) to avoid visual confusion. 

� Functionality 

 Roads leading to important buildings should be maintained. Isolated roads may be deleted if the 
adjacent buildings are removed. 

� Semantics 

 Relative importance of roads should be maintained. 

� Look 

Texture, type of roads, and their colors should be maintained.    
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Figure 67: Road with different bends 

2) Meso constraints on roads (routes, networks): 

� Topology  

 Existing connectivity, adjacency and inclusion relationships must be maintained if roads are 
maintained. 

� Orientation  

 Near and immediate neighboring roads (~∆Rmin) should try to preserve their relative main 
orientation, if not deleted. 

(3) Macro constraints 

� Density 

 Density of roads can be calculated as  ρ = Total length in a given area / area 

Road networks should not have too high density (< ηmin). Dense road networks can be 
simplified by removing isolated and small roads if the adjacent buildings are removed 
provided they are not leading to important buildings. 

� Patterns  

The spatial arrangement of roads as shown in figure 68, may create distinctive patterns such as 
network, tree and radiating and should be maintained. 

 

 

 

Network               Tree     Radiating 

 
Figure 68: Different road patterns need to be preserved 

w 

Φ 
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7.2.2 Constraints on buildings 

Important building parameters, which lead to constraints, are its length, width, height, angle, area and 
volume. Table 11 shows the minimum values for them.  

 Parameter Minimum (or Threshold) size 

Length, width lmin =0.40mm, wmin = 0.40mm 

Height hmin = 0.45mm 

Angle αmin = 5o 

Area Amin = lmin* wmin 

Volume Vmin = lmin*wmin*hmin 

 
Table 11: Minimum dimensions 

(1) Micro constraints (polyhedrons) 

� Accuracy  

Building should stay close to their initial position.  

� Orientation 

A building should preserve its initial main orientation, with respect to adjoining buildings and 
streets, and absolutely if close neighboring features are not transformed. 

� Shape 

A Building should preserve their main orthogonality. Buildings should maintain their 
characteristic elongation. If buildings have unusual shapes such as curves, these shapes should be 
maintained. Complex and aloof buildings should be exaggerated.  

� Granularity 

Internal outline segments should keep their perceptible dimensions.  

� Size  

Building size should exceed the minimum volume limit. Any side length should be large enough 
to avoid visual confusion. 

� Functionality 

Important buildings should be maintained. Isolated buildings can be important buildings and may 
be used as landmarks. 

� Look 

Texture, color and exterior outlook should be maintained. 
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(2) Meso constraints (building clusters within an area) 

 

� Topology  

Existing connectivity, adjacent and inclusion relationships must be maintained if buildings are 
maintained (subject to aggregation). 

� Orientation  

 Neighboring buildings should try to preserve their relative main orientation. 

� Proximity / repartition 

Smallest distance between two buildings must be greater than the perceptual threshold. The 
relative distance between two buildings should be maintained. Relative distances between a set 
of aggregated buildings should present the same clustering effect as is initially measured. 
Specific patterns and alignments (e.g. along curves) should be maintained. No specific 
distribution should be created if it does not exist initially (e.g. if buildings are not organized 
along a grid, they should not be after aggregation). 

� Size distribution 

Size dilation should not disturb relative size order of buildings whenever their semantic 
meaning is the same. Two buildings, which have nearly the same sizes, can have equal final 
size 

� Semantics  

Two buildings can be aggregated if they do not visually have contrasting semantic meanings. 
The distribution of different sub-classes of buildings within an area can change but proportion 
should try to be maintained. Some indication of semantic exceptions should be maintained 
(e.g. a commercial area within a neighborhood of detached houses). 

 

(3) Macro constraints  

� Quantity constraints 

Area and volume occupied by specific buildings should be maintained (for statistical study). 

� Density distribution 

 The ordering of density values among meso objects before and after aggregation should not 
vary much. Differentiation of densities should be still perceivable after aggregation. 

 

7.2.3 Meso constraints on settlement blocks (road networks and building groups 
with road meshes) 

� Topology 

 Existing inclusion relationships between a building and a street partition must be maintained 
(i.e., buildings must not move across streets). Roof of the building or its balcony should not be 
extended to cover the adjacent road. 

� Orientation  

 Adjacent street and buildings should try to preserve their relative main orientation. 
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� Proximity / repartition  

 The relative distance between a street and a building must be greater than separation distance 
and as close as it is initially. 

� Functional dependency  

 The functional dependency should be preserved after aggregation. Therefore, buildings should 
be removed/aggregated if their streets are eliminated, but generalization of street networks 
should allow for access to all buildings. 

As it is clear from the study above, 3D has brought additional constraints due to extra dimension. 
These constraints will form the basis of new rules as compared to 2D. As emphasis is on 3D 
aggregation, therefore additional rules will be developed for it. Following paragraphs describe 
necessity of aggregation and will be followed by its rules. 

7.3 Necessity of 3D aggregation 

Aggregation has the task of grouping a selected set of like entities to form one entity by simplifying its 
representation over the original footprint. Though 2D aggregation, which deals with polygons, has 
been widely studied in past, aggregation of 3D objects (polyhedrons) has not drawn considerable 
attention until recently. Here the focus will be 3D aggregation for a city model. While aggregating the 
3D city, several important issues need to be considered. Apart from the existing rules and constraints 
derived from the 2D aggregation, additional 3D rules and constraints should be taken into account. In 
case of 2D, we have only one ground view and aggregation rules can be confined to that view. But in 
case of 3D, where detailed 3D city models should also be accessible to investors, builders, urban 
managers, and tourists for a variety of purposes, different views of the same area need to be studied 
and consequently suitable aggregation algorithm should be developed, which takes into account the 
visual importance of specific features during aggregation. A 3D view not only has ground view but 
additional perspective view as well. In 2D ground view, most of constrains results from the measures 
of its ground plan, proximity, area etc. However 3D views not only include these constraints but the 
additional constraints, as studied above, resulting from its different perspective view, height of the 
buildings, its historical importance, location and many others.  

Aggregation may be performed for a number of reasons: 

a. When the density of buildings within an area is high, resulting in conflicts such as overlapping 
symbols, the buildings should be aggregated into a simplified representation. Aggregation may be 
performed with a view to reduce the overall impression density. 

b. When one or more buildings are too small to be represented individually, the buildings may be 
enlarged. This enlargement of buildings may lead to an impression of over-occupation in an area. To 
counter this, if the buildings are adjacent to or in close proximity of one another, aggregating them 
into a composite representation may be performed. Generally, it is attempted to maintain the 
structure and distribution of the group following the operation. 

c. When it is wished to enhance or exaggerate the impression of density distribution of information 
across a 3D scene, either for reasons of enhancing communication or to maintain consistency in 
representation amongst different parts of it, aggregation may be performed. This operation needs to 
be controlled at a strategic level, where different gestalt issues must be considered. 

7.4 Rules of 3D aggregation 

The aggregation is governed by a set of rules formed on the basis of structure recognition studied in 
the previous chapters, which form the core of the aggregation algorithm. These rules are divided into 
two categories - stiff and elastic rules and will be specific to roads and buildings. 
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7.4.1 Stiff rules 

Stiff rules, as the name implied, must be applied strictly to pursue aggregation. These rules can be  

divided into four sets of rules as follow: 

i. Linkage rules define the spatial relations between buildings that must exist among them for their 
aggregation (Ruas 2001). These rules include topological and metric relationships such as: 

ii. Semantic rules define the semantic relationships that must exist for aggregation. Semantic rules 
include relationships such as: 

� The buildings to be aggregated should belong to same class (e.g. public or private). 

� The buildings to be aggregated should keep their association intact even if they lie both 
sides of a road. 

� The buildings should be aggregated if they belong to same owner. 

� The buildings should be aggregated if they all are old or new. 

� Linkage rules 

� Semantic rules 

� Structural rules 

� Orientational rules 

� Contextual rules. 

� Proximity - The buildings to be aggregated must be disjoint but within a certain distance 
of each other for their aggregation. 

� Alignment - The buildings to be aggregated should be aligned or their alignment should 
not differ much and the difference must be below the permissible limits. 

� Side of road: The buildings to be aggregated should be on the same side of the road. 

� Adjacency - The buildings to be aggregated must have their adjacent faces close. 

� Touching - The buildings to be aggregated must have their common adjacent face 
touching together. 

� Angle: The angle between the buildings to be aggregated should be less than the 
threshold value. 

� Size of the buildings to be aggregated should be greater than a given threshold value. 

� Height - The buildings to be aggregated should have minimum height difference. 
However, if the two buildings vary much in height, it may be possible, depending on the 
requirement, that both are simply united. 

� Roof Type - The buildings to be aggregated should have similar types of roof i.e. planar 
or gable. 

� Building Type - The buildings to be aggregated should be of similar types i.e. simple or 
complex. 
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iii.  Structural rules apply to a group of buildings forming a common geographic or perceptual 
structure. These groups are so organized such that the human visual system spontaneously 
recognizes them as a whole without any semantic knowledge.  

� Set of buildings, which are in close proximity forming a group, should keep their 
closeness after their aggregation to enhance proximity perception. 

� Set of buildings, which are located on a continued line/curve, should keep their 
perception of continuation after aggregation. 

� Group of buildings, which are co-linear, should preserve co- linearity after aggregation. 

� Group of buildings forming a closed structure, should preserve their perception of 
closeness after aggregation. 

� Group of buildings, which are orientated at same angle and are in proximity, should 
preserve perception of orientation after aggregation. 

� Group of similar buildings should keep the similar perception after aggregation. 

iv. Orientational rules define the historical or local importance of the building. A city consists of 
few buildings that are relatively more important and unique (e.g. uniqueness in comparison to 
nearby buildings with salient size, height, texture etc.) then the rest of the buildings. For 
example, either a building is very tall such as a tower, a huge structure such as a palace, an 
architectural monument and reflects city identity. These building should remain as unique 
landmarks. For example, the famous church (Frauenkirche) in Munich, may immediately make 
the viewer, who has seen the city at least once, understand that it is Munich city. Therefore the 
following rules can be defined: 

� Buildings, which are of great importance, should have their identities preserved to the 
greatest extent possible. Therefore, two buildings having historical importance should not be 
aggregated even if others rules are satisfied.  

� If only one of the buildings is important, even then aggregation should not be done. Instead, 
the important building should be exaggerated. The same rule applies to other local important 
buildings like TV towers, theatres, schools etc. 

v. Contextual rules define the sensitivity of aggregation caused by 3D using contexts. Different 
features of the buildings should be preserved for different occasions. In the manual era and 2D, 
it was done by an experienced cartographer with an understanding of the map context and the 
semantic meaning. In developing automated techniques, the challenge is to embed this 
contextual and semantic knowledge into the software. Contextual rules include followings 
perspective cases as far as aggregation is concerned: 

(a) Top view – It highlights the topside from a viewpoint cantered over the topside as shown in 
figure 69. It has a very serious drawback in the sense that it is relatively difficult to understand 
because it does not convey a sense of depth; hence, the shape of many surfaces appears 
ambiguous. It is hardly different from the 2D view and therefore corresponds to an unusual view 
in 3D environment. 

(b) Oblique view - An oblique view is not orthogonal to or cantered over any side. When the view 
angle is properly selected, it presents a good overall look of an object, as it would be seen in real 
life. It conveys a good depth cue and is easier to understand than top view as shown in figure 
70. Depending upon the height, from where the viewer is interested in viewing the generalized 
scene, different features of the buildings play an important role and should be a part of 
aggregation. Under perspective view, roof of the buildings should be major criteria for 
aggregation as it helps to maintain the visual balance. It may be desired that even with other 
building attributes varying slightly from the threshold values, but with same roof types, should 
be selected for aggregation. 
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Figure 69: Top view    Figure 70: Oblique view 

Two representative oblique views depending on different viewing heights can be differentiated from 
each other: the ground perspective view and the bird’s eye view. When the viewer is standing on the 
ground, walking or driving, the resulting view is a ground perspective view in which features such as 
walls, windows, and doors are visible to the viewer while roof type may be of least importance. In this 
case, buildings with different roofs can be aggregated as long as they share sufficient common 
attributes satisfying other aggregation rules. On the other hand, the roof type is a decisive eye-catching 
feature in the bird’s eye view in which the viewing height lies in the air, that is to say, above most 
buildings as shown in figure 71. 

 

Figure 71: Example of ground perspective view and bird’s eye view 

Bird’s eye view

Ground persective view 
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In a bird’s eye view, roof types play an important role for the recognition of buildings whereas the 
lower portion of the buildings is less conspicuous. Therefore, particular care should be taken while 
aggregating buildings having different roof types.  

When the buildings are viewed from a balloon or a helicopter flying over it, the height of the viewer 
increases and consequently the height of the roof appear to decrease and is almost half the original 
height but the buildings are still distant apart as shown in figure 72. In fact, the higher the viewer is 
located, the larger is the flattening effect of the roof, gable for example. Figure 72 and 73 reveals the 
impression of a building block based on the view from a flying balloon. 

 

 

 

 
 Figure 72: perspective view from a flying balloon or helicopter 

 

 

Figure 73: View from a flying balloon 

One of the difficulties arising in 3D generalization is due to the contextual rules. These rules deal with 
different views when the viewing parameters can be anyway controlled by the users. It demands that 
aggregation should be done on the fly in real time. It is indeed a challenging problem and should be 
looked into in future. 

7.4.2 Elastic rules 

Elastic rules are rules, which may or may not be applied. The importance and applicability of an 
elastic rule may depend upon circumstance and vary from case to case. Elastic rules can be derived 
based on the context-sensitive importance of the following features of the buildings: texture, exterior 
outlook, color and are discussed below: 

The texture of the buildings in general and of roofs in particular plays a significant role to achieve a 
photorealism of a generalized 3D city model. It becomes even more prominent when aggregating 
historical buildings because their original look should be reiterated. In general, buildings have a 
number of character-defining aspects, which include the windows and the decorative stonework as 
shown in figure 74, but certainly, the roof and roof features contribute more to the overall visual 
character. The roof is not only highly visible, it may have elaborate stone dormers and it may also 
have decorative metalwork and slate work. The red and black slates of differing sizes and shapes are 
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laid in patterns that extend around the roof of a large and freestanding building. Any changes to this 
patterned slate work, or to the other roofing details would damage the visual character of the building. 

       

Figure 74: Texture of a building        Figure 75: Characteristic roof of a building
    

Color plays such an important role in emphasizing the unique characteristics of buildings. Building 
elements such as windows, doors, walls, columns, roofs, domes are all painted in various colors, 
which create a vivid image. Even from a distance, colored images may well strike tourists as potent 
and memorable, thus creating a lasting mental picture, which may lure tourists to revisit the place. For 
instance, the historic Dutch and British buildings (the Stadthuys Building and the Christ Church) in the 
old town of Malacca were all painted in red. For the same reason, most historic buildings in the city of 
Edinburgh, Scotland appear in grey. Both examples present a clear and lucid image of the area as well 
as the entire city. The unique red buildings in Malacca and grey buildings in Edinburgh may well be 
highlighted and promoted as tourism products. So while aggregating two buildings with different 
colors of roofs and walls, care must be taken to preserve the original colors, at least of dominant 
building. 

Exterior outlook is another important aspect of a building character. A building roof may consist of 
dormers and chimneys. The roof in figure 75, for example, is important to the visual character because 
its steepness makes it highly visible, and its prominence is reinforced by the patterned tinwork, the six 
dormers, and the two chimneys. Changes to the roof or its features, while doing generalization, such as 
removal or alterations to the dormers, for example, would certainly change the character of this 
building. This does not discount the importance of its other aspects, such as the porch, the windows, 
the brickwork, or its setting; but the roof is clearly crucial to understanding the overall visual character 
of this building as seen from a distance. A projecting porch or balcony can be very important to the 
overall visual character of almost any building and to the surrounding in which it is located. Despite 
the size of this building (3-1/2 stories of figure 76), its distinctive roofline profile and the importance 
of the very large window openings, the lacy wraparound iron balcony is singularly important to the 
visual character of this building. It would seriously affect the character to remove the balcony, to 
enclose it. Therefore, the external outlook of the building should be preserved to the maximum 
possible extent. 
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Figure 76: Characteristic exterior outlook of a building 

 

7.5 Divide and conquer algorithm for aggregation 

Based upon the rules studied above, aggregating a given area of the city as a whole may still lead to 
confusing results. The most serious drawback of this approach is the lack of visual balance. For 
example, figure 77a, where groups of buildings are situated on either side of the road. After 
aggregation, it may happen that one of the buildings along the road may get into aggregation with 
another building lying nearby (figure 77b) but still away from the road. So a new strategy has been 
developed and called divide and conquers aggregation. Here only those building are chosen which lie 
close to a given road and aggregation is applied as shown in figure 77c. This process is repeated until 
all the roads are scanned.  

 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
   Figure 77 : Divide and conquer algorithm 

(a): Before aggregation

(b): After normal aggregation 

(c): Divide and conquer aggregation 
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The simple algorithm takes the following form and is basically a nested set of If..Else statements.  

 If d(oi,oj) < ∆dmin then 

If h(oi,oj) < ∆hmin then  

    If roof_type1 = roof_type2 then  

If ∆A(oi,oj) < Amin then aggregate 

… 

Else if Areai is small and Object is important then exaggerate 

… 

  Else unchanged 

Once the buildings along the roads are scanned, then the remaining buildings, if any, can be taken care 
of based upon above rules and constraints. Nevertheless, this situation does not arise at all. 

A comprehensive flowchart of the above algorithm is shown in figure 78. 
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              Figure 78: Flowchart of aggregation algorithm 
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7.6 Implementation and results 

Above algorithm is implemented using Object Oriented approach under Visual C++ environment and 
on MS Window platform.  

A test data consisting of few buildings of different roof styles and roads is constructed and is used to 
test this algorithm as shown in figure 79.   

 

 
 

 
Figure 79: Original input .sat file  

It consists of simple buildings that are located along roads. To maintain the visual balance, buildings 
are clustered along the road as discussed in chapter six. Two buildings are taken from a cluster at a 
time and a set of rules is applied to them. If they pass through these rules successfully, then they are 
aggregated, otherwise they are ignored. This process continues until all the buildings are processed. 
The aggregated as well as non-aggregated buildings are displayed in one color as shown in figure 80. 
As seen in the figure, All the buildings lying along the road (at the top of the figure) are of same type 
and are selected for aggregation. Another two buildings (with blue color) are aggregated together with 
the same reasons. However, there are some other buildings, which don’t find any similar building in 
their vicinity and are not selected for aggregation (having cyan and grey colors). It may be necessary 
to apply other generalization operation(s) to them. 

Input data 

Input data (wire frame) 
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Figure 80: Building identified to be aggregated are shown with same colors  

Though the data set is relatively simple but it shows courageous results. Buildings, which are selected 
for aggregation, have not been replaced with new buildings. Due to limitations of the software, these 
buildings could not be created. Although only small sets of simple buildings are taken however, the 
verification of the algorithms is done underlining the importance of structure recognition.  

In this chapter, various rules are developed based upon different constrains. These constraints resulting 
form the structure recognition study. An algorithm for aggregation of 3D objects is developed and 
implemented. This algorithm is then tested on a test data of 3D buildings. 

Aggregated 

Aggregated result (wire frame) 
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Chapter 8  
Final discussion and conclusion 

8.1 Conclusion 

The prime aim of this thesis, as the title suggest, is to study structure recognition of 3D settlements and 
their use in 3D generalization. The focus was on the quantification of spatial characteristics at micro-, 
meso-, and macro-level. The research findings from 2D structure recognition had been extended to 3D, 
which led to the identification & definition of some new parameters Therefore; a number of new 
parameters were identified and defined. The results of structure recognition were then applied to test 
the functionality of a 3D aggregation algorithm guided by constraints and rules. 

In the literature, review (chapter 1) a case was made to study the importance of the structure 
recognition towards generalization. Despite all the research that was reviewed, it is found that 
structure recognition was not given its due importance in 2D. It was noted that though the majority of 
the research undertaken in 2D generalization has mentioned structure recognition as an important issue 
but not much work has been reported there about it. It may be due to the fact is that most of the efforts 
have been done in realizing various generalization algorithms and operators. 

Chapter 2 outlines the state of the art for structure recognition. Various methods have been reviewed 
for structure recognition here. It is found that existing research of structure recognition has been 
largely restricted to 2D. These approaches have their own drawbacks for their uses in 3D and have 
been adequately justified.  

Chapter 3 deals with a hierarchical study on structure description that was divided into micro, meso 
and macro levels. In micro-level, which deals with the individual objects, the study of its various 
parameters such as, positional parameters, form parameters, orthogonalities, roof type and general 
shape of the ground-plane has been emphasized. In meso level, spatial relationships among individuals 
and neighborhood objects are studied. This level is the most important part of the study as most of the 
rules and constraints are later derived for generalization in general and aggregation in particular. Some 
of the parameters studied here are proximity, height difference, angle, alignment, size contrast, aloof 
but important building, different roof styles and different building types. In macro-level, clusters of 
objects having similar properties such as settlement/building blocks are considered. Its detection is 
based on human perception, especially the visual grouping behaviors. The clusters are an important 
aspect in understanding images, maps and 3D scenes and therefore are comprehensively studied. Main 
emphasis is on 

 

ANN technique was applied to recognize different buildings (chapter 5). Though no work have been 
reported in the past for building recognition using this AI technique, inspiration was taken from 

� Shape and size regularity 

� Regularity of roof structure and surface texture 

� Adjacency to other structures 

� Unique, deterministic features 

� Relative distributional density
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literature survey on pattern recognition, which employs this technique very effectively in face and 
hand written character recognition. Though face and character recognition is a 2D recognition but it 
has been efficiently and successfully extended to 3D.  

Chapter 6 studies the structure recognition of group of buildings forming a cluster. Principles of 
perceptual grouping are studied here and are required to maintain the visual balance while applying 
generalization. Most important principles given emphasize are  

Since it a city model, most of the buildings are situated along the roads. When these buildings are first 
grouped based upon their alignment to a road, these perceptual principles are implicitly applied when 
other structure recognition based rules are executed on them. Therefore, aggregation algorithm 
developed in this study; first separates all the buildings into various groups based upon their road 
adjacency and then other rules are applied to them.  

With this study, it has become evident that it is now easier to understand the topology and spatial 
relationships among the main city objects. This study has resulted in forming the strong base for 
determining the various rules and constraints for generalization. Aggregation, one of the most 
important components of the generalization was studied (chapter 7) here. Various levels of constraints 
were studied for roads, buildings and road & buildings in proximity. Based upon these constraints, 
aggregation rules were formulated and algorithm was developed and implemented. Two types of rules 
were identified; stiff and elastic rules. Stiff rules are those rules, which must be applied while doing 
aggregation as they are strictly based on structure recognition. The importance and applicability of an 
elastic rule, on the other hand, may depend upon the circumstance and may vary from case to case. 
These elastic rules may be derived based on the context-sensitive importance features of the buildings 
such as texture, exterior outlook and color.  

Another important aspect, which was studied here, is based upon contextual rules, which define the 
sensitivity of 3D aggregation towards different contextual views. Different features of the buildings 
should be preserved for different occasions and therefore this contextual and semantic knowledge has 
to be embedded into the algorithm. Two views are considered viz. top view and oblique view and their 
resulting effects are considered. 

This study is among the first attempts which concentrated on 3D generalization, based upon 
exhaustive structure recognition research, and where different contextual views are considered.  

8.2 Problems encountered 

While pursuing research, problems are due to come. As not much research work was done on 3D 
structure recognition and aggregation in the past, lot of problems encountered during the research. One 
of the biggest problems faced during the whole research had been the real city data in the required 
format. As the whole development was based around Visual C++ and ACIS geometric modeler, which 
uses its own file (sat) format. It was not possible to get the required data despite enquiry made to 
various related sources. Finally, it was decided to develop a conversion utility, which converts vrml 

� Grouped by continuity  

� Grouping by similarity 

� Grouping by continuation 

� Grouping by parallelism 

� Grouping by co-linearity 

� Grouping by proximity 
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format to sat format. Fortunately, the building data was available for BONN city in vrml format. After 
converting the data into the required format, it was used for further research. 

Though vast literature was available on generalization, very little was reported on 3D generalization. 
Structure recognition had been hardly studied in context to generalization, though its importance was 
mentioned for generalization but no research paper was found which could give a deep insight into it. 

 

8.3 Future work 

There are several aspects of the study, which raise important considerations for future research in the 
area of 3D structure recognition and generalization.  

Various types of buildings, simple as well complex, were identified but still there is ample scope for 
different varieties, particularly in European cities, to be explored and consequently new relations 
among them may be found. Recently, new architectural buildings are coming up having entirely 
different shapes (viz. new build up area in La défense PARIS). Exploration of them will certainly 
require additional rules and constraints. 

Due to the additional dimension, different views of a given 3D scene have come into considerations. 
Various constraints have been introduced and rules were added to aggregation algorithm. Further 
study may focus on constraints and rules for other generalization aspects such as displacement, 
typification, simplification, amalgamation, and exaggeration etc. and consequently their algorithms 
may be incorporated with these changes. Study on structure recognition made here will serve as the 
basis for addition rules and constraints. 

AI techniques, ANN has been applied successfully to structure recognition and has shown excellent 
results. Most important advantage of this technique is that they are capable to predict good results 
even if the input features are transformed, scaled, rotated, incomplete, or little different from the 
already learned one. This approach may be continued for rest of the generalization algorithms.
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Appendix: Abbreviations 

 

� SR:  Structure Recognition 

� ANN:  Artificial Neural Network 

� 2D :  Two Dimensional 

� 3D :  Three Dimensional 

� Geons :  Geometrical ions 

� GSD :  Geo Structural Description 

� LSA:  Least Square Adjustment 

� LoD:  Level Of Detail 

� Brep:   Boundary Representation 

� CSM:  Continuous Symmetry Measure 

� NN:   Nearest Neighborhood 

� RMS:   Root Mean Squares 

� MST:   Minimum Spanning Tree 

 

 

 

 

 


