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Chapter 1

Introduction

According to the Born-Oppenheimer adiabatic approximation, the calcula-
tion of dynamical processes in molecules can be divided into two steps. While
the �rst step involves solution of the electronic problem by keeping the atomic
nuclei �xed in space, the nuclear dynamics on a predetermined electronic
potential-energy (PE) surface is treated in the second step [1, 2, 3]. This ap-
proximation is based on the fact that the spacing of electronic eigenvalues is
generally large compared to typical spacings associated with nuclear motion.
Clearly, this approximation breaks down when electronic states are close in
energy.

The most striking deviations from the adiabatic approximation are the
orbitally degenerate electronic states. In 1937, Jahn and Teller formulated
the idea of instability and spontaneous distortion of the nuclear con�guration
of a nonlinear molecule in an orbitally degenerate electronic state [4, 5].
This vibronic coupling (VC) is known as the Jahn-Teller (JT) e�ect. In
the presence of the JT e�ect, the electrons do not adiabatically follow the
motions of the nuclei and the nuclear states are determined not only by
the averaged �eld of the electron, but also by the details of the electronic
structure and their changes with nuclear displacements. Öpik and Pryce in
1957 [6] �rst noted that e�ects similar to the JT e�ect may be inherent in
systems with near (quasi-degenerate or pseudo-degenerate) electronic states.
This is known as pseudo-Jahn-Teller (PJT) e�ect.

The JT e�ect as well as the PJT e�ect have been studied extensively over
the past decades, see [7, 8, 9, 10, 11, 12, 13, 14] and references therein. Al-
though the majority of the applications of the JT e�ect has been in the �eld
of spectroscopy, stereochemistry, and structural phase transformations, the
JT e�ect has played the role of �guiding idea� [15] in one of the most impor-
tant (Nobel prize winning) discoveries of modern physics: high-temperature
superconductivity. The JT e�ect is also found instrumental in understanding
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2 1. Introduction

the mechanisms of chemical reactions, the properties of fullerenes, and the
recent discovery of the colossal magnetoresistance [14].

Linear molecules are exceptions from the JT theorem but they too are
subject to similar instabilities in their degenerate or pseudo-degenerate states
when quadratic terms of VC are considered [16, 14]. This VC in linear
molecules is known as the Renner-Teller (RT) e�ect, following the original
paper of Renner in 1934 [17] that describes the vibronic interactions in de-
generate Π electronic states of linear triatomic molecules. Experimental ob-
servations of Renner's predictions in the spectrum of the NH2 radical [18, 19]
stimulated early methodological developments for the treatment of the RT
e�ect [20, 21, 22]. These early theoretical descriptions, which were based
on perturbation theory, were later supplemented by variational methods for
the calculation of RT spectra [23, 24, 16]. In the course of time, the RT
e�ect has been extended to consider tetra-atomic linear molecules [25], treat-
ment of ∆ states [26], inclusion of magnetic-coupling e�ects [27], inclusion
of anharmonic coupling and Fermi Resonances [28], inclusion of molecular
rotation [22], etc. Several interesting applications of the RT e�ect, including
processes like protonation, charge transfer, photodissociation, etc. suggest
the importance of the RT e�ect in chemical and molecular physics. For a de-
tailed survey of the RT e�ect, see the review by Rosmus and Chambaud [29].

The inclusion of the spin of the unpaired electron in the analysis of vi-
bronic spectra of linear molecules was �rst considered by Pople [30]. He
treated the spin-orbit (SO) coupling as a perturbation of the RT Hamiltonian
of a 2Π state and obtained the spin-vibronic energy corrections up to second
order. Since then, numerous studies on the interplay of RT and SO-coupling
e�ects have been performed, see Refs. [16, 20, 22, 23, 24, 31, 32, 33, 34] for
reviews and representative examples. The majority of the existing RT-SO
treatments, however, have been based on the simpli�ed phenomenological
form of the SO operator introduced by Pople [30]

HSO = ALzSz, (1.1)

rather than on the microscopic form of SO coupling given by the Breit-Pauli
Hamiltonian [35, 36]. Here Lz and Sz are the projections of the electronic
orbital and spin angular momenta on the molecular axis, respectively, and A
is a phenomenological constant. The simpli�cation was argued to be justi�ed
since the x and y components of the orbital angular momentum should be
e�ectively quenched for linear molecules [30]. The simpli�ed operator (1.1)
separately conserves the z-axis projections of orbital and spin angular mo-
mentum, while the true SO operator only conserves the z-axis projection of
the total (orbital+spin) angular momentum.
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In Chapter 3, a microscopically founded description of SO-coupling e�ects
in RT systems is presented and the limitations of the LzSz approximation
are explored. The RT-SO problem of an isolated 2Π state is described by
a 4×4 vibronic matrix instead of a 2×2 matrix (as in the nonrelativistic or
in the LzSz approximation). An expansion of the matrix elements of the
Breit-Pauli SO operator for an isolated 2Π electronic state in a quasi-linear
molecule yields, in addition to the well-known quadratic nonrelativistic RT
coupling, a linear (that is, of �rst order in the bending coordinates) VC
term of SO origin. This term is absent when the simpli�ed phenomenolog-
ical form (1.1) of the SO operator is employed. The generic e�ect of this
linear-relativistic VC (LRVC) mechanism on the vibronic energy levels and
spectral intensity distribution is studied by variational calculations, i.e., nu-
merical diagonalization of large secular matrices, for the so-called resonant
case, where the SO splitting of the 2Π state and the bending vibrational fre-
quency are approximately equal. In such resonant cases, the LRVC term is
shown to have substantial e�ects on the vibronic spectra.

The relevance of the LRVC term in the 2Π ground state of a series of
radicals and radical cations with 15 valence electrons (BS2, CS+

2 , OCS+,
OBS) is brie�y discussed in Chapter 3.4.1. The VC parameters have been
obtained by employing accurate ab initio electronic-structure methods. The
X̃ 2Π vibronic spectra of this series of molecules involving one second-row
element: sulfur, illustrate the interplay of nonrelativistic and relativistic VC
mechanisms in RT systems.

In another application of the present RT-SO model, we address certain
perturbations of the usual pattern of RT-SO vibronic energy levels, which
have been observed in 2Π electronic states of several triatomic systems, in
particular NCO, NCS, and GeCH [37, 38, 39]. These perturbations have
been termed �Sears resonances� [39]. An explanation of these perturbations
has been given in terms of a perturbative analysis of RT and SO coupling
e�ects of the 2Π state, invoking (nonrelativistic) VC e�ects within the 2Π
state with a distant 2Σ+ state [37, 39]. In Chapter 3.4.2, we show that these
perturbations can quantitatively be described by the LRVC term within the
2Π state. Both ab initio electronic-structure calculations as well as the �tting
of the measured energy level spectrum within the RT-SO vibronic model
reveal the existence of a signi�cant LRVC term in the X̃2Π state of GeCH.

In another application of the present model, the RT-SO analysis of the
X̃ 2Π state of XCN+, (X= F, Cl, and Br) is combined with the treatment
of the stretching modes within the so-called linear-VC model [40, 41] to
provide an improved ab initio based simulation of the vibronic band shape
of the photoelectron spectra by assuming the X̃ 2Π state to be an iso-
lated electronic state. The XCN+ cations have been extensively studied
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by di�erent types of spectroscopic methods such as absorption [42], emis-
sion [43, 44, 45], laser excitation [46], infrared and microwave [47] as well
as photoelectron [48, 49, 50, 51, 52]. The photoelectron spectra of these
cations consist of three bands in the outer-valence region. Although the
photoelectron spectra of BrCN and ICN have been recorded with high res-
olution [51, 52, 53], the photoelectron spectra available for FCN and ClCN
are not highly resolved [48, 49, 50]. There are, however, a limited number
of theoretical studies on these systems. The neutral species FCN and ClCN
have been studied by Lee et al. and the molecular structures, vibrational
frequencies, and quartic force �elds have been determined [54, 55]. Similar
studies have been performed by Wang et al. [56] for the X̃ 2Π and Ã 2Σ+

states of FCN+ and ClCN+. They have estimated the molecular structures
and vibrational frequencies as well as the adiabatic ionization energies em-
ploying various ab initio methods. The vibrational structure of the photo-
electron spectra has been simulated via the calculation of Franck-Condon
factors [56]. This analysis has been restricted to the two totally symmetric
stretching modes; neither the RT coupling of degenerate bending mode with
degenerate electronic state nor the SO coupling of the unpaired electron in
the ground state of the cation has been taken into account. In the present
work, the geometric as well as the spin-vibronic parameters are determined
by employing accurate ab initio electronic-structure methods. The X̃ 2Π
state of the ClCN+ is found to be of particular interest: here the resonance
condition for linear relativistic RT coupling is approximately ful�lled. This
coupling mechanism leads to a signi�cant intensity transfer to vibronic levels
with odd quanta of the bending mode. The calculated spectrum indicates
that this novel relativistic VC e�ect should be observable in high-resolution
(electron energy resolution of the order of a few meV) photoelectron spectra
of ClCN.

The spectra of isolated 2Π electronic states in many triatomic and tetra-
atomic molecules have been quantitatively analyzed by both perturbative and
variational methods [17, 20, 21, 22, 23, 24, 16, 25, 26, 28, 57]. Quite often,
however, the interaction of a degenerate 2Π state with other close-lying elec-
tronic states is also important. These close-lying electronic states show strong
VC which leads to the breakdown of the Born-Oppenheimer approximation.
Examples are the absorption spectra of NCO [58] and NCS [59] and the pho-
toelectron spectra of HCN [60, 61, 62, 63, 64], N2O [65], and C2N2 [66]. In
radicals like CCH [67, 68, 69, 70], CCF [71], and CCCl [72, 73], the vibronic
interaction of closely spaced 2Π and 2Σ states leads to very complex vibronic
energy-level spectra. The CCH radical in particular, is known to possess
a rather low-energy conical intersection of the PE surfaces corresponding to
the 2Σ and 2Π states. Several experimental and theoretical studies have been
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devoted to the understanding of the complicated spectroscopy of the Ã 2Π-
X̃ 2Σ+ system of this radical [74, 75, 76, 77, 78, 79, 80, 67, 68, 69, 70, 81, 82].
Some selected e�ects of Σ − Π VC have been calculated by perturbation
theory, e.g., corrections to rotational energy levels [58, 83], modi�cations of
Zeeman orbital g-factors [83, 84], and intensity borrowing e�ects [83]. A com-
prehensive discussion of the e�ects associated with the weak perturbation of
a Π electronic state by a Σ electronic state has been given by Aarts [85]. A
detailed analysis of strong VC of closely spaced 2Σ and 2Π states of a linear
molecule has been given by Köppel et al. [57], using variational methods.

In Chapter 4, the analysis of SO induced VC e�ects is extended to vibron-
ically coupled 2Π and 2Σ electronic states by employing microscopic (Breit-
Pauli) SO-coupling operator in the single-electron approximation. The ma-
trix elements of the SO operator in a diabatic electronic basis are expanded
in powers of the bending coordinate up to second order. This results in a
6× 6 vibronic Hamiltonian, which contains zeroth-, �rst-, and second-order
Σ − Π VC terms of SO origin. Several of these terms are absent when the
usual phenomenological form of the SO operator (1.1) is used. The in�uence
of these Σ−Π SO VC mechanisms on the vibronic energy levels and spectral
intensity distribution corresponding to the transition from an unperturbed
initial state to the vibronically coupled 2Σ and 2Π states is investigated by
variational calculations for selected models. The phenomena are particularly
interesting when the Σ − Π coupling as well as the SO coupling are strong.
The interplay of strong Σ−Π VC and strong SO splitting of the Π state re-
sults in unexpectedly complex vibronic spectra. These complex spectra are
qualitatively interpreted by the help of the calculated adiabatic PE curves.

The 6×6 Σ − Π SO VC model is combined with the treatment of the
stretching modes within the linear-VC model [40, 41] to calculate the vibronic
structure of the X̃ 2Σ+ and Ã 2Π states in the photodetachment spectrum
of CCCl− and CCBr−. In these systems the 2Σ and 2Π states are closely
spaced. While there have been limited studies on CCF [71, 86, 87, 88] and
no attention has been paid to CCBr and CCI, there exists a considerable
amount of theoretical research on the electronic structure of CCCl [86, 89,
90, 91, 92, 93, 72, 94]. Early ab initio calculations of this radical by Largo et
al. [86] concluded the radical to be linear, with some ambiguities concerning
the nature of the ground electronic state. While Hartree-Fock calculations
with a small basis set predicted a 2Σ ground state, calculations with im-
proved basis sets and inclusion of electron correlation e�ects favored a 2Π
ground state [86]. The energy separation between the two states was found
to be less than 900 cm−1 [89]. A decade later the same authors suggested
a nonlinear structure for the radical with a 2A′ ground state on the basis
of density functional theory (DFT) calculations [91]. There has been no
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experimental information on the radical until recently, when Sumiyoshi et
al. reported a detailed characterization of the CCCl radical in the X̃ 2A′

state by Fourier-transform microwave spectroscopy [73]. Their experiment
and corroborating ab initio studies lead to the conclusion that the ground
state of the nonlinear radical has 2Σ+ symmetry in the limit of linearity [73].
They found the �rst excited electronic state to be only 200 cm−1 above the
ground state, in contrast to the CCH radical, where this separation is about
3700 cm−1 [81, 82]. They have also recognized a 2Σ+-2Π conical intersec-
tion which is only 1200 cm−1 higher in energy than the minimum [73]. This
experimental study inspired Tarroni and Carter, to perform a calculation of
the infrared absorption spectrum of the radical [72]. These authors were the
�rst to calculate the SO splitting of the 2Π electronic state. In the present
work, the nonrelativistic and relativistic VC parameters have been obtained
by accurate ab initio electronic-structure calculations. The calculated pho-
todetachment spectra of both the anions have complicated vibronic structure
due to strong Σ − Π VC. The spectral envelopes of the calculated photode-
tachment spectra exhibit double-hump reminiscent of strongly coupled E×E
JT systems.



Chapter 2

Theoretical background

2.1 Theory of vibronic-coupling e�ects

2.1.1 Adiabatic approximation and diabatic basis

We consider a molecule described by the Hamiltonian

H = Te + TN + U(r,Q) (2.1)

where Te and TN are the operators of the kinetic energy of the electrons
and nuclei, respectively, and U(r,Q) is the total PE of the electrons and
nuclei. The vector r denotes the set of electronic coordinates describing the
displacements from a reference con�guration. For �xed nuclei, i.e., TN =
0, the orthonormal electronic wave functions Φn(r,Q) and energies Vn(Q)
de�ned by Te + U(r,Q)︸ ︷︷ ︸

He

−Vn(Q)

Φn(r,Q) = 0 (2.2)

depend parametrically on the nuclear geometry. They are known as the Born-
Oppenheimer electronic states and PE surfaces [2]. The exact eigenstates of
the system can be expanded in the Born-Oppenheimer electronic states

Ψ(r,Q) =
∑

n

χn(Q)Φn(r,Q). (2.3)

Inserting this ansatz into the Schrödinger equation

(H − E)Ψ(r,Q) = 0 (2.4)

7



8 Chapter 2.1. Theory of vibronic-coupling e�ects

one readily obtains [2] the following set of coupled equations for the expansion
coe�cients in Eq. (2.3)

[TN + Vn(Q)− E]χn(Q) =
∑
m

Λ̂nmχm(Q). (2.5)

The operators Λ̂nm are known as the nonadiabatic operators, given by [3]

Λ̂nm = −
∫

dr Φ∗
n [TN,Φm] . (2.6)

Rewriting the fundamental set of equations given in Eq. (2.5) as a matrix
Schrödinger equation, we haveTN1 + V(Q)− Λ̂︸ ︷︷ ︸

H

−E1

χ = 0. (2.7)

The matrix Hamiltonian H describes the nuclear motion in the manifold of
electronic states. χ is the column vector with elements χn; 1 is the unit
matrix, and V(Q) = Vn(Q)δnm is the diagonal matrix of electronic energies.

The adiabatic approximation is obtained by neglecting the nonadiabatic
operator Λ̂ in Eq. (2.6) [2]. This approximation is based on the assumption
that the kinetic-energy operator of the nuclei can be considered as a small
perturbation of the electronic motion. In the adiabatic approximation the
matrix Hamiltonian H becomes diagonal and the total wave function (2.3)
becomes a product of a nuclear and electronic wave function

Ψ(r,Q) = χn(Q)Φn(r,Q). (2.8)
The nuclear motion can be thought of as proceeding on the PE surface Vn(Q)
of a given electronic state characterized by the index n.

Although the adiabatic approximation is often a very useful approach,
it may fail in cases where the PE surfaces of di�erent electronic states are
energetically close. In these cases the nonadiabatic operators Λ̂nm cannot
be neglected in the Hamiltonian H for those electronic indices n and m
which belong to the manifold of closely lying electronic states. These elec-
tronic states are now vibronically coupled via Λ̂nm. The nonadiabatic oper-
ators, which re�ect the fast changes of the adiabatic electronic states with
the nuclear coordinates in the vicinity of avoided crossing or conical inter-
section of PE surfaces become very complicated and hence solution of the
Schrödinger equation becomes tedious. To overcome this problem the adi-
abatic wave functions Φn(r,Q) are replaced by smooth and slowly varying
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functions φn(r,Q) of the nuclear coordinates and correspond to PE sur-
faces that may cross at the avoided crossings of the adiabatic PE surfaces.
These slow-varying functions represent the diabatic basis [95, 96, 97]. The
diabatic basis is constructed by orthogonal transformation of the adiabatic
functions such that the nonadiabatic operators are negligibly small in the
transformed basis. The concept of diabatic basis has been found to be useful
in many �elds ranging from atom-atom collision to spectroscopy. There has
been considerable amount of work devoted to the construction of diabatic
bases [98, 99, 100, 101, 102, 103].

2.1.2 Linear-vibronic-coupling approach

For a given set of vibronically interacting electronic states the matrix Hamil-
tonian in the diabatic basis is given by

H = (TN + V0(Q))1 + W(Q). (2.9)

Where the quantity V0(Q) is the PE surface of the state from which the
molecule is excited to the manifold of vibronically coupled electronic states.
The matrix elements of the potential matrix W(Q) are

Wnm(Q) =

∫
dr φ∗n(r,Q)Heφm(r,Q). (2.10)

The φn are the diabatic wave functions for an electronic state of index n. For
a polyatomic molecule, the accurate solution of matrix Hamiltonian (2.9)
requires an extreme e�ort. Therefore an approximate form of the matrix
Hamiltonian is often considered for which the Schrödinger equation can be
accurately solved. The simplest, but elegant, approximation is to expand the
PE matrix W(Q) about a reference nuclear con�guration Q0 and retaining
the terms linear in Q for the o�diagonal terms. This method is known as
the linear-VC approach [40, 41]. The linear approximation is often su�cient
since the elements of the W(Q) matrix are, by de�nition, slowly varying
functions of Q. Without loss of generality it is assumed that the diabatic
and adiabatic states are identical at the reference geometry Q0.

The elements of the matrix Hamiltonian in the linear approximation are

Hnn = TN + V0(Q) +Wnn(Q0) +
∑

s

κ(n)
s Qs

Hnm =
∑

s

λ(n,m)
s Qs. (2.11)
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The quantities κ(n)
s and λ(n,m)

s are known as intrastate and interstate electron-
vibrational coupling constants, respectively, given by

κ(n)
s =

(
∂Vn(Q)

∂Qs

)
Q0

(2.12)

λ(n,m)
s =

(
∂Vnm(Q)

∂Qs

)
Q0

. (2.13)

The nonvanishing interstate coupling constants λ(n,m)
s are those for which

the product of the irreducible representations of φn, φm, and of the nuclear
coordinate Qs contains the totally symmetric representation ΓA, i.e.,

Γn × ΓQs × Γm ⊃ ΓA. (2.14)

The analogous condition for the intrastate coupling constants κ(n)
s is

Γn × ΓQs × Γn ⊃ ΓA. (2.15)
This shows that all totally symmetric modes can couple to the electronic
motion.

2.1.3 Vibronic coupling involving degenerate mode and

degenerate states

Degenerate electronic states are outstanding examples of the failure of the
adiabatic approximation. In the case of linear molecules the VC problem is
known as RT coupling; otherwise it is known as JT coupling.

(A) Jahn-Teller e�ect

Nearly all molecules in the C3v group or higher molecular point groups possess
degenerate electronic states and degenerate vibrational modes. For degen-
erate states in nonlinear molecules, Jahn and Teller have shown that there
always exists a nontotally symmetric vibrational mode that can lift the degen-
eracy in �rst order due to VC between the electronic component states [5, 4].
Considering a two-fold degenerate (E) electronic state, the symmetry of the
desired vibrational mode for VC should be such that it is contained in the
decomposition of the symmetrized product (E)2. It is then found that in all
but seven molecular-point groups (with four-fold principal rotation axis, e.g.,
C4v, C4h, etc.) degenerate vibrations can be JT active, leading to the E×E
JT e�ect [10, 7, 12, 11, 104, 105].
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Let us consider a system with a doubly degenerate electronic state and
three-fold principal rotation axis C3. The doubly degenerate JT active vibra-
tional mode in Cartesian coordinates be represented as (Qx, Qy). In polar
coordinates (ρ, φ), the x and y components of the degenerate vibrational
mode can be written as

Qx = ρ cosφ Qy = ρ sinφ. (2.16)
Lets de�ne

Q± = Qx ± iQy = ρe±iφ. (2.17)
The transformation properties of Q± under C3 are

C3Q± = exp

(
±2πi

3

)
Q±. (2.18)

The doubly degenerate electronic states can be expressed by the diabatic
wave functions in the Cartesian coordinate as (ψx, ψy), The linear combina-
tions

ψ± =
1√
2

(ψx ± iψy) (2.19)
have the following transformation properties under C3 operation

C3ψ± = exp

(
±2πi

3

)
ψ±. (2.20)

By expanding the electronic part of the Hamiltonian (2.9) in a Taylor series
up to �rst order in Q± and evaluating matrix elements with the diabatic basis
states Eq. (2.19), taking into account the symmetry properties of Eqs. (2.18)
and (2.20), one obtains [20, 105, 7]

HJT = (TN + V0)12 +

(
0 fρeiφ

fρe−iφ 0

)
(2.21)

where V0 = ω
2
ρ2 and

TN = −ω
2

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2

)
. (2.22)

ω is the vibrational frequency associated with the degenerate mode and f is
known as linear JT coupling constant.

The corresponding adiabatic potential functions obtained by diagonaliz-
ing the JT Hamiltonian at a �xed-nuclear geometry, i.e., TN = 0,

V1,2 =
ω

2
ρ2 ± fρ, (2.23)
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are the well-known �Mexican-hat potentials� [20, 105, 7].
The JT Hamiltonian (2.21) can be shown to commute with the total

angular momentum operator of the following form
j′z =

1

i

∂

∂φ

(
1 0
0 1

)
+

1

2

(
−1 0
0 1

)
. (2.24)

The eigenvalues of j′z are half-integer numbers.

(B) Renner-Teller e�ect

The VC within degenerate states of linear molecule requires a special treat-
ment, since the lowest order VC terms are at least quadratic [17, 22, 16]. For
linear molecules, the z component of the electronic orbital angular momen-
tum around the molecular axis takes one of the values Λ =0, ± 1, ± 2 · · · .
The corresponding electronic states are called Σ, Π, ∆ · · · states. For all
nonzero values of Λ, the electronic state is two-fold degenerate. Since linear
molecules possess a continuous rotational symmetry, the diabatic functions
associated with a given value of Λ are subject to the following transformation
under the action of Cφ

CφψΛ = eiΛφψΛ, Λ = 0,±1,±2 · · · (2.25)
In the original work of Renner, the VC of the degenerate Π electronic state

was considered. Since then, this case has received most of the attention [22,
20, 31, 23, 32, 33, 34]. According to Eq. (2.14), the bending vibrational mode
of Π symmetry is RT active. The degenerate bending mode can be described
by the Cartesian coordinates (Qx, Qy) and polar coordinates (ρ, φ) de�ned
in Eqs. (2.16) and (2.17). The transformation properties of Q± under Cφ are

CφQ± = e±iΛφQ±. (2.26)
By performing the Taylor expansion of the electronic part of the Hamilto-

nian (2.9) with respect to Q± and using the symmetry properties Eqs. (2.25)
and (2.26), the RT Hamiltonian is obtained as [57]

HRT = (TN + V0)12 +

(
0 cρ2e2iφ

cρ2e−2iφ 0

)
(2.27)

where c is the quadratic RT coupling constant. TN and V0 have the same
form as in the JT coupling case. The RT Hamiltonian commutes with the
following total vibronic angular momentum operator

j′z =
1

i

∂

∂φ

(
1 0
0 1

)
+

(
−1 0
0 1

)
. (2.28)

The eigenvalues of j′z are integer numbers.
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(C) Σ− Π coupling

In addition to the VC of the two components of the degenerate Π electronic
state, the degenerate bending vibrational mode of Π symmetry can couple a
doubly degenerate Π electronic state with a nondegenerate Σ electronic state
in linear molecules. This coupling is known as Σ−Π coupling. This coupling
mechanism becomes important when a doubly degenerate Π state lies close
in energy to a Σ state [58, 59, 61, 62, 65, 68, 69]. By considering the diabatic
basis states ψ± and ψ0 for the Π and Σ states, respectively, and following the
steps described above, the Σ− Π Hamiltonian is obtained as [57]

HΣ−Π = (TN + V0)13 +

 −∆/2 λρeiφ cρ2e2iφ

λρe−iφ ∆/2 λρeiφ

cρ2e−2iφ λρe−iφ −∆/2

 . (2.29)

λ is known as the Σ − Π coupling constant and ∆ is the energy di�erence
between the Σ and the Π state at linear con�guration.

The Σ − Π Hamiltonian commutes with the following form of the total
vibronic angular momentum operator

j′z =
1

i

∂

∂φ

 1 0 0
0 1 0
0 0 1

+

 −1 0 0
0 0 0
0 0 1

 . (2.30)

The eigenvalues of j′z are integer numbers.

2.1.4 Inclusion of totally symmetric modes

From Eq. (2.11) it is clear that the totally symmetric modes modulate the
relative separation between the electronic states whereas the nontotally sym-
metric modes satisfying Eq. (2.14) describe the coupling between two elec-
tronic states. Therefore the totally symmetric modes are also called as �tun-
ing modes� and the nontotally symmetric modes as �coupling modes�. In the
linear-VC approach, the tuning modes contribute only to the diagonal ele-
ments of the electronic Hamiltonian matrix, see Eq. (2.11). The inclusion of
these modes to the VC models described earlier is, therefore, straightforward.

In the E×E JT case the Nt tuning modes are represented by

H t
JT =

Nt∑
i=1

[(
∂2

∂Q2
i

+Q2
i

)
12 +

(
κE

i

κE
i

)
Qi

]
(2.31)

where the Qi are totally symmetric modes and the κE
i are the gradients of the

adiabatic PE functions of the E state with respect to the ith tuning mode.
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For linear triatomic molecules, the stretching modes are the totally sym-
metric modes. The Hamiltonian corresponding to the tuning modes in case
of RT coupling is

H t
RT =

∑
i=1,3

[(
∂2

∂Q2
i

+Q2
i

)
12 +

(
κΠ

i

κΠ
i

)
Qi

]
. (2.32)

For the Σ-Π coupling, it is

H t
Σ−Π =

∑
i=1,3

( ∂2

∂Q2
i

+Q2
i

)
13 +

 κΠ
i

κΣ
i

κΠ
i

Qi

 . (2.33)

From Eqs. (2.21), (2.27), (2.29), (2.31), (2.32), and (2.33), we have[
HJT, H

t
JT

]
=
[
HRT, H

t
RT

]
= 0, but

[
HΣ−Π, H

t
Σ−Π

]
6= 0. (2.34)

From the above relations, the stretching and the bending motion of linear
triatomic molecules can be decoupled if the VC of an isolated degenerate Π
electronic state is considered. This decoupling, however, is not possible when
the VC of Σ and Π electronic states are considered.

2.2 Calculation of spectra
We consider a molecule that is initially in the state |Ψ0〉 and is excited by
some operator T into a manifold of vibronically coupled electronic states.
According to Fermi's golden rule, the excitation spectrum is described by
the transition probability per unit time

P (E) = 2π
∑

ν

|〈Ψ0|T |Ψν〉|2 δ(E − E0 − Eν) (2.35)

where E0 denotes the energy of the reference state |Ψ0〉 and Eν is the energy
of the �nal molecular vibronic state |Ψν〉. Assuming the reference state to be
energetically separated and vibronically decoupled from the excited states,
we can apply the adiabatic approximation and write

|Ψ0〉 = |Φ0〉|0〉, (2.36)
where |Φ0〉 and |0〉 represent the electronic and nuclear wave functions of
the reference state |Ψ0〉. The �nal vibronic states |Ψν〉 are obtained by a
numerical exact solution of the time-independent Schrödinger equation for
the VC Hamiltonian H

H|Ψν〉 = Eν |Ψν〉. (2.37)
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We determine |Ψν〉 via an expansion in terms of a direct product basis of
diabatic electronic states |φn〉 and nuclear wave functions |χv(Q)〉, i.e.,

|Ψν〉 =
∑

n

Cν
n,v|φn〉|χv(Q)〉

=
∑

n

∑
v1v2...

Cν
n,v1,v2,...|φn〉|χv1(Q1)〉|χv2(Q2)〉 . . .

=
∑

n

∑
v1v2...

Cν
n,v1,v2,...|n〉

∏
j

|vj〉 (2.38)

where |vj〉 are one (for nondegenerate mode)- or two (for doubly degener-
ate mode)-dimensional harmonic oscillator basis functions for the jth mode.
The determination of the Hamiltonian matrix elements is straightforward for
unperturbed harmonic oscillator basis functions [106]. In many cases, the vi-
bronic Hamiltonian commutes with a total angular momentum operator Jz,
see, for example, Eqs. (2.24), (2.28), and (2.30) for the JT, RT, and Σ − Π
Hamiltonians, respectively. In these cases the full Hamiltonian matrix de-
couples into submatrices corresponding to di�erent eigenvalues of j′z which
are the good quantum numbers. The real symmetric Hamiltonian matrix is
constructed and diagonalized for a given value of the good quantum num-
ber. The vibrational basis is increased until convergence of the eigenvalues
of interest has been achieved.

Insertion of Eq. (2.38) in Eq. (2.37) yields the following eigenvalue prob-
lem

HCν = EνC
ν , (2.39)

where Cν is the column matrix of coe�cients Cν
n,v1,v2.... Within the Condon

approximation, only the coe�cients Cn,0,0... need to be obtained when the
initial state is assumed to be vibrationless. The intensity is given by

P (E) = 2π
∑

ν

τ 2
n |〈0|χ0〉|2 δ(E − E0 − Eν). (2.40)

Here τn = 〈φ0|T |φn〉 is the electronic transition matrix element.
The eigenvalue problem (2.39) becomes di�cult to solve for multi-mode

VC models when the dimension of the Hamiltonian matrix becomes too large
to be stored and diagonalized using standard routines. To circumvent this
problem, one often uses the Lanczos method of diagonalizing matrices of
very large dimension [107, 108]. The method uses an iterative matrix-vector
multiplication to reduce the sparse Hamiltonian matrix to a tridiagonalized
form which is then diagonalized yielding the eigenvalues and eigenvectors of
interest. The details of this procedure are given in Appendix A.
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The excitation spectrum (2.40) exhibits a series of lines that are repre-
sented by δ functions. To account for the �nite experimental resolution and
rotational broadening, the �nal form of the theoretical spectrum is obtained
by convolution with a normalized Lorentzian of full width at half maximum
(FWHM) Γ

L(E) =
1

π

Γ/2

E2 + (Γ/2)2
. (2.41)

When all the interstate coupling constants are put equal to zero, all the
nonadiabatic e�ects vanish and the spectrum is particularly simple. For
each �nal electronic state φf , the spectrum is the well-known spectrum of a
shifted harmonic oscillator. All nuclear motions decouple and consequently
the spectrum is a convolution of the spectra of individual one-dimensional
oscillators. Each of the latter spectra can be written as [40]

P (E) = 2π|τf |2
∞∑

n=0

(
exp (−af )

an
f

n!

)
δ(E − Ef + afω − nω) (2.42)

which is a series of equidistant peaks weighted by a Poisson distribution with
a Poisson parameter af = (κ2

f/2ω
2)i, where κf is the intra-state coupling

constant de�ned in Eq. (2.12).

2.3 Relativistic quantum mechanics
Relativistic e�ects arise from the di�erence in the true velocity of light
(c=137.0359895 au) as opposed to in�nite velocity, which is the assump-
tion in nonrelativistic quantum mechanics. Since the speed of an electron in
a lighter element of the periodic table is small compared to the speed of light,
the in�nite speed of light is a good approximation for the lighter elements.
This approximation, however, is inadequate for heavier elements where the
electrons lying close to the nucleus attain velocities which can be comparable
to that of light. Thus the central theme of relativity is the constant value of
the speed of light in all inertial frames. Since the physical laws are required
to be identical in such frames, the time and space coordinates become equiv-
alent and the relativistic description of a particle require four coordinates:
three spatial and one temporal [109, 110]. The requirement that the physical
laws have to be equivalent in all inertial frames, the equations describing the
relativistic quantum mechanics must be invariant with respect to the Lorentz
transformation which describes the change between di�erent coordinates in
the four-dimensional space-time coordinate system [109, 110, 35].
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The time-dependent Schrödinger equation, given below for one electron,
is not relativistically correct, since the derivative with respect to the space
coordinate is of second order, whereas the time derivative is of �rst order,[

− 1

2m
∇2 + V

]
ψ = i

∂ψ

∂t
, (2.43)

where ∇ is the Laplacian operator, m is the mass of the electron, and V is
the PE of the system. The failure of the Schrödinger equation to be Lorentz
invariant necessitates the formulation of its relativistic analog.

The starting point of relativistic quantum mechanics is the energy-mass-
momentum relation of Einstein,

(E − V )2 = m2c4 + p2c2. (2.44)
Replacing the appropriate quantum-mechanical operators for E and p, one
obtains the Klein-Gordon equation [110],

(m2c4 + p̂2c2)ψ =

(
i
∂

∂t
− V

)2

ψ. (2.45)

This equation is Lorentz invariant, but has serious drawbacks, e.g., the prob-
ability density ψ∗ψ can have negative values and the equation does not de-
scribe SO coupling [111]. The Klein-Gordon equation is, however, used for
mesons (which have no spin).

The de�ciency of the Klein-Gordon equation is due to its nonlinear space
and time derivatives. Thus, Dirac started from the linear expression of the
energy of Eq. (2.44). He used a new type of square root and obtained [112],

E = βmc2 + cα · p+ V, (2.46)
where [

αi, αj

]
+

1 = 2δij,
[
αi, β

]
+

= 0, β2 = 1. (2.47)
Using appropriate quantum-mechanical operators,

[
βmc2 + cα · p̂+ V

]︸ ︷︷ ︸
HD

ψ = i
∂ψ

∂t
. (2.48)

The above equation is known as Dirac equation and is the relativistic analog
of the Schrödinger equation. The Dirac equation is suitable for the relativistic

1anti-commutation
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description of electrons. α and β are conventionally represented as,

αx =

(
0 σx

σx 0

)
αy =

(
0 σy

σy 0

)
αz =

(
0 σz

σz 0

)
β =

(
12 0
0 −12

)
,

(2.49)
where σx, σy, and σz are the well-known Pauli matrices:

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
, (2.50)

and
0 =

(
0 0
0 0

)
.

The Dirac Hamiltonian in matrix notation reads

HD =


V +mc2 0 cp̂z c(p̂x − ip̂y)

0 V +mc2 c(p̂x + ip̂y) −cp̂z

cp̂z c(p̂x − ip̂y) V −mc2 0
c(p̂x + ip̂y) −cp̂z 0 V −mc2

 . (2.51)

The Dirac equation is �rst order in time and space and is Lorentz invari-
ant [112, 35, 110]. Since the one-particle Dirac Hamiltonian involves 4×4
matrices instead of scalar functions, the solution of the Dirac equation is
a vector of four components known as four-component spinor. Two of the
degrees of freedom are accounted for by assigning an intrinsic magnetic mo-
ment (spin), while the other two are interpreted as two di�erent particles:
electrons (positive energy) and positrons (negative energy).

The time-independent Dirac equation can be written as,
HDΨ = EΨ, (2.52)

where

Ψ =


ψLα

ψLβ

ψSα

ψSβ

 . (2.53)

Here ψL and ψS are the so-called large and small components, respectively,
of wave function Ψ, while α and β are spin functions. In the nonrelativistic
limit, i.e., c→∞, for electrons, the large component reduces to the solutions
of Schrödinger equation and the small component vanishes. The opposite
applies for positrons.
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Separating the large and small components of the Dirac equation followed
by the normalization of the large component wave function and keeping terms
up to order c−2, one arrives at the well-known Pauli Hamiltonian [36, 110, 35],

HP = T − p̂2V

8m2c2︸ ︷︷ ︸
Darwin

− p̂4

8m3c2︸ ︷︷ ︸
mass−velocity

+ i
σ · (p̂V )× p̂

4m2c2︸ ︷︷ ︸
spin−orbit

+V. (2.54)

So far, we have considered only one-electron operators. For molecular
applications, however, electron-electron interactions in the PE operator are
important. The simplest form of the electron-electron interaction is the (non-
relativistic) Coulomb operator

V =
∑
i<j

1

rij

. (2.55)

This form of the PE operator is not correct in relativistic theory, since it is
not Lorentz invariant. It implies an instantaneous interaction between two
electrons, which is forbidden in relativistic theory as nothing can move faster
than light. Hence a retardation term is introduced [113].

In order to obtain a two-electron interaction term which is consistent with
special relativity, it is necessary to turn to quantum electrodynamics. The
electron-electron interaction term is expanded in a Taylor series in 1/c and
the terms up to 1/c2 are retained. In this approximation the PE operator
for the electron-electron interaction becomes [114, 115],

V12 =
1

r12︸︷︷︸
Coulomb term

−

Breit term︷ ︸︸ ︷
1

2r12

(α1 · α2)︸ ︷︷ ︸
Gaunt term

+
(α1 · r12)(α2 · r12)

r2
12︸ ︷︷ ︸

retardation term

 . (2.56)

The above operator is known as the Coulomb-Breit operator. α1 and α2

represent the α matrices of Eq. (2.47) for electron 1 and 2.
Using the Coulomb-Breit form of PE in the Pauli Hamiltonian of Eq. (2.54),

one obtains the well-known Breit-Pauli operator. For the application in VC
theory, the scalar terms like Darwin and mass-velocity corrections are less
important than the SO term. Using the last term of Eq. (2.54) and Eq. (2.56),
the one- and two-electron Breit-Pauli SO operator can be written as [116],
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HSO
BP =

1

2m2c2

[∑
i

(
−p̂i

(∑
I

ZI

riI

)
× p̂i

)
· σi

+
∑

i

∑
j 6=i

(
p̂i

(
1

rij

)
× p̂i

)
· σi

+
∑

i

∑
j 6=i

(
p̂j

(
1

rij

)
× p̂j

)
· σi

+
∑

j

∑
i6=j

(
p̂i

(
1

rji

)
× p̂i

)
· σj

]
. (2.57)

The �rst two terms represent the spin-same-orbit part, of which, the former
is the one-electron term that describes the interaction of the spin-magnetic
moment of an electron i with the magnetic moment that arises from its
orbiting in the �eld of nucleus I and the latter is the two-electron analog
relating the motion of electron i in the �eld of electron j. The last two terms
are the spin-other-orbit terms. They describe the coupling between the spin
moment of electron i and the orbital moment of electron j and vice versa.

2.4 Electronic structure methods
The use of the Dirac Hamiltonian as the relativistic substitute for the one
electron terms of the nonrelativistic many-electron Hamiltonian yields the
Dirac-Coulomb Hamiltonian. The relativistic corrections to the Coulomb
term give rise to the Dirac-Coulomb-Breit Hamiltonian. This Hamiltonian
may be utilized to construct a Hartree-Fock (HF)-like wave function, which
is known as the Dirac-Hartree-Fock (DHF) method. In a manner analogous
to HF theory, DHF begins with the assumption that an n-electron wave func-
tion can be represented as an antisymmetrized product of n single-particle
functions. These single-particle functions are four-component spinors. The
requirement that the wave function should be stationary with respect to a
variation in the spinors results in an equation which is formally equivalent to
the nonrelativistic Hartree-Fock-Roothan equation [117]. However, the pres-
ence of solutions for the positronic states means that the desired solution
is no longer the global minimum. If positronic states are occupied in the
variational construction of Dirac-Fock operator, the single particle spinors
will collapse to the negative energy minimum. An essential ingredient in this
context is, therefore, the choice of the basis set. The basis sets for large and
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small components have to be properly balanced. This is known as �kinetic
balance� where the small component basis sets contain functions which are
derivatives of the large component basis sets [118]. The use of kinetic balance
ensures that the relativistic solution smoothly reduces to the nonrelativistic
wave function as the speed of light is increased to in�nite.

2.4.1 Electron correlation and spin-orbit coupling

The DHF method represents a technique for obtaining single-determinant
wave functions which account for the most important consequences of special
relativity. For chemical purposes, however, a single-determinant method is
inadequate. Therefore methods accounting for correlation e�ects such as
multi-con�guration self-consistent �eld (MCSCF), many-body perturbation
theory (MBPT), con�guration interaction (CI), and coupled cluster (CC)
have been developed which use a DHF reference wave function [119, 120].

The positronic solutions of the Dirac Hamiltonian as well as the approxi-
mate multi-electron Hamiltonians such as Dirac-Coulomb or Dirac-Coulomb-
Breit Hamiltonians give rise to equations which are more complicated to in-
terpret physically and more di�cult to implement computationally. The
relatively large basis set (due to the presence of small and large components
and their kinetic balance) and the mixed real and imaginary part of wave
function (due to the presence of spin) render the four-component methods
computationally very expensive [118].

Therefore, methods which decouple the positronic and electronic solu-
tions have been employed with a great deal of success. Though it is not pos-
sible to exactly separate the two parts of the DHF wave functions, methods
such as the Foldy-Wouthoysen transformation [121] and the related Douglas-
Kroll(-Hess) transformation [122, 123] can produce a molecular Hamiltonian
which is decoupled (to a certain order of 1/c) to two-component Hamiltoni-
ans [124, 125]. The resultant Hamiltonian and the two-component solutions
represent the interaction of only electrons (or positrons) and nuclei. The two-
component methods are thus variationally stable and account for the main
relativistic e�ects. The operators appearing in the two-component Hamilto-
nians are quite complicated and the analytical calculation of matrix elements
is no longer possible. In addition, the two-electron terms in these methods
are hard to evaluate [116, 118].

The simultaneous treatment of relativistic e�ects and electron correla-
tion is very computationally demanding and is, therefore, limited to sys-
tems containing at most two heavy atoms. To improve the e�ciency of
the calculations, one uses a di�erent method known as spin-orbit CI or
SOCI [118, 126, 111, 116]. In this method, usual orbitals are employed in-
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stead of spinors. Here, the SO coupling is considered as a perturbation to the
spin-free (or scalar-relativistic) Hamiltonian HSR. The total Hamiltonian is
thus the sum of a scalar-relativistic part and a SO part. The electrostatic and
SO interactions are in general computed independently. The treatment of the
electronic correlation is carried out in a scalar-relativistic scheme within a
Schrödinger like formalism and takes advantage of nonrelativistic symme-
tries, which simpli�es the CI calculations. In this scheme, the CI matrix
without the SO interaction is diagonalized in a �rst step, providing nonrel-
ativistic wave functions expanded in terms of Slater determinants. These
correlated wave functions form a basis set, in which the SO Hamiltonian
is represented in a second step. The simplest way to compute the SO in-
teractions between spin-free correlated states is to employ correlated wave
functions as zero-order basis functions to compute the SO splitting to �rst
order within degenerate perturbation theory [118].

A straightforward generalization of the perturbation treatment is to use
the correlated scalar relativistic functions φSR

m of the scalar Hamiltonian HSR

as a truncated set of contracted many-electron basis functions for the total
Hamiltonian. Introducing the subscript im for a given φSR

m wave functions
to indicate the spatial and spin components of this multiplet, the matrix
representation of the Hamiltonian reads [118]

〈φSR
m,im|H|φ

SR
n,jn
〉 = 〈φSR

m,im|H
SR +HSO|φSR

n,jn
〉

= δm,nδim,jnEm

+(1− δik,jk
)〈φSR

k,ik
|HSO|φSR

k,jk
〉, (2.58)

where m,n ∈ [1, N ] and k = m,n. N is the number of correlated multi-
plet states coupled by the SO interaction and the total number of states
in the matrix representation is Nt =

∑
m=1,N Nm where Nm is the degen-

eracy of the mth multiplet (im ∈ [1, Nm]). The block-diagonal elements
Emδm,nδim,jn contain Nm identical Em values. The o�-diagonal SO elements
(1 − δik,jk

)〈φSR
k,ik
|HSO|φSR

k,jk
〉 (where k = m or n) allow the coupling between

components of either a given multiplet or even di�erent multiplets. When
N = 1, the basis functions in Eq. (2.58) are just the degenerate components
of a multiplet.

The diagonalization of the total Hamiltonian is split into two reduced di-
agonalizations: the �rst one for HSR concerns the SCF and the CI treatment
and is not burdened by the SO interaction, while the diagonalization of HSO

bene�ts from a small number of basis correlated functions. This method is
the best compromise to describe relativistic e�ects and electron correlation
for systems with not too heavy elements.
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2.4.2 E�ective core potentials

The chemical similarity of elements in the same column of the periodic table
leads to a fundamental assumption in chemistry, i.e., the low-lying core elec-
trons are relatively inert and are not perturbed by a molecular environment.
Since most of the important chemical properties of atoms and molecules
are determined by the interaction of their valence electrons, a frozen-core
approximation is found reasonable. Therefore the core orbitals are often re-
placed by a suitable potential, called e�ective potential, so that the number
of two-electron integrals reduces drastically. The objective of the e�ective
core potential (ECP) method is to construct potentials which are solely de-
pending upon the coordinates of the valence electrons, but take into account
the in�uence of the inert core electrons.

For an n-electron system, the antisymmetrized Hartree product wave
function can be written as

ψHF = A(φ1, φ2, · · · , φn), (2.59)
where A is the antisymmetrized operator and {φi} are single-particle eigen-
functions of the Fock operator

−∇
2
r

2
− Z

r
+
l(l + 1)

2r2
+

n∑
j=1

Jj −Kj. (2.60)

where Z is nuclear charge, J and K are Coulomb and exchange operators,
respectively. If we divide the orbitals to a group of Nc core and Nv valence
orbitals, we can write the Fock operator as

−∇
2
r

2
− Z

r
+
l(l + 1)

2r2
+

Nc∑
a=1

Ja −Ka︸ ︷︷ ︸
Vcore

+
Nv∑
i=1

Ji −Ki︸ ︷︷ ︸
Vval

. (2.61)

The Vcore term is now replaced by e�ective potential (V eff) and nuclear charge
Z by Zeff such that:[

−∇
2
r

2
− Zeff

r
+
l(l + 1)

2r2
+ Vval + V eff

]
φi = Elφi. (2.62)

The next step is to consider the above equation for a valence atomic orbital
of angular momentum l, φl

i, and to obtain an analytical form for V eff . By
inverting Eq. (2.62) we have

V eff
l = El +

Zeff

r
− l(l + 1)

2r2
+

(∇2
r/2− Vval)φ

l
i

φl
i

. (2.63)
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The above expression for V eff
l is, however, valid only for φi 6= 0. This requires

the valence orbitals {φi} to be replaced by approximate pseudo orbitals {χi}
which are nodeless. Ideally, the V eff

l is obtained such that the atomic valence
pseudo orbitals {χi} are as close as possible to the original orbitals {φi}.
Using the nodeless pseudo orbitals, we can write,[

−∇
2
r

2
− Zeff

r
+
l(l + 1)

2r2
+ V ′

val + V eff
l

]
χl

i = El
iχ

l
i. (2.64)

The ECP obtained in this way take care of the core-core and core-valence
interactions. The valence-valence interaction, however, can be considered by
minimizing the di�erence between Vval and V ′

val which arises because of the
replacement of the true orbitals by the pseudo orbitals. This is achieved
by using pseudo orbitals that resemble the true valence orbitals {φi} for
r ≥ Rmax, where Rmax is the radius at which φi experiences its outermost
maximum. Inside this region the wave function is �tted to a smooth poly-
nomial function. This procedure gives rise to the so-called shape-consistent
ECP [127]. By solving Eq. (2.64) we obtain

V eff
l = El

i +
Zeff

r
− l(l + 1)

2r2
+

(∇2
r/2− V ′

val)χ
l
i

χl
i

. (2.65)

There exists another way to obtain e�ective potential. In this approach, the
analytical expression of V eff

l is �tted to reproduce either the experimental
atomic spectrum or the atomic spectrum obtained from an all-electron cal-
culation at a given level of theory. The e�ective potentials obtained from
this method are called energy-consistent ECP [127].

The ECP for a given element can be written in a semilocal form

Veff =
∑

l

V l
eff(r)

l∑
m=−l

|lm〉〈lm|, (2.66)

where |lm〉 are the usual spherical harmonic eigenfunctions. Finally the
e�ective potential is obtained by �tting to a semilocal Gaussian-type function
for a given value of l.

2.4.3 Relativistic e�ective core potentials

The electrons close to the nucleus possess a large value of the kinetic en-
ergy and hence are more a�ected by relativity than the slow-moving valence
electrons. Therefore, an ECP method which incorporates the direct rela-
tivistic e�ects experienced by the core orbitals is of great practical inter-
est [111, 126, 118].
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The starting point for the relativistic ECP (RECP) is the atomic Dirac-
Coulomb Fock equations. The valence solutions {φi} are four-component
spinors. Since the large components account for most of the electron density,
the renormalized large components are used to obtain relativistic pseudo or-
bitals {χi}. Since the DHF eigenstates are eigenstates of the total angular
momentum operator ĵ = l̂ + ŝ, the resultant RECPs are no longer uniquely
de�ned for a particular value of l. Instead, the RECPs are dependent on l
and j. In order to use the RECP within a nonrelativistic frame-work, it is de-
sirable to have only l-dependent RECP. This is usually done by statistically
averaging over all of the appropriate j-dependent RECPs which are associ-
ated with a particular l value. The resulting RECPs are called l-averaged
RECP (AREP's). The AREPs take into account the nuclear shielding and
core contraction e�ects. The SO e�ects, on the other hand, are described by
the so-called SO relativistic e�ective potentials (SOREP) which are obtained
as the di�erence between the RECP and the AREP [111, 126, 118].

2.4.4 Core-polarization potential

One of the main approximations used in pseudo-potential theory is based on
the core-valence separation. The correlation e�ects corresponding to core-
core, core-valence, and valence-valence interactions are known to in�uence
the SO coupling with respect to the core-valence separation. The separation
becomes less obvious for the elements with a highly polarizable atomic core.
In these cases, a core-polarization potential (CPP) is applied to describe
accurately the interaction between the core and valence spaces [118].

The CPP is extracted from the experimental data (the core polarizabil-
ity) and accounts for all e�ects which are not present in the pseudo potential,
namely, core polarization, core-core, and core-valence correlation e�ects. The
CPP is recommended in calculations involving a large core where the sepa-
ration of core and valence parts may be problematic [118, 127].





Chapter 3

Renner-Teller and spin-orbit

vibronic-coupling e�ects

3.1 Vibronic Hamiltonian in the diabatic basis
Let us consider the RT VC problem in a 2Π electronic state of a linear
triatomic molecule with a single unpaired electron. Following the analysis of
Poluyanov and Domcke [128], the vibronic Hamiltonian of this single-electron
system can be written as (h̄ = 1),

H = TN +Hel

= TN +Hes +HSO (3.1)
TN =

[
−ω2

2

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2

)
+
ω2

2
ρ2

]
+
∑
i=1,3

(
−ωi

2

∂2

∂Q2
i

+
ωi

2
Q2

i

)
(3.2)

Hes = −1

2
∇2 −

3∑
n=1

eqn
rn

(3.3)

HSO = − i

2m2c2

3∑
n=1

qn
r3
n

[
r sinφ

∂

∂z
− zn

(
sinφ

∂

∂r
+

cosφ

r

∂

∂φ

)]
· σx

− i

2m2c2

3∑
n=1

qn
r3
n

[
zn

(
cosφ

∂

∂r
− sinφ

r

∂

∂φ

)
− r cosφ

∂

∂z

]
· σy

− i

2m2c2

3∑
n=1

qn
r3
n

∂

∂φ
· σz

= Ax · σx + Ay · σy + Az · σz. (3.4)

27
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Here Hes is the electrostatic part of the electronic Hamiltonian that includes
the electronic kinetic energy and the electronic nuclear interaction term. The
SO coupling of the electron in the �eld of three nuclei is given by the HSO

which is described within the single-electron approximation of the Breit-
Pauli SO operator (2.57), expressed in cylindrical coordinates. Here the qn
are the e�ective nuclear charges. Ax, Ay, and Az are di�erential operators in
electronic coordinate space introduced to simplify the expression for HSO. m
is the mass of the electron. The σx, σy, and σz are the Pauli spin matrices
introduced in Eq. (2.50). TN is the nuclear kinetic energy operator. ω1 and
ω3 are the the harmonic frequencies associated with the totally symmetric
stretching modes Q1 and Q3, respectively, whereas ω2 is the averaged bending
frequency associated with the degenerate bending mode, described in polar
coordinates (ρ, φ). ρ and φ represent the radial and angular part of the
degenerate bending vibrational mode, respectively, whose relationship with
the complex valued Cartesian coordinates Q± is given in Eq. (2.17).

The electronic Hamiltonian Hel can be shown to commute with the z-
component of the electronic angular momentum operator

jz = −i ∂
∂θ

+ σz, (3.5)
where θ is the angular electronic coordinate and σ is the spin angular momen-
tum. jz describes a continuous symmetry, generating an one-parametrical
group of unitary transformations

Jz(ε) = eiεjz . (3.6)
Here ε is the angular group parameter.

The electronic Hamiltonian Hel also possesses the TR symmetry. For
odd-electronic systems, the TR operator T̂ is an antiunitary operator that
satis�es [129, 130],

〈T̂ψ1|T̂ψ2〉 = 〈ψ1|ψ2〉∗. (3.7)
The full Hamiltonian H of Eq. (3.1), satis�es, in addition to the TR

property,
[H, j′z] = 0 (3.8)

with
j′z = jz − i

∂

∂φ
. (3.9)

Here j′z is the z-component of the total angular momentum operator (in-
cluding the nuclear angular momentum). The eigenvalues (µ) of j′z are half
integers (µ = ±1/2,±3/2, · · · ). The eigenvalues of H are doubly degenerate
(Kramer's degeneracy [131]), which is a consequence of the TR symmetry.
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Lets de�ne |ψ±〉 as diabatic [95, 96, 97] electronic basis set associated with
the two components of the degenerate 2Π electronic state. The coupling of
the spin motion with the orbital motion of the electron gives rise to four SO
coupled states. Hence, a complete diabatic electronic basis set is given by
|ψ±α〉 and |ψ±β〉 where the notation |ψ±α〉 stands for |ψ±〉|α〉. Here α and β
represent the two spin eigenstates of the single unpaired electron.

For linear molecules with cylindrical symmetry, the following relationship
is ful�lled by the diabatic electronic basis,

Jz(ε)|ψΛ,σ〉 = eiε(Λ+σ)φ|ψΛ,σ〉. (3.10)
The TR operator T̂ has the following e�ect on the diabatic electronic

basis functions:
T̂ |ψ±α〉 = |ψ∓β〉
T̂ |ψ±β〉 = −|ψ∓α〉. (3.11)

The electronic Hamiltonian in this diabatic electronic basis can be written
as

Hel =

ψ+α ψ−α ψ+β ψ−β

ψ+α H++
αα H+−

αα H++
αβ H+−

αβ

ψ−α H−+
αα H−−

αα H−+
αβ H−−

αβ

ψ+β H++
βα H+−

βα H++
ββ H+−

ββ

ψ−β H−+
βα H−−

βα H−+
ββ H−−

ββ

. (3.12)

While the totally symmetric stretching modes can contribute only to the
diagonal elements, the nontotally symmetric degenerate bending mode can
contribute to both diagonal and o�-diagonal matrix elements.

Diagonal elements:
Let us expand the diagonal matrix element H++

αα in a Taylor series around
the reference geometry up to second order in the two totally symmetric
stretching modes Q1,3 and the degenerate bending coordinate (Q±),

H++
αα = H++

αα
(0)

+

(
∂H++

αα

∂Q±

)
0

Q± +
∑
i=1,3

(
∂H++

αα

∂Qi

)
0

Qi

+
1

2

(
∂2H++

αα

∂Q2
±

)
0

Q2
± +

∑
i=1,3

1

2

(
∂2H++

αα

∂Q2
i

)
0

Q2
i

+
1

2

(
∂2H++

αα

∂Q+∂Q−

)
0

Q+Q− +
1

2

(
∂2H++

αα

∂Q1∂Q3

)
0

Q1Q3 · · · (3.13)

Since Hel must be totally symmetric, it can be shown that only the totally
symmetric terms in the above expansion can contribute to the matrix ele-
ment H++

αα . Thus, the second and the fourth term in the right-hand side of
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the above equation vanish. Considering the tuning modes in the linear-VC
approximation, we neglect the last term. By using the following de�nitions;

H++
αα (es)

(0)
= 0,

H++
αα (SO)

(0)
=
ζ

2
,

1

2

(
∂2H++

αα (es)

∂Q+∂Q−

)
0

=
ω2

2
,

∑
i=1,3

(
∂H++

αα (es)

∂Qi

)
0

=
∑
i=1,3

κi,

∑
i=1,3

1

2

(
∂2H++

αα (es)

∂Q2
i

)
0

=
∑
i=1,3

ωi

2
,

we have,
H++

αα =
ζ

2
+

1

2
ω2ρ

2 +
∑
i=1,3

(
κiQi +

1

2
ωiQ

2
i

)
. (3.14)

Note that in the above equation we have neglected the quadratic SO-coupling
terms and also the SO contribution to the linear stretching coupling terms,
as they are expected to be small compared to other terms.

Similarly we can write

H−−
αα = −ζ

2
+

1

2
ω2ρ

2 +
∑
i=1,3

(
κiQi +

1

2
ωiQ

2
i

)
. (3.15)

Using the TR symmetry relations of Eqs. (3.7) and (3.11), we have
H++

αα = H−−
ββ ; H−−

αα = H++
ββ . (3.16)

O�-diagonal elements:
Using the TR symmetry, Eqs. (3.7) and (3.11), we have

H+−
αβ = H−+

αβ = 0. (3.17)
We de�ne

H+−
αα = (H−+

ββ )∗ = H+−
ββ = (H−+

αα )∗ = C, (3.18)
H++

αβ = −(H−−
βα )∗ = −H−−

αβ = (H++
βα )∗ = D. (3.19)

Using the above de�nitions, Eq. (3.12) can be written as
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Hel =

ψ+α ψ−α ψ+β ψ−β

ψ+α ζ/2 C D 0
ψ−α −ζ/2 0 −D
ψ+β −ζ/2 C
ψ−β ζ/2

(3.20)

The electrostatic part of the electronic Hamiltonian Hes contributes to
matrix elements with the basis functions involving identical spin eigenstates.
Hence the matrix element C will have contributions from the electrostatic
Hamiltonian. The contribution of HSO to the matrix elements of the elec-
tronic Hamiltonian is determined in the following way,

CSO = 〈ψ+α|HSO|ψ−α〉 =
1

2
〈ψ+|Az|ψ−〉 = 0 (3.21)

DSO = 〈ψ+α|HSO|ψ+β〉 =
1

2
〈ψ+|Ax − iAy|ψ+〉 6= 0. (3.22)

The matrix elements of the electronic Hamiltonian are expanded in a Tay-
lor series up to second order in the degenerate bending mode (Q±). The terms
with appropriate symmetry with respect to the symmetry operation Jz(ε) of
the corresponding electronic matrix elements survive. Using Eq. (3.10), it is
found that the matrix element C is of second order in the expansion, whereas
D is of �rst order.

Using the de�nitions(
∂D
∂Q+

)
0

= d and

(
∂C

∂Q+∂Q+

)
0

= c, (3.23)

we obtain the following form of the 4×4 RT-SO VC Hamiltonian

H =

(
TN +

∑
i=1,3

κiQi

)
14 +

ζ/2 cρ2e2iφ dρeiφ 0
cρ2e−2iφ −ζ/2 0 −dρeiφ

dρe−iφ 0 −ζ/2 cρ2e2iφ

0 −dρe−iφ cρ2e−2iφ ζ/2

 . (3.24)

Here ζ is the SO splitting of the 2Π state. c is the well-known nonrelativistic
quadratic RT coupling constant [17, 18, 19, 20], The parameter d, on the other
hand, is a relativistic term of �rst order in the bending displacement. The
coupling term d is absent when the phenomenological form of SO operator
(1.1) is used [30] instead of the microscopic Breit-Pauli SO operator. This
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linear-VC term has not been considered so far in the theory of the RT e�ect.
The zeros appearing along the cross diagonal are a consequence of the TR
symmetry.

In literature, the RT coupling is often characterized by the dimensionless
RT parameter ε. It is de�ned as [132]

ε =

(
ω+

2

)2 − (ω−2 )2(
ω+

2

)2
+
(
ω−2
)2 . (3.25)

where ω±2 are the harmonic frequencies associated with the two RT compo-
nents of the bending PE curve and related to the averaged bending frequency
ω2 via [132]

ω2 =

√
1

2

[(
ω+

2

)2
+
(
ω−2
)2]

. (3.26)

The dimensionless RT parameter ε is related to the nonrelativistic coupling
constant c via

ε =
2ω2c

ω2
2 + c2

. (3.27)

It should be noted that the stretching and bending modes remain de-
coupled when one restricts the discussion to an isolated Π electronic state.
This is evident from the Eq. (3.24) where the stretching part of the vibronic
Hamiltonian is diagonal and hence the stretching and bending Hamiltonians
commute with each other.

3.2 Vibronic Hamiltonian in the adiabatic rep-
resentation

For �xed nuclei, let us transform the vibronic matrix of Eq. (3.24) to diagonal
form, i.e.,

W†HW = U, (3.28)
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where the transformation matrix W is given by [128]
W = W(φ)×W(ρ)

=
1√
2


e(

3iφ
2
−i π

4
) 0 0 e(

3iφ
2
−i π

4
)

0 e(−
iφ
2

+i π
4
) −e(− iφ

2
+i π

4
) 0

0 e(
iφ
2
−i π

4
) e(

iφ
2
−i π

4
) 0

−e(− 3iφ
2

+i π
4
) 0 0 e(−

3iφ
2

+i π
4
)

×


eiθ̃ cos γ 0 −eiθ̃ sin γ 0

0 eiθ̃ cos γ 0 eiθ̃ sin γ

e−iθ̃ cos γ 0 e−iθ̃ cos γ 0

0 −e−iθ̃ sin γ 0 e−iθ̃ cos γ

 . (3.29)

Here γ and θ̃ are de�ned by
tan (2γ) = 2ρ

√
d2 + c2ρ2/ζ tan (2θ̃) = −ρc/d.

The diagonal elements of U are the adiabatic PE functions given by

U1,2(ρ) = ±1

2

√
ζ2 + 4ρ2(d2 + ρ2c2). (3.30)

Both adiabatic terms U1(ρ) and U2(ρ) are two-fold degenerate, representing
Kramers doublets [106, 129]. This degeneracy is a consequence of the TR
symmetry.

Using the above transformation matrix W, the diabatic spin-electronic
states can be transformed to obtain the corresponding adiabatic spin-electronic
states [128]
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. (3.31)
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The TR operator T̂ transforms these states within both Kramers doublets:

T̂ψad
1 = ψad

4 : adiabatic terms U1,

T̂ψad
2 = ψad

3 : adiabatic terms U2. (3.32)

An interesting property of the SO adiabatic states of Eq. (3.31) is the
existence of a nontrivial topological phase: when φ is varying from 0 to 2π,
the adiabatic states change their sign. It is noteworthy that this nontrivial
topological phase exists despite the absence of a conical intersection of the
adiabatic PE surfaces.

3.3 Generic aspects of relativistic linear Renner-
Teller coupling

In this section, we discuss the generic e�ects of the LRVC term dρe±iφ on RT
spectra. For simplicity, we have neglected the totally symmetric stretching
modes. Since d will be small for molecules with not too heavy atoms, the
e�ect of the LRVC term is expected to become signi�cant only when the
potentially interacting unperturbed levels are nearly degenerate. Since d
couples, in �rst order, levels with di�erent spin quantum number which di�er
by one quantum of the bending frequency, we expect near-degeneracy e�ects
when the absolute value of ω2 and ζ are nearly equal. We shall refer to the
case ω2 ' ζ as the �resonant case� in the following.

As is well known in RT theory [30, 22, 23, 24, 16, 133], two limiting cases
can be considered. In case A, the SO splitting ζ is small compared with the
nonrelativistic RT coupling constant c, which in turn is small compared with
the bending frequency ω2. In case B, the SO splitting ζ is comparable to or
larger than ω2 and/or c. We shall be concerned here with a special case of
case B, in which ζ ' ω2 and c < ω2.

Figure 3.1 shows the energy levels of such a system with d = 0. The
parameter values are ζ/ω2 = −0.8, c/ω2 = 0.08. The negative sign of the SO
splitting implies that the 3/2 component of the 2Π state lies below the 1/2
component. The unperturbed bending levels are shown in column (a). Col-
umn (b) gives the energy levels of the nonrelativistic RT system. The energy
levels obtained with inclusion of the SO splitting ζ are given in column (c),
assigned by usual spectroscopic terms [30, 22, 23, 24, 16, 133, 37, 38].

It is seen that the energy levels (000) 2Π1/2 and (010) µ 2Σ1/2 are close in
energy, as a consequence of ω2 ' ζ and c < ω2, ζ. The same applies for the
level pairs (020) µ 2Π3/2, (010) 2∆3/2, and (010) κ 2Σ1/2, (020) µ 2Π1/2. These
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Figure 3.1: Energy levels of a RT system with SO coupling in the resonant
case (ζ ' ω2).
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quasi-degenerate energy levels interact with each other when the coupling
term dρe±iφ is taken into account.

Figure 3.2 displays the energy levels of this system (complete up to two
quanta in the bending mode) as a function of the dimensionless param-
eter d/ω2. The energy levels corresponding to di�erent values of µ, i.e.,
µ = ±1/2,±3/2,±5/2, are shown by the full, dash-dotted, and dashed lines,
respectively. The �gure reveals signi�cant level repulsions within the µ = 1/2
manifold: the pairs (000) 2Π1/2 / (010) µ 2Σ1/2, (010) κ 2Σ1/2 / (020) µ 2Π1/2,
and (030) µ 2Σ1/2 / (020) κ 2Π1/2 are seen to repel each other with increas-
ing d/ω2. Similar, but less pronounced level-repulsion e�ects are seen in the
µ = 3/2 manifold. The lowest 2∆5/2 level, on the other hand, is isolated and
its energy is essentially independent of d/ω2. As a result, the (010) µ 2Σ1/2

and (010) 2∆5/2 levels cross as function of d/ω2. Numerous other level cross-
ings occur among the higher energy levels, see Fig. 3.2.

Figure 3.2 reveals that even weak LRVC (d� ω2, ζ) can lead to a signif-
icant rearrangement of the vibronic energy levels in resonant cases (ζ ' ω2).
Such perturbations of the vibronic energy levels of 2Π states of linear tri-
atomic molecules with moderate RT and SO coupling have been observed
experimentally, in particular in the spectra of NCS and GeCH, and have
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Figure 3.2: E�ect of d on the vibronic levels. Solid, dashed-dotted, and
dashed lines represent energy levels with µ = 1/2, 3/2, and 5/2, respectively.
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been termed �Sears resonances� [37, 39].
The mixing of the zero-order energy levels also has a signi�cant e�ect on

the intensity of the spectral lines. We shall consider here the case of electronic
excitation from the (000) vibrational ground state of some nondegenerate
electronic state into the 2Π manifold. In the Condon approximation, only
the (000) 2Π3/2 and (000) 2Π1/2 zero-order levels then carry spectral intensity.
As is well known [23, 24, 16, 133], the RT coupling leads to a redistribution
of intensity, but only among levels with an even number of quanta in the
bending mode, re�ecting the second-order (quadratic in ρ) character of the
RT coupling. The relativistic vibronic coupling term dρe±iφ, on the other
hand, being of �rst order in ρ, transfers spectroscopic intensity to vibronic
levels with an odd number of quanta in the bending mode.

This phenomenon is illustrated in Fig. 3.3, for a resonant case with the
parameter values ζ/ω2 = −1, c/ω2 = 0.2, and d/ω2 = 0, 0.1, 0.2. The full and
dashed-dotted lines represent levels with µ = 1/2 and µ = 3/2, respectively.
Figure 3.3a reveals that the (020) µ 2Π1/2 level borrows intensity from the
(000) 2Π1/2 level via RT coupling (the intensities of the other vibronic levels
are too low to be visible in the �gure). Figures 3.3b and 3.3c illustrate an ex-
ample of strong mixing of the quasi-degenerate (000) 2Π1/2 and (010) µ 2Σ1/2
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Figure 3.3: Redistribution of the spectral intensity by the LRVC parameter
d. Solid and dashed-dotted lines represent energy levels with µ = 1/2 and
µ = 3/2 respectively.
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levels via LRVC. In such cases of quasi-degeneracy of nonrelativistic RT vi-
bronic levels, the intensity of levels with an odd number of quanta of the
bending mode (such as (010) µ 2Σ1/2) can become comparable to those with
an even number of quanta, see Fig. 3.3.

3.4 Applications of the Renner-Teller spin-orbit
vibronic-coupling model

In this section, we describe the relevance of the LRVC mechanism in di�erent
molecular systems, e.g., BS2, CS+

2 , OCS+, OBS, GeCH, FCN+, ClCN+, and
BrCN+. The details of ab initio calculations are presented in the following
subsection.

Ab initio calculation of the coupling parameters

The electronic basis states obtained by ab initio electronic-structure calcula-
tions are the nonrelativistic adiabatic states, which correspond to the diago-
nalization of the nonrelativistic �xed-nuclei electronic Hamiltonian,

Hes =


0 cρ2e2iφ 0 0

cρ2e−2iφ 0 0 0
0 0 0 cρ2e2iφ

0 0 cρ2e−2iφ 0

 . (3.33)

The unitary matrix S which diagonalizes Hes, i.e.,

S+HesS =


−cρ2 0 0 0

0 −cρ2 0 0
0 0 cρ2 0
0 0 0 cρ2

 (3.34)

is

S =
1√
2


eiφ −eiφ 0 0
e−iφ e−iφ 0 0
0 0 eiφ −eiφ

0 0 e−iφ e−iφ

 . (3.35)

The correspondingly transformed relativistic vibronic Hamiltonian reads

S+HSOS =


0 0 −i ζ

2
−idρe−iφ

0 0 −idρeiφ i ζ
2

i ζ
2

idρe−iφ 0 0

idρeiφ −i ζ
2

0 0

 . (3.36)
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The matrix (3.36) represents the matrix elements of the Breit-Pauli op-
erator with nonrelativistic adiabatic electronic states. The SO splitting is
directly obtained from the SO-matrix elements at the linear geometry (ρ =
0). The parameter d can be extracted from the slope of the corresponding
SO-matrix elements as a function of the bending coordinate.

BS2, CS
+
2 , OCS

+, OBS, and GeCH

The electronic-structure calculations have been carried out using the MOL-
PRO package [134]. The ground-state geometry of the system under consid-
eration is �rst optimized with the coupled-cluster method including single
and double excitations with perturbative triple excitations [CCSD(T)] [135],
employing the correlation-consistent polarized-valence-quadruple zeta (cc-
pVQZ) [136, 137] basis set. The nonrelativistic parameters ω2 and ε are
obtained from the bending force constants of the two components of the PE
surface of the degenerate Π state, using Eqs. (3.26) and (3.25), respectively.
The SO-matrix elements have been computed with CASSCF wave functions.
A state-averaged full-valence CASSCF calculation of the two components of
the 2Π state has been performed. These wave functions are then used to
calculate the matrix elements of the Breit-Pauli operator. These calculations
were performed for a few bent geometries and the parameter d was extracted
as described above.

XCN+ (X=F, Cl, and Br)

The XCN are closed-shell linear molecules in their ground electronic state
X̃ 1Σ with the following valence-shell electronic con�guration: 1σ2 2σ2 1π4

3σ2 2π4. Removal of an electron from the highest occupied π-type molecular
orbital gives rise to the ground electronic state of the corresponding cation,
i.e., the X̃ 2Π state.

We have employed the augmented correlation-consistent polarized valence
triple-zeta (aug-cc-pVTZ) basis set of Dunning [136, 137] for all atoms except
Br, which is described by RECP, where the core orbitals (i.e. 1s-3d, with
28 electrons) are described by a semilocal energy-adjusted pseudo potential
of energy-consistent variety [138]. The valence orbitals of Br are described
by optimized contracted s, p, d, and f type functions of augmented triple-
zeta quality [138]. Using this basis set, we have optimized the geometry
of the neutral molecules as well as their cations in their respective ground
states and have calculated the harmonic frequencies with DFT method using
Becke's three parameter hybrid functional with the LYP correlation func-
tional (B3LYP) [139]. The DFT calculations have been performed using the
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GAUSSIAN package [140]. In addition to the DFT calculations, we also have
performed CCSD(T) calculations [141] to determine the optimized geometries
of the neutral and the cationic species. The coupled-cluster calculations have
been performed with the MOLPRO program suite [134].

The averaged bending frequency (ω2), the RT coupling parameter c, the
SO splitting of the X̃ 2Π state, and the LRVC term d are obtained as de-
scribed earlier. The two X̃ 2Π bending PE curves have been obtained from
CCSD(T) [141] calculations at the ground-state reference geometry of the
stretching modes. The matrix elements of the Breit-Pauli SO operator with
nonrelativistic wave functions [142] have been computed, yielding the SO
splitting ζ as well as the LRVC parameter d. The nonrelativistic wave func-
tions have been obtained by performing a state-averaged (over the two com-
ponents of the X̃ 2Π state) full-valence complete-active-space self-consistent-
�eld (CASSCF) calculation [143, 144]. Here, all the inner valence electrons
are kept frozen, resulting in the correlation of 15 electrons in 12 orbitals, i.e.,
a (15, 12) CASSCF calculation. In the case of BrCN, the SO-matrix elements
are determined by employing the SO pseudo operator of Dolg [145] for the
Br atom, adapted to the above cited scalar RECP. The MOLPRO software
has been used for the SO calculations [134, 142].

The linear-VC constants of the stretching modes have been calculated
according to the expression

κi =

√
h̄

ωi

∑
j=1,3

Lij

(
∂V (Q)

∂Rj

)
0

, i = 1, 3. (3.37)

Here, the Rj are the two bond distances. The L matrix is obtained by the
simultaneous diagonalization of the F and the G matrices [146]. The G
matrix has been constructed from the molecular geometry parameters and
atomic masses [146], while the F matrix has been obtained from a force-�eld
calculation using the DFT/B3LYP method. The gradients ∂V/∂Rj have
been determined by a CCSD(T) calculation for the cations. The vertical
ionization potential (IP) of the X̃ 2Π state of the title molecules has been
calculated with the outer-valence Green's function (OVGF) method, [147,
148] using the cc-pVTZ basis set and the frozen-core approximation. The
OVGF calculation has been performed using the GAUSSIAN package [140].
In addition, a state-averaged (15, 12) CASSCF followed by a (15, 8) multi-
reference-con�guration-interaction (MRCI) [149, 150] calculation has been
performed at the equilibrium geometry of the ground state of the neutral
XCNmolecules. The vertical IP of the X̃ 2Π state of XCN+ has been obtained
from the di�erence of the MRCI energies of this state and the X̃ 1Σ state of
XCN, and is denoted by ∆MRCI.
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Table 3.1: Structural, vibrational, VC and SO-coupling parameters for BS2,
CS+

2 , OCS+, and OBS. Numbers in parentheses are the absolute values in
units of ω2.
Parameter BS2 CS+

2 OCS+ OBS
r1 /Å 1.6760 1.5647 1.1583 1.2142
r2 /Å −− −− 1.5690 1.7583
ω2 /cm−1 284.78 331.84 442.65 370.04
ε −0.2257 −0.1912 −0.1590 −0.1383
c /cm−1 32.56 (0.12) 32.02 (0.10) 35.42 (0.08) 26.72 (0.07)
ζ /cm−1 −394.90 (1.39) −417.40 (1.26) −347.55 (0.78) −345.04 (0.93)
d /cm−1 13.31 13.39 26.96 29.08

3.4.1 A comparative study of BS2, CS+
2 , OCS+, and

OBS

We consider relativistic VC in molecules with a second-row atom (S) : BS2,
CS+

2 , OCS+, OBS. All four systems possess a well isolated X̃ 2Π ground state.
The ab initio calculated vibrational, VC and SO-coupling parameters of the
four systems are given in Table 3.1.

In the case of BS2, the SO splitting of the X̃2Π state is calculated to be
-395 cm−1, which is larger than the bending frequency (285 cm−1). This
is accompanied by a relatively strong Renner coupling c/ω2 = 0.12. The
calculations predict a rather small value of d (13.3 cm−1). The di�erences
between the energies of the vibronic levels with and without inclusion of d
are given in Table 3.2.

In the case of BS2, we observe a very small e�ect of d on the energy levels
(less than 2 cm−1). This is the consequence of the nonresonant character of
BS2 (ζ/ω2 ' 1.4) and the rather small value of d (d/ζ < 0.03). The situation
is similar in CS+

2 , although ζ/ω2 is closer to unity than in BS2. In addition,
the Renner coupling is weaker in CS+

2 . However, this system still is too far
from ζ ∼ ω2 resonance to exhibit strong relativistic VC e�ects.

In OCS+, the bending frequency (443 cm−1) is larger than the SO splitting
(-348 cm−1). The Renner coupling is weaker than in BS2 and CS+

2 . The value
of d is 27 cm−1. The more favorable ζ/ω2 ratio of 0.78, weaker RT coupling,
and the larger value of d render relativistic VC e�ects more conspicuous
than in BS2 and CS+

2 (see Table 3.1 ). The di�erence in the energy levels is
sometimes as large as 20 cm−1. The relativistic VC e�ects are largest in OBS.
It has a favorable ζ/ω2 ratio (0.93), a weak Renner coupling (c/ω2 = 0.07),
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Table 3.2: Calculated X̃ 2Π vibronic energy levels (in cm−1). δ is the di�er-
ence in energy with and without inclusion of the LRVC.

(ν1ν2ν3) State BS2 CS+
2 OCS+ OBS

with d δ with d δ with d δ with d δ
(000) 2Π1/2 386.09 1.4 412.72 1.9 338.26 -6.6 323.45 -19.4
(010) µ 2Σ1/2 272.69 -1.4 320.27 -1.8 435.87 7.3 382.81 20.3
(010) 2∆5/2 280.03 -0.3 327.75 -0.2 437.62 -0.9 366.40 -1.2
(010) 2∆3/2 648.60 1.1 728.30 1.7 772.47 -5.7 687.30 -18.9
(010) κ 2Σ1/2 680.98 2.2 754.98 3.0 785.88 -15.6 685.69 -34.8
(020) µ 2Π3/2 543.02 -1.5 639.12 -1.8 860.40 5.9 742.23 19.3
(020) µ 2Π1/2 558.30 -2.2 649.70 -2.9 878.60 16.3 764.11 35.7
(020) 2Φ7/2 557.83 -0.5 653.58 -0.5 873.22 -1.8 731.60 -2.3
(020) 2Φ5/2 812.18 -1.5 956.88 -1.8 1202.76 -4.4 1049.25 -17.2
(020) κ 2Π1/2 821.11 -1.6 960.93 -2.3 1227.90 -20.3 1049.89 -32.3
(020) κ 2Π3/2 852.56 -2.5 986.54 -3.6 1233.51 -25.4 1052.21 -45.2

and a relatively large value of d (29 cm−1). The calculated vibronic levels of
OBS with and without inclusion of d are depicted in Fig. 3.4. It can be seen
that the levels are shifted by up to 30 cm−1 by the relativistic VC. Moreover,
a complete rearrangement of the energy levels take place.

It is worthwhile to point out some observations which are common to all
four systems. In all cases, we observe a very small change in the energy of the
(010) 2∆5/2 level upon the inclusion of d. A similar observation applies for
the (020) 2Φ7/2 level. Both levels are little a�ected because of the absence
of close-lying levels of the same symmetry. Another common observation
is the nearly symmetric splitting of the energy levels which are coupled by
the linear relativistic term, for example (010) µ 2Σ1/2 and (000) 2Π1/2. This
symmetric splitting is also observed for higher levels (see Fig. 3.4).

3.4.2 Calculation of the vibronic energy levels of GeCH

GeCH is a linear radical with an orbitally degenerate X̃ 2Π electronic ground
state. Apart from the RT e�ect, there are other e�ects which complicate
the vibronic structure of the X̃ 2Π state. The SO splitting of the X̃ 2Π
state is signi�cant, being of the order of the bending frequency. A Fermi
resonance between the bending mode and the Ge-C stretching mode and
possible vibronic interactions with the close-lying electronically excited Ã 2Σ
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Figure 3.4: Comparison of vibronic energy levels of the X̃ 2Π state of OBS,
calculated with and without inclusion of LRVC, respectively.
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state are further perturbations [151].
The geometry of GeCH in the electronic ground state has been optimized

at the CCSD(T)/cc-pVQZ level. GeCH is found to be a linear molecule
with r0(HC)=1.079 Å, r0(CGe)=1.769 Å, in good agreement with the exper-
imental values 1.067 Å and 1.776 Å [151], respectively. These results agree
with the results obtained by other authors [152] with the same basis set and
method. The bending vibrational frequencies associated with the 2A′ and 2A′′

components of the X̃ 2Π state are found to be 476.6 cm−1 and 523.7 cm−1

respectively. The averaged harmonic bending frequency (ω2) is obtained as
500.7 cm−1, in good agreement with Ref. [152]. The RT parameter ε, de�ned
in Eq. (3.25), is obtained as −0.0940, which compares well with the value of
−0.1046 reported in Ref. [152]. The negative sign of ε re�ects the fact that
the 2A′ energy lies below the 2A′′ energy.

The relativistic parameters were determined with the procedure described
in Chapter 3.4. The SO splitting is found to be −325 cm−1, in good agree-
ment with the spectroscopically determined value of −334.6 cm−1 [151]. The
parameter d is calculated as 41.06 cm−1, which is more than 10% of the SO
splitting. The calculated parameters are given in Table 3.3.

Although we have employed elaborate electronic-structure methods and
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Table 3.3: Vibrational, VC and SO-coupling parameters for the X̃ 2Π state
of GeCH. ω2, ζ, d are given in cm−1, ε is dimensionless.
Parameter Expt. Calc. �tted

ω2 500.7a 435.6a

500b 434.8c

ε −0.0940a −0.1090a

−0.1046b −0.1135c

ζ −334.6d −325.0a −348.76a

−383.8c

d 41.06a 40.48a

a this work.
b Ref. [152].
c Ref. [39].
d Ref. [151].

an extended basis set in the ab initio electronic structure calculations, one
cannot expect that the obtained vibronic and SO parameters are of the spec-
troscopic accuracy. We therefore have performed an independent determi-
nation of the parameters by a least-squares �t of the energy levels of the
Hamiltonian (3.1) to the observed energy levels [39]. The �tted parameters
are also given in Table 3.3. The �tted bending frequency (435.6 cm−1) is
lower than the ab initio calculated value (500.7 cm−1). The �t of Ref. [39]
has given a similar value of bending frequency (434.8 cm−1). The �tted value
of ε (-0.1090) is in good agreement with the �tted value (-0.1135) of Ref. [39].

The �tted and ab initio calculated values for ε are in satisfactory agree-
ment with each other. For the SO splitting, the present �tting yields -348.76
cm−1, which is quite close to the ab initio calculated value (-325 cm−1) and
the observed (-334.6 cm−1) splitting of the (000) 2Π3/2 and (000) 2Π1/2 lev-
els [151]. In Ref. [39], anharmonic as well as Fermi resonance e�ects were
included in the �t, resulting in a somewhat larger value of the SO splitting.
The parameter d is obtained as 40.48 cm−1 from the �t of the experimental
spectrum, which is in very good agreement with its ab initio calculated value
(41.06 cm−1).

The X̃ 2Π vibronic energy levels obtained with the �tted parameters are
compared in Table 3.4 with the observed energy levels [39]. We have re-
stricted our analysis to the lowest few bending excitations, because at higher
excitation levels anharmonicity e�ects, which are not included in our vibronic
model, may become important. The overall quality of the �t is determined
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Table 3.4: The X̃ 2Π vibronic energy levels of GeCH. The di�erences between
the calculated and experimentally observed values are given in cm−1.

GeCH
(ν1ν2ν3) State Obs. Obs. - Calc.

with d without d
(000) 2Π1/2 334.9 1.8 -12.6
(010) 2∆5/2 440.0 6.1 4.1
(010) µ 2Σ1/2 444.5 -1.0 15.1
(010) κ 2Σ1/2 755.6 -5.5 -34.1
(010) 2∆3/2 765.1 -1.1 -13.9
(020) µ 2Π3/2 869.7 -1.4 12.5
(020) µ 2Π1/2 889.8 -1.6 28.8
(020) κ 2Π1/2 1193.0 -4.8 -34.5

from the square root of the mean squared deviation of the calculated energy
levels from the observed energy levels, which is found to be 3.5 cm−1. To
reveal the e�ect of LRVC, we have included in Table 3.4 the deviations of
the calculated from the observed energy levels obtained with and without
inclusion of d. As can be seen, most of the calculated vibronic levels are
in good agreement with the observed values. In most cases, the di�erence is
below 2 cm−1 which is well within the experimental error. It can be seen that
the levels obtained with the inclusion of d match the observed levels much
better than for d = 0. Several levels are shifted measurably by the e�ect of
the LRVC. The (000) 2Π1/2 and (010) µ 2Σ1/2 levels, for example, exhibit
signi�cant level repulsion. A similar level repulsion can be observed for the
(010) κ 2Σ1/2 and (020) µ 2Π1/2 levels. The ordering of the (010) 2∆3/2 and
(010) κ 2Σ1/2 levels is interchanged by the inclusion of d (see Fig. 3.5).

The X̃ 2Π state of GeCH clearly represents a resonant case: ζ/ω2 =
−0.88. The Renner coupling is relatively weak. As discussed earlier, these
circumstances are favorable for the observation of the relativistic linear-VC
e�ects.

In studies of the vibronic spectrum of the X̃ 2Π state of NCS, Northrup
and Sears [37] have analyzed the repulsion of certain levels, e.g. (010) 2∆3/2

and (020) µ 2Π3/2 in terms of a mixed second-order perturbation treatment,
considering the SO coupling within the 2Π state as well as nonrelativistic VC
of the 2Π state with a distant 2Σ state. Since the Σ − Π coupling is of �rst
order in ρ and the SO coupling is of zeroth order in ρ, the combined e�ect
of both perturbations is of �rst order in ρ [37]. The analysis of Northrup
and Sears thus is equivalent to a perturbative treatment of the LRVC term
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Figure 3.5: Comparison of calculated and observed energy levels for GeCH.
Solid, dashed-dotted, and dashed lines represent energy levels with µ =
1/2, 3/2, and 5/2, respectively.
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dρe±iφ. It should be noted that the perturbative approach of Ref. [37] is
bound to break down when the energy gap of the 2Σ and 2Π states is of the
order of (or smaller than) the SO splitting of the 2Π state.

3.4.3 Calculation of the vibronic structure of the X̃ 2Π
photoelectron spectra of XCN, X= F, Cl, and Br

FCN

The FC and CN bond distances in the ground electronic state of FCN have
been experimentally determined as 1.264 and 1.157 Å, respectively [153].
The DFT calculation reproduces the experimental geometry satisfactorily,
see Table 3.5, while the CCSD(T) method seems to over-estimate the bond
lengths. The geometry of the X̃ 2Π state of FCN+ is calculated to be linear
with decreased FC and increased CN bond distances, re�ecting the bonding
and anti-bonding character of the 2π orbital with respect to the FC and
CN bonds, respectively. The calculated vibrational frequencies of FCN and
FCN+ are compared with experimental data in Table 3.5. Ionization of FCN
leads to a substantial reduction of ω1, whereas the corresponding changes
in ω2 and ω3 are less pronounced, see Table 3.5. The dimensionless RT
coupling parameter is calculated as −0.2485, see Table 3.6, corresponding to
a rather weak RT e�ect. The calculated SO splitting is 91 cm−1. The LRVC
parameter is determined as 6 cm−1, about a �fteenth of the SO splitting,
see Table 3.6. The dimensionless VC parameters of the stretching modes
are (κ1/ω1) = −1.62 and (κ3/ω3) = 0.30. The negative value for (κ/ω) for
the ν1 mode (CN stretch) indicates a stretching of CN bond distance upon
ionization. The vertical X̃ 2Π IP of FCN obtained by the OVGF and ∆MRCI
calculations are compared with the experimental estimates in Table 3.7.

ClCN

The experimentally observed bond lengths of ClCN, R0(ClC) = 1.629 Å and
R0(CN) = 1.160 Å [47], are well produced by the ab initio calculations, see
Table 3.5. The vibrational frequencies obtained with DFT compare well with
their experimental values, see Table 3.5. In the X̃ 2Π state of ClCN+, the
ClC bond distance is shorter and the CN bond distance is longer than in
the neutral molecule, which re�ects the bonding and antibonding characters
of the 2π orbital with respect to the CN and ClC bonds, respectively. The
calculated vibrational frequencies agree well with the experimental data, see
Table 3.5. The dimensionless RT parameter is calculated as −0.2015. The
calculated SO splitting is 269 cm−1, in good agreement with the observed
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Table 3.5: Bond distances (in Å) and vibrational frequencies (in cm−1) of
the ground state of neutral and cationic XCN.
Parameter FCN ClCN BrCN

X̃ 1Σ X̃ 2Π X̃ 1Σ X̃ 2Π X̃ 1Σ X̃ 2Π
R0(XC) 1.2663a 1.2029a 1.6368a 1.5698a 1.7899a 1.7304a

1.2715b 1.2299b 1.6430b 1.5672b 1.7966b 1.7218b

1.264c 1.629d 1.555e 1.789f 1.745g

1.736h

R0(CN) 1.1504a 1.2168a 1.1528a 1.1994a 1.1531a 1.1868a

1.1628b 1.2058b 1.1647b 1.2155b 1.1662b 1.2039b

1.157c 1.160d 1.207e 1.158f 1.195g

1.2006h

ω1 2408a 2183a 2308a 1987.58a 2289a 1989a

1925h

2318i 2201j 1916j 2187j 1906j

1915k 2198l 1940m

ω2 484a 426.49a 403a 366a 365a 325a

451i 411.4b 341.22b 368j 290.12b

280h

397j 341l 288j

ω3 1093a 1162.16a 743a 820.93a 585a 640a

640h

1076i 729j 823j 580j 650j

741d 827k 587l 640m

a DFT/B3LYP.
b CCSD(T).
c Ref. [153].
d Ref. [47].
e Ref. [48].
f Ref. [154].
g Ref. [155].
h Ref. [156].
i Ref. [157] and [158].
j Ref. [44].
k Ref. [46].
l Ref. [159].
m Ref. [51].
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Table 3.6: VC parameters of the X̃ 2Π state of XCN+. ζ and d are in cm−1;
the other parameters are dimensionless.
Parameter FCN+ ClCN+ BrCN+

ε −0.2145a −0.1776a −0.1853a

−0.2485b −0.2015b −0.2328b

−0.1989c

−0.1850d

ζ 91 269.2 1758
1475c

277e 1477e

275f 1480h

276g 1490i

1420j

d 6.0 22.3 22.0

(κ1/ω1) −1.62 −1.24 −0.93

(κ3/ω3) 0.30 0.89 0.83

a DFT/B3LYP.
b CCSD(T).
c Ref. [156].
d Ref. [160].
e Ref. [44].
f Ref. [45].
g Ref. [46].
h Ref. [49].
i Ref. [51].
j Ref. [52].
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Table 3.7: Vertical ionization potential of the X̃ 2Π state of XCN+ (in eV).
Method FCN+ ClCN+ BrCN+

∆MRCI 13.59 12.47 12.02
OVGF 13.51 12.42 11.90
Expt.a 13.34 12.37 12.08

a Ref. [50].

splitting (277 cm−1)[44]. The LRVC parameter d is calculated as 22 cm−1,
which is about one tenth of the SO splitting. The dimensionless coupling
parameters (κi/ωi) of the stretching modes are -1.24 and 0.89 for ν1 and ν3,
respectively. The calculated and observed vertical IP of the X̃ 2Π state of
ClCN+ are given in Table 3.7.

BrCN

The optimized geometry as well as the vibrational frequencies obtained with
the DFT method are given in Table 3.5. The agreement with experimental
geometries in both neutral and cation of BrCN is excellent. Upon ionization,
the BrC bond distance decreases, whereas CN bond distance increases, see
Table 3.5. The averaged bending frequency and the dimensionless RT pa-
rameter of the X̃ 2Π state of BrCN+ are determined as 290 cm−1 and −0.2328
respectively. The calculated SO splitting is 1758 cm−1, which is larger than
the experimentally determined values [44, 49, 51, 52], see Table 3.6. The
recent theoretical work by Biczysko and Tarroni [156] reveals the origin of
this discrepancy. Their analysis shows that the SO splitting decreases with
increasing CN stretching coordinate and increases with the BrC coordinate.
As a result, the e�ective SO splitting of the X̃ 2Π state of BrCN+ is smaller
than the calculated value at the equilibrium geometry of neutral BrCN. The
LRVC parameter is determined as 22 cm−1, which is smaller than the SO
splitting by two orders of magnitude. We have also performed a CPP calcu-
lation [138] for Br to determine the SO-matrix elements. The SO splitting of
this calculation is larger by 20 cm−1, while the e�ect on the LRVC parame-
ter is negligible. The dimensionless linear-VC parameters (κ/ω) of the two
stretching modes ν1 and ν3 are -0.93 and 0.83, respectively, see Table 3.6.
The calculated vertical IP of the X̃ 2Π state are in good agreement with the
experimental estimates, see Table 3.7.
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Discussion of the photoelectron spectra

The vibronic spectra for bending and stretching modes are calculated sep-
arately and the �nal spectrum is obtained as a convolution of the two, as
described in Chapter 2.2. The theoretically calculated stick spectrum is �-
nally convoluted with a normalized Lorentzian of �nite width to account for
rotational broadening and the �nite resolution of the experimental photoelec-
tron spectra. Since we are concerned with relativistic VC, which sometimes
has very small e�ects on the line positions and the spectral intensities, a
rather small value has been chosen for the FWHM (1 meV ∼ 8 cm−1).

In the following �gures the stretching progressions in the photoelectron
spectra are indicated by the dotted lines, whereas the peaks corresponding
to the bending vibration and their combination bands with stretching modes
are labeled by (ν1ν1ν3). Levels with µ = 1/2 are distinguished from µ = 3/2
by an overbar.

FCN

The calculated X̃ 2Π photoelectron spectrum of FCN is shown in Fig. 3.6.
Most of the peaks appear as closely spaced doublets, re�ecting the small SO
splitting. In the case of FCN, the SO splitting is 6 times smaller than the
bending frequency. The spectrum is dominated by a long progression in the
mode ν1, while the mode ν3 forms a very short progression. The tiny peak
assigned as (020) re�ects the nonrelativistic RT coupling. There are some
peaks in the spectrum which have very small intensities and hence are not
labeled. The calculated spectrum in Fig. 3.6 is in very good agreement with
the experimental spectrum, see Refs. [49, 50].

ClCN

The calculated photoelectron spectrum of the X̃ 2Π state of ClCN+ is shown
in Fig. 3.7a. The spectrum is dominated by a long progression in the mode
ν1 and also to some extent by a progression in the mode ν3. The peaks
appear as doublets re�ecting the SO splitting of about 270 cm−1. In ad-
dition to the peaks from the stretching modes, the spectrum also exhibits
peaks corresponding to the bending mode. The peaks with even quanta of
bending excitation, such as (020), arise from the nonrelativistic quadratic RT
coupling. In addition to these, the calculated spectrum also shows peaks cor-
responding to excitation of odd quanta of the bending mode, e.g., (010) and
its combination bands, see Fig. 3.7a. These lines arise from the LRVC mech-
anism. As has been discussed in Chapter 3.3, the LRVC mechanism plays an
important role in the spectroscopy of quasi-linear triatomic molecule when
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Figure 3.6: Calculated X̃ 2Π photoelectron spectrum of FCN+. The stretch-
ing progressions are indicated by the dotted lines. The bending levels along
with their combination bands are labeled as (ν1ν2ν3). Levels with an overbar
correspond to µ=1/2.
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the SO splitting (ζ) is of the same order of magnitude as the bending fre-
quency (ω2). This VC mechanism has been shown to reorder vibronic energy
levels as well as to redistribute spectral intensities among various vibronic
levels, see Chapter 3.3. It is this VC mechanism that enables vibronic level
with odd quanta of bending excitation to carry intensity in the X̃ 2Π pho-
toelectron spectrum of ClCN+. Here, the SO splitting (270 cm−1) is of the
same order of magnitude as the bending frequency (341 cm−1) and hence the
(000) and (010) levels lie close to each other. These two levels interact with
each other through the coupling term dρe±iφ. This interaction leads to a
transfer of intensity from the intensity carrying (000) to the dark (010) level.
This transfer of intensity is re�ected by the lower intensity of the (000) line
compared to that of the (000) line, see Fig. 3.7a. To reveal explicitly the
e�ects of the LRVC mechanism, we show in Fig. 3.7b the spectrum obtained
for d = 0. The excitation of odd quanta of the bending mode is absent in
this case. The line positions and relative spectral intensities of the X̃ 2Π
photoelectron spectrum of ClCN with and without inclusion of LRVC term
are given in tabular form in Table 3.8.

The experimentally observed stretching progression and the relative in-
tensities of the vibronic levels in the photoelectron spectrum of ClCN are
correctly reproduced by the calculated photoelectron spectrum. A high-
resolution experimental recording of the photoelectron spectrum of the X̃ 2Π
state of ClCN+ in which the close-lying vibronic levels are resolved is not yet
available for comparison with our calculated spectrum. However, the low res-
olution spectrum in Refs. [48, 49] exhibits some unassigned shoulders at the
positions where the present calculation predicts intensity from the excitation
of odd quanta of the bending mode.

BrCN

The calculated photoelectron spectrum of the X̃ 2Π state of BrCN+ is shown
in Fig. 3.8. The progression in mode ν1 (CN-stretch) is considerably shorter
and that in mode ν3 (BrC-stretch) is more pronounced than in FCN+ and
ClCN+, see Figs. 3.6 and 3.7, respectively. In BrCN+, the two stretching
modes exhibit progressions of the equal length. The doublet structure of the
vibronic peaks seen in FCN+ and ClCN+ is not present here because of the
large SO splitting (∼ 1758 cm−1).

The stretching progressions as well as their relative intensities of the ex-
perimental photoelectron spectrum of Ref. [52] are well produced in our calcu-
lated spectrum. However, some bending vibronic levels have been observed in
the experimental photoelectron spectrum which are absent in the calculated
spectrum. The reason for the absence of bending excitations in the calculated
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Figure 3.7: Calculated X̃ 2Π photoelectron spectrum of ClCN+ (a) with
LRVC and (b) without LRVC. The stretching progressions are indicated by
the dotted lines. The bending levels along with their combination bands are
labeled as (ν1ν2ν3). Levels with an overbar correspond to µ=1/2.
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Table 3.8: Line positions (in eV) and relative spectral intensities of the pho-
toelectron spectrum of the X̃ 2Π state of ClCN+ with and without inclusion
of the LRVC term.
With LRVC (Fig. 3.7a) Without LRVC (Fig. 3.7b)

Label Energy Intensity Label Energy Intensity
(000) 12.470 100.00 (000) 12.470 100.00
(000) 12.502 89.05 (000) 12.503 98.74
(010) 12.511 9.69 (020) 12.551 1.49
(020) 12.545 0.80 (001) 12.562 39.60
(001) 12.562 39.61 (001) 12.595 39.11
(001) 12.594 35.27 (201) 12.643 0.59
(011) 12.603 3.84 (002) 12.654 7.84
(021) 12.645 0.33 (002) 12.687 7.74
(002) 12.654 7.84 (100) 12.756 76.88
(002) 12.686 6.98 (100) 12.789 75.91
(100) 12.756 76.88 (120) 12.837 1.15
(100) 12.788 68.46 (101) 12.848 30.45
(110) 12.797 7.45 (101) 12.881 30.06
(101) 12.848 30.45 (102) 12.940 6.03
(101) 12.880 27.11 (102) 12.973 5.95
(111) 12.889 2.95 (200) 13.042 29.55
(102) 12.940 6.03 (200) 13.075 29.18
(102) 12.973 5.37 (201) 13.134 11.70
(200) 13.042 29.55 (201) 13.167 11.56
(200) 13.074 26.32 (202) 13.227 2.32
(210) 13.083 2.86 (202) 13.260 2.29
(201) 13.134 11.70 (300) 13.329 7.57
(201) 13.167 10.42 (300) 13.362 7.48
(202) 13.227 2.32 (301) 13.421 3.00
(202) 13.259 2.06 (301) 13.454 2.96
(300) 13.329 7.57
(300) 13.361 6.74
(301) 13.421 3.00
(301) 13.453 2.67
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Figure 3.8: Calculated X̃ 2Π photoelectron spectrum of BrCN+. The stretch-
ing progressions are indicated by the dotted lines. Levels with an overbar
correspond to µ=1/2.
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spectrum is the large value of SO splitting, which completely quenches the
nonrelativistic RT coupling. Moreover, since ζ � ω2, the LRVC mechanism
is not e�ective in BrCN+. This further justi�es the neglect of the RT e�ect
in the analysis of low-resolution spectra [42, 44, 45].

It is likely that the origin of intensity of bending vibronic levels in the
X̃ 2Π photoelectron spectrum of BrCN is due to Σ-Π coupling rather than
RT coupling. While the strong SO splitting of the X̃ 2Π state quenches the
RT e�ect, the quenching e�ect is less pronounced for Σ-Π coupling, since the
bending vibrational angular momentum is coupled with the orbital angular
momentum associated with the X̃ 2Π and Ã 2Σ+ states. The analysis of Σ-Π
coupling with inclusion of SO-coupling e�ects will be the subject of future
work.



Chapter 4

Σ− Π and spin-orbit

vibronic-coupling e�ects

4.1 Vibronic Hamiltonian in diabatic basis
Herein, we formulate the Hamiltonian of a single unpaired electron in a quasi-
linear molecule. We focus on the situation where a degenerate 2Π electronic
state and a nondegenerate 2Σ state of a linear triatomic molecule are closely
spaced and coupled by the degenerate bending mode.

The vibronic Hamiltonian of this system is written as (h̄ = 1),
H = TN +Hel

= TN +Hes +HSO. (4.1)
The nuclear kinetic energy TN , electrostatic Hes, and the SO HSO operators
and their symmetry properties are described in Chapter 3.1 Eqs. (3.2)-(3.9).

Lets de�ne |ψ±〉 and |ψ0〉 as diabatic [95, 96, 97] electronic basis set
associated with the two components of the degenerate 2Π electronic state
(with electronic orbital angular momentum quantum numbers Λ = ±1) and
the nondegenerate 2Σ state (Λ = 0), respectively. The coupling of the spin
motion with the orbital motion of the electron gives rise to six SO coupled
states. Hence, a complete diabatic electronic basis set is given by |ψ±α〉,
|ψ±β〉, |ψ0α〉, and |ψ0β〉, where the notation |ψ±α〉 stands for |ψ±〉|α〉. Here α
and β represent the two spin eigenstates of the single unpaired electron.

The TR operator T̂ has the following e�ect on the diabatic electronic
basis functions:

T̂ |ψ±α〉 = |ψ∓β〉 , T̂ |ψ0α〉 = |ψ0β〉,
T̂ |ψ±β〉 = −|ψ∓α〉 , T̂ |ψ0β〉 = −|ψ0α〉. (4.2)

57
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Using the above de�ned six diabatic spin-electronic basis functions, the
electronic Hamiltonian can be written as a 6× 6 vibronic matrix. The deter-
mination of the vibronic matrix elements can be simpli�ed by using the TR
symmetry, Eqs. (3.7) and (4.2), and the Hermitian property of Hel.

The electronic Hamiltonian in the diabatic electronic basis can be written
as follows

Hel =

ψ+α ψ0α ψ−α ψ+β ψ0β ψ−β

ψ+α H++
αα H+0

αα H+−
αα H++

αβ H+0
αβ H+−

αβ

ψ0α H0+
αα H00

αα H0−
αα H0+

αβ H00
αβ H0−

αβ

ψ−α H−+
αα H−0

αα H−−
αα H−+

αβ H−0
αβ H−−

αβ

ψ+β H++
βα H+0

βα H+−
βα H++

ββ H+0
ββ H+−

ββ

ψ0β H0+
βα H00

βα H0−
βα H0+

ββ H00
ββ H0−

ββ

ψ−β H−+
βα H−0

βα H−−
βα H−+

ββ H−0
ββ H−−

ββ

. (4.3)

Diagonal elements:
Following the procedure described for the RT-SO system in Eq. (3.13), we
can write

H++
αα = −∆

2
+
ζ

2︸ ︷︷ ︸
EΠ,3/2

+
1

2
ω2ρ

2 +
∑
i=1,3

(
κΠ

i Qi +
1

2
ωiQ

2
i

)
, (4.4)

where H++
αα (es)

(0)
= −∆

2
.

Similarly,

H−−
αα = −∆

2
− ζ

2︸ ︷︷ ︸
EΠ,1/2

+
1

2
ω2ρ

2 +
∑
i=1,3

(
κΠ

i Qi +
1

2
ωiQ

2
i

)
, (4.5)

H00
αα =

∆

2︸︷︷︸
EΣ,1/2

+
1

2
ω2ρ

2 +
∑
i=1,3

(
κΣ

i Qi +
1

2
ωiQ

2
i

)
. (4.6)

Using the TR symmetry relations of Eqs. (3.7) and (4.2), we have
H++

αα = H−−
ββ ; H−−

αα = H++
ββ ; H00

αα = H00
ββ. (4.7)

O�-diagonal elements:
Using the TR symmetry, Eqs. (3.7) and (4.2), we have

H+−
αβ = H−+

αβ = H00
αβ = 0. (4.8)
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We de�ne
H+0

αα = (H−0
ββ )∗ = H0−

ββ = (H0+
αα )∗ =

H0−
αα = (H+0

ββ )∗ = H+0
ββ = (H−0

αα )∗ = L (4.9)
H+−

αα = (H−+
ββ )∗ = H+−

ββ = (H−+
αα )∗ = C (4.10)

H++
αβ = −(H−−

βα )∗ = −H−−
αβ = (H++

βα )∗ = D (4.11)
H0+

αβ = −(H0−
βα )∗ = −H−0

αβ = (H+0
βα )∗ = G (4.12)

H+0
αβ = −(H−0

βα )∗ = −H0−
αβ = (H0+

βα )∗ = H. (4.13)
Using the above de�nitions, Eq. (4.3) can be written as

Hel =

ψ+α ψ0α ψ−α ψ+β ψ0β ψ−β

ψ+α EΠ,3/2 L C D H 0
ψ0α EΣ,1/2 L G 0 −H
ψ−α EΠ,1/2 0 −G −D
ψ+β EΠ,1/2 L C
ψ0β EΣ,1/2 L
ψ−β EΠ,3/2

. (4.14)

The electrostatic part of the electronic Hamiltonian Hes contributes to
matrix elements with the basis functions involving identical spin eigenstates.
Hence the matrix elements L and C will have contributions from the electro-
static Hamiltonian. The contribution of HSO to the matrix elements of the
electronic Hamiltonian is determined in the following way,

LSO = 〈ψ+α|HSO|ψ0α〉 =
1

2
〈ψ+|Az|ψ0〉 = 0 (4.15)

CSO = 〈ψ+α|HSO|ψ−α〉 =
1

2
〈ψ+|Az|ψ−〉 = 0 (4.16)

DSO = 〈ψ+α|HSO|ψ+β〉 =
1

2
〈ψ+|Ax − iAy|ψ+〉 6= 0 (4.17)

GSO = 〈ψ0α|HSO|ψ+β〉 =
1

2
〈ψ0|Ax − iAy|ψ+〉 6= 0 (4.18)

HSO = 〈ψ0α|HSO|ψ−β〉 =
1

2
〈ψ0|Ax − iAy|ψ−〉 6= 0. (4.19)

The matrix elements of the electronic Hamiltonian are expanded in a Tay-
lor series up to second order in the degenerate bending mode (Q±). The terms
with appropriate symmetry with respect to the symmetry operation Jz(ε) on
the corresponding electronic matrix elements survive. Using Eq. (3.10), it is
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found that the matrix element G is of zeroth-order in the expansion; L and
D are of �rst order; while C and H are of second-order.

By using the abbreviations
G(0) = g(

∂L
∂Q+

)
0

= λ

(
∂D
∂Q+

)
0

= d(
∂C

∂Q+∂Q+

)
0

= c

(
∂H

∂Q+∂Q+

)
0

= h, (4.20)

we obtain the 6× 6 spin-vibronic Hamiltonian as
H = TN16 +Hb +Ht (4.21)

where

Hb =


EΠ,3/2 λρeiφ cρ2e2iφ dρeiφ hρ2e2iφ 0
λρe−iφ EΣ,1/2 λρeiφ g 0 −hρ2e2iφ

cρ2e−2iφ λρe−iφ EΠ,1/2 0 −g −dρeiφ

dρe−iφ g 0 EΠ,1/2 λρeiφ cρ2e2iφ

hρ2e−2iφ 0 −g λρe−iφ EΣ,1/2 λρeiφ

0 −hρ2e−2iφ −dρe−iφ cρ2e−2iφ λρe−iφ EΠ,3/2

 ,

(4.22)
and

Ht =
∑
i=1,3


κΠ

i

κΣ
i

κΠ
i

κΠ
i

κΣ
i

κΠ
i

Qi. (4.23)

Here EΠ,3/2, EΠ,1/2, and EΣ,1/2 are the electronic energies at the reference
geometry (ρ = 0). To simplify the notation, we introduce the Σ− Π energy
gap ∆ and the SO splitting ζ as follows

∆ = EΠ − EΣ, (4.24)
ζ = EΠ,3/2 − EΠ,1/2. (4.25)

Here EΠ and EΣ are the electrostatic energies at the reference geometry, while
EΠ,1/2 and EΠ,3/2 are the reference energies with inclusion of SO coupling.
c is the well-known nonrelativistic quadratic RT coupling constant [17, 18,
19, 20], λ is the linear Σ − Π coupling constant [57], while g and h are
purely relativistic Σ − Π coupling constants of zeroth and second order in
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bending coordinate, respectively. The parameter d is the relativistic linear
RT coupling constant introduced in Chapter 3. The zeros appearing along
the cross diagonal are a consequence of the TR symmetry. The two 3 × 3
diagonal blocks of the vibronic Hamiltonian (4.22) have the same form as the
nonrelativistic Σ−Π Hamiltonian (ζ=0) [57]. The o�-diagonal 3×3 blocks of
the vibronic Hamiltonian (4.22) are, necessarily, of purely relativistic origin.

Ht is the Hamiltonian of the two stretching modes with dimensionless
normal coordinates Q1 and Q3. The κi's for the 2Σ and 2Π states are the
linear electron-vibrational coupling constants [41, 40] which are given by the
�rst derivatives of the corresponding PE terms with respect to the respective
dimensionless normal coordinates.

For linear geometry (ρ = 0), all o�-diagonal elements of the Hamiltonian
matrix (4.22) vanish, with the exception of the zeroth-order o�-diagonal cou-
pling SO-matrix element g. This special case of the Σ− Π SO Hamiltonian
has been considered in Ref. [161]. It has been shown that the 6 × 6 matrix
can be block-diagonalized in this case to two 3 × 3 matrices by a constant
(ρ independent) unitary transformation. It should be realized, however, that
this transformation mixes the 2Σ and 2Π diabatic states. The transformed
basis states thus are no longer diabatic electronic states, if, for example, a
Σ − Π crossing occurs as a function of the stretching coordinates. In the
general case (ρ 6= 0) the Hamiltonian matrix (4.22) cannot be decoupled into
smaller submatrices.

Although the adiabatic approximation fails to describe the vibronic en-
ergy levels of nearly degenerate electronic states, the adiabatic PE surfaces
are nevertheless very helpful for the qualitative interpretation of the vibronic
spectra. The adiabatic PE surfaces are obtained by diagonalizing H − TN

at a �xed nuclear geometry. The derivation of analytic expressions for the
eigenvalues of the 6× 6 matrix is unfeasible even with the help of symbolic-
mathematical tools. The adiabatic PE surfaces therefore have been obtained
by numerical diagonalization of the 6× 6 matrix.

4.2 Generic aspects of Σ−Π spin-orbit vibronic-
coupling terms

In this section, we analyze the in�uence of the Σ−Π VC and SO coupling on
the energy levels and the spectral intensity distribution for the photoinduced
transition from an unperturbed initial state into the vibronically coupled
2Σ and 2Π �nal states. Since under Condon approximation the vibronic
energy levels corresponding to µ = 1/2 and 3/2 can only carry intensity,
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the vibronic spectra are calculated only for µ = 1/2 and 3/2 as described
in Chapter 2.2. While µ = 3/2 levels gain intensity only from the 2Π3/2

state, µ = 1/2 levels gain intensity from both the 2Σ1/2 and 2Π1/2 states
(we assume equal oscillator strengths of all three states). For µ = 3/2,
the square of the eigenvector element corresponding to the |2Π3/2〉|00〉 basis
state gives the intensity. For µ = 1/2, on the other hand, two eigenvector
components, corresponding to the |2Π1/2〉|00〉 and |2Σ1/2〉|00〉 basis states,
may give intensity.

In this study we have suppressed the totally symmetric stretching modes
in the Hamiltonian (4.1). The stretching modes generally �tune� the energy
gap of the vibronically coupled 2Σ and 2Π states and are, therefore, not
separable from the bending motion in the Σ−Π VC problem [41]. Since the
aim of this section is to understand the generic e�ects of Σ−Π VC as well as
SO coupling rather than to calculate spectra of speci�c molecular systems,
the omission of the stretching modes is appropriate for simplicity and clarity.
For brevity, we consider only the case where the 2Σ state is higher in energy
than the 2Π state. The 6 × 6 Σ − Π vibronic Hamiltonian contains several
VC terms. We, however, will limit ourselves to the investigation of a few
selected and particularly interesting cases.

The e�ect of nonrelativistic RT coupling (parameter c) and LRVC (pa-
rameter d) within a 2Π state is described in Chapter 3. Therefore, we do not
consider these coupling mechanisms in the present study. The coupling term
h is purely relativistic and quadratic in the bending distortion and hence will
be ignored in the following discussion. It should be kept in mind that all cou-
pling parameters, in particular ∆ and ζ, may be functions of the stretching
modes, which is not taken into account here.

4.2.1 Variation of the Σ− Π coupling strength

The nonrelativistic Σ − Π VC mechanism has been analyzed in detail in
Ref. [57]. For weak SO coupling, it is straightforward to include the SO
e�ects by perturbation theory. Hence we shall focus here on the cases where
the SO splitting (ζ) of the 2Π state is relatively large, being comparable to
the Σ− Π energy gap (∆).

Case I

Here we discuss a system with ∆/ω2 = 5.0 and ζ/ω2 = -2.0. This represents
a typical case of a relatively large Σ − Π gap and moderate SO splitting of
a 2Π state, which can be found in many linear molecules with moderately
heavy atoms. Figure 4.1(a-c) shows the adiabatic PE curves of this system
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Figure 4.1: Adiabatic PE curves of the 2Π3/2 (solid), 2Π1/2 (dashed), and
2Σ1/2 (dotted) states for ∆/ω2 = 5.0, ζ/ω2 = -2.0, and λ/ω2 = 0 (a), 2.0 (b),
and 4.0 (c).
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for λ/ω2 = 0, 2.0, and 4.0, respectively. All other coupling parameters in
Eq. (4.22) are set to zero. The solid, dashed, and dotted lines correspond to
the 2Π3/2, 2Π1/2, and 2Σ1/2 states, respectively. For λ = 0, the adiabatic PE
curves are parabolae which are separated by the zeroth-order splittings (∆
and ζ). With increasing λ/ω2 the 2Π3/2 PE functions develop a double-
minimum shape, while the PE function of the 2Π1/2 state becomes very �at
in the vicinity of ρ = 0.

The corresponding vibronic spectra are shown in Fig. 4.2(a-c). For λ/ω2

= 0, the result is trivial, showing three purely electronic transitions of equal
intensity, see Fig. 4.2a. The intensities of these lines get distributed over
vibronic levels when λ/ω2 becomes nonzero. The increase in the curvature
of the uppermost adiabatic PE curve (the 2Σ1/2 state), leads to a substantial
increase of the zero-point energy, thus shifting the corresponding lines to
higher energy. The VC e�ects are most pronounced in the 2Π state, where
the adiabatic PE function develops a bent geometry. Strong Σ−Π coupling
(λ/ω2 = 4.0) leads to very complicated vibronic structures of the 2Π3/2 and
2Π1/2 states, see Fig. 4.2c. It is noteworthy that the vibronic spectra of the
two components of the 2Π state are very di�erent from each other in this
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Figure 4.2: Σ−Π vibronic spectra for ∆/ω2 = 5.0, ζ/ω2 = -2.0, and λ/ω2 =
0 (a), 2.0 (b), and 4.0 (c). The solid, dashed, and dotted lines represent the
vibronic levels which gain intensity from the 2Π3/2, 2Π1/2, and 2Σ1/2 states,
respectively.
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case. This possibility of very di�erent vibronic structures of the two SO
components of a 2Π state apparently has never been considered so far in the
assignment of observed spectra.

Case II

Here we investigate the case of very large SO splitting (ζ/ω2 = -20.0) and
moderate Σ − Π gap (∆/ω2 = 5.0). This combination of parameters leads
to the interesting situation where the nondegenerate 2Σ state lies between
the two SO components of the 2Π state. This situation may arise for excited
states of molecules containing relatively heavy atoms [162], as is well known
for diatomic molecules [163].

Figure 4.3(a-c) shows the adiabatic PE curves for λ/ω2 = 0, 2.0, and 4.0.
For λ/ω2 = 0, the adiabatic PE curves are harmonic and the 2Σ1/2 state lies
in between the two SO components of the 2Π state, see Fig. 4.3a. For λ/ω2 =
2.0, the PE function of the 2Π3/2 state becomes very �at near ρ = 0, while the
PE function of the 2Σ1/2 state has developed a slight double minimum. With
further increasing λ/ω2, both the 2Π3/2 as well as the 2Σ1/2 PE functions
develop minima at bent geometries, see Fig. 4.3c. Figure 4.4(a-c) shows the
corresponding absorption spectra. For λ/ω2 = 2.0, the close-lying 2Σ1/2 and
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Figure 4.3: Adiabatic PE curves of the 2Π3/2 (solid), 2Π1/2 (dashed), and
2Σ1/2 (dotted) states for ∆/ω2 = 5.0, ζ/ω2 = -20.0, and λ/ω2 = 0 (a), 2.0
(b), and 4.0 (c).
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Figure 4.4: Σ−Π vibronic spectra for ∆/ω2 = 5.0, ζ/ω2 = -20.0, and λ/ω2 =
0 (a), 2.0 (b), and 4.0 (c). The solid, dashed, and dotted lines represent the
vibronic levels which gain intensity from the 2Π3/2, 2Π1/2, and 2Σ1/2 states,
respectively.
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2Π1/2 states show weak indications of vibronic interaction, while the far-lying
2Π3/2 state remains nearly unperturbed. Compared to Fig. 4.2b, the e�ect of
Σ−Π coupling is less pronounced here because of the larger SO splitting. For
λ/ω2 = 4.0, the spectrum of the 2Π3/2 state exhibits a pronounced progression
in the bending mode, which re�ects the nonlinear equilibrium geometry, see
Fig. 4.3c. The 2Σ1/2 and 2Π1/2 states exhibit rather complex vibronic spectra
which are dominated by quasi-degeneracy e�ects, see Fig. 4.4c. This again
shows that the two SO components of the 2Π state can exhibit completely
di�erent vibronic spectra.

4.2.2 The 2Π1/2 − 2Σ1/2 resonance case

Here, we consider the case of accidental degeneracy of the 2Π1/2 and 2Σ1/2

states. The Σ − Π gap (∆) and the SO splitting (ζ) are adjusted such that
the 2Π1/2 component of the 2Π state and the 2Σ1/2 state are degenerate at
the reference geometry. For a su�ciently large value of ∆, the 2Π3/2 can
be considered to be decoupled from the 2Π1/2 and 2Σ1/2 states. The 6×6
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Figure 4.5: Adiabatic PE curves of the 2Π3/2 (solid), 2Π1/2 (dashed), and
2Σ1/2 (dotted) states for ∆/ω2 = 5.0, ζ/ω2 = -10.0, and λ/ω2 = 1.0 with
g/ω2 = 0 (a), 0.2 (b), and 0.5 (c).
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vibronic Hamiltonian can thus be truncated to 4×4 form

H = TN1 +


EΣ,1/2 λρeiφ g 0
λρe−iφ EΠ,1/2 0 −g
g 0 EΠ,1/2 λρeiφ

0 −g λρe−iφ EΣ,1/2

 . (4.26)

where 1 is the 4-dimensional unit matrix. The above Hamiltonian is isomor-
phic to the Hamiltonian of the linear E×E JT e�ect with SO coupling in
trigonal symmetry, see Ref. [164]. λ is equivalent to the linear JT coupling
parameter, while g is equivalent to the matrix elements of the Axσx + Ayσy

term of the SO-coupling operator.

Case I

In this special case of accidental degeneracy of the 2Σ1/2 and 2Π1/2 states, we
have investigated the e�ect of the zeroth-order coupling parameter g. Fig-
ure 4.5(a-c) exhibits the adiabatic PE curves of a system with ∆/ω2 = 5.0,
ζ/ω2 = -10.0, λ/ω2 = 1.0, while g/ω2 takes the value 0, 0.2, and 0.5. Fig-
ure 4.5a shows that the 2Π1/2 and 2Σ1/2 PE functions touch each other at the
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Figure 4.6: Σ− Π vibronic spectra for ∆/ω2 = 5.0, ζ/ω2 = -10.0, and λ/ω2

= 1.0 with g/ω2 = 0 (a), 0.2 (b), and 0.5 (c). The solid and dashed lines
represent the vibronic levels gaining intensity from the 2Π3/2 and 2Π1/2 states,
respectively.
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reference geometry (ρ=0). With increasing g, this degeneracy is removed,
see Figures 4.5b and 4.5c, while the adiabatic PE curve of the 2Π3/2 state
remains essentially unchanged. Figure 4.6(a-c) shows the corresponding vi-
bronic spectra, assuming vanishing oscillator strength of the 2Σ1/2 state (the
alternative case will lead to a spectrum with same line positions, but di�er-
ent intensities). In Fig. 4.5a, the 2Π1/2 state exhibits a vibronic spectrum
which corresponds to a moderately strong E×E JT e�ect, each vibronic line
being doubly degenerate. With increasing g/ω, these degenerate vibronic
lines split proportional to g/ω. The coupling parameter g thus removes the
accidental degeneracy of the vibronic levels (due to the 2Σ1/2-2Π1/2 accidental
degeneracy) in zeroth order.

Case II

In this �nal example, we investigate the resonance case in the limit of very
strong Σ−Π nonrelativistic coupling (λ/ω2 = 4.0). Figure 4.7(a-c) shows the
adiabatic PE functions for ∆/ω2 = 5.0, ζ/ω2 = -10.0, while g/ω2 takes the
values 0, 0.5, and 1.0. The lowest adiabatic PE curve develops a minimum
at a strongly bent geometry as a consequence of the strong Σ− Π coupling,
see Fig. 4.7a. The accidental degeneracy of the 2Π1/2 and 2Σ1/2 states in
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Figure 4.7: Adiabatic PE curves of the 2Π3/2 (solid), 2Π1/2 (dashed), and
2Σ1/2 (dotted) states for ∆/ω2 = 5.0, ζ/ω2 = -10.0, and λ/ω2 = 4.0 with
g/ω2 = 0 (a), 0.5 (b), and 1.0 (c).
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Figure 4.8: Σ− Π vibronic spectra for ∆/ω2 = 5.0, ζ/ω2 = -10.0, and λ/ω2

= 4.0 with g/ω2 = 0 (a), 0.5 (b), and 1.0 (c). The solid and dashed lines
represent the vibronic levels gaining intensity from the 2Π3/2 and 2Π1/2 states,
respectively.
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Fig. 4.7a is lifted by �nite values of g/ω2 , see Fig. 4.7c. Figure 4.8(a-c) shows
the corresponding vibronic spectra. For g/ω2 = 0, the 2Π1/2 state shows
vibronic structure which is typical for strong JT coupling. Note in particular,
the double-hump shape of the spectral envelope. The well separated 2Π3/2

state, on the other hand, exhibits the characteristic extended Franck-Condon
progression of a linear-to-bent transition. With increasing g/ω, each of the
2Π1/2 lines splits into two, as described earlier. However, in addition to
changes in the vibronic structure of the 2Π1/2 state, the parameter g also
strongly a�ects the vibronic structure of the 2Π3/2 state, see Fig. 4.8b. In
this case of large λ/ω, the 2Π3/2 state cannot be decoupled from the 2Σ1/2

and 2Π1/2 states. For g/ω2 = 0.5, the density of intensity carrying lines in
the 2Π3/2 state is doubled, see Fig. 4.8b. Interestingly, further increase of
g/ω2 to 1.0 essentially restores the line density observed for g/ω2 = 0, see
Fig. 4.8c. In the latter case, the levels of the 2Π3/2 state are again doubly
degenerate.
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4.3 Photodetachment spectra of CCCl− and CCBr−

Ab initio calculation of parameters

Computational methods

The VC terms of SO origin are obtained from the matrix elements of the
Breit-Pauli SO operator with the nonrelativistic basis functions as described
in Chapter 3.4. The electronic basis states obtained by the ab initio electronic-
structure calculations are the nonrelativistic adiabatic states, which cor-
respond to the diagonalization of the nonrelativistic �xed-nuclei electronic
Hamiltonian Hnr

b . Using the unitary matrix that diagonalizes Hnr
b and per-

forming a corresponding similarity transformation of the relativistic part of
the vibronic Hamiltonian (4.22), we arrive at the following transformed form
of the SO part of the Hamiltonian

0 0 iζ/2 0 −g−hρ2e2iφ
√

2
idρeiφ

0 0 0 g−hρ2e2iφ
√

2
0 ig+hρ2e2iφ

√
2

−iζ/2 0 0 −idρeiφ −ig+hρ2e2iφ
√

2
0

0 g−hρ2e−2iφ
√

2
idρe−iφ 0 0 −iζ/2

−g−hρ2e−2iφ
√

2
0 ig+hρ2e−2iφ

√
2

0 0 0

−idρe−iφ −ig+hρ2e−2iφ
√

2
0 iζ/2 0 0


.

(4.27)
The matrix of Eq. (4.27) represents the matrix elements of the Breit-Pauli
SO operator with nonrelativistic adiabatic electronic wave functions. The
SO splitting ζ and the zeroth-order relativistic Σ − Π coupling term g are
obtained at the linear geometry. The parameters d and h can be extracted
from the slope and the curvature of the corresponding SO-matrix elements
as a function of the bending coordinate, respectively.

CCCl− and CCBr− are closed-shell linear systems in their ground elec-
tronic state X̃ 1Σ with the following valence-shell electronic con�guration:
1σ2 2σ2 3σ2 1π4 2π4 4σ2. While the 4σ molecular orbital is a nonbonding
orbital localized on the terminal C atom, the 2π molecular orbital is essen-
tially a CC π bonding orbital. Removal of an electron from the 4σ and 2π
molecular orbital gives rise to the ground and �rst excited electronic states
of the corresponding radical, i.e., the X̃ 2Σ+ and Ã 2Π states, respectively.

We have employed the aug-cc-pVTZ basis set of Dunning [136, 137] for the
C and Cl atoms. For Br, we have used the RECP described in Chapter 3.4.
Using this basis set, we have optimized the geometry of the anions in their
ground states and have calculated the harmonic frequencies with DFT us-
ing the B3LYP functional [139]. The DFT calculations have been performed
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using the GAUSSIAN package [140]. In addition to the DFT calculations,
we also have performed CCSD(T) calculations [141] to determine the opti-
mized geometries of the anions. The coupled-cluster calculations have been
performed with the MOLPRO program suite [134].

The averaged bending frequency ω2, the nonrelativistic quadratic RT cou-
pling parameter c, and the nonrelativistic Σ− Π coupling term λ have been
obtained by performing a nonlinear least-squares �t of the PE curves of the
two components of the Ã 2Π state and the X̃ 2Σ+ state as a function of
the bending coordinate. The two Ã 2Π bending PE curves, which touch
each other at the linear geometry, and that of the X̃ 2Σ+ state have been
obtained by performing a state-averaged full-valence CASSCF calculation at
the ground-state reference geometry of the stretching modes [143, 144]. Here,
all the inner valence electrons are kept frozen, resulting in the correlation of
15 electrons in 12 orbitals, i.e., a (15, 12) CASSCF calculation.

The matrix elements of the Breit-Pauli SO operator with nonrelativistic
wave functions have been computed, yielding the SO splitting ζ, the linear-
relativistic RT parameter d as well as the zeroth- and second-order relativistic
parameters (g and h), as described above. The nonrelativistic wave functions
have been obtained by performing a state-averaged (over the degenerate Ã 2Π
state and the nondegenerate X̃ 2Σ+ state) full-valence (15,12) CASSCF cal-
culation [143, 144]. In the case of CCBr, the SO-matrix elements have been
determined by employing the SO pseudo operator of Dolg [145] for the Br
atom, adapted to the above cited scalar RECP. The MOLPRO software has
been used for the SO calculations [134, 142].

The linear-VC constants of the stretching modes (κi) for the X̃ 2Σ+ state
and the Ã 2Π state have been obtained from the gradients of the CCSD(T)
calculated PE curves of the corresponding states, in a similar way described
in Chapter 3.4. The vertical detachment energies of the X̃ 2Σ+ and Ã 2Π
states of the corresponding radicals at the ground-state equilibrium geometry
of the anions have been obtained from the di�erence of the CCSD(T) energies
of these states and the X̃ 1Σ state of the corresponding anions, and is denoted
by ∆CCSD(T). The di�erence between the energies of the X̃ 2Σ+ and Ã 2Π
states provides the Σ− Π splitting ∆.

Results

CCCl−

The CC and CCl bond distances in the ground electronic state of CCCl− have
been obtained as 1.2404 Å and 1.6975 Å from the DFT calculation, while
the CCSD(T) method predicts a slightly longer bond length for both CC and
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Table 4.1: Bond distances (in Å) and harmonic vibrational frequencies (in
cm−1) of the ground state of CCX−.
Parameter CCCl− CCBr−
R0(CC) 1.2404a 1.2419a

1.2566b 1.2585b

1.2430c

R0(CX) 1.6975a 1.8490a

1.7049b 1.8526b

1.708c

ω1 2006.8a 1992.2a

1937.1b 1918.2b

ω2 254.1a 221.0a

226.0b 203.1b

ω3 640.3a 521.2a

633.3b 512.7b

a DFT/B3LYP.
b CCSD(T).
c Ref. [91].

CCl bonds, see Table 4.1. The CC bond length of CCCl− is longer than the
bond length of the triple bond of acetylene. This suggests that the CC bond
order in CCCl− is less than three, which is expected due to the presence of an
electronegative atom like Cl which also contains electrons in its p orbitals [86,
165]. The calculated bond distances are in good agreement with the values
obtained in Ref. [91], see Table 4.1. The harmonic vibrational frequencies
are obtained as 2006.8 cm−1 (CC stretch), 254.1 cm−1 (CCCl bend), and
640.3 cm−1 (CCl stretch) from the DFT/B3LYP calculation. The CCSD(T)
method predicts smaller values of harmonic frequencies for all vibrational
modes, see Table 4.1. From the nonlinear least-squares �t of the ab initio PE
curves of the X̃ 2Σ+ and Ã 2Π states along the bending coordinate obtained by
a (15,12) CASSCF calculation, the averaged bending frequency, the quadratic
RT parameter, and the linear Σ − Π coupling parameter are obtained as:
377.8 cm−1, 30.5 cm−1, and 718.3 cm−1, respectively. The overall quality
of the �t, determined from the square root of the mean-squared deviation
of the ab initio calculated energy from the adiabatic PE functions, is less
than 1 cm−1. Note the change in the averaged bending frequency of the
X̃ 2Σ+-Ã 2Π states of CCCl compared to the harmonic bending frequency
of the X̃ 1Σ state of CCCl−. This change is a consequence of the nonlinear
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Table 4.2: VC parameters (in cm−1) of the X̃ 2Σ+ and Ã 2Π states of CCX.
The numbers in parentheses are the values in units of ω2. See Eq. (4.22) for
the de�nition of the coupling parameters.
Parameter CCCl CCBr

ω2 377.8a 361.7a

354.0b

c 30.5(0.08)a 30.0(0.08)a
λ 718.3(1.90)a 714.6(1.98)a
ζ -85 (0.23)c -290.1 (0.81)c

-101.2d

d 1.6(0.00)c 20.7 (0.06)c
g 22.2(0.06)c 156.3 (0.43)c
h 0.0(0.00)c 0.0 (0.00)c

a From the least-squares �tting of the X̃ 2Σ+ and Ã 2Π state averaged
CASSCF PE functions.
b Ref. [73].
c From the matrix elements of the SO operator with the X̃ 2Σ+ and Ã 2Π
state-averaged CASSCF basis functions.
d Ref. [72].
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Table 4.3: The linear electron-vibrational coupling constants of the X̃ 2Σ+

and Ã 2Π states of CCX (in cm−1) obtained from the CCSD(T)/AVTZ cal-
culation. The numbers in parentheses are the so-called Poisson parameters
(κ2

i /2ω
2
i ).

CCCl CCBr
X̃ 2Σ+ Ã 2Π X̃ 2Σ+ Ã 2Π

κ1 1405.0(0.25) -1461.5(0.26) 1370.5(0.24) -1403.6(0.25)
κ3 684.4(0.57) 926.1(1.05) 520.5(0.50) 741.6(1.02)

ground-state equilibrium geometry of the CCCl radical, which has been the
subject of discussion in several articles [93, 72, 89, 165, 86, 91, 73]. The large
value of the nonrelativistic Σ − Π coupling term (nearly twice the averaged
bending frequency) implies a very strong vibronic interaction of the X̃ 2Σ+

and Ã 2Π states. The quadratic RT coupling term has a rather moderate
value, i.e., one tenth of the averaged bending frequency, see Table 4.2.

The SO splitting of the Ã 2Π state is calculated as -85 cm−1. Tarroni
and Carter have calculated the SO splitting as -101 cm−1 at the equilibrium
geometry of the 2Π state [72]. The negative value implies that the 2Π3/2

component is lower in energy than the 2Π1/2 component. The rather small
value of the SO splitting is due to the fact that the 2Π state is mostly a CC
π orbital with small electron density on the Cl atom. The LRVC term d is
small (1.6 cm−1) and the SO splitting of the 2Π state is considerably smaller
than the averaged bending frequency. Therefore, no signi�cant perturbations
of the spectra by the LRVC term dρe±iφ are expected. The zeroth-order
relativistic Σ−Π coupling term g is calculated as 22.2 cm−1, which is nearly
one tenth of the averaged bending frequency. The quadratic relativistic Σ−Π
coupling term h, on the other hand, is negligibly small.

The VC parameters of the stretching modes are given in Table 4.3. The
so-called Poisson parameters (κ2

i /2ω
2
i ) are shown in parentheses. The vi-

brational couplings of the X̃ 2Σ+ and Ã 2Π states are relatively weak along
the CC stretching mode. The CCl stretching mode, on the other hand, is
more strongly coupled, especially in the Ã 2Π state, see Table 4.3. The adi-
abatic PE functions of the linear-VC model are compared with the ab initio
CCSD(T) energies in Fig. 4.9, as a function of the Q1 and Q3 modes. The
excellent agreement between the two suggests that the linear-VC approxima-
tion is appropriate for the present problem.

The calculated vertical detachment energies of the X̃ 2Σ+ and Ã 2Π states
of the CCCl radical are given in Table 4.4. While the 2Σ state is found to
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Figure 4.9: Comparison of the adiabatic PE functions of the linear-VC model
(solid lines) with ab initio CCSD(T) energies (crosses) for the stretching
modes Q1 and Q3 of CCCl.
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Table 4.4: Vertical detachment energy (VDE) and X̃ 2Σ+ - Ã 2Π splitting (∆)
of CCX (in eV), obtained from CCSD(T)/AVTZ calculations. The numbers
in parentheses are the values in cm−1.

CCCl CCBr
X̃ 2Σ+ Ã 2Π X̃ 2Σ+ Ã 2Π

VDE 3.5599 3.5792 3.5860 3.6021
∆ 0.0193(155.6) 0.0162(130.6)

0.0248(200.0)a
0.0609(491.0)b

a Ref. [73].
b Ref. [72].

be 3.56 eV above the ground state of the anion at the equilibrium geometry
of the latter, the 2Π state is found only about 156 cm−1 above the 2Σ state.
The latter result is in very good agreement with the most recent experimental
determination, where the Ã 2Π state is reported to be around 200 cm−1 above
the X̃ 2Σ+ state [73].

CCBr−

The CC bond distance of CCBr− is nearly the same as in CCCl−. The
CBr bond distance is calculated as 1.8490 Å with the B3LYP functional.
As found for CCCl−, the CCSD(T) method predicts longer bond distances,
see Table 4.1. The harmonic vibrational frequencies of CCBr−, shown in
Table 4.1, are smaller than the corresponding values of CCCl−, as a con-
sequence of the larger mass of Br. The nonlinear least-squares �t of the
state-averaged CASSCF PE curves of the X̃ 2Σ+ and Ã 2Π states yielded
values for the averaged bending frequency (ω2), the RT parameter (c), and
the nonrelativistic Σ− Π coupling parameter (λ) which are similar to those
of CCCl−. This is the consequence of the very limited contribution of the p
orbitals of the halogen atom to the two highest occupied molecular orbitals
of the anion. The large di�erence between the harmonic bending frequency
of the anion and the averaged bending frequency of the radical suggests a
nonlinear equilibrium geometry of the radical. The overall root-mean-square
error of the �t is less than 1 cm−1.

The SO splitting is calculated as -290 cm−1, which is about 80% of the
averaged bending frequency. The bending frequency and the SO splitting
of the 2Π state are thus nearly in resonance. The LRVC parameter d is
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Figure 4.10: Comparison of the adiabatic PE functions of the linear-VC
model (solid lines) with ab initio CCSD(T) energies (crosses) for the stretch-
ing modes Q1 and Q3 of CCBr.
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small, less than one tenth of the averaged bending frequency. On the other
hand, we obtain a very large value for the zeroth-order relativistic Σ − Π
coupling parameter (g) which is nearly half the averaged bending frequency,
see Table 4.2. The second-order relativistic Σ−Π coupling parameter h again
has a negligible value. We have also performed a CPP calculation [138] for
Br to determine the SO-matrix elements. The e�ect of the core polarization
is found to be negligible.

The VC parameters of the stretching modes are shown in Table 4.3 with
the so-called Poisson parameters (κ2

i /2ω
2
i ) in parentheses. The Poisson pa-

rameters have similar values as for CCCl−, i.e., the coupling of the CC
stretching mode is weak and that of the CBr mode is strong, see Table 4.3.
The adiabatic PE curves of the linear-VC model are in excellent agreement
with the ab initio CCSD(T) energies along both the stretching modes, (see
Fig. 4.10) thus suggesting the validity of the linear-VC model.

The calculated vertical detachment energies of the X̃ 2Σ+ and Ã 2Π states
of the radical are given in Table 4.4. They are similar to those of CCCl. The
Σ−Π splitting is calculated as 131 cm−1. To our knowledge, this is perhaps
the smallest known vertical energy di�erence between the ground state and
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the �rst excited state of any linear triatomic system.

Discussion of the photodetachment spectra

The photodetachment spectra are calculated by diagonalizing large symmet-
ric Hamiltonian matrix by Lanczos method. The calculated spectrum is
�nally convoluted with a normalized Lorentzian of 1 meV width (FWHM) to
account for rotational broadening and the �nite resolution of the experimen-
tal photodetachment spectra. Since CCCl− and CCBr− have similar Poisson
parameters for all vibrational modes, the number of harmonic oscillator basis
functions used for the calculation of the �nal spectra are same. The appropri-
ate values of the maximum vibrational quantum number of di�erent modes
are found as 25 (CCX bending), 14(CX stretching), and 7 (CC stretching).
Thus a Hamiltonian matrix of dimension 14,700 has been diagonalized by
performing 1,500 Lanczos iterations. The origin of the spectra is adjusted to
the detachment energy of the X̃ 2Σ+ state.

CCCl−

The calculated vibronic structure of the photodetachment spectrum of CCCl−
is shown in Fig. 4.11. In the upper panel, the pure bending spectrum is
shown, i.e., the stretching modes are absent. The solid, dashed, and dot-
ted lines represent vibronic levels which gain intensity from the 2Π3/2, 2Π1/2,
and 2Σ1/2 states, respectively. Most of the peaks of 2Π origin appear as
closely spaced doublets. This re�ects the small SO splitting and moder-
ate RT coupling. The X̃ 2Σ+ ground state gives rise to the progression of
dotted lines in Fig. 4.11a. It is noteworthy that this progression exhibits a
double-hump spectral envelope which is typical for strongly coupled JT sys-
tems [20, 166, 11, 13, 14]. The pure bending spectrum is quite complicated
with many quasi-degenerate levels. The reason for the complicated structure
is primarily the very small Σ − Π splitting and the strong nonrelativistic
Σ− Π coupling.

Figure 4.11b shows the calculated photodetachment spectrum with all
the three modes included. The spectrum is unusually complex with many
peaks of small or medium intensity. Several closely-spaced doublets, belong-
ing to the Ã 2Π state, can still be identi�ed. It is very di�cult to assign
the individual peaks due to the strong vibronic mixing of most levels. The
low-energy part of the spectrum is mainly due to bending excitations, while
the high-energy levels involve excitations of the stretching modes. The over-
all envelope of the spectrum exhibits two broad humps. This shape of the
spectrum might suggest the assignment of the two bands as the spectral
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Figure 4.11: Calculated vibronic structure of the X̃ 2Σ+-Ã 2Π photodetach-
ment spectrum of CCCl. (a) Only the bending vibrational mode is consid-
ered. The solid, dashed, and dotted lines represent vibronic levels which
gain intensity from the 2Π3/2, 2Π1/2, and 2Σ1/2 states, respectively. (b) All
vibrational modes are included.
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Figure 4.12: Calculated vibronic structure of the X̃ 2Σ+-Ã 2Π photodetach-
ment spectrum of CCBr. (a) Only the bending vibrational mode is consid-
ered. The solid, dashed, and dotted lines represent vibronic levels which
gain intensity from the 2Π3/2, 2Π1/2, and 2Σ1/2 states, respectively. (b) All
vibrational modes are included.
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structures of two separate electronic states. In reality, however, the two elec-
tronic states are closely spaced and the double-hump shape arises from the
strong Σ− Π coupling of both nonrelativistic and relativistic origin.

CCBr−

The calculated photodetachment spectrum of CCBr− is shown in Fig. 4.12.
The upper panel of the �gure shows the pure bending spectrum. In Fig. 4.12a,
the solid, dashed, and dotted lines represent vibronic levels which gain inten-
sity from the 2Π3/2, 2Π1/2, and 2Σ1/2 states, respectively. The near degeneracy
of the vibronic levels of the 2Σ1/2 and the 2Π3/2 states is the consequence of
the accidental degeneracy of these two states. Similar to CCCl−, the vibronic
levels of the two SO components of the Ã 2Π state appear as doublets. The
doublet splittings are larger owing to the larger SO splitting in CCBr. The
X̃ 2Σ+ state gives rise to a double-hump spectral envelope, see Fig. 4.12a.

Figure 4.12b shows the complete calculated photodetachment spectrum of
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CCBr−. The lower energy part of the spectrum is again dominated by bend-
ing excitations, whereas the high-energy part contains many densely spaced
peaks with medium and low intensities. The spectrum is more complicated
than that of the CCCl− because of a strong relativistic zeroth-order Σ − Π
VC in CCBr. The overall shape of the spectrum again appears as a double
hump.



Chapter 5

Summary and Outlook

With the advent of high-resolution spectroscopic techniques and high-level
computational capabilities, the overall understanding of highly complicated
VC e�ects in isolated molecules has increased considerably. One of the most
successful theoretical approaches in this regard is the adoption of simple
VC model Hamiltonians. The essential simpli�cations are the assumption
of harmonic diabatic potentials and low-order (in a Taylor series expansion
in the nuclear coordinates) couplings of the diabatic electronic states. The
advantages of this approach are its conceptual and technical simplicity and
wide applicability. A critical shortcoming of this approach is the general
practice to either neglect or consider only phenomenologically the SO cou-
pling. In many cases, the SO coupling is treated as a weak perturbation of
the VC problem. On the other hand, the SO coupling becomes increasingly
important for molecules involving second-row (or heavier) elements.

The purpose of the present work is to treat the SO coupling and the VC in
an equal footing with the electrostatic potentials. A Taylor series expansion
of the matrix elements of the electronic Hamiltonian including the micro-
scopic Breit-Pauli SO operator has been performed to obtain model Hamil-
tonians which are then used to analyze several molecular spectroscopic prob-
lems on the basis of high-level ab initio electronic-structure methods. Since a
fully relativistic (i.e., four-component) ab initio treatment is computationally
demanding, the present work employs the so-called SOCI method [118], in
which electronic correlation and relativistic e�ects are treated separately.

The e�ect of SO coupling on the RT e�ect in a 2Π electronic state of
a linear molecule has been investigated, employing the microscopic expres-
sion for the SO operator in the single-electron approximation. In contrast
to treatments which employ the phenomenological SO operator [30], the RT
vibronic problem involves four coupled electronic states with spin-orbital an-
gular momentum projections 3/2, 1/2, -1/2, -3/2. The Hamiltonian matrix

83
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has been worked out in the diabatic representation. It has been found that
in addition to the well-known nonrelativistic RT coupling term, which is
of second order in the bending displacement, there exists a relativistic VC
term of �rst order, which couples the two SO components (1/2 and 3/2)
of the 2Π electronic state. The symmetry properties of the relativistic RT
problem have been analyzed. It has been shown that there exists a relativis-
tic vibronic angular momentum operator which commutes with the vibronic
Hamiltonian. As a result, the vibronic eigenstates can be classi�ed by an
angular momentum quantum number µ which is half integral. Time-reversal
symmetry guarantees the degeneracy of energy levels with di�erent sign of µ
(vibronic Kramers degeneracy).

The vibronic Hamiltonian has been transformed to the adiabatic elec-
tronic representation. It has been shown that the adiabatic electronic wave
functions carry a nontrivial topological phase, that is, they change sign along
a closed loop in the plane of the degenerate bending mode. This remarkable
feature, which is not found in the nonrelativistic RT e�ect and also not in the
LzSz approximation for the SO operator, can be traced back to the existence
of a linear-VC term in the relativistic RT e�ect. It is noteworthy that a non-
trivial topological phase exists despite the absence of a conical intersection
of the adiabatic PE surfaces.

The spectroscopic e�ects of the LRVC term d have been analyzed for
a series of linear triatomic radicals and radical cations with 2Π electronic
ground states. It has been shown that the relativistic VC mechanism can
lead to signi�cant perturbations of the vibronic spectra when the 2Π SO
splitting and the bending vibrational frequency are of similar magnitude.

A brief survey of the ab initio calculated LRVC constants and the resulting
vibronic spectra of the series BS2, CS+

2 , OCS+, OBS has been given. The
survey illustrates the interplay of the parameters ζ (SO splitting of the 2Π
state), c (RT coupling constant), and d (LRVC term) in RT-SO spectra. Near
degeneracy of ζ and the bending vibrational frequency ω2 (ζ/ω2 ' 1) as well
as weak nonrelativistic RT coupling (c/ω2 � 1) are favorable circumstances
for signi�cant perturbations of RT-SO spectra by the relativistically induced
VC.

For the example of the X̃ 2Π state of GeCH, the LRVC parameter d as
well as the other parameters of the RT vibronic model have been obtained
with accurate ab initio electronic-structure methods. These parameters were
independently determined by a least-squares �tting of the experimentally
observed RT vibronic energy levels. The excellent agreement of the ab ini-
tio and empirically determined values provides convincing evidence that the
strong perturbations of vibronic spectrum of the X̃ 2Π state of GeCH, which
previously have been termed �Sears resonances� [39], are e�ects of the LRVC
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mechanism. The e�ects of the relativistically induced VC are comparatively
pronounced in GeCH, since the SO splitting ζ and the bending frequency ω2

are nearly equal and the nonrelativistic RT coupling is comparatively small
(c/ω2 � 1), while the ratio d/ζ is relatively large.

The vibronic structure of the photoelectron spectra of the X̃ 2Π states
of XCN+, X= F, Cl, and Br has been calculated including linear (relativis-
tic) and quadratic (nonrelativistic) RT coupling. The two stretching modes
have been taken into account in the linear-VC approximation. The parame-
ters of the model have been determined from accurate ab initio calculations.
The spectroscopic e�ects of SO and RT coupling and electron-vibrational
coupling of the stretching modes have been analyzed in the photoelectron
spectra. The calculated X̃ 2Π photoelectron spectrum of FCN reproduces
the experimental spectrum satisfactorily. ClCN is the most interesting case,
since the resonance condition ζ ∼ ω2 is satis�ed, resulting in nonnegligible
e�ects of the LRVC. The calculated spectrum is shown to exhibit odd quanta
of the bending mode with signi�cant intensity, an unusual result for linear
molecules. It is hoped that this computational prediction stimulates the
recording of the X̃ 2Π photoelectron spectrum of ClCN with higher resolu-
tion than the presently available spectra. For BrCN+, the large SO coupling
quenches RT coupling. It is expected that Σ-Π coupling is important for this
case, that is, the approximation of an isolated X̃ 2Π may be inappropriate
for BrCN+.

The analysis of RT e�ect with SO coupling has been extended to vibron-
ically coupled 2Π and 2Σ electronic states of a linear molecule to study the
combined e�ects of strong Σ − Π and SO VC by employing the Breit-Pauli
SO operator. The 6×6 vibronic Hamiltonian has been derived in the dia-
batic representation up to second order in the bending displacement. It has
been found that there exists, in addition to the well-known nonrelativistic
(quadratic) RT coupling term and nonrelativistic (linear) Σ − Π coupling
term, three coupling terms of relativistic origin. While the two components
of the 2Π state are coupled by a relativistic linear term, the 2Σ and 2Π states
are relativistically coupled in zeroth and second order of the bending dis-
placement. The quadratic coupling term of SO origin has been ignored in
the present study, while the e�ects of the zeroth-order term have been studied
explicitly.

The combined e�ects of nonrelativistic Σ − Π coupling and strong SO
splitting of the 2Π state have been investigated by variational calculations of
the vibronic energy levels. It has been shown that this problem is very rich
and that very complex vibronic spectra can arise. For example, the 2Π1/2 and
2Π3/2 states can exhibit completely di�erent vibronic structures when both
the SO splitting and the nonrelativistic Σ−Π coupling are strong. The e�ect
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of zeroth-order relativistic Σ − Π coupling has been shown to be important
when 2Σ1/2-2Π1/2 near degeneracies occur. In this case, for a su�ciently
large SO coupling, the 2Π3/2 state gets approximately decoupled, and the
2Π1/2 and 2Σ1/2 states exhibit a linear JT type interaction.

The Σ − Π and SO VC model has been used to calculate the vibronic
structure of the coupled X̃ 2Σ+ and Ã 2Π states in the photodetachment
spectra of CCCl− and CCBr−. The stretching modes have been included
in the linear-VC approximation. The parameters of the model have been
determined from accurate ab initio calculations. The CCCl and CCBr rad-
icals, like the CCH radical, exhibit closely spaced 2Σ and 2Π states with
strong Σ − Π VC. The 2Σ state has been found to be the ground state at
the equilibrium geometry of the corresponding anion. The Σ − Π splitting
is calculated as 156 cm−1 and 131 cm−1 for CCCl and CCBr, respectively.
The separation of the two states is strongly modulated by the stretching
coordinates. While the nonrelativistic VC parameters are of approximately
equal strength in both cases, the relativistic VC is stronger in CCBr than
in CCCl. The calculated photodetachment spectra of CCCl− and CCBr−
have similar vibronic structure. While the low-energy part is dominated by
peaks from bending excitations, the high-energy region exhibits a high den-
sity of vibronic levels involving excitations of bending and stretching modes.
The spectral envelopes exhibit a double-hump reminiscent of strongly cou-
pled E×E JT systems. It is hoped that the theoretical predictions stimulate
the recording of the X̃ 2Σ+-Ã 2Π photodetachment spectra of CCCl− and
CCBr−.

The present work is restricted to the SO VC of 2Π and 2Σ electronic
states of linear molecules. The extension of the present formalism to other
electronic states is straightforward. Furthermore, a systematic SO VC anal-
ysis for electronic states with di�erent spin multiplicities (e.g., 3Π-3Σ SO
VC) is highly desirable. Another possible extension of this work is the inclu-
sion of rotational degrees of freedom in the present SO VC model to obtain
information on spin-rovibronic levels of isolated molecules.
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Appendix A

Lanczos Algorithm

For multi-mode VC problems, the solution of the eigenvalue problem of
the Hamiltonian matrix (H) in the harmonic-oscillator basis functions is
a formidable numerical task. The large dimension of the sparse-Hamiltonian
matrix causes problem related to storing the matrix elements. Lanczos al-
gorithm is used to circumvent this problem. In this method the structured
sparsity of the Hamiltonian is exploited. The following is a brief description
of the algorithm.

For some initial state |p0〉, the state vector |p1〉 is obtained by the relation
|q1〉 = H|p0〉 − 〈p0|H|p0〉|p0〉
|p1〉 = q1/

√
〈q1|q1〉. (A.1)

Starting with the above states, the following three-term recurrence relations
are performed [107].

|qi+1〉 = H|pi〉 − 〈pi|H|pi〉|pi〉
|pi+1〉 = |qi+1〉/

√
〈qi+1|qi+1〉 (A.2)

The above Lanczos iterations generate a sequence of orthonormal states |p0〉,
|p1〉, |p2〉. . . spanning the so-called Krylov subspace of H. The Hamiltonian
matrix takes a tridiagonal form in this new basis, i.e.,

Tii = 〈pi|H|pi〉
Ti,i+1 =

√
〈qi+1|qi+1〉 = Ti+1,i

Ti,j = 0 for |i− j| > 1. (A.3)
For our purposes we identify

|p0〉 = T |Ψi〉 (A.4)
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and use the basis-set expansion (2.38) to represent the Krylov subspace as
the sequence of column vectors p0,p1,p2 . . .. Similarly the coe�cients Cν

m

are combined into a column vector Cν . Using Eq. (A.3) we have
P†

mHPm = Tm, (A.5)
where Tm is the m × m tridiagonal matrix with elements resulting from
m Lanczos iterations. Let xm be the eigenvector of Tm with eigenvalue
Em

ν . Then Pmxm
ν represents the corresponding eigenstates of the original

Hamiltonian and its spectral intensity becomes
Im
ν = |p†0Pmxm|2

= |p†0 (p0,p1, . . .pm)xm
ν |2

= |(1, 0, . . . 0)xm
ν |2

= |xm
ν (1)|2. (A.6)

Owing to the orthogonality of pi and by the virtue of the choice of |p0〉, it is
only the �rst component xm

ν (1) of the eigenvectors of the tridiagonal matrix
that determines the spectral intensity.
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