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1. Introduction

To model chemical systems of interest in varying degrees of approximation has a long

tradition in quantum chemistry. With each consecutive step of model and method

refinement, one can gain additional insights in the properties of the respective system.

In this thesis methods and models for the computation of ligand covered metal clusters

will be developed and applied. Small copper clusters with thiolate ligands of the general

composition Cu13(S(CH2)nCH3)8 with n = 1, 2 were chosen as model systems. Two

ways of improving the model will be employed. On the one hand, the chemical

composition of the clusters will be varied. Beginning with a bare copper cluster which is

readily available in physical experiments1, the model will be extended to clusters

protected by an alkyl thiolate shell of varying chain lengths, leading to the ordered layer

model of thiolate covered copper clusters. Model ligands (SH) will be used in an

intermediary step. Concomitantly, different computational chemistry methods will be

applied. They will be compared with respect to their applicability for different model

refinements. Bare small transition metal clusters are advantageously described by “ab

initio” approaches, such as the density functional (DF) method.2,3 As the model size

increases by incorporation of thiolate ligands in the model, the computational effort of

pure “ab initio” methods becomes prohibitively high. A combined quantum chemical

and molecular mechanics method (QM/MM) will be applied to such models.4-6 By way

of comparison with "ab initio" results it will be shown, that this approximation actually

improves the description of dispersive electron-electron interaction. This combined

method will be applied to ordered structures of thiolate protected metal clusters. This

thesis will demonstrate the QM/MM approach being an attractive method to compute

the properties of complex ligand protected clusters as well as their ordered

arrangements.

1.1. Motivation

Ordered structures of ligand protected metal clusters are a new class of chemical

systems, which have been systematically developed only recently.7,8 The first synthesis

of thiolate protected metal clusters was conducted with gold as cluster metal.9 This

element forms stable aggregates with alkyl thiolates at the surface of the bulk metal as

well as at cluster surfaces.10 Furthermore, the alkyl chains of these aggregates tend to

form self-organized ordered monolayers, called SAMs (self-assembled monolayers).11-14

This phenomenon has been experimentally observed on metal surfaces of gold, silver,

copper and other transition metals.15 The same behavior was shown in force field
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computations of thiolate ligands on gold nanocrystallites by Luedtke and Landmann,16

where bundles of ligands assemble. Thus, it is obvious to assume that the interaction of

the ligands plays an important role in the organization of metal clusters to ordered

structures.16 It was one goal of this thesis to examine the role of ligand interactions in

the formation and stabilization of cluster layers. Similarly difficult as the observation of

ligand interaction and their conformation is the experimental determination of

properties of ordered layers of clusters such as the binding energy of individual ligands,

the stabilization energy of a layer and the effective chain length of ligands.17 These

properties are easier accessible in computational investigations.

One-,18 two-19 and three-dimensional20,21 arrays of clusters are known and subject

of investigation.22-32 They have been proposed as the next generation of computational

devices.33 They could be utilized like conventional semiconductors or in a unique way

as quantum dots. Clusters may be used in heterogeneous catalysis, because low

coordinated surface atoms like edges of specific surface facets, which have been

identified as key catalytic sites, make up a large part of the cluster surface.34 Although

thiolate covered copper clusters are known,35 their ordered structures have not yet been

synthesized.

Gold is a difficult element to treat computationally in "ab initio" methods, as it

possesses a large number of electrons, which in addition experience substantial

relativistic effects. The computational problem scales as a power of the number of

electrons. Thus, the limit in reasonable computation time and physical capability of the

computer is reached at relatively small system sizes, (Aun, n = 10-100), depending on

the approximations applied. For these reasons, gold was substituted by copper as a

simplified model. Its lower number of electrons and negligible relativistic effects allow

faster computation of systems of equal size. To keep the computational effort

manageable with increasing ligand lengths, only clusters of 13 copper atoms were

investigated. Bare copper clusters were easily computable with the DF method this way.

The inclusion of the thiolate ligands into the model increased the system size

considerably. Therefore, an QM/MM method was implemented and tested on these

cluster systems. In this method, only the cluster core and the head groups of ligands are

treated by the DF method. The tail groups of the ligands are treated only by molecular

mechanics (MM).36-39 As the MM method is significantly less computational expensive,

the hybrid QM/MM approach allows models with realistic ligand lengths.40 To assess

the interaction of ligand shells of neighboring clusters in ordered layers, the periodic

model was used.41,42 One cluster is interacting with periodic images of itself. This
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interaction is restricted to the MM part of the QM/MM model. With the newly

implemented method it was possible for the first time to compute properties of periodic

cluster arrangements with a  realistic model.

1.2. Investigated Topics

Chapter 2 will introduce the reader to transition metal clusters. It will discuss

computational chemistry methods for treating ligand covered clusters and their ordered

structures. Some computational and experimental results will be presented for later

reference.

Chapter 3 will detail some important topics of the methods used in the QM/MM

approach. The choice of copper as a model for silver and gold will be justified. A sketch

of the density functional method and the molecular mechanics approach and their

applicability  to the computational treatment of metal cluster systems will be presented.

The background of the QM/MM approach is highlighted. The special features of the

implementation constructed in the course of this thesis will be compared to earlier

implementations. The considerations necessary in the implementation of periodic

boundary conditions in the QM/MM method will be presented. The results of test

calculations using the programs TINKER43 and DL_POLY_244 as MM programs will

demonstrate the applicability of the QM/MM implementation to copper clusters and

periodic systems. Computational details will be presented in Chapter 4.

Chapter 5 begins with the discussion of the bare Cu13 cluster. The result of

geometry optimizations with four different symmetries with the LDA functional will be

discussed and a geometry of the Cu13 cluster as the cluster core model of subsequent

calculations will be proposed as a tradeoff between computational accuracy and speed.

Subsequently, the Cu13(SH)8 model will be used to determine the binding site

dependence of properties of thiolate ligands bound to small copper clusters.

Chapter 6 compares quantum mechanical (DF) results with the treatment of

Cu13(SCH2CH3)8 in the QM/MM method. The differences in the geometric structure of

the various results will be emphasized and rationalized. Total energies and binding

energies of the ligands will be discussed with respect to the influences caused by

differences in the computational models.

Finally in Chapter 7, the QM/MM implementation using periodic boundary

conditions will be applied to two-dimensional arrays of copper clusters with

ethylthiolate and propylthiolate ligands. Computed lattice constants for cluster layers in

different arrangements will be presented. The energy contributions of different parts of
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the model will be examined. Conclusions for the applicability of the QM/MM approach

using periodic boundary conditions to metal cluster systems with complex ligand shells

will be drawn.
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2. Clusters

2.1. General Remarks

In the course of this work the term metal cluster is used as defined by Cotton: 45

"Any compound of a finite group of metal atoms participating in direct metal - metal

bonds with a considerable overlap of binding orbitals."

Ligands may be chemically bound or physically adsorbed to clusters. Properties of

bulk metals change very little when the size of a sample is reduced to a few tens of

micrometers. This behavior is known as the size invariance of properties of solids.46

When the size of the metal particle under consideration falls below a material dependent

limit, this observation is not true anymore. While for instance, electronic energy levels

are so minimally spaced as to be indistinguishable in the bulk, single energy levels

gradually emerge when reducing the samples size.47-52  This leads to a semiconductor

like electric conductivity, opening up possibilities of  electronic or magnetic research

and applications.53

Most common metals are arranged in the bulk form in a way that their volume is

lowest with maximized overlap of binding orbitals. In the case of copper and late

transition metals, this is accomplished in the fcc lattice. Cluster structures mirror this

arrangement. Atom arrangements with as few as 6 atoms, order themselves in a way

best reflecting a sphere. The geometrical formation of perfectly spherically structures as

well the presence of particular numbers of electrons give rise to a special stability of

"magic" numbered clusters (6, 8, 13, 19, 20, 38, 40, 44, 55, 58, 85, 92, 138, 147,

etc.).54,55 From a geometric point of view these magic numbers describe arrangements in

which closed shells of either icosahedral (13, 55, 147), octahedral or cuboctahedral (6,

13, 19, 44, 55, 85, 147) symmetries are achieved. Important electronic numbers are

multiples of full shell numbers of atomic orbitals (2, 8, 20). While magic number

clusters are thought to highly symmetric, the geometric conformations of non-magic

numbered clusters are generally less easy determined.56

Inter-atomic distances between metal atoms fall in the range between the bulk

values and the bond lengths in gas phase dimers.57,58 Surface atoms of small metal

particles and metal clusters frequently exhibit different properties than inner atoms,

because of lower coordination.59
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2.2. Metal Clusters of 13 Atoms

In the M13 cluster of fcc metals, a bulk like coordination of 12 atoms can be achieved at

least for one atom. It was shown for the example of mercury, that additional

coordination greatly stabilizes the cluster.60 Thus, reasonably realistic model for a

cluster with surface and bulk atoms consists of at least 13 atoms.

There are two highly symmetric conformations of a 13-atom cluster. One is the

icosahedron, with one atom in the center and 12 atoms forming an regular icosahedron

at an evenly spaced distance. All 12 atoms of the first shell exhibit the same distance to

the central atom. This inter shell distance is not identical with the distance of the first

shell atoms to each other. This way, a n shell icosahedral cluster possesses at least n

geometric degrees of freedom.

Figure 1 M13 cluster in icosahedral symmetry

The high symmetry of the icosahedron allows only a limited number of ways of

organizing ligands around this cluster, when retaining all or most symmetry elements.

Icosahedral cluster models are seldom discussed.61 The aim of a relatively flexible

ligand arrangement without considerable loss of symmetry prohibited the use of this

model in this thesis.

A second way of organizing 13 atoms highly symmetric, is the truncated

octahedron or cuboctahedron. It is derived by removing six apex atoms of a 19-atom

octahedron (Figure 2 a). A regular cuboctahedron possesses Oh symmetry. The bond

lengths between the atoms of the outer shell and the distance between the center atom

and the shell are equal. A n shell cuboctahedron in octahedral symmetry exhibits at least

n degrees of freedom. Distorting the cuboctahedron can lower the symmetry to D4h, as

shown in Figure 2 b. This conformation shows up to 6 sets of bond lengths. There is no
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simple formula to calculate the number of degrees of freedom, as some of these bond

length sets may be degenerate.

Figure 2  M13 cluster in a) cuboctahedral (Oh) and b) upset cuboctahedral (D4h)

conformation

Breaking the D4h symmetry of the distorted cuboctahedron leads to D2h, C4v or lower

symmetric structures. The resulting cluster exhibits irregular surface facets, as opposed

to the Oh cluster.

2.3. Ligand Binding Sites

Clusters are often covered with a stabilizing ligand shell, as they are reactive and

unstable otherwise. The position of ligand head groups relative to the cluster surface can

be designated by analogy to the terminated surface orientations of bulk lattices. Thus,

they are referenced with the corresponding Miller indices. For a comprehensive

introduction of the nomenclature of the M13 cluster in cuboctahedral conformation and

its possible ligand binding sites, the terms central, equatorial and axial atoms are

introduced. Their respective positions are illustrated in Figure 3.

In the order of ascending Miller’s indices the surface facets are labeled as follows.

The facet made up by four adjacent axial atoms is the (100) facet. A fourfold rotation

axis passes through the center of this facet. Ligands may bind to this facet in central

��������� �	�
�� ���� 
������� ���� ������� �����
������� 4-(100) was coined, because

ligands are bridging four metal atoms this way. Ligands above the triangle facets

formed by two adjacent axial atoms and one equatorial atom, the (111) facets, are called

���	��	���������������������������������������� 3-(111). As seen in Figure 3, a threefold

b )a )
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axis of symmetry passes through this facet. Other ligand binding sites are the  site

	�������������������������	������� 2) and the site on top of one of the axial or equatorial

��������������� 1).

Figure 3  Nomenclature of atoms and facets in a regular M13 cuboctahedron

Depending on the geometry and chemical nature of the ligand, the binding site may not

be one of the ideal sites indicated above. When  ligands occupy intermediate sites not

directly associated with crystal facets or symmetry elements, they will be designated

with a mixed identifier most closely related to their proposed binding site, such as

bridge-hollow, on-top-bridge, etc.

Alkyl thiolates are derived from their respective thioles. The two lone electron

pairs of the sp3 hybrid sulfur lead to a near tetrahedral surface-sulfur-tail angle in the

free and adsorbed thiole molecule. The exact mechanism of the thiole adsorption on

transition metal surfaces is still subject of investigation.15,62-66 All models employed in

this thesis invoked the vanishing hydrogen theory,66 where the hydrogen is assumed to

dissociate from the thiole and evaporate from the cluster. It should be noted that newer

computational hints exist for a model, where the thioles remain intact.67 The thiolate

�����	������������������������� 2����� 3 positions on most transition metal surfaces in

most models.68 Under the influence of the morphology of the underlying surface and the

ligand coverage of the cluster even on top sites may be occupied, as suggested in

ce

ax

eq
C

(111) facet

(100) facet

axial

equatorial

central



2. Clusters

9

computations of Aun (S(CH2)xCH3)m clusters.16 The conformation of the alkyl chains is

thought to adapt to the chemical environment.

2.4. Electronic Properties

The electronic structure of a metal cluster depends on its size. For small metal particles,

the density of states (i.e. the spacing of electronic energy levels)  is not (quasi-

)continuous as in the bulk material, but discrete. This is due to the confinement of the

electron wavefunctions because of the finite size of the particle. The average electronic

energy level spacing of successive quantum levels within a band is known as the Kubo

���� ��������������
�������
���	��

f = 4 E / 3nδ , (2.1)

where Ef is the Fermi energy of the bulk material and n is the total number of valence

electrons in the nanocrystal.69 For copper metal, the Fermi energy at room temperature

is 7.03 eV.70 Therefore, a copper cluster of 1000 atoms has a Kubo gap of ~10 meV.

Thus, this copper cluster of ~3 nm diameter is metallic at room temperature, where the

thermal energy of electrons is kT  �!"���#��$�
������
����������%&'(������������
��

would have a Kubo gap equaling the thermal energy of the electrons, and smaller

clusters would be clearly non-metallic with semi-conductor properties.

Among other influences, the HOMO-LUMO gap of a metal particle is particle

size dependent as well. Photo-electron spectroscopic measurements on mass selected

Hgn (n = 3 – 250) particles in the gas phase revealed, that the characteristic HOMO-

LUMO gap decrease gradually from ~3.5 eV for n = 3 to ~0.2 eV for n = 250. Band gap

closure (HOMO-LUMO gap < kT)was predicted for n ~ 400.71 It is expected, that the

observation of a HOMO-LUMO gap shrinking with cluster size will be true for copper

as well. Another observation about the binding behavior of Hgn cluster will not be

transferable to copper cluster. The closed shell metal Hg (ground state configuration 6s2

5d10 6p0) is non-binding leading to van der Waals binding for clusters with n < 13

atoms. At cluster sizes of >13 atoms, the 6p and 6s levels broaden into bands and an

insulator-metal transition occurs.60 This finding will not be reproduced as such in copper

clusters as the atoms have a 4s1 3d10 electronic ground state with readily available

diffuse s orbitals to ensure chemical binding even for small clusters.

The classic description of a cluster with ligand shell is that a metal particle is

surrounded by weakly interacting ligand molecules with no strong chemical binding

between these subsystems.72 Investigations showed, that back-donation mechanisms
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play an important role in the binding of not only small second row ligands as CO and

NO but third row ligands such as phosphines as well.73,74 Anti-binding electrons of the

ligand populate binding molecular orbitals resulting in a reduction of the total energy.

This back donation has a stabilizing effect on ligand covered clusters.

2.5. Ordered Arrangements of Ligand Protected Transition Metal

Clusters

Just as individual atoms and ions assemble to form crystals, clusters may act as building

blocks to form ordered arrangements, often referred to as superlattices.75 Thus,

monodispersed clusters covered by suitable ligands such as alkanthioles spontaneously

assemble into two-dimensional lattices when transferred to a flat substrate.76-80 Figure 4

shows typical arrays of Pd clusters of 4.5 nm diameter coated with varying thioles.

Figure 4 TEM micrographs showing Pd nanocrystals of mean diameter 4.5 nm

organized into two-dimensional lattices using different thioles: (a) butanethiol, (b)

octanethiol, (c) dodecanethiol, and (d) hexadecanethiol, from Ref. 81

The diameter, d of a cluster and the length l of the protecting ligands determine the

nature of the assembly to a large extent.82,83 In a phase diagram, Rao et al. compared the

relative stability of ordered arrangements of Pd clusters of varying sizes d and alkyl

thiolate chain lengths l. They observed a area, where the ratio d/l favorably influences

the formation of ordered layers.81 They concluded that the d/l values of the favorable

region are in the range 1.5-3.8. These experimental results have been compared with
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empirical calculations based on a soft sphere model, involving an attractive van der

Waals term and a repulsive steric term.84 The areas, where stable ordered layers are to

be expected, coincide fairly well (see dashed line in Figure 5).

             

Figure 5 The d-l phase diagram for Pd clusters covered by different alkanthioles. The

mean diameter d was obtained from TEM measurements on as-prepared sols. The

length l of the thiole is estimated by assuming an all-trans conformation of the alkan

chain. The type of thiole is indicated by the number of carbon atoms, Cn. The bright

area in the middle encompasses systems which form close-packed organizations of

clusters. The surrounding darker area includes disordered layers of clusters. The area

enclosed by the dashed line is derived from calculations from the soft sphere model;

from references 81, 84

Measurement of magnetic properties of Co clusters (5.8 nm) showed that,

accompanying lattice formation, the blocking temperature increases.85-87 This means that

small metal particles exhibit stable magnetism at higher temperatures only by arranging

themselves! FePt alloy clusters yield ferromagnetic assemblies for which the coercivity

is a function of the Fe:Pt ratio and the particle size.88 Various investigations were carried

out on the electrical transport properties of cluster lattices.89-93 Kagan et al. showed the

electron transfer of proximal CdSe quantum dots by dipole-dipole inter-particle

interaction.91 Snow and Wohltjen concluded that the ligand shell thickness of thiolized

gold clusters manifests a very strong effect on electrical conductivity as a resistance

barrier between contacting clusters.92 These observations open up a variety of
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applications of the tailored materials envisaged. The development of suitable

computational methods and models will help the understanding of the interaction of

protected clusters, ligand composition and coverage better, enabling the preparation of

ordered arrangements of clusters with defined properties.
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3. Computational Chemistry Background

3.1. Density Functional Method

Electronic structure calculations performed in this thesis used density functional (DF)

methods.2,3 In density functional theory (DFT), one determines the total energy of a

system as a functional of its three-dimensional electron density. Hohenberg and Kohn

proved that the total energy of an electron gas, even in the presence of a static external

potential, is a unique functional of the electron density.2 The minimum value of the

total-energy functional is the ground state energy of the system, and the density that

yields this minimum value is the exact single-particle ground state density.2 Kohn and

Sham then showed how it is possible to replace the many-electron problem by an

exactly equivalent set of self-consistent one-electron equations.3,94-96 the Kohn-Sham

����������������
�����������������������	����

���������
�����
���	������ i can be written:

[ ] [ ]

2
2 3 3

i i i ion
i

3 3
XC ion ion

E[{ )*�+�! � �� ��,� # ��-� ���-�� �
2m

1  (r) (r’)
+  d r d r’ + E (r)  + E {R }   ,

2 r - r’

ρ

ρ ρ ρ

 
∇ 

 
∑∫ ∫

∫

�

(3.1)

where the first term is the kinetic energy of non-interacting particles, Vion is the static

total electron-ion potential, the third term is the classical Coulomb interaction between

electrons

and other electrons, Eion is the Coulomb energy of the nuclei (or ions) at positions

{Rion}, Exc����������
������
��������������
����������� ��-�����������
���������������
��

by:

2

i
i

��-�+�!� ��- �∑ (3.2)

At the minimum value, the Kohn-Sham energy functional is equal to the ground-

state energy of the system. To determine this ground state energy, it is necessary to


������
�� �� ���� ��� ��	������ i that minimize the Kohn-Sham energy functional. For a

closed-shell system these are given by the self-consistent solutions to the Kohn-Sham

equations3:

2
2

ion H XC i i i + V ( ) + V ( ) + V ( ) � -�+� ��-���
2m

r r r r
 
− ∇ 

 

�
(3.3)
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������ i ��� ���� �������
�����.����/���� ��	����� ��� ���
�����
� ������ ��� i is the Kohn-

Sham eigenvalue and VH is the Hartree potential of the electrons given by:

2 3
H

��0-
V (r) = e d r  .

r - r’∫ (3.4)

The exchange-correlation potential, VXC, is given by the functional derivative:

XC
XC

1 2 ��-*
V  =   .

��-
(3.5)

The Kohn-Sham equations represent a mapping of the interacting many-electron system

onto a system of non-interacting electrons moving in an effective potential due to all

other electrons. If the exchange-correlation energy functional were known, then taking

the functional derivative with respect to the density would produce an exchange-

correlation potential that included the quantum many-particle effects exactly. The

Kohn-Sham equations must be solved self-consistently so that the occupied electronic

orbitals generate a charge density that produces the electronic potential that was used to

construct the equations. The sum of the single-particle Kohn-Sham eigenvalues does not

give the total electronic energy because this overcounts the effects of the electron-

electron interaction in the Hartree energy and in the exchange-correlation energy. The

Kohn-Sham eigenvalues are not the energies of the single-particle electron states, but

rather the derivatives of the total energy with respect to the occupation numbers of these

states (Janak’s theorem).97 Accordingly, the eigenvalue of the highest occupied orbital in

an atomic or molecular calculation is the vertical ionization energy for that system,98

analogous to Koopman’s theorem in wave function based methods.99

The exchange-correlation functional, Exc, is the difference of the quantum

mechanical and the classical e-e energy functional, plus part of the kinetic energy. Thus

far, no explicit form of the exchange-correlation functional is known. Three types of

approximations are commonly used. The local density approximation, LDA, assumes

that EXC� ��� �� ��
��� ���
�������� �3 A generalization for open shell systems is the local

spin density approximation (LSDA). The generalized gradient approximation (GGA)

additionally takes into account the gradient of the local electron density. Hybrid

functionals mix exact HF exchange and XC functionals results according a given ratio.

Several implementations for LDA100,101, GGA102-104 and hybrid functionals105-107 exist.

LDA functionals reproduce geometrical data well, but overestimate fragmentation

energies, while GGA functionals are better suited to reproduce fragmentation energies.

Hybrid functionals aim to achieve both.96
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3.2. Molecular Mechanics Method

The Molecular Mechanics108 (MM) ansatz starts from the notion that it is not necessary

to know the exact electronic structure of a molecule to deduce most of its basic

properties like bond lengths and angles, etc. or heats of formation and certain

spectroscopic data.109-112 If these properties of a calibrating set of molecules are known,

similar molecules would exhibit similar properties.113-115

In the ball-and-spring model underlying most molecular mechanics approaches,

atoms are considered as point masses. Depending on the level of the respective model

they may as well be assigned a certain charge, implicit dipole moment, van der Waals

potential or other one particle properties. Bonds will be represented as spring-like

potentials between two such mass points, where the energy contribution is solely a

function of the distance between them. Other interactions as potentials dependent on

bond angles, dihedral angles, dihedral-dihedral interactions, bond-angle interactions, or

two-, three-, and four-body non-bonded interactions, like electrostatic and van der

Waals interactions, are implemented in a similar fashion. The energy of a given system

may then be simply defined as the sum over all those elementary interactions:

bond angle dihedral

tot bond bond a b angle angle a b c dihedral dihedral a b c d
i i i

N-1 N

pair i j 3 body i
i=1 j > i

E  =  E (i , r , r )  + E (i , r  , r  , r ) + E (i , r , r , r ,r )

+ E (i, j, r  - r ) + E (i, j, k, r

∑ ∑ ∑

∑∑

�� �� �� �� �� �� �� �� ��

� �� N - 2 N - 1 N

j k
i = 1 j > i k > j

N-3 N - 2 N - 1 N

4 body i j k n
i=1 j > i k > j n > k

N

external i i
i=1

i
i

 , r  , r ) 

+ E (i, j, k, n, r  , r  , r , r ) 

+ E (i, r  , v )     

= E ({r})   ,

∑ ∑∑

∑∑ ∑ ∑

∑
∑

� �� ��

� �� �� ��

� ���

�

where Etot is the total (Molecular Mechanics) energy of the system depending on the

included energy contributions and the underlying model. The iE are the partial energy

contributions included in the model of the respective MM theory implementation. The

set variables ix specifying which atoms take part in which interactions. The functions

detailing the energy dependence of a given interaction as well as their parameters have

to be well conceived and tuned to allow this method to be used.116-118 Modern Molecular

Mechanics methods are capable of treating a wide variety of different types of

(3.6)
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compounds. They range from simple atomic system, e.g. mixtures of noble gases119 to

macromolecules with flexible bonds embedded in a polarizable solvent.120

The term force field121 is thus defined to specify the sum of all functional

dependencies, atom type definitions as well as the parameter sets used in such a

implementation of a MM ansatz. To provide the functional dependencies in force fields,

two ways of developing rules and parameter sets exist. The first tries to fit the best

available experimental data to specifically designed interpolation functions, to improve

the accuracy of prediction for a predefined set of reference compounds, without trying

to reflect the underlying quantum mechanics. The application of this approach to an

ever increasing number of reference compounds leads to the introduction of different

parameter sets for atoms of one element in different chemical environments (atom

types). Factors to be taken into account when assigning a type to an atom include

hybridization, bond multiplicity, bond partners of first, second and even third order or

the presence of hydrogen bonds or π back bonding. Force field implementations like

MM2,122-124 MM3125-130 and AMBER131-133 belong to this type of approach. Although able

to describe compounds chemically similar to reference compounds very well134, their

disadvantage is the increasing number of parameter sets necessary and the loss of

generality for unknown classes of compounds. The MM3 force field for instance

includes 5 different types of carbon parameter sets and 3 different for sulfur, depending

on the chemical environment.125,127,128,130,135 Even so, sulfur bound to  metals is not taken

into account. While many classes of organic compounds,108 including heterocycles,136

may be accurately described using this force field, much of the inorganic chemistry is

neglected as opposed to other force field implementations.137

The other parameterization strategy deals with exactly this problem. It assigns a

higher priority to the generality of the parameters than to accuracy. Each element is

assigned exactly one set of parameters regardless of the chemical surrounding it may

experience. The functional form as well as their parameters are defined in a way to

reflect the physical properties of the element considered as good as possible. If a

parameter set for each element is derived, any compound is computable. The better the

description of the reality by the function and parameter sets, the better results can be

expected. Examples of this approach are the DREIDING138 and the UFF139,140 force field

implementations.
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3.3. Periodic Boundary Conditions

In pertinent experiments, clusters with ligand shells are often located in a chemical

matrix. In such a situation, the model of a solitary cluster may lack essential features, as

the interaction with a matrix can introduce a strain not present in the former model. The

problem of incorporating a chemical matrix in a computational model is not a new one.

MD simulations of liquids or solids routinely handle this problem.141 There, the models

are often based on  the assumption of a infinite, isotropic material. System boundaries

are thought to be conveniently far away from the boundary of the model. For this model

boundary the term "box" has gained widespread acceptance. It is not always possible to

model a large enough box of the system under consideration in order to describe

adequately all interactions nor is one always able to neglect boundary effects. The

computational cost accompanying such large models may be too high even in force field

based approaches. A small model may have two consequences. If movement of particles

is not restricted to the box, they could exit, effectively evaporating from the model. If

the movement is restricted to the box, unphysical forces would be introduced (artificial

pressure). A practical solution is to assume spatial periodicity of the model.142 As a

result of periodicity, for any particle moving out of a box in one direction, another

particle enters the box along the same vector at the opposite wall of the box with equal

momentum. As the number of particles in the box is constant this way, the number

density and the material density of the model are conserved. This situation is illustrated

in Figure 6, simplified for the two-dimensional case. The central box contains the

original model particles. Boxes A through H are derived by translating this central box

along one or both of the cell vectors 1 2L  and L
��� ���

 as exemplified in box image H. Particle

1 is shown leaving the central box into box B. Images of particle 1 copy this movement.

Thus, an image of particle 1 enters the central box from G. By application of

translational symmetry, the model becomes effectively infinite.

The perpetuation of particles does not impose any principal problems. Interactions

between particles in different boxes however do. Including all images of a particle in the

calculation of interactions is very difficult, as sums over a potentially infinite number of

particles and their interactions in a periodic model require special consideration. Some

way of restricting the number of interactions has to be found; equivalently, the

interaction with an indefinite number of surrounding particles has to result in a finite

value which has to be determined by an efficient strategy. A customary way to do this is

to limit the range of interactions. The physically correct description of the model then
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hinges on the sufficient "cutoff" range rcut. An easy way is to define this cutoff as the

length of one of the cell vectors 1 2L  or L
��� ���

, whichever is shortest. A situation like this is

sketched in Figure 7.

Figure 6 A two-dimensional periodic system. Particles can leave and enter each box

across each of the four edges.

While short-range interactions usually do not suffer from this approach, the error

introduced in long range interactions such as van der Waals interaction should be

corrected by an analytical term. Periodic boundary conditions used in the description of

an isotropic model can introduce a periodicity of its properties. The loss of isotropic

behavior in liquids is the result.141 When modeling a non-periodic system with periodic

boundary conditions, rcut is often set to i < Min(L ) 2rcut   
���

 to avoid that. One the

other hand, periodic effects stemming from too low a choice of rcut have also been

shown to result in other adverse effects, i.e. suppressing density waves with a

wavelengths greater than iL
���

.141

1
2

3
4

  L1  

L2
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However, this influence of rcut was demonstrated to be negligible, when the

potentials in question are either truly short-ranged (rinteraction << iL
���

) or, as in the case of

ordered arrangements of metal clusters interacting with their images in adjacent cells,

suppression of periodicity of properties is unwanted.

Figure 7  Cell O and 8 symmetric images in a two-dimensional square lattice. The

interaction range is indicated by a circle of radius rcut = L
��

 , indicated by a dashed line.

Some images of particle 1 fall within that radius.

To increase the system size, one could, for example, unify cells A through H with cell

O, including translated images of the cluster with copied geometries. Technically, this

would be an awkward approach. Thus, rcut can be chosen equaling the shortest cell

vector length in inherently periodic systems.

A CB

D EO

F HG
  L  

1
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3.4. Hybrid Quantum Mechanics and Molecular Mechanics

Methods (QM/MM)

3.4.1. General Background

An interesting approach to compute larger chemical systems is to partition them into

two or more subsystems which are treated with different computational methods

varying in their computational demand.

Figure 8 Partitioning a system according regions of interest into QM and MM part

While one system is smaller, it holds the region of immediate interest of the system and

is treated accordingly with a quantum mechanical method such as Hartree-Fock143 (QM

part) or a related high level of theory method with exchange-correlation treatment.144-156

At the same time, the larger system(s), which holds not as much valuable information, is

treated with an appropriate method such as a semi-empirical method or with molecular

mechanics (MM part). These lower level methods usually have the advantage of lower

computational demand.115 Its feedback on the smaller system would then have to be

taken into account at an appropriate level of approximation. The energy of the

combined system X+Y, QM (X) and MM (Y) is then:157-159

high low intE(XY) = E (X) + E (Y) + E (XY) (3.7)

where E(XY) is the total energy of the complete system XY, Ehigh(X) and Elow(Y) are

the energies of the subsystems X and Y respectively, and Eint(X,Y) provides a

correction for the interface between the two subsystems. When an explicit form for the

interface system correction term is not known, it has been suggested to "extrapolate" the

total energy in the form:5

app high low lowE(XY)  E (XY) = E (X) + E (XY) - E (X)≈ , (3.8)

regions of low interest;
MM part

region of high interest;
QM part
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where Eapp is the approximated total energy.

This is true only when:

int low low lowE (X,Y) = E (XY) - E (X) - E (Y) (3.9)

According to their respective derivation, the first approach, connecting both parts via an

explicit term Eint, is called the connection scheme, while the latter, extrapolating this

term, is called extrapolation scheme.159 Depending on the parameterization of the MM

implementation (force field) used, the energy  differences between similar systems can

be used as an extrapolation of the difference of the total energy of both systems treated

at the high level of theory.

In the basic QM/MM concept, both regions do not need to be connected via

chemical bonds. Furthermore, the QM region does not need to be completely

surrounded by the MM region. All that needs be taken care of is the correct proliferation

of influences (forces, electronic coupling of the subsystems) of the QM part to the MM

part and vice versa and the energy expression for the complete system.159 If there are no

chemical bonds connecting the two subsystems, most approximate descriptions of non-

bonded interactions are surely accurate within chemical accuracy.115 If however

chemical bonds are cut separating the subsystems X and Y, this "dangling" bonds have

to be saturated in the QM part (Ehigh(X)). The energy contribution to the QM energy of

non-saturated bonds would otherwise introduce a undetermined source of error.160 Two

techniques have been proposed to avoid such artifacts. The first one saturates the

remaining bonds with an extra atom ("atom capping" or "link atom")157, while the other

uses pseudo-orbitals specifically designed to be "chemically similar" to the atom cut

("orbital capping").147 Although the extrapolation scheme is indifferent to the capping

technique used, most applications up to today implement the link atom approach. In

fact, the QM treatment an orbital capping approach would be preferable as it does not

introduces an additional, unphysical moiety. But, the respective auxiliary orbital would

have to be parameterized to reflect the physical and chemical properties of the bond as

well as the molecular fragment that is to be replaced. The terms necessary to adequately

describe this fragment with a single orbital are so wide ranging, that the only pseudo-

orbital able to claim accurate treatment of the subsystem would be the respective

subsystem itself.160 This may explain the reluctance to employ the orbital capping

approach in all its consequences. The effort accompanied with the "orbital capping"

scheme seems to exceed the gain of accuracy to be achieved.161,162 Although it is

expected that the introduction of an link atom to saturate the bond introduces a energy
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distortion that is not physically (or chemically) warranted, this should not interfere in

the examination of isodesmic reactions or energy differences of conformers. Even the

distinctive features of the energy hypersurface are thought to be, at least qualitatively,

preserved. Thus, the QM/MM approach has been successfully used in the exploration of

reaction paths and transition points.6 However, there is no guarantee that the

hypersurfaces of real and approximated system are identical or even parallel.160 To

circumvent associated problems, important degrees of freedom should reside well inside

the QM part of the model.160

To facilitate understanding of the basic QM/MM implementation five sets of atom

coordinates are introduced  (Figure 9).

Figure 9 Sketch of a system and its subdivision in the QM/MM approach; The various

types of atoms as referenced by their coordinates are: R0 = interior QM ; R1 = frontier

QM ; R2 = link atoms ; R3 = frontier MM ; R4 = interior MM

In the following, the term "frontier-bond" describes the bond that is cut by the

partitioning of the system into a QM and a MM system. It is defined to be formed by a

QM frontier atom (R1) and a MM frontier atom (R3). Thus, "link-bond" refers to the

bond between a QM frontier atom (R1) and a link atom (R2).

To model the interactions between the QM and MM subsystem, the simplest

approach is mechanical embedding,163 which will be discussed in more detail later on.

Besides the mechanical embedding, three approaches have been proposed to treat the

electrostatic interaction of QM and MM parts. These are electrostatic embedding,163

polarized embedding163 and self-consistent polarized embedding.164 In the electrostatic

embedding approach the MM part appears as a charge distribution, e.g. a set of point

charges, to the QM Hamiltonian. The polarization of the QM part by the MM charge

distribution thus occurs as part of the QM electronic structure calculation. The partial

link 
atoms

QM region MM region

R0 R1 R2 R3 R4



3. Computational Chemistry Background

23

charges used to describe the MM section of the system are frequently taken to be those

used in the force field,40,145,165 relying on electrostatic properties as described by the force

field. In "ab initio" schemes, the electrostatic embedding scheme can be implemented

by adding the MM point charge contributions to the one-electron Hamiltonian.

In the polarizable embedding approach, the polarization of the MM region in

response to the QM charge distribution also taken into account. Intuitively, this makes

the most sense when the force field incorporates polarization as unpolarized force fields

implicitly incorporate MM polarization in their parameterization, and care must be

taken to ensure such implicit contributions to not occur in QM/MM potential. A variety

of models for polarization are available, including the shell model,166 and coupled

distributed atomic polarizabilities.167 Polarizations of MM atoms close to the QM region

(e.g. those connected by link-atom terminated bonds) were found to be unphysically

large, leading to the suggestion that these atoms be treated as unpolarizable.160 The self-

consistent polarizable embedding approach extents the preceding approach in that QM

and MM polarizations are made self-consistent, either by iterative solution of the SCF

and polarizability problems,168 or by matrix inversion techniques, as exemplified by the

Direct Reaction Field (DRF) model.169-172

In the mechanical embedding approach, the QM calculation is essentially

performed in the gas phase, without electronic coupling to the environment. The

electrostatic interaction between QM and MM regions is either omitted or performed by

the MM code, using a classical point charge model for the QM charge distribution (e.g.

a potential derived charge model).145 The energy expression Eq. (3.8) may be

reformulated for a purely mechanical embedding as:

0 1 3 4 QM 0 1 2 MM 0 1 3 4 MM 0 1 2E(R ,R ,R ,R ) = E (R ,R ,R ) + E (R ,R ,R ,R ) - E (R ,R ,R )   , (3.10)

where

2 2 1 3R  = R (R ,R )   . (3.11)

Keeping the link atom (R2) degrees of freedom independent of the physical atom

coordinates would introduce artificial degrees of freedom. The resulting energy gradient

expression is :

total 0 1 3 4 QM 0 1 2 2 1 3

MM 0 1 2 2 1 3 MM 0 1 3 4

E (R ,R ,R ,R ) = E (R ,R ,R ) J(R :R ,R )

- E  (R ,R ,R ) J(R :R ,R ) + E (R ,R ,R ,R )   ,

∇ ∇

∇ ∇

(3.12)
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where J(R2:R1,R3) is the Jacobian matrix associated with the transformation of gradients

with respect to coordinate sets R2 to sets R1 and R3. The original IMOMM5,6,173

implementation did not include the coordinates R3 in the energy expression. It rather

defined R3 as dependent of R2.
6 This was because the coordinate sets of QM and MM

part were optimized independently by the corresponding programs. The QM part

coordinates were kept fixed during the MM part optimization. This approach obtained

more flexibility in the MM part optimization. As the MM structure is equilibrated at

every QM step, this amounts to quasi molecular dynamics runs, as the energetically

most favorable structure for the MM part is used instead of a structure itself in need of

optimization. Because the implementation designed in this thesis intends to examine

ground states rather than transition states, which would necessitate a higher flexibility, it

was decided to use the schemes presented here. The use of this variational scheme with

a single energy expression promised consistent results in a ground state and

conformational search.

Three options have been pursued in the mechanical embedding approach to

determine the link atom coordinates R2, all of which constrain the link atom to the

frontier-bond vector:

(a) Fixed link-bond length R12 and fixed frontier-bond length R13

If link-bond length and frontier-bond length are kept fixed, no transformation of

gradients of the link atom to the frontier atoms is required. This option, although simple

and popular in earlier IMOMM implementations,173 freezes the frontier bonds,

artificially restricting the geometry of the combined system. This restriction can be one

of the reasons for the energy hypersurfaces not being parallel to those of the system

treated homogeneously with a single method.

(b) Scaled link-bond length to flexible frontier-bond length174

This approach allows a change of the link-bond length according to the length of the

frontier-bond length:

2 1 3 1R  := R  + g(R -R ) (3.13)

where g is a constant scaling factor. It is often chosen as the ratio of the respective bond

lengths in QM and MM reference calculations of small test systems. Although the

introduction of the parameter g is somewhat arbitrary, tests showed that the resulting

bond lengths are accurate to a few hundredth of an Å. This includes the simulation of



3. Computational Chemistry Background

25

bond stretching effects in sterically stressed compounds propagating these effects into

the QM part.

(c) Fixed link-bond length and flexible frontier-bond length175

Here, the link-bond is kept fixed at some pre-defined value 0
12R ,

0
12

2 1 3 1
3 1

R
R  := R  + (R  - R )   .

R  - R
(3.14)

By expanding the Jacobian matrix in Eq. (3.12), the explicit gradients for each type of

coordinates in a QM/MM calculation can be written as follows:

QM 0 1 2 MM 0 1 3 4 MM 0 1 2

0 0 0 0

E (R ,R ,R ) E (R ,R ,R ,R ) E (R ,R ,R )E
 =  +  - 

R R R R

∂ ∂ ∂∂
∂ ∂ ∂ ∂

QM 0 1 2 QM 0 1 2 2 1 3

1 1 2 1

MM 0 1 3 4 MM 0 1 2 MM 0 1 2 2 1 3

1 1 2 1

E (R ,R ,R ) E (R ,R ,R ) R (R ,R )E
 =  + 

R R R R

E (R ,R ,R ,R ) E (R ,R ,R ) E (R ,R ,R ) R (R ,R )
+  -  - 

R R R R

∂ ∂ ∂∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

QM 0 1 2 2 1 3 MM 0 1 3 4

3 2 3 3

MM 0 1 2 2 1 3

2 3

E (R ,R ,R ) R (R ,R ) E (R ,R ,R ,R )E
 =  + 

R R R R

E (R ,R ,R ) R (R ,R )
- 

R R

∂ ∂ ∂∂
∂ ∂ ∂ ∂

∂ ∂
∂ ∂

0 1 3 4

4 4

( , , , )
 .MME R R R RE

R R

∂∂ =
∂ ∂

(3.15)

For option (b), the Jacobian transformations in Cartesian coordinates is:

2,i
ij

1,j

R
 = (1 - g) 

R

∂
∂

2,i
ij

3,j

R
 = g ���

R

∂
∂

(3.16)

where i and j denote Cartesian components x, y and z, and � is the Kronecker symbol.

The transformation Jacobian for option (c) may be written as:

0 0
2,i 12 12

ij i j ij
1,j 3 1 3 1

R R R
 = �,� � � ��� ������

R R - R R - R

∂
∂
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0 0
2,i 12 12

i j ij
3,j 3 1 3 1

R R R
 = - e e  +  ����

R R - R R - R

∂
∂

(3.17)

where ei and ej are the components i and j of the unit vector e:

( )3 1 3 1e = R - R R - R  . (3.18)

As mentioned above, option (a) is not used anymore for examination of chemical

problems as it introduces an artificial strain on QM and MM part of the system alike. As

this strain can not be quantified, it contributes to the interface energy Eint in an unknown

fashion. In a similar way, option (c) puts a strain on the QM part and neglects steric

contribution of the MM part. Option (b) on the other hand, even when applying only an

approximate distance ratio, joins QM and MM part in a way, where effects of one part

are propagated to the other. It can be seen as a valid approximation as the correct ratio

of link-bond to frontier-bond is not known. A good guess for g was proposed by

Morokuma as the ratio of the respective bond lengths in a MM force field.174 In the

present work, it turned out that option b results in reasonable geometries as well as

energies when applied to copper-organic model species where the QM/MM boundary

intersects a carbon-carbon bond.

3.4.2. Implementation

In the development of QM/MM schemes, two approaches regarding the update of the

geometries of the QM and MM part were pursued. One procedure kept the QM part

coordinates R0 and R1 as well as part of the MM part R3 coordinates fixed during the

MM optimization, and updated them only after MM convergence had been reached.

Alternatively, one updates the complete coordinate set according to the combined

gradients of QM and MM calculations. This scheme was used in the present

implementation of the QM/MM approach. Figure 10 represents an overview of the

implementation structure; the coordinate sets were substituted with convenient

abbreviations. R0, R1 and R2 together are R(central), R0, R1, R3, and R4 are represented

as R(total) and R2 as R(link).

A typical run comprises the following steps. First, input for both QM and MM

program as well as the set of link atom coordinates are constructed. Then, R(central)

and R(total) are established. Next, the three "partial" energies are computed by

specialized programs independently of each other. Afterwards, the energies and

gradients are combined according the invoked gradient coupling scheme.  The structure

optimizer program, part of the PARAGAUSS package is then called to update the

structure according to energy and gradients. If the resultant structure was converged
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according to pre-defined conditions, the run terminates. Else, the loop starts anew with

the updated coordinate set.

A central idea underlying the implementation of the QM/MM scheme realized in

the present work was to ensure usability of existing programs for the respective tasks

with modifications reduced as much as possible. Thus, the input structure of the

individual programs had not to be changed. Any control of the QM/MM run itself and

accompanied data is handled by a higher level input, which contains the necessary

information of the specialized programs in a meta-format. The operating system specific

framework of the respective runs had to be predetermined by a top-level script, called

qmmm.script.
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Figure 10 Flow diagram of qmmm.script combining QM and MM programs; interface

blocks I and II indicated for future reference
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In a normal PARAGAUSS run the PARAGAUSS executable and the optimizer program are

called by the ttfs_script, which in turn would transfers its environment variables to the

program called. In a qmmm.script run this is not possible, as both QM and MM

programs are called independently. The ttfs script is only used to acquire environment

data and call the PARAGAUSS executable separately. The transfer of environment

variables is achieved by saving the output of a call of a special script (ttfs -environment)

in a file and reading this file for the profit of the optimizer program. The following

figure compares the two approaches.

Figure 11 Comparison of DF (ttfs) and QM/MM (qmmm.script) optimization

procedures

To allow the interface processing as indicated in Figure 10, a suite of F90 programs

(interfaces) was written to be called by the qmmm.script in addition to the QM and MM

programs. Their respective duties are indicated in Figure 12, and will be explained in

detail later on in this work.
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Figure 12 Tasks of the interface programs called by qmmm.script
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R(total), respectively. As their names are MM program specific, they shall not be

mentioned here to avoid confusion. Intermediate files constructed by some of the

interfaces will be addressed by their function as well. For the actual naming conventions

and content of the individual files, see the QM/MM Users Guide.176

MM programs usually do not enforce any symmetry restrictions of the system

computed. In QM calculation, symmetric models are often used as a means to reduce

the computational effort (see Chapter 2.2). To retain symmetry during the update and in

parallel allow non-symmetric models in the MM part, the QM part of the model is

frequently symmetry adapted. Thus symmetry restrictions of the QM part are

independent of the restrictions in the MM part and vice versa. The optimizer program

itself does not observe any symmetry restrictions. In this way it is possible to set up a

calculation with "partial" symmetry. This approach allows a more flexible treatment of

the MM system, but increases planning effort in the construction of the z matrix.

At the start of a qmmm.script run, a loop evaluates the command line parameters

and decides for instance which MM program to use. The first step towards an actual

calculation is the execution of program interface0_1. When called the first time it reads

a general system definition file and an MM system defining files and then it combines

these files to a meta-file, containing all necessary atom type and position information

necessary to describe both subsystems in their appropriate formats. Later computations

will reference this file for all geometry updates. Likewise, interface0_1 will prepare a z-

matrix file for the QM subsystem. This file is used in a first PARAGAUSS run to check if

the atom definitions conform to the selected symmetry. Deviations of atom positions of

up to 10-5 au ( ~5*10-6 Å) are corrected, if necessary.

After some cleanup operations of the QM symmetry run, the actual optimization

cycle begins. First within the optimization loop is an additional symmetrization step,

just as the one described above. The symmetry corrected atom positions from a

geometry update (cycle 2 and above) are read into interface0_2 which in turn updates

the meta-file. In interface1, these updated positions are used to compute the new

positions of the link atoms. The coordinate sets R(central) and R(total) are written to the

QM program and MM program input files. This new computation of the complete

coordinate set is  required because the necessity to adapt the link atom positions have to

be adjusted to the symmetry-adapted R(total), computed in interface0_1.

Subsequently, the PARAGAUSS run and the two MM program runs of central and

total system are performed. The MM program and the accompanying preparatory work

are chosen according to the parameters supplied to the script in the first step. The two
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programs interface2_1 and interface2_2 convert the MM program output coordinates

and gradients to a format compatible with the optimizer program. In this way, one can

check the computed energy and gradients for possible errors; also, this strategy allows a

uniform approach in future extensions. The respective information is written into a file

holding the results of the MM calculations in a PARAGAUSS convenient format. The

program interface4 combines the gradients of the QM and the two MM calculations in a

z-matrix and gradient file. This combination is carried out according to the link atom

and gradient combination scheme chosen (see Eqs. 3.13-3.18). The energies of the

subsystems are combined according to Eq. 3.10. The combined gradients and energies

of the independent calculations are turned over to the optimizer program which

generates a new geometry. If convergence according to some predefined conditions is

met, the optimization stops here. Otherwise, the cycle is resumed with the

symmetrization step in interface0_1.

3.4.3. QM/MM Test Calculations of Pentane

Pentane was chosen as the first to test the QM/MM implementation based on the MM

code DL_POLY_2. The goal of this study was to reproduce results obtained with the

implementation based on the MM program TINKER. Attention was paid mainly to get

good agreement of the geometry and the total energy, although the total QM/MM

energy does not possess a physical meaning because of the MM component.

Figure 13 Pentane in a CS symmetry conform orientation. Coordinate axes and unique

atoms indicated
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H1
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The model used Cs symmetry constraints. In this way, there were 7 groups of atoms not

equivalent by symmetry, as illustrated in Figure 13. The boundary between QM and

MM part was chosen to cut the bond between the atoms C1 and C2, which were replaced

by hydrogen link atoms to form methane in the QM part. For both calculations, the

computational parameters for the programs PARAGAUSS, TINKER and DL_POLY_2

were used as set forth in Chapter 4.

Table 1 Characteristic bond lengths of pentane in Cs symmetry; example DF (LDA)

optimized geometry and end geometries of QM/MM optimizations; accuracy

exaggerated to highlight the identity of QM/MM results; in Å

bond length multiplicity end value [Å]

DFT

end value [Å]

Tinker

end value [Å]

DL_POLY_2

C1-H1 2 1.1096 1.1036 1.1036

C1-C2 2 1.5157 1.5253 1.5253

C2-H2 4 1.1078 1.1141 1.1141

C2-C3 2 1.5156 1.5333 1.5333

C3-H3 2 1.1050 1.1130 1.1130

C3-H4 4 1.1033 1.1130 1.1130

In the analysis of the results, the identity of the two QM/MM calculations is striking.

Both implementations even needed the same number of steps to reach convergence.

Only an inspection of the of the atomic positions in the respective end geometry

revealed that differences in the order of 10-3 Å existed for the positions of the H4 atoms.

And these are the atoms exhibiting the highest difference between the QM/MM

calculations with the TINKER and DL_POLY_2 MM program respectively.

One could argue, that the identity between the respective QM/MM calculations is

the result of an accidentally good starting geometry. But, the H4 atoms were moved

~0.25 Å between start and end geometry in the course of the optimization, ruling out

this possibility.

Indeed, the similarities did not end in the geometry of the molecules computed.

Total QM/MM and even the partial energies were equal to at least 5 decimal places (see
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Table 2). The implementation of the QM/MM approach with DL_POLY_2 proved to be

successful in any way.

Table 2 Total and partial energies of pentane in QM/MM in TINKER and DL_POLY_2

implementations; in au

method coordinate set DL_POLY_2 [au] TINKER [au]

QM R(central) -40.1144123 -40.1144109

MM R(central) 0.0004549 0.0004510

MM R(total) 0.0048359 0.0048309

QM/MM R(total) -40.1100313 -40.1100310

It was only an intermediate goal to reproduce QM/MM geometries and energies

calculated with the TINKER implementation by means of the DL_POLY_2

implementation. The more far reaching goal was to compute QM/MM systems with

periodic boundary conditions, as the systems of interest in this thesis, copper clusters,

were to be computed arranged in a grid-like pattern.

With this goal in mind, it was considered sufficient to chose pentane from the

functional test above as first simple test case. A model was set up containing the

pentane molecule in a periodic box in triclinic periodicity. In x and y direction the box

length was set to 100 Å. In z-direction the cell vector was lowered from 40 Å to 9 Å in a

stepwise fashion. The pentane molecules thus form a chain, where only the end groups,

consisting of the C3, H3 and H4 atoms, come in close contact with their periodic images.

The interaction of the molecules was limited this way, allowing a comprehensive

analysis of possible errors. The gas phase geometry of pentane was chosen as the start

geometry of every step. The van der Waals cutoff radius was set to the respective z-

direction cell vector length (see Chapter 3.3).

The relative total QM/MM energies at different distances between molecular

centers were collected in Figure 14. The calculations found a minimum of the QM/MM

total energy at a molecule center distance of approx. 9.5 Å with a minimum energy in

the order of 0.1 kcal/mol. This value was confirmed to be sensible by comparison with a

reference calculation, consisting of an explicit evaluation of the van der Waals potential

of two methyl groups.
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The contributions of the individual subsystems to the QM/MM total energy are

detailed in Figure 15. The non-bonded interaction energy is provided by the outer part

of the model only. The QM energy of the central part (QM part) depends mostly on the

deformation of the QM model molecule, methane, by the interactions with the end

groups and does not reflect a physical observable in the QM/MM context. At

intermolecular distances higher than 9 Å, the QM part is not deformed at all. At 9 Å

intermolecular center distance, pertaining to a H3-H3' distance of 2.2 Å, the QM part is

deformed accidentally into a energetically favorable geometry by the MM part due to

the link atom positions.

Figure 14 Relative total QM/MM energy of a chain of pentane molecules; in kcal/mol;

relative total energy at 9.0 Å = + 0.5 kcal/mol omitted for clarity; QM/MM total energy

of the gas phase geometry is -40.114546497019 au

The MM energy of the central part mirrors the results of the QM energy. It is assumed,

that the decrease in relative energy is at least in part caused by van der Waals interaction

between the central parts in MM description. This interaction is not completely

cancelled.

The MM energy of R(total) shows the behavior of a typical van der Waals

interaction. A slow decrease of the partial energy towards the intermolecular center

distance of strongest van der Waals interaction is followed by a steep increase at shorter

distances. The minimum of the MM energy of the total model is found at a
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intermolecular center distance of 9.6 Å, pertaining to a H3-H3' distance between

molecules of 2.7 Å. The results obtained in these calculations will help in the

interpretation of the results of larger systems.

Figure 15 Partial energies used in the calculation of the QM/MM energy of pentane in

periodic boundary conditions

As another test, one can study whether the geometry of the pentane molecule would

deform according to the forces exerted by the van der Waals interaction between

periodic images. A deformation should result only when the van der Waals interaction

energy is high, i.e. at intermolecular hydrogen-hydrogen distances H3-H3' below 2.5 Å.

For this purpose, the intermolecular center distance was correlated with the z coordinate

of the H3 atom relative to the gas phase geometry.
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rightly the highest at the lowest intermolecular distance considered (9 Å). The

deformation of the molecular geometry follows the expectation.

Figure 16 Deformation of the pentane molecule in periodic boundary conditions at

given intermolecular center distances exemplified by the difference of H3 atomic

positions relative to the gas phase geometry

 The tests discussed above showed that the DL_POLY_2 QM/MM implementation was

able to reproduce geometric and energetic properties of the TINKER QM/MM

implementation with high accuracy. Furthermore, the capability of the DL_POLY_2

based QM/MM implementation to conduct calculations with periodic boundary

conditions was demonstrated. The extensive discussion proved the reliability of the

results in every case.
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4. Computational Details

For the DF calculations of this course of this work the PARAGAUSS program was used

exclusively.177 It employs a variant of the Linear Combination of Gaussian Type

Orbitals – Fitting Function – Density Functional approach.178 It uses an auxiliary basis to

represent the electronic density for evaluating the Hartree contribution of the electron-

electron interaction in an efficient fashion by means of three-center integrals.179

Distinguishing features of PARAGAUSS are the consequently parallel implementation of

every task, efficient relativistic treatment of heavy atoms, and various approaches for

describing the interaction of a system with its surrounding. These interaction

approaches include, for instance, cluster embedding in an elastic polarizable

environment (EPE) and its extension covEPE to covalent substrates,180 the polarizable

continuum method (PCM)181 and the QM/MM method.182,183 A feature most helpful for

the application in this thesis was the utilization of symmetry in almost every part of the

program, which allowed speedup of the calculations for symmetric models. The

geometry optimizations (ground state search only), were carried out with the LDA

functional as suggested by Vosko-Wilk-Nusair (VWN).101 Many studies showed that the

VWN functional yields reasonable ground state geometries for transition metal cluster

systems.56,184 Energetic properties were computed using the BP86102,185,186 functional of

the GGA type. GGA-type exchange-correlation potentials tend to overestimate bond

lengths for transition metal clusters,57 but are superior to VWN functionals in terms of

energetic accuracy.58 All systems studied had an odd number of electrons. Thus, spin-

polarized calculations were performed throughout this work. Relativistic effects were

expected to be comparable to those found in an earlier work on Ni clusters187 where, for

clusters with 4 and 55 atoms, nearest-neighbor distances were found to contract about

0.02 Å, accompanied by an average increase of binding energies of about 5 %. These

effects were considered negligible in the framework of the current investigation. The

molecular orbital basis set  for copper comprised 15 s-, 11 p-, and 6 d-type Gaussian

exponents, contracted to [6s,4p,3d] using atomic Kohn-Sham eigenvectors obtained in a

spin-restricted atomic calculation employing Ih symmetry restriction.188 The

corresponding auxiliary basis set was constructed in a standard fashion.189 Basis sets of

other elements used in this work received similar treatment to ensure an equal quality of

basis sets for every element, Table 3 provides an overview. The grid for numerical

integration was chosen as a superposition of atom-centered spherical grids according to

Becke;190 the parameters are also listed in Table 3. The grid construction implies a

Lebedev angular integration grid of order 17 (locally accurate up to angular momentum
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L = 17).191-193 The resulting number of grid points, as listed in Table 3, varies because of

symmetry considerations in the construction of the grid. Geometry optimizations were

performed using the optimizer subprogram of the PARAGAUSS program suite. This

program employs a quasi-Newtonian minimum search algorithm194  using a

consecutively refined Hessian matrix from an initial guess of an unit matrix. 194-201 In all

cases the geometries were relaxed until the components of the Cartesian gradients were

found to be smaller than 10-5 au.

Table 3 Parameters used in the QM calculations. Numbers in parenthesis denote the

uncontracted basis set, numbers in square brackets the contractions derived thereof.

NRAD is an implementation specific grid parameter used in the construction of the

Lebedev integration grid; approximate size of grid indicated by number of grid points

element basis set NRAD appr. number of grid points

Cu      (15, 11, 6) �24��5��&* 51 6660

S      (12, 9, 2) �24��"��!* 71 6710

C      (9, 5, 1) �2"��5��6* 51 3480

H      (6, 1) �25��6* 71 6820

The MM calculations were carried out with the programs TINKER43 and DL_POLY_244

using the MM3 force field of Allinger et al.125-130 In the case of DL_POLY_2 some

conversions and adaptation were necessary which are described in Appendix A.

Gradients and total energies were calculated with an accuracy of  876(-7 au, their

respective geometry optimization (TINKER) or update (DL_POLY_2) facilities were

not used in favor of the optimizer program. In computations using periodic boundary

conditions, an adapted cutoff strategy was used for van der Waals interactions; their

corresponding  minimal values are collected in Table 4.
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Table 4 Listing of appropriate values of rvdw for a maximum value of 0.001 kcal/mol

at cutoff distance of an arbitrary potential; highest value applies where multiple types

present

vdW atom pair minimum rvdw [Å]

H - H 6.11

H - S 9.46

H - Cu 10.33

Cu - Cu 13.36
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5. Calculations of Small Systems

5.1. Cuboctahedral Cu13 Clusters in Different Symmetries

The cluster Cu13 corresponds to a complete coordination shell surrounding a central

atom and is thus the smallest cluster with a bulk-like coordination shell of at least one

atom. Clusters of this nuclearity are expected to be particularly stable.202 Optimizing the

structure of the cluster under different symmetry constraints was supposed to show the

minimum energy structure. Reference data would be provided for the calculations of

ligated clusters. Oh symmetry was presumed as a reasonable starting point for the

investigation, as detailed in a X ����������8�13 by Messmer et al.203 They assumed that a

Cu13 cluster would inherit the Oh symmetry present in the cutout of the fcc bulk metal

lattice. Therefore, they restricted their model to a cuboctahedron at fixed bond lengths.

Later density functional studies of smaller Cun species with n 9�6(�����
�������������

tendency of copper clusters to form ellipsoidal, flat, geometries.204-206 To test if this

tendency would prevail in Cu13, lower symmetry models were studied. A successive

reduction of symmetry constraints from D4h to D2h and C4v would allow the cluster to

adopt such an optimum structure.

The geometry of Cu13 clusters was optimized using the VWN (LDA)

functional.101,207,208 GGA total energies were then calculated in single point fashion using

the BP86 functional.102,186 The validity of model and computational parameters was

assessed by comparison with available computational and experimental data. Symmetry

constraints to the model were compared based on their effect on the cluster geometry.

The optimum geometry of the Cu13 cluster was to be used as the cluster core in further

calculations, which would contain a ligand shell model.

5.1.1. Computational Details

The Oh computation was started with a cuboctahedral cutout of the fcc lattice of copper

of 13 atoms, using the bulk nearest neighbor distance of 2.556 Å.209,210 For each of the

symmetry constraints lower than Oh, the atomic positions were modified by ~10-2 Å in

the appropriate degrees of freedom to facilitate convergence of the electronic structure

in the subsequent geometry optimization.

In the Cu13 cuboctahedron (Oh) only two sets of symmetry inequivalent atoms

exist. (Figure 17) In symmetry D4h, mainly applied in this work, cluster atoms fall into

three such sets. The central atom will be called just that. The four atoms located on the x
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or y axes, with z = 0, will be referred to as equatorial atoms or Cueq. The remaining 8

atoms are termed axial atoms Cuax, reminiscent of the nomenclature in e.g.

carbohydrates or complexes.211-213 When reducing the symmetry from Oh to D4h, the

bond lengths of equatorial and axial atom to the central atom become disparate. In a

further reduction of symmetry from D4h to D2h, and the change from D2h to C4V, of the

axial and equatorial atom groups split up further. In D2h, diagonal axial atoms together

with their horizontal images constitute two groups. In C4v, the axial atoms above and

below the x-y-plane constitute separate groups.

Figure 17 Cu13 in Oh and D4h symmetry, illustrating the naming convention for surface

copper atoms

All calculations used one processor of  the SGI Power Challenge, to allow accurate

measurement of the computation time without parallelization effects.

5.1.2. Results

In Oh symmetry, the optimized bond lengths were 2.256 Å (equivalent to an atomic

radius of 112.8 pm). Although less than the atomic radius in the bulk of 1.278 Å, this is

still considerably larger than any of the  ionic radii, ranging from 0.77 Å  for copper I to

0.54 Å for copper III. The calculated bond length is consistent with those computed for

smaller copper cluster species (Cu10; 2.40–2.50 Å).214 In that work, geometries were

optimized at GGA level, applying counterpoise and zero-point corrections.

The energy obtained in the Oh optimization was taken as a reference for the

relative stability of the Cu13 cluster in other symmetries. Differences of the symmetry

conformers will be provided in kcal/mol. The computation time required for one

geometry update was about 4 minutes.
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Under symmetry reduction from Oh to D4h, the Cuce-Cuax and Cuce-Cueq bond

lengths become different, when accompanied by an energy gain. In the optimized

geometry, the central atom to equatorial atom bonds, henceforth referred to as

equatorial bonds, were elongated to 2.74 Å. The axial bond lengths decreased to 2.015

Å. The bond length from equatorial atom to axial atoms, 2.281 Å, remained relatively

close to the original bond length of 2.256 Å , see Table 5. The cluster in D4h geometry

was more stable than in Oh by 35.9 kcal/mol. The computation time needed for one

geometry update was ca. 7 min or an increase of almost 100% relative to Oh symmetry.

All Cu13 cluster conformers found until then were "flat", i.e. the ratio of x(y) and z

axis was larger than 1. Studies of the respective gold species indicated the existence of

conformer with a more globular shape.215 However, such an conformer was only

accessible at computational parameters that ensure a higher accuracy at considerably

higher computational costs (increased grid quality, inclusion of relativistic effects). This

structure was not stable in a single point calculation with the standard parameter set. It

could not even reach SCF convergence. The relative total energy, (see Table 5) was at

least 22 kcal/mol less stable than the flat conformer, and is mentioned as an example for

a different conformer, which becomes stable in a ligand shell situation (see Chapters

6.1, 6.2).

Table 5 Representative bond lengths, relative energies and atomization energies of Cu13

clusters with different symmetry constraints

symmetry Cuce - Cueq

[Å]

Cuce – Cuax

[Å]

total energy † ‡

[kcal/mol]

atom. energy per atom‡

[eV]

Oh 2.256 2.256 - -2.334

D4h 2.740 2.015 -22.4 -2.409

D4h "round" 2.375 2.375 (10.4) -

D2h 2.740 2.015 -22.4 -2.409

C4v 2.740 2.015 -22.4 -2.409

† Relative to the Oh conformer (Etot,Oh = -21201.34796 au)

‡ Single point GGA calculations using LDA optimized structures

(ECu = -1633.91241 au)
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Analysis of the corresponding one-electron spectra reveals the cause of the large

distortion of the cuboctahedral cluster upon symmetry reduction. The partially occupied

t2g orbital in Oh symmetry correlates with the b2g + eg orbitals in D4h (see Table 6).
216,217

In the present example however, the eg orbital energy is increased by 0.6 eV while the

b2g orbital energy is decreased by 0.8 eV. In the Oh symmetry, the LUMO has eg

character, which splits into a1g + b1g in D4h. These two orbitals now lie energetically

lower than the eg in D4h and are subsequently occupied. The stabilization of the flat

conformer is therefore not an effect of a Jahn-Teller distortion alone, but the result of a

change to a different electronic configuration. As the HOMO in D4h belongs to an one-

dimensional irreducible representation (a1g), an additional energy gain by Jahn-Teller

distortion can not be expected.

Nevertheless, symmetry constraints were reduced to D2h and C4v. In the D2h point

group the axial atoms are separated into two sets, arbitrarily denoted axial for those

located in the x-z-plane and axial’ (prime) for those located in the y-z-plane. Although

the calculation was set up with an appropriate difference of bond lengths of  axial and

axial’ atoms, they were virtually identical in the converged geometry to the D4h

geometry. The axial and equatorial bond lengths remained the same as in the D4h

optimization ( 5
i� 6(−≤  Å ). This geometry was also –22.4 kcal/mol more stable than

the Oh geometry, or virtually identical to the D4h geometry. The time for one geometry

point increased to about 19 min.

Table 6 Electronic configurations of Cu13 clusters in different symmetries, the HOMO

designates the highest occupied molecular spin orbital, ����� ����������:���������

minority spin respectively, the last column shows the HOMO energies in eV

symmetry configuration HOMO (spin orbital) Energy [eV]

Oh a1u
2 t2g

5 13 t2g
2 -4.467

D4h a1g
2 b1g

1 23 a1g
1 -4.267

D4h "round" b2g
1 eg

4 20 eg
2 -4.459

D2h ag
2 ag

1 37 ag
1 -4.267

C4v a1
2 b1

1 39 a1
1 -4.267

A change of symmetry constraints to C4v did not result in a energy gain with respect to

D2h or D4h�������
������������������������������
���������������
���� 1tot < 10-3 kcal/mol)
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to the D4h conformer, or –22.4 kcal/mol with respect to the Oh symmetry optimization.

The axial and equatorial bond lengths stayed at their familiar values of 2.015 Å and

2.740 Å respectively. The time for one geometry point decreased to 14 min/cycle, a

reduction of 5 minutes relative to the D2h optimization.

The atomization energies of the Oh cluster (EB = 2.33 eV) and D4h cluster

(EB = 2.41 eV) were compared reasonably to an estimated value derived from the

calculations of Jug et al.214 of EB  ~2.5 eV, which were carried out using the PW

functional185 and employed counterpoise correction. Similarly, the vertical ionization

potential according to Janak's theorem (D4h ; IP1 = -4.267 eV) compared reasonably

with  an experimental estimate by Winter et al., where an upper bound of the IP of

5.58 eV was inferred from excitation thresholds.218

From these calculations, the D4h symmetry was chosen as a suitable compromise

between computational accuracy and computation time. This symmetry constraint

allows addition of a flexible arrangement of 8 ligands, while keeping the computational

effort moderate.
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5.2. Model Ligand Coordination: Cu13(SH)8

To qualitatively assess the effects of ligands, their binding site and orientation

preference on clusters, is common to replace bulky ligands by small model species. As

the electronic interaction of the ligand head group is usually the strongest, this strategy

is useful, even though electronic and steric effects of the tail groups are neglected. The

potential energy surface of such a model system would provide qualitative insight into

the thiolate coordination to copper clusters. In this way, useful starting geometries for

the inspection of more realistic ligands can be obtained and it is also possible to

estimate the binding energy of thiolate ligands to copper clusters. From similar

computations on Au clusters,  Nörtemann215 concluded that the difference in binding

energy between an on top and a threefold hollow site is about 0.3 eV or 6.9 kcal/mol.

The gold and copper clusters differ in structure: the copper clusters investigated were

flat. Thus, the circumscribing ellipsoid features two long and one short main axes. Only

one of the Au clusters examined had a similar shape.215 The three other Au13(SH)8

conformers exhibited two short and one long main axes (upright ellipsoidal). Genest

found only upright ellipsoidal conformers.219 Also, the bridge-hollow position of the

sulfanyl ligands turned out to be energetically preferred over the on-top position.219 On

the other hand, energy differences were rather similar to those in the previous study.

Ligands in bridge-hollow binding site were confirmed to be 0.3 eV stronger bound than

the on-top position.

5.2.1. Model and Setup

The Cu13 cluster in D4h symmetry as derived in the previous chapter served as reference

structure of the model system. Here, as well in other cases, one can consider the

assumption of a highly symmetric structure of the cluster as a model

assumption.56,58,204,220 To assess the properties of ligand orientations, four models were set

up. In the first two, the ligands occupied threefold-hollow to bridge-hollow position

above the 111 facet, each made up by two Cuax and one Cueq centers. The ligands were

free to move on the plane bisecting this facet. In the other two conformers, the 8 ligands

were placed in a on-top position above the Cuax centers. In each group, the ligands were

oriented in the x-y-plane (out) and perpendicular to this plane (up) in one model

respectively. All four conformations were optimized in D4h symmetry. At the beginning,

the ligands were positioned according to their adsorption sites with a copper to sulfur

distance of 2.15 Å to the respective nearest atom(s).
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Figure 18 Nomenclature to describe Cu13(SH)8 model clusters. The example is in

bridge-hollow coordination, ligands are oriented upwards

5.2.2. Total Energies and Binding Energies

The total energy of the optimized structures of Cu13(SH)8 varied with conformation and

ligand orientation. First, structures with ligands at threefold-hollow sites rearranged to

bridge-hollow sites during the optimization; also they were more stable than structures

with ligands in on-top positions. The total energy of the clusters varied in a range of  7.5

eV with the bridge-hollow (up) conformation being the most stable and on-top (out)

being the least stable.

H

S

Cuax

Cueq

Cueq-Cuce

Cuax-Cuax’

Cuax-Cueq

Cuax1-Cuax2

Cuax-Cuce

S-H

Cuax-S

Cueq-S
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Figure 19 Optimized geometries of the 4 conformers of Cu13(SH)8

This finding agrees with the results of Genest for sulfanylated gold clusters. However

the energy differences appear to be broader than for the Au clusters. Therefore, the

different conformers vary in abundance. The structure of the on-top (out) conformer and

its energy difference to the other conformers may look strange at first sight. The ligands

do not show the typical Cu-S-H angle of ~110;�� ��� ��� ������ ��
������ ��� ����� ������ ���

reference purposes. Careful investigation confirmed, that the optimization was indeed
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genuinely converged. Likewise, the electronic spectrum does not exhibit any anomalies.

Thus it was concluded, that this structure is a genuine, if awkward looking minimum of

the potential energy hypersurface of the model system Cu13(SH)8.

Table 7 Energy differencea relative to the bridge-hollow (up) structure and binding

energies of various conformers (GGA single point calculations at LDA optimized

geometries) energies in eV

ligand binding

site

ligand

orientation

relative total energy

[eV]

binding energy

per ligand [eV]

bridge-hollow up 0.000 -3.12

bridge-hollow out 0.942 -3.24

on top up 1.696 -3.02

on top out 7.470 -2.30

a See Appendix B for absolute total energies

Clearly, the binding energies follow the same trends as the  total energies regarding the

adsorption site and the orientation of the ligand. They range from 3.24 eV for the case

of bridge-hollow (up) to nearly an 1 eV less for the case of on-top (out). The large

energy difference of 0.7 eV between the two on-top conformers of as compared to the

small energy spacing of 0.1 V between the two bridge-hollow conformers can be

rationalized by the relative instability of the on-top (out) conformation. In summary one

concludes, that all of the axial and equatorial conformers would have to be calculated

also for larger species, as the differences may change depending on the immediate

surrounding of the ligands, and additional steric interactions within other ligands. Note

that the calculated binding energies are about 0.6 eV larger than in comparable surface

adsorption calculations,221 where Akinaga et al. computed surface adsorption energies of

methyl thiolate on the copper (111) surface. Allowing relaxation of the adsorption site

and ligand geometry, they obtained a (non-relativistic) binding energy of 2.63 eV per

adsorbate. As a side remark it is noted, that in that study relativistic corrections of the

binding energy were estimated to 0.0004 eV only. That result supports the strategy of

the present study, namely to employ only non-relativistic models.

A LDA study of Cu4SX clusters, (X being H and CH3, respectively) by

Kerdcharoen et al.183 found significantly higher binding energies, ranging from 4.2 to

3.8 eV. However, these binding energies become comparable to those obtained in this
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thesis, if one applies an ad-hoc-correction of about 1 eV to account for the overbinding

of the LDA functional.

5.2.3. Cluster Core Geometry

The presence of ligands can obviously change pertinent bond distances of the

underlying cluster core. This is demonstrated by Table 8, which presents a comparison

between suitable geometrical properties of the D4h symmetry "bare" cluster and the

species with ligands. The Cuce-Cueq and Cuce-Cuax distances are referred to as first order

bonds in the discussion to distinguish them from the second order bonds, which  are

Cuax1-Cuax2, between two axial copper atoms in the horizontal plane of the cluster,

Cuax1-Cuax1’, between one axial copper atom and its image at the negative z coordinate

and Cueq-Cuax, the distance between equatorial and axial atoms.

Table 8 Pertinent Cu-Cu distances of Cu13(SH)8, in Å

ligand

binding site

ligand

orientation

Cuce - Cueq

[Å]

Cuce-Cuax

[Å]

Cuax1-Cuax2

[Å]

Cuax1-Cuax1'

[Å]

Cueq-Cuax

[Å]

bridge-holl. up 2.57 2.09 2.37 2.48 2.20

bridge-holl. out 2.74 2.04 2.33 2.41 2.30

on-top up 2.68 2.01 2.29 2.40 2.26

on-top out 2.71 2.01 2.32 2.34 2.26

Cu13 bare 2.74 2.01 2.32 2.33 2.28

Both first order bond lengths, Cuce-Cueq and Cuce-Cuax, are only weakly influenced by

the presence of the ligands in the three least stable conformations. Only in the bridge-

hollow (up) conformation the Cuce-Cueq bond length decreases by 17 pm. The

shortening of this bond is accompanied by a concomitant increase of the bond lengths

Cuce-Cuax, Cuax1-Cuax2 and Cuax1-Cuax1'. For all other conformers, similar to the Cuce-

Cueq bond the changes in the Cuce-Cuax bond length are not strong. As can be seen, the

changes in these "second order" bond lengths are fairly small, of the order of 1 pm; the

largest increase of Cuax1-Cuax1' again for the bridge-hollow (up) conformation, is 15

pm. This most strongly bound species is obviously undergoing the strongest stress on

the cluster core. The overall trend shows that the Cu-Cu bonds change concurrently,
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deforming the cluster into more round shape, rather than contracting the whole cluster

with the flat shape left intact.

5.2.4. Ligand Geometry

As can be seen in Table 9, sulfur-copper bond lengths do not vary significantly in the

bridge-hollow conformations. Shifting the ligands into equatorial positions moves the

ligand head group only minimally in the direction of equatorial copper atoms (by 4 pm).

This "downward" movement is accompanied by an elongation of the Cuax–S bond by

9 pm.

Table 9  Sulfur related bond lengths in Cu13(SH)8 clusters of different conformations; in

Å

ligand

binding site

ligand

orientation

Cueq – S

[Å]

Cuax – S

[Å]

S – H

[Å]

bridge-hollow up 2.26 2.28 1.37

bridge-hollow out 2.22 2.37 1.38

on-top up 3.08 2.13 1.37

on-top out 3.23 2.05 1.35

The situation was entirely different in the case of the on-top located ligands. The

changes for both bond lengths are more drastic and as already seen in the evenly drastic

changes in binding energy (Table 9). Bond length changes of 15 pm for Cueq–S and 8

pm for Cuax–S indicate considerable changes in the bonding situation when switching

from an axial to an equatorial ligand orientation. Here, the curious ligand orientation in

the on-top (out) case is mentioned again. The Cuax-S-H angle of 180;� ��<��� ���

assumption plausible, that this conformation is caused by the symmetry restriction to

D4h, which prohibit a ligand reorientation into a energetically favorable position. The

sulfur-hydrogen bonds, on the other hand, do not change significantly for different

ligand surroundings. Taking the value of 1.37 Å as reference, deviations of at most

2 pm seem nearly negligible considering the computational approach used. In summary,

the calculations of Cu13(SH)8 showed that its properties will sometimes change in

drastic ways dependent on the ligand binding site and orientation. Although the binding

energies for on-top adsorption sites suggest that these binding site conformers are less
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stable regardless of the ligand species, further investigations should not exclude them a

priori. Inter-ligand interaction can contribute considerably to the binding energy of

larger, more realistic ligands.

5.2.5. Conclusions

It can be concluded, that sulfanyl model ligands bind to copper clusters with a strong

chemical bond. Comparison with previous calculations showed, that the binding energy

of sulfanyl ligands is computed higher than that of alkyl thiole species. However, one

can expect, that alkyl thioles will be bound to copper clusters with considerable binding

energies as well. The bridge-hollow binding site was identified as energetically

preferred. Without interaction between ligands, the sulfanyl ligands adopt a nearly

perfect threefold-hollow ligand binding configuration. The higher the binding energy,

the more the cluster is deformed into a round shape. However, this deformation into a

round shape is not as pronounced as in the case of the bare cluster D4h "round"

mentioned in Chapter 5.1.2. In the case of the on-top (out) positioned ligands, the

cluster-ligand interaction led to a less intuitive conformation of the cluster. It is

anticipated that the steric interaction between bulkier ligands will exhibit a much

stronger directing influence on ligand binding site as well as on the ligand orientation

and the cluster shape.
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6. Comparing QM and QM/MM Calculations of

Cu13(SCH2CH3)8

A central goal of the present work is the application of the QM/MM method to copper

thiolate clusters with a realistic ligand shell. To test the performance of the QM/MM

approach, the results are compared with pure QM calculations. Structural properties like

the conformation of the ligands and inter-ligand distances are investigated as well as

energetic properties like total and binding energies of the individual clusters. Ground

state structures of various conformers were determined, rather than only the most stable

structure.

Figure 20 Example structure of the cluster Cu13(SCH2CH3)8 and the set of symmetry

inequivalent atoms under D4h symmetry; labeling of various atoms

Thus trends and preferences can be readily identified, which will be helpful not only in

the evaluation of the hybrid method approach to ligand covered cluster system, but in

the investigation of these systems themselves. In the following, the first in depth

analysis of a metal cluster compound is presented, which will discuss in  detail the

results of pure quantum chemical and hybrid method computations. This will allow one

to interpret these results with respect to the restriction of each model as a result of the

underlying physics. The quantum mechanical reference results are discussed in Chapter

S

C1

H2

H1

H3

C2
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6.1; the hybrid method results will be presented and discussed in conjunction with their

QM counterparts later. (Chaps. 6.2)

6.1. QM Calculations of Cu13(SCH2CH3)8 with Different Ligand

Conformations

The density functional calculations of the ethylthiolized Cu13 clusters are not only

considered as reference calculations for the hybrid method. Rather, they also exemplify

strengths and shortcomings of this approach when applied to complex, composite

metallic and organic systems.

6.1.1. Computational Setup of the Calculations

To constrain the number of conformers and to reduce the computational effort, the

Cu13(SCH2CH3)8 cluster was treated in D4h symmetry. This necessitated to distribute of

the ethyl thiolate ligands in the same way as in the model Cu13(SH)8. The respective

cluster core geometry was copied in straightforward fashion. As in the model

Cu13(SH)8, the bridge-hollow and the on-top adsorption sites were examined. Similarly,

the SCH2CH3 ligands were attached in such a way that the S-C1-C2 backbone lies in a

mirror plane. The Cuax-S-C1 angle and the S-C1-C2 angle of a ligand in the positive z

half-space may be opened either towards the positive z-axis or away from it,

respectively. Taking into account H atoms, the only further freedom to construct

conformers is the staggered or eclipsed conformation of the CH3 end group. Thus it is

possible to construct 8 conformers per binding site with the SCH2CH3 ligand. To

simplify the references to the resulting 16 conformers, four designators (of one letter

each) were assigned to them, depending on the state of their conformation. The

abbreviations and explanations refer to a ligand in the positive z half-space.

1. Binding site (b or t)

Two possible binding sites were examined. The respective conformations were labeled

b for bridge-hollow or t for on-top.

2. S – C1 bond orientation (u or d)

As the angle Cuax-S-C is typically around 105º, two major orientations of the ligand

with respect to the cluster may be assumed. If the Cu-S-C angle of a ligand is opened

toward the positive z-axis, the designation is upwards, u. If it is opened in the general

direction of the negative z-axis, the designation is downwards, d.
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3. Orientation of the C – C bond (i or o)

The S-C-C angle can either be opened in the direction of the positive z-axis or in the

direction of the negative z-axis (or horizontal mirror plane). The former was termed

"inward" or i, while the latter "outward" or o.

4. Ethyl conformation (s or e)

An ethyl group may occur in two different rotamers. The staggered form will be

designated a s while the eclipsed form will be denoted an e.

Figure 21  Cu13(SCH2CH3)8 in conformation tuie as an example for the conformation

nomenclature

Ethyl thiolate ligands pre-optimized in Cs symmetry were attached in different

conformations to the various binding sites of the D4h geometry of Cu13 of the cluster

discussed in Chapter 5.2. In the starting geometry, the distance Cuax-S was chosen to be

2.09 Å.

The quantum chemical computations were performed with the program

PARAGAUSS using the parameters as discussed in Chapter 4. In the fashion established

earlier, geometry optimizations were performed using the LDA functional.

Subsequently, the total energy of the structure was determined in a single point GGA

calculation. (for details, see Chapter 4) The z-matrix was constructed to restrict the

movement of atoms to D4h symmetry, using 17 internal degrees of freedom. The

hydrogen atoms in

eclipsed conformation

S-C1-C2 angle oriented

inwards

Cuax-S-C1 angle opened

upwards

thiolate ligands

on-top of Cuax
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maximum step length allowed was set to 0.3 au, corresponding to ~0.01 Å per bond

length or ~1º per angle or dihedral angle.

Most calculations needed approximately 30 steps to reach geometric convergence.

In a four processor parallel run on a SGI Power Challenge, for 30 steps at 2.5 hours per

step this corresponds to 75 hours of computation time per conformation.

6.1.2. Overview of the Conformers

The following section intends to familiarize the reader with the results in a pictorial

form, before details of the individual optimized structures will be discussed.

Figure 22 Structures of four bridge hollow coordinated conformers:   

a) bdos b) bdoe c) buos d) buoe    

The rotamer pair bdos-bdoe (a and b in Figure 22) are nearly indistinguishable at first

glance. The ligands wrap the flat ellipsoidal cluster core. The bridging binding site is

due to inter-ligand repulsion between the end group hydrogen atoms H3-H3'. In addition,

the interaction between ligand end group and cluster core (H3 – Cueq) might affect the

a)

c)

b)

d)
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adsorption site. The conformers buos and buoe (Figure 22 c and d) behave rather

differently. Their ligands leave the cluster core exposed. This comparison indicates, that

the angles Cuax–S–C1  and S–C1–C2 depend both on the fact whether ligand are in

staggered or eclipsed form. The cluster core exhibits a more round form, instead of the

common flat form and the ligands are located at almost ideal threefold-hollow positions.

Figure 23 Side view of the conformers bdos (a) and bdoe (b) conformers; on top views

of bdos (c) and bdoe (d);  only four ligands are shown for ease of viewing

The side view of the conformers bdos and bdoe (Figure 23) reveals the peculiarities of

the conformations. The hydrogen atoms of the methyl end groups are located in

immediate vicinity of each other. In the conformer bdoe, the atoms H3 exhibit a

remarkably short distance to the atoms Cueq; as a result, the ligand wrap around the

cluster core. Such a behavior was proposed by Luedtke and Landman for gold clusters

passivated by alkyl thiolates as a result of MD simulations.16 Later studies proposed

similar behavior of hexadecylamine ligands on ruthenium particles as a function of the

amine concentration.222 The interaction between ligands in one z plane is comparably

negligible (Figure 23 c), d).

Figure 24 Side view of conformers buos (a) and buoe (b) conformers; on top views of

buos (c) and buoe (d);  only four ligands are shown for ease of viewing

a) b) c) d)

a) b) c) d)



6. Comparing QM and QM/MM Calculations of Cu13(SCH2CH3)8

60

The geometry directing importance of the various types of interaction is essentially

reversed in the conformers buos and buoe as evidenced in Figure 24 (a)-(d). No short

Cueq-H or H–H distances between methyl end groups are visible. Instead, short

distances between H1 atoms of ligands within the z plane deform the ligand chain

orientation at the staggered–eclipsed conformer transition. Note the outward

displacement of the alkyl chain by comparing Figure 24 (a) to (b) and (c) to (d). The

negligible repulsion of the ligands admits an adsorption site that represents nearly

perfect threefold-hollow coordination.

Figure 25 Examples of on-top coordinated structures of Cu13(SCH2CH3)8 :

a) tdos  b) tdoe  c) tdis  d) tdie

Figure 25 shows some close relations of the bridge-hollow and on-top conformers. The

upper two conformations, tdos and tdoe, are virtually identical. The ligands, whose

head groups are displaced to high z coordinates, wrap around the cluster core. Due to

the binding site, the interaction between ligand end groups and cluster core is greatly

reduced, although the atoms H2 and H3 still exhibit short distances to the atoms Cueq.

The rotation of the CH3 end group causes almost no change in the ligand backbone

a)

c)

b)

d)
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geometry. All four conformers depicted in Figure 25 exhibit a flat ellipsoidal shape of

the cluster core.

The ligand chains of the conformers tdis and tdie behave differently than the

conformers tdos-tdoe. The distance of hydrogen atoms to the cluster core and to

hydrogen atoms in other ligands is large enough to the possibility of a repulsive

interaction. The change of the methyl end group conformation from staggered to

eclipsed alone causes the considerable change in the ligand orientation with respect to

the cluster. The sulfur atoms are shifted outward in the conformer tdis relative to tdie.

However, the staggered-eclipsed isomerism does not effect the ligand backbone

configuration in a noticeable way. A straightforward explanation is, that in these on-top

cluster conformations the total energy is quite insensitive to the ligand orientation.

6.1.3. Relative Total Energies

The conformer bdos turned out to be the most stable of the 16 conformers under

consideration. Its total energy shall be taken as a reference for the following

comparisons. For the relative total energy data collected in Table 10, three trends are

noticeable. First, clusters with on-top situated ligands tend to be less stable on average

than bridge-hollow coordinated clusters. The conformers buie, buos and bdoe are

exceptions. They are less stable by a few kcal/mol than the most stable on-top

conformers tuis and tuos. Secondly, with only one exception, bridge-hollow conformers

are more stable than their on-top counterparts of corresponding ligand orientation; once

again the conformer buos forms the exception. Finally, staggered conformers are more

stable than their eclipsed counterparts. Again, the pair buos-buoe with a reversed order

forms an exception. Inspection of the buos geometry revealed a very short H2-H2
’

distance between methyl end groups of different ligands. The role of inter-atomic

distances on the relative stability of conformations will be discussed later on, in Section

6.2. In most cases, the energy difference per ligand between staggered and eclipsed

conformers is in the expected range, from ~3.5-4.0 kcal/mol.223 Here, the conformation

pairs bdos-bdoe and tdos-tdoe constitute exceptions. Both exhibit total energy

differences in excess of 50 kcal/mol. Obviously, other influences than the staggered-

eclipsed isomerism affect their energy differences considerably.  For the pair bdos-

bdoe, the high energy difference is especially baffling as the conformer bdos is the

most stable one and the conformations under discussion are visually similar (Figure 22 a

and b).
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Table 10 Relative total energiesa of conformers of Cu13(SCH2CH3)8 as well as energy

differences between staggered and eclipsed conformers; all energies in kcal/mol;

arbitrary ordering of the various conformers

conformation relative total energy
[kcal/mol]

difference staggered-
eclipsed [kcal/mol]

buis 9.0

buie 39.8
-30.8

buos 47.7

buoe 18.0
29.7

bdis 1.4

bdie 29.6
-28.2

bdos 0.0

bdoe 59.4
-59.4

tuis 30.6

tuie 59.2
-28.6

tuos 30.6

tuoe 56.9
-26.3

tdis 82.7

tdie 105.4
-22.8

tdos 63.2

tdoe 116.1
-52.9

a Reference energy is -25062.580361036 au for the bdos conformer

The total energy varies by 116 kcal/mol; hence, all 16 conformers of the cluster under

discussion are physically and chemically feasible. Therefore, in a given probe of copper

clusters with ethyl thiolate ligands various conformations have to be expected. All

bridge-hollow conformers are found within an energy range of ~60 kcal/mol or 7.4

kcal/(mol·ligand). Therefore, rotational isomerism represents the main influence on the

energy differences, although other interaction mechanisms may also contribute.
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6.1.4. Ligand Binding Energies

Isolated staggered and eclipsed ligand fragments were optimized for the computation of

binding energies (Table 11); these reference energies have been collected in Appendix

C. The resulting ligand binding energies range between -77 kcal/mol for buoe to

-66 kcal/mol for  tdoe. This relatively narrow energy range of just ~12 kcal/mol

suggests a good binding situation for both binding sites and the 8 different

conformations. Bridge-hollow coordinated structures tend to be stronger bound than on-

top coordinated ones. Nevertheless, the conformers tuis, tuie, tuos and tuoe exhibit a

larger binding energy than the conformer buos; recall that the conformer buos was

already established as an exception in the total energy analysis (see Section 6.1.3).

Bridge-hollow conformers are always stronger bound than their on-top

counterparts, by 2-4 kcal/mol in the case of "up" oriented conformers or even 7-10

kcal/mol in the case of "down" orientation. As the reference energies for the

computation of ligand binding energies were computed separately for staggered and

eclipsed conformers, the ligand binding energies of bridge-hollow and on-top

coordinated are very similar. In most cases, the eclipsed conformers are actually slightly

stronger bound than their staggered counterparts. Because differences between rotamers

are usually below 1 kcal/mol, this discrepancy likely does not reflect a difference in the

bonding mechanism, but rather reflects ligand-ligand and ligand-cluster interactions.

A comparison with Cu13(SH)8 in terms of binding energy shows that sulfanyl and

ethyl thiolate bind to the copper cluster with comparable binding energies. The fairly

low binding energy of the on-top (out) conformer of Cu13(SH)8 (Chapter 5.2.2) could

not be reproduced. This finding emphasizes, that results of smaller model species may

not always be transferable; it underlines the importance of computing as much of the

conformer spectrum of a given compound as possible when a conformation dependent

minimum search is conducted, even if previous findings may differ. Even to such a

small copper cluster with 13 atoms, ethyl thiolate is binds in bridge-hollow and on-top

coordination with  sufficiently large binding energies; bridge-hollow coordinated

species are usually preferred in terms of total energy as well as ligand binding energy.
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Table 11 binding energies per ligand (in kcal/mol) of the 16 conformers of

Cu13(SCH2CH3)8

conformation binding energy
per ligand
[kcal/mol]

difference
staggered-eclipsed

[kcal/mol]

buis -74.5

buie -74.5
0.0

buos -69.7

buoe -77.2
-7.5

bdis -75.5

bdie -75.8
-0.3

bdos -75.7

bdoe -72.1
3.6

tuis -71.8

tuie -72.1
-0.3

tuos -71.8

tuoe -72.4
-0.5

tdis -65.3

tdie -66.3
-1.0

tdos -67.8

tdoe -65.0
2.8

6.1.5. Geometric Properties of Cu13(SCH2CH3)8: Cluster Core

A very important question is certainly whether the presence ethyl thiolate ligands

affects the shape of the cluster in a notable fashion. Criteria to judge the shape under

D4h symmetry are the distances Cuce-Cueq and Cuce-Cuax. The bond distances Cuce-Cueq

of both the bridge-hollow and on-top conformers are very similar as the corresponding

reference values of Cu13(SH)8, although it is only in extreme cases (buis-buie) similar

to the bare cluster. In the bridge-hollow coordinated conformers, the Cuce-Cueq bond
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length varies between 2.747 Å for the buis conformer and 2.088 Å for the buos

conformer with an average of 2.422 Å. When the obvious exceptions buos and buoe are

excluded (see Figure 22 c and d), then the average of the Cuce-Cueq bond distance is

2.531 Å around values of 2.424 Å to 2.747 Å. Still, the variation of this bond length is

high, considering it is caused by the change of conformation of the ligands alone. As the

buos-buoe conformer pair is arguably the one with the weakest interaction between

ligands and cluster core, one has to conclude that the elusive round shape of the cluster

core is stabilized by ligands that interact only with their head groups, while tail groups

of ligands interacting with the cluster core occur simultaneously the usual flat shape.

The consistency of the Cuce-Cueq bonds of the on-top conformers is remarkable,

exhibiting bond lengths of ~2.66 Å throughout with very little variation, by only 4 pm.

It was concluded that this consistency in bond lengths is achieved by the fact that the

ligands are bound to the axial atoms alone. The ligand tail group interaction with the

cluster core should lead to at least one of the bonds considerably deformed by

transferred steric stress in the case of strong ligand cluster interaction (see Figure 25).

The relatively large variation between the two conformers tdis and tdie is

interesting; it  amounts to 4 pm in contrast to the rather low between other conformer

pairs (e.g. 2 pm for tuis-tuie). Whether the deformation of the cluster core by the

presence of alkyl thiolate ligands is reproducible has to be confirmed by further

comparisons of other cluster core bond lengths.

A quite similar picture as obtained for the Cuce-Cueq bond is found for the Cuce-

Cuax bond lengths. Average values fall into the range from 2.05 Å to 2.14 Å for the

bridge-hollow conformers and from 2.01 Å to 2.05 Å for the on-top conformers.

Obviously, the conformers buos and buoe constitute an exception; they will thus be

referenced as the irregular pair in the following discussion. In the regular bridge-hollow

conformers, the contraction of the Cuce-Cueq bond is accompanied by an expansion of

the Cuce-Cuax bond. The changes in the bond lengths can be viewed as a reconstruction

of the cluster surface, caused by the ligands. This conclusion is further supported by the

two irregular cases, where the surface reconstruction leads to a totally new conformer of

the cluster core. In the on-top conformers, the Cuce-Cuax bond remains virtually

unchanged as compared to the Cu13(SH)8 geometry, mirroring the findings for the Cuce-

Cueq bond lengths.
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Table 12 Characteristic Cu-Cu bond lengths of the 16 conformers of Cu13(SCH2CH3)8

as well as reference values of previous calculations: Cu13 (D4h), Cu13(SH)8 in

bridge-hollow (up) and on-top (up) conformations, all values in Å

conformation Cuce - Cueq Cuce - Cuax Cuax - Cueq Cuax1 – Cuax2

buis 2.747 2.049 2.305 2.340

buie 2.650 2.068 2.251 2.352

buos 2.088 2.300 2.272 2.149

buoe 2.098 2.339 2.261 2.270

bdis 2.424 2.140 2.156 2.394

bdie 2.443 2.133 2.164 2.387

bdos 2.498 2.113 2.185 2.375

bdoe 2.426 2.134 2.159 2.382

tuis 2.686 2.014 2.263 2.289

tuie 2.667 2.020 2.253 2.295

tuos 2.686 2.014 2.263 2.289

tuoe 2.689 2.013 2.264 2.290

tdis 2.608 2.031 2.217 2.305

tdie 2.686 2.022 2.240 2.340

tdos 2.639 2.046 2.235 2.331

tdoe 2.650 2.031 2.230 2.330

Cu13  D4h 2.741 2.015 2.281 2.323

Cu13(SH)8

bridge-hollow
2.574 2.092 2.201 2.371

Cu13(SH)8

on-top
2.679 2.014 2.263 2.336
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Figure 26 Fractional difference of binding energies and defining bond lengths (in

percent) from their reference values to illustrate correlation. Reference values are:

  a) average binding energies of bridge-hollow and on-top conformers, respectively,

and b) the corresponding bond lengths of Cu13 in D4h symmetry (Chapter 5.1.2)

The distances Cuax-Cueq also represent bonds because their values consistently lie in the

range of 2.156 Å to 2.305 Å. Figure 26 shows no strict correlation of the binding

energies with the bond lengths. While the bdoe conformer exhibits a low binding

energy, the changes in its bond lengths are of the same nature as in the other bridge-

hollow (down) conformers. The irregular bridge-hollow conformers further emphasize

the uncorrelated behavior. Although their binding energies differ, the change in the

bond lengths is of the same magnitude and direction. The on-top conformers show a

correlation between binding energy and the change in bond lengths. All on-top (up)

conformers exhibit larger than average binding energies, and slightly shorter Cuce-Cueq

bond lengths as compared to Cu13. The Cuce-Cuax bond is the least affected in the on-top

(down) cases, where the strongest influence was to be expected, as the ligands bind to

these atoms only. The on-top (down) cases exhibit smaller than average binding

energies. The Cuce-Cueq and the Cueq-Cuax bond decrease in favor of the Cuce-Cuax bond

which increases (by up to 2 percent). The increased exposure of the cluster core to the

ligand chain (see Figure 25 a and b) does not lead to increased binding.
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The Cuax- Cueq bond and the two outer shell inter-atomic distances Cuax1-Cuax1’

and Cuax1-Cuax2 can be considered equally indicative of the binding situation of the

cluster as the inter-shell bond lengths Cuce-Cueq and Cuce-Cuax. In the case of on-top

coordination, this is understandable because the Cueq atoms do not participate in

cluster-ligand bonds. The cluster core was shown to be susceptible to changes in the

ligand bonding, adjusting its shape accordingly. However, both inter shell and intra-

shell bond lengths for the second shell stay in the same range of a possible Cu-Cu bond

in clusters (~2.10 Å-2.75 Å for various bonds).204-206

Analysis of the Cu-Cu bonds confirmed that in every case a valid cluster

compound resulted. In no case, inter-atomic distances differed so drastically from the

reference conformer as to assume a broken Cu-Cu bond. Rather, the computational

method as well as the model proved stable enough to allow even a change of the cluster

shape without a breakdown of the system, as evidenced by the conformers buos and

buoe. It can be concluded already at this point that copper clusters of 13 atoms form

stable compounds when covered by alkyl thiolate ligands.

6.1.6. Geometric Properties of Cu13(SCH2CH3)8: Ligand-Cluster Interface

The ligand-cluster interface consist of one bond in the on-top coordinated structures and

two to three bonds in the case of bridge-hollow coordinated ligands. (Chapter 2.3) In the

latter case, two of the Cuax-S bonds are equal in length because a D4h symmetry

restriction was imposed. In the bridge-hollow conformers the nature of the binding site

is determined by the lengths of the Cueq-S and the Cuax-S bonds. Conformations with a

Cueq-S bond shorter or equal to the Cuax-S bond, namely the bridge-hollow (up) cases,

constitute nearly perfect threefold-hollow coordinations. In the bridge-hollow (down)

cases, Cueq-S distances are so long that a considerable binding contribution of this

interaction is unlikely. They can thus be addressed as bridge coordinated. The

calculated Cuax-S bonds varied between 2.21 Å and 2.32 Å, while the Cueq-S bonds

varied between 2.07 Å and 2.97 Å.

Cu-S bonds vary within the staggered-eclipsed pairs of the bridge-hollow

coordinated clusters. In the pair buis-buie it is very weak, as only its Cuax-S bond

dilates by 0.4 pm when changing from the staggered to the eclipsed conformer. In the

buos-buoe pair, however, it is quite noticeable as the Cuax-S bond contracts by 10 pm

while the Cueq-S bond dilates by 7 pm. The simple change from staggered to eclipsed

conformation of the ligand thus causes a noticeable change in the ligand binding site- a

clear sign of strong differences in the ligand-ligand interactions.
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Table 13 Cu – S bond lengths detailing the binding situation of the ligands to the cluster

conformation Cueq - S [Å] Cuax - S [Å]

buis 2.073 2.206

buie 2.073 2.210

buos 2.184 2.317

buoe 2.258 2.213

bdis 2.582 2.247

bdie 2.604 2.248

bdos 2.975 2.286

bdoe 2.935 2.247

tuis 3.049 2.105

tuie 3.028 2.123

tuos 3.049 2.105

tuoe 3.050 2.105

tdis 3.635 2.111

tdie 3.781 2.147

tdos 3.834 2.170

tdoe 3.812 2.167

Cu13(SH)8

b.-h. (up)
2.258 2.281

Cu13(SH)8

on-top (up)
3.337 2.021

Similar Cu-S bond lengths as in this work have been found in DF calculations by

Akinaga et al. who studied methyl thiolate adsorption on a copper (111) model surface

employing the BLYP functional.221 They found a Cu-S distance of 2.32 Å for the

bridging adsorption site and a distance of 2.24 Å for the on-top site.221 It is not

surprising that these bonds lengths are consistently 0.1 Å longer than the ones obtained

in the present study. Akinaga et al. fixed the methyl thiolate molecules to the perfect on-

top and bridging adsorption sites, allowing only a movement perpendicular to the
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surface; this restriction leads naturally to longer bonds. The known tendency of GGA

functionals to overestimate bind lengths might contribute as well.96

In the on-top adsorption cases, only the Cuax-S distance is of immediate interest.

Inter-atomic distances Cueq-S are consistently longer than 3 Å, ruling out directly

bonding interactions. The Cuax-S distances measure 2.105 Å in the cases of tuis, tuos

and tuoe and are only up to 7 pm longer in the tdos case. The two cases with the longest

Cuax-S bond are those with the lowest binding energy. Other than that, no correlation

was found between binding energies and Cu-S bond distances. The relatively large

variation within the tdis-tdie pair was already noticed in the discussion of the cluster

structures in Chapter 6.1.2. Rotation of the methyl end group to eclipsed conformation

introduced widespread changes in the ligand backbone structure (Figure 25 c and d).

The angles Cuax–S–C1 and Cueq–S–C1 make up the cluster interface of the bridge-

hollow conformations; only the angle Cuax – S – C1 is pertinent in the case of the on-top

ligands. Due to the differences in the appearance of the structures, a listed comparison

as in the case of the bond lengths was not deemed meaningful; values are tabulated in

Appendix C. Angles follow the ligand orientation. When the ligands are located in

bridging adsorption sites (bdis, bdie, bdos, bdoe),  the Cuax – S – C1 angle assumes

values around 105-110º while the Cueq – S – C1 angle remains low at 60-80º. In the case

of the threefold-hollow (buos-buoe) and bridge-hollow (buis-buie) coordinated ligands,

both angles are more similar, with values around 120º.

6.1.7. Geometric Properties of Cu13(SCH2CH3)8: Ligand Geometry

The ligand chains seem to be almost unperturbed by the binding situation, exhibiting

little or no variation between the conformations. This is especially true of the bonds

farther away from the head group. With the introduction of additional CH2-groups, the

variation of the bond lengths are expected to vanish completely. The S-C1 bond varies

the most with differences  between conformers of up to 5 pm. Most of the conformers,

however, fall within a range of 1.83 ± 0.02 Å. Only the buoe conformer exhibits a

deviating S-C1 bond length of 1.87 Å.
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Table 14 Ligand specific bond lengths in Cu13(SCH2CH3)8 , values in Å

conformation S - C1 C1 – C2 C1 - H1 C2 - H2 C2 - H3

buis 1.821 1.503 1.103 1.104 1.105

buie 1.828 1.512 1.101 1.103 1.105

buos 1.851 1.505 1.105 1.104 1.105

buoe 1.873 1.512 1.100 1.103 1.106

bdis 1.848 1.508 1.115 1.104 1.105

bdie 1.847 1.523 1.114 1.103 1.104

bdos 1.811 1.496 1.105 1.120 1.107

bdoe 1.831 1.504 1.104 1.103 1.116

tuis 1.825 1.509 1.104 1.104 1.105

tuie 1.820 1.518 1.104 1.102 1.116

tuos 1.825 1.509 1.104 1.104 1.105

tuoe 1.825 1.524 1.103 1.103 1.105

tdis 1.825 1.502 1.104 1.105 1.105

tdie 1.823 1.519 1.109 1.102 1.104

tdos 1.815 1.507 1.105 1.112 1.107

tdoe 1.820 1.520 1.104 1.104 1.118

The S-C bonds of the present investigation are 1-7 pm shorter than those in the work of

Akinaga et al.. Kerdcharoen et al. found S-C bond lengths of at least 1.85 Å when

studying different alkyl thiolate chain lengths on Cu atoms and smaller clusters.183 It can

be concluded that the current work includes some stronger binding influence in the

calculation of the bond lengths stemming from the larger cluster model, as in the work

of Kerdcharoen et al. the S-C bond length deceased with increasing cluster size and the

calculations of Akinaga et al. were conducted using a 18 atom cluster model of the

surface. The three symmetry-inequivalent carbon-hydrogen bonds show small variations

of at most 0.5 pm.

A detailed comparison of the bond angles between certain atom groups was not

considered meaningful at this point. However in Chapter 6.2 they will be compared with
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their counterparts from QM/MM calculations; see the fundamental data in Appendix C.

For most cases, the angle S – C1 – C2 remains in the range 108-114º. Only in the case of

bdoe a larger value of 118º is obtained. From Figure 23 b and d it can be seen, that this

is the conformer with easily the strongest H3 – Cueq interaction. Obviously, this

interaction exerts enough strain on the ligand to deform the ligand backbone structure.

Thus far, not many similarities between bridge-hollow and on-top conformers could be

found. It is interesting, though, that the tdoe conformer exhibits a large S–C1–C2 angle

of the on-top conformations as well; even though the ligand-cluster core interaction is

considered to be generally smaller in on-top conformers (see results of ligand binding

energy), it is enough to deform the backbone angle to the second largest value in all on-

top conformers at 114º. The largest S–C1–C2 angle can be found in the tuie conformer

with 115º. The rest of the ligand angles remains very near their equilibrium values as

computed in a separate MM calculation. The deviations in the order of 1-2º were

considered too small to draw meaningful conclusions. Interested readers will find the

angles tabulated in Appendix C.

In the discussion of energetic as well as geometric properties of the

Cu13(SCH2CH3)8 cluster as calculated with a density functional approach, not much

attention was paid to the causes of the noted special cases. The discussion of the reasons

will turn out to much simpler when the QM/MM results for the same system will be

available in the next section.
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6.2. QM/MM Calculations of Cu13(SCH2CH3)8

The calculations of Cu13(SCH2CH3)8 in various conformations with the QM/MM

technique are primarily thought as a detailed and sensitive test of the method. If the

results of these computations are similar to the pure QM calculations, the QM/MM

method can be considered a valid method for the computational treatment of coinage

metal clusters with alkyl thiolate ligands. Once method and implementation has been

proven valid for this class of metal organic compounds, they will surely be also

applicable to other cluster compounds. Thus, a number of questions had to be answered

by this set of calculations. Is the method able to reproduce the energetic and geometric

properties of these complicated systems with satisfactory accuracy? Does it result in a

adequate reduction of computation time? Is it a valid assumption that the QM part is

described exclusively by the QM method? What differences between QM and QM/MM

results are reasonable, or even desired? To be able to answer these questions, the results

of the QM/MM calculations will be discussed in conjunction with their QM

counterparts as well as models and concepts explaining them. Although the basic data

like relative total energies, ligand binding energies and the geometric data will be

presented in the order established by the previous section, the discussion will focus on

causes of differences and similarities between QM and QM//MM calculations.

6.2.1. Computational Setup of the Calculations

The computational model of the cluster was reused in this set of calculations. Symmetry

and degrees of freedom were retained. Starting geometries of the optimizations were

identical to the starting geometries in the QM optimizations. Thus it was guaranteed to

find the same local minima as in the QM optimizations only if they are accessible by

both methods. This implies, that some parts of the energy hypersurface were examined

indirectly as well. Only if the energy hypersurfaces of both methods run sufficiently

parallel, it is guaranteed to find the same local minima in both methods when starting

from the  same geometry. Being able to reproduce geometric results of one method by a

simplified method is a prerequisite for a reliable examination of local geometric minima

with that method. Computational parameters for QM and MM computations were used

as detailed in Chapter 4. The geometries were computed using the VWN functional,

while the total energies were determined with the BP88 functional in single point

calculations in the fashion explained in Chapter 4.
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For the MM calculations, the MM3 force field as implemented in the TINKER

program was used. This force field was specifically designed for an accurate description

of organic molecules. Thus, the van der Waals interaction parameters for copper were

missing in the standard implementation. Kerdcharoen et al. proposed and tested

additional parameters suitable for copper thiolate species.183

The bonds between C1 and C2 were chosen as boundary between QM and MM

parts. Thus, the QM model was reduced to Cu13(SCH3)8. The capping H atoms for bond

saturation were treated in the constant bond lengths ratio approach as described in

Chapter 3.4.2 was used. The bond length ratio g was set to 0.709 as proposed by

Morokuma.174 The computation time decreased to about 2 to 2.2 hours per geometry

update, as compared to 2.5–3 hours per geometry update in the QM calculations. With

about 30 geometry update steps per optimization, this translated to 60 to 70 hours for a

full optimization. On average, the QM/MM calculations required 10 optimization steps

more than the respective QM calculations. The reason for this is not apparent from the

outset.

Figure 27 Cu13(SCH2CH3)8 in the bdos conformation; QM/MM boundary indicated by

lines on 4 of the 8 ligands, the methyl end groups form the MM region, the Cu13(SCH3)8

in the middle is the QM part; link atoms not drawn
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6.2.2. Overview of the Differences between QM and QM/MM Results

The points of the potentially highest geometric differences between QM and QM/MM

calculations are the cluster core and the cluster-ligand interface. The cluster core shows

bond length changes of lower than 1 pm in all conformers except bdos, bdoe, tuie and

tdis. The difference in QM and QM/MM description of the cluster ligand interface

differs more. But even there, bond length changes of 1 pm and less can be observed for

the bdis, tuos and tdie conformers. The buis, buie, buoe, bdie, tuis and tuoe

conformers showed bond length differences between QM and QM/MM larger than 1

pm only in the Cueq – S bond. The QM results are thus reproduced with good agreement

for most conformers. The causes for the differences observed will be discussed using

the following figures. The corresponding subsection 6.1.2 focused on the peculiarities

of the QM optimized results. Some of the most obvious differences of QM and

QM/MM optimized structures shall be discussed in the following.

Figure 28 QM (a) and QM/MM (b) optimized geometries of the conformer buos of

Cu13(SCH2CH3)8

Some differences can be spotted best when similarities are highlighted. The structures

of buos optimized in QM and QM/MM are virtually identical except in one geometric

feature, the cluster-ligand interface. Differences in cluster core bond lengths and ligand

only bond lengths are less than 1 pm. Only the Cu – S bonds differ by up to 4 pm.

Likewise, bond angle differences are below 3º except in the Cuax – S – C1 angle, where

the difference is 27º. What causes this substantial difference between QM and QM/MM

description?

a) b)
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The answer can be found with the help of Figure 29. Only the H1 – H1' inter-

atomic distance between adjacent ligands in one z plane is short enough to contribute

significantly to the inter-ligand repulsion. From Figure 29 c and d it is obvious, that no

other influences than the inter-ligand repulsion contribute to the structural differences.

The symmetry restriction  to D4h allows only outward movement of the ligand chain to

increase the distance H1–H1' from 2.23 Å in the QM geometry to 3.5 Å in the QM/MM

geometry. Thus, the inter-ligand repulsion must be more pronounced in the QM/MM

description. This difference in the buos conformer came as a surprise, as its cause

resides completely in the QM part of the model (H1 – H1' distance between ligand in a z

plane). It was assumed before, that the MM contribution is completely cancelled for

these atoms. The above example proves otherwise.

Figure 29 On-top views of the QM (a) and QM/MM (b) structures of the buos

conformer; side views of QM (c) and QM/MM (d) structures; four ligands omitted to

increase clarity

Figure 30 QM (a) and QM/MM (b) optimized structures of the bdos conformer of

Cu13(SCH2CH3)8

a) b) c) d)

a) b)
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Figure 30 shows the bdos conformation, where QM and QM/MM optimized structures

differ seriously. The cluster core is visibly more flat in the QM/MM geometry. The

ligand binding moved from an obvious bridge site in the QM structure to an almost

threefold-hollow site in the QM/MM geometry. The S – C1 – C2 angle increased,

spreading the ligand chains outwards. Thus, the short Cu – H2 distances in the QM

geometry of only 2.12 Å are corrected in the QM/MM geometry to a much more

reasonable value of 3.39 Å. Despite this change, the basic feature of this conformation

is retained. The ligand chains wrap around the cluster core. The H2 – H2'' distance

between hydrogen atoms of ligands above and below the x-y-plane also increased, from

1.92 Å in the QM to 2.57 Å in the QM/MM optimization of bdos. By this repulsion, the

ligand chains are directed into a stretched conformation; this is mainly due to the D4h

symmetry restriction of the optimization.

The analysis confirms that the QM and QM/MM description differ mostly by their

treatment of the non-bonded interaction.96 The dispersion interaction of these non-bound

atoms, also referred to as London forces, is a long-range attractive interaction decaying

with the inverse sixth power of the interatomic distance. Dispersion describes induced

dipole-dipole interactions, caused by electron-electron correlation effects between

atoms with non-overlapping electron densities. Thus, it is completely non-local in

nature and can not be described correctly by LDA functionals which contain only local

contributions.96 The occurrence of actual minima in LDA optimizations of non-bonded

systems has been attributed to overlapping electron densities, which decay

exponentially in r, and not to a physically correct description of true dispersion

interactions dominated by the long-range fluctuating dipole term (1/r6).224 Test

calculations showed the strong overbinding of the LDA functional with minima located

at too short distances.225 Thus, the QM calculations with the VWN exchange-correlation

functional should result in underestimated Cu – H and H – H distances.

The QM/MM calculations treat these non-bonding interactions completely with

the MM method. The functional form and its parameters have been calibrated to fit

experimentally available data (see also Chapter 3.2 and ref. 125 and references therein).

It is thus reasonable to assume that the treatment of the non-bonded interaction in the

MM method is more reliable than in the QM method currently employed.
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6.2.3. Total Energies

The total energy differences of the QM/MM calculations deviate from those calculated

at the QM level in some aspects. In the QM as well as QM/MM calculations, energies

of staggered and eclipsed conformers differ by ~30 kcal/mol or 3.75 kcal/(mol·ligand).

But, the staggered-eclipsed conformer total energy difference is more uniform in

QM/MM calculations. Only the rotamer difference of the tdis-tdie and tdos-tdoe pairs

is 10 kcal/mol smaller or larger, respectively.

Table 15 Relative total energiesa in the QM/MM approach and their pairwise staggered-

eclipsed energy difference; difference to QM total energies of 16 conformers of

Cu13(SCH2CH3)8

conformation relative total energy
[kcal/mol]

difference staggered-
eclipsed [kcal/mol]

difference QM-
QM/MM [kcal/mol]

buis 0.0 9.0

buie 27.5
-27.5

12.3

buos 8.3 39.5

buoe 38.9
-30.6

-20.8

bdis 3.2 -1.8

bdie 34.4
-31.2

-4.8

bdos 6.6 -6.6

bdoe 39.9
-33.3

19.5

tuis 42.0 -11.4

tuie 74.7
-32.7

-15.5

tuos 29.3 1.3

tuoe 59.7
-30.4

-2.8

tdis 85.6 -2.9

tdie 110.1
-24.5

-4.7

tdos 111.7 -48.5

tdoe 152.3
-40.6

-36.2

a relative to the total energy of the buis conformer of -24747.9441 au
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The QM/MM calculations gave the buis conformer as the most stable (bdos in QM).

The range of the QM/MM total energies is larger by ~40 kcal/mol, with largest value of

152 kcal/mol for the tdoe conformer. Also, the energy ordering of the conformers

changed. As the staggered-eclipsed isomerism introduces additional ordering effects,

the on-top and bridge hollow conformers shall be compared separately at first. Among

the bridge-hollow coordinated conformers, the bdos conformer, which was the most

stable one in the QM calculations switches its place with the buis, which was third. The

bdis conformer retains its second most stable place. The anomaly of the buos-buoe

pair, where the eclipsed conformer was more stable than the staggered one in the QM

calculations, does not occur. This is due to the orientation and interaction of the ligands

(see Figure 28). The other bridge-hollow eclipsed conformers follow in less ordered

fashion. In the QM/MM calculations all bridge-hollow staggered conformations are

more stable than their eclipsed counterparts. Additionally, any eclipsed conformer is

less stable than all staggered ones.

The on-top structures show differences in their behavior as well. The tuis and

tuos structures switch first and second place. However, this change is not significant

because the QM energies of these conformers are almost degenerate, within few

hundredths of a kcal/mol. However, in the QM/MM calculations tuos is more stable by

13 kcal/mol than tuis. The corresponding eclipsed rotamers follow in the same order as

in the QM calculations, with an energy spacing of ~30 kcal/mol. All four on-top (down)

conformers were computed less stable than the on-top (up), unlike in the QM

calculations. But, as the conformer tdie in QM/MM has almost the same energy as the

conformer tdos, (separated by only 1.6 kcal/mol,) the total energy sequence of the QM

calculations is essentially retained.

Thus, from the total energies, three conformer pairs can be already identified as

interesting cases: (i) the buos-buoe pair, in which the expected energy sequence

staggered-eclipsed is reversed (see Figure 22,Figure 24,Figure 28,Figure 29); (ii) the

conformers bdos and buis which switch their places as the most stable conformers (see

Figure 30); and last, but not least (iii) the bdos-bdoe pair which exhibits the largest

rotamer energy difference in the QM calculations with almost 60 kcal/mol, but a normal

one of ~30 kcal/mol in the QM/MM calculations (see Figure 30). Although the on-top

coordinated conformers have their own peculiarities, they are attributed less importance

because they are less stable.



6. Comparing QM and QM/MM Calculations of Cu13(SCH2CH3)8

80

6.2.4. Ligand Binding Energies

The binding energies per ligand as calculated in the QM/MM approach stay within the

same range as in the QM calculations (-77 to -70 kcal/mol for bridge-hollow

coordination, -72 to -60 kcal/mol for on-top coordination). The difference between QM

and the corresponding QM/MM calculation exhibits following trends; see Table 16.

Staggered conformers show a by -5 to 0 kcal/mol slightly increased binding energy, in

cases, where QM and QM/MM calculations differ mainly by the treatment of H-H

interaction between ligands(buis, buos, bdis, tdis). When the cause of the difference is

a short Cu-H distance in the QM geometry, a slight decrease in binding energy is

calculated (bdos, tdos). Eclipsed geometries are weaker bound by 2-9 kcal/mol than in

the QM calculations.

Table 16 Binding energies per ligand and differences to the corresponding QM values;

in kcal/mol

conformation binding energy
per ligand
[kcal/mol]

difference
staggered-eclipsed

[kcal/mol]

difference
QM/MM – QM

[kcal/mol]

buis -75.9 -1.4

buie -72.0
-3.9

2.5

buos -74.9 -5.2

buoe -70.6
-4.3

6.6

bdis -75.5 0.0

bdie -71.2
-4.3

4.6

bdos -75.1 0.6

bdoe -70.5
-4.6

1.6

tuis -70.7 1.2

tuie -66.1
-4.5

6.0

tuos -72.3 -0.4

tuoe -68.0
-4.3

4.4

tdis -65.2 0.1

tdie -61.7
-3.5

4.6

tdos -62.0 5.8

tdoe -56.4
-5.5

8.6
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Whereas the staggered-eclipsed binding energy difference in the QM calculations

follows no readily apparent rules, it is almost uniformly in the range of 4 kcal/mol in the

QM/MM calculations. Two on-top coordinated species exhibit ligand binding energies

larger than at least two bridge-hollow coordinated ones. Bridge-hollow conformations

are more stable; every on-top conformation has a smaller binding energy than its bridge-

hollow counterpart. An interesting finding appeared when the QM/MM ligand binding

energies were reviewed together with the total energies of the conformers. Apart from

the conformers buoe and bdoe, the order of total energies and ligand binding energies is

the same. The QM calculations did not show such trend. As both buoe and bdoe were

already noted as exceptions in the analysis of the total energies, they should be put

under additional scrutiny in the following discussion.

6.2.5. Geometric Properties of Cu13(SCH2CH3)8: Cluster Core

The basic features of the cluster shape remained unchanged in the majority of the

conformers (Table 18). Bond length differences between QM and QM/MM

optimizations are below 1 pm in the conformers buis, buos, buoe, bdis, tuis, tuos, tuoe

and tdie. Thus, the cluster core geometry remains unchanged when the QM description

of the ligands does not considerably differ from the QM/MM description. Even in the

case of the conformers buos and buoe, the more spheric shape of the cluster core is

retained. There, the Cuce - Cuax bond is longer than the Cuce - Cueq bond, as opposed to

the “normal case”, where the Cuce - Cuax bond is shorter than the Cuce - Cueq bond. In the

established fashion, the values of bridge-hollow and on-top coordinated conformers

shall be discussed separately.

The Cuce - Cueq bonds of the bridge-hollow conformers vary between 2.09 Å for

the buos and buoe conformers and 2.74 Å for buis with an average of 2.46 Å. Thus,

longest and shortest Cuce – Cueq bond lengths are found in the same conformers as in the

QM calculations. Again, excluding the exceptions buos and buoe, the average value is

2.58 Å, 5 pm longer than the corresponding QM value. This difference is due to the

conformers bdos and bdoe which exhibit 0.1 Å and 0.2 Å longer Cuce – Cueq bonds than

their QM counterparts. Their cluster core is considerably deformed with respect to the

QM calculations. Leaving aside the two exceptional cases, the Cuce - Cuax bond lengths

range between 2.01 Å and 2.15 Å with an average of 2.05 Å. The QM calculations

exhibited a similar distribution, where the maximum value was only 0.01 Å larger.

Thus, the bond lengths lie within the same plausible range, even though no QM to

QM/MM comparison of the individual conformers was made yet. In Chapter 6.1, the



6. Comparing QM and QM/MM Calculations of Cu13(SCH2CH3)8

82

length of the Cuax-Cueq bond was identified as a indicative of the cluster shape. While

the QM optimizations determined  values between 2.16 Å and 2.30 Å, the QM/MM

calculations yielded Cueq–Cuax bonds on average 0.1 Å shorter between 2.15 and 2.29 Å

Table 17 Characteristic Cu – Cu bond lengths (in Å) of the 16 conformers of

Cu13(SCH2CH3)8 in the QM/MM calculations

conformation Cuce – Cueq Cuce - Cuax Cuax – Cueq Cuax1– Cuax2

buis 2.735 2.048 2.291 2.349

buie 2.728 2.050 2.289 2.347

buos 2.094 2.344 2.261 2.276

buoe 2.094 2.345 2.262 2.276

bdis 2.412 2.146 2.152 2.400

bdie 2.410 2.147 2.152 2.400

bdos 2.607 2.070 2.220 2.359

bdoe 2.608 2.072 2.214 2.375

tuis 2.691 2.016 2.268 2.290

tuie 2.692 2.010 2.265 2.287

tuos 2.688 2.014 2.265 2.288

tuoe 2.688 2.014 2.265 2.288

tdis 2.686 2.021 2.240 2.339

tdie 2.686 2.021 2.240 2.339

tdos 2.662 2.020 2.231 2.326

tdoe 2.665 2.019 2.232 2.327

The Cu–Cu bonds of the on-top conformers exhibit an astounding property: the

corresponding bonds of a pair of rotamers at most by 0.6 pm. Whereas the staggered or

eclipsed state of the methyl end group had considerable influence on the cluster

geometry in the QM calculations, it is negligible in the QM/MM calculation. On one

hand, this is to be expected, as the QM part of the QM/MM model does not contain the

end group and should be indifferent to its conformation. On the other hand, the
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interaction between the methyl group in the MM part and the cluster core is

considerable as evidenced by the geometric change in the case of the bdos in Figure 30

and, although to a lesser extent, even the buos conformer in Figure 28. This subject was

discussed in Chapter 6.2.2 in more detail. The perturbing electronic interaction between

ligand end group and cluster is replaced by the more qualitative van der Waals

interaction in the QM/MM model which acts on the ligand geometry stronger than on

the cluster core.

Table 18 Cuce–Cueq and Cuce-Cuax bond lengths from QM/MM calculations and

changes relative to their corresponding QM values; in Å

conformation Cuce – Cueq difference
QM/MM-QM

Cuce - Cuax difference
QM/MM-QM

buis 2.735 -0.012 2.048 -0.001

buie 2.728 0.077 2.050 -0.018

buos 2.094 0.007 2.344 0.044

buoe 2.094 -0.004 2.345 0.006

bdis 2.412 -0.012 2.146 0.006

bdie 2.410 -0.033 2.147 0.014

bdos 2.607 0.109 2.070 -0.044

bdoe 2.608 0.182 2.072 -0.062

tuis 2.691 0.005 2.016 0.002

tuie 2.692 0.024 2.010 -0.010

tuos 2.688 0.002 2.014 -0.000

tuoe 2.688 -0.001 2.014 -0.000

tdis 2.686 0.079 2.021 -0.010

tdie 2.686 0.001 2.021 -0.001

tdos 2.662 0.023 2.020 -0.025

tdoe 2.665 0.015 2.019 -0.012

In the cases where Cuce – Cueq bonds change by more than 1 pm QM/MM values are

longer than their QM counterparts. Only the conformer bdie constitutes an exception.
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The Cuce - Cuax bonds are shorter by 1-6 pm in the same conformers. In consideration of

the wide range of Cu – Cu bond lengths realized in the given compound, these

variations seem negligible.

Although the MM contribution to the description of the cluster core is minor, the

defining bond lengths of the cluster reflect the different method clearly. Whereas

qualitative features of the cluster compound under study are retained, the cluster core

adapts to the ligand conformation. In the on-top cases, where the cluster-ligand

interaction is limited to one atom type only, the differences between QM and QM/MM

treatment are small. The bridge-hollow cases exhibit larger changes of the core

geometry. The stronger core-ligand interaction, as evidenced by larger ligand binding

energies, enables the proliferation of geometry directing ligand interactions.

6.2.6. Geometric Properties of Cu13(SCH2CH3)8: Cluster – Ligand Interface

Reviewing the Cu – S bond lengths of the bridge conformers alone, the directing

influence of the QM/MM description becomes apparent again. The ligands of the buis

and buie conformers assume a position closer to a threefold-hollow coordination by

increasing the Cueq – S bond length. The ligand binding site of buos and buoe become

nearly identical by shifting Cu – S bonds in opposite directions. The conformers bdos

and bdoe experience the largest shifts as they change the binding site from clearly

bridge to threefold-hollow (see also Figure 30). The changes are less drastic in the on-

top conformers. In most cases, the differences between QM and QM/MM geometry are

up to about 3 pm. Only the tdis conformer stands out with a Cuax – S bond length

change of 5 pm. The Cueq – S inter-atomic distance will not be considered for the on-top

conformers.

It is evident from Table 19 that the directing influence of the QM/MM method

extends to the bond angles of the cluster-ligand interface. The values of staggered and

eclipsed conformers pair up nicely. In conformations where the inter-ligand repulsion is

comparably small, the values of staggered and eclipsed conformers are virtually

identical, e.g. in the buos-buoe and bdis-bdie pairs. The similar distances of the bdos-

bdoe pair show that inter-ligand repulsion does not need to be negligible, but only

similar in strength. The difference in the buis-buie pair is acceptable, when the

commonly accepted accuracy of bond angles of a few degree is taken into account. The

rightmost column of Table 19 illustrates the extent of the directing influence.
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Table 19 Cu-S bond lengths and Cuax – S – C1 angles detailing ligand bonding in the

QM/MM calculations of Cu13(SCH2CH3)8; the difference between QM/MM and QM

calculations is also given; bond lengths and their differences in Å, angles and their

differences in degrees

conf. bond
Cueq-S

difference
QM/MM-

QM

bond
Cuax-S

difference
QM/MM-

QM

angle
Cuax-S-C1

difference
QM/MM-

QM

buis 2.110 0.036 2.206 0.000 141.7 4.4

buie 2.110 0.038 2.202 -0.008 137.7 7.2

buos 2.219 0.035 2.181 -0.136 118.7 26.0

buoe 2.218 -0.041 2.180 -0.033 118.8 -2.3

bdis 2.575 -0.007 2.254 0.007 106.8 1.6

bdie 2.576 -0.028 2.254 0.006 106.8 3.0

bdos 2.137 -0.838 2.222 -0.064 147.9 33.9

bdoe 2.132 -0.804 2.219 -0.028 147.4 29.1

tuis 3.028 -0.020 2.105 -0.001 112.3 14.8

tuie 3.044 0.016 2.096 -0.027 111.3 10.7

tuos 3.059 0.010 2.116 0.010 94.5 -3.0

tuoe 3.058 0.008 2.116 0.011 94.6 -3.9

tdis 3.791 0.156 2.160 0.049 91.6 -6.3

tdie 3.791 0.011 2.160 0.012 91.6 -0.9

tdos 3.770 -0.064 2.142 -0.028 109.6 10.6

tdoe 3.767 -0.046 2.138 -0.029 112.5 12.8

In the analysis, an equalizing trend was observed geometric parameters. This means that

each rotamer pair exhibited (nearly) equal values of a geometric parameter which can be

different from those in other rotamer pairs. It will be noted where appropriate in the

discussion. The Cuax–S–C1 angles of the conformers buos, bdos and bdoe are bent

considerably to the corresponding equalized values of 118° for buos (and buoe) and

147° for bdos-bdoe. The angles tend to open as compared to the QM calculations,

reflecting an increased cluster-ligand repulsion which is propagated to the interface
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angle. Only in the buoe conformer, the Cuax–S–C1 angle decreases noteworthy in the

QM/MM calculation relative to the QM calculation.

As the cluster-ligand and inter-ligand interactions are weaker in the on-top

conformers, QM-to-QM/MM differences are consequentially smaller. For the same

reason, differences between rotamers are smaller. The pairing effect, clearly observable

in the QM/MM values, is less pronounced in the QM results as evidenced in the

differences between them. Being bound only to one Cuax atom, the Cuax-S-C1 angle

takes values smaller than in the bridge-hollow conformers (~100º for the conformers

tuos, tuoe, tdis and tdie; ~110º for other conformers).

The Cu – S bond lengths of bridge-hollow and on-top conformers are comparable

(by absolute value) to the QM calculated results. Thus, they reproduce the findings of

the QM values, in that they differ from to the reference values in the literature. The

pairing of bond lengths and bond angles between staggered and eclipsed conformations

(equalizing) indicates the reduced importance of the rotamer state in the QM/MM

method. The cluster-ligand interface is governed by the ligand conformation as a whole

rather than the end group geometry.

The discussion of the ligand interface allows some inferences on the total energy

of the conformers. Different relative total energies in QM and QM/MM calculations can

be traced back to the equalizing trend in the cluster geometry due to the ligand interface

interaction. In the conformer pair bdos-bdoe, the changes in the cluster as well as the

cluster-ligand interface geometry are most drastic. The cluster core shows a much flatter

shape, where the interface changes from bridge to threefold-hollow coordination. As the

ligand end group no longer contributes to the ligand-cluster interaction, the structure is

destabilized as a whole. This energy loss is compensated in part by the increased

stability of the threefold-hollow binding site, but not completely, as evidenced in the

QM to QM/MM total energy difference of the bdos conformer. Thus, the reversed order

of total energies between bdos and buis conformers can be attributed to the reduced

stability of the bdos conformer in the QM/MM method.

6.2.7. Geometric Properties of Cu13(SCH2CH3)8: Ligand Geometry

In the discussion of the ligand geometry, special consideration is given the C1-C2 bond

as it is the link bond, treated simultaneously in the QM and QM/MM approach. The

S-C1 bond be affected by a ligand structure change. Mechanical stress on individual

bonds in alkyl chains is seldom strong enough to induce bond distortions worth
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discussing. The backbone angle S–C1–C2 and even the individual C–H containing

angles can be distorted by ligand-ligand and cluster-ligand interaction.

Inspection of Table 20 shows that distortion of S–C1 and C1–C2 bonds are small

for most conformers. The decrease (by 4 pm) of the S – C1 bond of the conformer buoe

in the QM/MM geometry is the largest one calculated for the bridge-hollow conformers.

Other conformers feature deviations from 0.5 and 2 pm between QM and QM/MM

calculations. The S – C1 bond is shorter in the QM/MM calculation than in the QM

results for all, but the conformers bdis, bdie and bdos. The values in the corresponding

conformers pair nicely, except in the bdos-bdoe rotamer pair, where they differ by

almost 1 pm. It is noticeable that four distinct values of the S–C1 bond are realized in

the conformers under consideration. As the long S – C bonds of the QM calculations

could not be reproduced, the QM/MM values are even shorter than the values

determined by Akinaga et al.221 for the adsorption of methyl thiolate on copper surfaces.

This shorter bond (by 5-7 pm), is likely caused by the considerably larger bond strength

of the ligands to the cluster. This conclusion is corroborated by a comparison with the

bond length results of Kerdcharoen et al. where a shortening of the S – C bond was

found when the cluster size was increased.183
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Table 20 Ligand backbone bond lengths S – C1 and C1 – C2 as well as QM-QM/MM

differences of the 16 conformers of Cu13(SCH2CH3)8; all values in Å

conformation S - C1 diff. QM/MM-QM C1 - C2 diff. QM/MM-QM

buis 1.816 -0.005 1.523 0.020

buie 1.816 -0.012 1.538 0.026

buos 1.830 -0.021 1.524 0.019

buoe 1.830 -0.043 1.538 0.026

bdis 1.853 0.006 1.529 0.021

bdie 1.853 0.006 1.544 0.021

bdos 1.827 0.016 1.523 0.027

bdoe 1.820 -0.011 1.538 0.034

tuis 1.817 -0.008 1.522 0.012

tuie 1.819 -0.001 1.541 0.023

tuos 1.826 -0.000 1.525 0.016

tuoe 1.825 0.000 1.539 0.016

tdis 1.816 -0.009 1.537 0.035

tdie 1.816 -0.006 1.537 0.018

tdos 1.816 -0.000 1.524 0.018

tdoe 1.813 -0.006 1.540 0.020

The S–C1 bonds of the on-top coordinated conformers mirror the behavior of the bridge-

hollow coordinated ones. However, they exhibit only two distinct values. The QM/MM

calculated bond lengths are slightly shorter or at most equal to the corresponding QM

calculated distances. Although the S–C1 bond is close to the QM-MM system boundary,

the change of method does not introduce considerable distortions; the average absolute

deviation was less than 1 pm. This finding lends further credibility to the results of the

bridge-hollow conformers, where shorter bonds than in the literature were found.
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Table 21 Ligand specific bond lengths of the 16 conformers in the QM/MM

calculations; also shown are the differences to the corresponding QM values; all values

in Å

conf. C1 - H1 difference
QM/MM-

QM

C2 - H2 difference
QM/MM-

QM

C2 - H3 difference
QM/MM-

QM

buis 1.104 0.001 1.112 0.008 1.113 0.008

buie 1.104 0.002 1.113 0.010 1.112 0.007

buos 1.103 -0.002 1.113 0.010 1.113 0.008

buoe 1.103 0.003 1.113 0.010 1.112 0.007

bdis 1.115 -0.001 1.113 0.009 1.113 0.008

bdie 1.115 0.000 1.113 0.010 1.112 0.008

bdos 1.104 -0.001 1.113 -0.007 1.113 0.007

bdoe 1.104 0.000 1.113 0.010 1.111 -0.005

tuis 1.106 0.002 1.109 0.006 1.113 0.008

tuie 1.106 0.002 1.113 0.011 1.108 -0.009

tuos 1.105 0.001 1.113 0.009 1.113 0.008

tuoe 1.105 0.002 1.113 0.011 1.112 0.008

tdis 1.109 0.005 1.113 0.008 1.112 0.007

tdie 1.109 -0.000 1.113 0.011 1.112 0.009

tdos 1.108 0.002 1.112 0.001 1.113 0.006

tdoe 1.108 0.003 1.113 0.009 1.107 -0.011

The C1-C2 bond is the link bond, and thus not entirely dependent on the QM or MM

model alone. Recalling Eq. (3.12) of Chapter 3.4.2., the forces acting on the C2 atom are

a mixture of both QM  and MM parts of the model via the link bond. The ratio of the

frontier bond to link bond is set to a constant value, g, which is parameterized for

models of alkan chains (C-C bonds at both sides of the bond under consideration). As

the system boundary of the current model is neighboring a S–C instead of a C–C bond,

the chemical environment is different in the MM description than intended. This

different chemical environment causes the C1–C2 bonds found in the QM/MM

calculations to be ~2 pm longer than in the QM calculations. This way, they show a
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better agreement with most experiments, which find C–C bonds in alkyl thiolates of

about 1.53 Å.127-130 The frontier bond length is mainly determined by the MM parameter

set in the QM/MM calculations.

Table 22 The ligand backbone angle S – C1 – C2 of the 16 conformers of

Cu13(SCH2CH3)8 and differences to the corresponding QM values; all values in degrees

conformation S - C1 – C2 difference
QM/MM-QM

buis 110.3 1.6

buie 111.2 0.4

buos 110.1 2.8

buoe 111.2 1.6

bdis 108.7 0.2

bdie 109.9 -0.5

bdos 113.4 0.8

bdoe 113.8 -3.9

tuis 117.3 9.0

tuie 119.8 5.0

tuos 110.4 2.0

tuoe 111.4 1.7

tdis 113.5 3.8

tdie 113.5 -0.1

tdos 117.1 4.4

tdoe 119.3 4.9

It is interesting, that the C1 – C2 bonds of the bridge-hollow conformers in staggered

conformations are consistently 1.5 pm shorter than their eclipsed counterparts. This

perfectly illustrates the bond weakening and thereby lengthening effect of the staggered-

eclipsed isomerism. Whereas this lengthening was also found in the QM calculations as

well, it was not as consistent as in the QM/MM calculations. The on-top conformers
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feature very similar properties, with the exception of the tdis-tdie conformer pair. Here,

staggered and eclipsed conformers exhibit C1 – C2 bonds of equal length.

Table 23 Selected ligand angles of the QM/MM calculations of Cu13(SCH2CH3)8; also

given are the differences to the QM values; all values in degrees

conf. S - C1 - H1 difference
QM/MM-

QM

C1 - C2 - H2 difference
QM/MM-

QM

C1 - C2 - H3 difference
QM/MM-

QM

buis 109.7 2.5 111.8 1.7 111.3 -0.4

buie 109.3 3.9 111.4 -0.5 112.9 3.9

buos 109.4 1.3 111.8 1.5 111.2 0.3

buoe 109.1 3.9 111.4 -0.4 112.9 2.4

bdis 111.9 2.1 111.8 2.1 111.2 -0.1

bdie 111.7 2.6 111.4 -0.7 113.0 3.5

bdos 108.0 1.6 111.8 3.2 111.3 -4.0

bdoe 108.2 4.5 111.5 -2.1 113.0 3.7

tuis 107.5 -0.5 111.7 1.7 111.4 -0.2

tuie 107.0 1.5 111.3 -1.0 114.2 3.6

tuos 110.2 2.1 111.8 1.8 111.3 -0.3

tuoe 110.0 2.7 111.4 -0.7 112.9 3.1

tdis 108.4 1.1 111.4 1.0 112.6 1.0

tdie 108.4 3.4 111.4 -0.1 112.6 2.5

tdos 107.7 1.6 112.2 3.0 111.0 -1.0

tdoe 107.2 1.8 111.3 -1.5 114.2 4.6

Differences in the QM/MM values of C1–H1 bond lengths are small for both types of

conformers, bridge-hollow and on-top; also, this bond is very similar in staggered-

eclipsed. None of the conformers differs from its QM calculated counterpart by more

than 0.5 pm. As the C1–H1 bond is almost completely described by the QM part of the

model, this small difference is understandable. The C2 – H2 and C2 – H3 bonds,

however, change by up to 1 pm. In most of the conformers, they increase by 1 pm. The

C2–H2 bond of the conformer bdos and the C2–H3 bond of the conformers bdoe, tuie
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and tdoe constitute exceptions as they are shorter by 1 pm in the QM/MM calculations

than in the corresponding QM calculations. These special cases were characterized by

comparably long bonds in the QM calculations, which in the QM/MM calculations

adjusted to the length given by the C – H bond length parameter of the MM3 force field

(1.112 Å).

It is reasonable that the S – C1 – C2 angle exhibits differences between QM and

QM/MM calculations, as it defines the ligand conformation to a large extent. If the

descriptions of the cluster differ considerably, this angle changes as well. In most of the

conformers, the angle is larger in the QM/MM calculations as compared to the QM

calculations. For most of the conformers the angle differs by at most 1.5 degree; thus,

the ligand angle description by both methods is rather similar. Other conformations,

where the S–C1–C2 angle difference is more pronounced, exhibit a unclear pattern. In

the conformation buos, where the cluster-interface angle Cuax–S–C1 changes by 26º, the

backbone angle difference is large, 2.6º. The conformer bdos features the largest

cluster-interface angle difference, 34º; there, the backbone angle is changed by only

0.8º. This and similar observations on other conformer once more lead back to the

pairing effect of staggered and eclipsed conformers as the driving force behind the

differences between QM and QM/MM calculations.  No other causes of these backbone

angle changes of differing extent are readily apparent. The values of staggered and

eclipsed conformers differ at most by 3º; this value is obtained only in the case of the

conformer pair tuis-tuie.

All three intra-ligand angles under consideration lie within two degrees of their

corresponding reference values of the MM3 force field. The S-C1-H1 angles stay at their

QM values in the conformations with small inter-ligand repulsion (buos), and open by a

2-4º in conformations with a stronger ligand interaction (bdos, bdoe). Where the inter-

ligand repulsion is strong in both QM and QM/MM calculations, as in the conformers

tuis and tuie, the angles differ little as well. With only few exceptions, the C1–C2–H2

angle of the staggered conformations assumed a value of 112º, whereas the eclipsed

conformers showed angles of 111º.

The C1–C2–H3 angle assumes distinct values of 111º and 113º in staggered and

eclipsed conformations, respectively. Only three exceptions are noticeable. The

conformers tuie and tdoe show a slightly larger C1 – C2 – H3 angle of 114º. In these two

cases, the cluster-hydrogen (tdoe) and inter-ligand hydrogen repulsion (tuie) induces an

opening of this particular angle as any other interaction is absent (see e.g. Figure 25

(b)). The rotamer pair tdis-tdie constitutes an exception as it exhibits an average value
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of 112.6º. The extreme similarity of these two rotamers, likely due to the flat interaction

profile rather than any particular cause, was already noted.

The methyl end group geometry is determined by inter-ligand and cluster-ligand

interactions. The ligand bond lengths of bridge-hollow and on-top conformers do not

change significantly between the two methods. The similarity between staggered and

eclipsed conformations (pairing effect), observed in other geometric parameters is less

pronounced in the ligand bond lengths. The angles defining the ligand geometry,

however, show definite pairing effects with distinct values for rotamer pairs. The

influence of the methyl end group conformation (staggered or eclipsed) is visible in the

C–C–H angles where staggered and eclipsed conformers express distinct sets of values,

but less so in the S–C1–H1 angle, which depends mostly on the chemical surrounding of

the ligand.

6.2.8. Conclusion

QM and QM/MM results have been compared for the 16 isomers of Cu13(SCH2CH3)8

and good agreement was found for ten conformations. In the remaining conformers,

structure changes between QM and QM/MM calculations are due to differences in

interactions: short distances between hydrogen atoms of neighboring ligands in a plane

perpendicular to the z axis (H2-H2' buis, tuis; H3–H3' buie, tuie) or through the x-y-

plane (H2–H2" tdoe; H3-H3" tdos) or short distances  between hydrogen atoms of the

methyl end group and the Cueq atoms of the cluster core (Cueq–H2 bdos; Cueq–H3 bdoe).

Small differences in the conformers buis and tuis (H2-H2'), buie, tuie (H3–H3') as well

as in the conformers buos, buoe, tuos and tuoe (H1–H1') have similar origin. The

interactions between these (non-bonded) groups of atoms are treated differently in the

QM and QM/MM methods (see Chapter 6.2.2). Cluster geometries could be reproduced

with the QM/MM method with an accuracy of 1 pm and better in non-perturbed

conformers, although the cluster geometry of Cu13 was shown to crucially depend on

the ligand configuration around it (Chapters 5.1, 5.2 and 6.1). Equally good agreement

was achieved in the description of the cluster interface made up by one to three Cu – S

bonds. Ligand bond lengths (S–C, C–C, C–H) were reproduced equally accurate, with

differences between QM to QM/MM results higher than 1 pm only in the link bond

(C1 – C2). The empirical C-C bond length parameter in the MM3 force field introduced

by the model was identified as the source for the larger disagreement (2 pm) between

the corresponding QM and QM/MM results.
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While total energies of QM/MM and QM methods differ naturally, the spectrum

of conformers derived by the relative total energies showed a predictable and sensible

behavior. Differences in this spectrum could be traced back to meaningful changes in

the description of non-bonded interactions. The ligand binding energies determined by

both methods agreed within chemical accuracy (~2 kcal/mol).

From the comparison of QM and QM/MM results presented in this chapter one

concludes that the QM/MM method is indeed applicable to this class of systems,

reproducing the conformations with adequate accuracy, while delivering satisfactory

energetic results. In cases where non-bonded interactions within the molecule are to be

expected, the QM/MM method proved actually superior to a pure QM calculation at

LDA level. The QM/MM method is computational less demanding as the system size

increases and thus it is a promising approach for metal cluster systems with complex

ligand shells.
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7. Computations of Periodic Two-Dimensional Arrays of

Copper Thiolate Clusters

The previous chapters showed the application of QM and QM/MM method to solitary

clusters. However, properties of clusters often change in the presence of a chemical

matrix (see Section 2.5). To study the interaction of clusters in ordered array which

constitute one type of a chemical matrix, the QM/MM method was extended to periodic

boundary conditions as detailed in Chapter 3.3 and 3.4. In this chapter, the interaction

between ligand chains of neighboring clusters will be examined as one of the sources of

cluster layer stabilization. Other stabilizing effects, such as surface template effects,

solvent stabilization and direct magnetic cluster-cluster interaction will be neglected for

the moment. Two clusters were chosen for investigation: Cu13(SCH2CH3)8 and its

homologue Cu13(CH2CH2CH3)8. A methylene group was introduced in the ligand

model, increasing the potential for inter-ligand interaction and allowing to study the

effects of different ligand chain lengths. To keep the investigation focused, only one

suitable conformation of each compound was chosen. The properties were computed in

a two-dimensional infinite lattice of clusters in an end-on and an interlocked orientation

of the respective clusters. The distance between cluster centers was varied via the lattice

constant. The minimum energy geometries at different lattice constants were obtained

by optimizing the geometry of the individual cluster in the field of an infinite layer. The

optimal lattice constant was determined via the minimum of the total energy with

respect to the inter-cluster distance.

7.1. Computational Details

Computations of cluster layers were performed using the QM/MM implementation with

the MM program DL_POLY_2 as discussed in Sections 3.4.2 and 3.4.3. The extended

MM3 force field was used as in the previous QM/MM calculations. For the QM part of

the calculations, the DF program PARAGAUSS was employed. No GGA single point

calculations were performed as only optimized geometries and their relative total

energies were required. The computational parameters were the same as discussed in

Chapter 4.

The computational models were the ethylthiolate cluster Cu13(SCH2CH3)8 and its

homologue Cu13(SCH2CH2CH3)8. The ligand were set up in all-trans conformation,

corresponding to the conformer bdos in the case of the ethylthiolate cluster. Because of

the large conformation space of both cluster compounds, a thorough examination as in

the case of Cu13(SCH2CH3)8 was considered unfeasible. The core parts of the cluster
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consisting of the models Cu13(SCH3)8 (R(central), see Figure 27) were restricted to D4h

symmetry. The corresponding end groups were optimized without symmetry restriction.

Figure 31 Top views of parts of lattices of Cu13(SCH2CH3)8 in end-on (left-hand panel)

and interlocked (right-hand panel) orientations of the clusters. The boundaries of one

tetragonal unit cell are marked; in the interlocked orientation, parts of one cluster may

reach into neighboring unit cell; due to periodicity, this nevertheless results in one

cluster per unit cell

The tetragonal unit cell contained a single cluster. A two-dimensional layer was

simulated by choosing the unit cell vector C
��

 much larger than vectors A
��

 and B
��

 ( A
��

= B
��

  � 6(�!(� Å; C
��

 = 100 Å). Thus, MM interaction between cluster cores was

reduced. The lattice constant A
��

 = B
��

 was optimized.

Four optimizations of cluster layers were conducted. In two series of calculations,

(on layers of clusters with ethylthiolate and propylthiolate ligands, respectively,) the

edges of the unit cell were aligned parallel to the ligands. Thus, the ligands of the

cluster images in adjacent cells interacted end-on (see Figure 31 left). In a second series,

the unit cell was tilted by 22.5° with the z axis as the rotation axis, for both types of

ligands, respectively. This situation is depicted on the right side of Figure 31. At this

angle, the ligands can interlock, increasing the number of possible non-bonding

interactions which can contribute to the stabilization of the cluster layer. For brevity, the

term “interlocked orientation” is used.
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At each simulation cell size, the geometry of the cluster was optimized. The

resultant QM/MM total energy according to Eq. 3.10 contains the stabilizing

contribution by the non-bonded interaction of cluster images. The total energy of a

reference "gas phase" cluster is subtracted where the simulation cell is quasi-infinite, i.e.

all three cell vectors are set to a length of 100 Å. This relative total energy can be

interpreted as the stabilization energy by non-bonded interaction reduced by a

contribution due to conformational deformation of the cluster structure. Both

contributions vary in magnitude and sign depending on the nearest-neighbor distance.

The size of the optimized unit cells will depend on the orientation of the neighbors

relative to each other, i.e. ultimately on the shape of the unit cell.

7.2. Results of the Calculations

First, the computational results for square arrays of Cu13(SCH2CH3)8 clusters in end-on

cluster orientation (see Figure 31) will be presented and discussed. Here, the basic

features of the calculations can be determined most clearly. The discussion of the

cluster in interlocking orientation and the corresponding results for

Cu13(SCH2CH2CH3)8 will be presented in more compact form, based on the conclusions

achieved here.

The variations of the total energies of the computations of Cu13(SCH2CH3)8 at

different lattice constants were collected in Figure 32. Clearly, all relative total energies

except at extremely short lattice constants are lower than the reference total energy of

the isolated cluster. The van der Waals interaction between ligand chains stabilizes the

cluster layer. At a lattice constant of 15.7 Å, the minimum of the relative total energy is

achieved. There, the layer is stabilized by ~2 kcal/(mol7
������-��=����6"�>�Å to shorter

lattice constants, the total energy increases with decreasing lattice constant. At lattice

constants shorter than ~15 Å the ligand conformation changes from bdos to bdis (see

Figure 33). Further compression of the unit cell yields a slightly lower relative total

energy again.

The increased inter-ligand distance accompanying the conformation change from

bdos to bdis reduces the van der Waals interaction. The total energy of the achieved

bdis conformation is thus lowered. By reducing the steric repulsion between ligand

chains, the layer is stabilized. From the structure data in Appendix D, one can see that

the deformation of the ligand structure prior to the conformation change is minimal.
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Figure 32 Relative total energy of optimized square layer of Cu13(SCH2CH3)8 clusters

in end-on orientation of the periodic images; total energy of the isolated cluster

Etot = -24693.2347915799 au

Figure 33 Structure of Cu13(SCH2CH3)8 in bdos conformation (left) used as starting

geometry for the set of calculations; at lattice constants lower than 15 Å the bdis

conformation is adopted (right)
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Figure 34  enables one to analyze the energy contributions from the model parts. It can

be seen that any deviations from the expected smooth curve of the QM/MM total energy

are caused by variations in the MM partial energies only. The QM energy of the central

part (R(central)) of the model remains nearly indifferent to the lattice constant. It

slightly decreases (by at most 0.06 kcal/mol at a lattice constant of 15.5 Å) reflecting a

deformation of the central part of the model into an energetically favorable geometry by

the interaction of the outer part. Only at small lattice constants, the deformation

becomes considerable as evidenced by the increase in the QM energy at lattice constants

shorter than 15.3 Å.

Both MM partial energies of central part and total model (R(total)) vary in similar

fashion. At large lattice constants, they indistinguishable from the corresponding

energies of the isolated cluster. They decrease from lattice constants of 18.5 Å (R(total))

and 16.5 Å (R(central)) on to lower lattice constants, respectively. At 15.3 Å they

exhibit a minimum of 10.2 kcal/mol and 11.1 kcal/mol for the central part and total

model, respectively. At shorter lattice constants, both exhibit a sharp increase caused by

the exponentially increasing van der Waals repulsion between ligand end groups of

neighboring clusters. It is noteworthy, that the minima of the partial energies are located

at a shorter lattice constant than that of the combined QM/MM total energy (15.7 Å).

The energy combination scheme cancels part of the non-bonding interaction between

neighboring molecules in the cluster core region (R(central)). This is largely caused by

the small ligand model used in this study. The short distance between cluster cores

renders the interaction between them too attractive. A realistic description is achieved

only with the combined QM/MM total energy,. This becomes apparent when the current

set of calculations is compared with the pentane calculation of Chapter 3.4.3. The ligand

chain in the MM part is longer there. Consequently, the intermolecular hydrogen-

hydrogen distance at minimum energy is determined completely by the interaction of

the MM parts of adjacent periodic images of the molecule. The cancellation effect of the

van der Waals interaction is less pronounced if the outer MM part is considerably larger

than the central part, e.g. the ligand chains are longer.
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Figure 34 Partial energies of the QM/MM total energy of the Cu13(SCH2CH3)8 layer in

end-on orientation at different lattice constants; data points at lattice constants less than

15 Å omitted for clarity; reference energies tabulated in Appendix D

The graph of the MM energy of the central part (MM energy R(central) in Figure 34)

exhibits irregularities in the lattice constant range between 16 Å and 17.5 Å in the range

of  approx. 0.1 kcal/mol. The same holds true for the MM energy of the total model.

The irregularities in both partial energies are caused by atoms moving across the van

der Waals cutoff distance. Their respective contributions to the "appear" at a certain

threshold.

In Figure 35 the results of the cluster with ethylthiolate ligands in end-on

orientation are compared to those with interlocking orientation. The energy curves are

rather different: they show the increased energy gain by the van der Waals interaction of

the clusters, when the ligand chains are set up to interlock. The relative total energy of

the cluster layer in interlocking orientation shows a stabilization energy of 21.7

kcal/mol, one order larger than for end-on orientation (1.9 kcal/mol). To a small part,

this is due to the larger number of atoms in close contact to neighboring clusters. The

atoms contribute considerably to the van der Waals interaction energy. The interlocking

orientation allows at least three such contacts as opposed to the end-on orientation

which allows only one. On the other hand, one of these H-H contacts can contribute at

-12.0

-8.0

-4.0

0.0

4.0

15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0

lattice constant [Å]

p
ar

ti
al

 e
n

er
g

y 
[k

ca
l/m

o
l]

  QM energy R(central)

  MM energy R(central)

  MM energy R(total)



7. Two-Dimensional Arrays

101

most 0.2 kcal/mol to the stabilization energy (see Section 3.4.3). Thus the

overwhelming contribution has to come from other interactions.

Figure 35 Relative total energies of two-dimensional square lattices of

Cu13(SCH2CH3)8 clusters in end-on and interlocked relative orientation;

Etot(interlocked) = -24693.2356063536 au

The copper core atoms and the thiolate head groups are the only atoms that are

inaccessible to interaction in the end-on orientation, but accessible in the interlocked.

Furthermore, their possible contribution to the van der Waals energy is more than a

tenfold of a H-H contribution at any given distance, according to their parameter set.127-

130 The stabilization energy of the layer in this model is thus mostly provided by the

interaction between ligand head groups on one cluster and the cluster core as well as the

cluster ligand interface on another one. The minimum of the relative total energy is

displaced to shorter lattice constants as expected; it is located at a lattice constant of

10.8 Å.

This finding is underlined by the analysis of the partial energies (see ). The MM

energy of the total part causes the cluster layer stabilization almost exclusively.
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Figure 36 Partial energies of the QM/MM total energy of Cu13(SCH2CH3)8  in

interlocking orientation for various lattice constants; unit cell rotated by 22.5;�����

respect to the cluster; data points at lattice constants less than 10.5 Å omitted for clarity;

reference energies tabulated in Appendix D

As it can be seen from Figure 36, the irregularities of the partial energies increase with

their absolute values. The steps at 12.1 Å in both MM partial energies are clearly

discernible despite the wider energy scale of the figure. The cause is the clipping of

non-bonded interaction contributions due to the varying van der Waals cutoff in the

single calculations (see discussion of the end-on orientation, above). In the relative total

energy these fluctuations vanish (see Figure 35). However, this error cancellation effect

is accidental.

The methyl end groups in the outer part of the model provide the major

contribution to the stabilization energy. The energy gain of the central part of the model,

which is subtracted in the calculation of the total energy, is only one fourth of the outer

part energy gain. All three partial energies reflect the findings for the corresponding

partial energies of the end-on calculations.
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Figure 37 gives an overview of the results of the calculations on

Cu13(SCH2CH2CH3)8 in comparison to the ethylthiolated clusters; the general trends are

similar. The end-on oriented clusters yield arrays with larger lattice constants than the

cluster with interlocked orientation. The longer ligands cause a shift of the minima of

both end-on (18.3 Å) and interlocked orientation (11.7 Å) towards larger lattice

constants as compared to 15.7 Å and 10.8 Å for the Cu13(SCH2CH3)8 cluster in end-on

and interlocking orientation, respectively. The Cu13(SCH2CH2CH3)8 clusters in end-on

orientation are stabilized by 3 kcal/mol (Cu13(SCH2CH3)8, Est = 2 kcal/mol). Thus, the

main contribution of the stabilization energy is provided by interaction of the methyl

end groups. The added methylene chain segments account for an additional stabilization

of 0.14 kcal/mol per ligand. The propylthiolated cluster array in end-on orientation is

thus 37 % more stable than the ethylthiolated one.
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Figure 37 Relative total energies of Cu13(SCH2CH3)8 and Cu13(SCH2CH2CH3)8 in end-

on and interlocking orientations, respectively; reference energies tabulated in Appendix

D

In the case of the interlocking orientation however, the longer ligand chain results in an

increased stabilization of the layer by 9 kcal/mol per cluster. At a total stabilization

energy of 31.8 kcal/mol, this represents an increase of 29 % as compared to the

Cu13(SEt)8, end-on

Cu13(SEt)8, interlocked

Cu13(SProp)8, end-on

Cu13(SProp)8, interlocked
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ethylthiolated cluster. The stabilization energy is largely governed by the relative

orientation of the ligand chains, and not only a simple function of the ligand chain

length.

Figure 38 Partial energies contributing to the total energy for interlocking orientation of

Cu13(SCH2CH2CH3)8 at different lattice constants; data points at lattice constants less

than 11 Å omitted for clarity; reference energies tabulated in Appendix D

The energy contributions for the Cu13(SCH2CH2CH3)8 cluster in interlocking orientation

show a curious pattern indeed (see Figure 38). The QM description of the central part

implies a destabilization of the cluster, caused by a deformation of the geometry of the

central part the stronger cluster-cluster interaction. The energy of the central part falls

below its corresponding gas phase value only for lattice constants shorter than 11 Å. As

any other interaction is absent by definition, the central part of the model must be

accidentally distorted into a energetically favorable position by the directing influence

of the outer part of the model. The MM partial energy of the central model part reflects

likewise influences, being larger than the gas phase energy at all lattice constants. Only

the MM energy of the total model behaves as expected, reflecting attractive van der

Waals interaction.

The behavior of the energy contributions can be reasoned as follows. In the

interlocked orientation of the clusters, attractive as well as repulsive interaction of

ligands in neighboring clusters requires them to rotate around the C–C bonds to relieve
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steric stress. In the central part of the model, this rotation is forbidden by the imposed

D4h symmetry as the ligand backbone lies in a mirror plane. Thus, the angles S–C1–Hlink

and H1–C1–H1 are deformed from their optimal values in the gas phase. This change

induces the observed increase in the QM and MM energies of the central part. In the

MM energy of the total model, this effect is covered up by stronger van der Waals

interaction.

In all four examples considered, the geometry of the cluster as well as of the

ligands remained virtually unchanged when the unit cell was larger than a system

specific threshold. The ligand chains were compressed in the end-on orientation

according the dominating forces along the ligand backbones. As mentioned in the

discussion of the relative total energies of the cluster Cu13(SCH2CH3)8, this behavior

changed drastically below a certain threshold of the lattice constant. At values below 15

Å for the end-on and 10.3 Å for the interlocking orientation, the conformation switched

“spontaneously” from bdos to bdis. In the end-on orientation, the whole ligand was

compressed by 0.11 Å (difference between starting and final positions of the H3 atoms)

prior to the conformation change. In the interlocked cluster layer, the ligands were

compressed by only  0.03 Å (atomic positions again). Although the spontaneous

conformation change at strongly inter-ligand repulsions is desirable, no additional

insight can be gained without further extensive study. Pertinent intra-molecular

distances of both orientations of Cu13(SCH2CH2CH3)8 systems examined changed less

than 0.003 Å. They were not compressed until their conformations switched; however,

it is likely that they might if the unit cell becomes sufficiently small. Even though the

symmetry breaking lateral movement of the ligand chains within the x-y-plane was

allowed in the Cu13(SCH2CH2CH3)8 clusters, it did not occur in the current calculations.

7.3. Concluding Remarks

The above calculations on periodic two-dimensional cluster lattices show clearly the

potential of the QM/MM method. The stabilization energy of cluster layers was

determined for a model of  van der Waals interaction only between ligand chains.

Longer ligands were shown to stabilize cluster layers better. The stabilization energy

per cluster increased by ~30 % when the model ligands were extended from

ethylthiolate to propylthiolate. Cluster layers with interlocked ligand chains exhibit a

considerably higher stabilization energy. The closer contact between ligand chains

increases the stabilization energy by more than one order of magnitude. Concomitantly

with this larger stabilization, the optimal lattice constant is reduced. In the
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Cu13(SCH2CH3)8 model it decreases from 15.7 Å to 10.8 Å and in the

Cu13(SCH2CH2CH3)8 model from 18.3 Å to 11.7 Å. Geometry changes observed were

small, except at very short lattice constants were the ligands changed their

conformation.
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8. Summary

The topic of this thesis was the application of the hybrid QM/MM method to ligand

protected transition metal clusters and copper thiolate species have been chosen as

examples. Three goals have been reached. The application of a QM/MM approach to

transition metal clusters was validated by a detailed comparison with density functional

calculations. A QM/MM method utilizing periodic boundary conditions was

implemented. This implementation was then used to calculate the geometric and

energetic properties of ordered arrays of ligand protected copper clusters.

In the first part, a consecutively refined cluster model was used to generate

reference data for studying effects of ligand attachment to the cluster Cu13. The bare

cluster, a simplified sulfanyl (SH) ligand shell of 8 ligands and the ethylthiolate ligand

were used to study the binding situation of the corresponding ligand model, the

accuracy of the results and the computational feasibility. Then, the 16 conformers of

Cu13(SCH2CH3)8 in D4h symmetry were analyzed in detail at both the LDA level of

density functional theory and with the corresponding hybrid QM/MM method. Energies

were self-consistently calculated using the GGA BP86 functional at the LDA optimized

structures.

The bare cluster Cu13 was shown to adopt a flat configuration with the parameter

set used in this investigation. Successive reduction of symmetry constraints from Oh via

D4h to D2h and C4v revealed the relatively high D4h symmetry as best tradeoff between

accuracy of prediction versus computational expense. The total energy was shown not

to change significantly under reduction of the symmetry constraints below D4h (<

0.1 kcal/mol).

The ligand binding site investigation with sulfanyl model ligands in place of alkyl

thiolates revealed the bridge-hollow binding site as energetically preferred compared to

the on-top adsorption site. Binding energy and relaxation of the cluster geometry were

affected by the binding site and the orientation of the ligand relative to the cluster. The

sulfanyl model ligand showed a comparable binding energy to that of alkylthiolate

ligands in the later calculations. However, the dependence of the binding energy on the

adsorption site and the orientation was overestimated, as a comparison with other

calculations and subsequently obtained results showed.

The calculations of the 16 conformers of Cu13(SCH2CH3)8 in D4h symmetry using

the LDA exchange-correlation functional illustrated strengths and weaknesses of that

method. The bridge-hollow adsorption site was confirmed as most stable. However, due
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to overestimated binding interaction between cluster core and ligand end groups, some

on-top conformers were computed up to 40 kcal/mol more stable than the least stable

bridge-hollow conformers. The ligand binding energies of on-top and bridge-hollow

conformers were comparable in the range 65-77 kcal/mol. Structures with ligands

adsorbed in bridge-hollow sites showed ligand binding energies larger or equal to on-

top structures. The ligand-cluster interaction was strong enough to deform bond lengths

in the cluster core by several 0.1 Å, depending on the conformation. In two of the

bridge-hollow conformers the cluster core was even prolate (upright ellipsoidal, with

two short main axes and one long one), in contrast to the other 14 conformers where the

cluster core was oblate (flat ellipsoidal, with two long main axes and one short one) as

in the ligand free state. The ligand chains wrapped around the cluster core in some

conformers. In that way, atoms of the ligand end groups came into close contact with

the cluster core. Whereas these contacts caused deformation of the cluster core relative

to the bare cluster, they did not change the ligand geometry to a significant extent.

However, the total or ligand binding energy was determined more by the binding site

and the conformation of the ligands than by the cluster-ligand end group interaction. To

illustrate this point, consider the conformer bdos (see Chapter 6.1.1 for the conformer

nomenclature) which was found to be the most stable conformer, featuring the shortest

H-Cu contacts and a large ligand binding energy of 76 kcal/mol. The conformer buoe,

in contrast, is 18 kcal/mol less stable than the conformer bdos, it has no H-Cu contacts,

but exhibits the highest ligand binding energy of 77 kcal/mol nevertheless.

The QM/MM calculations of the same system reproduced the QM results in most

aspects. Here, a QM/MM implementation according the IMOMM method was applied,

using TINKER as the MM program. The geometric structures of some conformers were

nearly indistinguishable between QM and QM/MM calculations. However, the results

differed where non-bonding interactions between atoms were involved. The density

functional method at the LDA level describes non-bonding interaction between atoms

generally as too attractive, resulting in too short distances between non-bonded atoms;

the MM part of the QM/MM method describes these interactions as repulsive at such

short distances, according to a parameterized potential. Thus, the short distances

between the cluster core and ligands were enlarged in the corresponding conformers.

This repulsion between atoms not sharing a common bond was identified as the cause of

even small differences between QM and QM/MM geometries; examples are interactions

between equatorial copper atoms of the cluster core and two not symmetry equivalent

hydrogen atoms of the ligand end group (Cueq–H2; Cueq–H3) or hydrogen atoms of

neighboring ligands in a plane perpendicular to the z axis (H2-H2'; H3-H3') or hydrogen
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atoms interacting across the x-y-plane (H2-H2’’; H3-H3’’). In conformers, where the non-

bonded interactions were negligible, most bond lengths were reproduced by the

QM/MM method with an accuracy of 1 pm. The only exception was the C-C bond

connecting QM and MM part of the model. This bond was consistently calculated 2 pm

longer in the QM/MM approach, as a consequence of the empirical bond length

parameter of the C-C bond in the MM3 force field, introduced by the QM/MM method.

Bond angles were accurately reproduced in non-perturbed conformers, with deviations

not exceeding 4°. The ordering of total and ligand binding energies reflected the

changes in the conformer structures. QM/MM binding energies varied between 76

kcal/mol and 56 kcal/mol. They were smaller in most conformers than the

corresponding QM binding energies. Only the conformers buis and the buos showed

larger binding energies in the QM/MM calculations compared to the QM results (by 1.4

and 5.2 kcal/mol, respectively). The largest difference was found in the conformer tdoe

with a ligand binding energy which was smaller in the QM/MM calculation by 8.6

kcal/mol. The energy ordering of conformers was similar, when conformers with strong

non-bonding interactions were neglected.

These results demonstrated that the QM/MM method (in the form of the IMOMM

strategy) is applicable to transition metal clusters with complex organic ligand shells.

The ability of the MM approach to describe organic molecules at considerably lower

computational costs complements the strength of the DF method to describe the

complicated electronic structure of transition metal clusters. At the same time, the

weaknesses of contemporary DF and MM methods are compensated. The electronic and

geometric structure of transition metal clusters can not be described by the MM

approach in a satisfactory fashion. Non-bonded interactions, which are described too

attractive by the LDA functional, are replaced with an empirical force field utilizing a

parameterized van der Waals term.

To allow the calculation of ordered structures of ligated transition metal clusters,

the QM/MM implementation was extended to use the MM program DL_POLY_2,

which provides the required capabilities. DL_POLY_2 can be augmented by further

force field terms if necessary. The standard version of DL_POLY_2 was supplemented

by specific interpolation functions and parameter sets required for the force field MM3.

The QM/MM suite was adapted to the input and output format specific to DL_POLY_2.

A functional test using a pentane model confirmed the accuracy of the QM/MM

calculations (at the IMOMM level) using DL_POLY_2 as the MM program.
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Application to a linear periodic arrangement of pentane molecules provided the

functional test of the periodic capabilities of the implementation.

In the third part, the properties of two-dimensional layers of an alkylthiolated

copper cluster were determined using the QM/MM implementation with periodic

boundary conditions. Four different setups of layers were examined: two of the cluster

Cu13(SCH2CH3)8 in the conformation bdos, and two for Cu13(SCH2CH2CH3)8, featuring

more extended propylthiolate ligands in the all-trans conformation of the ligands

corresponding to bdos. For each cluster type, two arrangements were studied: with the

ligand end groups oriented end-on or interlocking. The lattice constants were

successively reduced to study the consequences for the stabilization energy of the layer.

D4h symmetry was imposed only on the central part of the models which contained

Cu13(SCH3)8, the ligand end groups experienced no symmetry restriction. The cluster

layers in end-on ligand orientation showed stabilization energies by one order of

magnitude smaller than in interlocking ligand orientation. The number of inter-cluster

van der Waals contacts affected the stabilization. Thus, the stabilization energy is lower

in the end-on ligand orientation models. For the same reason, the layers of clusters with

ethylthiolate ligands showed ~30% smaller stabilization energies (2 kcal/mol, end-on;

22 kcal/mol, interlocking) than layers of clusters with propylthiolate ligands

(3 kcal/mol, end-on; 32 kcal/mol, interlocking). In the model Cu13(SCH2CH3)8, the

equilibrium lattice constant decreased from 15.7 Å (end-on) to 10.8 Å (interlocking)

and in the model Cu13(SCH2CH2CH3)8 from 18.3 Å (end-on) to 11.7 Å (interlocking).

Thus, introduction of an additional methylene moiety into the ligand chain elongated the

distance between clusters by 2.6 Å in the end-on, but only 0.9 Å in the interlocking

orientation of clusters. The compression of the cluster layer beyond the equilibrium

induced a change in the conformation of ligands from bdos to bdis for both models

Cu13(SCH2CH3)8 at lattice constants of 15 Å in the end-on orientation of ligands and at

10.3 Å in the interlocked orientation.  The increasingly repulsive van der Waals

interaction between ligands at shorter lattice constants caused a sharp increase of the

total energy of the clusters. The change of conformation reduced the van der Waals

repulsion significantly.

This thesis showed the applicability of the QM/MM approach, in the form of the

IMOMM method, to transition metal clusters with complex ligand shells. The QM/MM

strategy opens the possibility for detailed investigations of these complex systems

which, if treated by a first-principles method, would lie beyond the current

computational feasibility.



Appendix A

Adaptation of the MM3 Force Field Parameters for Use in

DL_POLY_2

Bonds

Because of the ease of computation, the bond oscillator function is often approximated

using a polynomial fit. The MM3 implementation uses the fourth order approximation:

2 2 2
bond s ij 0 ij 0 ij 0E =71.94 k (r - r ) [1- 2.55 (r - r ) + ( 7 12)  2.55   (r - r ) ]� �  , (9.1)

where ks is the energy constant pertaining to the atom pair, rij is the distance between the

two atoms while r0 is the equilibrium distance specific for the pair. This term is written

as:

2 3 4
bond 1 ij 0 2 ij 0 3 ij 0

1 1 1
E = k (r - r ) + k (r - r ) + k (r - r )

2 3 4
 , (9.2)

in the DL_POLY_2 implementation, where the ki are independent constants, which may

be converted by comparison with Eq. 9.1:

1 s

2 s

2
3 s

k = k 71.94 2

k =  -k 71.94 2.55 3

k = k 71.94 2.55 7 12 4

� �

� � �

� � � �

(9.3)

Note that the units are omitted for ks and ki, but are suitably chosen to result in an

energy of the unit [kcal/mol].

Angles

The energy contribution of angular potentials are computed for any two atoms which

are in turn bound to a third. The angle θ may assume values between 0° and 180°. The

length of distances ikr
�

and kjr
�

do not enter this energy expression. There are however

extended MM implementations, which take these items into account.121

The contribution of the bond angle potential to the total energy can be expressed

in multiple ways. One of the most often used ones is the polynomial approximation, as

used in the MM3 force field in a sixth order polynomial:
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where kθ is a suitably chosen (in value and unit) energy constant depending on the atom

types of i, j and k.

The fifth and sixth order terms were introduced in the MM3 definition only in the

latest revision of the MM2 force field. Again, the coefficients had to be adjusted to the

corresponding DL_POLY_2 implementation:

2 3 4
� � � � � �

5 6
4 0 5 0

1 1 1
E =  k  ( ��� - , �< ��� ��� - , �< ��� ��� -

2 3 4
1 1

+ k ( ��� - �,�< �� ��� - �����������������            ,
5 6

 (9.5)

where ki are the independent coefficients converted by using the following equations:

1

2

-5
3

-7
4

-10
5

k  = k   2  0.021914

k  =  -k   3  0.021914  0.014

k  = k   4  0.021914  5.6  10

k  =   -k   5  0.021914  7.0  10

k  =    k   6  0.021914  9.0  10

� �

� � �

� � � �

� � � �

� � � �

(9.6)

The units of the individual coefficients k  and ki are suitably chosen to result in an

energy of the unit [kcal/mol]. The MM3 force field proposes three values of the

equilibrium angle, depending on whether there are 0, 1 or 2 hydrogen atoms bound to

the central atom apart from the atoms participating in the angular interaction.

Dihedral angles

The dihedral angle is the angle between the two planes defined by the atom triples (i, k,

l) and (k, l, j) respectively. This angle is dependent on the element and atom types of

atoms i to k. The bond lengths ikr
�

, klr
�

 and ljr
�

 as well as the angles iklθ  and kljθ  do not

enter the equation. Note that there are force field types, that include some or all of these

items into higher order terms.

The MM3 force field as well as the DL_POLY_2 implementation of included

terms approximate the dihedral angle interaction as a Fourier series of three cosine

terms:

� � �
E  = (k /2)  (1 + cos -�,��< @!-� ��6���
��! - ,��< @!-� ��6�,�
��& -� � �  , (9.7)
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where the ki are independent coefficients. The respective ki have suitably chosen units

to result in energies of the unit [kcal/mol].

van der Waals Interactions

Atoms, which are not bound to one another nevertheless polarize each other which can

be approximately described by the picture of induced dipole moments. This induced

dipole-dipole interaction results in an energy gain at a certain distance and respective

forces acting on these atoms.

Elements possess an optimum distance at which the interaction between them

results in a slight energy gain in the range of a few kcal/mol. To be able to describe the

effect for all possible interactions, it would be necessary to include pair terms for every

atom pair. This route was suggested in the DL_POLY_2 implementation, allowing

definition of van der Waals interactions only as atom pair parameters regardless of their

type or element. The MM3 force field suggests a more uniform approach, defining these

parameters as atom type based. This means that all atoms of one atom type possess the

same van der Waals (and other non-bonded) interaction behavior.

The elementary functional form used to describe the interaction was suggested by

Lewis and is generally named Buckingham potential226,227 and is equal in TINKER and

DL_POLY2 implementations:

6

ij0
vdW 1 2 3

ij 0

rr
E =k +k exp k

r r

   
       

(9.8)

In the MM3 implementation the coefficient ki are combined, reducing the Eq. 9.8 to:

6

ij50
vdW vdW

ij 0

rr
E =k -2.25 + 1.84  10  exp 12  

r r

             
� � (9.9)

DL_POLY_2 uses the slightly different form noted below:

6

ij
vdW 1 2

ij 3

r1
E  = -k   + k  exp -

r k

   
       

� (9.10)

The individual coefficients are converted using the following equations:
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As atom type based coefficients are used in the MM3 implementation, these have to be

converted to atom pair based values:

0, vdW 0, vdW 0, vdW

vdw vdW
vdW

r [t(i),t(j)] = r [t(i)] + r [t(j)]

k [t(i)] + k [t(j)]
k [t(i),t(j)] =    ,

2

         (9.12)

where 0, vdWr [t(i),t(j)]  is the pair based van der Waals distance parameter (not the

respective van der Waals radius) in DL_POLY_2 and 0, vdWr [t(i)] and 0, vdWr [t(j)]  are the

respective atom type based parameters in the MM3 force field definition. The parameter

t(x) is a specifier for the MM3 atom type (and its DL_POLY_2 analogue).

The constants vdW vdW vdWk [t(i),t(j)], k [t(i)] and k [t(j)]  specify the energy constants

for the atom pair and the atom types, respectively. Note that some atom type pairs, i.e.

C-H,  possess special, pre-computed pair parameters for their van der Waals interaction,

which can be converted straightforwardly in Eqs. (9.11).

Charges

In the current implementation of the QM/MM approach, the treatment of charges

(atomic or otherwise) is not included. It is not always possible to assign a given amount

of electronic density, i.e. charge, to an individual nucleus.96 While the dipole moment of

the whole molecule is experimentally accessible,228-230 the contributions by individual

atoms are not.

The problem all force field implementations face is the assignment of a charge

distribution model for molecular fragments (mostly atoms). Nearly all force field

implementations assign point charges to atom types reflecting partial charges or

contributions to dipole moments, which are fitted to experimental data. The number of

different atom types increases with this approach, as elements may exhibit different

point charges in different chemical environments. The QM/MM approach aggravates

this problem, as it adds an unphysical moiety to the equations whose particular charge is

generally not known, although approximations, i.e. by Mullikan analysis, were tried.231
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The implementation of accurate treatment of charges was thus left out in this work. The

MM3 force field implementation differs from the general idea in that it assigns bond

dipoles to atomic dimers. While not fundamentally different,127,232,233 this approach

complicates the adaptability to the approach used in DL_POLY_2 and the conversion of

parameters.
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Appendix B

Table 24 Total energies of Cu13(SH)8 in various conformations, see Section 5.2.2

ligand binding site ligand orientation total energy  [au]

bridge-hollow up -24381.473820164

bridge-hollow out -24381.468292701

on-top up -24381.399306173

on-top out -24381.196774146
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Appendix C

Table 25 Total energies (DF-BP86) of the conformers of Cu13(SCH2CH3)8

conformation total energy [au]

buis -25062.566046866

buie -25062.516939880

buos -25062.504308554

buoe -25062.551598802

bdis -25062.578130397

bdie -25062.533167365

bdos -25062.580361036

bdoe -25062.485671940

tuis -25062.531560298

tuie -25062.485962958

tuos -25062.531560298

tuoe -25062.489636889

tdis -25062.448607300

tdie -25062.412338157

tdos -25062.479704818

tdoe -25062.395388363

Table 26 QM reference energies of Cu13(SCH2CH3)8 (DF-BP86)

reference system total energy [au]

Cu13 D4h -21242.0120780013

SCH2CH3
Cs, staggered

-477.4504604819

SCH2CH3
Cs, eclipsed

-477.4443556465
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Table 27 Angles of the cluster-ligand interface in QM calculations of the 16 conformers

of Cu13(SCH2CH3)8

conformation Cuax-S-C1 Cueq-S-C1

buis 137.3 149.7

buie 130.5 162.0

buos 92.8 149.4

buoe 121.1 177.8

bdis 105.2 64.1

bdie 103.9 62.5

bdos 114.0 81.6

bdoe 118.3 87.6

tuis 97.5 119.2

tuie 100.5 121.4

tuos 97.5 119.2

tuoe 98.5 119.8

tdis 97.8 83.5

tdie 92.4 84.8

tdos 99.0 91.3

tdoe 99.7 91.7
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Table 28 Ligand angles of the 16 conformers in the QM calculations of

Cu13(SCH2CH3)8

conf. S-C1-C2 S-C1-H1 C1-C2-H2 C1-C2-H3 H1-C1-H1 H2-C2-H2 H2-C2-H3

buis 108.7 107.1 110.1 111.7 109.6 106.7 109.0

buie 110.8 105.4 111.9 109.1 109.3 108.2 107.8

buos 107.3 108.1 110.3 110.9 108.1 107.8 108.7

buoe 109.6 105.2 111.8 110.5 109.2 108.2 107.2

bdis 108.5 109.9 109.7 111.3 110.2 107.9 109.0

bdie 110.3 109.1 112.1 109.5 110.3 107.8 107.5

bdos 112.6 106.4 108.6 115.3 109.1 111.3 106.5

bdoe 117.7 103.7 113.6 109.3 106.9 110.2 104.7

tuis 108.4 108.1 110.0 111.6 107.8 107.7 108.8

tuie 114.9 105.4 112.2 110.6 107.6 108.8 106.3

tuos 108.4 108.1 110.0 111.6 107.8 107.7 108.8

tuoe 109.7 107.3 112.1 109.8 107.2 108.0 107.3

tdis 109.8 107.3 110.4 111.6 108.0 107.2 108.5

tdie 113.7 105.0 111.6 110.0 106.3 108.2 107.7

tdos 112.7 106.2 109.2 112.0 108.8 108.5 109.0

tdoe 114.4 105.4 112.8 109.6 107.4 109.9 105.6
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Appendix D

Table 29 Bond lengths of Cu13(SCH2CH3)8 at different lattice constants, in the gas

phase geometry (100 Å), before (15.1 Å) and after (14.9 Å) the change of the

conformation of the ligand from bdos to bdis, in Å

lattice
constant
= 100 Å

bdos

lattice
constant
= 15.1 Å

bdos

lattice
constant
= 14.9 Å

bdis

bdis
gas phase

Cuce-Cueq 2.604 2.624 2.732 2.412

Cuce-Cuax 2.073 2.067 2.048 2.146

Cueq-Cuax 2.212 2.222 2.289 2.152

Cueq-S 2.127 2.128 2.109 2.575

Cuax-S 2.219 2.206 2.206 2.254

S-C1 1.828 1.819 1.823 1.853

C1-C2 1.527 1.524 1.526 1.529

C1-H1 1.103 1.103 1.102 1.115

C2-H2 1.114 1.115 1.113 1.113

C2-H3 1.113 1.109 1.113 1.113
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Table 30 Partial energies of the QM/MM total energy of the Cu13(SCH2CH3)8 layer in

end-on orientation at different lattice constants

lattice
constant

[Å]

QM energy
central part

[au]

MM energy
central part

[au]

MM energy
total molecule

[au]

20.0 -24693.2316043799 6.9063438 6.9031566

18.6 -24693.2315981924 6.9063438 6.9029972

17.6 -24693.2316000026 6.9065032 6.9022004

17.1 -24693.2315749741 6.9065032 6.9018817

16.9 -24693.2315592645 6.9065032 6.9015630

16.7 -24693.2315457207 6.9065032 6.9014036

16.5 -24693.2315237892 6.9058657 6.9004475

16.3 -24693.2315123424 6.9057064 6.8999694

16.1 -24693.2315180362 6.9053876 6.8994913

15.9 -24693.2315505436 6.9049096 6.8986945

15.7 -24693.2316288214 6.9037940 6.8975790

15.5 -24693.2317007830 6.9002881 6.8945512

15.3 -24693.2315170601 6.8900891 6.8854676

15.1 -24693.2294341055 6.9167022 6.9128776

14.9 -24693.2277645679 6.5444372 6.5382222

14.7 -24693.2277647174 6.5444372 6.5380628
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Table 31 Partial energies of the QM/MM total energy of Cu13(SCH2CH3)8  in

interlocking orientation for various lattice constants; unit cell rotated by 22.5;�����

respect to the cluster

lattice
constant

[Å]

QM energy
central part

[au]

MM energy
central part

[au]

MM energy
total molecule

[au]

17.1 -24693.2316223536 6.0985479 6.0945639

16.1 -24693.2316138951 6.0985479 6.0942452

15.7 -24693.2316082267 6.0982292 6.0939265

15.3 -24693.2315993114 6.0982292 6.0937671

14.9 -24693.2315861191 6.0979105 6.0929703

14.5 -24693.2315744699 6.0979105 6.0924923

14.1 -24693.2315311188 6.0972731 6.0910580

13.7 -24693.2315060394 6.0972731 6.0899425

13.3 -24693.2314243501 6.0961575 6.0873927

12.9 -24693.2313189809 6.0945639 6.0832494

12.1 -24693.2309691386 6.0916955 6.0720942

11.9 -24693.2308154271 6.0896238 6.0669947

11.7 -24693.2306870839 6.0891457 6.0628513

11.5 -24693.2305988822 6.0889863 6.0588673

11.3 -24693.2305485779 6.0896238 6.0556801

11.1 -24693.2307411262 6.0931297 6.0558395

10.9 -24693.2311977460 6.1009383 6.0618951

10.7 -24693.2318620808 6.1138465 6.0759188

10.5 -24693.2324450764 6.1301012 6.0974324

10.3 -24693.2274698949 5.7369601 5.7293108



123

Table 32 QM/MM total energy of gas phase structures used in the calculation of the

QM/MM relative total energies of Cu13(SCH2CH3)8 and Cu13(SCH2CH2CH3)8  layers in

end-on and interlocking orientations, respectively

cluster system total energy [au]

Cu13(SCH2CH3)8         end-on -24693.2347915799

Cu13(SCH2CH3)8         interlocking -24693.2356102000

Cu13(SCH2CH2CH3)8 end-on -24693.2315022938

Cu13(SCH2CH2CH3)8 interlocking -24693.2307599000
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Table 33 Partial energies contributing to the QM/MM total energy for interlocking

orientation of Cu13(SCH2CH2CH3)8 at different lattice constants

lattice
constant

[Å]

QM energy
central part

[au]

MM energy
central part

[au]

MM energy
total molecule

[au]

18.7 -24693.2312356632 6.1077908 6.1079502

17.7 -24693.2312129392 6.1077908 6.1077908

16.7 -24693.2311973382 6.1079502 6.1074721

15.7 -24693.2311447389 6.1084283 6.1065159

14.7 -24693.2310422220 6.1098625 6.1047630

13.7 -24693.2307051879 6.1122529 6.0993447

13.5 -24693.2305473168 6.1120935 6.0964763

13.3 -24693.2303882132 6.1117748 6.0932891

13.1 -24693.2301576076 6.1120935 6.0899425

12.9 -24693.2299393899 6.1120935 6.0857991

12.5 -24693.2294088392 6.1119342 6.0757595

12.1 -24693.2295401360 6.1148027 6.0685883

11.7 -24693.2309364808 6.1340852 6.0851617

11.3 -24693.2320698455 6.1608577 6.1288263



125

Appendix E

Basis Sets

Hydrogen (Z = 1) (6s, 1p) basis set

Reference:  [188]

Contraction : (6s, 1p) →  [4s, 1p]

s p

1 0.089891 1.000000

2 0.258053

3 0.797670

4 2.823854

5 12.409558

6 82.636374

Carbon (Z = 6) (9s, 5p, 1d) basis set

Reference: [188]

Contraction: (9s, 5p, 1d) →  [5s, 4p, 1d]

s p d

1 0.156590 0.12194 0.60000

2 0.511900 0.38554

3 2.418049 1.20671

4 6.175776 4.15924

5 16.823562 18.84180

6 50.815942

7 178.350830

8 782.204795

9 5240.635258
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Sulfur (Z = 16) (12s, 9p, 2d) basis set

Reference: [188]

Contraction: (12s, 9p, 2d) →  [6s, 5p,2d]

s p d

1 0.157093 0.102867 0.183000

2 0.434389 0.291781 0.658000

3 2.142870 0.773628

4 5.570960 2.242910

5 18.116800 5.502670

6 43.157900 13.893800

7 108.669000 37.496000

8 296.954000 116.981000

9 901.843000 494.274000

10 3168.040000

11 13921.800000

12 94181.100000
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Copper (Z = 29) (15s, 11p, 6d) basis set

Reference: [188]

Contraction: (15s, 11p, 6d) →  [6s, 4p, 3d]

s p d

1 0.040791 0.099100 0.149100

2 0.113303 0.265000 0.414875

3 0.330500 0.711445 1.473290

4 0.964080 1.906670 4.516280

5 2.578480 4.693820 13.549000

6 9.393570 11.743500 48.543900

7 22.298300 27.055100

8 67.359100 65.323900

9 158.399000 172.195000

10 395.099000 532.106000

11 1071.970000 2245.290000

12 3239.820000

13 11373.400000

14 50072.900000

15 337200.000000
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