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  I 

Abstract 

To calculate the loadbearing of bolted connections in glass panels under the application of in-

plane loads exact knowledge of the contact mechanisms and the parameters which influence 

the stress distribution around the hole is necessary. At first analytical and numerical solutions 

of contact between a bolt and a conforming hole in a panel are formulated to determine the 

stress distribution. An approach for verifying the numerical model with the analytical 

solutions is developed. To determine relevant results for design the verified FEM-model is 

used to examine the influences of different parameters on the stress distribution around the 

hole. In addition experimental investigations are carried out in order to check the results of the 

FEM-calculations and the analytical solutions.  

 

 

Kurzfassung 

Um Lastabtragungen in Scheibenebene über Punkthalter oder Bolzen aus Stahl in 

Glasbohrungen rechnerisch abbilden zu können, sind genaue Kenntnisse über die 

Kontaktmechanismen notwendig. Darüber hinaus sind die Parameter zu untersuchen, die 

Einfluss auf die Spannungsverteilung am Bohrloch haben. Daher werden zunächst analytische 

und numerische Methoden aufgezeigt, um den Kontakt zwischen Glas und Halterung 

abzubilden und die Spannungsverteilung zu ermitteln. Mit Hilfe der analytischen Lösungen 

wird eine Vorgehensweise zur Verifikation des Finite-Elemente-Modells entwickelt. Des 

Weiteren werden mit dem verifizierten FE-Modell die Einflüsse unterschiedlicher Parameter 

auf die Spannungsverteilung am Bohrloch untersucht, um letztendlich bemessungsrelevante 

Erkenntnisse zu gewinnen. Zusätzlich werden experimentelle Untersuchungen durchgeführt, 

um die numerischen und analytischen Ergebnisse zu überprüfen.  
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1 Introduction 

 

1.1 Cause 

For several years there has been a trend in architecture, to use glass not only as a part of the 
building envelope, but also to build the loadbearing elements of glass. This represents a 
special challenge because of the material behaviour of glass. In the most frequent cases glass 
columns or so-called glass fins (see Figure 1.1) are used and the loads are transferred via 
compound point-supports or bolts of steel to the glass drill hole. To avoid any contact 
between steel and glass a suitable interlayer or bushing material, such as plastic or aluminium, 
has to be applied. 

 

 

 

Figure 1.1 Examples of loadbearing glass structures 

Special care is required with the design and the structural detailing of point-supported glazing. 
High local stresses can occur around the drill hole, if the loads are transferred via screws, 
bolts or point-supports to the glass holes. The design has to be done in a way which insures 
that forces are distributed uniformly, in order to keep stress concentrations at a minimum. 

Using the material steel local stress-peaks can be reduced by local plastification due to the 
elasto-plastic material behaviour. Applying glass as a material this is impossible because of its 
brittle material behaviour. 

The kind of the support, the geometry of the components, the quality of the glass edges and 
surfaces as well as the interlayer material influence the stress distribution around the drill 
hole. Due to the complexity of the calculation of point-supported glazing the design is usually 
carried out by means of finite element method (FEM). However, to get reasonable results, a 
very good understanding of the FEM-program is required. Dependant on complexity and 
parameter selection of the FEM-calculation the stresses and deformations in the glazing are 
registered more or less precise. Mostly extensive FEM-models with contact approaches are 
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necessary. In order to exclude unsuitable static models and to be able to evaluate a FEM-
model in a qualified way, verifications of the corresponding programs are indispensable. 

Up to now technical rules only exist for the design of line supported glass structures.  

Scientific investigations that were carried out so far in the field of point-supported glazing are 
not yet sufficient in order to transform the design into a standard. 

In particular, very few research which deals with the loadbearing of bolted glass connections 
under the application of in-plane loads exists up to now.  

In case of so-called bolted connections the loads are transmitted only by contact perpendicular 
to the bolt axis to the panel plane. The compressive forces interact normal to the contact 
surface. To find the correct computational model precise knowledge about the contact 
mechanisms and the parameters that influence the stress distribution is necessary. This thesis 
should achieve a contribution on this. 

 

1.2 Aims and Structure of the Thesis 

From the problems outlined in chapter 1.1, the aims of the thesis can be derived as follows. 

The primary aims of this work are to find the correct analytical and numerical model for the 
contact between glass and bolt as well as for the stress distribution around the hole. 
Furthermore the influences of different parameters on the stress distribution at the drill hole 
area should be examined. Finally, conclusions that are relevant to the design, should be 
gained. 

To verify the correctness of the numerical approach, analytical solutions based on contact 
mechanics are formulated initially. Afterwards experimental examinations are carried out. 

After verifying the FEM-model, it will be used to examine the influences of different 
parameters on the stress distribution around the hole. The following parameters are examined 
in particular:  

- Different bushing materials 

- Clearance between bolt and drill hole  

- Boundary surface friction between bolt and drill hole  

- Eccentric loading 

- Variation of hole diameter and panel width  

- Variation of distance between hole and panel edge  
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According to the aims of this thesis its content is divided in as follows: 

In chapter 2 the most important glass properties are explained and the distribution of the 
surface compression of tempered glass panes as well as the strength in the drill hole and edge 
area is stated. This is followed by a short summary of the design concepts of structural glass.  

Chapter 3 contains a detailed description of point supported-glazing including their 
components, as for example the bushing material. 

Based on the theory of panels and the analytical solution for the panel with a hole (Chapter 4), 
the analytical solutions for the panel with an enclosed bolt are formulated in chapter 5 by 
means of contact mechanics. 

Chapter 6 starts with a description of the numerical approach of the contact by means of finite 
elements and program-specific solution algorithms of the programs MSC.visualNastran for 
Windows and the extra module Nonlinear+, which is based on the program MSC.Marc. 
Thereafter chapter 7 deals with the creation of the FEM-model, which is being verified along 
the analytical solutions. After that a detailed examination of different parameters and their 
influence on the stress distribution at the drill hole follows. 

In order to check the results of the FEM-calculation and the analytical solution, experimental 
investigations are carried out, which are described in chapter 8. Based on the numerical 
parameter study in chapter 7, a variety of parameters such as drill hole diameter, panel width, 
distance between hole and panel edge as well as thickness and bushing material are examined. 
The appendix contains the detailed results. 

Chapter 9 completes the thesis with a conclusion and an outlook on continuing scientific 
investigations. 
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2 Glass Properties 

 

2.1 Introduction 

For the design of a material the strength is of central importance. Various investigations 
showed that the strength in a flat glass panel is not constant. A differentiation between glass 
surface, edge, corner and drill hole area is required. Local surface damages that occur due to 
processing of holes and edges can lead to a reduction of the strength. Considering point 
supported glazing, examination of the holes is especially important because, besides possible 
surface defects, additional stress concentrations in these areas can cause a failure. However, 
the qualitative capturing of these influencing parameters is quite difficult. Mostly, 
experimental investigations are carried out in order to receive reliable values for the design of 
point supported glass elements. The best way to describe the material glass is to utilize the 
probability of failure and basic principles of fracture mechanics. Taking into account the 
partial safety factors and influencing coefficients, these principles are used to develop a 
design concept. 

Due to the existence of extensive literature in the field of glass-manufacturing and -processing 
this thesis is not covering these, but refers to [Lohmeyer 1987, 2001], [Scholze 1988], 
[Doremus 1994], [Sedlacek et al. 1999], [Siebert 1999], [Siebert 2001], [Woerner et al. 2001]. 
In the following section only the most important material properties will be named. A more 
detailed look will be taken on the pre-stress and stress distribution of thermal pre-stressed 
glass, since stress concentrations at the drill hole are of central interest for point supported 
glass panes. 

 

2.2 Composition and Physical Properties of Glass 

The basic module of all silicates is the SiO4-tetrahedron that is based on a central silicon atom 
with 4 surrounding oxygen atoms. While these tetrahedron are regularly ordered in the mono 
crystalline form, they form an irregular net in the glass. Glass is an amorphous, homogeneous 
and isotropic material with linear elastic material behaviour which fails in case of overload 
with a brittle fracture.  

Most of the commonly used glasses contain numerous components with SiO2 as the main 
component. Mainly two types of basic glasses are used for building materials: soda lime 
silicate glass [DIN EN 572-1] and borosilicate glass [DIN EN 1748-1]. 

Soda lime silicate glass has by far the greater share and is used especially for float glass [DIN 
EN 572-2], [DIN 1249-3, -10, -11]. 

Borosilicate glass is used in special applications such as fire protection glass, because of its 
high chemical resistance as well as high resistance to alternating temperatures. Table 2.1 lists 
the chemical compositions of these two types of glass. 
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Table 2.1 Chemical composition of silicate glass 

Components Soda lime silicate glass
[DIN EN 572-1] 

Borosilicate glass 
[DIN EN 1748-1] 

SiO2 69 - 74% 70 - 87 % 

CaO 5 - 12% - 

B2O3 - 7 - 15 % 

Na2O/K2O 12 - 16% 0 - 16% 

MgO 0 - 6% - 

Al2O3 0 - 3% 0 - 8% 

others - 0 - 8% 
 

The chemical composition has an essential influence on the melting temperature and the 
thermal expansion coefficient αt. Table 2.2 lists the most important physical properties of 
soda lime silicate glass and borosilicate glass. 

Table 2.2  Physical properties 

Property Symbol [Unit] Soda lime silicate glass
[DIN EN 572-1] 

Borosilicate glass 
[DIN EN 1748-1] 

Density (at 18°C) ρ  [kg/m3] 2500 2200 - 2500 

Hardness (Knoop) [GPa] 6 4,5 - 6 

Young’s modulus E [MPa] 70.000 60.000-70.000 

Poisson’s ratio ν [-] 0,20*) 0,20 

Specific heat capacity c [J/(kg ⋅ K)] 0,72 ⋅ 103 0,8 ⋅ 103 

Average thermal expansion 
coefficient αt [1/K] 9 ⋅ 10-6 3,1 - 6,0 ⋅ 10-6 

Thermal conductivity λ  [W/(m ⋅ K)] 1,0 1,0 

Average refraction index for 
visible wavelength N [-] 1,5 1,5 

*) according to DIN 1249-10 in Germany currently ν=0,23 is used for design  

Terms for glass types and glass groups are listed in [DIN 1259-1], terms for glass products are 
listed in [DIN 1259-2]. 
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2.3 Pre-Stressing of Glass 

2.3.1 Introduction 

The mechanical strength of glass and the resistance to alternating temperatures can be 
improved considerably by heating up the glass to a few degrees before reaching the softening 
point (approx. 650°C) and subsequent rapid cooling down (thermal pre-stressing). A bulged 
structure in the surface layer is frozen by this quenching, which leads to a compressive pre-
stress in the surface layer and a tensile pre-stress in the core. 

A compressive pre-stress in the glass can be achieved as well by ion exchange in a silicate 
glass that contains Li2O or Na2O (chemical pre-stress). The Li+- or the Na+-ions are replaced 
by larger K+-ions below the transformation temperature and the network structure of the layer 
with ion-exchange is bulged. The compressive pre-stress that can be achieved by ion 
exchange in a surface layer of 30 to 300 µm thickness is about 300 to 500 MPa [Lohmeyer 
2001]. However, compared to thermal toughened glass, chemical pre-stressed glass is more 
sensitive for surface damages because the compressive stress layer is much thinner across 
glass thickness. 

The durable compressive pre-stress on the glass surface increases the resistance capacity, 
since locations for initial failure (micro and macro cracks, notches) become compressed. 
Crack-propagation can only occur if there is a tensile stress on the surface. 

The pre-stressed glass products are divided as follows: 

Thermally toughened glass  

is regulated according to [DIN 1249-12] and [DIN EN 12150-1]. Compared to annealed glass 
thermally toughened glass has a considerably higher resistance against mechanical and 
thermal stress. In case of breakage numerous small and rounded pieces arise. The fragments 
are namely less sharp and smaller than those of annealed glass but not less dangerous if they 
are falling from a certain height.   

Heat strengthened glass  

is regulated according to [DIN EN 1863-1]. The properties of the heat strengthened glass are 
comparable with those of thermally toughened glass. However, the thermal pre-stress on the 
surface is smaller compared to thermally toughened glass because of the slower cooling rate. 
Heat strengthened glass breaks into larger fragments than thermally toughened glass. The 
fracture pattern is comparable with that from annealed glass.  

Chemically strengthened glass  

is regulated according to [DIN EN 12337-1]. Higher resistance against mechanical and 
thermal stress is achieved by ion exchange. Ions of smaller diameter are replaced against such 
of larger diameter and they expand the structure in the surface layer. On the surface a thin 
compressive layer is formed. 

The fracture pattern corresponds to that of annealed glass. 

In the following this thesis focuses on glasses with thermal pre-stress since these are most 
commonly used in building-relevant areas. 
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2.3.2 Thermally Pre-Stressed Glass  

The thermal pre-stress can be either determined numerically by finite elements or 
experimentally, for example with photoelasticity. Various investigations have already been 
made in this field. Recently, [Hof 2005] made computational and experimental investigations 
with the aid of digital image correlation method, which is quite new for glass. Using this 
method a picture is taken with a CCD-camera (charge-coupled device) with the help of white 
light. This light creates an irregular pattern of the surface structure. The procedure consists of 
making one reference picture before and a second one after tempering or loading. These 
pictures are compared and the displacement is determined. The method is described in detail 
in [Hof 2005].  

By comparison of photoelastically measured values e.g. [Bernard, Daudeville 2003], 
[Bernard, Daudeville 2004], [Schneider 2001], [Laufs 2000] and [Carré, Daudeville 1999] 
showed, that the process of pre-stressing glass can be represented numerically. Therefore the 
viscoelastic behaviour of glass as well as the other physical properties have to be modelled 
realistically. Especially the correct representation of the heat transfer between glass and the 
cooling medium is important. Dependent on the utilized pre-stress furnace the glass properties 
can vary. 

 

2.3.3 Distribution of Pre-Stress in Glass Panels 

[Guesgen 1998] and in particular [Laufs 2000] showed that the distribution of pre-stress in 
glass panels is not constant. The parabolic shape of the stress distribution due to thermal pre-
stress can only be achieved in areas that had the quenching from both sides of the glass 
surface. Dependant on the possibilities of the heat dissipation during the quenching, the glass 
panel can be divided into 4 zones. These are the glass surface (zone 1), the edges (zone 2), the 
corners (zone 3) and the drill hole area (zone 4), (see Figure 2.1). 

 
Figure 2.1 Partitioning of the glass panel into 4 zones for thermally toughened glass and 

heat strengthened glass according to [Siebert 2001] 

The pre-stress profiles of zone 2 and zone 4 do influence each other if the drill hole is too 
close to the edge. In the scope of the thesis of [Laufs 2000] minimum distances are indicated 
to avoid an interaction of the pre-stress profiles between drill hole and edge area. For heat 
strengthened glass the distance between drill hole and edge should be at least 3 times the glass 
thickness d. For thermally toughened glass the distance should be at least 2,0 d. 

Qualitative curves of thermally introduced pre-stress for the zones 1 to 4 are shown in Figure 
2.2. In the central area, stress distribution in normal direction (across thickness) has a 
parabolic shape. The ratio between surface stress to maximum tensile stress is about 
1 : 2,0 to 2,2. Zero-crossing of the parabolic curve is at about 20% of glass thickness d. The 
edge area is represented by a three dimensional residual stress state. Due to the fact that the 
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surface cools down on three sides. The compressive stress σ2 parallel to the edges is a 
membrane stress that compresses the entire edge surface.  

The influence of the edge reaches to a depth of about 1 to 2d. Since the corner area cools 
down on 4 sides, the pre-stress follows continuously along the surfaces. For equilibrium 
reasons there is no membrane stress at the free edge of the corner. The influence of the corner 
is about 2 to 3d.  
Zone 1, center 

thickness d compression

tension

center area
zone 1

Zone 2, edge 

pane edge
zone 2  

Zone 3, corner 

pane corner
zone 3  

 

 

Zone 4, cylindric drill hole 

hole
zone 4

 

 

Zone 4, conical drill hole 

hole
zone 4

 

Figure 2.2  Qualitative curves of the thermally introduced pre-stress for zones 1 to 4 [Laufs 
2000] 
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Heating temperature in the pre-stress furnace as well as cooling and orientation of the panel in 
the furnace have an influence on thermal pre-stress. In practice these influences can lead to a 
considerable variability. Investigations carried out by Laufs show as well that thicker glasses 
have a higher pre-stress than thinner ones by taking a uniformly heat transfer coefficient αk. 

In his thesis Laufs indicates characteristic values (95 % confidence level, 5 % fractile) of pre-
stress for heat strengthened and thermally toughened glass in the respective zones (see Table 
2.3). The listed values were determined with a sufficient margin of safety and are valid for all 
nominal glass thickness not depending on glass manufacturer and pre-stress furnace.  

Table 2.3 Characteristic values of pre-stress in MPa in the four zones 

Zone Plate loadbearing Panel loadbearing 

 Heat strengthened 
glass 

Thermally 
toughened glass 

Heat strengthened
glass 

Thermally 
toughened glass 

1) surface -30 -84 -30 -84 

2) edge -43 -75 -45 -63 

3) corner 0 0 0 0 

4) drill hole -40 -68 -37 -57 
 

Laufs results show that the pre-stress in the surface, the edge and the drill holes are in the 
same order of magnitude, while at the corners there is virtually no pre-stress at all. The 
slightly higher pre-stress at the edges and the drill holes of heat strengthened glass in 
comparison to the surface can be explained by the multi-dimensional cooling behaviour. Due 
to the edgewise cooling a high temperature gradient is build up, which, after pre-stressing 
results in a higher membrane compressive pre-stress at the edges [Sedlacek et al. 1999]. 

 

2.4 Glass Strength 

2.4.1 Basics 

Under mechanical stress glass behaves linear elastic in almost any composition and fails with 
a brittle fracture.  

There is a difference between the theoretical and practical tensile strength. Due to molecular 
bonding forces the theoretical strength is in the range of 10.000 to 30.000 MPa [Siebert 1999]. 
However experimental measured strength values of glass are in several orders of magnitude 
below the theoretical ones. The practical tensile strength as well as the ultimate strength of 
glass is not a constant material value, but depends on the degree and size of damage of the 
surface that is under tension, on the type and duration of loading as well as on the 
environmental conditions. 

The strength values of glass are determined by the four point bending test or the coaxial 
double ring test. The corresponding experiments are regulated in [DIN EN 1288-1 to -5]. 
Strictly speaking experimentally determined bending strength values can only be obtained on 
components which are free from residual stresses or pre-stresses. If the strength of pre-
stressed glass is determined experimentally, the result is a "test bending strength" σtest,Be. The 
bending strength Beσ  consists of the "test bending strength" σtest,Be and the residual stress Reσ  
[Exner 2001 A]: 
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 ,Be test Be Reσ σ σ= +  (2.1) 

 

The evaluation of the experiments is usually done with the Weibull distribution [DIN 55303-
7]. For the most commonly used glass products Table 2.4 lists the characteristic minimum 
bending tensile strength (= test bending strength) at 95 % confidence level and 5% fractile 
including the current product standards. 

Table 2.4 Characteristic values of bending tensile strength 

Product Standard 
Bending tensile 

strength 
[MPa] 

Float glass DIN 1249-10 
DIN EN 572-2 45 MPa 

Thermally toughened glass DIN 1249-12 
DIN EN 12150-1 120 MPa 

Heat strengthened glass DIN EN 1863-1 70 MPa 
 

Detailed investigations on bending tensile strength of glass can be taken from the 
corresponding literature such as [Wilikins et al. 1976], [Schmitt et al. 1983], [Exner 2001 a, b, 
c], [Siebert 1999] and [Siebert 2001]. Basic principles and experimental methods for the 
strength of glass are described in detail in [HVG 1987] for example. 

Except for glass fins or columns, where the loadbearing is in-plane compressive, compressive 
strength does not play such an important role in constructive glass design, where, in most 
cases, elements are used that are stressed by bending. So far only compressive strength values 
for float glass are available in [DIN 1249-10], which are noted to 700 to 900 MPa.  

To examine the fatigue resistance of float glass under continuous loading [Fink 2000] 
performed longtime experiments with glass stressed by bending and compressive load. He 
found out that under a continuous load the strength is significantly below the "minimum test 
strength". 

 

2.4.2 Glass Strength at the Edge and in the Hole Area  

The quality of the edges and the drill hole are of essential importance for the strength of glass. 
Potential weak points of the glass are at the drill holes and the edges due to possible surface 
damages or micro cracks that can occur during the machine-made manufacture. Additionally, 
regarding point supported glasses, the highest stress concentration occurs in the rim of the 
drill holes. 

[Weißmann 2004] performed investigations of the strength and the quality of the edges. The 
strength is determined by the four point bending test. The glass stripes are installed upright on 
edges in the test rig to stress only the edges with tension. [Weißmann 2004] examined 
annealed float glass and thermally toughened glass of different thickness and different edge 
qualities. The essential results of his investigations are represented in Figure 2.3. 

 



18  2 Glass Properties 

 

sample number

str
en

gt
h 

[M
Pa

]

 

 

sample 
no. glass type / edge treatment 

1 float glass / cutting edge 

2 thermally toughened glass / 
cutting edge 

3 float glass / C-grinding  

4 thermally toughened glass / 
C- grinding 

5 float glass /  
double-sided vordered 

6 thermally toughened glass / 
double-sided vordered 

7 float glass /  
water jet, vordered 

8 thermally toughened glass / 
water jet, vordered 

Figure 2.3 Strength of the edges [Weißmann 2004] 

One of the most interesting results is that the edges cut by water jet show the least strength 
values. For float glass no significant differences in strength can be found between cutting 
edges (test no. 1) and grinded edges (test no. 3). For thermally toughened glass the cutting 
edges (test no. 2) show a higher strength than the vordered edges (test no. 4). 

[Hess 2000] carried out strength investigations at glass-beams with different geometry and 
glass set-ups. Using the four point bending test he compared the strength of glass fins 
mounted upright and horizontally in the test-up. Among other things he observed that the 
strength values for upright mounted fins were lower than the values for horizontal mounted 
fins. The reason for this is that in contrast to horizontally mounted panes, the edges of upright 
mounted panes are under tension. Due to edge processing the probability of a surface damage 
initiating a crack is higher there. 

[Kutterer, Goerzig 1997] carried out experimental strength investigations of drilled float glass 
and drilled thermally toughened glass panes, both under tension in-plane. Milled holes, 
conventionally drilled with a diamond equipped cylindrical drill and holes drilled by water jet 
were examined. In addition polished drill holes were examined. As a result, the surface 
damages of the water jet holes were slightly higher, so their failure load was slightly lower 
than the others. Nevertheless, considering the design, no relevant losses in strength were 
observed.  

The initial micro-crack always appeared in the midplane of the panel at the edge of the drill 
hole. No significant difference in failure loads was detected between the milled and the 
polished drill holes. 

Investigations on the strength of drilled float glass and thermally toughened panes according 
to the ring to ring test were carried out by [Schneider, Shen 1998] and [Schneider 2001a, b]. 
In [Schneider 2001a, b] different drill hole diameters and geometries (conical and cylindrical) 
were examined. Here as well, the water jet drilled float glass had a smaller failure load 
whereas thermally toughened glass had nearly the same failure load, no matter whether the 
holes were drilled by water jet method or by a diamond drill. It was presumed that, by the 
process of pre-stress, crack "healing" effects reduce the surface damage. The experiments 
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confirmed a minimum bending tensile strength of 120 MPa according to [DIN 1240-12] and 
[DIN EN12150-1]. 

Another interesting aspect is that not only the method of cutting and drilling, but also the 
applied coolant decisively influence the surface quality. Therefore extensive research was 
carried out by [Gulati et al. 2001], [Emonds et al. 2003] and [Emonds et al. 2005]. During the 
drilling of holes and cutting of the glass edges coolants are used to reduce the heat generated 
by friction and to remove the glass waste. To improve the lubrication between the tip of the 
drill and the glass, chemical additives are compounded to the cooling water. The above 
mentioned authors examined the influences of different chemical coolants and pure water on 
the strength of drill holes and edges. The grinding strength can be reduced by 16% with 
chemical additions compared to pure water. As a result more holes can be drilled in the same 
time. The evaluation of strength experiments (four point bending test and ring to ring test) 
resulted in an increase in strength of 4 to 10% at the edges and up to 35% at the drill holes by 
using chemical additives in comparison with pure water. An increase of the concentration of 
the chemical additives led to a further increase in strength. This leads to the conclusion, that 
dependant on the composition and concentration of the chemical coolants the surface damages 
can be reduced significantly. 

The strength values do not only depend on the degree of surface damage, but as well on 
various other influencing parameters such as the load rate and the geometry of the specimen. 
For the statistical evaluation of the strength values as well, the number of tests and the type of 
applied statistical distribution have an influence. [Siebert 2004] lists a crucial comparison of 
strength values gathered from different series of experiments. 

 

2.4.3 Crack Formation and Propagation 

There is extensive literature available about crack formation and crack propagation by using 
the theory of fracture mechanics such as [Kerkhof 1970], [Kerkhof 1977], [Richter 1974], 
[Jebsen-Marwendel 1980], [Siebert 2001]. Therefore, within the scope of this work, only the 
most important basics are mentioned. 

As already mentioned, the bending strength of glass is not a material constant factor, but 
depends on microscopic or macroscopic surface defects. Essential for crack propagation are 
the conditions at the tip of the crack. With the aid of fracture mechanics the progressing 
process can be described. With appropriate models based on the theory of elasticity 
quantitative relations between the external loads, the crack size and specific material constants 
are derived. 

In general a crack in a real workpiece is subject to complex stress fields consisting of the 
superposition of three break modes. These three basic modes are shown in Figure 2.4. 

 

Figure 2.4 Basic cases of loading possibilities of an edge crack  
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Loading a crack with a tensile stress normal to the crack surface (Mode I) is essential for a 
brittle crack propagation. The so-called stress concentration factors (SCF) KI, KII and KIII, are 
dependent on the above mentioned three basic cases, on the geometry of the loaded body, the 
crack geometry, as well as the magnitude and direction of the loading. 

Although the determination of the stress concentration factors is based on extensive 
mathematical methods these can approximately be calculated for elementary crack problems 
in a quite simple way [Rossmanith 1982]. For Mode I the calculation according to the theory 
of elasticity results in the following relationship: 

 

 0IK a fσ=  (2.2) 

Where a is the depth of the crack, σ0 is the tensile stress resulting from the applied load at the 
place of the crack normal to the crack-plane, assuming a crack would not exist. f is a 
correcting function dependent on the specimen and crack geometry as well as on the kind of 
load. Assuming a long, straight crack of small depth, it is allowed to calculate with a constant 
value f = 1,99 for pure bending- as well as for pure tension. As soon as the stress 
concentration factor KI exceeds the resistance of the material against crack propagation (= 
critical stress concentration factor KIc) the crack starts to grow [Siebert 2001]. 

With the help of the basic equations of fracture mechanics as well as the corresponding 
material parameters and the pre-stress of glass a realistic design of glass can be accomplished. 
For example concepts of [Guesgen 1998], [Shen 1997] or [Siebert 1999] are available, but 
will not be explained in more detail within the scope of this thesis. 

The following section covers briefly the current and future design situation in Germany and 
Europe. 

 

2.5 Design of Glass Structures  

2.5.1 Current Situation 

In Germany the concept of global safety factors or - according to the analysis of "old" 
standards - the allowable stresses are applied so far for the design of glass. Depending on the 
glass type and the application (vertical or overhead area) allowable stress values are directly 
stated by dividing experimentally determined strength values by the means of a global safety 
factor. The global safety factor covers all uncertainties concerning actions, values of 
resistance and model creation. For verification, the characteristic values of actions are applied 
without partial safety factors.  

Using this method the extremely simple application is of advantage. However, the values used 
for the design have different uncertainties which are not covered by a global safety factor. 
Furthermore the concept is not transparent. Therefore transferring the concept on applications 
without experience is hardly possible. 

The concept of the allowable stresses is used especially in [TRLV 1998] und [TRAV 2003]. 
Both technical rules are valid only for plate bearing elements. 
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2.5.2 Future Situation 

At present, a new design standard for glass is in progress on European level [prEN 13474-1, -
3] and on German level [E DIN V 18008-1, -2]. Both approaches are based on the current 
concept of partial safety factors, as it is applied in the Eurocodes and based on fracture 
mechanics (see also chapter 2.4) 

The fundamentals of the design of [prEN 13474-3] and [E DIN V 18008-1] are based on [DIN 
EN 1990]. The actions are determined according to [DIN EN 1990], [DIN EN 1991] and 
[DIN 1055-100]. 

The resistance verification of glass plates as described in [E DIN V 18008-1] is done on the 
verification of the maximum principle tensile stress at the glass surface. Residual stresses of 
thermal pre-stress are considered on the resistance side. 

It has to be verified that the condition:  

 

 d dE R≤  (2.3) 

 
is fulfilled, where Ed is the design value of the load and Rd the design value of the resistance. 

According to [E DIN V 18008-1] the design value of the resistance versus stress failure for 
thermally pre-stressed glass, in simplified terms, is set by: 

 

 k
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γ

=  (2.4) 

 

where fk is the characteristic value of the bending strength and γM is the material partial factor 
for resistance.  

For glass without thermal pre-stress (e.g. float glass) the following formula 

 

 mod k
d

M

k fR
γ

=  (2.5) 

is valid. 

The coefficient kmod is considering the dependence of the duration of load bearing on the glass 
strength. 

The above mentioned design concepts are starting from a basic strength (residual strength) of 
glass under certain conditions (test conditions). To cope with the planned application 
conditions and the properties of the member that needs to be designed, the basic strength is 
modified with different influencing factors. The surface size stressed under tension, the stress 
distribution on the surface as well as the load duration and the pre-stress of the glass are taken 
into consideration. The approach of a partial compound-effect when using laminated safety 
glass is considered as well.  
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3 Point-Supported Glass Elements  

 

3.1 Introduction  

High local stress occurs at the edge of the drill hole, if loads will be applied via screws, bolts 
or point-supports that are mounted in drill holes of panels. Designs that are loaded in-plane 
and that carry the load via screws, bolts or point-supports are called bolted connections. In 
case of so-called bolted connections the loads are transmitted only by contact perpendicular to 
the bolt axis into the panel plane. The compressive forces interact normal to the contact 
surface. 

In steel construction local stress-peaks can be reduced by local plastification due to the elasto-
plastic material behaviour. Considering glass, this is impossible because of its brittle material 
behaviour. By applying appropriate material, such as plastic or aluminium, between the steel-
bolt and the glass hole peaks in stress are avoided and the forces are distributed uniformly 
over the contact area. The size of the contact surface and hence the size of the loadbearing 
area as well as the stress distribution depend on several parameters whose influences are 
examined in chapter 7 and 8. 

The kind of the support, the geometry of the components, the quality of the glass edges and 
surfaces as well as the interlayer material influence the stress distribution around the drill 
hole. Due to the complexity of the calculation of point-supported glazing, the design is 
usually carried out by means of the finite element method (FEM).  

In order to find the correct computational model precise knowledge about the contact 
mechanisms and the parameters that influence the stress distribution is necessary. To exclude 
unsuitable static models and to be able to evaluate a FEM-model in a qualified way, 
verifications of the corresponding programs are indispensable. To verify this, the FEM-model 
is compared with an analytical solution or experimental investigations. 

No technical rules or standards are available up to now that regulate the manufacturing, the 
design and the usage of point-supported vertical and overhead glazing. 

 

3.1.1 Loadbearing Types  

The load depends on the respective mounting situation and area of application. In general 
there is the differentiation between vertical and overhead glazing [TRLV 1998]. Next to the 
actions from dead load and wind as well as an additional snow load at overhead glazing, 
further influences are to be considered according to the type of use and the area of application. 
These are, for example, impact load (anti drop glazing) [TRAV 2003] or additional variations 
in pressure in the spacing of insulating glazing units (climate loads). 

In some cases overhead glazing needs to be accessible for cleaning and maintenance purpose 
or for public traffic. Therefore additional requirements need to be considered, which in case 
of Germany are [DIN 4416], [GS-Bau 18 2001], [DIBt 2001]. Another important factor for 
overhead glazing is the residual load-carrying capacity. Only the appropriate glass types and 
constructions, which are approved for a respective area of application, have to be used. 
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All additional actions which may lead to an increase in stress have to be considered. These 
are, for example, temperature, deformation of the substructure, eccentricities, constraints from 
the assembly or manufacturing inaccuracies of the components. 

Forces in, or perpendicular to the plane of the panel accordingly result from the above 
mentioned actions. These forces, dependant on the supporting type at the bearing point, can 
result in additional bending moments. 

 

3.1.2 Force Transmission 

In general, there is the distinction between point bearing and line bearing. Line bearing is 
used if the glazing is supported at least on two opposite sides on a continuous line-shaped 
clamping strip [TRLV 1998], [E DIN V 18008-2]. 

Bonded connections represent an alternative to the mechanical fixing. However, there are no 
standards for these so far. Up to now, in Europe bonded connections are only possible within 
the framework of a technical approval for bonded facades (SSGS - Structural Sealant Glazing 
Systems). The European guideline ETAG no. 2 [ETAG Nr. 002 1998] controls the 
requirements for the approval of SSGS-systems. 

In case of point supported glazing there is a distinction between point-supports which are 
carried through glass drill holes and clamping strips, which are arranged without drill holes in 
the corners or at the edges of the glazing [DIN 18516-1, -4]. 

In the following paragraphs point-supported glazing that carry the loads via bolted 
connections in the drill holes are covered. Essentially, three different ways of transmitting 
forces between glass and point-support are possible: 

- Bonded connections 

- Connection by friction  

- Bolted connections 

A combination of those actions outlined in Figure 3.1 and Figure 3.2 represent the possible 
stressing. In most cases point supported glazing can not be definitely assigned to one of these 
connection types, since in most applications a combination of different actions occur. 

V
N

M

 

V
N

M

 

Figure 3.1  Force transmission by contact Figure 3.2  Force transmission by friction  
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[Techen 1997] for example explicitly covered the connection techniques above mentioned. He 
explains each connection in detail and examines various interlayer materials. 

Numerical and experimental investigations on bonded connections were carried out for 
example by [Overend 2002]. The thesis of [Panait 2004] covers frictional connections 
stressed by in-plane loads.  

 

3.1.3 Types of Point-Supports and Bearings 

Numerous supporting systems are available for point supported glazing. Because of the brittle 
material behaviour of glass, special attention has to be paid on the usage of appropriate 
materials in order to distribute the forces uniformly over the contact area of the glazing. This 
is particularly important for construction, dimensioning and the design of point-supports. 

Below the essential distinction criteria of point-supports are explained with regard to 
geometry and types of bearing. 

In principle, there is the differentiation between cylindrical- and conical drill hole geometry 
(see chapter 2). Accordingly two corresponding point-support models are existing for these 
geometries: countersunk support and supports with discs (see Figure 3.3 und Figure 3.4). 

Glass
Steel plate

Bolt

Bushing

Interlayer

 

Glass

Bolt
Bushing

InterlayerSteel plate

Figure 3.3  Principle sketch of supports with 
discs (steel plates) 

Figure 3.4  Principle sketch of countersunk 
support 

Dependent on their type of bearing above two types of point supports can be further divided 
into two more categories:  

- rigid joint 

- hinge joint 

Corresponding examples are shown in Figure 3.5. In case that a rotation is possible, the place 
of the hinge leads to further differentiation (see Figure 3.6). 
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Rigid joint  Movable elastic joint Ideal ball-and-socket joint 

Figure 3.5  Rotation of the supports [Albrecht 2004] 

 

 
In panel plane Behind panel plane At the connection to the 

substructure 
Figure 3.6 Location of the hinge [Albrecht 2004] 

In case of eccentricities of the hinge, additional stress is inserted by a bending moment in the 
glazing. If the hinge is in-plane, this additional stress is avoided. A bending moment can 
occur as well in combination with constraints, such as variation in temperatures or assembly 
inaccuracies of the substructure. 

For dimensioning and constructive design manufacturing inaccuracies of the point support, 
the substructure as well as the glazing [DIN 1249-12], [DIN EN 572-2], [DIN EN12150-1], 
[DIN EN 1863-1] have to be considered. An overview of the limits for drill holes in thermally 
toughened glass and heat strengthened glass is given in Table 3.1. 

Table 3.1 Allowed tolerances for drill holes 

Type of glass Nominal diameter ∅ 
[mm] 

Allowed tolerance 
[mm] Source 

4 ≤  ∅ ≤  20 ±  1,0 

20 < ∅ ≤ 100 ±  2,0 thermally toughened glass 
heat strengthened glass 

100 < ∅ Request manufacturer

DIN 1249-12 
DIN EN12150-1 
DIN EN 1863-1 

 

For laminated safety glass (LSG) the allowed misalignment of the drill holes has to be 
considered [DIN EN 12543-5]. Table 3.2 lists the allowed maximum values. 
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Table 3.2  Allowed misalignment for LSG 

Nominal value B or H 
[mm] 

Maximum 
misalignment   

[mm] 

B, H ≤  1000 2,0 

1000 < B, H ≤  2000 3,0 

2000 < B, H ≤  4000 4,0 

B, H > 4000 6,0 
 
Due to the cylindrical shape of the drill hole, supports with steel discs can more easily 
compensate inaccuracies or tolerances in manufacturing. The drill holes simply needs to be a 
few millimeters larger than the bolt of the point-support. Remaining spaces can be filled with 
suitable filling material [DASt 2004], [Techen 1997]. Using countersunk supports 
inaccuracies in the drill hole or the support geometry cause concentrated inhomogeneous 
introductions of load. These can lead to the fracture of the glass pane. Accordingly, any 
compensation of tolerances is hardly possible. 

The size of the influence of constraints basically depends on the flexibility and the 
possibilities of compensation of the point-support construction as well as on the substructure. 
Deformations of the substructure particularly influence soft support-structures. In the same 
way changing stiffness are critical, for example local supports at a stiff substructure 
[Burmeister 1998a, 1998b]. Ideally, any constraints should be avoided and a statically 
determined bearing should be aspired (see Figure 3.7). 

 
Figure 3.7  Glazing, statically determined bearing 

In order to attain any in-plane displacements, compensation elements (slotted holes) between 
point support and substructure may be installed (see Figure 3.8). Sliding films or "teflon" 
(polytetrafluoroethylene) panes are used at the contact surfaces between the bolting and the 
substructure in order to guarantee the swaying of the support, e.g. [Albrecht 2004]. 
Polytetrafluoroethylene (PTFE) as a friction-partner of metals is quite favourable due to its 
low coefficient of friction µ PTFE/Metal of 0,05 to 0,1. 
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Slotted hole 

Pinned support 

Fixed support

    

Fixed support Slotted hole Pinned support

Section A-A Section A-A Section A-A

sliding film sliding film

Figure 3.8  Compensating elements to ensure displacements [Albrecht 2004] 

So-called "spiders" are also used frequently for large-area facades. They provide one point of 
support for four adjacent panes (see Figure 3.9). To compensate tolerances the spider can 
have one fixed support, one slotted hole and two pinned supports.  

  

Figure 3.9  Example of a "spider" point-support system 

However, to design ideal hinges and to provide durable displacements, a high structural and 
technical effort is required, which results in high costs. In particular the intrusion of moisture 
and corrosion needs to be prevented. Practice shows that the assurance of durable 
displacements and by this a constraint-free support during the entire service life of a building 
often are a problem. Therefore, for a design with sufficient margin of safety, limit state 
investigations should be carried out (see chapter 3.3), which means that under worst case 
conditions a rigid connection of the point support with the substructure has to be assumed. In 
spite of that uneconomical constructions can be avoided if elastic flexibility of the structure or 
stiffness of the support are considered [Brendler, Schneider 2004]. 
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3.1.4 Materials of the Point-Supports 

The material properties of the individual components have to be known for the design of 
structural members as well as for the assessment of the loadbearing capacity and operational 
suitability.  

In particular the following parameters are of importance: 

-  Force-displacement behaviour (tensile- and compressive strength, Young's modulus) 

- Durability: 
Weather resistance 
(UV-light, temperature, humidity, other environmental influences) 

- Force-displacement behaviour under long-term influence (creeping, relaxation) 

The material properties for glass and metals are known. The metal parts of the support (bolt, 
washer, etc.) either consist of steel according to [DIN 18800-1] or in most cases of stainless 
steel in accordance with the technical approval [AbZ Z-30.3-6] or [DIN EN 10088-1]. Within 
these standards and the technical approval the strength values and mechanical properties are 
contained. 

Next to aluminium, mainly plastics are utilized for bushing and interlayer materials. The 
usage of plastics is continuously increasing. They are particularly employed more and more in 
high-quality application fields. With the increasing demands the exact determination of 
material properties becomes more and more important. However, the determination of all 
material properties is quite time- and cost intensive, as for example creeping tests. Hence 
frequently material specifications for bushing and interlayer materials are missing for the 
design of point supports. 

Modelling the components by finite elements it is important to utilize characteristic material 
values for the interlayer and bushings that are close to reality because - as already explained - 
the uniform distribution of the force is of central importance. Limit value investigations have 
to be carried out for the finite element calculation, in case material data is missing. The 
selection of sensitive limit value is not always possible without any issues. An enormous 
requirement for investigation is needed to be able to judge on the influence of the material 
behaviour. Material investigations on different bushing materials under in-plane loads in 
bolted connections were carried out for example in [Techen 1997] and [DASt 2004]. 

Suitable interlayer are placed between point supports and the glass to avoid any direct contact 
between steel and glass (see Figure 3.3 and Figure 3.4). Between steel discs and glass, elastic 
interlayer are used. These are mainly ethylen-propylene-diene rubber (EPDM), polyamide 
(PA), polyvinyl chloride (PVC), silicone, soft aluminium or epoxy resins. The various 
interlayer-materials will not be covered here in more detail. The thesis of [Siebert 2004] 
contains a detailed disquisition of different interlayer-materials.  

In general, preprocessed bushings of aluminium or plastic are inserted between the bolt and 
the glass drill hole. Alternatively, the empty space between bolt and glass can be squirted with 
a compound material, such as reaction resins. The usage of these filling materials simplifies 
the compensation of manufacturing tolerances (see chapter 3.1.3 and 3.2.1), but the 
processing of these fillings is more extensive than insertion of pre-processed bushings. 

The following part of this thesis covers suitable materials for pre-processed bushings, since 
these are of central importance for in-plane loadbearing. In addition experimental 
investigations for two different bushing materials are carried out (see chapter 8). 

 



30  3 Point-Supported Glass Elements 

3.2 Material Properties of the Bushings  

3.2.1 Grouting Materials 

For point supports grouted in glass drill holes, a reaction resin with technical approval for 
fixing-systems, is often used as filling material [Mauthe 1999]. The filling material is a two 
component hybrid mortar consisting of an organic binder (urethane methyl acrylate) and 
cement. Also epoxy resins are used. Table 3.3 exemplary lists several material properties for 
the hybrid mortar as well as for an epoxy resin. 

Table 3.3  Properties of grouting materials 
Grouting material Hybrid mortar [Mauthe 1999] Epoxy resin [Epple 2001] 
Comp. strength acc. to DIN 53458 
after 1 day 
after 28 days 
permissible compressive strength 

 
49,3 MPa 
69,0 MPa 
20,0 MPa 

 
 

65 MPa 
 

Tensile strength n.a. 40 MPa 
Tensile shear strength n.a. n.a. 
Bending tensile strength n.a. 18 MPa 
Young's modulus acc. DIN 53452 2780 MPa 1700 MPa 
Elongation at break [%] n.a. 10 
Thermal expansion coefficient αt 38 ⋅ 10-6 K-1 n.a. 
PVB-film compatible 84 (Shore D) 97 (Shore A) 
EPDM compatible yes yes 
Silicone profile compatible yes yes 
UV resistant yes yes 
Water proof yes n.a. 
Water absorption according to  
DIN 53495 in [%] yes yes 

Temperature resistance 4,3 % n.a. 
cleaning agent ≤ 80°C ≤ 120°C 

cleaning agent 1% tenside solution 
with no influence alkali proof 

Suitable for outdoor use yes yes 
Reaction behaviour  
(work life at 20°C) 4 minutes 3 minutes 

Hardening time at 20°C/ 
Post hardening time 

60 minutes / 
28 days 3 hours 

Storing duration (cool/dry 
environment, in original package) 9 months 12 months 

Viscosity at 20°C 60-80 Pa ⋅ s after 30 minutes at 23 °C  
55 Pa ⋅ s 

 
To avoid inclusion of air during the grouting of the filling material special point supports with 
two holes can be utilized. While injecting the mortar in the big hole it fills the empty space 
and comes out at the small hole indicating the filling is complete. Figure 3.10 shows an 
example of this type of point support. 
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Figure 3.10  Example of a point-support for grouting materials with special filling holes 

Such type of grouting allows a good compensation of tolerances between drill hole and bolt. 
A drawback is the high precision which is required to assure a consistent distribution of the 
filling material in the drill hole. Furthermore, some filling materials are difficult to process 
and provide a strong gluing between glass and bolt, which can possibly lead to additional 
constraints. Attention has to be paid as well to allow a sufficient hardening time for most of 
the reaction resins. Figure 3.11 shows a drill hole filled with mortar. 

 

Figure 3.11  Example of a drill hole filled with mortar 

Investigations on five different reaction resins can be taken from the thesis of [Techen 1997]. 
Results from tensile tests done by [Techen 1997] and [DASt 2004] show that the determined 
ultimate loads are subject to big dispersion, which can be explained by the above mentioned 
disadvantages of grouting. 
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3.2.2 Thermoplastic Synthetics 

If pre-processed plastic bushings are applied, thermoplastics are used in general. In particular 
polyamide (PA) and polyacetal (POM), with different additives are employed. These are 
characterized by high surface hardness, wear-resistance and retaining of shape. They are 
mainly used as bearing elements and gears in mechanical engineering. 

Thermoplastics are polymeric materials [DIN 7724] which consist of a line up or chain of 
monomer elements. The bonding forces that keep together the atoms chain are known 
(primary forces). The state of order, or in other words, the physical state of the chains towards 
each other is of relevance for the forces which connect one chain to another (secondary 
forces). Although these forces are only in the range of one hundredth of the primary strength, 
the secondary strength is influencing the mechanical behaviour of thermoplastic decisively. 

This difference in bonding forces is typical for thermoplastics. They soften in the heat and 
then can be deformed in almost any way. If cooled down, the melted thermoplastic becomes 
solid again. In theory, this can be repeated unlimited times. The molecular chains of 
thermoplastics can be straight or they can show several branches. A high number of branches 
and a bulky arrangement decrease the intermolecular forces and enlarge the concatenation 
distance, which leads to a high light transparency. In the same way these soften in a broad 
temperature range and freeze intricately in complete disorder, which is the amorphous state 
(see Figure 3.12). If the molecule chains show at least some order in partial areas, then they 
are partial crystalline thermoplastics (see Figure 3.13). Polyacetal and polyamid are semi-
crystalline thermoplastics. 

  
Figure 3.12 Amorphous state Figure 3.13 Semi-crystalline state 

Mechanical and thermal properties  

In case of mechanical stress polymers show a strongly visco-elastic behaviour, which means 
that the occurring deformations are partly elastic (reversible) and partly plastic (non-
reversible). This results in the consequence that important material properties such as the 
Young’s modulus and shear modulus are not only dependant on temperature but also on time 
and the speed of load. Other factors of influence are humidity and radiation as well as the kind 
of stress and the amount of stress. Besides, the stress-history of the plastic is of great 
importance. This type of material behaviour can be visualized in the stress-strain-diagram as a 
function of temperature. The spectrum reaches from brittle, almost ideally elastic glassy solid 
state at temperatures below the glass transition temperature up to the ductile material, which 
already deforms at a minimum of stress.  
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Figure 3.14 shows the schematic temperature dependency of the shear modulus G of partial 
crystalline thermoplastics. The shear modulus is determined according to [DIN EN ISO 6721-
2]. 
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Figure 3.14  Shear modulus G as a function of temperature T of semi-crystalline 

thermoplastics [DIN 7724] 

All thermoplastics plasticise already at room temperature for loads which are significantly 
below the elastic limit. For the description of the material properties this means that time has 
to be considered as additional parameter.  

For the design of components subjected to permanent loading the long time behaviour of 
plastics has to be considered. [DIN EN ISO 899-1] is covering a procedure for the definition 
of the creep behaviour (increase in deformation at constant load) of plastics under tensile 
stress. 

A description of test specimen as well as an overview to define every single property of 
thermoplastic mold compounds made of polymeric mixtures is contained in the standard [DIN 
16780-2]. 

Polyacetal (POM) 
Polyacetal (POM) and acetal-coplymere (POM-C) have a linear composition and a high 
degree of crystallinity. In particular these are favourable qualities of POM:  

- High hardness and rigidity 

- Shape stability at heat  

- Minimal water absorption 

- High resistance against solvents 

- Resistance against initiations of stress cracks 

- Favourable slide and wear behaviour 

For polyacetals functional additives play an important role. Specific properties can be 
corrected by addition of various ingredients. For example, by adding PTFE 
(Polytetrafluoroethylene) the sliding behaviour can be improved and by adding glass fibers 
the shape stability can be enhanced. 
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a PMMA 
b POM-C 
c Poycarbonat 
d PA 6 
e PVC-U 
f Polypropylen

Ultraviolet radiation damages polyacetal. The thinner material is, the faster the changes in 
properties caused by radiation occur. By adding light stabilizers the destruction can be 
delayed. Active soot proves as a most effective stabilizer. 

The standard [DIN 16781-2] contains a description of test specimen as well as an overview on 
the definition of the individual properties of POM. The most important mechanical properties 
are listed in Table 3.4. 

Table 3.4  Mechanical properties of acetal-homo- and copolymers 

 POM POM-C POM GF30*) 

Density ρ 1,42 g/cm3 1,41 g/cm3 1,56 g/cm3 

Tensile strength according to  
[DIN EN ISO 527-1, -2] 65 to 70 MPa 67 to 72 MPa 140 MPa 

Elongation at break according to  
DIN EN ISO 527-1 25 to 70% 25 to 70% 3% 

Young's modulus E**) (tension) according to  
DIN EN ISO 527-1 

ca. 1600 to 
2800 MPa 

ca. 1600 to 
3200 MPa 

ca. 9000 to 
10000 MPa 

Service temperature:  Max. short term 110 to 140°C 110 to 140°C 110 to 150°C 

 Max. enduring 90 to 110°C 90 to 110°C 90 to 110°C 

 Min. enduring -60°C -60°C -60°C 

Melting area 175°C 164 to 167°C 164 to 167°C 

Coefficient of thermal expansion αt 690 10−⋅ /K 6110 10−⋅ /K 630 10−⋅ /K 

Water absorption saturation at 23° 0,5 to 0,7% 
*)   GF30: 30% glass fiber reinforced  
**) The values for the Young’s modulus vary depending on the composition of the material as well  
  as whether determined in dry or moist state 

For decreasing temperatures the area around -60° C represents the embrittlement limit and is 
designated as freezing or glass temperature. Figure 3.15 shows, that the mechanical strength 
of POM is superior to various other thermoplastics. 
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Figure 3.15  Stress-strain-diagram of different thermoplastics [Domininghaus 1997]  
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Figure 3.16 shows the stress-strain behaviour as a function of constant times (isochrones). 
These are determined with creep tests, which are long-term tests under constant load in 
accordance with DIN EN ISO 899-1. 
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Figure 3.16  Isochrone stress-strain-diagrams for POM-C at different temperatures, 
[Domininghaus 1997]  

The water absorption of polyacetal is quite small. Figure 3.17 shows the time dependency of 
the water absorption in the temperature range of 20 up to 60°C. 
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Figure 3.17 Water absorption of polyacetal, [Domininghaus 1997]  

Furthermore, polyacetal is resistant against weak acids and leaches as well as against 
gasoline, alcohols, fat and oils. Besides, copolymers are resistant against strong leaches. 

Polyamide (PA) 
Polyamides belong to the most important thermoplastic condensation polymers. Their positive 
properties include in particular: 

- High strength, rigidity and hardness  

- High shape stability at heat  

- High resistance against solvents  

- Favourable sliding and wear behaviour 

One of their negative qualities is the fact that the mechanical properties of polyamides depend 
on the humidity of the component and the reversible water absorption comes along with a 
change in volume. Also for polyamides, functional additives for improvement of specific 
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parameters are of importance. A high life time for outdoor use is achieved with stabilization 
with soot. 

An important material for strengthening of polyamides are glass fibers. They cause an 
improvement of the mechanical properties. At the same time they also reduce the water 
absorption. 

In civil engineering mainly partial crystalline PA 6 and PA 66 polyamides are used. They 
show a very high resistance against deformation in the heat, high rigidity and hardness as well 
as strength versus abrasion. 

The most important mechanical ratings of PA 6 and PA 66 are listed in Table 3.5. 

Table 3.5  Mechanical properties of PA 6 and PA 66 polyamides 

 PA 6 PA 6 GF30*) PA 66 

Density ρ 1,13 g/cm3 1,36 g/cm3 1,14 g/cm3 

Tensile strength according to 
[DIN EN ISO 527-1, -2] 70 to 85 MPa 100 MPa 77 to 84 MPa 

Elongation at break according to 
DIN EN ISO 527-1 200% - 150% 

Young's modulus E**) (tension) according to  
DIN EN ISO 527-1 

ca. 1400 to 
3000 MPa 

ca. 5000 to 
8500 MPa 

ca. 2000 to 
3100 MPa 

Max. short term 140 to 180°C 180 to 220°C 170 to 200°C 

Max. enduring 80 to 100°C 100 to 130°C 80 to 120°C 
Service temperature:  
 

Min. enduring -30°C -30°C -30°C 

Melting area 220°C 220°C 255°C 

Coefficient of thermal expansion αt 680 10−⋅ /K 630 10−⋅ /K 680 10−⋅ /K 

Water absorption saturation at 23° 2,5 to 3,5% 1,6 to 2,2% 2,5 to 3,1% 
*)   GF30: 30% glass fiber reinforced  
**) The values for the Young’s modulus vary depending on  the composition of the material as well  
 as whether determined in dry or moist state 

Further properties of thermoplastics can be taken from the corresponding literature: Extensive 
investigations for the long term behaviour under static and vibration loading of the 
thermoplastics POM and PA 66 were carried out by [Becker 1984]. [Lewen 1991] 
investigated in the non-linear vicious-elastic behaviour of plastics. Explanations about the 
material behaviour of plastics are contained for example in [Menges 1990]. 

 

3.2.3 Aluminium 

Aluminium alloys as well are frequently used for the bushings. The advantage in using 
aluminium is that the material properties such as density, Young’s modulus and thermal 
expansion only change in a small bandwidth for different alloy components. Thus, the values 
of the material properties in Table 3.6 can be used for the design without having to consider 
limit value investigations for the finite element calculation, as it is often required for plastics. 
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Table 3.6  Material properties 

Density ρ 2,7 g/cm3 

Young’s modulus E 70.000 MPa 

Poisson’s ratioν 0,3 

Coefficient of thermal expansion αt 624 10−⋅ /K 

Melting  point  ca. 650°C 
 
Material information, in particular minimum values of the strength for different semi-finished 
products, are to be taken from the design standard for aluminium [DIN 4113-1].  

Aluminium alloys show with sufficient ductility minimum values for the tensile strength (Rm) 
of 200 MPa. In comparison, "pure aluminium" can only reach maximum strength of 150 MPa. 
The most important alloying elements are silicon (Si), copper (Cu), magnesium (Mg), 
manganese (Mn) and zinc (Zn). 

Aluminium has its lowest strength in the untreated state after casting. The strength of 
aluminium and aluminium alloys can be increased by cold-work hardening or tempered 
hardening. Cold-work hardening means a plastic deformation for example through cold-
rolling. This leads to displacements in the crystal network, which increasingly hinder each 
other and by that enlarge the resistance versus deformations (strength, etc.). By cold-work 
hardening, especially the proof strain ratio Rp0,2/Rm is being increased whereas the elongation 
at fracture strongly decreases. For tempered hardening the material needs to be heated to a 
temperature where most of the impurities leading to the hardening are dissolved in the mixed 
crystal. A rapid cooling down to room temperature (quenching) follows. By this the 
impurities remain unbalanced in solution. Hardening is only possible with specific alloys. 

A preceded hardening can be reversed by thermal treatment (spheroidise annealing).  

Enlarging the strength increases the proof strain ratio Rp0,2/Rm and the brittleness. Increasing 
the temperature reduces the tensile strength, the strength against cyclic loads, the proof limit 
and the hardness, whereas elongation at fracture and reduction in area at the breaking point 
are increasing. 

 

3.3 Previous Design Concepts 

No technical rules or standards that control the manufacturing, the design and the usage of 
point-supported facades and overhead glazing are available up to now. This means that in 
Germany such designs are not regulated and require a technical approval or an approval on an 
individual basis. Within the framework of these approvals various proofs are required in 
general. 

In most cases the bearing capacity of supports has to be verified by experiments, since the 
glass supports often consist of a great number of single components and especially supports 
with hinges show quite complex load carrying- and deformation-mechanism. The ideal hinge-
movement can be constrained for example by a rubber seal or a soft interlayer. Therefore 
these types of supports can only be transferred in realistic static models after experimental 
investigation. For the determination of the basic data the support is stressed with static and 
perhaps also cyclic actions. Under different bearing conditions, the load carrying behaviour is 
examined and the required material ratings are determined. 
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The verification of stability for point-supported glazing can be done numerically by means of 
a finite element calculation. However, this is no simple task. Investigations on the quality of 
different FEM-models [Schneider 2001], [Siebert 2004], [Albrecht 2004] show that 
depending on the complexity and the choice of the parameters the tensions and deformations 
in the glazing can be determined more or less exactly. Every detail of the point support has an 
influence on the local state of stress at the edge of the drill hole. In most cases extensive 
FEM-models with contact approaches are required in order to capture the reaction of point 
supported designs realistically. Depending on the level of knowledge and possibilities of the 
applied FEM-program, the quality of static models of the FEM-users varies. A verification is 
necessary to exclude unsuitable static models and to be able to evaluate a FEM-model in a 
qualified way. The aim of a verification is to limit the calculations of different program 
systems. 

Next to an extensive FEM-modelling with volume and contact approaches a verification as 
well should allow simplified modelling with sufficient margins of safety that consider the 
decisive influences. The framework of technical approvals [AbZ Z-70.2-99; AbZ Z-70.2-112] 
defines determinations for verification of the FEM-program including the required 
verification for every type of point support. This procedure allows the utilization of variable 
glass dimensions and different configurations of point supports. 

The verification can either be performed by means of an analytical solution - if available - or 
by experiment. It is required to accomplish the verification of the FEM-model step by step, 
which means separated by every value in order to be able to evaluate their respective 
influence on the total result of a system. Currently two different procedures exist [Siebert 
2004], [Brendler, Schneider 2004], that are applied within the framework of approval 
procedures and that also serve as a basis of the national design standard for point supported 
glazing [E DIN 18008-2] which is currently in progress. 

For "simple" supported glazing in facades and overhead area, which are well proved in the 
practice, the "technical rules for design and implementation of point supported glazing" are 
currently elaborated in Germany [eTRPV 2005]. Since September 2005 the draft is available 
to the community of experts for commenting. These rules assume a design without verified 
FEM-model. Therefore only laminated safety glass of thermally toughened glass as well as 
heat strengthened glass are supposed to be allowed. In the same way the span width for 
overhead glazing are limited to certain values for reasons of the residual load carrying 
capacity. 
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4 Stress Distribution in an Isotropic Panel  

 

4.1 Basics 

A thin plane plate structure is called panel, if it is loaded by forces applied at the boundary, 
parallel to the plane and distributed uniformly over the thickness. In case of any deformation 
the midplane of the panel has to stay plane. Additionally, it is assumed that the panel 
thickness t is constant.  

 

4.2 Fundamental Equations for the Panel 

In a panel the deflected state can be described with the deflection components u (x,y) and w 
(x,y). The stresses are denoted with 0

xσ , 0
yσ  and 0

xyτ  . If the thickness t of the panel is very 

small, the stress components 0
zσ , 0

zxτ  and 0
zyτ  are zero on both faces of the panel and it may be 

assumed that they are zero also within the panel. It also may be assumed that these three 
components are independent of z, i.e. they do not vary through the thickness t. They are then 
functions of x and y only. All differential elements of the area, which are parallel to the 
midplane, are stress-free and a plane stress state is obtained. The remaining stress 
components 0

xσ , 0
yσ  und 0

xyτ of the cross sections, which are perpendicular to the midplane, are 
all directed parallel to the midplane. Knowing the stress components at any point x and y of a 
panel, the stress for any different direction can be calculated. ϕ  meaning the angle between 
the normal and the x-axis (see Figure 4.1), the components 0

ξσ , 0
ησ  and 0

ξητ  result: 
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Figure 4.1 Conditions for transformation 
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The extreme values of 0
ξσ , the principal stresses result in the cross sections which are 

described through the equation: 
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Equation (4.2) gives two solutions that are *
1ϕ ϕ=  and * *

2 1 2
πϕ ϕ= ± . 

The corresponding extreme values 0
1σ and 0

2σ  are 
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The shearing stress becomes zero in these plane cross sections.  

The extreme values of 0
ξητ , the principal shearing stresses are calculated as following: 
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The principal shearing stresses 0
maxτ  act in the cross sections perpendicular to the midplane of 

the panel and build an angle of 45° with the planes of the principal normal stresses, 
** *

4
πϕ ϕ= ± . 

The plane stress state of the panel is described by: 
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with G: shear modulus 
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The strain can be determined from the displacements by derivation. For the panel the 
equations are: 
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Figure 4.2  Conditions of equilibrium of a panel  

 

The conditions of equilibrium can be represented as following (Figure 4.2): 
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with: px: surface load in x-direction 
py: surface load in y-direction 
t: panel thickness 
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4.3 Panel with a Circular Hole  

If a circular hole is made in the middle of the panel, the stress distribution in the 
neighbourhood of the hole will change. Instead of the basic stress state 0

xσ , 0
yσ  and 0

xyτ  of the 

panel without hole, a new stress distribution xσ , yσ  and xyτ  is obtained. 

The origin of the system of coordinates may be placed in the geometrical center of the hole. 
The new stress state xσ , yσ  and xyτ  can be represented in the following form: 
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 (4.10) 

 
*
xσ , *

yσ  and *
xyτ   are the additional stress components which result from the existing hole 

[Savin 1956].  

 

4.3.1 Uniaxial Compression or Tension  

If a panel without a hole is submitted to a uniform tension of magnitude σ1 in x-direction, the 
basic state of the panel is described with the following stress components:  
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At first, the infinite panel under uniform tensile stress σ1 in x-direction, given in Figure 4.3, is 
taken into consideration. 
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Figure 4.3  Infinite panel with a circular hole under uniform tensile stress σ1 in x-direction 
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As shown in Figure 4.3, the panel is weakened by a hole with the radius a. At first, the portion 
of the panel within a concentric circle of radius b, large in comparison with a, is considered. 
The stresses at the radius b are effectively the same as in the panel without the hole and are 
therefore given by: 
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The forces acting around the outside of the ring, having the inner radii r=a and r=b, give a 
stress function Φ of the form:  

 

 ( ) cos 2f r θΦ =  (4.13) 

 

Substituting this into compatibility equation 
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the following differential equation to determine ( )f r  will be found: 
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The general solution is: 
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The stress function is therefore: 
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The corresponding stress components are: 
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The constants of integration A, B, C and D are now to be determined from conditions (4.12) 
for the outer boundary and from the condition that the edge of the hole is free from external 
forces:  
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Assuming an infinitely large panel and putting b → ∞ , the equations (4.19) show these 
results:  
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Putting these values in equations (4.18), the following equations are found: 
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At the edge of the hole: r = a. This means 0r rθσ τ= =  and 1 12 cos 2θσ σ σ θ= − . 

The distribution of the stresses 
θσ  (Figure 4.4) shows that the effect resulting from the hole is 

limited to a small area. The stress concentration can be found at the edge of the hole.  
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Figure 4.4  Distribution of 
θσ  

It is easy to show that θσ  is greatest when θ  = ± 90°, i.e. at the ends m and n of the diameter 
perpendicular to the direction of the tension (Figure 4.4). At these points the maximum tensile 
stress is 1max 3θσ σ=  and it is three times the uniform stress σ1. The compressive stress 

1θσ σ= −  is obtained at the points p and q (θ  = 0° and 180°). The corresponding stress 
distribution is shown in Figure 4.5 
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Figure 4.5  Stress distribution

θσ   at the hole edge  

What is interesting is the deviation, which is caused by the hole, compared with the basic 
stress state without the hole. As a result the corresponding coefficient of stress concentration 
can be determined.  
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The stress concentration factor (SCF) is defined as the ratio of one component of the stress 
tensor at a certain point in the hole area and the same component of the stress tensor without 
the hole. As a result, in case of the plane stress state, three concentration factors exist in each 
point. 

In the case θ  = ± 90°, the result is K = 3. This is only valid, if the panel thickness is very thin 
compared to the hole radius. If the values of panel thickness and hole diameter are 
approximately of the same magnitude, then K is slightly greater than 3 in the midplane and on 
the surface of the panel K is slightly smaller than 3 [Flügge 1962], [Timoshenko, Goodier 
1951]. 

 

4.3.2 Biaxial Stress State 

If an infinite panel with a circular hole is submitted to a uniform tension of magnitude σ1 in x-
and y-direction, the following tangential stresses result from equation (4.20) at the edge of the 
hole for r = a: 

 

 ( )( )1 1 1 12 cos 2 2 cos 2θσ σ σ θ σ σ θ π= − + − −  (4.21) 

 

With r = a the result at the boundary is 12θσ σ= , for all values of θ.  

By taking a tensile stress σ1 in x-direction under and a compressive stress σ1 in y-direction, 
the case of pure shear is obtained and the tangential stresses θσ  at the boundary of the hole 
are:  

 ( )( )1 1 1 12 cos 2 2 cos 2θσ σ σ θ σ σ θ π= − − − −  (4.22) 

 

For θ  = 90° and 270°, i.e., at the points m and n (see Figure 4.3), the maximum tensile stress 
14θσ σ=  occurs. For θ  = 0° and 180°, i.e., at the points p and q, the maximum compressive 

stress 14θσ σ= −  occurs.  

 

4.3.3 Semi-Finite Panel with a Circular Hole 

In the last sections the effects of a circular hole on the stress distribution of an infinite panel 
were examined. In the engineering practice it is not very common that holes are positioned in 
infinite areas. Like in many glass structures with in-plane loading (e.g. glass fins), the 
structures are planes with finite width. Therefore the question has to be proposed, in which 
cases the solution (dependent on the postulated precision) for an infinite panel can be applied 
for the finite panel. 
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That is why a direct comparison of the exact solutions for an infinite and a finite panel are 
necessary. This is impossible because an exact solution for the finite panel does not exist. In 
the following an approximate solution for the semi-finite panel with a finite width is 
explained.  

A semi-finite panel with a finite width of 2b and a thickness t is taken into consideration (see 
Figure 4.6). In x-direction a tensile force p (force per unit length) is applied.  

σN p

a

a

t

b

b

x

y  
Figure 4.6  Panel with a width of 2b and a hole of radius a under tensile stress 

The nominal stress Nσ  is defined as: 

 

 2
2( )N

p b
b a t

σ ⋅
=

−
 (4.23) 

 

As already shown, the stresses in the hole area are considerably higher than in the area 
without a hole and equation (4.23) there is not valid. 

If a b , equation (4.20) for the infinite panel can be used. In the case that a is only slightly 
smaller than b, [Peterson 1953] gives a formula which was developed by Howland and is now 
just rendered: 

 

 max NKθσ σ=  (4.24) 

 

whereas the stress concentration factor K is 
2 3

3,00 3,13 3,66 1,53a a aK
b b b

     = − + −     
     

. 
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In Figure 4.7 the stress concentration factors are indicated as a function of the ratio a/b for the 
semi-finite panel with a circular hole.  
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Figure 4.7  Stress concentration factors as a function of the ratio a/b 

The curves in Figure 4.8 show a parameter study for different values of b as a function of the 
hole radius a, using equations (4.23) and (4.24). For the panel thickness t = 10 mm and for the 
load P = 30 kN are chosen constantly. 
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Figure 4.8  Maximum tensile stresses at the boundary of the hole as a function of radius a 

and semi-width b 
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As it can be seen in Figure 4.8, the stresses θσ  increase at the boundary of the hole with an 
increasing radius a. The stresses also increase with a decreasing panel width. A comparison 
between Figure 4.7 and Figure 4.8 shows that with an increasing ratio a/b the stress 
concentration factor decreases indeed, but the nominal stress and the maximum stress at the 
edge of the hole increase. 

Figure 4.9 shows a comparison of the maximum tensile stresses at the boundary of the hole 
for the infinite ( max 3 Nθσ σ= ) and the finite panel. The diagram indicates that with a 
decreasing ratio a/b and increasing panel width the stress values of the semi-finite panel 
approach asymptotically to the stress values of the infinite panel. With a panel width of 400 
mm or 300 mm and a ratio a/b = 0,1 the values conform to each other.  
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Figure 4.9  Maximum tensile stresses at the boundary of the hole as a function of ratio a/b  

 

If the hole is not situated symmetrically in the center of the panel strip, [Peterson 1953] gives 
the following stress concentration factor K, according to Sjöström: 

2 3

3,00 3,13 3,66 1,53a a aK
c c c

     = − + −     
     

. 

c is defined as the shorter distance between panel edge and hole center. 
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The nominal stress Nσ  is determined with: 

 

 

2

2

1 1
2

2 1 1 2 1
2

N

a c
cP b
abt c a
c b c

σ

   − −      =
      −    − − −          

 (4.25) 
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5 Analytical Definition of the Contact Problem 

 

5.1 Introduction 

Contact mechanics describes the stress state of two elastic bodies in contact. The first 
satisfactory analysis of the contact of two elastic solids (elastic half spaces) was developed by 
Heinrich Hertz in 1882 [Hertz 1882]. Until today extensive development of this theory is 
taking place. 

Referring to the geometry of contact bodies, the loading and the kinematics (static, sliding, 
rolling), the geometry of the contact area and its stress distribution is being calculated. The 
contact stresses consist of a normal and a tangential part. Closed solutions are available only 
for simple cases. 

In this chapter the theory according to Hertz will be explained at first. Afterwards the question 
will be examined in which cases this theory is suitable for bolted connections under the 
application of in-plane loads.  

 

5.2 Hertz Theory  

5.2.1 Basic Equations 

If two elastic bodies which have opposite surface curvatures in the contact area are brought 
into contact at a single point O, they have a common tangent plane and a common normal (see 
Figure 5.1). 

If collinear forces are now applied so as to press the two bodies together, deformation takes 
place and with ascending forces the contact area increases and will replace the contact point 
of the unloaded state.  

 
Figure 5.1 Contact between two elastic solids 
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The first step is to find the size and shape of this contact area and the distribution of normal 
pressure arising on it. Having investigated these, the stresses and deformations can be 
calculated. 

Hertz starts by assuming that the contacting bodies are isotropic linear elastic and the 
dimensions of the contact area are very small compared to the various radii of curvature of the 
undeformed bodies. This leads to a further assumption: The shape of the two touching bodies 
close to the zone of contact can be described almost perfectly accurate by polynomials of 
second order: 

 

 2 2
i i i iz A x B y H xy= + +   (5.1) 

with i = 1, 2 for body 1 and 2. 

The Cartesian coordinates x and y are lying in the common tangent. Finally, he assumes that 
the two bodies are perfectly smooth which means that only the normal pressures, which arise 
during the contact, are taken into consideration. Relative displacements in the plane of x and y 
and any shearing tractions, which might arise from there, are neglected as effects of higher 
order. 

The separation between the two bodies is given by 1 2h z z= +  (see Figure 5.1). With equation 
(5.1) it follows 

 

 2 2
1 2h z z Ax By Hxy= + = + +  (5.2) 

 

z1 and z2, can be represented with sufficient accuracy by the following equations (5.3). It is 
assumed that the distance to the z1- and z2-axis is very small. 

 

 

2 2
1 1 1'

1 1

2 2
2 2 2'

2 2

1 1
2 2

1 1
2 2

z x y
R R

z x y
R R

= +

= +
 (5.3) 

 

Ri, Ri’ with i=1,2, are the principal radii of curvature of the bodies in the origin. 

 

The axis of each body can be chosen in a way that the term containing the term xy disappears. 
The distance h of two points S1 and S2 is then: 

 

 2 2 2 2
1 2 '

1 1
2 2

h Ax By z z x y
R R

= + = + = +  (5.4) 
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A und B are positive constants. R and R’ are defined as the principal relative radii of 
curvature. In equation (5.4) it can be shown that all points with the same distance h lie on one 
ellipse. If the bodies are pressed together, the surface of contact will have an elliptical 
boundary. As a result the general form of the contact area is an ellipse. 

If the axis of principal relative radii of curvature R and R’ of each surface, i.e. the x1- and the 
x2-axis, are inclined to each other by an angle α, then equation (5.5) is valid [Timoshenko, 
Goodier 1951]: 

 

 

' ''
1 1 2 2

1
2 2 2

' ' ' '
1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1
2 2

1 1 1 1 1 1 1 1 12 cos 2
2

A B
R R R R R R

B A
R R R R R R R R

α

  + = + = + + +  
   

        − = − + − + − −       
        

 (5.5) 

 

In equation (5.5) convex relative radii of curvature have a positive radius. Equation (5.5) 
equally applies to concave surfaces by ascribing a negative sign to the concave curvatures.  

Before a load F is applied on the two bodies, the distance h of two points lying on the surfaces 
of the bodies, such as S1 (x,y,z1) and S2 (x,y,z2), is given by equation (5.4). If the two bodies 
are pressed together, they move towards O, parallel to the z-axis and the points T1 and T2 are 
moving towards each other by displacement of δ1 and δ2. Due to the contact pressure the 
surface of each body is displaced by an amount of w1 and w2 (measured positive into each 
body) relative to the distant points T1 and T2 (see Figure 5.1). 

If, after deformation, the points S1 and S2 are coincident within the contact area then 

 

 1 2w w h δ+ + =  (5.6) 

with δ=δ1 + δ2. 
 

Making use of equation (5.4) and (5.6) follows for the elastic displacement:  

 

 2 2
1 2w w Ax Byδ+ = − −  (5.7) 

 

If the points S1 and S2 lie outside the contact area so that they do not touch each other, the 
result is: 

 

 2 2
1 2w w Ax Byδ+ > − −  (5.8) 

 

where x and y are the common coordinates of S1 and S2 projected onto the x-y-plane. 
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According to [Timoshenko, Goodier 1951] the sum of the displacements w1 and w2 for points 
of the surface of contact is:  

 

 
2 2

2 21 2
1 2

1 2

1 1 pdAw w Ax By
E E r
ν ν δ

π π
 − −

+ = + = − − 
 

∫∫  (5.9) 

 

with Ei  i=1,2; Young's modulus of the bodies  

  νi  i=1,2: Poisson's ratio of the bodies 

 

Where pdA is the pressure acting on an infinitely small element of the surface of contact, r is 
the distance of this element to the point under consideration. The integration must be 
extended over the whole contact surface. The problem is to find a distribution of pressure p, 
which satisfies equation (5.9). As already mentioned, Hertz showed that this condition will be 
satisfied if the stress distribution p of the contact area is represented by an ellipse with the 
semi-axes j and k. The maximum pressure p0 then appears in the center of the contact surface.  

The contact load F is calculated by: 

 

 
0

0

2
3

3
2

F pdA jkp

Fp
jk

π

π

= =

=

∫∫
 (5.10) 

 

To calculate the contact pressure p0, the values of the semi-axes j and k must be known.  

Knowing the stress distribution p, at any point of the contact surface the contact pressure can 
be calculated. If the semi-axes j and k are defined in x- and y-direction, then the stresses are: 

 

 

1
2 2 2

0( , ) 1 x yp x y p
j k

     = − −       
 (5.11) 

 

There are only compressive stresses due to this stress function within the contact area inside 
the two bodies. At the boundary of the contact surface there are tensile stresses, with a 
maximum magnitude.   

The stresses within the bodies can be calculated in the origin O (center of the contact surface) 
by the following equation: 
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 −
= − +  + 

 −
= − +  + 
= −

 (5.12) 

with j k> . 

 

At the boundary of the contact area, at the ends of the semi-axes j and k, the compressive and 
the tensile stresses are of the same magnitude in radial and tangential direction. At the point 

, 0x j y= ± =  the result is: 

 

 1
0 2

1(1 2 ) tanh 1x y
kp e
je e

σ σ ν − = − = − − 
 

 (5.13) 

and at the point 0,x y k= = ±  

 1
0 2(1 2 ) 1 tany x

k k ejp e
je je k

σ σ ν −  = − = − −  
  

 

where 
1

2 2 21 ( )e j k
j

= −  

 

By increasing the ratio j/k, the elliptical shape of the contact surface is getting more narrow 
and in case of /j k → ∞  two cylinders with parallel axis arise. The contact area has now a 
rectangular shape. 

 

5.2.2 Two-Dimensional Contact of Cylindrical Bodies  

When two cylindrical bodies, with their axes lying parallel to the y-axis are brought into 
contact by a load *F  (load per unit length), the problem is two-dimensional. The shape of the 
contact area is then a long strip of width 2b  lying parallel to the y-axis. 

When equation (5.5) is now used for cylindrical bodies, with '
1R = ∞ , '

2R = ∞  and α = 0° the 

constants are: 
1 2

1 1 1
2

A
R R

 
= + 

 
 and B = 0. 
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For cylindrical bodies equation (5.4) is simplified to 

 

 2 2
1 2

1 2

1 1 1
2

h z z Ax x
R R

 
= + = = + 

 
 (5.14) 

 

The sum of the displacements w1 and w2 for points of the surface of contact is: 

 

 2 2
1 2

1 1
2

w w Ax x
R

δ δ  + = − = −  
 

 (5.15) 

where 
1 2

1 1 1
R R R

= + . 

 

According to the Hertz approximation, the displacements w1 and w2 can be calculated by 
considering the bodies elastic half spaces. In case of two cylindrical bodies no solution in 
closed form is available. Indeed, for a cylinder with the length L and a cylindrical half space 
(see Figure 5.2), the contact pressure p(x) can be determined by a satisfying approximation 
[Johnson 1996]. 

The load *F , the contact pressure p0, and the semi-width b  of the contact surface can be 
calculated with the following equations:  
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1 2

1 2

1
2
2

1 14

F bp

Fp
b

F R R
E E

b
R R

π

π

ν ν
π π

=

=

     − −
+     

     =  +
 
 
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 (5.16) 

 

The distribution of the contact compressive stress p(x) is 

 

 ( )
1* 2 22

2
2( ) Fp x b x

bπ
= −  (5.17) 

 

At the boundary of the contact area the function p(x) is zero. Within the contact area 
( )x y p xσ σ= = − .  
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In a different notation [Young 1989] also determines the maximum contact pressure p0 for a 
cylinder with the length L and a cylindrical half space with approximately: 

 

 
*

0 2 2
1 2 1 2

1 2 1 2

0,798
1 1
Fp

D D
D D E E

ν ν
≈

  − −
+  −  

 (5.18) 

 

Where *F  is the load per unit length, * FF
L

= . 

The formula for the width 2b  of the contact area is: 

 

 
2 2

* 1 2 1 2

1 2 1 2

1 12 1,6 D Db F
D D E E

ν ν  − −
≈ +  −  

 (5.19) 
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Figure 5.2  Cylinder in a cylindrical half space according to [Young 1989] 

The equations (5.16) to (5.19) are based on the Hertz theory (linear elastic material behaviour, 
absence of friction) and are valid only if the length L of the cylinder is significant bigger than 
the diameter D2 of the cylindrical body.  

Taking equation (5.18) Figure 5.3 shows the maximum contact pressure p0 as a function of 
∆D for exemplary values, where ∆D=D1-D2. With growing ∆D the stresses approach the 
values of contact between cylinder and plane. As it can be seen from equation (5.19), with 
growing ∆D the contact width 2b  is getting smaller and therefore the contact pressure p0 is 
getting bigger. 
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Figure 5.3  Maximum compressive stress p0 as a function of ∆D 

 

5.3  "Non-Hertzian" Normal Contact of Elastic Bodies 

5.3.1 Introduction 

Further analytical approaches have to be applied to find appropriate stress distributions for 
both bolt and panel with a conforming hole: 

As already explained in the previous chapter, the mentioned equations are valid only if the 
cylindrical bodies are of a certain length L. This means that the approach is not valid for a thin 
glass panel with a bolt of approximately the same length than the glass thickness. 
Furthermore, Hertz assumed that the two bodies in contact are elastic half-spaces and the 
contact area is small compared to the dimensions of each body and to the relative radii of 
curvature of the surfaces. With this simplification he put forward the hypotheses that the 
contact area is elliptical and can therefore be described by a polynomial of second order. In 
addition the surfaces are assumed to be frictionless so that only a normal pressure is 
transmitted between them. Relative displacements in the x-y-plane and possible resultant 
tangential forces are neglected. This approximation is complied as long as the radii of 
curvature of the bodies are appreciable bigger than the size of the contact area. If the 
contacting bodies have approximately similar surface geometries (bolt in a hole) under the 
application of load, the size of the contact area grows rapidly and the arc of contact occupies a 
main part of the circumference of the hole. Therefore, Hertz's treatment is invalid. 
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5.3.2 Contact between Bolt and Conforming Hole in an Infinite Panel  

Under the application of load, the size of contact area grows rapidly and the arc of contact 
occupies a main part of the circumference of the hole. When the "contact arc" subtends an 
angle α which is not small, neither the bolt nor the hole can be assumed as elastic half spaces. 
The geometry for a bolt (body 1) in a conforming hole of an infinite panel (body 2) is shown 
in Figure 5.4. 

R1

R2

E1, ν1

E2, ν2

∆R
C

P

Body 1

Body 2
 

∆R + δ

R2

R1

φ1

φ2

αα
C

S1

S2

δ

ur2

-ur1

S

 

Figure 5.4  Bolt in a conforming hole Figure 5.5   Deformation in the contact area  

It is assumed that the difference in radii 2 1R R R∆ = −  is small compared to either R1 or R2. 
The external load P is applied to the bolt on its center C. The deformation is represented in 
Figure 5.5. The points S1 and S2 on the surfaces which come into contact on the interface at S, 
experience both radial and tangential displacements riu  and ivθ , where i = 1, 2. 

Since R∆  and δ are both small compared to R1 und R2 and 1 2φ φ φ= = , the result is: 

 

 
( ) ( ) ( )2 2 1 1

2 1

cos
cos (cos 1)

r r

r r

R u R u R
u u R

δ φ
δ φ φ

+ − + = ∆ +

− = + ∆ −
 (5.20) 

 

Analogous to the examined cases, the size of the "contact arcs" and the stress distribution 
along these arcs must be determined. The problem is now to find the stress distribution and 
the deformations of both bodies. Additionally, the relationship between the contact 
compressive stress ( )rp φ , the angle φ  and the displacement δ  have to be derived.  

Finding an appropriate analytical function for the contact stress distribution has been treated 
mathematically by many authors. The most precise analytical approximate solution is 
obtained for a linear-elastic connection in an infinite panel, whereas bolt and panel consist of 
identical materials and the contact is assumed to be frictionless. 

[Girkmann 1963] for example based his work on investigations made by [Bickley 1928], 
assuming that both bolt and hole are of the same linear elastic material, that there is no 
clearance between bolt and hole ( 1 2R R≈ ) and that the bolt fits in the hole (neat-fit condition), 
i.e. α π= .  
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More comprehensive investigations where made by [Edwards 1951], [Noble, Hussain 1969], 
[Persson 1964] or [Gladwell 1980] examining different material properties of bolt and panel.  

Within this thesis the investigations of [Persson 1964] are examined in particular, because 
they include the deformation conditions in the contact area between panel and bolt. The 
following equations are based on the assumption that only in-plane stresses result and that the 
surfaces are frictionless. Persson's approach is valid if there is clearance between bolt and 
hole 1 2R R<  and if the bolt fits in the hole ( 1 2R R≈ ). His calculations for the "neat-fit" 
condition agree with the investigations of Girkmann. 

ar1 r2
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Figure 5.6  Contact of two elastic bodies 

When the bodies are brought in contact  

 

 ( )r aF φ=  (5.21) 

 

and according to Figure 5.6 follows the equation 

 

 2
2 2 ( ) ( )r

v
r u aF d aF

r
φφ φ φ+ = + ≈ +  (5.22) 

 

If a Taylor-series is applied on the function F(φ), equation (5.22) becomes 

 

 
2

2 2
2 2 2 2

( )( ) ( ) ( ) ...
2!r

av avFu aF r F F
r r
φ φφφ φ φ

′′
′= − + + +  (5.23) 

 

If F(φ)=const=C0,, i.e. the contact area is part of a cylinder, then ( ) ( ) ... 0F Fφ φ′ ′′= = =  
follows. 

 

contact surface

φ 
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The result of the stress equation of the panel are the following expressions: 
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 (5.24) 

 

where 1 2R R a≈ =  and 1 0 2( ) ( ) 0r r r ru u= =∞= = , which is an arbitrary choice. 

 

Thus from equation (5.20) and (5.24) the condition of deformation at all points on the surface 
of contact becomes  

 

 2 1 1 2
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a

r r r r
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u u R dr drδ φ φ ε ε
∞

− = + ∆ − = − −∫ ∫  (5.25) 

 

The contact pressure ( ) ( , )r rp aφ σ φ= −  is distributed over the contact surface. If r=a, the 
boundary conditions required for the two bodies are: 

 

0rσ =       α ψ π≤ ≤  

( )r rpσ ψ= −     α ψ α− ≤ ≤  

0τ =  

 

where ( , )a ψ  is a point on one of the boundaries. Thus for the inner body 1 (bolt)  
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where 0 r a≤ <  
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and for the outer body 2 (panel) 
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where a r< < ∞  

and P load per unit thickness. 

 

The appropriate condition of equilibrium is: 
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The functions Q, S and T are determined as follows:  
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where ϑ ψ φ= − . 

 

To get the relationship between the load P, the radial difference R∆ and the dedicated angle 
α, the contact pressure has to be transformed and then denoted as q(y). Hereby, a comparison 
according to Hertz's theory is possible.  
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At first the following new and dimensionless quantities are introduced: 
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α is the semi-angle of the contact segment. After executing some calculations the integral 
equation will become:  
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for b y b− < <  

 

after using the substitution, equations (5.30) and equations (5.28), it follows  
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Now, the unknown contact pressure function q(y) can be calculated using the solution of 
equation (5.32) and the condition (5.33). Accordingly to this solution, the parameters q(y) und 
b result. Using equation (5.31) the relationship between the load P, the radial difference 

R∆ and the parameter b is determined.  
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At first, the approach for the case 1 2E E=  or 1 2ν ν=  is examined, i.e. both bodies have the 
same material properties. A solution in closed form is possible here.  

Substituting these conditions in the equations (5.30) and in the equations (5.31), (5.32) and 
(5.33), the dimensionless compressive stress function in the contact area results in: 
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The relationship between the load P, the radial difference R∆ and the parameter b is 
determined as follows: 
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Using equation (5.34) and 0 0yφ = = =  it is possible to calculate the dimensionless 
maximum contact compressive stress qmax: 
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The stress in any point of the two bodies can be determined by the equations (5.26) and 
(5.27). 

According to [Ciavarella, Decuzzi 2001a, b] the following closed form solution is available 
for the tangential stresses ( )pφ φσ φ=  on the contact surface of the panel (body 2):  
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If the stress function is known, with the strains and, by integration, the displacements can be 
determined (see equation (5.24)). 
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Figure 5.7 shows the stress function pr(φ) in dimensionless form, i.e. according to equation 
(5.34), for different contact angles α , where 1 2R R a≈ ≈ . By increasing the contact angle α 
the distribution of the radial stresses is getting more regular. The maximum contact stress 
constantly arises at an angle of 0°. 
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Figure 5.7  Dimensionless radial stress function for different contact angles α 

 

By means of equation (5.36) Figure 5.8 contains the dimensionless contact compressive stress 

max
( 0)rapq
P
φ =

=  as a function of tan
2

b α
= . Where r a=  and 0 0yφ = = = . Figure 5.8 also 

contains a comparison with the approach according to Hertz (see chapter 5.2.2). 
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Figure 5.8  Comparison with the approach according to Hertz 

When 
− R∆ → ∞  

− 0α →  or 0b →  or 

− 0P →  or 0max 0p →  

the values of both approaches (Persson, Hertz) are identical. The maximum of both stress 
functions tend to infinity, whereas the range is very locally limited . When the "contact arcs" 
increase, the stresses will decrease vice versa and the difference between the two approaches 
is significantly. Then the contact stress is essentially underestimated according to Hertz's 
theory, taking an angle of 60α = ° the deviation amounts about 50%. 

The dimensionless contact stress function max ( 0)q φ =  has its absolute minimum at 
105,57α = ° when  qmax = 0,5801. Assuming absolute contact ( 180α = ° ) , i.e. b → ∞  the 

limit value max
2q
π

=  is reached. 

Figure 5.9 shows the tangential stresses ( )pφ φ  at the hole boundary as a function of different 
contact angles according to equation (5.37). Thereby, the stresses are scaled again dependent 
on the load P and the hole radius a. Poisson's ratio was chosen as ν = 0,23 (glass). As soon as 
the contact angle α increases, the distribution of the tangential stresses is getting more regular. 
Between 60° und 90° the curve shape changes significantly. As the curves show the tangential 
stresses increase till a contact angle of φ = 90° is reached and the maximum is reached at the 
boundary of the contact surface (φ  = α). On the contrary, by taking contact angles of  
φ  = 120° and 150° the maximum tangential stresses have their maximum at φ  = 0°. 

≈
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Figure 5.9  Dimensionless tangential stress function for different contact angles α, ν = 0,23 

By taking interface friction, different materials and a semi-finite width of the panel into 
consideration, the complexity of the analytical solution is increasing dramatically. 
Nevertheless, analytical approximate solutions exist (see chapter 5.3.3 and 5.3.4) the most 
accurate approximate solutions indeed only for the infinite panel with frictionless contact and 
identical linear material properties [Iyer 2001]. Therefore this solution should be used for 
verifying the FEM-model (see chapter 7).  

The following equations are valid for contact bodies with different material properties, i.e.  
1 2E E≠  and 1 2ν ν≠ , and are only mentioned here. The approach is based on investigations 

carried out by [Ciavarella und Decuzzi 2001a, b], who based their research on [Persson 1964] 
and [Noble und Hussain 1969] and developed further these solutions. 

At first the material parameters according to Dundurs [Dundurs 1975] are represented: 
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Based on the formulas according to Persson the following context is determined: 
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By using the contact stress function Ciavarella and Decuzzi found out that the material 
dissimilarity is negligible small. The maximum deviation is about 2%. Vice versa, the 
influence on the relationship between semi-contact angle α and the dimensionless parameter 
E1∆R/P is significant. 

Because of these results, q(y) can be determined by equation (5.34). The dimensionless 
parameter E1∆R/P is determined by following approximation: 
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5.3.3 Contact between Bolt and Conforming Hole in a Semi-Finite Panel 

In the following section the most important investigations containing analytical solutions in 
closed form for contact between bolt and conforming hole in a semi-finite panel are discussed 
(see Figure 5.10). Examining the semi-finite panel, the problem is getting more complex and 
it is expected that a comparison with the FEM-calculation gives higher deviations than the 
comparison with an infinite panel. Nevertheless, the following approximate solutions are 
suited for a qualitative verification of the FEM-model, which will be examined in chapter 7. 
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Figure 5.10  Bolted connection in a semi-finite panel 
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[Knight 1935] made a comparison of the stress distribution in an infinite panel and a panel of 
finite width with a bolt and a conforming hole in the center of the panel. The ratio a/b of the 
finite panel was 1/2. It was assumed that both bolt and hole are of the same linear elastic 
material, that there is no clearance between bolt and hole ( 1 2R R≈ ) and that the bolt fits in the 
hole (neat-fit condition), i.e. α π= . Knight successfully found approximations for the stress 
distribution. A comparison between infinite and finite panels showed that the maximum 
tangential stresses σφ arise at an angle of 90° at the boundary of the hole. To compare infinite 
and finite panel the tangential stresses increase by a ratio 2:5. 

Further investigations containing the examinations of the stress distribution in a panel with 
finite width were made by [Theocaris 1956]. Using analytical approximate solutions, he 
determined the influence of the ratio a/b on the stress distribution. In particular, he examined 
the values a/b = 0,2, 0,4 and 0,5. He mainly observed that the maximum tangential stress or 
the maximum principal tensile stress σI arises at 90° in general and that the values have a 
maximum if a/b = 0,2. As soon as the value a/b increases the stresses decrease. After reaching 
a minimum between a/b = 0,4 and 0,5 the stresses increase again.  

The maximum compressive stress or the maximum principal compressive stress σII arises at 
0° and increases with a growing ratio a/b. He also found out that a variation of Poisson's ratio 
ν  has only a small influence on the stress distribution and is negligible when examining the 
maximum stress concentration (see also section 5.3.2, investigations of Ciavarella and 
Decuzzi). 

Figure 5.11 shows the distribution of the principal stresses σI and σII  at the hole boundary 
including different ratios λ = a/b.  

σII σII

σIσI

 

Figure 5.11  Qualitative distribution of the principal stresses σI and σII  at the hole boundary 
including different ratios λ = a/b [Theocaris 1956] 

[Frocht, Hill 1940] examined experimentally panels of different widths with strain gauges and 
photoelastic measurements. They used aluminium panels with a hole in its center and 
aluminium and steel bolts. They also examined a possible clearance between bolt and hole 
( 0R∆ > ). Frocht and Hill determined the ratio a/b as a function of the stress concentration 
factors K. In the following the most important results will be summarized shortly. The 
detailed evaluation can be taken from [Frocht und Hill 1940]. 
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Having a ratio a/b = 0,7 the stress concentration factors reach values of about K = 2. As soon 
as the ratio a/b decrease the stress concentration factors increase. If the ratio / 0a b → , 
according to equation (5.41), the K-factors achieve a maximum value of about 13.  

Figure 5.12 shows the stress concentration factors Ktn as a function of the ratio a/b according 
to [Theocaris 1956] and [Frocht und Hill 1949], in case the clearance ∆R = 0 and the ratio 
H/2b > 1,0. 

The stress concentration factor Ktn can be approximately determined with: 
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Figure 5.12  Stress concentration factors Ktn as a functions of a/b, where ∆R=0 and H/2b>1,0 

Furthermore, the investigations showed that by introducing a clearance between bolt and hole, 
the stress concentration factors increased. If the ratio H/2b (see Figure 5.10) is getting smaller 
the influence of the clearance grows. On the contrary to fitted bolts the tangential stresses 
were not longer at 90° but dependent on the magnitude of clearance they moved a few degrees 
towards the direction of loadbearing.  
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Taking a clearance 0,2% of the hole diameter [Pilkey 1997] gives stress concentration factors 
as a function of a/b, where ∆R = 0,2%, H/2b = 1,0 and t/2a < 0,5 (see Figure 5.13). 
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Figure 5.13  Stress concentration factors Kte as a function of a/b, for ∆R = 0,2%, H/2b = 1,0 
and t/2a < 0,5 

Pilkey also refers to studies which verify that, having a ratio t/2a < 0,5 and /bolt panelE E  
between 1 and 3, the influence of the different material properties (bolt and panel) on stress 
distribution is small.  

By using the approximate solutions of this section within the parameter study of chapter 7, the 
numerical solutions will be compared.   

 

5.3.4 Contact Considering Interfacial Friction  

As already explained, in case the contact bodies are pressed together by a normal force at the 
interface of the two bodies, radial and tangential stresses arise and therefore friction at the 
interface may occur additionally. Friction is a complex physical phenomenon and affected by 
a variety of parameters. The most important ones are load-type and -duration, temperature as 
well as type of movement and duration. Relevant as well are the involved friction partners, 
the material properties in particular and their surface conditions (see chapter 7.3.4). Hence 
analytical and numerical modelling of friction has been simplified to idealistic models. The 
most popular friction model is the Coulomb friction model. 
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The physical laws describing friction were constituted by Coulomb in 1781: 

- The magnitude of the friction force R is independent on the contact area 

- The friction force R is proportional to the normal force N 

- The friction force R acts within the contact plane  

- The direction of the friction force R is reverse to the direction of relative motion.  

The above mentioned rules can be described with the following equation (see Figure 5.14): 

 

 R Nµ=  (5.42) 

 

where µ is denoted as the friction coefficient [Gross et al. 1990].  
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Figure 5.14 Definition of the forces considering friction  

The direction of the resultant from N and R is: 

 

 tan R
N

ρ µ= =  (5.43) 

 

Having contact between a bolt and a conforming hole in an infinite or finite panel with 
additional interface friction the calculation is very complex. [Ho und Chau 1997] determined 
an approximate solution in closed form for the stress distribution in an infinite panel with 
different material properties and friction. As described the approaches are less accurate due to 
the high complexity and not suited for a quantitative verification of the FEM-calculation. 

Numerical investigations made by [Iyer 2001] showed that with an increasing friction 
coefficient µ  the contact pressure p0 decreases and the tangential stresses pφ  increase. If an 
infinite and finite panel is compared, the results for the infinite panels are higher contact 
stresses p0. Vice versa the tangential stresses pφ  are lower for the semi-finite panel.  

Within the parameter study of chapter 7 friction will be examined in detail by means of FEM.   
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6 Numerical Treatment of the Contact Using FEM 

 

6.1 Introduction 

In general simple framework, plate and panel models can be solved analytically, using an 
adequate differential equation. Systems which do not have any analytical solution must be 
solved numerical by approximations. 

Using the finite element method (FEM) for calculating the framework, this will be 
discretisised in elements of finite size. The elements are linked with nodes. Therefore at the 
nodes the conditions of equilibrium of the nodal forces and the compatibility conditions of the 
displacements are satisfied. Considering the exact solution, the compatibility conditions of the 
displacements and the internal forces have to be satisfied not only at the nodes but also at 
every point of the framework. Therefore it is possible to build the basic equations, edge and 
compatibility conditions of an infinitesimal small element. These conditions can not be 
satisfied exactly by the finite element method. Finite elements are based on an assumption of 
the displacement distribution within the element. By using an adequate interpolation the 
displacements can then be calculated within the element. This means that the displacement 
conditions are satisfied at the supports and at the element boundaries. In spite of that the 
conditions of equilibrium of the element boundaries and free edges are only satisfied 
approximately. The principle of virtual displacements is used therefore. The conditions of 
equilibrium are satisfied within the chosen approximation [Werkle 2001]. 

The global stiffness matrix is 

 

 ⋅K U = P  (6.1) 

 

where  K  stiffness matrix of the system 

 U   vector of the nodal displacements  

 P   vector of the external nodal loads  

 

After the analysis of the system of equations (6.1) all internal forces, stresses and strains can 
be calculated from the derivatives of the displacements. The derivation of the finite element 
method is described in numerous literature, for example in [Bathe 1990], [Lee 1992], [Werkle 
2001] and will therefore not be described within the scope of this thesis.  
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6.2 Modelling of the Structure 

6.2.1 Singularities 

A special problem, which may occur within the modelling of the structure, are singularities 
during the output of the results. This means an internal force or a displacements tending 
towards infinity at one boundary. Such a result is not close to reality and has to be interpreted 
by engineering experience.  

Singularities are the result of insufficient modelling of the structure or load representation. An 
ordinary example is a panel with a width b and a thickness t loaded by a single force F, hence 
the stress of the panel is σy = F/A where A bt= . The result at the transition point to a single 
load is 0b →  and therefore the stress yσ → ∞  [Werkle 2001]. Singularities also occur at 
locations with a geometrical conspicuousness, for example sharp-edged openings. In these 
areas the two dimensional stress theory is not able to describe the occurring three-dimensional 
stress distributions. Using the finite element method at singularity locations, the stresses can 
only have finite values because of the displacement approach. With an increasing number of 
elements the stress values do not converge to a limit value but continue to increase. Such 
singularities can be avoided by an adequate load distribution or a suggestive filleting of sharp-
edged corners. Referring to a hole in a panel the tensile stresses can increase rapidly at the 
hole boundaries as well, if the mesh size is getting finer. This is an indication of singularity 
locations, the results are then stress values which are lying above the analytical solution 
[Siebert 2004]. 

 

6.2.2 Element Options and Mesh Generating 

When modelling plates and panels, most commonly 4-node-elements are used. On the one 
hand they suit to the geometry of the structure very well and on the other hand they are very 
precise. Taking the same number of degrees of freedom compared with triangular elements, 
quadrilateral elements have functions of higher order. Generally, a square is the most 
adequate shape for a finite element. It is followed by a rectangle, parallelogram and polygon.  

By increasing the number of elements or reducing the size of elements (h-adaption), the more 
accurate the approximate solution by FEM becomes. Taking the same number of elements, 
elements with functions of higher order are also more precise than those with simpler 
approaches (p-adaption). 

At the center of the element the stresses are obviously more exact than at the element 
boundary. Between two elements a stress step occurs because of the approximate calculation. 
The smaller this step gets the more accurate the result is. To get an uniform accuracy in areas 
of high stresses the elements should be condensed there. However, the size of adjacent 
elements should not change escalately. This would lead to a simulated stiffness change of the 
system. Therefore [Werkle 2001] suggests not to exceed a ratio in size of 1:1,5 for adjacent 
elements.  
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The quadrilateral elements for panels are divided in conforming (isoparametric) elements and 
elements which do not satisfy the conditions of conformance. These are elements with non 
conforming displacement approaches and hybride elements. Using an analytical approach for 
error estimations and convergence proofs, conforming elements are easier to handle. 
However, in practice, they behave quite "stiff". Essential differences result when panels are 
calculated, which are subjected to bending. For conforming elements a very fine mesh is 
needed. However, significantly less elements are necessary for non conforming elements. As 
long as in-plane loads are applied only, the differences are small between these two element 
types.  

If the mesh is more refined, the system will get "softer", the deformations will increase and 
they will tend towards the exact solution.  

 

6.3 Possibilities of Calculating the Contact 

Having several bodies there is a possibility that they will touch each other and get into 
contact. Without considering the contact the bodies would penetrate one another during the 
FE-analysis and the different contact requirements, such as the contact between rigid and 
deformable bodies, multiple contact and separation would not be taken into consideration. 
Potential friction, static or kinetic friction, have to be considered as well.  

The result is that not only a mathematically-mechanically approach is necessary but also an 
additional algorithm which is able to detect and model this contact. This is an exceeding 
nonlinear problem with unknown boundary conditions because they are dependent on the 
solution-variables itself. Therefore an incremental solution method is necessary: 

In general it has to be distinguished between global and local algorithms: 

Global algorithms: 

1. Contact search  
2. Solving of the different inequalities  

Local algorithms: 

1. Detecting of contact  
2. Update of the essential equations and stresses  

There are two different methods or global algorithms to model the contact numerically. The 
most common methods for linear contact problems are the Lagrange-Multiplier-Method and 
the Penalty-Method. 

At first the two methods mentioned above are explained by the help of a discretisised system, 
i.e. a system with a limited number of degrees of freedom. Therefore a minimizing function 
and the "constraints" is needed. Within a contact calculation, the "constraint" is the limiting of 
the movement. The calculation is based on the minimization of the total energy potential Π of 
two bodies in contact: 
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where  U  strain energy  

  W potential of all loads 

   K stiffness matrix of the system 

   U  vector of the nodal displacements  

 P  vector of the external nodal loads  

 

In detailed notation the equation of the two bodies is 
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As seen from equation (6.3), the two bodies are not linked yet. This is done after a "gap"-
function is introduced or added in every contact element iΓ . 

Using the Lagrange-Multiplier-Method the right side of equation (6.2) will be added in such a 
way that Π  becomes: 

 

 1( )
2

LMΠ = − +T T T TU,Λ U KU U P Λ C U  (6.4) 

 

where Λ  is the vector of the Lagrange Multipliers. 

The "gap"-function is: 

 

 Ng =
T
iC U  (6.5) 

 

1 2 ... nC C C  C =  is the vector of the constraints. 

The demand 0LM∂Π =  leads to: 

 

      
     
     

T

K C U P
=

C 0 Λ 0
 (6.6) 

 

An auxiliary equation which contains the constraint condition is added to the conditions of 
equilibrium.  
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Compared with the Lagrange-Multiplier-Method the Penalty-Method only needs the 
discretisation of the displacement variables. The potential is  

 

 1
2 2

P Nε
Π T T T(U) = U KU - U P + CC U  (6.7) 

 

where εN is the Penalty-parameter.  

As a result the gap-function is: 

 

 ( )N I NI
I

g N gξ= ∑  (6.8) 

 

where NI is a dimensionless form function. 

With the condition 0P∂Π =  it results: 

 

 Nε + 
TK CC U = P  (6.9) 

 

The Penalty-Method is based on the addition of a large value to the element i. This means that 
in the diagonal of the stiffness matrix K  an adequate force is added and that the required 
displacement is ≈ P

i iU U . This method is very efficient because no additional equation is 
needed.  

A detailed explanation of this method is described in [Wriggers 2002]. The two mentioned 
methods are limited on the node-to-node contact of two bodies and small deformations. 

In a real contact calculation the number of contact constraints is unknown. Having a nonlinear 
problem, not only the displacements have to be determined but also the correct contact area. 
Having large displacements and multiple body contact the above mentioned equations, which 
are valid for linear problems, have to be generalized and extended. In most cases the Node-to-
Segment (NTS)-approximation is used, which will be explained in more detail in chapter 
6.4.3, together with the used contact discretisation of deformable bodies implemented in the 
program MSC.Marc. The geometrical contact conditions, which are necessary for the normal 
contact, in particular the function of penetration, will be explained.  
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6.4 MSC.visualNastran for Windows and the Additional Module Nonlinear+ 

6.4.1 Introduction 

The calculations in this thisis are done with the finite element program MSC.visualNastran for 
Windows (N4W) version 2003 and version 2004 including the additional module Nonlinear+. 
The N4W Nonlinear+ module is the latest addition of MSC and can be implemented to an 
existing configuration as an add-on module of N4W. Nonlinear+ employs the MSC.Marc 
2003 solver. Within the FE calculations of this thesis the Nonlinear+ module was used 
because it is specially adaptable for contact calculations of deformable bodies and the contact 
modelling itself is less time consuming than with GAP-elements (see chapter 6.4.6). Another 
disadvantage of GAP-elements is that only small deformations can be modelled sufficiently.  

The following types of contact problems can be solved with Nonlinear+: 

- Automated multi-body contact 

- Contact between deformable bodies 

- Self-contact 

- 2-D and full 3-D contact 

- Friction (Coulomb, shear or stick-slip friction laws) 

- User-defined contact separation force or stress 

- Modelling of large deformations 

In the next sections some special features of the program system and the basics of contact 
discretisation are explained. Therefore only the virtually statical contact procedures which are 
needed within the scope of this thesis are explained.  

The options of contact modelling by N4W without the additional module Nonlinear+ are 
described as well. In addition reference-calculations will be carried out. 

 

6.4.2 Outline of the Used Element Types 

N4W provides different isoparametric elements for calculating planes and bodies. The plane 
elements are used to represent membrane, shell and plate structures (see Figure 6.1). The 
simplest formulation of these elements are just a three-noded linear triangle and a four-noded 
linear quadrilateral. In addition, six-noded parabolic triangles and eight-noded parabolic 
quadrilaterals are also available. 

 

 
 

 

Figure 6.1 MSC.Nastran plane-elements [MSC.vN4W 2004a] 
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Volume elements are used to model three-dimensional solid structures. They can provide very 
detailed results but usually require additional modelling and analysis time and effort. Using 
SOLID-elements any three-dimensional structure can be modelled. They can consist of four 
or ten-noded tetrahedron, six or fifteen-noded wedge and eight or twenty-noded brick 
(hexahedron) elements, see Figure 6.2. 

 
Figure 6.2  MSC.Nastran volume-elements [MSC.vN4W 2004a] 

For nonlinear analysis, only solid elements without mid-edge nodes can be used (see Figure 
6.1 and Figure 6.2). 

Within the scope of this thesis only four-node-elements are used for modelling, because of the 
higher precision compared with the three-node-elements (see also chapter 6.2.2). Especially 
linear quadrilateral (CQUAD4) PLATE-elements are used. These elements are suited for thin 
plates and shells. SOLID-elements of the type linear hexahedral (CHEXA) are also used. 

Within finite element modelling elements of lower order (h-adaption) should be used instead 
of elements of higher order (p-adaption). Having the same number of degrees of freedom, 
elements of higher order are more precise but because of the minor number of elements the 
real geometry cannot be modelled satisfactory. As already mentioned in chapter 6.2.2, having 
isoparametric elements of lower order the structure behaves stiffer than in reality and hence 
the displacement values are smaller. N4W provides several features to reduce or eliminate 
these effects. A detailed description of the background is given for example in [Lee 1992], 
[Macneal 1992], [Schieder 1998]. Additionally, these effects hardly arise when having only 
in-plane loadbearing (see chapter 6.2.2). 
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6.4.3 MSC.Marc CONTACT-Function (with friction)  

Very often contact can only be modelled with special contact elements (e.g. GAP-elements, 
see chapter 6.4.6). Using MSC.Marc the contact is modelled "automatically" without the 
presence of contact elements. Only lines, surfaces and elements which should get into contact 
have to be defined. Therefore the direct constraint method is used. In this procedure, the 
motion of the bodies is tracked. In case that contact occurs, direct constraints are placed on 
the motion, using boundary conditions, both kinematic constraints on transformed degrees of 
freedom and nodal forces. This very accurate procedure is implemented in MSC.Marc 
through the CONTACT option [MSC.MARC 2003a, b, c, d, e], [MSC.vN4W 2004b, c]. 

Definition of the contact bodies  
MSC.Marc offers two types of contact bodies, deformable and rigid. The disadvantage of 
MSC.N4W Nonlinear+ is that only deformable bodies are available. Deformable bodies are 
composed as shown below: 

1. The finite elements which make up the body. 

2. The nodes on the external surfaces which might contact another body or itself. These 
nodes are treated as potential contact nodes. 

3. The edges (2-D) or faces (3-D) which describe the outer surface a node on another body 
(or the same body) might contact. These edges or surfaces are treated as potential 
contact segments. 

The elements of a body are defined through the CONTACT option. It is not necessary to 
identify the nodes on the surface since this is done automatically.  

When defining contact bodies for a deformable-to-deformable analysis it is important to 
define them in the proper order. As a general rule, a body with a finer mesh should be defined 
before a body with a coarser mesh. Contacting bodies should also have different mesh sizes 
because congruent nodes cause convergence problems. 

Contact search 

At first, all contact nodes are checked to see whether they are near to a contact segment. To 
simplify or to speed up the computation it is possible to use the CONTACT table option to 
indicate that a particular body will or will not contact another body. During the iteration 
process the motion of the nodes is checked to see whether they have penetrated a surface or 
crossed a segment after the iteration step.  

It is unlikely that a node exactly contacts the surface during the contact process, therefore a 
contact tolerance is introduced (see Figure 6.3). 

2 x
Toleranz

 

Figure 6.3   Contact tolerance 
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If a node is within the contact tolerance, it is considered to be in contact with the segment. 
The contact tolerance is calculated by MSC.MARC as 5% of the smallest volume (SOLID)-
element side or 25% of the smallest SHELL-element thickness. It is also possible to define the 
contact tolerance through the input. The size of the contact tolerance influences the 
computational costs and the accuracy of the solution. If the contact tolerance is too small, 
detection of contact and penetration is difficult. This leads to higher computational costs. If 
the contact tolerance is too large, nodes are considered in contact prematurely, resulting in a 
loss of accuracy or more recycling due to separation. Therefore the default contact tolerance is 
recommended. 

Often, there are areas in the model where nodes are almost touching a surface. In such cases 
the use of a biased tolerance area with a smaller distance on the outside and a larger distance 
on the inside is advised (see Figure 6.4). This avoids that close nodes are coming into contact 
and are separating again. The value of the bias factor should be between 0 and 0,99. The 
default is 0 or no bias. In analyses where a frictional contact is involved, a bias factor for the 
contact tolerance is recommended. The recommended bias factor value is 0,95. 

(1+Bias) x Toleranz

(1- Bias) x Toleranz

 

Figure 6.4  Contact tolerance with bias 

Separation of the bodies  
After contact occurs a reaction force, associated with the node in contact, balances the internal 
stress of the elements adjacent to this node. During separation, this reaction force behaves as a 
residual force (as the force on a free node should be zero). This requires a redistribution of the 
internal stresses in the deformable body. Depending on the magnitude of the force this might 
last several iterations. It should be noticed that a deformable body which is constrained only 
by other bodies (no explicit boundary conditions) and subsequently is separated from the 
other bodies, would then have rigid body motion. In static analysis this results in a singular or 
non-positive definite system. This problem can be avoided with the help of appropriate 
boundary conditions. 

(1-bias) x tolerance 

(1+bias) x tolerance 
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Friction modelling  
The Coulomb friction model is depending on the normal force and the relative sliding velocity 
or displacement. Implementation in MSC.Marc has been done using a nonlinear spring model 
(see Figure 6.5). 

x

z

u1, F1 u2, F2

1 2

 
Figure 6.5  Spring model 

The corresponding equation is given by: 

 

 1 1

2 2

u FK K
u FK K

−     
=    −     

 (6.10) 

 

where K is the spring stiffness, u1, u2 the displacements and F1 and F2 the forces of points 1 
and 2. 

 

The equation can also be represented as a function of velocities v: 
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 (6.11) 

 

Since K is a nonlinear function of the relative velocity, equation (6.11) is solved 
incrementally, where within each increment several iterations may be necessary.  

Hence for the iteration i the following equation results: 
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δ
δ

   −
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 (6.12) 

 

where 1
ivδ  and 2

ivδ  are used to update 1
iv  and 2

iv  by 1 1i i
n n nv v vδ−= + , n=1,2. 

The Coulomb friction model can either be used as a true stick- or a stick-slip-model. In this 
procedure a node sticks to the surface until the friction force Fx reaches the critical value µFz. 

To model the differences in static and dynamic friction analysis, an overshoot parameter α 
can be used additionally. MSC.Marc is based on the stick-slip-algorithm given in Figure 6.6. 
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Initial Contact

No Yes

Slipping
Mode

Sticking
Mode

Determine Solution of
Next Iteration

0u∆ ≈

Remain in Sticking Mode if:Remain in Slipping Mode if:

0xF u and u β⋅ ∆ < ∆ >

Change to Sticking Mode if:

or if
0xF u and u β⋅ ∆ > ∆ >

u εβ∆ ≈

Change to Slipping Mode if:

x zF Fαµ>

x zF Fαµ≤

 
Where 1,05α =   (default, can be user-defined) 

 61 10β −= ⋅  (default, can be user-defined) 
 61 10ε −= ⋅   (fixed, so that 0εβ ≈ ) 

Figure 6.6  Stick-slip-algorithm [MSC.MARC 2003a] 

MSC.Marc additionally provides a special type of friction model, the so called GLUE option. 
This option imposes that there is no relative tangential motion. Bodies with dissimilar meshes 
can be joined by specifying a very large SEPARATION FORCE and activating the GLUE 
option. The constraint equations are automatically written between the two meshes.  

Mathematical representation of the contact 
If the global contact search was successful, i.e. in case that contact is detected between a node 
and a deformable body, a tying relation (constraint condition) is formed between the 
contacting nodes and the nodes on the other body. The tying matrix is built in a way that the 
contacting node follows the surface. During the iteration process of finding an incremental 
solution a node can slide from one segment to another or can be linked with the surface. The 
algorithm has to be able to find all contact conditions during the solution process, in which 
the normal distance gn between the bodies is zero. This discretisation is called "Node-to-
Segment"(NTS)-method. To describe this process accurately the "Master-Slave" concept is 
used. The surface, which points are checked if penetrating into the other surface ("master"-
surface), is called "slave"-surface.  
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The parts of "master" and "slave" can be permuted without changing the result. The "master"-
segment is represented in 2D as a line and in 3D as a surface.  

 
Figure 6.7  Geometry und geometrical approach of two bodies [Wriggers 2002] 

The point 2 2 ( )x x ξ=  which has the minimum distance to a fixed point 1x  on the "slave"-
surface can be determined with the following requirement (see Figure 6.7): 

 

 
2 2

1 2 1 2 ( )min
x

x x x x ξ
⊆Γ

− = −  (6.13) 

 

Equation (6.13) leads to the minimum of the distance function and to the fulfilling relation:  
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 (6.14) 

 

in which the tangential vector of the "master"-surface is 2 2
,x aα α= . In the solution point 2x  of 

equation (6.13) the tangential vector must be perpendicular to the vector 1 2 1 2( , )x x ξ ξ−  and 
perpendicular to the "master"-surface. If the point 2x  is known the inequality conditions can 
be formed, which describe the non penetration of the body. As a result the following distance 
function is introduced:  

 

 1 2 2( ) ( )Ng x x nξ ξ = − ⋅   (6.15) 

 

For: 

0Ng >  no contact 

0Ng =  perfect contact  

0Ng <  penetration. 
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The constraint condition of contact excluding penetration is 

 

 1 2 2( ) 0Ng x x n= − ⋅ ≥ . (6.16) 

 

With the help of discretisation with the NTS-element it is assumed that the "slave"-node (s), 
coordinate 2

sx , comes into contact with the "master"-segment(1)-(2) which is defined by the 
nodal coordinates 1

1x  and 1
2x  (see Figure 6.8). 

 
Figure 6.8 "Node-to-Segment"-(NTS) contact element [Wriggers 2002] 

The mathematical representation of the NTS- discretisation is described in detail in [Wriggers 
2002]. 

If a node touches the surface of a body, a "multipoint" constraint will be activated 
automatically. Assuming that the edges (2-D) or segments (3-D) which describe the outer 
surface are known, the constraint condition is determined. For the 2D-analysis, which uses 
elements of lower order, three nodes are retained, two for the boundary line and one for the 
point itself (see Figure 6.9). Having a 3D-analysis with SOLID-elements, which is based on 
hexahedral-elements, the segment is defined by a isoparametric four-node-element. That is 
why five points are needed in the whole (see Figure 6.10).  

 
Figure 6.9  Links of 2D-contact with elements of lower order [MSC.MARC 2003a] 
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Figure 6.10  Geometry of the "five"-node contact element [Wriggers 2002] 

Having elements of lower order, the normal is calculated with a piecewise linear 
representation of the element surface (see Figure 6.11). That is why the relation of the 
constraint conditions are not precise because of the constant distribution over the whole 
segment. If a node is sliding from one segment to the other a discontinuity, which obviously 
leads to numerical difficulties, arises in the normal.  

 
Figure 6.11  Linear representation using elements of lower order [MSC.MARC 2003a] 

When smoothing the surface geometry a more precise calculation can be achieved. As a 
consequence optional discontinuity spots have to be localized in advance. Using elements of 
higher order these problems do not occur because the normal is calculated with a quadratic 
approach.   

 

6.4.4 Solution Methods for Nonlinear Equation Systems  

Nonlinear calculations need a good appraisal and also several calculation time and iterations. 
To solve nonlinear equation systems MSC.Marc provides several iterative methods. These are 
some versions of the "Newton-Raphson Iteration", which are applicable for contact 
calculations: 

- Full Newton-Raphson Iteration  

- Modified Newton-Raphson Iteration  

- Secant-Method (Quasi Newton Method) 

The default is "Full Newton-Raphson Iteration" using MSC.Marc. For the most nonlinear 
problems this methods provides satisfying results. Indeed, a high computation capacity is 
needed for 3D-calculations. Using the "Full Newton-Raphson Iteration" in every iteration step 
i the tangent stiffness matrix K will be redeveloped by taking the modified tangent stiffness 
into consideration. 
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In nonlinear calculations the following equation has to be solved at a time t t+ ∆ : 

 

 t t t t+∆ +∆F - R = 0  (6.17) 

 

where the vector t t+∆ F  denotes the external nodal loads and t t+∆ R  the vector of internal nodal 
loads. The internal nodal loads are equivalent to the element stresses, are calculated by the 
principle of virtual displacements and are nonlinearly dependent on the nodal displacements 
U . Therefore equation (6.17) has to be solved by iteration.    

At first, for a given load 0F  with a linear initial tangential stiffness 0K  the deformation will 
be calculated as for a linear system. Due to these nodal displacements the element strains are 
calculated and considering the physical nonlinear stiffness matrix the internal nodal forces 

1i−R  are determined. The internal nodal forces are now compared with the external forces 1i−F  
according to equation (6.17).  
If the internal nodal forces are not in equilibrium with the external nodal forces, a difference 
vector (unbalanced load vector) ∆R  will be obtained: 

 

 1 1 1i i i− − −∆ −R = F R  (6.18) 
 

where i = 1,2,3,… are the number of iteration steps. 

In a second step, this vector 1i−∆R  will be applied as an external load on the system, which is 
again assumed linear. The stiffness matrix is also recalculated. As a result the nodal 
displacement i∆U  is: 

 

 1 1i i i− −  ⋅∆ 
-1

∆U = K R  (6.19) 

 

and the total displacements iU  can be calculated with 1i i i−U = U +∆U . Resulting from this 
deformation the internal forces and the next difference vector can be calculated again. The 
calculation is repeated as long as the difference vector ∆R  or the displacement increments 
∆U  tend towards zero. 
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Figure 6.12  "Full Newton-Raphson Iteration"  

Using the "Full Newton-Raphson Iteration" only a few iterations steps are necessary until the 
convergence criteria are fulfilled, which is of great advantage (see Figure 6.12). Further 
details of the "Full Newton-Raphson Iteration" are, for example, explained in [Bathe 1990] or 
[Schieder 1998]. 

Because of the factor decomposition of the tangent stiffness matrix the result are higher 
computational costs per iteration step. The "Modified Newton-Raphson Iteration" can be used 
as an alternative. This method differs from the "Full Newton-Raphson Iteration" because the 
tangent stiffness matrix is not calculated in every iteration step. Therefore the calculation 
steps are: 
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 (6.20) 

 

The process of calculation is faster in case the tangent stiffness matrix is only calculated once. 
However, more iterations steps are necessary to meet the convergence criteria (see Figure 
6.13) and, having numerous nonlinearities or contact it can be time consuming until the 
solution converges. Therefore the "Full Newton-Raphson Iteration" is recommended 
[MSC.MARC 2003a].  

...
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Figure 6.13  "Modified Newton-Raphson Iteration" 

The "Secant-Method" can be used as well. This is a so called "Quasi Newton Method". The 
inverse of the stiffness matrix SK  is changed in every iteration step but not redeveloped like 
in the "Full Newton-Raphson Iteration". 
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 (6.21) 

 

Searching line by line towards the direction i∆U , the equilibrium must be fulfilled in this 
direction. Therefore the displacement vector 1i i iβ−U = U + ∆U  is calculated, where β  is a 
scalar vector. Subsequently the unbalanced loads ∆R , which comply with these 
displacements, are determined. The parameter β  is varied as long as the convergence 
tolerance TOL meets the equation: 

 

 1i i i iTOL −∆ ≤ ⋅ ∆∆U R ∆U R  (6.22) 

 

As soon as β  complies with equation (6.22) it is possible to determine iU . During the next 
step the secant stiffness is calculated and then it is applied once more for the given load F  
(see Figure 6.14). As a consequence the value of the nodal displacement has to be improved 
in any iteration step. 

...



90  6 Numerical Treatment of the Contact Using FEM 

 
Figure 6.14  "Secant-Method" ("Quasi Newton Method") 

 

6.4.5 Convergence Controls  

Depending on the solution method an iterative calculation can only be efficient, if realistic 
convergence criteria are chosen to complete an iteration. At the end of every iteration it is 
therefore recommended to check whether the solution has already converged within given 
tolerances or whether there are still any divergences. It is also important to chose not too large 
convergence tolerances. Otherwise, the obtained results will not be very exact. Neither should 
the tolerances be chosen too small because the calculation might be unnecessary accurate and 
the computation time might increase rapidly as well.  

Several criteria are available for convergence checking. Using MSC.Marc, three different 
checking criteria for the convergence are available: 

1. RESIDUAL CHECKING (Default MSC.Marc) 

This method measures the vector of the non balanced loads within a given tolerance. This 
difference between internal and external forces of the total system, has to be compared with a 
reference basis. This reference basis complies with the norm of the external loads, i.e. the load 
vector Freaction or Mreaction. 

It has to be noticed that the criteria for termination of the computation does not consider 
displacements. Therefore a second criterion is provided, which is based on displacements:  

2. DISPLACEMENT CHECKING 

Using this method the convergence is achieved when the maximum displacement of the last 
iteration is very small compared to the actual displacement change of the increment.  

If the forces and the displacements meet the conditions of equilibrium, a third convergence 
criterion can be used for evaluation: 

3. STRAIN ENERGY CHECKING 

This method can be compared to the displacement checking. Within this method a comparison 
of the strain energy of the last iteration and the strain energy of the increment is performed.  

…
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6.4.6 MSC.N4W GAP-Element with Friction 

Using MSC.N4W without the additional module Nonlinear+ the contact modelling is done by 
GAP-elements. The GAP-element simulates a node-to-node contact. It is used to represent 
surfaces or points which can separate, close, or slide, relative to each other. The "Penalty-
Method" is used for the numerical representation. The GAP coordinate system is shown in 
Figure 6.15. The x-axis points from the node GA towards node GB.  

 
Figure 6.15  GAP-element coordinate system [MSC.vN4W 2004a] 

If a load is applied, the GAP-element will change its status. The force components of the 
GAP-element in direction of the axis are the compressive force Fx and the frictional forces Fy 
and Fz  in transverse direction regarding to the displacements u, v und w of the element 
coordinate system. These internal forces can be calculated by: 

- If the GAP is open (no contact, no transverse stiffness) it follows: 

 

 0 0x b y zF K u and F F= ≤ = =  (6.23) 

 

where the stiffness Kb can be selected arbitrary. 

- If the GAP is closed and sliding (without friction) occurs, it follows: 

 

 0 0x a y zF K u and F F>= = =  (6.24) 

 

where Ka denotes the "Penalty"-value of the stiffness. 

- If the GAP is closed and static friction occurs, it follows: 

 

 ( )22 2
y z s xF F Fµ+ ≤  (6.25) 

 

where x aF K u= , y tF K v=  and z tF K w= . Kt denotes the "Penalty"-value of the transverse 
shear stiffness and is used when friction occurs.  
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The force-displacement-curve of the GAP-element is shown in Figure 6.16.  

U0

F0

Slope KA

Slope KA is used if
UA - UB      U0≥

Slope KB

Displacement U
(compression)

Force Fx
(compression)

(tension)

initial gap
  opening  

Figure 6.16 GAP-element force-displacement-curve  

The initial GAP opening is defined by U0 and the preload is defined by F0. If the GAP is 
closed (UA - UB ≥ U0) the axial stiffness Ka has a large value relative to the adjacent structure. 
Ka should be chosen at least to be three orders of magnitude higher than the stiffness of the 
neighbouring grid points. A much larger Ka value may slow down convergence or cause 
divergence, while a much smaller value may result in an inaccuracy. If the GAP is open  
(UA - UB < U0), there is a small stiffness Kb.  

When using GAP-elements convergence problems occur very often in nonlinear analysis, 
especially if friction has to be considered additionally. The "Penalty"-Method is used to 
simulate the stiffness between two degrees of freedom, therefore a large stiffness value is 
added to them in order to get the same displacements for them. "Penalty"-values are 
introduced to avoid penetration and to cause friction between two points. Problems appear in 
case that the "Penalty"-values are not chosen correctly. The success of this method depends 
on the chosen "Penalty"-values and is a compromise between accuracy and numerical power 
[Lee 1992].  

As already mentioned, when modelling the contact, the correct assumption of the stiffness 
values (compression stiffness, in case of friction, an additional transverse stiffness) is very 
important. Therefore it is recommended to execute a convergence examination, before the 
"Penalty"-values are determined (see chapter 7). 
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6.5 Discretisation of the FEM-Model (Glass-Bushing-Bolt) 

Within the scope of this thesis the parameters of the FEM-model are systematically examined 
in order to check which elements and solution algorithms of the program N4W and 
Nonlinear+ module are suitable for solving the current problem. Additionally it is checked 
how complex the FEM-model have to be to obtain adequate results.  

Based on [DASt 2003 ] and [Siebert 2004] the single parameters are determined first. Within 
these research works it was determined that a concentric mesh with 32 elements in 
circumference of the drill hole and an aspect ratio of the edge elements of at least 1:1 gives 
satisfying results which are in conformity with the analytical (theoretical) results.   

Furthermore, a parameter study of different contact elements (MSC.Marc CONTACT option 
and N4W GAP-elements) will be done.  

At first all components are modelled with linear quadrilateral (CQUAD4) PLATE-elements. 
After that the parameter study will be done predominantly with SOLID-elements of the type 
linear hexahedral (CHEXA). An overview of the used parameters is given in Table 6.1. 

Table 6.1 Parameter overview 

Used element type of all components  
(glass-bushing-bolt): 

PLATE-elements (CQUAD)  
SOLID-elements (CHEXA) 

Element mesh around the hole: Concentric circle  
Aspect ratio radial 1:1  

Elements in circumference of the drill 
hole: 

32 
64 

Output-result:  Nodal stresses  

Analysis without/with  
CONTACT or GAP: 

Linear 
Nonlinear 

Material behaviour: Linear elastic 

Friction:  without 
Coulomb  
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6.6 Evaluation of the Results 

After solving the global system of equilibrium of the FEM-model the nodal displacements 
and rotations are available. Knowing these, all internal forces and displacements can be 
determined at every location of an element.  

Using the PLATE- and SOLID- elements of N4W the nodal displacements and the rotations 
are calculated in the corner nodes and in the centroid of the element. Generally, the most 
accurate values are obtained in the center of the element. Having elements of higher order, the 
most accurate results are in the points of integration. The output in the center of the element is 
very stable but it is impossible to determine the internal forces at any location of the mesh. 
When examining the stress distribution around holes, it is necessary to determine the stresses 
at the edges of the elements because the maximum stresses occur there and with increasing 
distance from the hole they decrease very rapidly. Therefore the element stresses are 
significantly lower than the nodal values. Furthermore it is important not to use the averaged 
nodal stress values for the output. The program determines the element stresses of the 
elements, which are linked with the corresponding node, and calculates the mean value. If the 
maximum tensile stresses at the boundary hole are displayed, it is important to use the pure 
nodal values.  

Within the parameter studies of chapter 7 and 8 the results of the FE-analyses are compared 
with the analytical solutions and the results of the experimental investigations.   
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7 Numerical Parameter Studies 

 

7.1 Introduction 

To verify the numerical FEM models the analytical solutions of the cases examined in chapter 
4 and 5 are used at first. For the FE-analysis (FEA) the approaches explained in chapter 6 are 
used. After verifying the FEM model, it is used to examine the influences of different 
parameters, in particular the following ones: 

- Different interlayer materials  

- Clearance between bolt and hole 

- Friction between bolt and hole 

- Eccentric loading 

- Variation of the hole diameter and the panel width 

- Variation of the distance between hole and edge 

Finally two examples of other research works are chosen in this chapter and they will be 
recalculated and evaluated with the FEM model developed in this thesis.  

 

7.2 Semi-Finite Panel with a Circular Hole 

To check whether the chosen parameters given in Table 7.1 are suited within the FE-analysis, 
the "most simple" case (panel with a circular hole), which has an analytical solution, will be 
numerically modelled in a first step. The analytical solutions of chapter 4.3.3 are used for the 
comparison (see Figure 4.9). 

The calculations will be executed with MSC.N4W as well as with MSC.Marc in order to 
determine how big the differences in results are, using different programs. The assorted 
parameters in Table 7.1 are used for the FE-analyses. 

Table 7.1 Parameter of the FE-analyses 

Used element type of all components  
(glass-bushing-bolt): 

PLATE-elements (CQUAD)  
SOLID-elements (CHEXA) 

Element mesh around the hole: Concentric circle  
Aspect ratio radial 1:1  

Elements in circumference of the drill hole:
32 
64 

Output-result:  Nodal stresses  

Analysis: Linear 
Nonlinear 

Material behaviour: Linear elastic 
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As an example for two different panel widths the corresponding curves are shown below. 
PLATE-elements are used for modelling. Figure 7.1 and Figure 7.2 show the principal tensile 
stresses σmax as a function of the hole diameter. The linear analyses using MSC.N4W and 
MSC.Marc are compared with the analytical solution (for input parameter see Table 7.2). 

Table 7.2  Input parameter  

Panel 
size (2bxh) 

[mm] 

Hole  
diameter 

[mm] 

Glass 
thickness t

[mm] 

Load P 
[kN] 

Young's 
modulus E 

[MPa] 

Poission's 
ratio ν 

[−] 

variable variable 10 30 70.000 0,23 
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Figure 7.1 Maximum principal tensile stress σmax at the hole boundary, comparison between 

FEA and analytical solution, panel size 400 mm x 600 mm 
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Figure 7.2 Maximum principal tensile stress σmax at the hole boundary, comparison between 
FEA and analytical solution, panel size 100 mm x 600 mm 

Using PLATE-elements for modelling the results of the FE-analysis correspond very well 
with the analytical solution. The deviation of the analytical value and the linear N4W-analysis 
amounts about 2% and the MARC-analysis between 5 to 8%. The maximum principal tensile 
stresses σmax constantly occur perpendicular to the direction of loading.  

Additionally it is examined if the accuracy of the calculation can be improved for a hole 
diameter of 40 mm and panel size 400 mm x 600 mm, if SOLID-elements are used. Whereas 
the analyses are executed linear and nonlinear. The influence of increasing the number of 
elements around the hole from 32 to 64 is studied as well. Table 7.3 summarizes the results.  
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Table 7.3  Results of the parameter study  

σmax [MPa] 

Program Element 
type 

Elements 
across glass 

thickness 
Analysis 

Elements in 
circumference: 

32 

Elements in 
circumference: 

64 

N4W PLATE - linear 22,10 22,59 

N4W PLATE - nonlinear 19,14 19,97 

N4W SOLID 4 linear 22,35 22,73 

N4W SOLID 4 nonlinear 22,32 22,71 

MARC PLATE - linear 21,17 21,66 

MARC SOLID 4 linear 21,28 21,77 

Analytical result: 22,7 
 
The maximum principal tensile stresses σmax constantly occur perpendicular to the direction of 
loading, which is in conformity with the analytical result. Using 64 elements instead of 32 
elements in circumference of the hole, the results are slightly closer with the analytical 
solution (see Table 7.3). 

In the examined case, when using PLATE-elements with the linear analysis, better results are 
obtained than with the nonlinear analysis. As explained in chapter 6, a nonlinear analysis 
should be applied only if there are large deformations, material nonlinearities or contact. Due 
to the iterative approach of the nonlinear analysis and the two-dimensional PLATE-elements, 
the stress values deviate more from the analytical results. However, using SOLID-elements no 
nameable difference between linear and nonlinear calculation is determined. It is assumed 
that, by using the SOLID-elements in general the stresses are determined more precisely.  

Using the linear calculation with PLATE-elements the deviation amounts about 2,6% 
compared to the analytical value. SOLID-elements with 4 elements across thickness have a 
deviation of about 1,5%. 

The examined example is alternatively modelled with 1, 2, 4 and 6 SOLID-elements across 
thickness. In circumference of the hole 32 elements are used. The analyses are carried out 
with MSC.N4W. As it can be seen in Figure 7.3, the stress distribution does not change 
significantly having 4 or more elements. The stress distribution also shows that the maximum 
occurs on the midplane of the panel and decreases towards the surfaces. This phenomenon is 
not detectable when modelling with PLATE-elements.  
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Figure 7.3  Maximum principal tensile stress σmax stress distribution across thickness  

The investigations show that using PLATE-elements and 32 elements in circumference of the 
hole, satisfying results for the examined case (semi-finite panel with a circular hole) can be 
achieved. The additional effort of computation time and amount of memory using SOLID-
elements can be saved. Indeed, it is impossible to determine the stress distribution across 
thickness. 

Whether PLATE-elements are suited for modelling panel and bolt or for contact modelling, 
will be examined in the following. 

 

7.3 Infinite Panel with Bolt in a Conforming Hole 

7.3.1 Verification of the FEM-Model  

Now, the next step will be to model the panel with the bolt (see Figure 7.4). The parameters 
"elements" (PLATE and SOLID) and the type of contact modelling (GAP and CONTACT) 
will be examined and compared with the analytical result according to chapter 5.3.2. Because 
of the contact modelling in general the analyses are executed nonlinear (see chapter 6.4.6).  

As a result of chapter 7.2, for modelling, 32 elements in circumference of the hole are used. 
Using SOLID-elements in the following calculations 4 elements across thickness are 
modelled.  
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Figure 7.4  Infinite panel with conforming hole and bolt 

The load is uniformly distributed over the bolt. Having a panel width of 400 mm and a hole 
diameter of 40 mm the stress distribution corresponds with the values of the infinite panel 
(see chapter 4.3, Figure 4.9) and can therefore be compared with the analytical solution. The 
geometry of the panel and the amount of the load is given in Table 7.4. 

Table 7.4  Input parameters  

Panel 
size (2bxh) 

[mm] 

Hole  
diameter 

[mm] 

Panel 
thickness t 

[mm] 

Load P 
[kN] 

400 x 600 40 10 30 
 
Table 7.5  Material properties of the aluminium alloy  

 AlMgSi0,5 F22 

Density ρ 2,7 g/cm3 

Poisson's ratio ν 0,3 

Young's modulus E 70.000 MPa 
 

As explained in chapter 5.3.2, the most accurate analytical solution in closed form exists for a 
panel and bolt both consisting of the same material. For the numerical analysis aluminium 
according to Table 7.5 is chosen exemplary. It is further assumed that between bolt and hole 
no clearance occurs, i.e. ∆R = 0. 
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Different compression stiffness values are studied at first whereas GAP-elements are used 
because they may influence the numerical results significantly (see chapter 6.4.6). As shown 
in Figure 7.5 the maximum compressive stresses σmin finally approach the analytical solution 
asymptotically after attaining a certain value of compression stiffness of the GAP-elements. If 
the compression stiffness is chosen too small , the results may deviate up to 26%.  
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Figure 7.5  Influence of the compression stiffness of the GAP-elements,  
material combination aluminium-aluminium (Al-Al) 

By increasing the compression stiffness the computation time increases as well and 
additionally convergence problems may occur. According to the results of Figure 7.5 a value 
of 62 10⋅  is chosen for the following parameter study. Therefore, satisfying results are 
obtained and the computation time is not unnecessary high.  

Table 7.6 contains a comparison of the numerical determined maximum tangential and radial 
stresses with the analytical results. Additionally the location of the maximum stresses are 
indicated (definition of the angle according to Figure 7.4). 

Table 7.6  Maximum stresses of panel with bolt (material Al-Al), ∆R=0 

Program Element 
type 

Type of contact 
analysis 

Max. pφ(φ) 
[MPa] Angle φ Max. pr(φ) 

[MPa] Angle φ 

N4W PLATE GAP 54,57 / 90° -80,53 / 0° 

N4W SOLID GAP 69,22 / 90° -82,98 / 0° 

MARC SOLID CONTACT 68,59 / 90° -82,19 / 0° 

Analytical result 64,5 / 90° -78,0 / 0° 
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In general the maximum principal tensile stresses occur at 90°, the maximum contact 
compressive stress at 0° at the midplane. The latter can only be determined in case that 
SOLID-elements are used.  

The results of the FE-analyses are in good conformity with the analytical results: The 
maximum radial compressive stress value is slightly lower than the analytical solution, the 
deviation amounts between 3% or 5% depending on the used element type (PLATE or 
SOLID).  

If modelling with PLATE-elements the value of the maximum tangential tensile stress is 
about 15 % lower than the analytical result. However, using SOLID-elements the deviation is 
very low: Using GAP-elements the deviation is about 7%, using MARC CONTACT the 
deviation is about 6%, compared with the analytical solution. Therefore, SOLID-elements are 
used for the following calculation.  

 

7.3.2 Influence of Different Materials  

In the next step the parameter "different materials" will be examined. The panel consists of 
glass. For the bolt either aluminium or POM-C is used, the material properties are given in 
Table 7.7. The remaining parameters are retained according to chapter 7.3.1. 

Table 7.7  Material properties  

 POM-C AlMgSi0,5 F22 Glass 

Density ρ 1,41 g/cm3 2,7 g/cm3 2,5 g/cm3 

Poisson's ratio ν 0,35*) 0,3 0,23 

Young's modulus E 3200 MPa*) 70.000 MPa 70.000 MPa 
*) according to specification of the manufacturer 

First it is examined again, which compression stiffness of the GAP-elements are inter-
balanced on the materials aluminium and glass as well as POM-C and glass.  
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Figure 7.6  Influence of the compression stiffness of the GAP-elements,  
material combination glass-aluminium 
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Figure 7.7  Influence of the compression stiffness of the GAP-elements,  
material combination glass-POM-C 
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Figure 7.6 shows the minimal principal compressive stresses for the material combination 
glass-aluminium as a function of the compression stiffness. Starting with a compression 
stiffness of 62 10⋅  the numerical curve converges asymptotically to the analytical solution. 
Therefore the value 62 10⋅  is taken for further calculations. Examining the material 
combination glass-POM-C, the numerical curve converges asymptotically, starting already 
with a compression stiffness of 52 10⋅  (see Figure 7.7). As a result this value is used for the 
following analyses, for the material combination glass-POM-C. 

Table 7.8  Principal stresses, panel-bolt (glass-Al), ∆R = 0 

Program Element 
type 

Type of contact 
analysis 

σmax 
[MPa] Angle φ σmin  

[MPa] Angle φ 

N4W PLATE GAP 54,83 /  90° -80,30 /  0° 

N4W SOLID GAP 71,48 / 101° -83,20 / 0° 

MARC SOLID CONTACT 68,39 / 101° -83,48 / 0° 
 

Table 7.9  Principal stresses, panel-bolt (glass-POM-C), ∆R = 0 

Program Element 
type 

Type of contact 
analysis 

σmax 
[MPa] Angle φ σmin 

[MPa] Angle φ 

N4W PLATE GAP 52,81 /  90° -81,87 /  0° 

N4W SOLID GAP 67,71 / 101° -83,17 / 0° 

MARC SOLID CONTACT 64,12 / 101° -83,36 / 0° 
 
A comparison of the principal stresses show (Table 7.8 and Table 7.9) that in spite of using 
different materials the values only differ slightly. Using SOLID-elements with the material 
combination glass-aluminium the maximum principal tensile stresses are 5,6% (N4W) or 
6,3% (MARC) higher than the values for the material combination glass-POM-C. 

If using PLATE-elements, the value of the compressive contact stress can be compared with 
the SOLID-element analysis. The principal tensile stress here is about 23% lower than the 
calculation using SOLID-elements.  

As a result of the analysis using SOLID-elements, the maximum principal tensile stresses do 
not occur at an angle of 90° but at 101°. It should be noticed that, depending on the mesh size 
and geometry, the location of the maximum stress can be displaced a few degrees.  

The contact modelling with MARC is more user friendly than modelling with GAP-elements 
but, because of the algorithm explained in chapter 6, very time consuming. In case that 
symmetries are used (modelling only half of the system), the analyses need still more time 
than with N4W GAP-elements. Convergence problems will occur, if nodes of contacting 
bodies (bolt and hole) are very close to each other. That is why the contacting bodies should 
have different mesh sizes and meshing should be done very accurate. It is also very important 
to define the contacting bodies in the proper order. As already explained in chapter 6.2, a 
body with a finer mesh should be defined before a body with a coarser mesh. If the contacting 
bodies are very close to each other, the application of a bias-factor is recommended (see 
chapter 6.4.3). 
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7.3.3 Influence of a Clearance  

The examined example will now be modified by introducing a certain clearance between bolt 
and hole. Different clearance magnitudes will be examined. At first, the analyses are carried 
out with GAP-elements. The results for the bolt materials aluminium and POM-C are listed in 
Table 7.10 and Table 7.11. 

Table 7.10  Principal stresses, panel-bolt (glass-Al), ∆R ≥ 0  

Element 
type 

Type of contact 
analysis  

Clearance
∆R 

[mm] 

σmax 
[MPa] Angle φ σmin 

[MPa] Angle φ 

SOLID GAP 0,0   71,48 / 101°   -83,20 / 0° 

SOLID GAP 0,2 94,60 / 67° -119,50 / 0° 

SOLID GAP 0,5 99,97 / 57° -163,70 / 0° 

SOLID GAP 1,0 107,60 / 45° -218,30 / 0° 

SOLID GAP 2,0 119,00 / 34° -308,40 / 0° 
 

Table 7.11  Principal stresses, panel-bolt (glass-POM-C), R ≥ 0   

Element 
type 

Type of contact 
analysis  

Clearance
∆R 

[mm] 

σmax 
[MPa] Angle φ σmin 

[MPa] Angle φ 

SOLID GAP 0,0 67,71 / 101°  -83,17 / 0° 

SOLID GAP 0,2 76,82 /  79°  -89,44 / 10° 

PLATE GAP 0,2 62,92 / 68°-78° -91,96 / 0°-10° 

SOLID GAP 0,5 84,62 /  67°  -96,50 / 10° 

SOLID GAP 1,0 87,99 /  56° -108,34 / 10° 

SOLID GAP 2,0 93,88 /  56° -126,20 / 10° 
 
With increasing clearance the stresses increase significantly and the size of the contact angle 
reduces. That is why the location of the maximum principal tensile stresses displaces up to 
67° towards the direction of loading. If aluminium is used for the bolt, the increase in stresses 
is higher than with POM-C. With a clearance of 2 mm for the aluminium bolt, the maximum 
principal tensile stress amounts 119 MPa at φ = 34° and for the POM-C bolt the value is  
94 MPa at φ = 56°. Compared to the neat-fit connection (∆R = 0) the increase in stresses is 
about 66% for aluminium and about 39% for POM-C (see Figure 7.8). 
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For both materials (aluminium, POM-C) and clearance ∆R = 0 and ∆R = 2 mm the 
dimensionless tangential stress distribution are clearly presented in Figure 7.8. With 
increasing clearance depending on the bolt material the tangential stresses attain negative 
values in a range of about 0° to 15°. However, if the bolt fits exactly in the hole (∆R = 0), the 
tangential stresses are constantly positive and the influence of different bolt materials are 
hardly ascertainable. This result corresponds to the analytical investigations (see chapter 5). 

When ∆R > 0, for the glass-aluminium combination the maximum compressive stress occurs 
at an angle of 0°. For the combination glass-POM-C the maximum occurs at 10° (Table 7.8 
und Table 7.9). 
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Figure 7.8  Dimensionless tangential stress distribution, influence of a clearance  

Additionally, the analysis is carried out with PLATE-elements, taking a clearance of 0,2 mm 
and the material combination glass-POM-C. It is determined that the maximum principal 
tensile stress is significantly lower and that the maximum stress value is expanded on a larger 
area than with SOLID-elements. When using PLATE-elements, the maximum stresses can 
therefore only be determined roughly (see Figure 7.9 and Figure 7.10). The maximum tensile 
stress appears in a range of 68° to 78° and the maximum compressive stress appears in a 
range of 0° to 10°.  
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Figure 7.9 Distribution of the max. principal tensile stresses, SOLID-elements 

 

 
Figure 7.10  Distribution of the max. principal tensile stresses, PLATE-elements 

The analyses with GAP-elements show that with increasing clearance the computation time 
increases. Partial convergence will only be obtained in case that the number of load 
increments and iteration steps are increased. Using MARC the extension of the clearance does 
not lead to convergence problems.  
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7.3.4 Influence of Friction 

In the following the parameter "friction" will be examined (see also chapter 5.3.4, 6.4.3 and 
6.4.6). The friction coefficient is influenced by a variety of parameters. Friction is a complex 
physical phenomenon that involves the characteristics of the surface, such as surface 
roughness, temperature, duration of loading and relative velocity. Furthermore, the materials 
of the contacting bodies and the surrounding medium such as the presence of lubricants have 
an influence on the friction parameter. In order to determine the exact friction coefficients 
experimental investigations are necessary. Very often, only limit values within certain ranges 
are given in literature. Indeed the friction coefficients could not be found in literature for the 
two different material combinations, glass-aluminium and glass-POM-C, which are examined 
within the scope of this thesis. In [Czichos, Habig 2003] only an inaccurate defined static 
friction coefficient µH = 0,6 for the material combination glass-steel and for the combination 
glass-glass µH = 1,0 is given. 

As already mentioned, the influence of friction should be determined experimentally. The 
actual physics of friction and its experimental investigations continue to be topics of research 
and would exceed the scope of this thesis. Therefore different static friction coefficients µH 
are used to determine the influence of friction on the stress distribution.  

In Figure 7.11 to Figure 7.14 the dimensionless tangential and radial stress distributions are 
shown for different friction coefficients µH and for the two different material combinations 
glass-aluminium and glass-POM-C. The clearance ∆R is assumed to be zero (∆R = 0). 

In general it is determined that by increasing the friction coefficient µH the tangential stress 
pφ  increases and the contact compressive stress pr decreases. These results correspond to the 
investigations made by  [Iyer 2001], (see chapter 5.3.4). It is not dependent on the material 
combination in the examined case with a friction coefficient µH  = 1,0 that the tangential 
stresses are up to 30% higher compared with the frictionless connection. However, the radial 
stresses are 30% lower compared with the frictionless connection.   
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Figure 7.11  Dimensionless tangential stress distribution, influence of different friction 

coefficients, material combination glass-aluminium   
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Figure 7.12  Dimensionless radial stress distribution, influence of different friction 

coefficients, material combination glass-aluminium   
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Figure 7.13  Dimensionless tangential stress distribution, influence of different friction 

coefficients, material combination glass-POM-C 
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Figure 7.14  Dimensionless radial stress distribution, influence of different friction 

coefficients, material combination glass-POM-C 
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The analyses are carried out with the MARC CONTACT function because, having higher 
friction coefficients, the N4W GAP-elements cause convergence problems. An other 
advantage is that investigations concerning the convergence controls of the GAP stiffness 
values (compression stiffness und transverse stiffness, see chapter 6 and 7.3.1) are 
dispensable. 

 

7.3.5 Influence of an Eccentric Load Application 

In practice, inaccuracies occur very often during the installation of a construction. Therefore 
the influence of an eccentric load application is of special interest. With the help of taking an 
example without clearance (∆R = 0) and one with clearance (∆R = 0,2 mm) this will be 
examined in the following. Then the load is distributed over the bolt in a non-uniform way, 
but only applied on one end of bolt. The example is calculated for an infinite panel with the 
material combination glass-aluminium.  

Compared with the central loading the maximum stresses do not occur on the midplane 
anymore but, as expected, on the corresponding surface of load application. Without clearance 
the maximum principal tensile stress increases by 7,5%, the corresponding compressive stress 
increases by 7% compared with the central loading. Having an additional clearance of ∆R = 
0,2 mm, the principal tensile stress increases by approximately 35%. The principal 
compressive stress even increases by approximately 76%.  

In Figure 7.15 to Figure 7.18 the distributions of the principal stresses are schematically 
represented for central and eccentric loading. The clearance amounts ∆R = 0,2 mm.  

 
Figure 7.15  Max. principal tensile stress, 
central applied load, ∆R=0,2 mm 

Figure 7.16  Max. principal tensile stress, 
eccentric applied load, ∆R=0,2 mm 

 
Figure 7.17  Min. principal compression 
stress, central applied load, ∆R=0,2 mm 

Figure 7.18  Min. principal compression 
stress, eccentric applied load, ∆R=0,2 mm 
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7.4 Semi-Finite Panel with a Bolt in a Conforming Hole 

7.4.1 Introduction 

In chapter 5.3.3 an analytical solution in closed form was introduced for the semi-finite panel 
with a bolt in a conforming hole with the help of stress concentration factors. These 
investigations were based on experiments. To verify the numerical determined stress 
distributions this analytical solution will be used.  

The examined parameters are now: panel width, hole diameter or the ratio a/b and the 
distance H between hole center point and panel edge (see Figure 7.19). The influence of the 
parameters on the stress distribution will be examined in particular for the semi-finite panel. 
The clearance is assumed to be zero (∆R = 0). 
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Figure 7.19  Bolted connection in a semi-finite panel 

 

7.4.2 Influence of the Hole Diameter and the Panel Width  

At first, the parameters hole diameter and panel width will be examined. Subsequently, the 
results will be compared with those of the infinite panel. The input parameters of the finite 
panel are given in Table 7.12. The hole diameter is variable and the hole is located in the 
center of the panel strip. The clearance is assumed to be zero (∆R = 0). 

Table 7.12 Input parameters 

Panel 
size (2bxh) 

[mm] 

Hole diameter 
[mm] 

Glass 
thickness t

[mm] 

Load P 
[kN] 

100 x 600 variable 10 30 
 
Figure 7.20 shows the maximum principal tensile stresses σmax as a function of the ratio a/b. 
Compared are the material combinations glass-aluminium, glass-POM-C and the approximate 
analytical solution according to Pilkey and Frocht and Hill. 
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Figure 7.20  Influence of the ratio a/b on the principal tensile stresses  

If the ratio of drill hole radius a and b lies in the range of 0,1 < a/b ≤ 0,2, the stresses increase 
enormously or tend to infinity. An interesting aspect is that for values a/b > 0,2 the stresses 
decrease until a minimum is reached between a/b = 0,4 and 0,5. Afterwards, the values rise 
again. This distribution was also determined by Theocaris (see chapter 5.3.3). An interesting 
aspect is the stress distribution for the material combination glass-POM-C. The tensile 
stresses are below those of the material combination glass-aluminium until the ratio a/b = 0,4 
is reached, thereafter the stresses obtain higher values than the material combination glass-
aluminium. This means that when the hole is located closer to the edge and a soft material like 
POM-C is used for the bolt the deformations and the tensile stresses are higher than using a 
stiffer material like aluminium.  

The shape of the analytical calculated curve is similar to the numerical determined curves but 
they are not congruent. One reason for the deviation is that the approximate solution of Pilkey 
is based on experimental investigations made by Forcht and Hill, who used different 
materials (aluminium and steel) than in this investigation. As already explained, the influence 
of different materials on the stress distribution is only small unless the clearance is assumed to 
be zero (∆R = 0). Additionally, the experimental based solution includes friction which is not 
considered in the numerical analysis and therefore is responsible for the main part of the 
deviation. As shown in chapter 7.3.4, dependent on the friction coefficient µH, the tangential 
stresses increase up to 30% compared with the frictionless connection.  

Comparing the tangential stresses of finite (width 100 mm) and infinite panel (see Figure 7.21 
and Figure 7.23), a reduction in panel width results in a significant stress increase: 
considering the finite panel the maximum tangential stresses for the material combination 
glass-aluminium are about 79% higher than the values of the infinite panel and 86% higher 
for glass-POM-C. On the contrary the panel width has no significant influence on the radial 
stresses (see Figure 7.22 and Figure 7.24). 
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Figure 7.21  Tangential stress distributions of infinite and finite panel, material combination 

glass-aluminium 
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Figure 7.22  Radial stress distributions of infinite and finite panel, material combination 

glass-aluminium 
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Figure 7.23  Tangential stress distributions of infinite and finite panel, material combination 

glass-POM-C 
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Figure 7.24  Radial stress distributions of infinite and finite panel, material combination 

glass- POM-C 
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7.4.3 Influence of the Distance between Hole and Edge  

Not only the panel width but also the distance between the hole and the edge of the panel have 
an influence on the magnitude of the principal stresses. The following analysis is based on the 
parameter according to Table 7.12. The distance H is variable (see Figure 7.19). Figure 7.25 
contains the distribution of the principal tensile stresses as a function of the ratio a/b, where H 
= 50 mm or H = 100 mm. To allow a comparison the stress distribution for the panel with the 
centrally located hole is given in Figure 7.25. As represented in Figure 7.25, the principal 
tensile stresses increase with the reduction of the distance H. If the ratio a/b for a chosen edge 
distance of H = 50 mm decreases additionally the stresses tend to infinity for a/b < 0,4. In the 
range of 0,4 ≤ a/b ≤ 0,5 the values of principal tensile stresses increase only about 10% 
compared with the values of the panel with a central hole. 

However, having a distance H = 100 mm, the values approach almost the stress values of the 
panel with the centrally located hole.  
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Figure 7.25  Distribution of the principal tensile stresses as a function of the ratio a/b and the 

distance H 

Having a constant distance H, but increasing the hole diameter at the same time, the distance 
between hole boundary and panel edge decreases respectively. The tangential and radial 
stresses decrease therefore. By increasing the hole diameter from 20 to 50 mm, where the 
distance H = 50 mm is constant, the tangential and radial stresses decrease up to 90%. At the 
same time the maximum contact pressure does not occur at an angle of φ  = 0° but, dependent 
on the ratio a/b, will be displaced up to φ  = 45°, for a/b = 0,5 (see Figure 7.26). In contrast, 
the location of the tangential stresses remains unchanged at about φ  = 101°. 
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Figure 7.26  Distribution of the contact pressure, where H=50 mm, a/b=0,5  

 

7.5 Comparison with other Research  

7.5.1 Introduction  

Based on the FEM-models which were developed within the parameter studies two examples 
of other research works will be now recalculated. The examples of the research works are 
based on other approaches or FEM-program. Therefore an additional verification of the own 
approach is possible as well as an appraisal of the methods used in these research 
investigations.  

 

7.5.2 Investigations carried out by Techen  

[Techen 1997] carried out experimental investigations with bolted connections. The gap 
between bolt and hole was filled with different two-component resins. The bolt fitted exactly 
in the hole without clearance. With the help of tension tests Techen determined the magnitude 
of the failure loads and the location of the initial crack. The initial crack was determined at an 
angle of φ  = 45°. To calculate the stresses with the help of the failure loads he carried out 
additionally FE-analyses but did not receive any proper results. That is why Techen used the 
analytical solution according to [Girkmann 1963] which presumes that both bolt and panel 
consist of the same elastic material and no clearance (∆R = 0) occurs (see chapter 5.3.2). 
Knowing the angle of φ  = 45° and the corresponding failure load from the experiments the 
maximum tensile stress was then calculated. 

To check the approach according to Techen the following example will be recalculated. 
[Siebert 2004] contains an analysis of this example as well. Therefore, an additional 
verification is possible.   

The geometry and the material properties are given in Table 7.13 and Table 7.14. 

 

 

 

P 



118  7 Numerical Parameter Studies 

Table 7.13  Input parameters 

Panel 
size (2bxh) 

[mm] 

Hole  
diameter 

[mm] 

Bolt 
diameter 

[mm] 

Interlayer
thickness 

[mm] 

Glass 
thickness t

[mm]  

300 x 500 24 16 4 12 
 

Table 7.14  Material properties 

 
Interlayer 

resin 
Bolt 

steel S235 
Glass 

Poisson's ratio ν 0,3 - 0,49 0,3 0,23 

Young's modulus E 3240 MPa 210.000 MPa 70.000 MPa 
 
Techen does not specify Poisson's ratio ν but, according to references, the limit values ν = 
0,3 and ν = 0,49 are examined.  

The location of the hole is given in Figure 7.27. 
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Figure 7.27  Location of the drill hole  

 

In the following modelling is carried out according to the previous FEM-analyses. 32 
elements are chosen in circumference of the hole and, using SOLID-elements additionally, 4 
elements are chosen across panel thickness. The load is uniformly distributed on the bolt 
length. In Table 7.15 the results are listed. 
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Table 7.15  Result overview  

Material properties 
resin 

σmax 
[MPa] Angle φ σmin 

[MPa] Angle φ 

E=3240 MPa 
ν=0,49 110,76 / 90° -149,54 / 0° 

E=3240 MPa 
ν=0,3 115,21 / 90° -139,71 / 0° 

Result Techen  
E=3240 MPa 
ν=? 

139,3 / 45° - 

Result Siebert 
E=2000 MPa 
ν=0,49 

113,7 / 90° - 

 
Reducing Poisson's ratio ν from 0,49 to 0,3 the principal tensile stresses calculated by FE-
analysis increase slightly from 111 MPa to 115 MPa. The maximum tensile stress occurs at 
φ = 90° for both cases. 

The results are in good conformity to Siebert. Comparing these results with Techen, an 
essential larger contact area is determined. If the stress σmax = 139,3 MPa and the 
corresponding angle φ = 45° determined by Techen is converted to an angle of 90°, a stress 
value of σmax  = 111,8 MPa will be calculated.  

Because of these results it is assumed that either the contact area or the corresponding angle φ  
was detected too small by Techen and the numerical model which was developed within this 
thesis, determines the stresses properly.  

The approximate solution for calculating the maximal tensile stresses given by Techen can be 
used as long as the connection may be assumed frictionless and the failure load including the 
contact angle φ is determined by a full scale test. However, in practice, the determination of 
the contact angle causes problems and leads to wrong assumptions (see Techen). Because of 
the material behaviour of glass (see chapter 2) the initial crack may not occur at the location 
of the maximum tensile stress but at the location with the maximum surface damage.  

 

7.5.3 Investigations carried out by Overend  

In his thesis [Overend 2002] examined bolted connections with different geometries by 
executing FE-analyses and experimental investigations. The FEM-model was verified with 
the help of a comparison of the numerical solution and the approximate analytical solution of 
the semi-finite panel with a centrally located hole (see chapter 4). The deviation between 
numerical and analytical solution is given with ±3%. Unfortunately, in [Overend 2002], the 
magnitude of the load and the material parameters are not listed and a recalculation of this 
example is therefore not possible. However the comparable example of a semi-finite panel 
and hole, which was carried out within this thesis (see chapter 7.2), led approximately to the 
same deviations. After that, Overend calculated a bolted connection using this verified FEM-
model. The load was applied on the steel bolt and it was assumed that there is no clearance 
between bolt, bushing and hole (∆R = 0). The calculation was done with 2D and 3D-volume 
elements. Overend determined a conformity of 2D- and 3D-analysis. This statement cannot be 
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validated on the basis of the numerical calculations which were carried out within this thesis 
(see chapter 7.3.1).  

Indeed, Overend used a different FEM-program, i.e. Lusas Finite Element Analysis System, 
Version 13.2 and it is presumed that this is the reason for the difference. In particular the type 
of contact modeling, the load application, the type of supporting and the used element types 
and geometries influence the results and can cause more or less differences (see chapter 6). 

Furthermore, Overend examines bolted connections with different bushing materials 
(aluminium, polyamide) and different magnitudes of clearance. The calculations are 
computed with 2D-elements. It has to be noticed that the calculations include friction. The 
friction coefficient amounts µH  = 0,25. This example will be recalculated in the following. 
The geometry is given in Table 7.16. The distance between the hole and the top edge is given 
with 31,5 mm (definition according to Figure 7.27). Material properties are not given by 
Overend therefore the parameters according to Table 7.17 are used.  

Table 7.16  Input parameters 

Panel 
size (2bxh) 

[mm] 

Hole  
diameter 

[mm] 

Bolt 
diameter 

[mm] 

Bushing 
thickness 

[mm] 

Clearance
∆R 

[mm] 

Glass 
thickness t 

[mm] 

100 x 200 37 32 2 1 6 
 

Table 7.17  Material properties 

 
Bushing 

aluminium 
Bolt 

steel S235 
Glass 

Poisson's ratio ν 0,3 0,3 0,23 

Young's modulus E 70.000 MPa 210.000MPa 70.000 MPa 
 
The load amounts 25 kN. The load is distributed uniformly on the bolt length. In the 
following modelling according to the previous FEM-analyses is carried out. Once again 32 
elements are chosen in circumference of the hole, and using SOLID-elements additionally, 4 
elements are chosen across panel thickness. The analysis is carried out by 2D-PLATE-
elements as well in order to compare the results with the 2D-analysis of Overend. The results 
are given in Table 7.18. 

Table 7.18 Principal stresses, friction coefficient µH=0,25 

Element type σmax 
[MPa] Angle φ σmin 

[MPa] Angle φ 

SOLID GAP 266,54 / 67° -283,63 / 0° 

SOLID CONTACT 251,19 / 67° -257,62 / 0° 

PLATE GAP 228,52 / 67-78° -261,76 / 0-10° 

Result Overend  ca. 280*) / 60-80° ca. -200*) / 0° 
*) Values are estimated out of a diagram  

When using PLATE-elements the maximum tensile stress is 20% lower than the value of 
Overend. The maximum stress occurs within a range of φ = 67° to 78°, which is comparable 
with Overend.  
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In the opposite the calculation with SOLID-elements is in conformity. However, the 
compressive stresses are significant higher than the values of Overend. It is presumed that 
different algorithms of contact modelling, different friction modelling and different 2D-
element types are the reason for that. The stress values determined by Overend can only be 
roughly estimated according to a diagram. As a consequence further inaccuracies may occur. 

 

7.6 Summary 

As shown in this chapter, partially the examined parameters have a big influence on the stress 
distribution in the area of the drill hole. That is why it is very important to model these 
parameters close to reality. Only a step-by-step verification of the numerical model - which 
was used in this chapter - leads to correct results. The parameters of the FEM-model itself 
already influence the results considerably. Furthermore, the results of different FEM-
programs are not transferable in general and a verification of each FEM-program is 
indispensable. 

The FEM-model which was verified and applied within this work corresponds very well with 
the analytical solutions and comparable FEM-calculations of other researchers.  

In the following the results are shortly summarized once more.  

Influence of different materials 

Presuming a neat-fit condition (clearance ∆R = 0), the values of the maximum principal 
tensile stresses only differ slightly despite of different material combinations (glass-
aluminium, glass-POM-C). Using SOLID-elements with the material combination glass-
aluminium the maximum principal tensile stresses are 5,6% (N4W) or 6,3% (MARC) higher 
than the values for the material combination glass-POM-C. 

The maximum principal compressive stresses have approximately identical values for both 
material combinations. 

Influence of a clearance 

By increasing the clearance between bolt and hole (∆R > 0) the stresses increase as well. At 
the same time the location of maximum principal tensile stresses changes. With the absence 
of clearance (∆R = 0) the stress maximum occurs approximately perpendicular to the load 
direction. Otherwise, when it is assumed that ∆R > 0, the stress maximum moves towards the 
load direction. According to the size of clearance (max. ∆R = 2,0 mm was examined) the 
stress maximum occurs at a range between 35° and 55°, depending on the material 
combination. In comparison with the neat-fit connection (∆R = 0) a clearance of ∆R = 2,0 mm 
for aluminium leads to an increase in maximum principal tensile stresses of about 66% and, 
for POM-C, to an increase of about 39%. 

Influence of friction 
The exact determination of the friction coefficient µH of the enlisted friction partners has to be 
done with experimental investigations, which can not be carried out within the scope of this 
thesis. To examine the influence of friction however, different friction coefficients are 
applied.  
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When increasing the friction coefficient µH  it is determined that the tangential stresses pφ  
will grow and the contact compressive stresses pr will decrease. In comparison with the 
frictionless connection, the tangential stresses with a friction coefficient µH = 1,0 increase up 
to 30% and the radial stresses decrease up to 30%, not depending on the material 
combinations. 

Influence of an eccentric load application 
In comparison with a centrally load application the location of the maximum stress 
concentration is not in the midplane anymore but, as expected, on the corresponding surface 
of the load application. This leads to an increase in maximum principal tensile stresses of 
about 7,5% for the neat-fit condition (∆R = 0). The rise in maximum principal compressive 
stresses amounts about 7% compared to a central loading. If additional clearance is present, 
the principal stresses grow rapidly. With a clearance of ∆R = 0,2 mm the increment of 
maximum principal tensile stress amounts about 35% and, for the maximum principal 
compressive stress, the increment even amounts about 76%. 

Influence of hole diameter, panel width and distance between hole and edge 

If the ratio of drill hole radius a and panel semi-width b lies in the range of 0,1 < a/b ≤ 0,2, 
the stresses increase enormously or tend to infinity. An interesting aspect is that for values a/b 
> 0,2 the stresses decrease until a minimum between a/b = 0,4 und 0,5 is reached. Afterwards 
the values rise again.  

A comparison with the tangential stresses of a panel of finite and infinite width shows that a 
reduction of the panel width influences the amount of the maximum tangential stresses 
essentially: Having a finite width of 100 mm the maximum tangential stresses are 80% to 
86% higher than for the infinite panel. On the contrary the panel width has no significant 
influence on the radial stresses. 

Not only the panel width but also the distance between hole and panel edge influence the 
amount of principal tensile stresses. By reducing the edge distance H the principal stresses 
increase. If, in addition, the ratio a/b decreases for a chosen edge distance of H = 50 mm, the 
stresses tend to infinity at a/b < 0,4. In the range of 0,4 ≤ a/b ≤ 0,5 the values of principal 
tensile stresses only increase about 10% compared with the values of the panel with a central 
hole. 

FEM-model and its input parameters 

MARC  

The contact modelling with MARC is more user friendly than modelling with GAP-elements 
but because of the algorithm it is very time consuming. When symmetries are used (modelling 
only half of the system) the analyses need still more time than with N4W GAP-elements. 
Furthermore, convergence problems will occur, if nodes of contacting bodies (bolt and hole) 
are very close to each other. That is why the contacting bodies should have different mesh 
sizes and meshing should be done very accurate. It is of the same importance to define the 
contacting bodies in proper order. A body with a finer mesh should be defined before a body 
with a coarser mesh. If the contacting bodies are very close to each other, the application of a 
bias-factor is recommended. 
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When modelling a bigger clearance (∆R > 0,5 mm) or friction the analysis with the MARC 
CONTACT function will be significantly outranged compared with the N4W GAP-elements. 
In cases like this the calculation with N4W GAP-elements very often cause convergence 
problems and it takes a lot of time to find the correct settings for a successful analysis.  

N4W 

In particular modelling with GAP-elements is more time consuming but very well suited for 
simple geometries. Additionally, the compression stiffness (penalty parameter) of the GAP-
elements has to be studied because its value influences the result essentially.  

In cases without clearance or friction satisfying results for the contact modelling with GAP-
elements are obtained and this kind of modelling is very stable compared with the MARC 
CONTACT function.   

General comments 

The investigations show that, using PLATE-elements and 32 elements in circumference of the 
hole, satisfying results can be achieved for the "most simple" examined case (semi-finite 
panel with a circular hole). The additional effort of computation time and the amount of 
memory, using SOLID-elements, can be saved. Indeed it is not possible to determine the 
stress distribution across thickness. When using SOLID-elements it is determined that the 
stress distribution across thickness has its maximum on the midplane of the panel and 
decreases towards the surfaces.  

A close to reality contact model can only be achieved by using nonlinear contact algorithms. 
Within this thesis, in case of modelling with 3D-volume elements (SOLID-elements), the 
results approached closer to the analytical solution than in case of modelling with 2D-
elements. This is valid for both examined contact algorithms (N4W GAP-elements, MARC 
CONTACT function).  

Executing nonlinear analysis, it is generally recommended to apply the load in several 
increments, otherwise convergence problems may occur. Within this thesis the load was 
applied in 10 increments. To solve the nonlinear equation systems the "Full Newton-Raphson-
Iteration" was used. 
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8 Experimental Investigations on the Stress Distribution related to the 
Hole Area 

 

8.1 Introduction 

As derived in chapter 7, the examined parameters influence the results of the FEM-
calculation. Experimental investigations will be carried out to verify the FE-analyses not only 
by the means of an analytical solution but the procedure will be confirmed as well. Based on 
the numerical parameter study of chapter 7, the parameters hole diameter, panel width, 
distance between edge and hole as well as the parameters bushing-material and -thickness will 
be examined.  

Interesting as well is also the deformation behaviour of the used bushing materials (POM-C, 
AlMgSi0,5 F22), therefore tension tests will be executed. The bushing geometry and the 
influence of different temperatures will be examined in particular.  

 

8.2 Deformation Behaviour of the Bushings  

8.2.1 Specimen 

In order to evaluate the material behaviour of the bushings for thermoplastics and for 
aluminium one material will be examined in detail for each case. These materials are often 
used in practice: 

- Polyacetal-Copolymer (POM-C) 

- Aluminium alloy AlMgSi0,5 F22 

The properties of the bushing materials are given in chapter 3. The most important material 
properties are summarized once again in Table 8.1. 

Table 8.1 Material properties of the bushings 

 POM-C AlMgSi0,5 F22 

Density ρ 1,41 g/cm3 2,7 g/cm3 

Poisson's ratio ν 0,35*) 0,3 

Young's modulus E 3200 MPa*) 70.000 MPa 
*) according to specification of the manufacturer 
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Two different bushing thickness tH with two different outside diameters da will be examined 
for each material (see Figure 8.1). 
 

di

da

 

 

Thickness of the bushing tH = 5 mm 

Geometry 1: di_1 = 10 mm;  da_1 = 20 mm   

Geometry 2: di_2 = 30 mm;  da_2 = 40 mm 

di

da

 

 

Thickness of the bushing tH = 2,5 mm 

Geometry 3: di_3= 15 mm;  da_3= 20 mm   

Geometry 4: di_4= 35 mm;  da_4= 40 mm 

Figure 8.1 Schematic sketch of the examined bushing materials  

 

 

 

 
 

 

 

 
Figure 8.2  AlMgSi0,5 F22 and POM-C specimen 
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8.2.2 Test Set-Up and Performance 

The examination of the bushings will be carried out analogous to the tests with glass 
specimens, which will be explained in the next section. The only difference is that, instead of 
glass specimen, a steel panel with the same thickness will be used in order to apply adequate 
loads.  

The load is applied on the specimen with a constant velocity of 1 mm/min until a certain 
maximum load is reached. Afterwards they are unloaded. During the test performance the 
displacement of the bushings are determined. The test set-up and examples of the used 
bushings are shown in Figure 8.3. 

 

 P P

 

 
Figure 8.3  Test set-up deformation behaviour of the bushing material 

At first, possible plastic deformations will be examined for each geometry and material of the 
bushings. Therefore different load increments (20, 25, 30, 40 and 50 kN) are applied. The 
bushing will be demounted after each load increment and checked if there are any permanent 
deformations. As far as large plastic deformations occur the load increment is not increased. 
Afterwards, retaining this load increment, 4 identical tests are carried out to receive reliable 
results about the force-deformation behaviour.  

The tests are performed at room temperature (21°), and at 80°C according to the requirements 
of facades [DIN 18516-1]. An overview of the performed tests is given in the Appendix A.1. 
The force-displacement-curves of the load increment series are given in the Appendix A.1 as 
well.  

 

Steel panel S235 
200x600x10 

Steel bolt  
ø variable 
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geometry 
bushing 

Steel splice plate 
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8.2.3 Test Evaluation 

To evaluate and compare the force-displacement behaviour of the different bushing materials 
(AlMgSi0,5 F22 und POM-C) and the bushing geometry in the following diagrams (see 
Figure 8.4 and Figure 8.5) force-displacement-curves are given for different bushing 
geometries. The load increment exemplary amounts 25 kN. 

Thereafter in Figure 8.6 and Figure 8.7 force-displacement-curves are given for different 
bushing materials having the same outside diameter.  

Figure 8.8 to Figure 8.11 contain the curves for similar parameters at 80°.  
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Figure 8.4  Force-displacement curve, bushing: aluminium - comparison of different 

geometries  
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Figure 8.5   Force-displacement curve, bushing: POM-C - comparison of different 

geometries 
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Figure 8.6 Force-displacement curve, comparison of different bushing materials da=40mm 
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Figure 8.7 Force-displacement curve, comparison of different bushing materials da=20mm 
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Figure 8.8 Force-displacement curve, bushing: aluminium - comparison of different 

geometries, T = 80°C 
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Figure 8.9   Force-displacement curve, bushing: POM-C - comparison of different 

geometries, T = 80°C 
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Figure 8.10 Force-displacement curve, comparison of different bushing materials da=40mm, 

T = 80°C 
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Figure 8.11 Force-displacement curve, comparison of different bushing materials, da=20mm, 

T = 80°C 
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8.2.4 Results 

The AlMgSi0,5 F22-bushings have no visible deformations at the examined load increments 
(20 to 50 kN) and temperatures. Having a bushing diameter of da = 40 mm and thickness of 
2,5 mm and 5 mm only linear elastic deformations occur independent on the temperature (see 
Appendix A.1, Figure A.1, Figure A.2, Figure A.9, Figure A.10). Having a bushing diameter 
of da = 20 mm and thickness of 5 mm only linear elastic deformations occur independent on 
the temperature as well (see Figure A.3 and Figure A.11). The bushings with 2,5 mm 
thickness have slightly plastic deformations (see Figure A.4 and Figure A.12). In Figure 8.4 a 
comparison of the force-displacements-curves at room temperature for different bushing 
geometries are shown. The corresponding curves at 80° are given in Figure 8.8. 

The POM-C-bushings with a diameter of da = 40 mm show linear elastic deformations until 
the load increment of 30 kN is reached not depending on the bushing thickness. Slight plastic 
deformations occur already at 40 kN (see Figure A.5 and Figure A.6). At a temperature of 80° 
and a load increment of 20 kN larger plastic deformations occur and increase continuously 
until the maximum increment of 50 kN is reached. The bushings of 5 mm thickness show 
larger deformations than the ones of 2,5 mm (see Figure A.13 and Figure A.14). Having a 
diameter of da = 20 mm significant plastic deformations occur at a load increment of 20 kN 
(see Figure A.7 and Figure A.8). In order to compare the different bushing geometries the 
load is increased until an increment of 40 kN is reached. At a temperature of 80° and a load 
increment of 20 kN large plastic deformations occur and it takes a great effort to demount the 
bushings of the steel panel. That is why the load is not increased. The bushings of 5 mm 
thickness show again larger deformations than the ones of 2,5 mm (see Figure A.15 and 
Figure A.16). In Figure 8.5 a comparison of the force-displacements-curves at room 
temperature are shown for different bushing geometries. The corresponding curves at 80° are 
given in Figure 8.9. At room temperature only the POM-C-bushings with a diameter of  
da = 20 mm and a thickness of 5 mm have visible deformations (see Figure A.17). However, 
at 80° the 2,5 mm and the 5 mm thick bushings have visible deformations (see Figure A.18 
and Figure A.19). 

In Figure 8.6 and Figure 8.7 a comparison of the force-displacements-curves at room 
temperature are shown for the different bushing materials with the same geometry. The 
corresponding curves at 80° are given in Figure 8.10 and Figure 8.11. 

Summary and evaluation of the different influences  

AlMgSi0,5 F22 

It can be assumed that bushings which have diameters between da = 20 mm and 40 mm and a 
thickness between 2,5 mm and 5 mm show a linear elastic material behaviour until a load 
increment of 50 kN and a temperature of 80° is reached.  

POM-C 

It can be assumed that bushings which have a diameter of da = 40 mm and a thickness 
between 2,5 mm and 5 mm show a linear elastic material behaviour at room temperature until 
a load increment of 40 kN is reached. Having a diameter of da = 20 mm at 20 kN plastic 
deformations occur for both bushing thickness. For all examined geometries significant 
plastic deformations occur at a load increment of 20 kN and a temperature of 80°.   
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8.3 Loadbearing Tests for Verifying the FEM-Model 

8.3.1 Preliminary Considerations 

To minimize the sources of error, which influence or alter the test results, a more or less 
simple test set-up is chosen. The aim is to exclude constraint stresses or eccentricities in order 
to receive only in-plane loads. Furthermore, monolithic glass panels are used instead of 
laminated glass. It is referred to [Gräf 2003], [Schuler 2003] and [Kutterer 2003] for 
investigations on the loadbearing behaviour of laminated glass. 

The executed analytical and numerical parameter studies are valid for linear elastic material 
behaviour. The performed material tests, which are described in chapter 8.2, showed plastic 
deformations for the POM-C bushings under the application of large actions. As a result the 
actions for the tests are chosen in a way that the bushings only get elastic deformations. 
Hereby the executed tests can be recalculated by the verified FEM-model.  

Based on the numerical parameter study in chapter 7, besides the parameters drill hole 
diameter, panel width and distance between hole and edge, the parameters bushing material 
and bushing thickness are examined.  

The tests are recalculated by means of FEM and afterwards compared with the experimental 
results.  

 

8.3.2 Specimen 

Two different panel widths, 200 mm and 400 mm as well as three different drill hole 
diameters 20, 30 and 40 mm are examined. A centrally located hole and a hole located close 
to the panel edge are examined as well. An overview of the specimen and their geometries are 
given in Table 8.2 and Table 8.3 as well as in Figure 8.12 and Figure 8.13. 

Due to the expected high local stress peaks at the edge of the drill hole, thermally toughened 
glass is used. The panel thickness amounts 10 mm.  

Table 8.2 Specimen with a centrally located hole  

Specimen 
no. 

Size*) 2bxh 
[mm] 

Hole 
diameter 

[mm] 

Glass thickness 
(mean value of 
6 single values) 

Comment 

1 401x601,5 40,0  10,00 Drill hole has a 
misalignment of 0,25 mm  

2 400,5x601,5 30,1  9,93 Drill hole has a 
misalignment of 0,25 mm  

3 401x601,5 21,4  9,99 Drill hole has a 
misalignment of 1,0 mm  

4 202x601,5 30,1 10,00 Drill hole has a 
misalignment of 0,2 mm  

*) size determined at the specimen  
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Figure 8.12  Geometry of specimen with centrally located hole 

 

Table 8.3  Specimen with a hole located close to the panel edge  

Specimen 
no. 

Size*) 2bxh 
[mm] 

Hole 
diameter 

[mm] 

Glass thickness 
(mean value of 
6 single values) 

Comment 

1 402x602 40,0  10,96 Drill hole has a 
misalignment of 0,4 mm  

2 401,5x602,5 30,04  10,00 Drill hole has a 
misalignment of 0,2 mm  

3 399,5x602,5 20,0  9,99 Drill hole has a 
misalignment of 0,4 mm  

4 202,5x602 30,0  10,00 Drill hole has a minimum 
misalignment  

*) size determined at the specimen 
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Figure 8.13  Geometry of specimen with a hole located close to the panel edge 

For the bushings, the materials and geometries according to chapter 8.2 are used. In addition 
to the bushing outside diameters 20 mm and 40 mm, the outside diameter da = 30 mm is 
examined. An overview contains Table 8.4. 

Table 8.4  Examined bushing geometries  

Material of the 
bushing 

Thickness of 
the bushing tH 

[mm] 

Outside diameter da 
[mm] 

(1) AlMgSi0,5 F22 

(2) POM-C 

2,5 

5,0 

20 

30 

40 

 
The geometries or the size of the bushings are measured with a digital calliper gauge and are 
used for the FEM-calculations. The overall clearance ∆R between drill hole and bushing is 
given for all specimen in Appendix A.2.  

 

8.3.3 Measuring Technology  

In order to compare the numerical (by means of FEM) and the experimental determined 
strains or stresses on each specimen several strain gauges are applied. To determine the stress 
distribution at the edge of the drill hole most accurately a high number of strain gauges is 
applied. The overall result εDMS is the arithmetic mean value resulting from the integration 
results of all strain gauge measuring grids. That is why the choice of the gauge length is 
decisive.  

Crucial strain gradients are expected at the edge of the drill hole. Therefore, strain gauges 
with short measuring grids are used and the strain gauges are applied as close as possible to 
the edge of the drill hole in order to measure the strain distribution as accurate as possible.   
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The correct choice and location of the strain gauges are based on the tangential and radial 
stresses determined in the parameter study of chapter 7.  

The following strain gauges types of the company Preusser Messtechnik GmbH are used: 

- Linear strain gauges with a 1 mm long measuring grid (type FLA-1-11)  

- Linear strain gauges with a 5 mm long measuring grid (type FLA-5-11)  

- 0°/45°/90°-rosettes with three measuring grids, length 3 mm (type FRA-3-11)  

The nominal resistance of all mentioned strain gauges amounts 120 Ω . In spite of performing 
the experiments at almost non-varying room temperature, strain gauges with so-called "three 
wire technology" are used to compensate unintentional temperature influences. Temperature 
fluctuations may occur due to open windows or doors for example.    

To determine the tangential stresses at the place perpendicular to the load direction the linear 
strain gauges with a 1 mm long measuring grid (identification no. L1, L2) are applied at the 
edge of the drill hole. Due to the symmetrical configuration it is possible to check whether the 
specimen is installed centrically or whether the loading happens in a central way. More strain 
gauges are applied at the drill hole edge in load direction (θ  = 0°) and at an angle of θ  = 60° 
to determine tangential and radial stresses. Therefore 0°/45°/90°-rosettes with 3 mm long 
measuring grids are used (identification no. R1, R2). 

In order to specify the normal stresses between the drill hole edge and the lateral edge of the 
panel three additional strain gauges with a 5 mm long measuring grid are applied 
(identification no. L3, L4, L5). One of them is applied at the backside of the panel in order to 
check whether the specimen is installed centrically or whether the loading happens in a 
central way.  

The position of the strain gauges on the specimen are shown in Figure 8.14 and Figure 8.15.  

θ
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L5 back

60
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Figure 8.14   Position of the strain gauges on the specimen  
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Figure 8.15  Specimen with strain gauges 

The measurement signals are recorded with a digital measuring amplifier "Spider 8", 
transmitted directly to a PC and evaluated with the software catman 4.0, release 2.0.  

The measuring grids a, b and c of a strain gauge rosette are connected with the measuring 
amplifier as three single quarter-bridges. Therefore it is possible to determine the biaxial 
stress state with unknown principal directions. The linear strain gauges are connected as a 
quarter-bridge as well.  

It should be noticed that the used "three wire" device compensates resistance changes due to 
the temperature but not resistance changes due to the length of the cables (connecting cable 
between strain gauges and measuring amplifier). The k-factor, which is given on the strain 
gauge package, has to be revised with the following equation: 
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_ _

new strain gauge cable

strain gauge strain gauge
new

new

R R R
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k

R

= +

⋅
=

 (8.1) 

 

8.3.4 Test Set-Up and Performance 

The glass panels are connected with bolts at splice plates. Between the glass drill hole and the 
steel bolt different bushing materials, which are described in Table 8.4, are integrated. The 
bushings are produced in a way that there is no clearance between steel bolt and bushing. The 
test-rig is shown in Figure 8.16.  

At the lower edge the panels are fixed with a clamping strip. To receive a clamping, screws 
are used which are tightened with a torque of 8 Nm.  
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Figure 8.16  Test-rig  

The loading is increased with 1 mm/min until the maximum load of 1000 N is reached. 
Afterwards this load level is retained for 20 sec. After this, unloaded down to 500 N and, 
again, the level of 500 N is retained for 20 sec. In a further step the load is increased again to 
1000 N until the specimen is finally unloaded. The whole loading gradient of one experiment 
is shown in Figure 8.17. The tests are carried out at room temperature. 

The different load levels are chosen in order to determine potential creep. 

0

200

400

600

800

1000

1200

0 20 40 60 80 100

Time [s]

Lo
ad

 [N
]

 
 

Figure 8.17  Loading gradient, protocol of the actual distribution  
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The strains in every experiment are determined with the help of the strain gauges. 
Additionally, displacement transducers are applied at the back and front side of each panel to 
determine any vertical misalignments during the loading. A displacement transducer is 
applied as well at the upper panel edge to determine any slipping of the glass panel out of the 
clamping strip.  

A clear identification for the tests is chosen which is explained with an example (see Figure 
8.18). 

Test identification: Z-400-600-20-Al-2,5 

 

Figure 8.18  Explanation of the test identification 

 

8.3.5 Experimental Stress Analysis 

When using the experimental stress analysis with strain gauges, the correlation between 
strains and stresses has to be taken into consideration. This means that the material law is very 
important since the stresses σ  have to be calculated from the measured strains lε . 

The uniaxial stress state is given by: 

 

 l Eσ ε=  (8.2) 

 

Having a biaxial stress state with unknown principal directions the strains εa, εb and εc can be 
measured by using the 0°/45°/90°-rosettes. 

The principal stresses are calculated with the following equation: 
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 (8.3) 

 

The normal stresses xσ  and yσ  and the shear stress ,x yτ  can be calculated with the following 
equations (see also chapter 4): 

 

 

Z 400-600 20 Al 2,5 

drill hole 
centric (Z) or 
close to the 
edge (R) 

panel size 
2bxh 

drill hole 
diameter 

bushing 
material

bushing 
thickness 
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8.3.6 Test Evaluation  

In order to receive reliable test results for each series four identical tests are carried out. An 
overview of the test series is given in Appendix A.2. 

The following parameters are varied:  

- Drill hole diameter  

- Bushing material 

- Bushing thickness 

- Panel width 

- Location of the drill hole 

However, it is not possible to determine exactly the influences of the examined parameters on 
the base of the test results. This will be explained in the following.  

The parameter study which was described in chapter 7 showed that a clearance between 
bushing and drill hole influences the amount of stress significantly. Executing the tests, 
considerable difficulties occur. There is the problem that almost each specimen has a different 
clearance between bushing and drill hole. Especially this clearance is a result of 
manufacturing tolerances of the glass drill holes and the bushings. However, the main 
problem is the bad quality of the drill holes. The drill holes have misalignments up to 1 mm 
(see Table 8.2 and Table 8.3). The misalignments result from manufacturing the drill holes. 
The holes are simultaneously drilled from both sides of the panel. Misalignments occur if the 
drill heads are not located exactly on top of each other. Furthermore the misalignments of the 
specimen are located at an angle of θ = 0° and 180° which is exactly in load direction (see 
Figure 8.19). In the worst case this leads to an unbalanced loading in transverse direction of 
the panel and therefore to an increase of the maximum stresses (see eccentric loading in 
chapter 7.3.5).  

PAA

x

y  

Detail section A-A: 

 

d
 

Figure 8.19  Sketch misalignment in the drill hole  

For the test evaluation, this means that the test results additionally contain the parameter 
clearance which varies for almost every specimen. That is why the maximum stresses as well 

misalignment
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as the contact angles and areas change. Thus the stress distributions of the specimen can not 
be compared. Examples of this phenomenon are given in Figure 8.20 to Figure 8.22. The 
stress distributions show that the stresses decrease from the edge of the drill hole towards the 
edge of the panel and that bigger hole diameters lead to smaller stresses. An influence of the 
bushing material and bushing thickness can not be observed clearly. The influence of the drill 
hole location can not be determined definitely.  

The measured overall clearance ∆R between drill hole and bushing of all specimen is given in 
Appendix A.2. 
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Figure 8.20  Tensile stress distribution for the hole diameter 40 mm  

 

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6

Distance from hole edge [mm]

σ 
x
 [M

Pa
]

Z-400-600-20-Al-5,0

Z-400-600-20-Al-2,5

Z-400-600-20-POM-5,0

Z-400-600-20-POM-2,5

Figure 8.21 Tensile stress distribution for the hole diameter 20 mm  
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Figure 8.22  Tensile stress distribution for the hole diameter 20 mm, hole close to the edge  

In practice, such tolerances appear. Additional tolerances occur when laminated glass is used 
due to the misalignment of the single panels. As a result the existence of a clearance or 
tolerances must be taken into consideration for design. To compensate such clearance the drill 
hole can be grouted with a suitable filling compound (see chapter 3). 

This result leads to the conclusion that the tests suit mainly for the verification of the FEM-
model and not for determining the influences of the different parameters on the stress 
distribution.  

In the following, the specimen are modelled with an appropriate FEM-model and the stresses 
are calculated. Afterwards, the numerical and experimental determined stresses are compared.  
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8.4 Stress Determination by means of FEM 

8.4.1 Introduction  

The FEM-model verified in chapter 7 is used to recalculate the tests. Therefore SOLID-
elements are used. An overview of the modelling parameters is given in Table 8.5 and the 
material properties are listed in Table 8.6 

Table 8.5  FEM modelling parameters  

Used element type of all components  
(glass-bushing-bolt): SOLID-elements (CHEXA) 

Element mesh around the hole: Concentric circles   
Aspect ratio radial 1:1 

Elements in circumference of the drill hole: 
Elements across panel thickness:  

32 
4 

Analysis: Nonlinear 

Material behaviour: Linear elastic 
 

Table 8.6  Material properties 

 Bushing 
POM-C 

Bushing 
AlMgSi0,5 F22 

Bolt 
steel S235 Glass 

Density ρ 1,41 g/cm3 2,7 g/cm3 7,85 g/cm3 2,5 g/cm3 

Poisson's ratio ν 0,35*) 0,3 0,3 0,23 

Young's modulus E 3200 MPa*) 70.000 MPa 210.000MPa 70.000 MPa 
*)according to specification of the manufacturer  

The contact analysis is executed with MARC CONTACT.  

 

8.4.2 Preliminary Considerations 

First of all the test set-up has to be converted into a FEM-model or a static model. The aim is 
to represent the system very accurate but minimize the computation time at the same time.  

It is examined whether the eccentric loading due to the steel splices has to be considered or 
whether the influence of the bolt deformation is negligible. Therefore the load could be 
distributed uniformly over the bolt length. The support of the bolt corresponds to a single 
beam with cantilever. The loads are applied on the cantilever (see Figure 8.23).  

To reach maximum safety the deformation of the bolt is determined for the smallest diameter 
d = 10 mm. Applying a load of P = 1000 N the deformation of the bolt amounts around 

47 10−⋅  mm at the midspan. Due to this very small deformation of the bolt, it is assumed that 
the loads are transmitted uniformly to the bushing. The loads in the FEM-model are then 
distributed uniformly over the bolt length. The influence of the misalignment is examined in 
chapter 8.4.4. 
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Section through the test-rig:  
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Figure 8.23  Static system for calculating the deformation of the bolt  

To compare the numerical with the experimental determined stresses in the FEM-model the 
stresses are read out at the locations of the applied strain gauges (see Figure 8.14). It has to be 
considered that the amount of the measured value of the strain gauge is the mean value of the 
overall measuring grid length. Furthermore, there is the possibility that the corresponding 
location of strain gauges in the FEM-model is not lying within a finite element. Therefore, not 
only the nodal but also the elemental values has to be taken into consideration and the stresses 
have to be averaged. Thus, deviations up to 10% between numerical and experimental 
determined values are in conformity.     

 

8.4.3 Summary of the Experimental Results and Evaluation of the FEM-Model  

At first, the stresses determined in the test series are compared with the FEM-results. The 
results are listed in the Appendix A.2, Tables A.2.1 to A.2.10. 

According to Table 8.7 the following stresses are determined. The location and description of 
the strain gauges are shown in Figure 8.14 and Figure 8.15.  

Table 8.7  Determined stresses  

Rosette R1: Max. principal compressive stress 

Rosette R2: Max. principal tensile stress 

Linear strain gauges  
L1 to L5: Max. tensile stresses 

 
As supposed, the deviations between numerical and experimental stresses of specimen with a 
misalignment are bigger. Especially the compressive stresses measured at rosette R1 differ up 
to 25% compared to the numerical value (see Table A.2.4). The tensile stresses at rosette R2 
show slightly smaller deviations. In general, the results of the linear strain gauges correspond 
very well with the numerical values. That is why it is assumed that the stresses are increased 
only in the closest surroundings of the misalignment.  
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It has to be noticed that the change of the stress gradients in radial direction is bigger at the 
rosettes than in the areas of the linear strain gauges. That is why the results of the rosettes 
may vary more due to the averaged values of the measuring grid.  

Specimen R-200-600-30 (see Table A.2.10) has only a very small misalignment which is 
hardly to measure. As a result, the deviations between the measured results of rosette R1 and 
R2 and the numerical calculated stresses are 10% at most.  

Therefore it is presumed that the modelling by FEM is executed correctly.  

The following results according to the tests can be summarized:  

- The maximum tensile stress arises always at the edge of the drill hole and decreases in 
direction of the panel edge.  

- Specimen with POM-C bushings have lower compressive stresses at the location of 
rosette R1 than with AlMgSi0,5 F22-bushings. 

- Using 5 mm thick bushings the compressive stresses measured at rosette R1 are lower 
than using 2,5 mm thick bushings. However, this influence is very small.   

- A reduction of the drill hole diameter from 40 mm to 20 mm or a reduction of the ratio 
a/b from 0,1 to 0,05 leads to an increase in tensile and compressive stresses.  

- The tensile and compressive stresses are higher in case specimen have the drill hole 
close to the edge than specimen that have a centrally located drill hole.  

To confirm these results the above mentioned parameters are examined numerically with the 
verified FEM-model.   

 

8.4.4 Parameter Examination by means of FEM 

In the following the influences of the different parameters are described. The evaluation of the 
analyses is executed according to chapter 7. The parameters are step-by-step changed, since 
only one parameter is changed at once in the calculations.   

Misalignment influence 

As mentioned in the previous chapter, the stresses of the specimen with misalignments differ 
significantly from the numerical determined stresses. Therefore it will be examined whether 
the numerical stress values are approximate to the experimental values or not. The 
misalignment is simulated by applying an eccentric loading in the FEM-model. According to 
chapter 7, the load is only applied on one end of the bolt. 

In Table 8.8 the results of the FE-analysis with and without misalignment are compared with 
the experimental stress analysis. The specimen having the largest misalignment (1,0 mm) Z-
400-600-20-xxx and a 5 mm thick aluminium bushing is chosen because, in this case, the 
largest deviations occur (see Appendix A.2, Table A.2.4). Using an aluminium bushing, the 
deformations of the bushing is smaller compared with a POM-C bushing which is softer. 
Therefore materials like POM or materials with comparable properties are more suited for 
compensating non-uniform loadings.  

In case of eccentric loading in Table 8.8 the stress values are given for the panel front and 
back side.  
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Table 8.8  Principal stresses, comparison between experimental stress analyses and FE-
analyses  

Test identification 
according to  
chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE- 
Analysis 
without 

misalignment 
[MPa] 

FE- 
Analysis 

eccentric loading  
panel front side   

[MPa] 

FE- 
Analysis 

eccentric loading 
panel back side  

[MPa] 

R1 -38,37 -28,84 -31,64 -26,07 

R2 3,75 2,94 3,29 2,81 

L1 4,03 3,70 3,98 3,41 

L2 4,12 3,70 3,98 3,41 

L3 3,03 2,83 3,03 2,62 

Z-400-600-20-Al-5,0 

L4/L5 0,30 0,28 0,31 0,25 
 
If the numerical stress values of the panel front side (equivalent to loading plane) are 
compared with the experimentally determined stresses the deviations are significantly lower 
than in the case of applying the loads uniformly (see Table 8.8). The results of the linear 
strain gauges correspond very well with numerical values, the deviations amount between 0% 
and 3%. The compressive stresses determined at the position of rosette R1 are still not 
corresponding with the experimental data but the deviations are reduced from 25% (uniform 
loading) to 17% (eccentric loading).   

The executed numerical analysis shows that with an eccentric loading, the stress values 
approach the stresses determined in the experiments. A misalignment leads to a non-uniform 
load transmission. By modelling the misalignment more precise, it is presumed that the 
calculation of the compressive stresses at the location of rosette R1 can be improved.  

Influence of different bushing materials and bushing thickness 
The geometry of specimen Z-400-600-40 is taken to examine the parameter "different bushing 
materials". In order to compare the results for the AlMgSi0,5 F22 bushings and the POM-C 
bushings the same geometries are used. The clearance for all calculations is assumed 
constantly with ∆R = 0,7 mm. The output values of the numerical calculations are determined 
at the same positions according to the experimental stress analysis.  
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Table 8.9  Principal stresses, comparison of different bushing materials and thickness t 

Stress 
position 

Bushing material 
AlMgSi0,5 F22 

t=5mm 
[MPa] 

Bushing material 
POM-C  
t=5mm 
[MPa] 

Bushing material 
AlMgSi0,5 F22 

t=2,5mm 
[MPa] 

Bushing material
POM-C  
t=2,5mm 

[MPa] 

R1 -10,16 -7,56 -10,41 -8,38 

R2 2,06 2,06 2,11 2,11 

L1 2,13 2,13 2,19 2,19 

L2 2,13 2,13 2,19 2,19 

L3 1,60 1,60 1,64 1,64 

L4/L5 0,31 0,31 0,31 0,31 
 
As shown in Table 8.9 the results from the experimental stress analysis can be confirmed. 
Using POM-C bushings lower compressive stresses (position rosette R1) are obtained than for 
the AlMgSi0,5 F22 bushings. Vice versa, the results of the tensile stresses reveal no influence 
of the different bushing materials.  

An increase of the bushing thickness from 2,5 mm to 5 mm leads to a slight decrease of the 
tensile and compressive stresses in the area of the drill hole.   

 

Figure 8.24 shows the dimensionless tangential stress distributions for bushing materials and 
thickness. In spite of a clearance ∆R = 0,7 mm the influence of the different materials on the 
tangential stresses is not significant.  
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Figure 8.24  Tangential stress distribution, comparison of different bushing materials and  

thickness t 
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Figure 8.25 shows the corresponding dimensionless radial stress distributions. Using the 
AlMgSi0,5 F22 bushings the maximum radial stresses (compressive stresses) are slightly 
higher and the stresses decline faster than in case of the glass panels with POM-C bushings.   
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Figure 8.25  Radial stress distribution, comparison of different bushing materials and 

thickness t 

Influence of the hole diameter 
The geometries of the specimen Z-400-600-40 are Z-400-600-20 are used to examine the 
parameter "drill hole diameter". The bushings consists of AlMgSi0,5 F22 and have a 
thickness of 5 mm. The clearance for all calculations is assumed constantly with ∆R =  
0,7 mm. The output values of the numerical calculations are determined at the same positions 
according to the experimental stress analysis. 

The results from the experimental stress analysis can be confirmed here as well. Table 8.10 
contains the corresponding stress values for the drill hole diameters 20 mm and 40 mm. A 
decrease of the drill hole diameter from 40 mm to 20 mm leads to a significant increase of the 
compressive stresses at the position R1 (approx. 140%). The tensile stresses increase 
noticeable as well (approx. 74%).  
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Table 8.10  Principal stresses, comparison of different hole diameters 

Stress position 
Hole diameter 

40 mm 
[MPa] 

Hole diameter 
20 mm 
[MPa] 

R1 -10,16 -24,43 

R2 2,06 3,14 

L1 2,13 3,70 

L2 2,13 3,70 

L3 1,60 2,83 

L4/L5 0,31 0,28 
 

Influence of panel width and distance between hole and edge 
The experimental investigations show that, for specimen with the drill hole close to the edge, 
higher tensile and compressive stresses arise than for specimen with centrally located drill 
holes. Therefore, in the numerical analyses, panels with centrally located drill holes are 
compared with panels having the drill hole close to the edge. The hole diameter of the drill 
holes amount 30 mm. The geometries of specimen Z-400-600-30 and R-400-600-30 are used. 
To examine the influence of the panel width the geometry of the specimen Z-200-600-30 and 
R-200-600-30 with a width of 200 mm are chosen. The bushing thickness amounts 5 mm. The 
clearance for all calculations is assumed constantly with ∆R = 0,7 mm. The results are given 
in Table 8.11.  

Table 8.11  Principal stresses, comparison of distance drill hole / panel edge and panel width  

Stress position 
Z-400-600- 
30-Al-5,0 

[MPa] 

Z-200-600- 
30-Al-5,0 

[MPa] 

R-400-600- 
30-Al-5,0 

[MPa] 

R-200-600- 
30-Al-5,0 

[MPa] 

R1 -10,79 -10,82 -15,21 -15,27 

R2 2,35 2,55 2,96 3,03 

L1 2,72 3,18 3,35 3,64 

L2 2,72 3,18 3,35 3,64 

L3 1,90 2,17 2,51 2,68 

L4/L5 0,29 0,31 0,40 0,32 
 
The results confirm that the reduction of the panel width and the distance between the drill 
hole and panel edge lead to higher compressive and tensile stresses. Comparing the 400 mm 
wide panel and a centrally located drill hole (Z-400-600-30-Al-5,0) with the 200 mm wide 
panel and a drill hole close to the edge (R-200-600-30-Al-5,0) the compressive stresses at 
position R1 increase approx. 42% and the tensile stresses increase approx. 34%. 

Summary 
With the additional examination of the experimental results by the means of FEM the 
influences determined in the experimental investigations could be verified and the accuracy of 
the FEM-model was demonstrated.  
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9 Conclusion and Outlook  

 

9.1 General Consideration 

To calculate the loadbearing of bolted connections in glass panels exact knowledge of the 
contact mechanisms and the parameters which influence the stress distribution around the 
hole is necessary. In this thesis analytical and numerical solutions for the calculation of bolted 
connections under the application of in-plane loads are developed. 

At first, analytical solutions based on contact mechanics are shown. Starting from the Hertz 
theory it is determined whether this theory is applicable for bolted glass connections under the 
application of in-plane loads. In the following, advanced solutions of contact between a bolt 
and a conforming hole in an infinite or a finite panel are derived. After that the numerical 
solutions are verified with the analytical ones.  

In the next step the influences of different parameters on the stress distribution around the 
hole are numerically and experimentally examined.  

In the following the essential results are summarized.  

 

9.2 Summary of the Investigations  

Analytical approaches  
Hertz assumed that the two bodies in contact are elastic half-spaces and the contact area is 
small compared with the dimensions of each body and with the relative radii of the curvature 
of the surfaces. With the help of this simplification, he established the hypotheses that the 
contact area is elliptical and therefore can be described by a polynomial of second order. In 
addition, the surfaces are assumed to be frictionless so that only a normal pressure is 
transmitted between them. Relative displacements in the x-y-plane and possibly resulting 
tangential forces are neglected. 

This approximation is complied as long as the radii of curvature of the bodies are appreciable 
bigger than the size of the contact area. If the contacting bodies have approximately similar 
surface geometries (bolt in a hole) under the application of load, the size of the contact area 
grows rapidly and the arc of contact occupies a main part of the circumference of the hole. 
Therefore Hertz's treatment is invalid. 

Further analytical approaches are applied to find appropriate stress distributions for both bolt 
and panel with a hole. The most precise analytical approximate solution is obtained for a 
linear-elastic connection in an infinite panel, whereas bolt and panel consist of identical 
materials and the contact is assumed to be frictionless. This solution is used for verifying the 
FEM-model. 

Influence of different bolt and bushing materials  
The assumption that different bushing materials (e.g. plastic POM-C or aluminium alloy) 
have a considerable influence on the magnitude of radial and tangential stresses and on their 
distribution around the hole can not be validated for the neat-fit condition (clearance ∆R = 0). 

Despite of different material combinations (glass-aluminium, glass-POM-C) the values of the 
maximum principal tensile stresses differ only slightly. The maximum principal compressive 
stresses for both material combinations have approximately identical values.  
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Influence of a clearance 

By increasing the clearance between bolt and hole (∆R > 0) the stresses increase as well and 
the material combination is getting of importance. At the same time the location of maximum 
principal tensile stresses changes. With the absence of clearance (∆R = 0) the stress maximum 
occurs approximately perpendicular to the load direction. Otherwise, when ∆R > 0 is 
assumed, the stress maximum moves towards the load direction. According to the size of 
clearance (max. ∆R = 2,0 mm was examined) the stress maximum moves up to 50°. This also 
results in different stress increments for both material combinations (glass-aluminium, glass-
POM-C). In comparison with the neat-fit connection (∆R = 0), a clearance of ∆R = 2,0 mm 
leads to an increase in maximum principal tensile stresses of about 66% for aluminium and, 
for POM-C, to an increase of about 39%.  

Influence of friction 
The exact determination of the friction coefficient µH of the enlisted friction partners has to be 
done with experimental investigations which can not be carried out within the scope of this 
thesis. To examine the influence of friction however different friction coefficients are applied.  

When increasing the friction coefficient µH  it is principally determined that the tangential 
stresses pφ  will grow and the contact compressive stresses pr will decrease. In comparison 
with the frictionless connection, with a friction coefficient µH = 1,0, the tangential stresses 
increase up to 30% and the radial stresses decrease up to 30%, not depending on the material 
combinations. 

Influence of an eccentric load application 
In comparison with a centrally load application the location of the maximum stress 
concentration is not in the midplane anymore but, as expected, on the surface. For the neat-fit 
condition (∆R = 0), this leads to an increase in maximum principal tensile stresses of about 
7,5% and in maximum principal compressive stresses of about 7% as compared to a centrally 
loading. If additional clearance is present, the principal stresses grow rapidly. With a 
clearance of ∆R = 0,2 mm the increment of maximum principal tensile stress amounts about 
35% and, for the maximum principal compressive stress, the increment even amounts about 
76%.  

Influence of hole diameter, panel width and distance between hole and edge 

If the ratio of drill hole radius a and panel width b lies in the range of 0,1 < a/b ≤ 0,2 the 
stresses increase enormously or tend to infinity. An interesting aspect is, that for values a/b > 
0,2, the stresses decrease until a minimum is reached between a/b = 0,4 und 0,5. Afterwards, 
the values rise again.  

A comparison with the tangential stresses of a panel of finite and infinite width shows that a 
reduction of the panel width influences the amount of the maximum tangential stresses 
essentially: having a finite width of 100 mm the maximum tangential stresses are 80% to 86% 
higher than for the infinite panel. On the contrary the panel width has no significant influence 
on the radial stresses.  

Not only the panel width but also the distance between hole and panel edge influence the 
amount of principal tensile stresses. By reducing the edge distance H the principal stresses 
increase. If the ratio a/b decreases for a chosen edge distance of H = 50 mm the stresses tend 
to infinity at a/b < 0,4. In the range of 0,4 ≤ a/b ≤ 0,5 the values of principal tensile stresses 
increase only about 10% compared with the values of the panel with a central hole. 
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9.3 Final Remark  

Partially, the examined parameters have a big influence on the stress distribution around the 
drill hole. That is why it is very important to model these parameters numerically close to 
reality. 

Only a step-by-step verification of the numerical model - which was done for example within 
the scope of this thesis - obtains correct results. Already the parameters of the FEM-model 
itself influence the results considerably. Furthermore, the results of different FEM-programs 
are not transferable and a verification of each FEM-program is indispensable. 

 

9.4 Future Research 

Within the scope of this work different coefficients of static friction µH for the examination of 
the parameter "friction" were used to determine the influence on the stress distribution. As 
shown, the influence of friction is not negligible and it is a complex physical phenomenon 
which depends on a variety of parameters. To determine exact coefficients according to the 
used material combinations and the surrounding conditions it is proposed to investigate 
experiments in future research. Furthermore, for its numerical representation more 
comprehensive theories than Coulomb's friction model should be examined and these will 
continue to be topics of research. 

The investigations of this work were made with regard to in-plane loads. In practice several 
load cases have to be superimposed. Thus, the combination of in-plane and transverse loading 
must be examined as well.  

So far the material behaviour of the bushing materials was presumed to be linear-elastic. As it 
was determined in the experimental investigations of this work the POM-C interlayer showed 
plastic deformations at temperatures around 80°C. Therefore, based on the results of this 
thesis, numerical investigations subjected to the plastic material behaviour are suggested.  

The examinations are yet limited to drill holes with a cylindrical shape. Since point-supports 
and drillings with a conical shape are often used in architecture as well, further research is 
necessary.  
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List of Symbols 

 

Chapter 2 and 3: 

a Depth of a crack 

c Specific heat capacity 

E Young's modulus  

Ed Design value of the load 

f Correction function depending on specimen, crack geometry, 
loading 

fk Characteristic strength of the material 

kmod Factor for load duration 

KI,II,III Stress intensity factors for crack mode I, II, III 

Rd Design value of the resistance 

αt Average thermal expansion coefficient 

γM Partial safety factor, material 

λ Thermal conductivity 

ν Poisson's ratio  

ρ Density  

σ0 Tensile stress at the place of the crack normal to the crack-plane 

σBe Bending strength 

σRe Residual stress 

σtest,Be Test bending strength 

 

Chapter 4: 

a Hole radius 

b Semi-width of the panel 

c Shorter distance between panel edge and hole center 

A, B, C, D Constants of integration 

E Young's modulus  

G Shear modulus 

px Surface load in x-direction (load per unit length) 

py Surface load in y-direction (load per unit length) 

r Radius, generally 

t Thickness of the panel 
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u, v, w Displacement in x-, y-, z-direction  

x, y Cartesian coordinate axes 
0
xε , 0

yε , 0
xyγ   Strain components of a panel without a hole 

ϕ Angle between the normal and the x-axis 

θ Angle between vector r and x-axis 

ν Poisson's ratio 

Φ Stress function 

η, ξ Principal axes 

σN Nominal stress 
0
xσ , 0

yσ , 0
xyτ   Stress components of a panel without a hole 

0
ξσ , 0

ησ , 0
ξητ  Stress components of a panel without a hole related to the 

principal axes  
0
1σ , 0

2σ , 0
1τ , 0

2τ , 0
3τ   Principal stresses of a panel without a hole 

xσ , yσ , xyτ   Stress components of a panel with a hole 

rσ , θσ , rθτ   Stress components in polar coordinates 

 

Chapter 5: 

a Radius 

A, B Positive constants 

b Semi-width of the panel 

b  Semi-contact-width of two cylindrical bodies 

c Semi-contact-width of two bodies 

Di Diameter of a cylindrical body i 

E Young's modulus  

F Load  

F* Load per unit length 

h Distance of two points lying on the surfaces of two bodies in 
contact, before a load is applied 

H Distance between panel edge and hole center 

j Semi-axis of an ellipse 

k Semi-axis of an ellipse 

K Stress concentration factor 

N Normal force 

p0 Maximum contact pressure 
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pr(φ) Radial contact stress 

pφ(φ) Tangential contact stress  

p(x, y) Contact compressive stress distribution 

P Load per unit thickness 
q  Dimensionless compressive stress function 

qmax Dimensionless maximum contact compressive stress 

r Radius 

R Friction force 

Ri, Ri' Principal radii of curvature of a body i 

R∆  Radial difference, clearance 

t Panel thickness 

ur Radial component of displacement 

vφ Tangential component of displacement 

wi Displacement of a body i due to contact pressure 

x, y, z Cartesian coordinate axes 

α Semi-angle of the contact segment 

α∗ Dundurs material parameter 

β∗ Dundurs material parameter 

δ Total displacement between two bodies due to contact pressure 

ϑ  Angle 

µ Friction coefficient 

ν Poisson's ratio  

φ Angle 

σI, σII Principal stresses at the hole boundary 

ψ Angle  

 

Chapter 6: 

C Vector of constraints 

gN Gap-function 

F  Vector of external nodal loads 

Ka, Kt Penalty values 

K  Global stiffness matrix  
0K  Initial tangential stiffness matrix  
iK  Tangential stiffness matrix of the iteration step i 



170  List of Symbols 

SK  Secant stiffness matrix 

NI Dimensionless form function 

P Vector of external nodal loads 
iR  Vector of internal loads of the iteration step i 

i∆R  Difference vector (non balanced load vector) of the iteration step i

u, v, w Displacement in x-, y-, z-direction  

U Strain energy 

U0 Initial Gap opening 
iU  Vector of nodal displacements of the iteration step i 

i∆U  Nodal displacement increments of the iteration step i 

W Potential of all loads 

εΝ Penalty parameter 

Λ Vector of Lagrange multipliers 

Π Energy potential 

  

Chapter 7 and 8: 

a Hole radius 

b Semi-width of the panel 

E Young's modulus  

H Distance between panel edge and hole center 

pr(φ) Radial contact stress 

pφ(φ) Tangential contact stress  

P Load  

R∆  Radial difference, clearance 

t Panel thickness 

tH Bushing thickness 

µ Friction coefficient 

ν Poisson's ratio  

φ Semi-angle of the contact segment 

σmin Minimum compressive stress 

σmax Maximum tensile stress 
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Appendix to Chapter 8 

 

A.1  Material Tests  

Table A1.1 Overview test series AlMgSi0,5 F22 

Test series 

Bushing 
geometry 

identification 
according to 
chapter 8.2 

Temperature
[°C] 

Load 
increments 

[kN] 

Number of 
samples  Figure  

M.1-20_1 to M.1-20_5 1 20 20, 25, 30, 40, 
50 5*) Figure A.3 

M.1-20_6 to M.1-20_9 1 20 50 4 - 

M.2-20_1 to M.2-20_5 2 20 20, 25, 30, 40, 
50 5*) Figure A.1 

M.2-20_6 to M.2-20_9 2 20 50 4 - 

M.3-20_1 to M.3-20_5 3 20 20, 25, 30, 40, 
50 5*) Figure A.4 

M.3-20_6 to M.3-20_9 3 20 50 4 - 

M.4-20_1 to M.4-20_5 4 20 20, 25, 30, 40, 
50 5*) Figure A.2 

M.4-20_6 to M.4-20_9 4 20 50 4 - 

M.1-80_1 to M.1-10_5 1 80 20, 25, 30, 40, 
50 5*) Figure A.11 

M.1-80_6 to M.1-10_9 1 80 50 4 - 

M.2-80_1 to M.2-10_5 2 80 20, 25, 30, 40, 
50 5*) Figure A.9 

M.2-80_6 to M.2-10_9 2 80 50 4 - 

M.3-80_1 to M.3-10_5 3 80 20, 25, 30, 40, 
50 5*) Figure A.12 

M.3-80_6 to M.3-10_9 3 80 50 4 - 

M.4-80_1 to M.4-10_5 4 80 20, 25, 30, 40, 
50 5*) Figure A.10 

M.4-80_6 to M.4-10_9 4 80 50 4 - 

*) one test per load increment  
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Table A1.2 Overview test series POM-C 

Test series 

Bushing 
geometry 

identification 
according to 
chapter 8.2 

Temperature
[°C] 

Load 
increments 

[kN] 

Number of 
samples  Figure  

M.1-20_1 to M.1-20_4 1 20 20, 25, 30, 40 4*) Figure A.7 

M.1-20_5 to M.1-20_8 1 20 40 4 - 

M.2-20_1 to M.2-20_4 2 20 20, 25, 30, 40 4*) Figure A.5 

M.2-20_6 to M.2-20_8 2 20 40 4 - 

M.3-20_1 to M.3-20_4 3 20 20, 25, 30, 40 4*) Figure A.8 

M.3-20_6 to M.3-20_8 3 20 40 4 - 

M.4-20_1 to M.4-20_4 4 20 20, 25, 30, 40 4*) Figure A.6 

M.4-20_6 to M.4-20_8 4 20 40 4 - 

M.1-80_1  1 80 20 1*) Figure A.15
M.1-80_2 to M.1-10_5 1 80 20 4 - 

M.2-80_1 to M.2-10_5 2 80 20, 25, 30, 40, 
50 5*) Figure A.13

M.2-80_6 to M.2-10_9 2 80 50 4 - 

M.3-80_1  3 80 20 1*) Figure A.16
M.3-80_2 to M.3-10_5 3 80 20 4 - 

M.4-80_1 to M.4-10_5 4 80 20, 25, 30, 40, 
50 5*) Figure A.14

M.4-80_6 to M.4-10_9 4 80 50 4 - 

*) one test per load increment  
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Figure A.1 Force-displacement-curve bushing Al; geometry da=40mm, tH=5mm 
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Figure A.2  Force-displacement-curve bushing Al; geometry da=40mm, tH=2,5mm 

T=21°

T=21°
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Figure A.3 Force-displacement-curve bushing Al; geometry da=20mm, tH=5mm 
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Figure A.4 Force-displacement-curve bushing Al; geometry da=20mm, tH=2,5mm 

 

T=21°
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Figure A.5 Force-displacement-curve bushing POM-C; geometry da=40mm, tH=5mm 
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Figure A.6 Force-displacement-curve bushing POM-C; geometry da=40mm, tH=2,5mm 

T=21°

T=21°
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Figure A.7 Force-displacement-curve bushing POM-C; geometry da=20mm, tH=5mm 
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Figure A.8 Force-displacement-curve bushing POM-C; geometry da=20mm, tH=2,5mm 

T=21°
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Figure A.9 Force-displacement-curve bushing Al; geometry da=40mm, tH=5mm 
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Figure A.10 Force-displacement-curve bushing Al; geometry da=40mm, tH=2,5mm 

T=80°

T=80°
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Figure A.11  Force-displacement-curve bushing Al; geometry da=20mm, tH=5mm 
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Figure A.12 Force-displacement-curve bushing Al; geometry da=20mm, tH=2,5mm 
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Figure A.13 Force-displacement-curve bushing POM-C; geometry da=40mm, tH=5mm 
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Figure A.14 Force-displacement-curve bushing POM-C; geometry da=40mm, tH=2,5mm 

T=80°

T=80°
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Figure A.15 Force-displacement-curve bushing POM-C; geometry da=20mm, tH=5mm 
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Figure A.16 Force-displacement-curve bushing POM-C; geometry da=20mm, tH=2,5mm 

T=80°

T=80°
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Figure A.17  POM-C bushing da=20mm, tH=5mm, 21°C, load increment 25kN   

 
 
Figure A.18  POM-C bushing da =20mm, tH =5mm, 80°C, load increment 20 kN  

 
 
Figure A.19  POM-C bushing da=20mm, tH=2,5mm, 80°C, load increment 20 kN 
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A.2 Loadbearing Tests  

Table A.2.1 Overview test series with centrally located hole 

Test series  
identification according 
to chapter 8.3 

Explanation Clearance ∆R
[mm] 

Z-400-600-40-Al-5,0 Panel size 400x600 mm, hole d=40 mm, aluminium- 
bushing, thickness t=5 mm 0,70 

Z-400-600-40-Al-2,5 Panel size 400x600 mm, hole d=40 mm, aluminium- 
bushing, thickness t=2,5 mm 0,75 

Z-400-600-40-POM-5,0  Panel size 400x600 mm, hole d=40 mm, POM-C- 
bushing, thickness t=5 mm 0,70 

Z-400-600-40-POM-2,5  Panel size 400x600 mm, hole d=40 mm, POM-C- 
bushing, thickness t=2,5 mm 0,85 

Z-400-600-30-Al-5,0  Panel size 400x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=5 mm 0,85 

Z-400-600-30-Al-2,5  Panel size 400x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=2,5 mm 0,70 

Z-400-600-30-POM-5,0  Panel size 400x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=5 mm 0,70 

Z-400-600-30-POM-2,5  Panel size 400x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=2,5 mm 0,75 

Z-400-600-20-Al-5,0  Panel size 400x600 mm, hole d=20 mm, aluminium- 
bushing, thickness t=5 mm 1,25 

Z-400-600-20-Al-2,5  Panel size 400x600 mm, hole d=20 mm, aluminium- 
bushing, thickness t=2,5 mm 1,05 

Z-400-600-20-POM-5,0  Panel size 400x600 mm, hole d=20 mm, POM-C- 
bushing, thickness t=5 mm 1,10 

Z-400-600-20-POM-2,5  Panel size 400x600 mm, hole d=20 mm, POM-C- 
bushing, thickness t=2,5 mm 1,10 

Z-200-600-30-Al-5,0 Panel size 200x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=5 mm 0,80 

Z-200-600-30-Al-2,5 Panel size 200x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=2,5 mm 0,70 

Z-200-600-30-POM-5,0  Panel size 200x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=5 mm 0,80 

Z-200-600-30-POM-2,5  Panel size 200x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=2,5 mm 0,85 
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Table A.2.2 Test results and FE-analysis, Z-400-600-40-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -13,10 -10,16 22% 

R2 2,39 2,06 14% 

L1 2,27 2,13 6% 

L2 2,29 2,13 7% 

L3 1,72 1,60 7% 

Z-400-600-40-Al-5,0 

L4/L5 0,32 0,31 3% 

R1 strain gage failure -10,55  

R2 2,45 2,12 13% 

L1 2,34 2,19 6% 

L2 2,35 2,19 7% 

L3 1,72 1,64 5% 

Z-400-600-40-Al-2,5 

L4/L5 0,32 0,31 3% 

R1 strain gage failure -7,79  

R2 2,51 2,14 15% 

L1 2,39 2,22 7% 

L2 2,41 2,22 8% 

L3 1,74 1,67 4% 

Z-400-600-40-POM-5,0 

L4/L5 0,32 0,32 0% 

R1 strain gage failure -8,73  

R2 2,51 2,15 14% 

L1 2,44 2,22 9% 

L2 2,45 2,22 9% 

L3 1,75 1,67 5% 

Z-400-600-40-POM-2,5 

L4/L5 0,32 0,32 0% 
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Table A.2.3 Test results and FE-analysis, Z-400-600-30-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -12,98 -11,00 15% 

R2 2,61 2,35 10% 

L1 2,71 2,73 1% 

L2 2,73 2,73 0% 

L3 1,90 1,90 0% 

Z-400-600-30-Al-5,0 

L4/L5 0,32 0,30 6% 

R1 -12,19 -10,84 11% 

R2 2,68 2,35 12% 

L1 2,73 2,73 0% 

L2 2,75 2,73 1% 

L3 1,93 1,90 2% 

Z-400-600-30-Al-2,5 

L4/L5 0,32 0,30 6% 

R1 -8,95 -7,81 13% 

R2 2,63 2,32 12% 

L1 2,72 2,75 1% 

L2 2,74 2,75 1% 

L3 1,91 1,90 1% 

Z-400-600-30-POM-5,0 

L4/L5 0,32 0,30 6% 

R1 -12,05 -10,26 15% 

R2 2,84 2,38 16% 

L1 2,72 2,78 2% 

L2 2,74 2,78 1% 

L3 1,94 1,93 1% 

Z-400-600-30-POM-2,5 

L4/L5 0,32 0,30 6% 
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Table A.2.4 Test results and FE-analysis, Z-400-600-20-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -38,37 -28,84 25% 

R2 3,75 2,94 22% 

L1 4,03 3,70 8% 

L2 4,12 3,70 10% 

L3 3,03 2,83 7% 

Z-400-600-20-Al-5,0 

L4/L5 0,30 0,28 7% 

R1 -37,61 -29,26 22% 

R2 3,64 3,10 14% 

L1 4,09 3,89 5% 

L2 4,18 3,89 7% 

L3 3,12 2,95 6% 

Z-400-600-20-Al-2,5 

L4/L5 0,30 0,28 7% 

R1 -21,64 -16,53 24% 

R2 3,19 2,51 21% 

L1 3,41 3,18 7% 

L2 3,47 3,18 9% 

L3 2,61 2,40 8% 

Z-400-600-20-POM-5,0 

L4/L5 0,30 0,28 7% 

R1 -26,71 -20,00 25% 

R2 3,69 3,16 14% 

L1 4,13 3,86 7% 

L2 4,18 3,86 8% 

L3 3,11 2,95 5% 

Z-400-600-20-POM-2,5 

L4/L5 0,30 0,28 7% 
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Table A.2.5 Test results and FE-analysis, Z-200-600-30-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -12,34 -10,96 12% 

R2 2,27 2,05 10% 

L1 3,28 3,17 4% 

L2 3,27 3,17 3% 

L3 2,25 2,17 4% 

Z-200-600-30-Al-5,0 

L4/L5 0,32 0,31 3% 

R1 -12,12 -10,86 11% 

R2 2,31 2,05 12% 

L1 3,29 3,17 4% 

L2 3,26 3,17 3% 

L3 2,29 2,17 5% 

Z-200-600-30-Al-2,5 

L4/L5 0,32 0,31 3% 

R1 -10,98 -9,48 14% 

R2 2,25 2,02 11% 

L1 3,24 3,17 2% 

L2 3,29 3,17 4% 

L3 2,21 2,17 2% 

Z-200-600-30-POM-5,0 

L4/L5 0,32 0,30 6% 

R1 -11,14 -9,52 15% 

R2 2,31 1,94 16% 

L1 3,19 2,96 7% 

L2 3,22 2,96 8% 

L3 2,25 2,00 11% 

Z-200-600-30-POM-2,5 

L4/L5 0,32 0,30 6% 
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Table A.2.6 Overview test series with hole close to the edge 

Test series  
identification according 
to chapter 8.3 

Explanation Clearance ∆R
[mm] 

R-400-600-40-Al-5,0 Panel size 400x600 mm, hole d=40 mm, aluminium- 
bushing, thickness t=5 mm 0,85 

R-400-600-40-Al-2,5 Panel size 400x600 mm, hole d=40 mm, aluminium- 
bushing, thickness t=2,5 mm 0,85 

R-400-600-40-POM-5,0  Panel size 400x600 mm, hole d=40 mm, POM-C- 
bushing, thickness t=5 mm 0,65 

R-400-600-40-POM-2,5 Panel size 400x600 mm, hole d=40 mm, POM-C- 
bushing, thickness t=2,5 mm 0,50 

R-400-600-30-Al-5,0 Panel size 400x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=5 mm 0,80 

R-400-600-30-Al-2,5 Panel size 400x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=2,5 mm 0,80 

R-400-600-30-POM-5,0  Panel size 400x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=5 mm 0,74 

R-400-600-30-POM-2,5  Panel size 400x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=2,5 mm 0,76 

R-400-600-20-Al-5,0 Panel size 400x600 mm, hole d=20 mm, aluminium- 
bushing, thickness t=5 mm 0,92 

R-400-600-20-Al-2,5 Panel size 400x600 mm, hole d=20 mm, aluminium- 
bushing, thickness t=2,5 mm 0,72 

R-400-600-20-POM-5,0 Panel size 400x600 mm, hole d=20 mm, POM-C- 
bushing, thickness t=5 mm 0,73 

R-400-600-20-POM-2,5  Panel size 400x600 mm, hole d=20 mm, POM-C- 
bushing, thickness t=2,5 mm 0,68 

R-200-600-30-Al-5,0 Panel size 200x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=5 mm 0,83 

R-200-600-30-Al-2,5 Panel size 200x600 mm, hole d=30 mm, aluminium- 
bushing, thickness t=2,5 mm 0,77 

R-200-600-30-POM-5,0 Panel size 200x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=5 mm 0,76 

R-200-600-30-POM-2,5 Panel size 200x600 mm, hole d=30 mm, POM-C- 
bushing, thickness t=2,5 mm 0,78 
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Table A.2.7 Test results and FE-analysis, R-400-600-40-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -19,16 -14,74 23% 

R2 3,14 2,66 15% 

L1 2,86 2,79 2% 

L2 2,88 2,79 3% 

L3 2,31 2,23 3% 

R-400-600-40-Al-5,0 

L4/L5 0,39 0,38 3% 

R1 -19,25 -14,82 23% 

R2 2,94 2,66 10% 

L1 2,89 2,79 3% 

L2 2,91 2,79 4% 

L3 2,33 2,23 4% 

R-400-600-40-Al-2,5 

L4/L5 0,39 0,38 3% 

R1 -9,84 -8,27 16% 

R2 3,05 2,64 13% 

L1 2,82 2,79 1% 

L2 2,82 2,79 1% 

L3 2,29 2,23 3% 

R-400-600-40-POM-5,0 

L4/L5 0,39 0,38 3% 

R1 -10,93 -9,20 16% 

R2 2,66 2,52 5% 

L1 2,85 2,76 3% 

L2 2,87 2,76 4% 

L3 2,31 2,23 3% 

R-400-600-40-POM-2,5 

L4/L5 0,39 0,38 3% 
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Table A.2.8 Test results and FE-analysis, R-400-600-30-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -18,77 -15,03 20% 

R2 3,26 2,81 14% 

L1 3,35 3,18 5% 

L2 3,34 3,18 5% 

L3 2,48 2,39 4% 

R-400-600-30-Al-5,0 

L4/L5 0,39 0,40 3% 

R-400-600-30-Al-2,5 Damage of the glass panel during installation 

R1 -11,52 -9,23 20% 

R2 3,01 2,93 3% 

L1 3,48 3,36 3% 

L2 3,46 3,36 3% 

L3 2,67 2,51 6% 

R-400-600-30-POM-5,0 

L4/L5 0,38 0,37 3% 

R1 -13,10 -10,35 21% 

R2 3,05 2,80 8% 

L1 3,33 3,19 4% 

L2 3,32 3,19 4% 

L3 2,68 2,39 11% 

R-400-600-30-POM-2,5 

L4/L5 0,38 0,37 3% 
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Table A.2.9 Test results and FE-analysis, R-400-600-20-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -34,56 -25,23 27% 

R2 3,72 2,76 26% 

L1 4,56 4,34 5% 

L2 4,57 4,34 5% 

L3 2,74 2,58 6% 

R-400-600-20-Al-5,0 

L4/L5 0,35 0,33 6% 

R1 -31,75 -23,51 26% 

R2 3,69 2,78 25% 

L1 4,56 4,34 5% 

L2 4,58 4,34 5% 

L3 2,77 2,58 7% 

R-400-600-20-Al-2,5 

L4/L5 0,35 0,33 6% 

R1 -12,21 -10,15 17% 

R2 3,28 2,67 19% 

L1 4,43 4,36 2% 

L2 4,45 4,36 2% 

L3 2,61 2,56 2% 

R-400-600-20-POM-5,0 

L4/L5 0,35 0,33 6% 

R1 -15,23 -12,69 17% 

R2 3,34 2,77 17% 

L1 4,45 4,35 2% 

L2 4,46 4,35 2% 

L3 2,62 2,58 2% 

R -400-600-20-POM-2,5 

L4/L5 0,35 0,33 6% 
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Table A.2.10 Test results and FE-analysis, R-200-600-30-xxx 

Test identification 
according to chapter 8.3 

Experimental 
stress analysis 

[MPa] 

FE-analysis  
[MPa] 

Deviation 
[%] 

R1 -15,98 -15,81 1% 

R2 2,76 2,52 9% 

L1 3,91 3,63 7% 

L2 3,90 3,63 7% 

L3 1,42 1,34 6% 

R-200-600-30-Al-5,0 

L4/L5 0,28 0,27 4% 

R1 -16,22 -15,69 3% 

R2 2,81 2,52 10% 

L1 3,93 3,63 8% 

L2 3,95 3,63 8% 

L3 1,44 1,34 7% 

R-200-600-30-Al-2,5 

L4/L5 0,29 0,27 4% 

R1 -11,63 -10,84 7% 

R2 2,65 2,49 6% 

L1 3,84 3,63 5% 

L2 3,85 3,63 6% 

L3 1,41 1,32 6% 

R-200-600-30-POM-5,0 

L4/L5 0,29 0,28 4% 

R1 -14,46 -13,94 4% 

R2 2,65 2,51 3% 

L1 3,86 3,63 6% 

L2 3,88 3,63 6% 

L3 1,42 1,32 7% 

R-200-600-30-POM-2,5 

L4/L5 0,29 0,28 4% 
 

 


