
Lehrstuhl für Realzeit–Computersysteme

Worst Case Execution Time Estimation

for Advanced Processor Architectures

Dipl.–Ing. univ. Stefan M. Petters

Lehrstuhl für Realzeit–Computersysteme

Worst Case Execution Time Estimation
for Advanced Processor Architectures

Dipl.–Ing. univ. Stefan M. E. Petters

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor–Ingenieurs (Dr.–Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.–Prof. Dr.–Ing. K. Antreich

Prüfer der Dissertation:
1. Univ.–Prof. Dr.–Ing. G. Färber
2. Univ.–Prof. Dr. techn. J. Swoboda

Die Dissertation wurde am 14.03.2002 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
22.08.2002 angenommen.

Preface

Holzkirchen, 13th March 2002

As it is always with such a work, it needs the support of many people to be accomplished.
First to be named is my supervisor Prof. Georg Färber. He took me under his wings even
before I had finished my diploma thesis. His considerable and never slacking interest in
the subject of this thesis has bourne me over a time, where the work seemed to become
a never ending story. In a similar early stage I got support of Prof. Joachim Swoboda,
who has taken upon him the task of doing the second review of my thesis. My collegues
at the institute deserve many thanks for proof reading my publications, asking questions
regarding my work, which sometimes got me flat footed, sustaining a good working
climate and occasionally providing interesting tasks to avoid working on this dissertation.
I want to mention explicitely Alexander v. Bülow, who gave me a good deal of thrust in
motivation during his diploma thesis.

Muireann Bennis helped to fill in a lot of commas which I only use sparingly, pointed
out many Germish errors, and sentences stretching over half a page. Last but definitely
not least my wife Amine deserves many a thanks for her continuous support and trust
in my work. Besides thanks I have to apologise to my wife and especially my children,
Shahin and Anian who had to do more or less without husband and father for quite some
time now. I hope I can make up for this time.

Stefan M. Petters.

Often you must turn your stylus to erase,
if you hope to write anything worth a second reading.

-Horace, poet and satirist (65-8 BCE)

Abstract

Advanced acceleration features, as they are used in todays mass market, high perfor-
mance processors, have only been considered in isolation in previous worst case execu-
tion time estimation approaches. This thesis presents a measurement based approach to
estimate the worst case execution time on a fully featured processor. To produce reliable
results several aspects have to be considered. Prior to the start of a measurement, the
acceleration techniques are preset, as far as possible, into their worst case state. The fea-
tures, which cannot be controlled to produce the worst case state are either randomised or
covered by penalties added to the measured results. All possible path combinations are
enforced using additional instrumentation code. By partitioning the measurement prob-
lem into several measurement blocks, the coverage of all path combinations is ensured.
To cover final uncertainty, an existing extreme value statistic approach is extended, to
handle combinations of measurements. Additionally a scheduling analysis method, suit-
able for processors equipped with such acceleration techniques, is presented. A number
of test cases, show the applicability and the limitations of the approach.

Contents

Glossary v

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution and Limitations . 1

1.3 Organisation of the Dissertation . 2

2 Related Work 4

2.1 Control Flow Analysis . 4

2.1.1 Annotations . 4

2.1.2 Symbolic execution . 5

2.2 Execution Time Estimation . 7

2.2.1 Hardware Modelling . 7

2.2.2 Measurement Approach . 10

2.2.3 Calculation Methods . 12

2.3 Operating System Analysis . 13

2.4 Scheduling Analysis . 14

3 Real-time and Monitoring 16

3.1 Real-time . 16

3.2 Monitoring . 17

i

Contents

3.2.1 Event Detection . 18

3.2.2 Statistical Sampling . 19

3.2.3 Hardware Monitoring . 20

3.2.4 Software Monitoring . 22

3.2.5 Hybrid Monitoring . 23

4 Models 26

4.1 Model of Embedding Process . 26

4.2 Basic Hardware Model . 28

4.2.1 Model of Processor . 29

4.2.2 Peripheral Hardware . 31

4.3 Intel Pentium III . 33

4.3.1 General Architecture . 33

4.3.2 Memory Organisation . 35

4.3.3 Caches . 35

4.3.4 Branch Prediction . 36

4.3.5 Monitoring Support . 37

4.3.6 Relevant Facts for the WCET Measurement 37

4.3.7 Preemption Handling . 42

4.4 AMD Athlon Family . 46

4.4.1 General Architecture . 46

4.4.2 Memory Organisation . 47

4.4.3 Caches . 48

4.4.4 Branch Prediction . 48

4.4.5 Monitoring Support . 49

4.4.6 Relevant Facts for the WCET Measurement 49

4.4.7 Preemption Handling . 51

ii

Contents

4.5 Interaction with a Real-Time Operating System 52

4.5.1 Extensions to a General Purpose Operating System 53

4.5.2 System Calls . 60

4.5.3 Preemption . 61

4.5.4 Thread Model . 63

4.6 Confidence in Measured Values . 64

4.6.1 Statistical Processes . 64

4.6.2 Probability Distribution of Measurement Blocks 66

4.6.3 Joining of Measurement Blocks 68

4.7 Real-time Analysis . 74

4.7.1 Response Time Analysis of a Simple System 74

4.7.2 Extending the Simple Real-Time Analysis for Complex Systems 75

5 Experimental Validation 82

5.1 Methodology Overview . 82

5.2 Tool Description . 83

5.2.1 Assumptions . 83

5.2.2 Development Tool chain . 85

5.2.3 PAN as Controlling Unit . 86

5.2.4 PAN Analysis Part . 87

5.3 Test Setup . 91

5.3.1 Athlon Hardware . 92

5.3.2 Pentium III Hardware . 92

5.3.3 Operating System . 93

5.4 Example Applications and Evaluation 96

5.5 Limitations to the Instrumentation . 99

5.6 Coding Guidelines . 99

iii

Contents

5.7 Real-Time Analysis . 102

6 Conclusion 105

Bibliography 107

Index 117

A Processor Description 121

A.1 Intel P6 Family . 121

A.1.1 General Structure . 121

A.1.2 Memory Management . 124

A.1.3 Caches . 127

A.1.4 Branch Prediction . 129

A.1.5 Builtin Monitoring Support 132

A.2 AMD Athlon . 133

A.2.1 General Structure . 134

A.2.2 Memory Management . 136

A.2.3 Caches . 136

A.2.4 Branch Prediction . 138

A.2.5 Built in Monitoring Support 142

iv

Glossary

factual dead
code

code which may never be reached, regardless of the input parameters,
but cannot be identified as such by a compiler.

Bi Blocking time suffered by thread τi induced by resource contention.

Ci Uninterrupted WCET of thread τi.

E j
�
Ri � Worst case number of releases of thread τ j during time Ri.

pAWCET Confidence level of an Assumed WCET value tAWCET for a specific
piece of code.

Pn
i � j Worst Case number of preemptions of thread τi by thread τ j which are

not covered at start of iteration n.

Ri Worst case response time of thread τi.

Tj Minimum interval between two releases of thread τ j.

tAWCET Assumed WCET value for a specific piece of code.

tMWCET Measured WCET value for a specific piece of code including all addi-
tional penalties.

tWCET Physical WCET value for a specific piece of code, which is usually
unknown.

wn
i Execution window of thread τi in the nth iteration.

δi Worst case individual preemption delay suffered by thread τi each time
it is preempted.

v

GLOSSARY

Hi Set of threads with higher priority than thread τi.

Lk Set of threads with lower priority than thread τk.

PSm Set of threads which potentially may obtain the semaphore Sm during
their execution.

Sn
i � j Set of threads which potentially suffer preemption by τk, instead of τi,

and have not been covered at start of iteration n.

max
������� � The maximum value of the arguments.

min
������� � The minimum value of the arguments.

µ Mean value of a random variable.

σ Deviation of a random variable.

Θn
i � j The cumulative additional preemption delay caused by thread τ j, on

thread τi, after n � 1 iterations.

PAN Path ANalysis tool: Developed during the preperation of this thesis, to
analyse the control flow of a program, manipulating the object code to
enforce the paths and control the measurements.

vi

1 Introduction

1.1 Motivation

Modern general purpose processors are subject to various optimisation techniques aimed
at improving average performance, and resulting in nondeterministic and/or, in poor
worst case performance. Despite this tradeoff more and more of these processors are
deployed in real-time systems. One reason for this trend is that the domain of real-time
systems has grown considerably in the last few years, due to the increasing penetration
of computer systems in every day life. Typical examples are cash dispensers, the mi-
crowave oven, or the up to 50 processors integrated in modern cars. Not all of these
applications have real-time properties, and even less are life threatening, but if you take
the example of a customer with his brand new car it would be completely unacceptable if
his newly bought product ceases to work on the motorway, due to a deadline violation in
the engine control unit. Due to this broadening application area the factors development,
cost and time-to-market have gained considerably in importance. To use general purpose
processors would be one way to achieve this.

Using measurements to estimate the worst case execution time is common practice in
industry. However, up until now the common aproach for addressing this were ad-hoc
and rule of thump methods. In most cases neither the test coverage, nor the real-time
analysis are investigated. One of the main reasons for this is the tradeoff between the
estimated probability of a failure on one hand and the cost and time consumed for testing
and analysis on the other.

1.2 Contribution and Limitations

This dissertation contributes to research in this topic in several aspects. It shows how to
provide reliable bounds on state of the art processors, not only on the WCET, but also on
the delay induced by the preemption of task, utilising measurements. Path enforcement is
deployed as a means to ensure that all path combinations possible in the later application

1

1 Introduction

of the software are surely covered in the testing phase. The complexity of this brute force
method is reduced enourmously, by partitioning the program into several measurement
blocks. The measurements are conducted utilising built in performance monitoring hard-
ware of the processors. Such hardware is available on many high performance processors
and is intended for performance optimisation.

To decouple consecutive measurements, and produce reliable results, the accceleration
techniques of the processor are manipulated in such a way that either a worst case state,
or a randomised state is provided at the start of each measurement block. In cases where
neither is possible an analysis of the processor features delivers penalties to be consid-
ered to cover the potential negative effects. As with all real-time system, the programmer
of real-time software is required to follow coding restrictions and guidelines. The restric-
tions imposed are necessary to avoid underestimation of the WCET. A typical example
of such a restriction is the proscription of random access to memory through pointers,
since the approach is not able to guarantee the WCET for such cases. The coding guide-
lines provide the programmer with hints to reduce overhead on the WCET. In some cases
the gain in accuracy has to be bought with actual performance in some cases the coding
guidelines even accelerate the code.

The approach relies in the current form on user annotations to provide information on
the paths to be executed. However, techniques to automatically rule out infeasible paths
and bound loop iteration can be easily integrated.

In order to avoid excessive overestimation of the worst case execution time, extreme
value statistics are deployed. The previous work in this area, regards only the execution
time of a monolithic program i. e.; one extreme value distribution describes the execution
time of the program. Due to the partitioning of the measurement problem, the calculation
of the overall WCET for a program is investigated. Since there is no analytical solution
known to this problem, a empirical study is presented in this dissertation. A real-time
analysis has been developed, that considers the complexity of state of the art processors.
Over previous work this has the advantage of considereing the acceleration techniques
of the processor in the preemption of a task.

1.3 Organisation of the Dissertation

The following Chapter will provide an overview on related work in the area of real-time
systems while Chapter 3 comprises an introduction to real-time systems and possible
monitoring techniques. The models of the embedding system, processor and software
is the main theme in Chapter 4. Due to its high importance factor, the operating system
software is more closely inspected. Furthermore, a statistical analysis of the worst case
execution time, utilising extreme value statistics, is provided. Chapter 4 concludes with

2

1.3 Organisation of the Dissertation

the scheduling proof for systems using state of the art processors. Finally, Chapter 5 is
dedicated to the experimental validation of the previously described methods and also
concludes this work.

3

2 Related Work

The task of estimating the worst case execution time of a piece of software can be divided
into analysing the control flow of the software, estimating the execution time of a given
sequence of instructions, and calculating the WCET based on the results of the two pre-
vious steps. Additionally, the analysis of the operating system itself, and the effects on
the execution of the application software has to be investigated in context of a real-time
operating system.

2.1 Control Flow Analysis

The potential control flow of a piece of software can be described using a control flow
graph (CFG). The CFG is usually extracted directly from the source, assembly or object
code. The missing information in this control flow graph is the specification of feasible
paths. A basic necessity is the bound on loop iterations. Additionally, infeasible paths
may be excluded from the later search of the worst case execution time. Two basic
principles are used in providing this information. Either the user is needed to specify the
necessary information or symbolic execution of the code is deployed.

2.1.1 Annotations

Various papers have been published concerning the user supplied information on loop
bounds and infeasible paths. One fundamental work referred to by many later publica-
tions is [71] by Puschner and Koza. In this work no actual annotations are used, instead
the syntax of C has been extended to provide the information. A modified for statement
is introduced which accepts the usual arguments of a for statement, plus additional in-
formation regarding maximum number of loop iterations or maximum amount of time
for the loop, plus additional exception code to be executed when the given bound on time
or iterations has been exceeded. Furthermore, marker and scopes are defined. A scope
specifies a range of instructions in the code while a marker, within a scope, denotes how
often this particular path may be executed through the marker within one execution of the

4

2.1 Control Flow Analysis

associated scope. Markers are not allowed within nested loops. Using this system, the
number of paths to be investigated are reduced considerably. A major drawback of the
system is the necessity for many coding restrictions, and a simple underlying hardware
i. e.; the processor utilises no caches and pipelines. The tool of Park and Shaw presented
in [69] prompts the user for information on loop bounds, wherever needed.

Stappert, Ermedahl and Engblohm describe in [77] a more elaborate system where scopes
and flow facts are used. The scopes provide a hierarchic description form of the program.
The flow facts create restrictions to the possible path combinations like, for example, the
number of times a given path may be executed within a loop, or the infeasibility of
particular path combinations.

A symbolic expression of the number of loop iterations is used by Colin and Puaut in
[20]. This allows the programmer to provide a closer bound on the number of loop iter-
ations, for example, with non rectangular nested loops. In non rectangular nested loops
the inner loops are not iterated to their maximum all the time. A classical algorithm
providing this property is the bubble sort algorithm, where the number of inner loop iter-
ations decreases with the number of outer loop iterations. The gain can be considerable
depending on the nature of the program, but the additional complexity leads to an error
prone process of annotating the program which is not easily verified since no functional
property of the program is affected. Only a tedious manual check of the provided anno-
tations, or a measured sample execution which exceeds the provided WCET, may reveal
errors.

2.1.2 Symbolic execution

The deployment of symbolic execution as compared to manual annotations has the major
advantage of avoiding the error prone annotation process, while the largest obstacle is the
complexity of the problem itself. Gustafsson and Ermedahl describe in [22] a symbolic
execution approach for a subset of C. In order to cope with the complexity, while at the
same time avoiding serious overestimations, a mixture of value ranges and value sets are
used. Whenever a value cannot be determined to a single value during data flow analysis
ranges, or set of values is used as appropriate. A variable may also have both a set of
values and a range of possible values.

In [58] and [59] by Lundqvist and Stenstroem the paths are simulated, but the values
are either defined exactly or are marked unknown. No sets of values or ranges are used,
thus the complexity is reduced considerably, even though this reduction is known to be
of lesser accuracy. Whenever an if statement is encountered with an unknown in the
decision statement, both paths have to be analysed. When two branches are joined, a
conservative merge of the variable values is done. The memory and register state are
joined, but only identical variables render a specific value for future reference of this

5

2 Related Work

variable, all others being assumed as unknown. Pipeline effects are considered at these
joining points, by adding machine state information. As regards the caches at a join
operation, the penalty potentially incurred by the cache state of the path with the shorter
WCET is estimated. When this penalty, plus the WCET of the shorter path, is smaller
than the WCET of the longer previous path the cache state is taken from the longer path.
Otherwise only memory references contained in both joining cache states are considered.
This results in many unknown references in the caches. At each branch instruction the
path with the least progress is chosen for further analysis, thus ensuring that loop bodies
are completed before iterating. The extensions to ranges or sets of valuables is relatively
easy to implement.

Liu and Gomez use a similar approach in [57]. Here, as well, the value unknown is
introduced to handle complexity and undetermined path execution. In the first instance,
the program is transformed to carry additional parameters which describe the execution
properties. These properties provide the number of primitives used by the program.
The execution time of these primitives is measured once and this information is used,
together with the symbolic evaluation, to provide the WCET. This approach is, however,
unsuitable for processors with acceleration techniques.

A slightly different method is presented by Ernst et al. in [88], [87] and [91]. Symbolic
execution is used in these papers to detect input dependent, and input independent parts
of the program. These properties are used later on in hardware modelling, where input
independent parts can be bound much closer to the real WCET than parts which lack this
property. The parts are separately analysed by a cycle true processor simulator, when
available, or with instruction timing addition for a simple processor architecture.

Healy et al. in [34] focused in bounding the number of loop iterations. First of all, those
branch instructions that can affect the number of loop iterations are identified by utilising
compiler techniques like computing the dominator tree. Then the conditions under which
these branch instructions change direction are computed by utilising compiler optimiza-
tion techniques like loop unrolling. Next follows a reachability analysis to determine
in which iteration a certain branch instruction is actually met. For loop exit conditions,
dependent on input variables and loop invariant, the user is prompted to provide bounds
on the values of these input variables and the number of iterations is computed. Finally,
nested loops, where the number of inner loop iterations directly depends on the outer
loop iteration, are considered. The loop bound is provided using a symbolic summation
expression.

Blieberger, Fahringer and Scholz in [11] use symbolic evaluation to determine the cache
usage of an application. To demonstrate this, instrumented C code is evaluated symboli-
cally, yielding a symbolic tracefile which indicates the memory references accessed. By
symbolic evaluation a cache hit function, dependent on the input data, is computed.

6

2.2 Execution Time Estimation

2.2 Execution Time Estimation

In order to estimate the best and worst case execution time, we can utilize modelling and
measurement based approaches. Since these approaches often focus on small portions of
code, a third major thrust in research dealing with the computation of the execution time
bounds of the whole program out of the execution time bounds of the parts.

2.2.1 Hardware Modelling

The work in this field can be divided into two approaches, that of modelling either simple
processors or partial features of more advanced processor.

An analytical model exclusively for caches is the sole focus of Harper, Kerbyson and
Nudd in [33]. This approach is limited to rectangular nested loops. In the first step, the
cache footprint i. e.; the used cachelines of each memory reference, is computed. The
memory references with identical access patterns are grouped into translation groups.
Secondly, the cache footprint of the translation groups are computed. Finally, the inter-
ference is computed. The authors distinguish between spatial self interference, spatial
cross interference and external interference. Self interference is caused when the mem-
bers of a single array within one loop iteration are referenced in such a way that they
preempt each other. The act of members of a single translation group preempting each
other is called cross interference. External interference, on the other hand, is present
when members of different translation groups force each other out of the cache. The re-
striction to rectangular loops considerably narrows the application field of this approach.

Narasimhan and Nilsen analyse a pipelined RISC processor in [67]. The presented
pipeline simulator is fairly straightforward. The main focus of this paper is the aspect of
portability with regard to which data must be provided in order to configure the presented
analyser for a given processor.

The branch prediction unit of the Intel Pentium processor was investigated by Colin and
Puaut in [20]. The caches provided by the processor are switched off. A classification of
the control transfer instructions is introduced and fed into a branch predictor model. No
actual modelling of the pipelines, or the execution time, was conducted.

Stappert and Altenbernd model a processor including caches and pipeline, but simplified
the analysis by assuming straight-line code in [75] and [76]. According to the authors
straight-line code i. e.; code without loops or recursions, is found quite frequently in code
produced by automatic code generators. The analysis begins on basic block level and is
then extended to handle inter basic block interferences. Part of this work is used as local
low level analysis in [77] by Stappert, Ermedahl and Engblohm. Here, a 32 bit RISC
micro–controller with pipeline, but without caches, is investigated. Loops are broken up

7

2 Related Work

and the basic block responsible for iteration or continuous operation is duplicated. Thus
the pipeline analysis of the loop iteration is decoupled from the analysis of the loop exit.

Li, Malik and Wolfe in [54] model a processor with direct mapped instruction cache. The
analysis begins at basic block level. Nevertheless, the execution time of a sequence of
instructions is assumed to be time invariant, and subroutines are handled as if inlined for
multiple calls to this routine. Thus the gain of the instruction cache by multiple calls of
a subroutine is voided. A cache conflict graph is used to determine the number of cache
hits and misses.

Coloured petri nets are used by Burns Koelmans and Yakolev in [29] to model a super–
scalar processor. The instructions are modelled as tokens passing through the petri net.
These tokens have source and target dependencies to model the register and memory
reference usage. A small non-determinism example extends the model into 4 different
execution states which shows the major weakness of the approach due to the fact that the
state space explodes with only a small number of indeterminisms.

A case study for WCET analysis for a MIPS R3000/3010 is presented by Hur et al. in
[36]. The processor has a pipeline and direct mapped data and instruction caches. Start
of the analysis is done on basic block level. With each basic block the pipeline state
at the beginning and end of the basic block, and the cache usage, is computed. The
cache usage is provided as first reference and last reference. The term first reference
indicates the memory references that lead to a cache hit, if already in the cache, while
last reference provides the cache state after the execution of the basic block. When the
paths are resolved the last reference of all “executed” basic blocks are merged and used
as input for the first reference of the succeeding block. A very similar approach to these
reference sets of basic blocks is used by Wolf and Ernst in [86]. The memory address of
a data access is of the form baseregister plus displacement. The authors classify the data
references into three types:

1. Global data which is accessed through the global base register i. e.; the memory
location is known and fixed.

2. Local data referenced through the stack pointer where the actual memory reference
is dependent on the calling structure.

3. Finally, all other accesses which are assumed to induce two cache misses. One
cache miss due to the potential necessary load of the referenced data, and another
for a useful cacheline preempted by this reference.

This has been extended in [50] and [52] to determine the intertask preemption delay in
multitasking systems (cf. Section 2.4).

In [46] and [45] Kim, Ha and Min try to determine the overestimation sources of WCET

8

2.2 Execution Time Estimation

analysis. They consider data caching, instruction caching, pipelining, effects across basic
blocks (combines virtually the first three) and the effects of infeasible paths. To analyse
the amount of overestimation introduced, by not considering the effects described above,
they introduced some switches into the previously described MIPS R3000 simulator in
order to be able to switch the consideration of these effects off and on. The impact of the
infeasible path analysis is orthogonal to the rest and is therefore handled separately.

In [60] Lundqvist and Stenstroem address timing anomalies in modern processors. They
show how a cache miss can speed up execution on processors equipped with out-of-order
execution units. In their investigation, they used a reduced PowerPC Simulator derived
from psim from Cygnus.

The work of Müller et al. starting with the dissertation of Müller [64] over [7] up to
the recent publication [65] focusses on the simulation of caches with special regard on
instruction caches. All cache accesses are classified into:

Always Miss : this memory access will never hit the cache.

Always Hit : this memory access will always hit the cache.

First Miss : within execution of this program/loop, the first access will miss and all
subsequent accesses will hit the cache.

First Hit : within execution of this program/loop only the first access will hit and all
other accesses will miss the cache.

For this classification abstract cache states (ACS) are introduced. These ACS describe
all the memory references that might be in the cache at a given point of the program. It
contains the addresses of the memory references and the corresponding age. The age is
necessary for the least recently used preemption computation for the cachelines. Each
basic block takes an ACS as an input and transforms it in accordance with the memory
references inside the basic block. At a junction point, where two or more paths are
joined, the ACS of all paths are combined in such a way that all memory references that
are potentially held in a cacheline at this point are included into the the joint ACS. The
modelled cache has only a size of 256 bytes.

The fundamental theory of the work above has been used by Theiling, Ferdinand and
Wilhelm as a basis in [79]. They have developed three analysis steps to determine the
type of memory reference with regards to the classification of memory references above.
The must analysis abstracts the age of a memory reference i. e. the minimum lifetime
of this reference. The join operation after alternative paths takes only those memory
references into account, which are contained in the abstract cache states of all paths
joined at this point. The age of these references is assigned from the age of the oldest i. e.;
most likely to be replaced reference in the joint ACS. This allows the detection of always

9

2 Related Work

hits. The may analysis focus on identifying always misses. The join operator takes all
memory references potentially held in the cache. If the memory references of two paths
to be joint have a different age, the minimum age is taken. The persitance analysis is
utilised to detect first misses. The persitance analysis is a blend between must and may
analysis. The join operation takes all memory references as in the may analysis, but
picks the oldest age of duplicate entries as with the the must analysis. Additionally, the
persistance analysis tags memory references which have been removed from the cache.
If a memory reference is not an always hit, but has not been removed out of the cache
then it has to be a first miss access.

A Motorola PowerPC with pipelines and caches but without caches is the target platform
for Hergenhan and Rosenstiel in [35]. Their analysing tool GROMIT takes assembler
text, a simplified processor description and a path relation file as input. The latter pro-
vides essentially all necessary control flow information. A cache conflict graph and cache
state transition graph are deployed for analysis of the cache behaviour. The authors pro-
vide a method to make a tradeoff between accuracy and simulation time. The output is
an integer linear programming problem description (cf. Section 2.2.3).

The problem of insufficient and flawed processor documentation is tackled by Atanassov,
Kirner and Puschner in [8]. To provide a reliable hardware model they utilise measure-
ments to complete and either correct, or proof the information regarding the execution
time of instructions as gathered out of the processor manual. The Infineon C167 used
processor is relatively simple since it has no caches or pipelines. After building a model
of the execution times of instructions this model is again validated against real hardware
by executing programs and comparing the results with that of the theoretical work.

2.2.2 Measurement Approach

Measurement based approaches have experienced a revival within the last couple of
years. Years ago the research focused on getting reliable information about worst case
execution time by means of measurements. As processors tended to be more complex,
using pipelines and having data dependent execution times for instructions, this was no
longer regarded feasible, with the result that the theoretic models were developed. Now
again complexity issues make those exact models almost infeasible for state of the art
processors. Additionally, it has been perceived that the documentation of the processors
is often inaccurate or incomplete.

A very simplistic processor without pipeline and caches is the target platform of Lindgren
in [56]. The paths of the program are instrumented by ADD opcodes to specific variables
identified with a path. Only a number of measurements with random input data are taken
and, together with the path counter, provide an linear equations system which is then
solved. By intelligent placement of these instrumentations the amount of variables can

10

2.2 Execution Time Estimation

be reduced drastically. For example, a piece of linear code succeeded by an alternative
needs only one counter for the linear code, and another within one of the two alternative
paths. More elaborate variants are possible. The gcov utility of the GNU gcc compiler
uses a similar technique.

The performance monitoring hardware provided by the Motorola PowerPC 604e proces-
sor is utilised to estimate the execution time in [61] by Corti, Brega, and Gross. The
ultimate target of this approach is not to put an upper bound on the WCET but to ap-
proximate the execution time for a given percentage of executions of the program i. e.;
a quality of service. The scheduler of their system will take care that a task using more
than it’s alloted time will be prematurely terminated. All instructions are measured under
best case conditions. The results are used to provide a cycle per instruction metric. A
given program is then run and the performance monitoring hardware counts the num-
ber of issued instructions, cache misses and mispredicted branches. This data is used to
compute an estimate on the worst case execution time.

An extreme value statistics approach is described by Burns and Edgar in [13], [14] and
[15]. Extreme value statistics are used in civil engineering in predecting worst case
weather or flood scenarios. This approach takes no information about the nature of the
executed program. A large number of measurements are taken and then an extreme
value statistics probability density function is matched to the measured execution time.
With this probability density function it is possible to provide an bound on the WCET
according to a required confidence in this value. This approach relies solely on the
statistical properties of the program since no worst case state and no worst case input
data is used. Additionally, code and data is preloaded into the caches of the processor.
The concept of extreme value statistics is explained in greater detail in Section 4.6.

Müller and Wegener compare an accurate timing model, as presented in the previous
section, with a genetic algorithm testing approach in [66]. The underlying idea of the
approach is to produce an estimate on the worst case execution time by trying to find
the input producing the WCET. One necessity for a useful deployment of genetic algo-
rithms on a particular problem, is the tuning of a large number of parameters. Here it
is the number of input parameters to the program. A SPARC IPX architecture has been
used for the experiments. The caches have been switched off, due to the fact that Ra-
tional Quantify, the tool used for the measurements, does not take the effect of caches
into account. Quantify performs cycle-level timing through object code instrumentation.
Thus overhead by the operating system was ruled out and repeated runs, with the same
parameter set, resulted in identical execution time measured. The results showed that
evolutional testings are unsuitable for providing secure bounds on the execution time of
a program. This is due to the fact that the parameter/fitness space in the case of a pro-
gram is a set of plains which may have no direct connection to each other, for example
a given if condition, where an input parameter is compared against a fixed value, and
is evaluated as either true or false. On the contrary, genetic algorithms work best with a

11

2 Related Work

contignous fitness/paramter space which may have a limited number of salti.

Writes to an address monitored by a logic analyser are used by Wolf, Kruse, and Ernst in
[89] to determine the execution time. The write addresses named trigger points inserted
in the source code have two functions. On one hand the trigger points allow for extraction
of the path which has been taken by the program, on the other hand the logic analyser
is capable of providing cycle true values for the execution time between two consecutive
measurement points. Thus a segment wise measurement with exact control of the taken
paths is possible.

2.2.3 Calculation Methods

Most of the approaches for WCET estimation are based on providing meta results as
regards the WCET estimation of partial constructs of the program. These constructs
may be individual opcodes, basic blocks or a group of basic blocks. The WCET of the
program is computed using either tree based, path based or implicit path enumeration
based approaches. Syntactical parse trees, as used by compilers, are usually used for the
tree based approaches. Using a bottom up method each edge in the tree is assigned a
execution time, and the overall worst case execution time is computed by summing up
the edges according to the rules given by the control flow analysis. The work of Puschner
and Koza in [71] resorts to this comparably simple method.

The path based approaches search all potential execution paths explicitely given for the
one with the longest WCET. This method works well for flow restrictions within one
nesting level, but gets rather complicated when the restrictions stretch across different
nesting levels. Stappert and Altenbernd use this path based approach in [76]. As de-
scribed in the previous section, the approach computes the individual WCET of all paths
in non-looping software. After this, k paths which have the greatest WCET are checked
for feasibility. If one or more feasible paths are found, the largest WCET is provided
as WCET of the programm. Otherwise the shortest WCET of the k paths is taken as an
upper bound on the WCET. This has been extended by Stappert et al. in [77] to handle
each nesting level of a loop in itself. The flow information is used to limit the number of
paths to be analysed. The Dijkstra algorithm is deployed to search for the longest path in
the program.

Lundqvist and Stenstroem use a comparably simple technique for their machine mod-
elling approach in [58] and [59]. To bound the number of paths to be investigated the
largest WCET of all the paths joining in one point inside the program is taken. The
handling of caches has been explained previously in the hardware modelling section.

As regards the IPET approaches, each unit, usually a basic block, is provided with a time
variable WCETi and a counter xi. With respect to the constraints reflecting the results of

12

2.3 Operating System Analysis

potential control flow, the following equation is maximized:

WCETsum � ∑WCETi 	 xi (2.1)

Li, Malik and Wolfe [54] were the first to name this technique. An example of the
estimation of execution counts is that, the execution count of two sequential basic blocks
are identical. Given an alternative, the sum of the execution counts of the alternatives
equals the execution count of the preceding block. Further restrictions are loop bounds,
or mutual exclusive parts. The result of this description is a large number of linear
equations and linear inequalities. These can be reduced to an integer linear programming
(ILP) problem, which may be solved using existing ILP solvers. Another example of an
IPET based approach is the graph theoretical method of Puschner and v. Schedl in [72].
The authors assume the execution time of basic blocks to be known and constant. This
excludes all processors with pipelines and caches. The graph is used for loop detection
and finally mapped to an ILP problem.

Theiling et al. [79] use a virtual loop unrolling and virtual functions inlining method
to enhance the accuracy of their execution time estimate in the presence of caches and
pipelines. The result is still an ILP as in [54]. The approach of Hergenhan and Rosenstiel
in [35] is similar.

The basic idea of the approach presented by Wall et al. in [82] is to assign each Ada-
Source construct a worst and best case execution time, and to compute the WCET and
BCET of the whole program by linear superposition of the WCET and BCET of the
constructs. To identify the WCET and BCET measurements of reference programs with
a consecutive regression analysis is used. As processor, an Motorola 68030 derivate was
used which has not the problem of caches and complex pipeline structures.

2.3 Operating System Analysis

A general purpose operating system is the target of the profiling tool Kitrace presented
Kuenning in [49]. By insertion of TRAP instructions in the kernel code, a provided rou-
tine is called whenever one of the instrumented pieces of code is reached. In the provided
interrupt service routine, hardware counter are utilised to measure the time. In contrast
to the approach presented in this work no steps are taken to produce the worst case sit-
uation instead the measurement objective is to produce average performance measures
for operating system services. This approach utilised Motorola, Intel i386 and 68000 on
Sun OS 4.1.1 as target processors.

The focus of Colin and Puaut in [21] lies on the applicability analysis of their WCET
analysis tool on the operating system kernel. The main problems the authors encountered
are the dynamic features in general, and of these especially the memory management.

13

2 Related Work

The memory management allows dynamic memory allocation and deallocation. As re-
gards the allocation of heap memory, the search tries to provide a continuous piece of
free memory which suits the allocation request. This results in very pessimistic assump-
tions for memory allocation requests. A good part of RTEMS could not be automatically
analysed by their tool, and had to be thoroughly manually analysed and then modified to
be suitable for the tool. The overall result of the work is that automatic analysis methods
can also be applied to operating system code, but that usually a lot of manual work is still
necessary, since the constructs of the operating system supporting the dynamic features
of the operating system are not easily accessible to automatic analysis.

2.4 Scheduling Analysis

In the literature a huge amount of scheduling schemes and corresponding proof methods
are proposed. Most of these suffer from lack of support for non zero task switching times.
These non zero task switching times have two origins. One is the time needed for the
scheduling analysis itself, the other stems from the disruption of the working set within
the caches and the stalls in the pipeline (for further examples refer Section 4.2.1) on
modern processors. The consideration of schedulability analysis methods will be limited
to those approaches supporting these effects.

Busquets et al. provide a simple formula, and the corresponding proof, for a simple fixed
priority scheduling scheme in [16], [17], and [18]. A basic requirement for the applica-
bility of this approach is that the deadline of a task τ j is shorter than the interarrival time
of the task Tj. The approach tries to allocate a time window wi for the execution of the
whole task τi, including the WCET of the isolated task Ci, all blocking times Bi, preemp-
tions by tasks of higher priorities Hi and the corresponding penalty for the scheduling
algorithm and disruption of the cache γ j for each preemption. The cache preemption in
this γ j is computed solely by the cache usage of the preempting task. The preempted
task is not considered for this computation. The resulting equation for the schedulability
analysis is provided as follows:

wn
 1
i � Ci � Bi � ∑

τ j � Hi

wn

i

Tj � 	�� C j � γ j � (2.2)

An initial w0
i can be arbitrarily chosen. The formula computes a new execution window

w1
i by considering all effects that may arise during the initial set time window. This pro-

cess is iteratively repeated, until either the resulting window wn
 1
i exceeds the deadline

Di of the task τi i. e.; completion of task τi cannot be guaranteed before its deadline, or
the window stops to increase i. e. wn
 1

i � wn
i . In the latter case the execution window

corresponds to the response time of the task i. e. Ri � wn
i .

14

2.4 Scheduling Analysis

Lee et al. present in [50] and [52] an integral approach for modelling the processor with
caches and the schedulability analysis. The cache related preemption delay is bound by
inspecting exactly the cache behaviour of the different tasks, and compute the amount
of cachelines of task τi which might actually be dislocated from the cache due to the
preemption of task τi by τ j. The interactions are presented as an equation system which
are solved by employing an ILP approach.

15

3 Real-time and Monitoring

3.1 Real-time

The term real-time system is often confused with extremely fast system, but a real-time
system is actually defined by time constraints which can be in any given order of magni-
tude. Most technical systems, have such time constraints which usually take the follow-
ing form:

The result has to be delivered within x seconds after the triggering event!

Such time constraints are called relative deadlines or simply deadlines. Examples of
such deadlines can be as short as some tens of nano seconds for the inter bit timing of
a 1 MBit/s CAN controller (Controller Area Network) or as large as several hours for a
weather forecast system.

Because of the central role of time constraints in real-time systems, these systems are
classified according to the type of time constraints. The first class of real-time systems
are the soft real-time systems. This class covers those systems where a miss of a deadline
results in degraded performance, and/or the increasing of costs. Examples of this kind
of deadline would be, for example, the response time of an entertainment system (e. g.
car radio) after pushing a button, or a stall in a production line due to a communication
timeout and retransmission. While the first leads to reduced customer satisfaction and a
possible loss in market share, the second leads to direct loss of production output (return
of interest). Most systems belong to the soft real-time systems. Figure 3.1 shows the
development of costs versus time in real-time systems. With soft real-time systems (line
1 and 2), the miss of a deadline simply leads to an increase in cost. In the case of most of
those systems, a deadline miss can be tolerated, as long as the probability of such a miss
is less than a given value.

The second class are the firm real-time systems. In these systems, the miss of a deadline
leads to the result becoming worthless. An example of such a system is a weather forecast
system, where the result becomes void no later than when the forecasting horizon has
passed.

16

3.2 Monitoring

Constraints
Hard Real−Time

Constraints
Soft Real−Time

3

1

Response TimeDeadline

Cost

2

Figure 3.1: Cost Function of real-time-Tasks [30]

The hard real-time systems build the third and last category. A miss of a deadline here
is followed by more or less catastrophic consequences. The consequence is usually loss
of life or, at the very least a serious amount of money. We think here of an X-by-wire
system in vehicles and planes, or of simple things like the destruction of a machine and
the following halt of a complete production line. Line 3 in Figure 3.1 shows the enormous
jump in costs. A deadline violation is considered fatal and cannot be tolerated.

3.2 Monitoring

A monitor is a tool, or a set of tools, that facilitate analytic measurements in observing
a given system. The goal of these observations is usually the performance analysis and
optimisation, or the surveillance of the system. The reason for the latter may be a mea-
sure of safety to avoid critical system states or unauthorised access. In the following the
focus will be set on performance monitoring as part of the development process.

There are a number of major questions which have to be answered in order to to decide
which monitoring scheme should be used.

1. What information is pertinent to the measurement objective?

2. When or under what condition should the information be gathered?

3. How to obtain the desired data and what is the impact of the method?

Identifying the measurement objective, and the relevant data needed to reach this ob-
jective is the first step to building a monitor. In the literature the focus is often set on
measuring and optimising the performance of multiuser computer systems (e. g. [24],
[78], and [25]). The relevant data in this case is the number of user processes running

17

3 Real-time and Monitoring

concurrently, the amount of computation time consumed by the operating system, and
the amount of time spent waiting for external hardware (communication and IO).

Generally, the objective is to gather information about either system states or events.
In the case of events, this may be the number of events in a given interval or the inter
arrival time between events. Examples of such monitor events are the occurrence of an
interrupt, or access to a particular piece of hardware. In the case of system states, the
basic factors are the probability or the duration of a specific state. Typical examples of
relevant system states may be the number of users in a multiuser system, or the execution
of the idle task in a simple multitasking system. The work of Ferrari et al. in [25] focuses
on state observation for tuning and optimisation purposes. Systems with a state based
monitoring objective can be treated as an system with event objective, whereas a change
in the system state is defined as an event.

Selector
element

Processing
element

Measured
system

Recording
element

Interpreter
element

Instrumentation

Figure 3.2: Structural Elements of a Monitor [78]

Figure 3.2 shows the typical structure of a monitoring system. The system under inves-
tigation is instrumented in a way, to produce the data needed. That may be for example
some additional code in the software, or the connector to the system bus. The selector
element serves as a filter, focussing the measurements towards specific relevant data. In
the case of the bus-monitor, this may be the detection of access to a particular memory
address. The processing element brings all the relevant data together and in some cases
performs data preprocessing, while the recording element is used to store the data to a
suitable device. This may be, for example, a memory portion or a hard disc drive. The
data stored consists usually of the event or system state type and possibly a times tamp
and/or additional values of variables, or registers of interest. The interpretation and visu-
alisation of the accumulated measurement data is usually done off line. In cases where
this is done online, it is often executed on an additional computer, to avoid the commonly
large impact this part of the operation would have on the measured system.

3.2.1 Event Detection

The question “when to sample” is closely related to the potential data to be gained from
monitoring. Detecting an event to sample the relevant data is one possibility to achieve

18

3.2 Monitoring

this. Such a monitor is said to be event-driven and the data produced by this mechanism
is called an event trace. Events can be classified into software and related events called
software events and hardware events. A software event occurs when one of a set of
certain points in code is executed, e. g. the start of an I/O-routine, or the value of a
variable being within a given range. A hardware event may, or may not be, directly
dependent on the logical content of a piece of software executed but consists of the
appearance of a signal constellation in the circuitry of a system component. Typical
examples for hardware events are a cycle stealing DMA request or the change of state
of a photo sensor. Many hardware events generate a corresponding software event like
an interrupt request and vice versa a specific piece of code which is recognisable as an
opcode fetch of a specific address.

It is usually easier not to build an event detector for every single event type but to trig-
ger instead on event groups. This may be the occurrence of, for example, any interrupt
instead of two or more specific ones or simply avoiding to trigger on a complex signal
pattern and using a less complex pattern while taking into account that there will be
an additional registration of events which are of no interest regarding the measurement
objective. This corresponds to a strongly reduced functionality of the selector unit in
Figure 3.2 and is called full trace monitoring. The concept of full trace monitoring has
several drawbacks. First of all the impact on the system under test has to be consid-
ered. In addition to this, the amount of data to be processed increases very quickly thus
producing problems (e. g. the rapid filling of available buffer space and the problem of
pushing the data to a mass storage system). In order to avoid these problems, it is usually
reasonable to make the event trace selective. But even without full trace monitoring the
amount of data accumulated is often considerable.

There are two basic fields of application for event driven monitors. The count mode
and the interval mode. In the count mode the number of events of a given kind, which
occurred in a given interval, are of basic interest. An example of such measurement
objectives would be to get a statistical grip of interrupt activity. In the interval mode for
each event the type of the event and the time, this particular event occurred, is stored.
The time is usually relative to the first event or system start. A sample application field
is used to extract the amount of time a system is persistent in a given state.

3.2.2 Statistical Sampling

The design of an event detection mechanism, as described in the previous section, is
usually very time consuming. As an alternative method statistic sampling can be utilised.
Unfortunately as the name implies only statistical statements can be derived from these,
i. e.; it is only applicable when the exact sequence and number of occurrences of a given
state is not needed. In contrast to the event monitoring, which provides all the relevant

19

3 Real-time and Monitoring

data for the monitoring objective, only a subset of the system is taken into account. This
subset is defined by the points in time the samples are drawn.

The state of the system may be sampled either in periodic, or in statistic intervals, or in
periodic intervals with a statistic deviation. While the periodic intervals have the prob-
lem of potential aliasing effects in the observation, the mere statistical approach suffers
from the fact, that a local burst of samples may produce a completely wrong view of
the systems properties. To avoid both problems the two methods are often combined
using periodic intervals with statistic variation. Thus the aliasing effect is avoided while
observing the system. The major advantages of this method is the usually simple im-
plementation of such a monitor, and the comparably small impact on the system. On
the other hand, the method degrades considerably in the face of system states, which
are seldom reached or which are only observable for a very short time. In the presence
of such states only two ways remain to observe and gain statistical relevance for these
states. Either the sampling rate or the test interval have to be increased. While in the first
case the impact on the measurement object will usually rise, the necessary extension of
the test interval is often very painful and not feasible. In both cases the data volume that
needs to be handled increases considerably.

Since statistical sampling can be done using an event driven monitor in combination
with an induced event load, the main focus in the further discussion will be laid on event
driven monitors.

3.2.3 Hardware Monitoring

The main characteristics of a hardware monitor is that they are external to the system
under test. The connection of hardware monitors to the system is realised by high
impedance probes (see also figure 3.3). Thus hardware monitors for digital systems
do not need any of the resources of the system under test and usually imply virtually no
influence to the measured system at all. However even the high impedance probes of the
monitor add to the electrical load to the signal and, therefore alter the timely behaviour of
the signals slightly. In modern, fast computer systems, this minimum change at critical
points of observation can lead to random errors or completely inhibit the system’s oper-
ation. These critical points obviously need to be eliminated from the list of observable
signals. Thus, generally, it can be assumed that hardware monitors are systematically
induced and more accurate than software or hybrid monitors.

The probes may be connected to concentrators, or in simpler monitors fed directly to the
logic modules. The concentrators collect the various signals from the probes and trans-
form these to signals compatible with the tools internal structure. It is often possible
to switch the impedance of the probes as deemed necessary, by sending control com-
mands to the concentrators. The logic modules implement the event filters by logically

20

3.2 Monitoring

Measured
system

Logic
modules

Controller

Storage

Memory

Man Machine Interface

Controlling Software

Clock

Probes

ConcentratorConcentrator Concentrator

Figure 3.3: Elements of a Hardware Monitor [25]

combining the signals from the probes as specified by the user. The complexity of the
capabilities of the logic modules varies vastly from detection of a simple combination
of a number of input signals, the combination of input signals to numerical values and
tracking of the, for example, less, greater, between limits type, to the congregation of
rather complex signal patterns over time. In older systems the logic elements were ba-
sically plug boards, while in modern systems programmable logic devices like FPGAs
programmed at reset by static RAM are used. The clock in Figure 3.3 is necessary for
synchronising the incoming data. The task of the controller is to transfer the relevant
data to the main memory.

Hardware monitors are often built on the basis of personal computers. This has several
advantages. First of all, this frees the developer of a hardware monitor from having to
design of the basic system which usually consists, besides other less important things, of
a user interface, storage facilities and considerable memory space. The storage facilities
are usually needed to file away the enormous amount of data for later processing which
often exceeds an economical legitimate amount of RAM. To fill the gap between the main
memory and the controller, the controller often implements a small buffer and transfers
its contents via direct memory access (DMA) to the main memory.

Logic analysers are often used as implementations of hardware monitors, since they are

21

3 Real-time and Monitoring

equipped with all necessary elements i. e. the probes, triggering logic, memory and the
user interface, but a given logic analyser is only suitable as a hardware monitor if it
provides the essential elements of counters or interval measurement.

An example of a hardware monitor is described in [47]. Klar et al. focus on monitoring
of distributed systems by utilising the self built, event driven hardware monitor ZM4. For
evaluation and correlation of the measured data the tool Simple is deployed.

3.2.4 Software Monitoring

As the term software monitors implies these tools are based on software technology as
opposed to hardware monitors. To make a software monitor work, extra code has to be
inserted into the system under test. There are three possible ways to do this:

1. Modification of the software under test.

2. Modification of the operating system or system task.

3. Addition of a task.

The method chosen depends on the measurement objective. In the following an exclusion
is assumed, whenever the method is not suitable for measurement. The third method
which simply involves adding a task or program is usually preferred, since it is easy to
add if required and easy to remove if not. In this way, the integrity of the application
software and the operating system is maintained. This kind of tool requires appropriate
interfaces to application software and operating system to gather the needed data. An
unfortunate limitation of this method is that it will almost always be restricted to the
class of monitoring objectives that allow sampling techniques.

The second method is used whenever the required data is not accessible to user tasks.
Advantages of the extension portion in the operating system are the accessibility of the
memory of all tasks and the easy transition from measurement to production code for
the application software. A major reason for non-applicability of this method is that
commercial real-time operating systems are usually delivered without source code and
thus a developer has no means to implement the necessary extensions.

The last possibility, or first method, can also be seen as the use of software probes. Sim-
ilar to the hardware monitors, the probes are placed at critical points in the software to
be measured. The freedom of this process puts forth an enormous application area, how-
ever, the placement of these probes is critical, time consuming and must be redone with
every new application under test. Another problem is that of accessibility of the nec-
essary hardware. Modern processors often supply clock cycle counters, which are very

22

3.2 Monitoring

useful in getting an exact time for software monitoring. However, these cycle counters
are, in many cases, only accessible in the supervisor mode of the CPU. This mode is
often reserved for the operating system. In the case of real-time systems the application
software is often organised in threads rather than in tasks. The basic difference between
a thread and a task is that each fully fledged task has its own separate and protected mem-
ory area whereas threads share their memory. The threads of a real-time systems usually
run without memory protection, in the supervisor mode, to avoid the considerable task
switching times implied with the memory protection and the change of the priority level
while evoking system calls.

Commercial operating systems, even without working with the thread mechanism, al-
low the implementation of interrupt service routines. Thus the necessary access can be
implemented via a trap mechanism i. e. a software generated interrupt. The use of a func-
tion call instead of a trap within a thread based operating system allows greater accuracy
since the switching time from user to kernel mode is afflicted with indeterminism.

The ease of obtaining descriptive data is an outstanding advantage of software monitors.
Because of this, much cryptic post processing needed to reconstruct the data can be
avoided. Since the software tool can access the main memory, usually all relevant data
can be gathered. As opposed to this hardware monitors depend on the information that
passes on system buses.

Software monitors have, in contrast to hardware monitors, the undesirable effect of al-
tering the system under test in a non-obvious way. This change in the system is called
monitoring artifact. In general, the changes introduced by the monitor to the system
require memory, possibly I/O resources, CPU time and alter the state of the acceleration
techniques of the CPU (cf. Section 4.2.1).

Further information to software monitors can be found in Section 5.2. of [25].

3.2.5 Hybrid Monitoring

Hybrid monitors combine the advantages of both software and hardware monitors. Event
detection is implemented using software probes. Thus, the great flexibility of software
monitors is maintained. The preprocessing of relevant data is implemented in the hard-
ware part of the monitor, and therefore reduces the impact of the monitor on the system
under test.

The event detection is realised in two parts. One is by the insertion of additional code
like in the software monitors described before. These probes trigger the hardware part
either by a set of general purpose I/O pins of the processor, or by a memory access
to a specific memory. The latter can be used to provide additional information to the
hardware monitor, where a write access is usually used for that purpose. The hardware

23

3 Real-time and Monitoring

part combines this information with the data gathered in parallel by hardware probes,
and is also responsible for the recording of the gathered data.

∆t
∆t

Monitor
(Code)

Event Detection

Storage

t

Hardware Monitor Software Monitor Hybrid Monitor

ApplicationApplication Monitor Application

(Code)

Monitor

Figure 3.4: Temporal Impact of Monitor Types [63]

Figure 3.4 depicts the impact of the different monitoring schemes during the time the
execution of the application is suspended. The hardware monitor induces no such im-
pact, whereas hybrid monitors generate a rather small suspension time on the application
software and software monitors suffer considerably from this effect. It should be noted
that the actual suspension time is strongly correlated to the amount of data gathered in
the software part of the monitor.

Liba Svobodova covers hybrid monitors in greater detail in Section 6.7. in [78].

Despite the greater accuracy of hardware monitors, the simpler application of software
monitors and the blend of interests in the intermediate hybrid monitors a comparison
can not be made assuming they had equivalent fields of application. Some monitor tasks
can only be performed by using software and some only by utilising hardware monitors.
Even if all monitor types were possible, one monitor type would usually be superior to
the other from either a technical, or economical point of view. This is induced by the
different types of events, which must be detected, and the varying depth of information
needed.

The measurement objective is to retrieve the worst case time of a given piece of code.
This excludes the sampling monitor from the list, since it is only suitable for retrieving
statistical information on the run-time of code. Event driven monitoring on the other
hand is able to provide the necessary information i. e.; the interval time between two
measurement points within a program.

A basic desired functionality of the measurement is to provide the given piece of code

24

3.2 Monitoring

with a worst case scenario of processor state. Taking this into consideration, one can
distinguish between two kind of processors:� Processors with caches and other acceleration techniques. In general, processors

with acceleration techniques like branch prediction and speculative execution use
these techniques only in addition to caches. These kind of processors are used
whenever a serious amount of computational work needs to be done. This might
be a driving assistance system or a telecommunication calling centre.� Processors providing only simple pipelining, or no acceleration techniques at all.
These are used often in mass market products with low computational demands
like mobile phones (excluding the digital signal processing part) or the engine
control for a car.

The final decision as to which kind of monitor to choose, strongly depends on which of
the classes described above the processor belongs to. In the case of a simple pipelining
processor like the Motorola MC68332, there is usually no need for complex actions to
provide the worst case state of the processor. On the other hand, the execution of a
instruction at a specific address in memory can be easily tracked by utilising a hardware
monitor. To minimise the impact of measurement for this kind of processor hardware
monitoring will usually be chosen. Logic analysers are utilised in most cases like this, in
order to avoid having to develope a specific monitor.

To provide the worst case state for one of the more complex processors, it is usually
necessary to insert additional code into the software under test. A hardware monitor
might be able to detect the start and end of a piece of code on some processors, but
the additional inserted code necessary negates the advantage of not having to instrument
the software. The major advantage of a hybrid monitor is in reducing the impact of
the software instrumentation. The advantage of this monitor for software detection and
hardware sampling is again made void by the additional instrumentation used to provide
the worst case state of the processor.

A sepcial feature available with many modern processors makes a different hybrid moni-
tor possible: hardware detection and software sampling can be implemented by utilising
debug registers, which generate an interrupt whenever an opcode at a specific address is
executed. The following processor descriptions will therefore focus on relevant facts for
event driven software and hybrid monitors.

25

4 Models

For an embedded system, there are three basic parts, which need to be modelled. One is
the software which has to cover everything from application software to run-time system.
Another is the hardware the software is running on i. e.; the controlling computer with
processor busses and peripheral units. The last is the environment the system is embed-
ded in. While the former mentioned models are essential for the measurement method
itself, the last is only of marginal relevance.

4.1 Model of Embedding Process

Real-time computing systems are usually deployed as the controlling instance of parts of
their environment. One can think of examples like a drive by wire unit in a car, a quality
control in an assembly line, or a video based obstacle avoidance system on a mobile
robot. The connections to the environment consist of a number of sensors and actors.

In general, the deadlines are specified as the interval from detection on a set of inputs, to
the reaction on a set of outputs. The processor is involved only from the time an input
is registered, which is usually an interrupt, to the point where the write command to
external hardware is issued. To perform a real-time analysis, shortened deadlines have
to be used which only cover the time between the assertion on an interrupt and the write
command. To determine the extreme response times computed by the real-time analysis
(see Section 4.7), the maximum number of interrupts within a given interval is needed.
This is not only limited to interrupts issued from external sensors, it must also be applied
to interrupts of components of the computer system itself like, for example, timers, the
hard disc controller or the keyboard.

One method of providing these values is by specifying the minimum inter arrival time
between two interrupts of the same type. For the real-time analysis which is exemplified
in Section 4.7 it is assumed that these interrupts appear at the rate specified by this min-
imum inter arrival time. Situations where interrupt bursts have long intervals between
each burst lead to severe over-estimation of the induced load on the machine.

26

4.1 Model of Embedding Process

To circumvent this drawback the notion of event streams (ES) was introduced by Gresser
[31] and [32] and further utilised in [70]. In order to avoid confusion with the term event
of the monitor nomenclature and due to the fact that these kind of events usually generate
interrupt requests, this descriptions will further on be referred as interrupt streams or
IS. Interrupt streams are a formal means to express the maximum possible number i of
interrupts of a certain type within an interval ar, with the cycle time zr.

1 5 100 t14 15

Interrupt Stream IS

IS : ��� zr

ar ��� 3

r � 0
� ��� 7

0 ��� � 7
1 ��� � 7

3 ��� (4.1)

Figure 4.1: Interrupt Stream Example[70]

An example of a possible interrupt stream and its notation is given in Figure 4.1. This
corresponds to the following statements:

1. At most 1 interrupt within interval 0 i. e.; no simultaneous interrupts, as there is
only one tuple given with ar � 0.

2. Within any interval of 1 time unit chosen of the stream there will be at most 2
interrupts. This is denoted by the number of tuples with ar � 1.

3. At most 3 interrupts within any interval of 3 time units.

4. The pattern is repeated no sooner then every 7 time units.

The simple case of an interrupt with only a minimal distance can be expressed by a
single tuple specifying the period and an interval of 0. A tuple with a period zr � ∞ can
used to model unique interrupts after power on or during a long period of inactivity. In
[31] to take an example, an elevator is chosen where initially the request buttons at all
levels may be pressed simultaneously. Afterwards the request buttons lead to no more
interrupts until the previous request has been served.

In order to provide the maximum possible number of interrupts of type i within a given
interval T the following equation is used:

Ei
�
T ��� s

∑
r � 1

� ! " 0 : T # ar$
T % ar

zr � 1 & : T ' ar (zr # ∞
1 : T ' ar (zr � ∞

(4.2)

27

4 Models

An important restriction to the design of the interrupt stream tuple, is that they have to
provide the maximum possible number of interrupts when fed to Equation 4.2. Thus
the following set of tuples would be inadequate to describe the event stream depicted in
Figure 4.1:

IS � ��� 7
0 � � � 7

2 � � � 7
3 ��� (4.3)

To achieve this the distances in the tuples have to fulfil Equation 4.4.)
1 * r * s : ar � ar % 1 � ar
 1 � ar (4.4))

1 + r + s : ar # zr (4.5)

where s is the number of tuples in event stream IS. For the real-time analysis all possible
interrupt sources have to be described by such an IS.

4.2 Basic Hardware Model

Real-time system hardware can be divided into the processor and the peripheral hard-
ware. The border between the processor and the peripheral model depends strongly on
the used hardware. In the case of PC style hardware, a lot of peripheral components need
to be placed in the processor model.

The models have to be constructed taking the following two aspects into account:� To what grade can the worst case be established during measurement? How is this
achieved?� How can we consider in the computation of the WCET bound, those parts of the
worst case state, which cannot be manipulated to provide the worst case?

The information gathered thereby must be used later during instrumentation and WCET
computation. Sections 4.3.6.2 and 4.4.6.2 shows the analysis results for Intel Pentium III
and AMD Athlon as regards to the worst case state.

As previously stated, the PC and therefore PC style processors are used more and more
in computing intensive automation application fields despite the fact that PC style pro-
cessors are not build for these kinds of operation and the usually requested reliability.
There are three major reasons supporting this trend:

1. Computing power is comparably cheap with PCs.

28

4.2 Basic Hardware Model

2. The PC’s flexibility allows for easy extensions in the future. This, combined with
the previous point, can be used whenever a new application exceeds the computing
power, or memory capabilities of the system, to replace the base system with a
newer one without much effort.

3. Standard operating systems with real-time extensions can be deployed. This is
especially useful since the necessary drivers for a wide variety of hardware com-
ponents are available. In addition, the look and feel of the graphical user interface
(GUI) is well known by the users from their home computers.

A further reason for investigating these processors is their complexity. A method that
works for such an unsuited processor will likely be easy portable to processors of lesser
complexity.

In the following the basic necessities for a processor and peripheral model will be shown.
In Section 4.3 these model building processes will be discussed for the Intel P6 architec-
ture. The next Section will then display the similarities and differences of the Intel P6
and the AMD Athlon family. A more general and more detailed analysis of the Intel P6
core and the AMD Athlon can be found in Appendix A.1 and A.2 respectively.

4.2.1 Model of Processor

The processor is a major theme in the modelling of the system. The first step, is has to
define the boundary between processor and peripheral hardware. The level of detail of the
processor model is variable. However, as a basic line of thought one can assume that the
more accurate the model, the more reliable the results will be, with less overestimation
being needed. It will be essential to know at least the basic structure of the processor. A
minimum requirement would be to know the processor an assembler programmer level,
i. e.; knowledge of addressing modes, instruction and register set. The first questions that
have to be asked are summarised as follows:� Is the execution time of a single assembler instruction variable, or is it fixed?� Can additional executed code accelerate the execution of the rest?

Whenever an execution of all single assembler instruction is fixed, the values can usually
be found in the documentation. In this case, the measurement could be replaced by
simply formulating how often a individual instruction is executed and fed into a linear
equation system (e. g. [71], [54] or [91]).

There are basically two reasons why processors demonstrate the behaviour of variable
execution time:

29

4 Models

1. The execution time is data dependent. This is often the case for multiply and
division operations.

2. The execution time is dependent on data availability, context and/or due to statistic
deviations.

While the first reason is usually solvable by adding a penalty to the execution time, the
second source of execution time deviation has to be considered thoroughly in order to
provide save bounds on the execution time. Unfortunately sometimes both sources of
a variable execution time apply. Context dependent execution times, i. e.; the execution
time depends on preceding and/or succeeding instructions which are usually causally de-
termined by instruction caches or even simple pipeline structures like, for example, in
the Motorola CPU32 core. Data availability can be responsible for deviations due to the
effects of caches for the data or the different latencies of memory areas, for example,
memory mapped I/O, flash memory or static RAM. Statistic deviations are possibly in-
duced by asynchronous communication, for example, outstanding transactions on Intel’s
GTL+ bus. These execution time deviations are sometimes aggravated and sometimes
attenuated by parallel and/or out-of-order execution.

Modern hardware uses a variety of acceleration techniques to bridge the performance
gap between main memory and the processors. The throughput has evolved differently
for memory and processor. Whereas 20 years ago the memory available usually had
no problems keeping up with, for example the 4.77 MHz Intel 8088 processor, released
by IBM on August the 12th 1981 (IBM 5150 PC Personal Computer), today the core
frequencies have been tuned to about 300 times the 4.77 MHz, and the memory has only
accelerated at a factor of about 50 (assuming modern DDR SDRAM).

To keep the execution units fed with instructions and data, techniques like out-of-order
execution, branch prediction and last but not least caches have been introduced. All
these techniques lead to the fact that additional code can either slow down or accelerate
the execution of a piece of software. The following gives a short list of some of the
possible execution accelerator techniques, and the relevant information regarding the
measurement approach.

Memory Address Computation To support software independency of the number of
processes running concurrently and the amount of memory available on a partic-
ular computer, the addresses used by the software are virtual addresses which are
mapped at run-time to the physical addresses available on the given hardware. This
mapping consists mostly of a number of look-up tables and a few computations.

Caches Caches need to be described in terms:� type of cache: instruction, data or unified.

30

4.2 Basic Hardware Model� size.� organisation i. e. associativity, cacheline size, replacement scheme.� refill time regarding a possible write back.

A good description on general cache design with respect to the PC cache architec-
ture is given by Mazzucco in [62].

Branch Prediction The branch prediction scheme has to be known to such an extent as
to be able not only to identify the worst case state, but to provide this or at least
add sufficient penalties.

Pipeline The effect of instrumentation to the pipeline has to be taken into account. This
could be of relevance if the conditional and the unconditional branches make dif-
ferent use of the pipeline. In general it must be ensured that all instructions are
executed, in full, inside the measurement interval, i. e.; the first instruction just en-
ters the pipeline at the start of the measurement, and the last instruction has just
left the pipeline at the end of the measurement. In addition, the order in which the
pipeline is fed may not be changed.

Unfortunately the documentation of high performance processors is often insufficient
and incorrect. To provide save bounds for the WCET the model extracted out of the doc-
umentation must be verified and refined by various measurements on the real hardware.
The test suite generated by these tests should be stored in order to verify the processors
behaviour if the processor is replaced with a presumably similar one.

4.2.2 Peripheral Hardware

The components of the peripheral hardware vary vastly with processors and application
fields. Some can be viewed in isolation, some have to be considered interactively. Pe-
ripheral components required by the processor should be modelled with it. Examples
of such components could be the GTL+ bus of the Intel P6 family connecting the pro-
cessor to the host bridge also known as north bridge. The host bridge is the component
connecting processor via GTL+ bus with the main memory, the advanced graphic port
(AGP), the PCI bus and the south bridge providing connectivity to e. g. ISA and IDE bus,
parallel and serial ports, to name but a few. While the GTL+ is a necessary component,
the host bridge belongs to the chip-set. For the Intel P6 family more than 20 different
chip-sets are available. The following gives a few examples of peripheral components
and the detail of knowledge necessary. To actually provide sufficient models for all PC
components would exceed the scope of this work.

31

4 Models

4.2.2.1 Main Memory

The main memory is an essential component of all computer systems. In some con-
trollers the main memory is integrated on the controller chip, but more performant sys-
tems have external main memory which is usually random access memory (RAM). The
memory type ranges from static RAM (SRAM), dynamic RAM (DRAM) and synchronous
DRAM (SDRAM), through to double data rate RAM (DDR SDRAM) [44]. Due to the
current major relevance of SDRAM the focus is set on these. In SDRAM the memory
is comprised of capacitors which have to be recharged after a read operation in order to
retain the memory state. The capacitors used for data cells tend to bleed off their charge,
and therefore require a periodic refresh cycle or data will be lost. A refresh controller
determines the time between refresh cycles and a refresh counter ensures that the entire
array is refreshed. Of course, this means that some cycles are used for refresh opera-
tions, and therefore have some impact on performance. The refresh cycle is hidden from
the processor due to the fact that access of memory works in a decoupled request/serve
manner, i. e.; a data request is issued and the processor is able to do different things until
the data is provided by the memory. Typical values for such a refresh stall is 1 cycle of
the main–board frequency – which is often a fraction of the processor core frequency –
every 10 milliseconds.

4.2.2.2 Timer

Time is an essential value in computer systems. While high performance processors
provide cycle counters, usually timers are used to keep track of “external” time. In the
case of PCs the real time clock integrated circuit 8254 (cf. [38]) is used. It consists of 3
separate 16 bit counter operating with 10 MHz. The counter can be programmed with
6 different counting modes. Of major relevance is mode 1 which is a hardware retrig-
gerable oneshot and issues a timer interrupt at a given time whereas mode 3 generates
timer interrupts with a given period. For our case the granularity of 10 MHz and the time
needed to program the timer is essential. Since the timer is accessed by a system bus and
special port I/O commands, the programming time has to be measured with the given
hardware. For exemplary results see Section 5.3.1.

4.2.2.3 Interrupt Controller

The number of I/O pins is always an issue in processor development. Thus the number
of interrupt pins is often comparably low. On the other hand external hardware is often
not equipped to communicate with any given processor in order to issue an interrupt. To
get “simple general purpose” hardware connected to an interrupt on the processor usu-
ally external interrupt controllers are used. In the PC world two cascaded programmable

32

4.3 Intel Pentium III

interrupt controller (PIC) 8259A (cf. [37]) are commonly used. An 8259A provides 8
interrupt pins. Each pin can be assigned an arbitrary interrupt priority level which is
used for internal arbitration and is transmitted to the processor in the case of an interrupt.
Whenever the PIC has issued an interrupt to the processor it waits for an acknowledge-
ment before issuing another. With this approach the latency time between receiving and
issuing an interrupt, and the time needed for the acknowledgement, is of relevance (cf.
Section 5.3.3).

4.3 Intel Pentium III

The Intel Pentium III is one of the newer members of the Intel P6 family. The following
will give a very brief summary of relevant facts of the Intel Pentium III. A more detailed
description of the entire Intel P6 family is provided in Appendix A.1. Within this discus-
sion the Intel P6 family is quoted instead of the Pentium III, whenever a fact is also true
for the other members of the family.

4.3.1 General Architecture

One of the basic features of the Intel P6 family is its micro code core. The programming
interface is CISC architecture while internally RISC code is executed. The CPU core of
the Intel P6 family processors is divided in five parts. Figure 4.2 gives a coarse overview
of the architecture. The fetch/decode unit translates up to 3 external CISC instructions
into the internal RISC code within one CPU cycle. It is a in-order unit and contains
also the branch prediction unit which is described in greater detail in Section A.1.4. The
RISC code is called micro ops and contains two sources and one destination within one
command word.

The micro-ops are stored in the instruction pool. The instruction pool can hold up to
40 micro ops ready for execution, or already executed but not yet committed to machine
state. The effective execution of the micro ops is done in the dispatch/execution unit.
It is also responsible for the out-of-order execution capabilities of the processor. The
micro ops are executed as their operands are available. A dependency analysis in the
fetch/decode unit provides data integrity.

The results produced by the dispatch/execution unit have to be committed to the machine
state by the retirement unit. In order to support data integrity with respect to speculative
execution, speculatively executed micro ops may only be retired, after the path of the
speculative executed code is confirmed. According to target the micro ops are retired
in-order to the data cache or the CISC Intel architecture register set.

33

4 Models

I n s t r u c t .
P o o l

D e c o d e
U n i t

E x e c u t e
U n i t

R e t i r e
U n i t

F e t c h L o a d S t o r e

I n s t r u c t .
P o o l

D e c o d e
U n i t

E x e c u t e
U n i t

R e t i r e
U n i t

F e t c h L o a d S t o r e

B u s I n t e r f a c e U n i tB u s I n t e r f a c e U n i t

L 1 D a t a C a c h e
L 1 I n s t r . -

C a c h e L 1 D a t a C a c h e
L 1 I n s t r . -

C a c h e

S y s t e m B u sS y s t e m B u s

I n t e l A . -
R e g i s t e r
I n t e l A . -
R e g i s t e r

L 2
C a c h e

C a c h e B u s

L 2
C a c h e

C a c h e B u s

Figure 4.2: Building Blocks of the Intel P6 Architecture[41]

Due to the out-of-order execution unit, the measurement has to ensure that all instructions
under test are executed within the measurement window. At the same time it should
avoid the execution of unnecessary instructions within that same window. To ensure this
serialising instructions have to be executed before the first, and after the last instruction
under test. Whenever a debug register is written on the Intel P6 family such a serialisation
takes place.

Within a target address type the unconditional and conditional branch instructions JMP
and Jxx all share, with one exception, the same complexity and amount of memory
needed for the arguments. Such target address types are for example register indirect,
far, near, and short branches. The exceptional branch instruction is a short JCXZ opcode.
The complexity of this opcode is larger, since it checks whether the register CX is zero
and takes the branch if true. To ensure correct measurements in the case of branch
opcodes, which have to be instrumented, one has to check if the instrumentation of such
an opcode would be necessary. If this is the case, the opcode should be replaced in the
assembler code by a work around like:

mov %cx,%cx
je $TARGET_LABEL

The feasibility of this change has to be checked as the case arises. It has to be stated
that obviously this change must be maintained for the final executable as well. The
impact of this restriction is rather low, since the gcc compiler used in the experiments
seems to avoid this instruction by default. The data independent execution times of all

34

4.3 Intel Pentium III

instructions, especially multiplication and division, makes a further discussion of these
instructions unnecessary. The processor is connected to the peripheral units via the GTL+
bus and the north bridge. The peripheral units are clocked with a lower frequency than the
CPU. This induces a granularity in possible execution time probabilities. Additionally,
the possible reordering of replies to requests on the GTL+ bus leads to further statistical
influence on the execution time of a given piece of code.

4.3.2 Memory Organisation

The Intel P6 family provides the means for a paging mechanism of the processor. For
this mechanism a fixed portion of memory can be mapped to any address used in the
processor. This leads to the fact that the logical address of a program gives no indication
of its physical location in main memory1 or other storage devices. The caching mech-
anism on the other hand is dependent on the physical address. The usage of varying
physical location memory with fixed logical addresses is very useful for general purpose
operating systems, since this allows for efficient memory usage, but has to be avoided
for real-time systems due to the loss in determinsism. Thus one has to generally ensure
in real-time systems that the memory map is not changed from one execution to another.
This will be further discussed in Section 4.5.1.3.

For the mapping of logical to physical addresses, which is done transparently for the
software, the memory management unit uses a set of tables: the page global directory
and the page tables. These themselves reside in main memory. The translation lookaside
buffer (TLB) are little caches for these tables. To provide the worst case the TLB entries
must be invalidated. This can be implemented by a write access to the register CR3,
which is the base register indicating the start of the page global directory.

4.3.3 Caches

To close the speed gap between the fast CPU core and the comparably slow main mem-
ory, 2 levels of cache are deployed in the Intel Pentium III. The first level or L1 cache
splits up into data and instruction cache which supports the processors harvard archi-
tecture. The second level or L2 cache is a unified cache. All caches utilise a 32 Byte
cacheline. The exact cache sizes and their associativity must be individually checked
for a processor with the CPUID opcode. The Intel Pentium III processor has an inclu-
sive cache design i. e.; the data and code in the first cache level is also contained in the
second level cache. For the tests the write back caching strategy (cf. Section A.1.3) is

1However, usually the page has to be aligned to a multiple of it’s size. Thus in general the number of sets
in the cache, the data may be located in is small.

35

4 Models

assumed, thus modified data within the caches is written back on replacement of the cor-
responding cacheline. The replacement strategy for the caches is not clearly stated within
the documentation. With an L1 cache a pseudo least recently used (LRU) algorithm is
given, but the exact implementention of the “pseudo” prefix is not clarified further. The
replacement scheme of the second level cache is not even mentioned.

4.3.4 Branch Prediction

The branch prediction is divided in three parts. The return address stack (RAS), the
dynamic and the static prediction scheme. The dynamic prediction scheme is based on
the branch target buffers (BTB). The BTB is a 16 way set associative cache of 512 entries
that stores the target addresses of branch instructions. Whenever a branch instruction is
reached, the branch prediction mechanism checks first whether the instruction has an
entry in the BTB. If this is not the case, than the static prediction scheme is used. After
the branch has been retired, the computed target is moved to a BTB entry. A pseudo
random mechanism decides which BTB entry is displaced to make room for the new
entry. Additionally, the prediction unit for this BTB entry is initialised depending on
whether the branch was actually taken or not.

The prediction unit of a BTB consists of a 4 bit branch history shift register and sixteen
2 Bit bimodal counters with saturation. The shift register contains information on which
of the last four encounters of this branch instruction have been taken, and addresses
one of the counters. The counter is incremented up to a maximum value of 3 when the
branch is taken and decremented down to a minimum value of 0 when the branch is not
taken. If a valid BTB entry is found for a branch instruction the corresponding counter,
as addressed by the shift register, is checked as to whether it is likely that the branch is
taken, i. e.; the counter is set at 2 or 3, or not taken (the counter is 1 or 0).

After the branch is predicted the decoding of opcodes continues at the target address of
the branch instruction when the branch is predicted taken, and at the succeeding instruc-
tion to the branch instruction when the branch is predicted to fall through (not taken). If
the dynamic branch prediction scheme could be used, the target address is taken out of
the BTB without further address computation.

The return address stack is a small hardware stack that stores the addresses of the suc-
ceeding instruction of the last 16 subroutine call levels. Whenever a RET is encountered,
the top address on the RAS is taken and the decoding of opcodes is continued at this
address.

As has been previously mentioned, no speculatively decoded and executed micro op of
the instruction pool is retired, until the prediction is verified. In the case of a mispre-
diction, which may be target or the not taken prediction, the speculatively micro ops are

36

4.3 Intel Pentium III

marked as unused and the decoding and execution is resumed at the correct address. The
in-order retirement of micro ops allows only 40 subsequent micro ops to be pending.
Thus a bound of affected branch instructions can be computed by using the information
of produced micro ops per instruction given in Section 29 in [28].

4.3.5 Monitoring Support

The processor debug registers potentially provide the means for taking measurements.
Up to four addresses can be monitored in that way. The performance monitoring counters
(PMC) are two registers which were initially introduced as a means to optimise code.
They can be programmed to count various events, without having any influence on the
execution of the code. These events include, but are not limited to, the number of bus
accesses, cache hits and misses, or the number of correctly predicted branches. In other
words, they serve very well for the measurement of cache refill times which are needed
for the use of penalties. They can be utilised to determine the amount of cache hits
and correctly predicted branches within the measurement to compute the penalty for
preemption. The PMCs support the building of the presented processor model and help
to verify or rebute the manufacturers documentation. The timestamp counter is one of
the model specific registers of the Intel P6 family. It is a 64 bit register which counts the
CPU clock cycles since power on.

4.3.6 Relevant Facts for the WCET Measurement

As regards the previously described features of the processors three aspects can be iden-
tified which will then be seperately discussed:

1. How to ensure that the worst case path is measured?

2. How to provide the worst case state of the processor prior to the measurement and
to show to what extent this is possible?

3. Where to set the measurement points and show which monitor implementation has
been chosen?

In the following sections, the merit and drawbacks of different techniques is evaluated
for use in our approach.

37

4 Models

4.3.6.1 Path Enforcement and Detection

The first problem to solve is how to make sure that the worst case path is measured.
Basically three approaches can be distinguished here:

1. Use symbolic execution to identify the input data creating the desired path for
measurement.

2. Enforce the path to be measured by instrumenting the code.

3. Use random input data and detect which path has been taken during a measure-
ment.

4. Use random input data and assume that the worst case situation is covered by
utilising statistical methods.

The last alternative has been used, together with an evolutionary testing approach in [66],
but experiments have shown that the underestimation of the WCET varies to a broad
degree. Therefore, this approach has not been considered further. The third approach of
identifying the taken path can be accomplished in two ways. The first would be by single
stepping through the code, identifying the path and then measuring the WCET in one
run. The second would be to add code for the identification. This could be, for example,
incrementation of a given variable. Due to the inaccessibility of the instruction cache, a
detection of a path by an external hardware monitor is impossible. The single stepping
through the code is very time-consuming. The instrumentation for path detection and
enforcement of this is equally complex. However, the first has the drawback that many
tests are necessary to identify and provide a desired path, especially in the presence of
factual dead code, i. e.; code which may only be syntactically reached.

The symbolic execution of code like in [22] and [19] has the advantage of additionally
identifying the loop bounds, and detecting code which cannot be reached. The complex-
ity of such a symbolic execution simulator, and the time needed for the symbolic exe-
cution of larger programs and the test bed generation, is considerable. The enforcement
of paths can be done in several ways. The implementation has to allow for fall through
and branch behaviour, and provide the control over the number of loop iterations. A fall
through can be enforced as follows:� replacement of the branch instruction with NOPs.� replacement of the target with the address of the subsequent opcode.� addition of code which sets or clears a flag in the status register.� replacement of the conditional branch prediction with a more suitable one.

38

4.3 Intel Pentium III

The replacement with NOPs to simulate the fall through has the drawback of additional
cycles being needed for the decoding of the opcodes. A similar problem is induced
by the introduction of additional code to enforce the flags in the status register. Thus,
replacement of the target is the first choice for the enforcement of paths on an Intel P6
family processor.

In some cases the number of loop iterations has to be enforced. To achieve this, addi-
tional instrumentation code is necessary. Figure 4.3 shows the instrumentation of a loop
controlling structure at the end of the loop body. The corresponding implementation for
a control structure at the start of the loop is straightforward.

Original Loop Forced
MOV.L $LCOUNT,cvar MOV.L $LCOUNT,cvar

target: target:
...

...
NOP
NOP
NOP
NOP
NOP
NOP DEC.L cvar
Jxx target JNE target

Figure 4.3: Iteration Number Enforcement for Loops

Prior to the loop body a counting variable (cvar) has to be initialised by a desired value
which is in depicted case LCOUNT. Again the NOPs reserve the space needed for the decre-
mentation of the counting variable. The penalty to be used for this is two cycles for every
iteration of the loop.

For the purpose of the tests within this work the enforcement of paths has been chosen.
The implementation of symbolic execution, which would be first choice in terms of accu-
racy and overhead, has been avoided due to its complexity and dependency on the source
language. Furthermore, it is suspected that the restrictions necessary for the symbolic
execution would be significant.

4.3.6.2 Worst Case State

Due to the fact that data independent execution time already exists on the Intel P6 family
processors, the approach is freed from the task of providing the worst case data for the
opcodes. In this way, the focus is set on the worst case state of the acceleration features
of the processor. At the start of the measurement the caches have to be in the worst
case state. For the data cache this is useless modified data in the cache assuming write
back caching strategy (cf. Section A.1.3). Whenever a new cacheline for the application
has to be loaded, a dummy cacheline of worthless data in the corresponding set has to

39

4 Models

be written back to main memory first, until there are no dummy cachelines left within
the set. The instruction cache is much simpler and in a first solution it can be handeled
in a similiar way to the data cache with write through strategy. Since the instruction
cache cannot contain data which is changed, as compared to the corresponding memory
region, no write back is necessary and useless unmodified data is sufficient. With the
unified second level cache, the amount of data and instructions need to be considered.
Since cache design is already included within the P6 family, at least the L1 instruction
cache will reside unmodified in the L2 cache (cf. [62]).

If we are to be conservative, a penalty must be added to the measured values of first cache
size write backs, since the possible location of first level instruction cache in second level
cache is not fixed. A more realistic approach would assume that the amount of data not
to be written back is low when compared to the pessimistic assumption that the cache is
filled to 15/16 with data which has to be written back. In this way, this statistic deviation
can be neglected. The only, partially, known replacement scheme presents a problem in
itself. In order to cover this, more data than the size of second level and more code than
the size of the L1 instruction cache must be loaded. Additionally, the load functionality
has to be constructed so as to load the cache in random order. This is the only way that a
sufficient randomisation can be assumed. To cover the described effects is to load first the
L1 instruction cache and only then the data cache and L2 cache is filled. Another solution
for the problem of instruction caches is to write “self modifying code”. A write access to
a cacheline resident in the instruction cache causes this cacheline to be discarded out of
the instruction cache. The entry is loaded in the data cache and tagged as modified. Since
the write access to an address which is currently executed leads to a complete pipeline
stall, the last couple of cachelines in the measurement routine can not be handeled that
way.

The branch prediction is an additional problem which can not be provided in worst case
due to the pseudo random replacement scheme of the branch target buffers, and the reset
of the branch prediction at a new load of the branch target buffer. To provide at least
a known state, a considerable number of branches including their targets have to be
loaded into the branch target buffer. The reset of the branch prediction mechanism can
be assumed the worst case, due to the fact that usually a previously adjusted branch
prediction will enhance execution. A conservative approach would have to evaluate the
worst case state here.

Another effect that must be covered is that an empty branch target buffer leads to the use
of static prediction. It has to be checked, for each branch instruction in the code, whether
the static prediction was correctly predicted for the first encounter of the branch opcode
within a particular measurement. If the static prediction is correct, than a misprediction
penalty has to be added for this instruction. In small loops more than one visit to the
branch instruction might be necessary before the BTB entry is set. This is due to the
effect that only retired branches influence the branch prediction and fill the branch target

40

4.3 Intel Pentium III

buffer when appropriate. Since it is only possible to have up to 40 micro ops in the
instruction pool (the number of micro ops per CISC opcode is given in Section 29 in
[28]) a bound of affected branch instructions can be computed. As the Intel documents
deliver no bound on the misprediction delay, measurements were employed to provide
this information. According to these measurements a misprediction incurrs up to 13
cycles (cf. Section 5.3.2).

4.3.6.3 Choosing the Monitor Technique

The first aspect which has to be covered is where to set the measurement points. In
addition to the start and end of functionality, additional measurement points are often
necessary due to structural problems caused by the decision to avoid the symbolic exe-
cution. Two reasons can be identified that necessitate the introduction of an additional
measurement point. Firstly, code which has to be instrumented to enforce a path may not
be reached more than once during one measurement, otherwise it would not be possible
to measure one path in the first execution, and another in the second and so on. This
holds true for subroutines with alternative paths which would otherwise be called more
than once during a measurement, as well as alternative paths inside loop bodies. In the
case of subroutines, a measurement point has to be introduced somewhere between the
concurrent calls to the routine. User interaction could be useful here, to induce minimum
overestimation by the additional measurement point. With loop bodies it was decided to
place the measurement point just after the start of the loop. An exception to this rule is
made, when the path of the loop body is known to be data independent. Typical exam-
ples of such data independent loops, with more than one possible path in the loop body,
are the FFT butterfly algorithm, or the appliance of filters on images. In these cases no
measurement point inside the loop is necessary.

The second reason for introducing an additional measurement point is the handling of
complexity. Since all possible path combinations between two measurement points must
be investigated, the number of paths which have to be measured increases rapidly. In
order to cope with this, additional measurement points may be set. It is proposed, for
efficiency sake, to concatenate measurements by designing the measurement routine in
such a way that it integrates the taking of the measurement stop time stamp, the manip-
ulation of the execution units and the taking of the first time stamp for the start of a new
measurement.

The final decision for the monitor is how to set the measurement points. In the case of
Intel Pentium III, three ways to achieve this seem possible. The first is to use the break
points provided by the debug reigsters of the processor. The second method would be
based on code replacement, similiar to the way it is done with debuggers. The third way
to achieve measurements is to add a call in the assembler code.

41

4 Models

The debug registers are programmed with the address to be monitored. A few additional
bits define assertion conditions. Whenever the instruction at the address is decoded,
as specified in the debug register, a breakpoint interrupt is generated. Debuggers often
solve this differently, due to the fact that such hardware debug registers are not com-
monly available in processors. The access to the debug registers is only possible with
operating system priority level on Intel P6 processors. In this case the instruction at the
specified address is replaced either with a interrupt generating instruction, or with a call
to a debugger routine. When the instruction is reached, the debugging routine replaces its
breakpoint with the original code and moves the breakpoint to the succeeding instruction,
executing the original code. After the second breakpoint is issued, the first breakpoint
is restored and the code at the second breakpoint is replaced with the original. Thus all
of the original code is executed while providing the access at a desired address of the
program. Adding the call to a measurement routine in the assembler code is very simple.
In order to provide correct behaviour for the final executable, the measurement routine
has to be either replaced by a simple RET opcode, or the call has to be overwritten with a
corresponding number of NOP opcodes.

The major drawback of the hardware debug registers is in the generation of an interrupt.
The automatic mechanisms activated at an interrupt induce an undesireable overhead.
With the debugger like instrumentation, either the small version utilising the INT opcode
to generate an interrupt or the simple call of a measurement routine can be deployed.
The first suffers the same problem as the use of a hardware debug interrupt, while the
other version has the problem that the call to the measurement routine takes at least five
bytes. When performing single stepping room for two of these calls is necessary. If
the first branch instruction, after the intended point of measurement, lies within this first
ten bytes the correct handling is troublesome. The single stepping would induce further
overestimation on the execution time due to the necessary penalties. The addition of the
call to the measurement routine in the assembler text, leads to the necessity of removing
these calls for the final executable and thus also a overestimation is induced which is less
then the one needed for single stepping. Thus the instrumentation of assembler code is
chosen.

4.3.7 Preemption Handling

Within real-time systems preemptive real-time operating systems are often chosen. It
has to be taken into account that the preemption of a task has an additional effect on the
working set of the task, with regard to the acceleration techniques of a processor. Usually
this prolongs the time the task utilises the processor i. e.; the computation time C of the
task. In this discussion the term “task” indicates the code between two measurement
points.

42

4.3 Intel Pentium III

To handle preemptions, two possible approaches can be utilised. Either the preemptions
are taken as a mere statistical effect on the execution time, or the interference on the
acceleration units of the processor has to carefully analysed. While the first approach has
the drawback of lack of determinism, it is nevertheless applicable under two conditions:� The impact of the preemption has to be small as compared to the execution time

of the preempted task.� The pattern of preemptions, with regards to their interarrival time, must be at least
pseudo periodic, i. e.; jitter and the occasional dropout of a preemption is accept-
able.

These conditions are met if, for example, a long running application is periodically pre-
empted by the clock tick interrupt. In such cases it is possible to circumvent the schedu-
lability analysis for this particular kind of preemption by measuring the application in
the preempted case. In this way the cost of preemption and the execution time of the
preempting task, or interrupt service routine, is included in the measured execution time.
In order to provide at least some confidence in the measured values, it has to be ensured
that the start of measurement is not “aliased” with the preempting code, i. e.; the timely
distance between start of the preempted task and the first preemption has to be varied
from zero to a full “period” of the preemption. Since this method is only applicable for
a small number of preemption scenarios the further discussion will focus on the detailed
analysis.

In addition to the time for task switching itself, and the execution time of the preempting
task, a schedulability analysis like the one described in Section 4.7 must take into account
the prolonged execution time, due to the interference on the acceleration units of the
processor. This prolongation can either be determined by modelling the usage of the
acceleration techniques during the execution, or by simulation of the preemption.

To facilitate modelling of the usage of the acceleration techniques, a more simple method
can be chosen than is used for the exact simulation of the processing hardware necessary
for the estimation of the WCET. The maximum amount of cachelines, in the instruction
cache, used by a piece of code can easily be computed. The bound on the amount of
data cachelines must be derived from a number of components. The first component is
the cache usage due to the usage of the stack. The stack is used for the storage of local
variables, the return address and arguments of subroutine call, and to save registers which
are used in the subroutine. In between two measurement points the stack usage can be
simply expressed in cachelines. Nested subroutine calls are simply added up. Figure 4.4
depicts a sample code which is analysed according to the data cache usage in Figure 4.5.

To facilitate the top level routine, which contains start or end point of the measurement,
the local variables on the stack have to be covered as global variables. Global variables

43

4 Models

1 void sampleroutine()
2 ,
3 char readbuf[BUFSIZE], writebuf[2*BUFSIZE];
4 /* get the data out of the input fifo */
5 rtf get(IFIFO, &readbuf, sizeof(readbuf));
6 /* encode data */
7 conv encode(readbuf, writebuf, BUFSIZE);
8 /* output data blocks to output fifo */
9 rtf put(OFIFO, &writebuf, sizeof(writebuf));
10 return;
11 -

Figure 4.4: Sample Code for Figure 4.5

Lines
Cache

Data

Lines of
Code

Data Cache Usage
of Subroutines

8 9 1076

of sampleroutine()
Data Cache Usage

543

Figure 4.5: Data Cache Usage of the Sample Code in Figure 4.4

can be regarded as having a live span within the two measurement points marked by
the first and last access of the variable. Thus a bound on the amount of valid useful
data cachelines can be given at any given point within this interval. Correspondingly the
usage of the TLBs can be conducted.

The usage of branch prediction mechanims can only be investigated with regard to loops.
A small simulation of the branch prediction mechanism provides information on how
many iterations are necessary until the dynamic branch prediction mechanism is tuned
to a particular branch instruction in the loop. The best case has to be assumed for pre-
emption of the BTB entries. As regards the static branch prediction scheme, it is now
possible to bound the number of correctly predicted branches which might be turned into
mispredicted branches.

The simulation of preemptions itself can either investigate the actual prolongation of
the execution time, or the interference on the acceleration techniques. Due to the inac-
cessability of instrumenting the code to be “preempted” at a particular loop iteration for

44

4.3 Intel Pentium III

a systematic testing, only a statistic external induced preemption is possible. To gain
statistical confidence for this approach a multiple of the number of measurements neces-
sary for the WCET estimations would be necessary. Thus this approach is not followed
further.

To gain information regarding the interference utilising measurements, an additional
measurement point can be shifted slowly from instruction to instruction, measuring the
location of the measurement point with every change. With these measurements not the
actual time, but the amount of cache hits and correctly predicted branches is of rele-
vance. The branch prediction mechanism have only to be taken into account in loops,
which will be seperately discussed. With a code which is not a loop between two mea-
surement points, the effects of the branch prediction are already covered in the WCET.
In this section the term cache hits refers to L1 instruction and data cache. L2 cache hits
will be handled seperately. The sum of the measured cache hits, before and after the
additional measurement point, is compared with the uninterrupted case. The correctly
predicted branches are investigated accordingly. Due to the limitation on two perfor-
mance monitoring counters, twice the number of measurements are necessary to gather
the relevant information on cache hits. On the other hand only a fraction of the measure-
ments for the WCET is necessary, due to the lesser variance of these values. Since only a
very limited number of TLB entries is usually used, a bound on the misses can be taken
by utilising the TLB misses measured in the uninterrupted case.

Loops again need special treatment. Since it is impossible to place a measurement point
inside the loop, which is executed only at a given iteration without adding a significant
amount of code, a bounding of the impact of preemption is used. This special treatment is
obviously only necessary for those loops whose loop bodies are not already instrumented
with a measurement point. Instead of only one, two break points are set. One directly
before the loop and one behind it. Thus the original measurement is split into three parts.
For the remaining cache hits H with preemption within the loop the following equation
is used:

H � min
�
H1 �.� min

�
H2 � �

max
�
H2 �

N � 1 � � min
�
H3 � (4.6)

where H1, H2 and H3 are the cache hits for area 1, 2 and 3 respectively and N is the
number of loop iterations. It is assumed that the first iteration of the loop produces no
cache hits. This is a conservative approach since, due to the long cachelines, even serial
code usually produces cache hits. However, this can not be taken as the only penalty,
since there may be caching effects which reach from outside into the loop body, or even
beyond the loop. The two measurement points before and after the loop ensure that these
effects are covered.

With branch prediction mechanism only the second area, i. e.; the loop, is investigated
as regards the mispredicted branches, and not the correctly predicted branches. Since
the branch prediction is initially “ignorant” of the loop, a preemption within the loop

45

4 Models

will cause in worst case as many additional branch mispredictions as in the initially
measured case due to its renewed “ignorance”. Additionally it has to be noted that the up
to 16 additional branch mispredictions have to be taken into account, depending on the
maximum nesting level of routines, to consider the effects of the return address stack.

The final question is how to set the additional measurement point. Again the two alter-
native methods of utilising the debug registers and inserting code have to be considered.
The introduction of additional code would only be possible using the debugger style
instrumentation, with single stepping over the code, since all points in the code are to
be investigated. On the other hand the usage of the hardware supported breakpoints by
utilising the debugging registers has lost its drawback of adding uncertainty to the execu-
tion time, since only the number of cache hits and the branch prediction is of relevance.
Due to the much easier implementation and lesser overhead during the measurement, the
usage of the hardware provided debug mechanism is favoured.

4.4 AMD Athlon Family

The architecture of the AMD Athlon processor family has, on first sight, many similar-
ities to Intel’s P6 family, however, in detail it differs significantly. After a brief descrip-
tion of the processor features, the discussion of the measurement technique is focused
on comparing the differences to the measurement of software on Intel Pentium III pro-
cessors. As with the Intel processors, the Sections describing the processor are almost
free of references. A much more detailed description of the AMD Athlon family can be
found in the corresponding Sections in Appendix A.2.

4.4.1 General Architecture

The basic architecture depicted in Figure 4.6 is similar to that of the Intel Pentium III. The
core executes like Intel’s counterpart RISC code. The three parallel decoders are, unlike
the Pentium III, identical. Complex instructions are fed into a micro code sequencer
called vector path, while simple instructions are directly decoded (direct path). The 9
way execution core also provides out-of-order execution. Thus for the measurements on
the AMD Athlon a serialising opcode has to be used, to ensure the complete execution of
all relevant opcodes within th measurement interval. The conditional and unconditional
jump opcodes all share the same complexity as regards decoder usage and space with
one unfortunate exception. Similar to Intel’s Pentium III, the short branch opcode JCXZ
is more complex than all other instructions. The JCXZ opcode utilises the vector path,
instead of the direct path of the short JMP and conditional Jxx opcode. The impact
of the previously described workaround is rather low. Furthermore, the AMD Athlon

46

4.4 AMD Athlon Family

optimisation guide [4] states that vector path instructions should be avoided and the gcc
compiler used for the experiments makes no use of this instruction.

Bus

Interface

Unit

Unit

Decoding

Control Unit

Instruction

Exec. Units

Out−of−Order

Load/Store

Queue Unit
L1 Data

Cache

L2 Cache

L1 Instruc−

tion Cache

Figure 4.6: Building Blocks of the AMD Athlon Architecture

Fortunately, the Athlon implements the multiplication and division in a way that the
execution time of these instructions is data independent as well. Connection of the AMD
Athlon to the other system components is implemented by the EV6 bus. The concept of
outstanding transactions of the EV6 bus can be compared to the Intel counterpart, which
cannot be induced at measurement time and therefore add to the statistical property of
the execution time. Similar to the Intel P6 family, the lower clocking frequency of the
peripheral leads to quantisation of delays.

4.4.2 Memory Organisation

The memory access possibilities like addressing modes and paging mechanisms, are
almost identical to Intel’s. The major difference is the number of TLBs available. To
create a worst case scenario for the memory accesses all TLBs have to be invalidated. As
with the Intel P6, a write to register CR3 is sufficient to provide this.

47

4 Models

4.4.3 Caches

The cache architecture of the AMD Athlon is, like Intel’s, divided into two levels and in
the first level further split into data and instruction cache. The exact size of the caches
for a given processor have to be determined by utilising the CPUID opcode. In contrast
to the Intel P6, the Athlon has an exclusive cache design, i. e.; data or code contained
in the first level cache is not present in the second level cache. In order to provide a
fast mechanism for an L1 cache load from L2 cache in the case of a full set, the victim
buffer is introduced. The victim buffer can take up to 8 Cachelines displaced from the
L1 cache, in order to make room for other cachelines loaded into the L1 caches. In the
interest of efficiency this displacement is done in parallel to the load. On idle cycles of
the victim buffer it is drained in the background to the L2 cache. In the case of a full
victim buffer it is written entirely back to the L2 cache. This case induces a 18 cycle
delay until the new cacheline is loaded into L1. Another central difference to the Intel P6
family is the 64 Byte cacheline which is twice the size. Additionally, the AMD provides
implicit prefetching, i. e.; whenever a cacheline is loaded into L1 instruction cache, the
subsequent cacheline is loaded as well. Thus a higher hit rate for the instruction cache is
achieved.

4.4.4 Branch Prediction

The branch prediction of the AMD Athlon is like that of the Intel P6 family, divided in
three parts: return stack buffer (RSB), static and dynamic prediction scheme. The RSB
corresponds to Intel’s RAS but is, with 12 entries, slightly smaller.

The dynamic branch prediction is further split into four parts:

1. predecode cache

2. branch target address cache (BTAC).

3. global branch history (GBH).

4. 2048 global history bimodal counter (GHBC).

Alongside the L1 instruction cache, the predecode cache is stored and contains addi-
tional information like identified branch instructions and instruction boundaries. The
branch target address cache is equivalent to Intel’s BTB, while the GBH is a 8 Bit shift
register used to note down whether the last 8 branches where taken or not. The GBH
utilises the fact that branch instruction close together often follow a correlated system-
atic behaviour (cf. [23]). The GHBCs are equivalent to Intel’s 2 Bit bimodal counter with

48

4.4 AMD Athlon Family

saturation. In contrast to Intel’s version, the GHBCs and the shift register are not associ-
ated with a particular BTAC. As the name implies, the GBH contains the result of the 8
branch instructions, regardless of their address. The GHBC are organised in 8 rows and
256 columns. While the row taken for prediction depends on the address of the branch
instruction, the column is chosen by the GBH. A speciality of the AMD Athlon is that
the target address of short branches is computed on the fly, and the dynamic prediction
by the GHBC is always used for these short branches. Near and non control transfer
far branches use the static prediction rules when no valid BTAC entry for the branch
instructions exists. Far control transfer branches are always statically predicted. The
“global” memory of GHBC and GBH is a problem for providing the worst case during
measurement (cf. Section 4.4.6.1).

4.4.5 Monitoring Support

The major difference to Intel P6, as regards the monitoring support, are the 4 PMCs
provided by the Athlon. With these, a slightly more detailed view of the execution is
possible. In addition, the Athlon provides the 64 Bit wide time stamp counter register.
The debug registers are identical to Intel’s.

4.4.6 Relevant Facts for the WCET Measurement

Due to the structural similarities between the Intel P6 family and the AMD Athlon, the
techniques for measurement are roughly the same, while differing in detail. The follow-
ing discussion will focus on the differences in technique when compared to those used
on the Intel Pentium III (cf. Section 4.3.6).

4.4.6.1 Path Enforcement and Detection

Due to the complexity of the approach, symbolic execution is also avoided on the AMD
Athlon processor. The detection of paths would, as with the Intel processor, depend on
additional code and it would take an enormous amount of time to test the right input data
combinations.

The replacement of branch instruction by NOPs, and the replacement of the branch target
address, have both the drawback that the branch prediction mechanism is not utilised
correctly. Since short branches always utilise the dynamic branch prediction, and this has
a global “memory” of taken and not taken branches due to the global branch history and
the global history bimodal counters, the usage of the described instrumentation would
lead, at the very least, to overly pessimistic results. In the presence of uninstrumented

49

4 Models

loops security margins would have to be added to the measured results in order to provide
a secure result due to the absence of not taken branches. Uninstrumented loops are
possible whenever the loop body is data independent, and the number of iterations fixed.
A possible alternative would be to replace the code in the following way:

Original Force Branch
taken not taken

NOP
NOP MOV.L %esp,%esp MOV.L %esp,%esp
Jxx target JNE target JE target

The two NOP opcodes, which are inserted in the assembler text, allow for later replace-
ment during measurement with the MOV opcode. The usage of the stack pointer %esp
for manipulation ensures that, after this move the zero flag is cleared. For each of these
instrumentations a 1 cycle penalty has to be introduced for the additional opcode to be
decoded. For measurement points inside loop bodies, it has to be checked whether the
static prediction is used. On branch instructions where this is the case, with the static
prediction potentially yielding better results than the dynamic prediction, a number of
misprediction penalties need to be added to the execution time bound of the loop. For-
tunately, the initial condition is not valid for short jumps which are usually used to a
greater degree than near or far branch instructions.

4.4.6.2 Worst Case State

The handling of caches and TLBs is identical to the Intel version with the exception that,
due to least recently used policy, it is sufficient to use L1 instruction cache size code, and
L1 data cache plus L2 cache size modified data, to displace all useful code and data in
the cache.

To perform the branch prediction, a different approach must be followed. The analysis
necessary to determine the worst case state for a particular piece of code, with respect to
the path to be measured, is very time consuming and often leads to ambiguous results,
due to the open decision on where to place a potential correct prediction.

A conservative approach, utilising a small but exact model, would assume the 8 starting
instructions as mispredicted, until the state of the GBH is known. After that the model
would start to define the GHBC states by removing those states an individual GHBC
is definitely not in. The following example shall demonstrate how this could be done.
After a taken branch, the corresponding GHBC might be in state 1, 2 or 3 but not in
state 0. Assuming that when this particular GHBC is next visited, and the branch is
taken once again, the GHBC must be in state 2 or 3. Thus, the next time the GHBC
is utilised it will predict a branch taken. After a considerable interval, all GHBC states
would be known, but one would have assumed so much mispredictions that the WCET

50

4.4 AMD Athlon Family

would be better off with a static prediction like, for example, always taken. An additional
uncertainty introduced to this approach would be the out-of-order execution. The time
penalty for a misprediction has been measured to be 13 cycles (cf. Section 5.3.1). A
correctly predicted branch incurs no penalty for short branches, and a 1 cycle penalty
for all other branch instructions handled by the branch prediction mechanism. Due to
this, the statistical approach has to be used. A considerable amount of measurements are
done, preferably with as many different start conditions as possible. In order to ensure
this, random jumps have to be executed prior to the start of each measurement. Only
then can a random state of GBH and GHBCs be assumed.

The necessity for a load of caches with useless code and data, and the randomisation of
the branch prediction seem contradictory. The filling of the instruction cache may not be
done after the filling of the data cache, in order to ensure that the complete L2 cache is
filled with data, and not with code displaced out of the L1 instruction cache. On the other
hand, the usage of loops in order to load the data into the caches would determine at least
partially the state of the dynamic branch prediction. The solution lies in the integration of
all three tasks in a monolithic piece of code. This code has to load and “modify” the data
in the caches, randomise the dynamic branch prediction and be exactly the size of the L1
instruction cache. Additionally, code already executed is also “modified”, thus ensuring
that the L2 is filled with modified data. The “modification” is achieved by adding a 0 to
the “data” located at that address.

4.4.6.3 Choosing the Monitor Technique

The options for introducing additional measurement points, and the method of imple-
menting the measurements on AMD Athlon processors, are identical to those of the Intel
P6 family as described in Section 4.3.6.3. Therefore, we also choose the addition of a
call to the measurement routine in the assembler code.

4.4.7 Preemption Handling

The method of shifting a measurement point through the code, in order to “simulate” the
effects of preemption and the utilisation of the hardware debug mechanism, is also pos-
sible for the AMD Athlon. The duplication of performance monitoring counters allows
us to measure all relevant monitoring events in one run. The caches and return address
stack can be handled according to the mechanisms already explained in Section 4.3.7 for
the Intel P6 family processors.

Again with loops, two measurement points are set directly before and after the loop. Due
to the properties of short branch instructions, utilising the dynamic prediction scheme, all
three areas have to be investigated. Firstly, the number of mispredictions of all three parts

51

4 Models

are summed up. In order to provide a bound for the mispredictions inside the loop the
misprediction in area 2 has to be added twice, thus “simulating” the ignorant case after an
preemption within the loop. The resulting value is compared to the mispredictions of the
uninterrupted case. Equation 4.7 shows the number of mispredictions M which need to
be taken into account for the branch prediction related preemption penalty within a loop.
M1, M2, M3 and Mnopreempt respectively express the number of mispredictions measured
for the three parts, and the “original”, unpreempted case.

M � max
�
M1 �/� max

�
M2 �.� max

�
M3 � � min

�
Mnopreempt � (4.7)

This number of mispredictions has to be taken into account for a preemption within the
loop.

4.5 Interaction with a Real-Time Operating System

In this context, the first step is to define the difference between a general purpose op-
erating system (GPOS), and a real-time operating system (RTOS). A RTOS is usually
focused on providing deterministic behavior, while the GPOS provides more flexibility
which is only sparesely utilised in a RTOS. Typical examples of this flexibility are the
dynamic memory management, or the generation of additional tasks at run-time. The
following describes a few examples which show the similarities and differences between
RTOS and GPOS.

As with standard operating systems, the major purpose of the RTOS is to manage access
to the resources of the system. The prime resource in a computer system is the resource
CPU i. e.; the time alloted to a task for execution. This is handled by the scheduler of the
operating system.

With the scheduler we have the first difference between a GPOS and a RTOS. While the
scheduler of a GPOS often tries to split the computation time evenly, or at least fairly
under the demanding tasks, the focus of an RTOS lies on determinism and meeting the
deadlines. Examples of GPOS scheduling policies are round robin, dynamic priorities
or even cooperative and first come first serve scheduling, while many RTOS provide
scheduling algorithms like fixed priorities, earliest deadline first (EDF) scheduling and
time slicing to name a few. To list and explain all scheduling policies proposed and
implemented would exceed the scope of this work, and therefore, further discussion will
be limited to fixed priority scheduling, due to the relevance of this operating system in
our experiments.

Other resources which need to be managed are, for example, memory and peripheral
units (e.g. timers). Some of these resources are handled by manager parts inside the op-
erating system, others are managed using mutual exclusion techniques like semaphores.

52

4.5 Interaction with a Real-Time Operating System

RTOS kernels are relatively small. One reason for this is the frequent deployment in
small sized embedded systems, another is that a GPOS usually provides additional dy-
namic functionality like dynamic task creation or swapping memory to disk. A deeper
discussion of real–time operating systems and their properties can be found in Section 10
of [48].

As regards the real-time operating system, two major aspects must be addressed for a
complete WCET approach:

1. The WCET of the RTOS routines itself, with respect to their interoperability with
other RTOS routines and application software.

2. The impact on the execution times of the application software as induced by pre-
emption.

The following section describes a special operating system case for real-time systems,
namely, a GPOS with real-time extensions. Following this, diverse components of the
RTOS are addressed, while the last two sections describe the impact of preemption on
the WCET of a thread, and the thread model used for the real-time analysis.

4.5.1 Extensions to a General Purpose Operating System

As previously stated in Section 4.2, the provided support for numerous hardware com-
ponents, and the well known user interface are the main reasons for using a general pur-
pose operating system with real-time extensions. However, other reasons can be named
as well: The development environment is well known by software developers, and is
usually either cheaper or of better quality than those available for a given RTOS. Due to
this, hardware and software upgrades can be managed easily.

To suit the purpose of the presented work, Linux with RT-Linux as real-time extension,
has been chosen as an exemplary work. The reason for this, is the availability of the
sourceode of both, the GPOS sourcecode, and the RTOS extension. The source code
of commercial GPOS Microsoft Windows or Solaris is almost impossible to get access
to. By utilising the sourcecode a deeper insight into the mechanisms is possible. Since
Linux has only a marginal impact on the method itself, only the essential elements will be
described as thy are needed. Too see a more detailed view of this free operating system
see e. g. [9], [85], [93] and [94].

The usual way to extend a GPOS by RTOS functionality is to insert a tiny layer between
the hardware and the GPOS, and add the RTOS functionality in parallel to the existing
operating system. Figure 4.7 shows how this is accomplished with Linux and RT–Linux.

53

4 Models

Interrupts

Kernel Space

Hardware

RT Scheduler

User Space

int nLinux Scheduler

RT Scheduler

FIFO

RT Thread

RT Thread

Linux Kernel

Non−RT Applications

FIFO

RT−

Linux

Kernel

Figure 4.7: Interaction between Linux and RT–Linux Kernel [81]

The use of extensions to general purpose operating systems has its disadvantages as
well. The most important impact is the time needed to switch from user mode tasks into
the kernel mode. This change in the privilege level induces an considerable additional
latency of interrupts. In addition, the GPOS produces a serious interrupt load, and could
initiate DMA transfers of peripheral units, like the harddisk and network interface.

4.5.1.1 Thread Management

Application software, in general purpose operating systems, is mostly organised in tasks.
Each task has its own memory space as demonstrated in the segmented memory model,
described in Appendix A.1.2. Thus, it is not possible for a task to write directly into
the memory space of another, with the exception of shared memory. Communication
between tasks is realised using system calls to the operating system. Additionally, ap-
plication tasks are usually placed at a privilege level below that of the operating system.
Thus, the system is protected against faults in the user tasks, and resource management
is handled exclusively by the operating system.

However, the neat separation of tasks with memory protection has its price. To initiate a
system call and an interrupt request, the privilege level and the memory segments have to
be switched with every entering kernel or task code. The time needed for the transition
of privilege level and memory space is consuming and varies often to a broad degree. On
and AMD Athlon system with 900 MHz a value between 20 to 25 µs has been measured
(cf. [81]).

54

4.5 Interaction with a Real-Time Operating System

To avoid this, and the induced latency of interrupts, real-time operating systems are usu-
ally organised in threads. A thread is a light weighted task which operates in the same
memory space, and privilege level, as the other threads. In an RTOS, these threads fre-
quently share the memory space and privilege level with the operating system kernel.
Thus, thread switching times and interrupt latency are kept to a minimum. The omitted
protection is justified with the assumption that the system is verified or tested thoroughly
before deliverance. A programmer of RT threads must ensure that he uses the correct
way of addressing resources, as it is quite easy to circumvent the resource management
of the operating system. Some RTOS kernels like, for example, QNX or VxWorks pro-
vide additional full tasking support, but this is usually avoided in favor of the threading
implementation.

In RT-Linux the threads work priority controlled on the same privilege level as the op-
erating system. The Linux kernel is the thread with the least priority, and may execute
when no other RT-thread needs the CPU. Linux may then use the conventional mech-
anisms to work with its user applications. Thus, for the RT-Linux kernel, the interrupt
latency, due to the privilege and memory space transition, is still valid and has to be kept
in mind.

4.5.1.2 Interrupt Management

The basic concept in the RT-Linux implementation of real-time extension is to treat Linux
as an idle task of the RTOS. To implement this, the interrupt management is completely
intercepted by RT–Linux. This includes, not only the interrupt handlers, but also the
timer management. Since time is the essential resource in real-time systems, the timer is
controlled by RT-Linux. The mechanism used for incoming interrupt requests (IRQ) is
shown in Figure 4.8.

Hardware IRQs are interupts from peripheral units. Examples of such units would be
the keyboard, hard disc controller, PCI device or the timer. All these are collected in
the programmable interrupt controller (PIC) of the PC, which has been described in
Section 4.2.2.3. The job of this PIC is to trigger the IRQ pin at the processor. Software
IRQs are special instructions placed in the code to initiate an interrupt request. They
are referred to as traps, or synchronous interrupts since they are generated whenever
the processor executes a particular piece of code. These are often used to initiate a
system call to the operating system, in cases where the operating system runs with a
different privilege level. The third group of IRQ sources are exceptions. Exceptions are
generated on a system fault. Examples of such system faults would be division by zero,
or a segmentation violation.

Whenever an interrupt occurs, the interrupt gate of RT-Linux is called. This hands the
interrupt down to the routine rtl_intercept(), which in turn checks whether a given

55

4 Models

Operating System

Interrupts
masked (IF=0)

call

ACK

ret

Hardware
PIC CPU

Interruptgate

IRQn_interrupt RT−Thread

RETURN_INTERRUPTrtl_intercept

jmp

jmp

common_interrupt

ISR

Non−RT Applications

int nUser Mode

Figure 4.8: Interrupt Handling in the RT–Linux Kernel [81]

interrupt is relevant for RT-Linux. If relevance is proved, rtl_intercept() calls the
corresponding interrupt service routine (ISR). If the IRQ should be handled by the Linux
operating system a flag is set in a variable, which indicates that this particular IRQ has
occurred and the real-time operation is continued. Whenever the Linux operating system
resumes execution, it checks the variable as to whether there have been interrupts which
need be handled. If so, it executes the corresponding ISR. Due to the nature of the
variable, multiple interrupts of the same kind are evaluated only once, therefore interrupts
may be lost for the Linux operating system.

4.5.1.3 Resource Management

Resources within an operating system are often managed using device driver software.
This driver concept provides a uniform interface for the application programmer and
controls access to the resource. Direct access of the resource, by means of a thread
utilising memory mapped I/O, is usually avoided in operating systems and only provided
when the overhead of the driver is unacceptable. The handling of resources bearing the
following two aspects in mind:

56

4.5 Interaction with a Real-Time Operating System

1. Determinism of the access.

2. Mutual exclusion.

The determinism of a resource access may be influenced by software and/or hardware.
Different execution paths within the software of the resource driver are the main reason
for the indeterminism induced, while latencies are usually responsible for hardware in-
determinism. An exception to this is the memory management. This important resource
has effects beyond simple latencies. The placement of code and data is critical to ensure
reproducible results for the measurement. Unfortunately, the real-time extension RT-
Linux utilises the memory management of the Linux GPOS. Due to the module concept
of RT-Linux, in combination with the dynamic memory management of the Linux op-
erating system, the location of the RT-Linux operating system and the real-time threads
in memory are not fixed. To circumvent this problem, the module loader of Linux was
modified to use a memory area, reserved at boot time, to allocate the memory for the
modules. In this way, the location of the real-time portion of the code, i. e.; RT-Linux,
and the RT-threads in memory are fixed, provided that the modules are loaded in a fixed
order.

The software induced indeterminism has to be covered in the same way as other system
calls, as described in Section 4.5.2. With hardware related indeterminism the difference
between the maximum and minimum latency has to be found according to the process
described in Section 4.2.2, and added to the execution time for every access to this re-
source.

An additional significant issue for device drivers is mutual exclusive access to a resource.
The concurrent access to shared data is a typical example where using mutual exclusive
access is used. There are two situations where a data set in this shared memory has to be
protected against access by another thread.� the data set is to large to be written within a single memory access� the data set has to be accessed in a consistant read, modify, write manner

A common method used to realise this mutual exclusion is by means of semaphores. A
thread may only access a resource when it holds the corresponding semaphore which
may be obtained by a system call. The system call returns when the semaphore was
successfully obtained. When the semaphore is held by another thread the system call is
blocked. The core of this obtain operation is atomic i. e.; it is guarded against interrupts.
As long as the thread holds the semaphore, no other thread is able to obtain it. After
the thread has finished the transaction on data guarded by the semaphore, it releases the
semaphore.

57

4 Models

The usage of mutual exclusion mechanisms can induce the potential problems of dead
lock and priority inversion. While the first is resolvable with intelligent programming, the
second can not be avoided by means of programming rules. A simple deadlock scenario
may occur when two threads use two or more resources concurrently, but request the
semaphores in different order. Figure 4.9 depicts a simple example of such a situation.
Thread τi requests the semaphore S1, prior to semaphore S2 while thread τ j does the
same in reverse order. After each of the threads has obtained one semaphore, the other
semaphore is unavailable.

t

0102123131313131313414141414141451515156161616
0 10 20 30 40

Thread

Thread

τ

τ

i

j

execution of thread

blocking due to higher priority thread

execution with semaphore held

Legend:

blocking due to a semaphore obtain

semaphore obtain system call

71717717178181881818 91919199191919:1:1::1:1: ;1;1;;1;1;<1<1<<1<1<=1=1==1=1=>1>1>>1>1> 1SS2

1S S2

1S

Figure 4.9: Example of a Deadlock induced by the Use of Semaphores

As previously indicated, this problem may be circumvented by statically analysing the
semaphore usage of all threads, and changing the order in which the semaphores are
requested within the threads.

A more complex problem is the priority inversion, as depicted in Figure 4.10. As de-
scribed before, a thread τ j may be blocked due to a semaphore S1, which is held by
thread τi. In the case of an intermediary thread τk, thread τ j is blocked longer than
necessary by a thread of lower priority than itself. This case is called priority inversion.

t

blocking due to higher priority thread

blocking due to a semaphore obtain

?@?@?@?A@A@A@A
B@BC@C

0 10 20 30

Thread

Thread

Thread

τ

τ

τ

i

k

j execution of thread

execution with semaphore held

Legend:

semaphore obtain system call

D@D@DD@D@DE@E@EE@E@EF@F@FF@F@FF@F@FG@G@GG@G@GG@G@G
HHII J@JJ@JK@KK@KL@LL@LM@MM@M1S

1S

1S

Figure 4.10: Example of Priority Inversion

58

4.5 Interaction with a Real-Time Operating System

In order to solve this a priority inheritance protocol may be used. When thread τ j is
blocked due to a semaphore S1, held by thread τi, the priority of thread τi is raised to
thread τ j. Thus an intermediary thread τk may not prolong the response of thread τ j.
Figure 4.11 shows a sample gantt diagram.

t

blocking due to higher priority thread

blocking due to a semaphore obtainN@NO@O
P@PP@PQ@QQ@Q

0 10 20 30

Thread

Thread

Thread

τ

τ

τ

i

k

j
execution of thread

execution with semaphore held

Legend:

semaphore obtain system call

priority inheritance and release

R@R@RR@R@RR@R@RS@SS@SS@ST@T@TT@T@TU@UU@U
V@VV@VW@WW@WX@XX@XY@YY@Y1S

1S

1S

Figure 4.11: Priority Inversion Avoidance by a Priority Inheritance Protocol

In this way, the blocking time Bi � Sm of a thread τi, trying to obtain a semaphore Sm may
be bound provided the maximum execution time Hk, in which a given thread τk holds
a semaphore, is known. The Equation 4.8 describes how the the blocking time Bi � Sm

is determined. In this simple example PSm denotes the set of threads, which require
the semaphore Sm during their execution, Li, the set of threads with lower priority than
thread τi and max

�Z����� � , the maximum value of its arguments.

Bi � Sm � max
�\[

Hk : τk] PSm ^ Li _`� (4.8)

This blocking time is also valid for all threads thread τi, which utilises not semaphore
guarded resource Sm itself, when a thread of higher priority thread τ j may be blocked
by a thread of lower priority than thread thread τi. Figure 4.12 shows an example for
such an indirect blocking. With cases of multiple semaphores used within a thread, the
analysis gets considerably more complex. A detailed analysis model used to compute
the blocking time, Bi, is presented in Appendix A in [73].

The priority inheritance protocol is not yet implemented in RT-Linux but announced as
one of the next releases. Further information regarding priority inheritance protocols
may be found in [73], and [74].

59

4 Models

t

blocking due to higher priority thread

blocking due to a semaphore obtain

a@aa@ab@bb@bc@cc@cd@dd@d e@ef@f
0 10 20 30

Thread

Thread

Thread

τ

τ

τ

i

k

j
execution of thread

execution with semaphore held

Legend:

semaphore obtain system call

priority inheritance and release

g@gg@gh@hh@hi@ii@ij@jj@j
k@k@kk@k@kl@ll@l m@m@mm@m@mn@n@nn@n@n

1S
1S

1S

Figure 4.12: Example of Indirect Blocking of a Thread

4.5.2 System Calls

Services provided by the operating system are usually utilised by the application threads
via system calls. The implementation varies considerably. For example, with an op-
erating system, containing full tasking support and memory protection, this includes a
switch into kernel mode which is often implemented utilising trap instructions. On the
other hand, with real-time operating systems with thread implementation, this is mostly
reduced to a simple subroutine call to the operating system kernel.

The measurement must differentiate between three kinds of system calls:� blocking� releasing� local

A blocking system call may not return immediately due to inaccessible data. Typical
examples for such blocking calls are semaphore obtain, receive or wait calls. If these
calls are blocked, the calling thread is no longer ready to be executed and, therefore,
a rescheduling is initiated. With all, but the semaphore obtain, it is assumed that the
blocking system call is a method to control the time of thread release. In this way, no
further impact on the blocking time Bi is incurred. In contrast, releasing system calls
always include a rescheduling, since a thread with higher priority might become ready
for execution due to the execution of the call. Common examples of such system calls
would be a semaphore release or a send call. System calls which do not include a call to
the scheduler are considered to be local, since the execution of these system calls may
not cause a preemption of the calling thread. In this category fall, for example, calls to
device drivers.

60

4.5 Interaction with a Real-Time Operating System

A basic decision must be made whether to guard system calls with measurement points,
or to measure the case where no rescheduling is necessary while adding a preemption
penalty for potential rescheduling. Due to the central role in the operating system an
instrumentation to enforce paths is all but impossible for the measurement of the appli-
cations. Thus, it is better to guard the system calls with additional measurement points.
With blocking and releasing system calls two measurement points are usually used. All
measurement points are placed as near as possible to that part of the system call con-
taining the scheduling call. Depending on the structure of a local system call, and the
reliability requirements, it might be possible to only have to place a single, or indeed
no additional measurement points. This is due to the fact that system calls in real-time
operating systems are comparably small and simply structured. System calls which cor-
respond to the given properties may be subject to that simplification. In order to be able
to omit the measurement points entirely, it is necessary that the utilisation of caches and
branch prediction only differ insignificantly, or not at all. System calls which have a
slightly more diverging use of caches and branch prediction need a single measurement
point at the end of the system call. This may be done when the utilisation of the caches
by the system call is variable in location, but fixed in size. In this way, the additional
measurement point ensures the worst case state at the beginning of the user code, and the
deviation of the system call execution time adds to the statistic properties of the worst
case execution time of the thread.

4.5.3 Preemption

The first step must consider the sources of preemption.� blocking and releasing system calls� a thread with higher priority becomes ready� interrupts

With blocking and releasing system calls, the preemption penalty is already considered as
described in Section 4.5.2. The transition from blocked to ready state for a thread is only
possible due to the release of a blocking system call, or at the initial startup of this thread.
The unblocking of a system call by another thread has already been considered. The
unblocking by an interrupt is the only alternative which needs to be taken into account.
The interrupts may be differentiated in simple and complex interrupts. Corresponding
to the description in Section 4.3.7, simple interrupts may be regarded as an additional
statistical factor on the execution time of the thread, on condition that the impact of the
interrupt service routine may be considered small on the execution time of the thread,

61

4 Models

and the interrupt load can be reproduced during measurement. Interrupts which unblock
a thread may not be considered in such a way.

The preemption leads to a extrinsic, i. e.; inter-thread modification of the working set of a
thread within the acceleration techniques of the processor. The possibilities for covering
the extrinsic impact of a preemption on the cache have been classified in [16].

1. The time needed to refill the entire cache.

2. The time needed to refill the cachelines displaced by the preempting thread.

3. The time needed to refill the cachelines used by the preempted thread.

4. The time needed to refill the maximum number of useful cachelines that the pre-
empted thread may hold in cache at the worst case instant a preemption may arise.
Useful lines are those that are potentially used again by this thread (similiar to
those referred in [55]).

5. The time needed to refill the intersection of cachelines of the preempting and useful
cachelines of the preempted thread as described by Lee et al. in [51].

With modern architectures, the first approach leads to severe overestimations due to the
large caches. The number of cachelines used by a thread usually exceeds by far the
number of usefull cachelines of this thread, at any point during its execution. Therefore
approaches 2 and 3 are also very pessimistic. The final method provides the closest
results but is almost impossible to determine given the complexity of threads running on
modern architectures.

Apart from the caching effects, the branch prediction and other acceleration techniques
must be taken into account. Depending on the processor, the possibilities of handling
this for the preemption delay differ and must be chosen according to the processor un-
der investigation. As indicated in Sections 4.3.7 and 4.4.7, the impact of preemption on
the acceleration techniques can be determined by utilising measurements. The extrinsic
interference is covered, taking into account the loss of “good” information within the
acceleration units working set of the preempted thread, and not the worst case impact
imposed by the preempting thread. A few examples illustrate this. With regard to the
caches, the worst case loss of useful cachelines in the preempted thread is considered
as opposed to those cachelines loaded by the preempted thread. This corresponds to ap-
proach 4 in the classification given previously. TLB entries can be handled accordingly.
To provide the impact of the preempting thread on the branch prediction, independent of
the preempted thread, is rather challenging. Here as well, the loss of prediction accuracy
regardless of the preempting thread is taken into account.

62

4.5 Interaction with a Real-Time Operating System

4.5.4 Thread Model

Various information is needed for the real-time analysis described in Section 4.7. It is
assumed that after an bootup phase, a thread only has three states, i. e.; ready, running
and blocked, and that no two threads share the same priority.

Ready

Running

Blocking

Figure 4.13: State Space of a Thread

A thread in the blocking state is not ready for execution, due to the blocking caused by
a system call. This is also known as the inactive state of a thread. After the blocking
state, the thread becomes either running or ready to be executed. In the ready state, the
thread is not executed due to a running of a thread with higher priority, or the execution
of operating system code. As depicted in Figure 4.13, a thread may not change from
ready state into blocked state in RT-Linux, since a blocking system call must be executed
to initiate the blocking state.

As shown in Section 4.5.1.3, there can be two reasons for a blocking state. Either the
blocking is caused by concurrent access to resources guarded by a semaphore, or it is
used to control the execution of a process. The most simple example of such a call is the
pthread wait() call. This is used to let the thread sleep until the next, usually periodic,
execution is necessary. Another example, which is not implemented in RT-Linux, is a
blocking receive call. This is often used for message passing controlled execution in
server threads. Such threads provide a frequently used functionality, and are activated
due to the receival of new data. A typical application area for such a server thread would
be to circumvent the mutual exclusion problems by semaphores. These threads are only
executed after a complete message is received, and ensure the consistant handling of the
I/O to peripheral units.

Chains of such threads, activating one after another and utilising message passing, or
wake up calls, are concatenated for the real-time analysis. To apply this only threads
belonging to this chain may have a priority within the priorities used by the thread chain.
Since interrupts triggering a specific thread do not comply with this requirement, they
may not be included in the activity chain.

63

4 Models

Server threads used by more than one thread are regarded in the same way as semaphore
guarded critical section, with ceiling semaphore protocol priority avoidance protocol.
A necessary restriction for this to be suitable is that the client thread with the highest
priority using a server thread must have the priority just below the server thread.

To facilitate further discussions activity chains of threads are handled as a single thread
with a priority with the lowest priority within the chain. The WCET of the participating
threads are joined, as described given in Section 4.6.3, and server threads are regarded
as semaphore guarded critical sections. The following information is necessary for every
thread and interrupt .� thread or interrupt priority� starting point and end point of critical sections guarded by a semaphore� WCET of the thread C� WCET of critical sections guarded with a semaphore� triggering interrupt stream corresponding to Section 4.1

The information on the semaphore guarded critical sections is necessary to compute
the blocking time Bi. The remaining values are needed for the real-time analysis in
Section 4.7.

4.6 Confidence in Measured Values

As previously described in the processor models, in Sections 4.3.6 and 4.4.6, the execu-
tion time cannot be fixed entirely, due to the fact that some mechanisms can not be set up
in a deterministic way. In order to cope with this nondeterminism a statistical approach
aimed at providing a confidence value for the measured WCET (tMWCET), which includes
the additional penalties previously mentioned, is presented. The target is to provide an
assumed WCET value tAWCET for a given probability pAWCET , so that tWCET , which is
the physical WCET, is less or equal to provided value of tAWCET .

The following Section will give an overview on the statistical modelling used.

4.6.1 Statistical Processes

The first step must be to consider the underlying statistical processes. Most of the ac-
celeration techniques cannot be pinned down as having two execution times (one for the

64

4.6 Confidence in Measured Values

good and one for the bad case). Additionally, all acceleration techniques closely inter-
act with the out-of-order execution of the code. The behaviour of the processor for a
given piece of code may therefore seem chaotic, i. e.; a small change in one piece of the
statistical process may lead to vast changes in the execution time.

A little order is induced by the fact that the processor must wait for external resources to
provide the data and code to execute. This waiting cycle, initiated by a stall of the flow of
code and data, decouples the intricate interlocking of the sources of statistical effects into
a series of statistical processes with discrete probability distributions. Since the caches
are filled with useless code and data, a considerable amount of stalls in the execution
can be assumed. In general, the process can be considered to be independent, with only
a few of the statistical processes being coupled. An example of a coupling mechanism
would be the displacement of a cacheline, due to a misprediction in a previous part of the
software, which might influence the behaviour of another part of the measurement block.
The number of processes could be estimated by utilising the processor PMCs assuming
that the processor has to wait at each frontside bus for access to external data and code.
The probability distributions for these statistical processes are unknown.

The frontside bus, which is usually clocked with lesser frequency than the processor,
leads to a quantisation of the impact from the acceleration techniques, due to the fact that
the requested data can only be delivered with one of the cycles of the frontside bus. The
measurements support this by showing major peaks as offset at multiples of the frontside
bus frequency, and minor values in between. Figure 4.14 prodvides a detailed clip of the
sample thread used in Figure 4.15. It has to be noted, that the y axis shows the absolute
number of measurements with a specific execution time in logarithmic scale. The CPU
to FSB frequency ratio was 8 i. e.; the peaks are usually found at multiples of 8 cycles.

1

10

100

1000

10000

100000

1e+06

1e+07

1628460 1628480 1628500 1628520 1628540 1628560 1628580

"FSB effect"

Figure 4.14: Effect of the Frontside Bus on the Execution Time

65

4 Models

4.6.2 Probability Distribution of Measurement Blocks

In order to computate a confidence value, the execution time of a measurement block
needs to be modelled. While traditional statistic approaches focus on the data close to
the mean, the main objective to modelling here are the extreme values. To achieve our
objective the extreme value (EV) statistics approach of Burns and Edgar in [13] and [14]
is used. An essential precondition for the approach is that the population samples, drawn
by measurements, X1 � X2 � ����� Xn are independent, and identically distributed (I. I. D.), in
other words - all samples have the same underlying probability density function (pdf). To
have the right starting conditions this means that the individual condition must either be
identical, or completely random for all measurements. This is ensured by randomising
those parts of the processor which can not be set up deterministically, to the worst case
state at the start of a measurement.

Similar to the normal distribution the distributions modelling accurately the minimum
and maximum of a given sample distribution, are chosen in such a way that they possess
important properties which allow the modelling of distributions generally. The extreme
value distributions having these properties have the following definitions for their cumu-
lative distribution function (cdf):

Gumbel G0
�
x � : � exp

� � e % x �
Frèchet G1 � α � x � : � exp

� � x % α � , α o 0
Weibull G2 � α � x � : � exp � � � � x � % α � , α o 0

The term exp
� � e pqprp � is usually used to describe a double exponential function in extreme

value statistics. It is equivalent to e % e s s s . A common notation for all three distributions is:

Gγ
�
x � : � exp tu� � 1 � γx � % 1

γ v � 1 � γ o 0 (4.9)

This cdf suffice for the Fisher–Tippett theorem:

Theorem 4.1:[Fisher–Tippett] If F
�
ax � b � has a non-degenerate limiting distribution

function for constants a o 0 and b as n w ∞ then:xxxx Fn � x � � G �y� x � µn

σn �y� xxxx w 0 as n w ∞ (4.10)

for an EV function G and µn and σn o 0 drawn from the sample distribution [26].

Since the parameters σ and µ are computed from the samples taken, only the shape
parameter α or γ, depending on the model chosen, needs to be identified. This parameter

66

4.6 Confidence in Measured Values

can be calculated using a maximum likelihood estimator. Since the Gumbel distribution
provides good matches on the data measured, and the matching of parameters is out of
scope for this work, further discussion will be limited to the Gumbel distribution with
cdf:

G
�
t �z� exp t � e

t { µ
σ v (4.11)

and pdf:

g
�
t �|� exp t � e % t { µ

σ v 	 e % t { µ
σ

σ
(4.12)

Special focus for the discussion is set on the right distribution tail of the distribution.
Figure 4.15 shows an example measurement, and the match produced with the Gumbel
distribution. Due to the previously described effect of the frontside bus, the measured
discrete distribution of the figure is displayed as a kernel density, which is a method to
transform discrete data into a continuous curve.

0

0.0005

0.001

0.0015

0.002

0.0025

1627500 1628000 1628500 1629000 1629500 1630000 1630500

"kernel density"
g(x)

Figure 4.15: Sample Data and Corresponding EV–Distribution

67

4 Models

The major drawback of modelling the execution time with a Gumbel probability distri-
bution functions is that the cdf reaches the 100 % certainty only in positive infinity. Thus
a guarantee in the form of

There is X % confidence that tAWCET o tWCET .

is all but impossible. However, an approach used often in reliability analysis may be
applied here. Many components cannot be guaranteed with 100 % certainty not to fail.
An typical example is natural aging of components (mechanical or electronic) during the
lifetime of a system. Even with continous quality control and preventive maintenance
an element of risk of a component failure remains. The residual risk acceptable depends
on the consequences of a component failure. A component inhibiting operation of an air
conditioning unit in a car wont have the residual risk requirements as another component
responsible for the operation of a air traffic controller computer system at a large inter-
national airport. The tolerance level for the malfunction of such systems λ is often given
in failures during 106 hours of operation (cf. [80]). Typical values for λ are 1, 10 % 3, . . .
and 10 % 12. In real-time systems a piece of software may be specified malfunctioning if
the execution time takes longer than the assumed WCET tAWCET . Since a thread or task
is usually running many times during an hour of operation of the system, the resulting
residual risk acceptable for a single run of the thread or task is usually several orders of
magnitudes less then the residual risk allowed for the overall system. In accordance with
Section 4.1 Equation 4.13 computes the necessary cdf value acceptable in the Gumble
distribution.

Gi
�
t � ' 1 � λi

Ei
�
106hours � (4.13)

Table 4.1 depicts the necessary distance to the mean value of a gumble distribution to
achieve a given confidence in the measured value. While a distance of 55

�
3 	 σ seems

large to achieve the desired confidence. The results in Section 5.4 show, that the resulting
distance in processor cycles is usually an order of magnitude or more smaller than the
mean value measured. This stems from the fact, that the worst case state is taken as a
starting point for the measurements and only a single path is measured.

4.6.3 Joining of Measurement Blocks

The WCET of a thread is comprised by the sum of WCET of measurement blocks. As
defined in the previous section, the WCET of a single measurement block is not presented
as a single WCET value, but as a probability density function of the execution time.

The combination of the measurement blocks has to be considered carefully. In this dis-
cussion two probability density functions g1

�
t � and g2

�
t � , based on the Gumbel distri-

68

4.6 Confidence in Measured Values

G
�
t � t

1 � 10 % 6 13
�
8 	 σ � µ

1 � 10 % 9 20
�
7 	 σ � µ

1 � 10 % 12 27
�
6 	 σ � µ

1 � 10 % 15 34
�
5 	 σ � µ

1 � 10 % 18 41
�
4 	 σ � µ

1 � 10 % 21 48
�
3 	 σ � µ

1 � 10 % 24 55
�
3 	 σ � µ

Table 4.1: Neccessary Distance to Mean to Achieve a Given Confidence

bution, are taken into account for the two blocks under investigation. According to the
previous Section these functions are characterised by their means (µ1 and µ2) and devia-
tions (σ1 and σ2).

In general, both cases of alternative and consecutive blocks have to be considered. Con-
secutive blocks may be joined by convoluting the density functions of both blocks. The
proof of this operation can be found in the convolution theorem 2.7.5 in [2]. A base
requirement for the validity of the operation, is the independence of the two statistic pro-
cesses, i. e.; the measured execution time of one block may not influence the measured
time of the other. This is guaranteed by the way the measurement routine handles the
processor’s acceleration techniques.

gr
�
t �|�
 ∞}% ∞

g1
�
x � g2

�
t � x � dx (4.14)

or fully

gr
�
t �~�
 ∞}% ∞

exp ��� e
% x { µ1

σ1 � 	 e
% x { µ1

σ1

σ1
	 exp ��� e

% t { x { µ2
σ2 � 	 e

% t { xµ2
σ2

σ2
dx (4.15)

The solution of Equation 4.15 is not trivial, and currently no analytical solution is known.
Fortunately, a numerical solution shows that the convolution of two Gumbel extreme
value probability density functions results in something close to a Gumbel pdf. Fig-
ure 4.16 shows the numerical convolution of two Gumbel pdfs with identical sigmas,
and a simple aproximation computed with the following parameters as derived from the
convolution of arbitrary independent distributions.

σr � � σ2
1 � σ2

2 (4.16)

µr � µ1 � µ2 (4.17)

69

4 Models

0

0.05

0.1

0.15

0.2

0.25

0.3

0-5-10 5 10 15

"convolution"
"approximation"

Figure 4.16: Convolution Result and Simple Approximation

Identical sigmas have been chosen, since these produce the largest difference. It has to
be noted that the convolution of many individual distributions as we have in our case
tends towards a resulting Gaussian distribution which describes better the average case
then the extremes. In order to retain this modelling of the extremes an approximation
with a Gumbel distribution is done. The approximation as shown in Figure 4.16 is not
good enough for practical purposes, since the pdfs are underestimated. The further ap-
proximation was done in three steps:

1. Search for the mean of the new Gumbel pdf by searching the value e % 1 in the cdf
of the convoluted function.

µ � p % 1
cd f � convoluted

�
e % 1 � (4.18)

2. Find the sigma that minimises the quadratic error of the cumulative distribution
function between the matched Gumbel distribution and the convoluted distribution
function.

3. Move the matched cdf so that the following equation holds true:)
t o µ : pcd f � convoluted

�
t � ' pcd f �matched

�
t � (4.19)

70

4.6 Confidence in Measured Values

The first step determines the invariant point for the second step of the approximation.
The final step is necessary to ensure that the approximation gives an upper bound on the
probability, for a given execution time. A variety of combinations of σ1 and σ2 have
been tested to determine the dependency of the offsets, and standard deviation.

Figure 4.17 shows parameter y of the standard deviation. The final standard deviation is
computed using the following formula.

σ j � �
1 � y ��	�� σ2

1 � σ2
2 (4.20)

y

1e-06

1e-05

0.0001

0.001

0.01

0.1

0.01 0.1 1

"sigma correction"

σ2 � σ1

Figure 4.17: Correction Factor for σ-Computation

The resulting offset relative to µr is depicted in Figure 4.18. In this way, the offset µ j can
be computed using Equation 4.25.

The offset and sigma can be calculated for the computation, using the following Ta-
ble 4.2. It has to be noted that, for this calculation, σ1 has been chosen to be greater or
equal to σ2. With the other case, the parameters have to be swapped correspondingly.

The additionally inserted approximation in Figure 4.18 shows an interesting behaviour.

zapproximation � x
1
�
75 	 σ1 (4.21)� σ2

σ1 	 1
�
75 	 σ1 (4.22)� σ2

1
�
75

(4.23)

71

4 Models

z

0.01

0.1

1

0.01 0.1 1

"relative offset"
x/1.75

σ2 � σ1

Figure 4.18: Correction Factor for Offset Computation

Thus the offset can be expressed as a simple function of σ2. The aproximation is reason-
able for 10 	 σ2 # σ1. If σ2 is larger, then this approximation degrades and a interpolation
using the data in Table 4.2 yields better results.

In the case of alternative blocks, two scenarios have to be considered. It is assumed that
probability functions A and B are described by µA, µB, σA, and σB with µA o µB. The
first case is σA # σB. Let us assume that a few convolutions have already been approxi-
mated in parallel, i. e.; without deciding which of the alternatives is taken. Under these
conditions it can be assumed that the deviations describing the Gumbel distributions are
larger than all other standard deviations to be merged in the future process. In this way,
the move of the offset µ j will always be larger for the function A. Thus an alternative can
be neglected if its sigma holds true for the following equation:

σA o σB 	 � 1 � y � N (4.26)

N is the number of blocks to be merged to finalise the join process, and y is chosen from
Table 4.2, according to the function of the largest σ to be joined in. Equation 4.26 bounds
the gain in the deviation. The actual gain will be less, since the closer the two alternative
sigmas become, the less the gain actually taken when compared to function A.

The second case of σB o σA can not be decided on a general basis. Thus both alternatives
have to be pursued until either µB surpasses µA and Equation 4.26 holds true, or all blocks
have been merged and the larger value is chosen for the WCET. A simplistic method to
work around the problem of having to account for exploding number of paths is to choose

72

4.6 Confidence in Measured Values

x � σ2 � σ1 y z
1 3 � 225e � 2 0 � 3930 � σ1

0 � 909 3 � 195e � 2 0 � 3770 � σ1

0 � 833 3 � 118e � 2 0 � 3587 � σ1

0 � 769 3 � 009e � 2 0 � 3418 � σ1

0 � 714 2 � 881e � 2 0 � 3263 � σ1

0 � 667 2 � 740e � 2 0 � 3120 � σ1

0 � 571 2 � 379e � 2 0 � 2808 � σ1

0 � 5 2 � 039e � 2 0 � 2547 � σ1

0 � 444 1 � 741e � 2 0 � 2310 � σ1

0 � 4 1 � 488e � 2 0 � 2124 � σ1

0 � 370 1 � 277e � 2 0 � 1965 � σ1

0 � 333 1 � 102e � 2 0 � 1826 � σ1

0 � 308 9 � 558e � 3 0 � 1692 � σ1

0 � 286 8 � 341e � 3 0 � 1586 � σ1

0 � 267 7 � 322e � 3 0 � 1492 � σ1

0 � 25 6 � 465e � 3 0 � 1397 � σ1

0 � 2 4 � 142e � 3 0 � 1138 � σ1

0 � 167 2 � 847e � 3 0 � 0951 � σ1

0 � 143 2 � 066e � 3 0 � 0820 � σ1

0 � 125 1 � 564e � 3 0 � 0720 � σ1

0 � 1 9 � 838e � 4 0 � 0575 � σ1

0 � 0833 6 � 765e � 4 0 � 0477 � σ1

0 � 0769 5 � 749e � 4 0 � 0444 � σ1

0 � 0714 4 � 950e � 4 0 � 0409 � σ1

0 � 0667 4 � 310e � 4 0 � 0382 � σ1

0 � 0625 3 � 789e � 4 0 � 0361 � σ1

0 � 0588 3 � 360e � 4 0 � 0340 � σ1

0 � 0556 3 � 003e � 4 0 � 0319 � σ1

0 � 05 2 � 445e � 4 0 � 0287 � σ1

0 � 0455 2 � 034e � 4 0 � 0261 � σ1

0 � 0417 1 � 723e � 4 0 � 0239 � σ1

0 � 0357 1 � 290e � 4 0 � 0205 � σ1

0 � 0313 1 � 008e � 4 0 � 01796 � σ1

0 � 0208 4 � 915e � 5 0 � 01198 � σ1

0 � 0156 3 � 033e � 5 0 � 00899 � σ1

0 � 01 1 � 502e � 5 0 � 00575 � σ1

σ j � � σ2
1 � σ2

2 	 � 1 � y � (4.24)

µ j � µ1 � µ2 � z (4.25)

Table 4.2: Parameters for the Approximation of the Convolution

73

4 Models

the largest µ and σ observed in the measurements of the different paths of a particular
block. Thus the worst case is still bound, but obviously this is bought with additional
pessimism.

4.7 Real-time Analysis

As a real-time analysis method response time analysis (RTA) is chosen. The analysis
method presented in [12] builds the basis of the RTA presented here. Sufficient and
necessary tests must be performed for an exact schedulability analysis. This is often
done by simulating the schedule over an interval of the least common multiple of thread
periods. In the presence of sporadic threads, i. e. , threads having an inter-arrival time of
releases which are only bound to be larger than, or equal to, the given minimum interval,
this is not possible. As an alternative for the interval-based approach, it is tested how
often a given thread τ j might be released, in the worst case in the execution window Ri,
in which thread τi is executed. Due to preemption and blocking, the execution window
is not the same as the worst case execution time. Thus a phasing of the release points of
a thread is not necessary.

In contrast to the approach in [12] the following assumptions are made:� According to Section 4.5.3 a preemption of thread τi incurs a non-zero individual
time penalty δi suffered by the thread. This penalty δi includes, not only the time
needed for the scheduling algorithm, but also extrinsic interferences like, for ex-
ample, displacement of cachelines by the preempting task, which might be useful
to the tasks future execution, or for perturbation of the branch prediction mech-
anism. As previously mentioned, due to the nature of the worst case view on
the measurement blocks (described in greater detail in Section 4.5.4), it is more
favourable to determine the preemption penalty by the thread preempted, and not
by the preempting thread as is done by Busquetes et al. in, for example, [16] (cf.
Section 2.4).� The task releases are determined by interrupt streams IS, in accordance with Sec-
tion 4.1. Therefore, the maximum possible number of releases of thread τi, in
interval T , is Ei

�
T � .

4.7.1 Response Time Analysis of a Simple System

Starting point is an RTA approach, which calculates the worst case response time Ri for
each thread τi. The worst case response time is produced, when all threads are released

74

4.7 Real-time Analysis

at the same point in time. The recursive approach tries to allocate the computational time
Ci, and blocking time Bi of thread τi, in a time window wi, and the simple interference of
all threads of higher priority than τi. The priority of thread τi is fixed and unique, with
the exception of the priority inheritance protocol, as described in Section 4.5.1.3. For
this simple approach to be applicable the following restrictions are necessary:

1. The release time of thread τi is characterised by the minimum inter-arrival time Ti.

2. Preemption incurs no time penalty on preempted threads.

These restrictions will be lifted in the next section as the approach is fitted to the system
described so far i. e. with preemption penalties, interrupt streams triggering the execution
of threads and priority inheritance protocol.

The approach is recursive since in every iteration the execution window wn
i has to be

checked whether additional interference with other threads has to be added. The process
finishes either when the execution window stops growing i. e. wn
 1

i � wn
i and thus the

worst case response time Ri has been found or when the execution window exceeds the
deadline of the thread and thus the deadline is potentially missed i. e. wn
 1

i o Di. The
latter case indicates that the thread cannot be guaranteed to execute without violating its
deadline. For simplicity reasons, it is assumed that the threads are sorted in priority order
with τ1 being the highest priority thread.

wn
 1
i � Ci � Bi � ∑

τ j � Hi

wn

i

Tj �� ��� �
N j

	 C j (4.27)

Initially the execution window w1
i is assumed to be the computation time Ci of thread

τi, though one can find other more efficient starting values for w1
i . Since all threads are

released at the same time, all threads with higher priority than τi which form the set Hi,
are released at least once during wn

i and their computation times C j have to be added
according to the number of releases which is tagged with N j in Equation 4.27.

4.7.2 Extending the Simple Real-Time Analysis for Complex
Systems

As previously mentioned, the complexity of the system under investigation does not
allow for this simple solution, and therefore the Equation 4.27 must be extended consid-
erably.

75

4 Models

To facilitate the theorem as regards the response time analysis and the corresponding
proof, a few terms, not yet defined in this work need to be introduced:

∆i � j � Ri � is the worst case additional preemption delay suffered by thread τi, due to re-
leases of thread τ j in the interval Ri.

Pn
i � j is the worst case number of preemptions of thread τi by thread τ j, which are not

covered at start of iteration n.

Sn
i � j is the set of threads which potentially suffer preemption by τ j, instead of τi, and

have not been covered at start of iteration n.

Θn
i � j The cumulative preemption delay caused by thread τ j, on thread τi, after n � 1

iterations.

min
������� � provides the minimum value of it’s arguments.

For those systems including the additional extrinsic interference δi, and non equidistant
thread releases where E j

�
t � expresses the worst case number of releases of τ j in the

interval t, the following theorem is stated:

Theorem 4.2: Given a set of real-time threads scheduled by a fixed priority preemptive
policy with priority inheritance for priority inversion protection in a system where thread
τi suffers a worst case penalty of δi for every preemption (all threads are required to
comply with the requirements of conventional response time analysis), then there either
exists a worst case response time value for Ri for each thread τi making the equation
system depicted below true, or such a thread is not schedulable.

Ri � Ci � Bi � ∑
τ j � Hi

� E j
�
Ri ��	 C j � ∆i � j � Ri � � (4.28)

∆i � j � Ri � is computed iteratively by the following formula.

Initialisation:

P1
i � j � E j

�
Ri �

S1
i � j � τi � Hi ^ L j

Θ1
i � j � 0 (4.29)

Iterative process:

δk � max � δl : τl] Sn
i � j �

76

4.7 Real-time Analysis

Sn
 1
i � j � Sn

i � j � τk

Θn
 1
i � j � Θn

i � j � min � Pn
i � j � E j

�
Rk ��	 Ek

�
Ri ����	 δk

Pn
 1
i � j � Pn

i � j � Ek
�
R j ��	 Ek

�
Ri � (4.30)

Terminal condition:

Pn
 1
i � j � 0 (4.31)

After the iterative formula has terminated:

∆i � j � Ri ��� Θn
 1
i � j (4.32)

Proof: Due to the dependency on the worst case response times of those threads which
have a higher priority than thread τi, it is necessary that the real-time analysis is con-
ducted in priority order, starting with the highest priority. To simplify the proof, it is as-
sumed that the worst case response time Ri of thread τi has been found, i. e. , wn

i � wn
 1
i ,

thus all occurrences of wn
i and wn
 1

i are replaced with Ri .

As stated in the previous section, the simple RTA formula is taken as a basis.

Ri � Ci � Bi � ∑
τ j � Hi

Ri

Tj � 	 C j (4.33)

In the first instance, the number of releases of thread τi must be matched to the model
of the embedding process as described in Section 4.1. Since E j

�
Ri � returns the max-

imum number of releases of thread τ j in interval Ri, � Ri
Tj � may be simply replaced in

Equation 4.33. Thus this equation can be rewritten as:

Ri � Ci � Bi � ∑
τ j � Hi

E j
�
Ri ��	 C j (4.34)

Thereafter, the additional extrinsic interference must be introduced into Equation 4.34.
Assuming the response time of thread τ2 is investigated, and τ2 suffers preemption of one
thread with higher priority. Whenever τ2 is preempted by τ1 after resuming execution,
thread τ2 has to pay the additional preemption delay δ2. A sample phasing is depicted in
Figure 4.19.

Thus, with respect to thread τ2, the Equation 4.33 would be extended and simplified to:

R2 � C2 � B2 � E1
�
R2 ��	 � C1 � δ2 � (4.35)

77

4 Models

t

execution of thread

blocking due to higher priority thread

penalty due to preemption

Legend:

0 10 20 30 40 50 60 8070 90

Thread

Thread

τ

τ

2

1

Figure 4.19: Preemption of Thread τ2 by Thread τ1

A slightly different picture must be drawn if the preemption delay of thread τ3 is cov-
ered. First of all, the preemption of thread τ3 by τ2 is investigated. This is analogous
to the preemption of τ2 by τ1. But the preemption of thread τ3 by τ1 has to handled
differently. In this case two scenarios have to be considered, both of which are depicted
in Figure 4.20.

t0 10 20 30 40 50 60 8070 90

Thread

Thread

Thread

τ

τ

τ

2

1

3

Figure 4.20: Preemption of Thread τ3 by Threads τ2 and τ1

Within the interval defined by the execution window of thread τ3, thread τ1 is released
twice and thread τ2 once. The first occurrence of thread τ1 preempts τ3, while in the
second case τ2 is preempted. In the second release of thread τ3, this thread is preempted
twice by τ1 and once by τ2. In order to account for the worst case preemption delay,
the maximum of preemption delays has to be taken into account. Thus the Equation 4.35
needs to be extended by the term max

�
δ2 � δ3 � for one preemption induced in Rn

3 by thread
τ1, and twice δ3 for one preemption of thread τ1 and of τ2 each. In more general terms,
the additional preemption delay on thread τ3 is δ3 for all preemptions by thread τ2, and
for preemptions by thread τ1 the delay is the max

�
δ2 � δ3 � for at most the number of times

78

4.7 Real-time Analysis

τ1 preempts one execution of τ2, multiplied the number of times τ2 preempts τ3. In
Equation 4.36 this is presented in a more formal way.

R3 � C3 � B3 � E2
�
R3 ��	 � C2 � δ3 �/� E1

�
R3 ��	 C1 �

max
�
δ2 � δ3 ��	 E1

�
R2 �.	 E2

�
R3 ���

δ3 	 � E1
�
R3 � � E1

�
R2 ��	 E2

�
R3 ��� (4.36)

It needs no mathematical proof to see that the complexity of this formula would vastly
increase if extended to more than three threads. On the other hand, the additional pre-
emption delay to be taken into account for thread follows simple rules which will be
explained in detail below. Thus the additional preemption delay is abstracted and re-
placed by the variable ∆i � j � Ri � , resulting in the following form where ∆i � j � Ri � represents
the additional preemption delay suffered by thread τi, due to the preemption by thread
τ j:

Ri � Ci � Bi � ∑
τ j � Hi

� E j
�
Ri ��	 C j � ∆i � j � Ri � � (4.37)

In order to determine ∆i � j � Ri � , let us consider first which possible scenarios need to be
dealt with whenever thread τ j potentially preempts thread τi. The release of thread τ j

may only preempt threads of lower priority than thread τ j. To compute the additional
preemption delay of thread τi, only threads with higher priority than thread τi, and τi

itself, need to be considered. Thus, the set Si � j of threads which have to be taken into
account for the additional preemption delay for thread τi due to preemption by thread τ j,
is comprised of τi � Hi ^ L j.

Out of set Si � j, the thread τk which suffers the largest individual additional preemption
delay δk whenever it is preempted has to be chosen. Next, one has to consider how often
thread τk may be preempted by thread τ j, in its execution window Rk. This has been
solved before in Equation 4.2. In this way the number of preemptions suffered in the
worst case by thread τk, during its response time Rk by thread τ j, is E j

�
Rk � . Combined

with the worst case number of preemptions thread τi suffers by τk, during one execution
of τi which is Ek

�
Ri � , it can be computed how many times thread τk might suffer preemp-

tion instead of thread τi. Thus the additional preemption delay θi � j � k can be computed by
Equation 4.38.

θi � j � k � E j
�
Rk ��	 Ek

�
Ri ��	 δk (4.38)

79

4 Models

In the next iteration the remaining preemptions of E j
�
Ri � , not covered by Equation 4.38,

must be considered. The number of preemptions not already considered are present in
Pn

i � j. The second worst case thread is chosen out of Si � j for further computation. To keep
the formula generic, the next worst case thread is chosen out of the set Si � j � τk. In order
to avoid having to account for more than P1

i � j preemptions by thread τ j, the number of

preemptions covered in iteration p may not exceed Pn
i � j. Thus min t Pn

i � j � E j
�
Rk ��	 Ek

�
Ri � v

are covered within iteration p.

The process is repeated until all preemptions by thread τ j are covered. In order to repre-
sent the limitations outlined above, Equation 4.38 is modified to:

θi � j � k � min � Pn
i � j � E j

�
Rk ��	 Ek

�
Ri � � 	 δk (4.39)

To simplify the iterative process, and avoid the final summation of all θi � j � k the Equation
can be transformed to:

Θn
 1
i � j � Θn

i � j � min � Pn
i � j � E j

�
Rk ��	 Ek

�
Ri ��� δk (4.40)

The steps presented in Equations 4.37 to 4.40 can be summarised in the following equa-
tions, which correspond to Equations 4.28 to 4.32:

Ri � Ci � Bi � ∑
τk � Hi

� Ek
�
Ri ��	 C j � ∆i � j � Ri ��� (4.41)

With ∆i � j � Ri � computed iteratively:

Initialisation:
The number of preemptions which need to be covered by the analysis are computed by
Equation 4.42. The starting set of threads to be considered for the preemption of thread
τi by thread τk, is depicted in Equation 4.43. Equation 4.44 resets the initial value of the
preemption delay to zero.

P1
i � j � E j

�
Ri � (4.42)

S1
i � j � τi � Hi ^ L j (4.43)

Θ1
i � j � 0 (4.44)

Iterative process:
Equation 4.45 displays the thread selection, which comprises the worst case individual
preemption delay in set Sn

i � j. The set is then reduced by the found thread τk, in Equa-
tion 4.46. The preemption penalty covered by thread τk is computed in Equation 4.47,

80

4.7 Real-time Analysis

while in Equation 4.48 the preemptions not covered after this step are computed.

δk � max � δl : τl] Sn
i � j � (4.45)

Sn
 1
i � j � Sn

i � j � τk (4.46)

Θn
 1
i � j � Θn

i � j � min � Pn
i � j � E j

�
Rk ��	 Ek

�
Ri ��� δk (4.47)

Pn
 1
i � j � Pn

i � j � E j
�
Rk ��	 Ek

�
Ri � (4.48)

Terminal condition:
The iteration is finished when all preemptions have been covered. This is presented in
Equation 4.49.

Pn
 1
i � j � 0 (4.49)

Due to the step from Equation 4.39 to Equation 4.40, Θn
 1
i � j holds the value ∆i � j � Ri � after

the last iteration, which can than be put into Equation 4.37.

∆i � j � Ri � : � Θn
 1
i � j (4.50)

The termination of the iteration is ensured, since the set S1
i � j has a limited countable

number of elements, and τi leads Equation 4.48 to be:

Pn
 1
i � j � Pn

i � j � E j
�
Ri ��	 Ei

�
Ri � (4.51)

where Ei
�
Ri � ' 1 (cf. Equation 4.2) and Pn

i � j � P1
i � j � E j

�
Ri � (cf. Equation 4.42). Assum-

ing the minimum value for Ei
�
Ri � , and the maximum value for P1

i � j, when thread τi is
chosen in Equation 4.45, Equation 4.48 can be transformed to:

Pn
 1
i � j � E j

�
Ri � � E j

�
Ri � (4.52)� Pn
 1

i � j � 0 (4.53)

Equation 4.53 corresponds to the terminal condition in Equation 4.49. In this way, the
termination of the iterative process is proven.

81

5 Experimental Validation

5.1 Methodology Overview

The implementation of the approach can be divided into two parts: The development
tool chain for the application, and the analysing/controlling tool. The first part can be
used to implement the entire method by hand. While this works well for small scale
applications, complex applications take considerable effort. Figure 5.1 gives an overview
on the necessary operations for the generation of the measurement, and final executable.

Object
Code

6

Info
Instrument.

4

CFG Analysis

1

C Code

Instrument.
2nd Stage

Deinstru−
mentation

Executable
Final

8

Executable
Measurement

7
1st Stage

Instrument.

Assembler
Instrumented

5

Assembler
Code

2

Compilation

Assembly
and Linking

Control Flow
Graph

3

Processor
Info

Figure 5.1: Overview of the Operations on the Code

The part highlighted in Figure 5.1 is integrated in the Path ANalysing tool PAN , while
the compiler, assembler, linker and make program are stand alone tools which are acti-
vated by PAN . The second stage of the instrumentation, and the resulting measurement,
is an iterative process which must be repeated until all path combinations have been
sufficiently measured.

82

5.2 Tool Description

In the following analysis phase of the measurement results the mean and standard devia-
tion of the execution time of each measurement block is computed. Necessary penalties,
as described in the processor analysis, are added to the mean. Finally, the execution time
distribution function, for the whole thread in accordance with Section 4.6.3 is computed.
This analysis phase is not yet integrated into PAN , but consists of a number of small
tools supporting a manual analysis.

5.2 Tool Description

As part of the test setup, the following sections will give an overview of the framework
built by the stand alone development tools and PAN . Figure 5.2 provides an overview
of the structure of the tool PAN and its interconnectivity with the other stand alone tools
used.

5.2.1 Assumptions

Restrictions must be placed on the code in order for the measurement based approach to
work.

1. no path independent random access (e. g. lookup-tables)

2. fixed memory locations

Since the processor is assumed to have caches it is important to the reproducibility of the
results that the accesses to data are deterministic.

To keep the complexity of the analysing tool to a minimum, a few restrictions and re-
quirements with regards to the code under investigation, have been imposed.

1. The code is limited within one file.

2. No recursion.

3. No indirect function calls.

4. No multiple loops within one line.

5. The number of loop iterations is given in annotations.

6. Annotations indicate whether the paths inside the loop are data dependent.

83

5 Experimental Validation

libbfdlibiberty objdump Codelibopcode

Objectcode Instrumentation

Compiler Controll Flow Graph Input

gcov Code

gcc ld

make

Makefile

as

Shell Script

Measurement Control

GUI

libqt

Shell−Interface

Graph Visualisation

Unix Pipe Interface

daVinci

MeasurementDevelopment Tool Chain

Annotion ParserAssembler Parser

flex

Figure 5.2: Overview of the structure of PAN

7. Annotations given on line of loop controlling structure.

8. Annotations for loops on line with loop-head.

9. No loop unrolling optimisation in the compiler.

Having all source code in one file simplifies the implementation of a tool considerably.
A recursive implementation is only one aspect of a loop, and may easily be rewritten as
an iterative approach. Typical implementation fields of such recursions are search algo-
rithms within a linked list. Indirect function calls can not be resolved without simulating
the assembler code and resolving the contents of the used registers and variables. The
annotations are needed to bound the number of iterations of loops. To be able to identify
the loop an annotation is for, it is requested that the annotation is given with the loop

84

5.2 Tool Description

controlling structure. This leads to the restriction that no two loop controlling structures
may be on the same line. Due to a quirk in the compiler, it is additionally necessary to
provide an identical annotation at the head of the loop if the loop controlling structure in
the source code is located at the end of the loop. The utilised compiler, gcc, uses very
complex optimisation techniques. Most of these techniques can be ignored by utilising
the assembler text for analysis. Loop unrolling is an optimisation approach that avoids
branch instructions by concatenating several instances of the loop body, and reducing the
number of iterations accordingly. To facilitate this, the loop is divided into a part detect-
ing the number of iterations necessary, another part with a multiple of the loop body1,
and the final part executing the loop iterations which do not fit into the loop body. Un-
fortunately, the compiler information on loop unrolling is located in a separate file and,
in some cases, the information on loop unrolling is rather cryptic. An additional parser
would be necessary to detect the degree to which the loops are unrolled. As this fea-
ture is not essential to the described method, the integration of this has been postponed.
However, manual loop unrolling is encouraged, as described in Section 5.6.

5.2.2 Development Tool chain

The development tool chain utilised for the approach has only minor modification and
requirements, as compared to the “conventional” one. The tool chain consists of GNU gcc,
GNU binutils and GNU make. The gcc has been slightly modified to emit the control flow
information with instrumenting the code itself. To do this the option -ftest-coverage
has to be used. The output of the debugging information is enabled by the -g option.
Additionally, it should be noted that the loop unrolling feature has been disabled in the
compiler for the tests.

The make and the binutils, i. e. , as and ld have been used without further modifica-
tions. The Makefile has to contain the following rules and options:� gcc options: -test-coverage -g� assembler file generation rule dependent on the source file� executable generation rule dependent on the assembler

Besides these, a number of options are required by the RT-inux and Linux operating
system, but since these do not derivate from the “conventional” setup and may change
with future versions of the operating system, they are not explicitly mentioned here.

1The number of loop bodies unrolled is usually to the power of two.

85

5 Experimental Validation

5.2.3 PAN as Controlling Unit

The tool PAN has three main tasks. One is the analysis of the code under investiga-
tion, another the control of the development tools, and the third the manipulation of the
objectcode for path enforcement and controlling the measurements. The analysis of the
measurement results is currently supported by a range of small programms which have
not yet been integrated into PAN .

Another separation line can be drawn between architecture dependent and architecture
independent part of the tool. To enable portability a well defined separation line between
these parts is essential. In our case the architecture dependent part is limited to a sim-
plified assembler parser, the object code manipulation routine and a configuration file
which defines architecture properties for post processing of the measurement data.

To perform the object code instrumentation and deinstrumentation, a considerable
amount of routines from the GNU binutils package have been used. In particular, the
disassembler part of objdump on top of libopcode, libbfd, and libiberty as back
end have been used. The libopcode describes the instruction set, and the addressing
modes for a specific architecture. By utilising this, the architecture dependent part can
be reduced to detecting the binary code of the opcodes searched for. This is usually
limited to a few. All other opcodes relevant for the disassembly of the code, especially
instruction boundary detection, can be abstracted by utilising libopcode. The binary
format is handled by libbfd. This makes the tool independent of the chosen binary
format. A few examples of such binary formats are coff, dwarf, elf or aout. Various
support functionalities are combined in libiberty. To change as little as possible on
the existing routines, this library has been added to the tool.

The parsers used to extract the control flow graph out of the assembler code and the anno-
tations out of the source code, have been implemented by means of the GNU lexical parser
flex. The control flow graph emitted by the compiler is imported utilising routines from
the gcov tool, which comes as a profiling tool with the gcc compiler package. The
graphical user interface is based on QT library, with the exception of the graphs which
are displayed using daVinci, a specialised graph visualisation tool2. The control of the
development environment (described in Section 5.2.2) and the measurements themselves
is handled via a shell interface. This allows for maximum flexibility in the system under
test.

2http://www.b-novative.com/products/daVinci/daVinci.html

86

5.2 Tool Description

5.2.4 PAN Analysis Part

The analysis can be separated into graph analysis, and measurement optimisation. Fol-
lowing the extraction of the control flow graph out of the assembler code, the graph
theoretical technique dominator tree generation, well known within compiler develop-
ment, is used. The dominator tree is generated out of the control flow graph. This is
done by reordering the nodes of the control flow graph as follows: Node 6 of a control
flow graph dominates node 8 if every path from the initial node of the control flow graph
to 8 goes through 6. In the dominator tree each node (e. g. 8) is directly predecessed by
that dominator which is the last dominator on any path from the initial node. Figure 5.3
shows a few CFG examples and their corresponding dominator trees. Further details
regarding this technique can be found in the so called dragon book of compiler design
[1].

da
V

in
ci

V
2.

1

3

7

10

8

6

5

4

2

1

da
V

in
ci

V
2.

1

3

7

10

8

6

5 4

2

1

Figure 5.3: CFG Example and Corresponding Dominator Tree

Every edge in the control flow graph is checked, as to whether the target node of the
edge would lead to a predecessor of the source node in the dominator tree. If this is
the case, a backward edge of a loop has been identified. To simplify loop search for
later analysis, each node is tagged with a nesting level. A loop body can be therefore
searched by following the paths with the same, or higher nesting level than the loop con-

87

5 Experimental Validation

trolling structure. In this step a reachability analysis is made as well. This includes, not
only the code inside a single function but, starting from the main function of the thread
(thread body()), descends into all functions called with the exception of library func-
tion and RT-Linux system calls. These calls must either have no data dependent paths,
or must contain the necessary measurement points during the measurements. Currently
all registered functions must have the measurement points integrated, and are treated by
PAN for analysis the same way as user profided measurement points.

In the next step, the annotations in the source code are evaluated. Until now the following
annotations are identified:

PAN START directs PAN to start the control flow graph analysis at this point in the code.
This annotation has been added to avoid instrumentation of the boot up/preamble
code of the RT-Linux threads.

PAN FIXED LOOP indicates that the loop annotated has a fixed number of iterations.

PAN VAR LOOPCOUNT denotes a loop with a variable number of iterations. The loop
bounds are specified seperately by the following annotations.

MIN # iterations o provides the minimum number of iterations of the loop body.

MAX # iterations o provides the maximum number of iterations of the loop body.

PAN VARIABLE PATH specifies the loop to have input data dependent paths3.

PAN FIXED SPLIT indicates that this branch instruction can not be touched for path in-
forcement as it is already otherwise covered.

The annotations PAN FIXED SPLIT and PAN FIXED LOOP are mainly used to avoid un-
necessary instrumentation. Input data independent loops, with more than one path in
the loop body are frequently found in, for example, digital filter algorithms. Where
PAN FIXED SPLIT and a missing PAN FIXED PATH at the loop head avoid path enforce-
ment, PAN FIXED LOOP avoids loop iteration enforcement.

The placement of measurement points corresponds to the requirements given in Sec-
tion 4.3.6.3. First of all, these loops having the PAN VARIABLE PATH annotation set are
instrumented with a measurement point. This measurement point is placed right after the
label of the backward edge of the loop. Next, loops with fixed path, but variable iteration
number are instrumented. With these loops the necessary place for the instrumentation of
the loop control structure is inserted, and a measurement point is added directly after the
loop exit. Now it is checked whether subroutines, which have input data dependent paths

3An inverted solution for this annotation (e. g. PAN FIXED PATH is possible, but brings no new aspects to
the problem.

88

5.2 Tool Description

are called more than once inside a measurement block. If this is the case, a measurement
point is set directly before all but the first call to this particular subroutine. Additionally
in this step of assembler instrumentation, each branch instruction to be instrumented is
preceded by two nop instructions, to allow for the path enforcement instrumentation of
the objectcode.

According to the debugging information in the objectcode the address of the branch
instructions, and calls to the measurement routines relative to the start of the file, is
extracted out of the objectcode using code of objdump. This allows for fast measurement
cycles.

Finally, the measurements need to be organised. To facilitate this, instrumentation graphs
are built. The instrument graphs describe the topology of the paths to be instrumented.
Each measurement point is the root of one of the instrumentation graphs. As previously
mentioned, these measurement points may be either correspondingly tagged system calls
and library functions, or user provided and automatically inserted calls to the measure-
ment routine. The graph is acyclic and contains only branch nodes, measurement point
nodes and additional subroutine nodes. All terminal nodes are measurement points. The
instrument graph corresponds to the structure of the control flow graph between mea-
surement points, with the restriction that all backward edges, all non branch and non
measurement point nodes and all branch nodes that need no path enforcement, have been
removed. The algorithm for measurement simply enforces all branches to be taken. The
terminal node is used to traverse into the next instrumentation graph where this procedure
is also done, until a full iteration of the RT-Linux thread body is completed. In the next
measurement the last branch of the first instrumentation graph is set as not taken. Again
the instrumentation graphs reached by this decision are triggered to do the path enforce-
ment. The instrumentation graphs retain the information of the last selected path in a
stack structure, and will always pick the next path to be measured when reached. In this
way, the paths within different instrumentation graphs can be measured with maximum
efficiency.

Calls to subroutines which are called at several places, and loops with data dependant
paths in the loop body must be considered seperately. Both have the property of appear-
ing in multiple instances in the instrumentation graphs. In the case of a loop body which
needs instrumentation, it is part of at least three instrumenation graphs.� One or more instrumentation graphs entering the loop body which ends at the

measurement point in the loop body.� A single instrumentation graph representing the loop body.� One graph leaving the loop body, starting with the measurement point in the loop.

With subroutines calls, the scenarios depicted in Figure 5.4 have to be dealt with. The

89

5 Experimental Validation

da
V

in
ci

V
2.

1

Routine_A

Trace 2

Routine_A

1

Trace 1

da
V

in
ci

V
2.

1 Trace 3

3

2

Routine_A

Trace 1

1

Routine_A

Trace 2

Trace 2

da
V

in
ci

V
2.

1

Trace 3

2

Trace 4

4

3

Routine_A

Trace 1

1

Routine_A

Trace 2

Trace 2

Figure 5.4: Possible Scenarios for Multiple Calls of a Subroutine

dotted transition between two trace nodes indicates a transition from one instrumentation
graph to another. To achieve the following results critical and uncritical cases need to be
identified:� Measurement of all path combinations� Avoidance of excessive measurements� Avoidance of overpessemistic results

Calls in disjunct paths can be considered as uncritical. This case includes subroutines
which are called only once. The structure of the called function is integrated into the
instrumentation graph of the calling function.

90

5.3 Test Setup

More critical are those calls in conjunct paths, which need a more detailed handling.
As previously described, the placement of measurement points ensures that calls of this
kind are located in different measurement blocks. An inclusion into the instrumentation
graph of the calling function would lead to multiple instrumentation instances of these
calls. Thus a change in one instrumentation graph would directly interfere with the paths
in all other instrumentation graphs. One solution, avoided in this case due to efficiency
reasons, would be to measure each instrumentation graph on its own. A more feasi-
ble solution would be the use of separate graphs (referred to as subroutine graphs from
here on) to monitor “reused” functionalities. The subroutine graphs change their paths
independently of the normal instrumentation graphs. The progress of these path instru-
mentations is documented by a counter, which is reset to zero whenever all paths have
been enforced. With the subroutine graphs, special nodes are inserted at the point of the
calling instrumentation graphs. This special node ensures that the instrumentation graph
in which it is contained does not change for a full cycle of the subroutine graph. Thus,
it is ensured that all path combinations are measured. However, if an instrumentation
graph contains more then one subroutine graph in a conjunct path, only one subroutine
graph changes at the normal rate, while the others are scaled down to ensure once again
that all path combinations are measured.

Furthermore, with regards to “reused” functionality, loop bodies containing one or more
measurement points face a similar problem. Loop bodies are split up in two parts. The
first part is associated with all paths entering the loop body and the instrumentation graph
of the loop body itself, while the second part belongs to the instrumentation graph of the
loop body and the instrumentation graph of the leaving path. Due to the fact that both
parts share functionality with at least two instrumentation graphs, the same problem, but
also the same solution as for the calls in conjunct paths applies.

In order to avoid the generation of subroutine graphs for many loops, it has been decided
that for loops needing path instrumentation, the measurement point will be placed just
after the loop head. In this way, most loop bodies have the relevant alternatives only in
the instrumentation graph of the loop body itself, and the leaving edge. In this way, all
potential paths of the loop body instrumentation graph are automatically measured. The
path is enforced according to the necessities of the instrumentation graph of the leaving
path, and the loop body instrumentation graph is enforced as a byproduct.

5.3 Test Setup

In the tests shown the focus is set on the AMD Athlon architecture. The Intel Pentium III
processor is shown in a few examples to illustrate the applicability of the approach.

91

5 Experimental Validation

5.3.1 Athlon Hardware

To facilitate the tests of the application software on the AMD Athlon architecture, two
systems equipped with an Athlon processors with model id 4 and stepping 2 have been
used. In one system the processor was clocked with 800 MHz, in the other with 900 MHz.
Otherwise the systems were identical. The 900 MHz system was deployed for the mea-
surements on the RT-Linux operating system while the 800 MHz Athlon was used for
the measurements on the application software. The descriptive measurements as regards
memory load and branch prediction have been also taken on the 800 MHz system. As
it is, this data has to be collected for each system individually and the given values are
only to provide an overview.

Both processors provide 256 KByte of second level cache, and 64 KByte for each of the
level 1 data and instruction cache. The branch prediction unit has been measured so as
to need 13 additional cycles for a misprediction. This data was measured by providing
the worst case of an indirect jump instruction directly preceded by the computation for
a pointer to the jump-table, thus ensuring the maximum latency possible. The test has
been repeated in 1000 cycles of 216 iterations of the test loop, and compared to a repeated
sequence of branches to the identical target, thus enabling the usage of the branch target
buffers.

The load of a cacheline from main memory into the L1 data cache has been measured
so as to be 209 CPU cycles for the 800 MHz hardware. The measurements were taken
with no external bus activity, and under worst case conditions i. e.; each cacheline is only
touched once, and only two opcodes on register values are executed. It has to be noted
that these measurements have to be repeated if another hardware is used, since this data
not only depends on the processor, but also on bus and memory latencies.

Finally, the amount of time consumed by the measurement routine itself, outside the
two timestamps, is of relevance. To determine this time, two consecutive measurement
points have been utilised. The measurements indicated the additional time consumption
as being between 400 and 672 cycles.

5.3.2 Pentium III Hardware

A Pentium III Katmai system with 500 MHz, served as testbench for the Intel P6 archi-
tecture. The L2 cache is, with 512 KByte, twice the size of the Athlon processor but
runs only on halve speed. To get the parameters of the processor, similar tests as were
used the AMD Athlon were performed. A missprediction in the branch prediction unit
also needs 13 cycles. A cacheline load on the Pentium III Hardware was only 72 cycles.
This matches with the description of 14 front side bus cycles for an L2 cache miss (cf.
Section A.1.3 on page 128). The difference to the Athlon architectiure may be explained

92

5.3 Test Setup

on one hand by the larger difference between front side bus and CPU frequency and the
double amount of data fetched due to the larger cacheline size of the Athlon processor.
This results especially in the write back of the preempted cache contents problems.

5.3.3 Operating System

The operating system chosen for the measurements is Linux version 2.4.1, with RT-
Linux version 3.0 extension. The main change necessary to the operating system was
introduced in the memory allocation algorithm for the modules. In order to achieve
reproducible results, a fixed memory portion was allocated at boot time to hold RT-Linux
and it’s application thread modules. The modules were always loaded in identical order
into the kernel, to ensure identical memory usage. The RT-Linux main module has been
extended to provide the routines necessary for the measurement. Additionally, a module
providing the interface to read out the test results is necessary. The discussion of actual
measurements is limited to the interrupt handling and the scheduler as prominent part in
RT-Linux, both taken on an AMD-Athlon processor clocked with 900 MHz (cf. [81]).

5.3.3.1 Interrupt Management

As regards the interrupt management two main scenarios have to be considered. In one
case the time necessary until the corresponding interrupt service routine is called, on the
other case the time needed to note down a interrupt which will be later resolved by the
Linux operating system. The routine rtl intercept() is the main source of execution
time due to the access to the PIC to acknowledge the interrupt. Only with this acknowl-
edge a further interrupt will be accepted by the PIC. The focus of the measurements is
therefore set on the rtl intercept() routine.

Figure 5.5 shows the WCET of rtl intercept() and the corresponding kernel density,
until the interrupt service routine for this particular interrupt is entered. The minimum
and maximum time needed for this operation is 5669 cycles and 7348 cycles. Additionaly
Figure 5.5 shows a quite typical characteristic of hardware accesses on PCs. Several
equidistant peaks indicate the external hardware latency.

Similare results can be seen in Figure 5.6 which depicts the time needed to delay an
interrupt, which is served when no thread of RT-Linux is ready. The observed execution
times lay between 7354 and 9618 cycles. In this case a few additional main memory
accesses, to tag a specific interrupt as occured, lead to the fact that the execution times
between the peaks induced by the hardware accesses merge into each other.

The change of privilige level necessary if the system is in user mode when the interrupt
request occurs takes between 18000 and 22000 cycles.

93

5 Experimental Validation

0

0.005

0.01

0.015

0.02

0.025

5600 5800 6000 6200 6400 6600 6800 7000 7200 7400

"ISR called"
exp(-exp(-(x-6069)/135.8))*exp(-(x-6069)/135.8)/135.8

Figure 5.5: Time Needed by rtl intercept() to Call the ISR

5.3.3.2 Scheduler

The rescheduling process can be divided in three parts. The first is the occurance of
an interrupt, until the interrupt service routine is called plus the execution time of the
interrupt service routine. The first part has been investigated in the previous Section.
The time for the timer interrupt service routine, used in the experiments was between
8866 cycles and 11093 cycles, with a mean of 9703 cycles and a deviation of 157 cycles.

The second time to be reasoned about is the scheduling algorithm itself. This has a
number of parameters. First of all the number of threads to be scheduled. Each thread
added to the system results in a rise of approximately 350 cycles in the time needed by
the scheduler. The RT-Linux scheduler is built that way, to check all RT-threads if they
are ready. Thus the execution time does not depend on the position of a thread in the
thread list. However, the thread influences the scheduling time, by indicating whether
the floating point context needs to be saved or not. Each thread using floating point
operations must explicitely state so in the initialisation phase. If such a thread enters the
running state, the floating point unit context is saved. This operation takes between 1474
and 2222 clock cycles.

If the tasks are scheduled using the one shot mode of the RT-Linux time management,
the timer has to reprogrammed. Figure 5.7 shows the kernel density, and the correspond-
ing extreme value distribution of the small routine, programming the timer described in

94

5.3 Test Setup

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

7000 7500 8000 8500 9000 9500 10000

"IRQ rejected"
exp(-exp(-(x-7813)/243.6))*exp(-(x-7813)/243.6)/243.6

Figure 5.6: Time Needed by rtl intercept() to Delay an Interrupt

Section 4.2.2.2. The minimum time needed for this routine was 3499 cycles, while the
largest value was 4532 cycles.

The typical hardware latencies of the control bus can be identified in Figure 5.7. Table 5.1
provides an overview on the approximate values for the different parts of the scheduler.

Parameter Execution Time
IRQ to start of scheduling algorithm 10.4 µs if already in kernel mode, + 25

µs if in user mode
number of threads in the list 0.4 µs for each thread
FPU context switch 1.8 µs
reprogramming of timer 3.9 µs
cleanup delay till thread actually starts ex-
ecution

2 µs

Table 5.1: Approximate Values for Scheduling on 900 MHz Athlon [81]

95

5 Experimental Validation

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

3400 3600 3800 4000 4200 4400 4600

"timer programming"
exp(-exp(-(x-3597)/116.2))*exp(-(x-3597)/116.2)/116.2

Figure 5.7: Programming the Intel 8254 Timer

5.4 Example Applications and Evaluation

The applications used to test the approach were inspired by the algorithms utilised by
the Embedded Microprocessor Benchmark Consortium (EEMBC). Not all EEMBC al-
gorithms are suitable for processors like the Intel Pentium III or the AMD Athlon like,
for example, the ignition timing used in a car engine, since the execution jitter exceeds
the execution time of the code.

A simple number crunching algorithm, like a fast fourier transformation, incurs no prob-
lem for the presented approach. The path through the code and the number of loops is
not input data dependent, assuming that the length of the vector is invariant. In most ap-
plications the vector length is fixed, or at least only a small number of vector lengths are
used as input. In this case all possible lengths of the input vector have to measured sep-
arately, and applied as appropriate. In the measurements a vector length of 4096 entries
was chosen.

Similar results are achieved for matrix multiplication, discrete cosinus transformation
or dithering of images. The matrix multiplication was operated on matrices with 128
columns and 128 rows. A image of 96*96 pixles was taken as source for the discrete
cosinus transformation with blocksize 8. The dithering was also done on a 96*96 pixel
image. In this case the placement of additional measurement points could be avoided by
rewriting a critical section and replacing an if/else statement by bit manipulations.

96

5.4 Example Applications and Evaluation

Algorithm Mean Deviation Min Max
FFT 1

�
97 	 106 256 1964842 1970123

matrix multiplication 1
�
55 	 107 184 15555140 15556459

discrete cosine transformation 7
�
51 	 106 140 7514004 7514530

image dithering 5
�
18 	 106 61 5175933 5176493

viterby soft decision 2
�
82 	 104 155 28205 31982

viterby soft decision (recoded) 2
�
35 	 104 39 23595 23814

Table 5.2: Results of Sample Applications on Pentium III System in Processor Cycles

Algorithm Mean Deviation Min Max
FFT 9

�
50 	 105 3815 912890 972475

matrix multiplication 1
�
25 	 107 4702 12451533 12527198

discrete cosine transformation 4
�
52 	 106 4611 4452611 4522123

image dithering 3
�
51 	 106 4877 3436897 3516690

viterby soft decision 2
�
17 	 104 1020 18312 28389

viterby soft decision (recoded) 1
�
63 	 104 427 14035 16843

bezier algorithm 2
�
42 	 107 5328 24200340 24229748

Table 5.3: Results of Sample Applications on AMD Athlon 800 MHz System in Proces-
sor Cycles

An application used in the mobile communications world is the viterby soft decision
algorithm [84]. Here, the aspect of intelligent coding can be shown. While simple im-
plementation loops over the bits of an input string and checks whether a given bit is set
and provides corresponding results, the second implementation checks the bits by means
of an & operator and sets the result without needing a branch instruction. This modifica-
tion of the algorithm speeds up the algorithm not only in the provided results, but also in
real life. As Table 5.2 and Table 5.3 show, the Athlon architecture is considerable faster
than the Intel Architecture. However, the Intel architecture has the advantage of smaller
deviations in the execution time.

Typical examples in the image processing field are image filtering, or the computation
of Bezier curves which have at least some paths to be enforced. The Bezier curves, as
described in [6], are a good example of how to obtain a reliable bound on the execution
time, while avoiding too much overestimation by using unconventional coding solutions,
as described in Section 5.6. The algorithm computes the parameters in such a way, that
start and endpoint are met. After that, the algorithm loops over a given number of steps,
between the start and the endpoint, and computes the location of the points to be coloured
black. Unfortunately, this point has to be checked against being out of bounds. By simply
taking the algorithm as it is, the malus introduced by the approach would be enormous.
The algorithm has been rewritten in order to avoid this excessive overestimation.

97

5 Experimental Validation

Due to the many manual operations on the measurement results which are not yet in-
tegrated into PAN , the following two examples have only been tested on the Athlon
architecture. The image filtering algorithm illustrates a major drawback of the approach.
The algorithm heavily depends on cache usage and is in itself very small. The initial tests
with the algorithm as is resulted in an overestimation of about factor 20. Then the loops
were differently partitioned to avoid the excessive negative effects in the caches and the
measurement was repeated. The code needing instrumentation was moved in a seperate
very compact loop which was additionally unrolled 3 times4. The changes in the code
were only straightforward and in no way exotic. In average the code without instrumen-
tation took 4

�
82 	 106 cycles with a standard deviation of 6722 cycles. The instrumented

code consisted needed 2 additional measurement points in loops, which resulted in 8000
measurement blocks. The join operation according to Section 4.6.3 resulted in a mean
value of 10

�
2 	 106 cycles and a standard deviation of 17

�
0 	 103 cycles. This shows

that the overestimation can be kept in close limits by following simple considerations.
An avoidance of the additional measurement points as has been done with the viterbi
and bezier algorithm is still possible and would result again in a single path through the
program.

The largest application under test is the codebook excited linear predictor, or short celp
algorithm. The code is derived from version 3.2c of the DoD’s Federal-Standard-1016
implementation of the lossy speech compression algorithm. After most of the comments
of the original have been removed, the algorithm has approximately 3000 lines of code
and 140 annotations. The code has been rewritten in some places, in accordance with the
recommendations given in Section 5.6. 31 measurement points were automatically in-
troduced by the placement algorithm according to the rules provided in Section 4.3.6.3.
In order to manage the complexity 4 additional measurement points were introduced
manually. The analysis of the code led to 56581 measurement blocks. The analysis of
the execution count of the measurement blocks has been done by hand using additional
information about non rectangular loops which cannot be expressed by the simply anno-
tation scheme. The deinstrumented version took 2

�
23 	 108 cycles. Compared to this the

measured mean was 4
�
30 	 108 with a standard deviation of 5

�
62 	 106. This result was

achieved by analysing measurement results, identifying bottle necks and modifying the
code to minimise the number of measurement points necessary. To compare the amount
of overhead introduced by the nops left after deinstrumentating the code, a version with-
out these nops has been tested and shown 2

�
19 	 108 cycles.

4The image investigated was coloured with three colour components.

98

5.5 Limitations to the Instrumentation

5.5 Limitations to the Instrumentation

Obviously, the enforcement of paths for the measurements has some critical issues. One
is that some loops, especially in search algorithms, terminate when no more members of
an array or a linked list need to be processed. Typical examples of such an algorithm are
search algorithms, which search for the largest member in a linked list of data objects,
where the end of the list is marked by a NULL pointer, or a string processing algorithm
with variable NULL terminated string length. Enforcing the maximum number of loop
iterations, without regard for the input data, would simpy lead to a segmentation violation
during the measurement. With these a set of input variables must be chosen, in such a
way that these requirements are fullfilled.

A second problem is code that is guarded by if conditions to avoid divisions by zero,
or segmentation violations. A typical example of this is the previously desribed Bezier
algorithm as in it’s “unmodified” form. In this case, those pixels, located outside the
memory area used for visualisation, are simply discarded. With the Bezier algorithm it
is comparably simple to provide data which does not leave the memory area allocated
for the display, but for more complex algorithms this is not so easy to achieve, especially
when the problematic code lies in nested loops. Depending on the code, alternative
solutions to this problem may be chosen. Either the input data is changed in such a way
that all paths are valid, or it is checked which path combinations are naturally checked by
input data, and the corresponding branch instruction is annotated with PAN FIXED SPLIT.

5.6 Coding Guidelines

Two main reasons drive the coding style for this approach. On the one hand the ap-
proach has to minimise the number of measurement blocks, while on the other hand it is
favourable to minimise the deviation of the execution time and improve the performance
of the code.

To avoid of additional measurement points in the execution path, and therefore measure-
ment blocks, the rules for applying additional measurement blocks in Section 4.3.6.3
must be investigated:

1. Subroutines with more then one path called from more than one point within a
measurement block.

2. Loops with more than one path in the loop body.

3. Lookup-Tables.

99

5 Experimental Validation

The problem of subroutines, which are called from more the one point, can be solved by
duplicating the functionality, and using separate instances for the separate calls. Imple-
mentations supporting this are inline functionality in the declaration of the code, macro
definitions or copying the code and changing the identifier. The first solution is the clean-
est one, but one has to check whether the compiler really implements this feature.

To facilitate loops with alternative paths, it must be checked if another, maybe subopti-
mal implementation can avoid the necessity of alternative paths. A rather unconventional

1 for (count = 0; count < 100; count++) ,
2 if(x[count] < 0) ,
3 x[count] = -x[count];
4 -
5 -
1 int helper[] = , -1, 1 - ;
2 for (count = 0; count < 100; count++) ,
3 x[count] = helper[(x[count]>>31)+1]*x[count];
4 -

Figure 5.8: Sample Code for an Alternative Loop Body

example to avoid alternative paths inside a loop body is given in Figure 5.8, where the
norm of a number of array values is computed. A short analysis on the assembler code
level, compiled from the sourcecode with comparably simple optimisation5 reveals that
the loop body of the first option takes either six or eight assembler instructions, depend-
ing on whether the inversion is actually computed or not, while the second option utilis-
eses seven instructions. In the face of mispredictions of the branch prediction, and the
necessary rollback, it can even be expected that the second, more complicated version,
is considerably faster than the simple straighforward implementation. The optimisation
guides of AMD Athlon [4] and Intel Pentium III [40] encourage the avoidance of branch
instructions to accelerate execution. However, such “virtuous” changes in the code make
it less human readable and less portable. The first can be mended by excessive use of
comments, but the loss in portability has to be carefully balanced against the gain, of
closer bounds on the execution time.

Another possibility for reducing the number of measurement points encountered for a
specific functionality, is the manual unrolling of a loop. Since the performance advantage
of caches for loops is voided by the introduction of an additional measurement block,
as regards performance the unrolling incurs no disadvantage compared to the compact
loop. Nevertheless, it has to be noted that the number of paths to be searched rises
considerably. This in turn may lead to a greater number of measurements necessary. The
loop unrolling is even possible in a search algorithm, where it is impossible to compute

5gcc optimisation -O2

100

5.6 Coding Guidelines

a priori the number of iterations of the loop even though an upper bound exists. Sample
code is depicted in Figure 5.9.

1 count = 0;
2 do ,
3 retval = do something(x[count]);
4 count++;
5 - while(retval != search);

1 count = 0;
2 do ,
3 retval = do something(x[count]);
4 count++;
5 if (retval != search) ,
6 retval = do something(x[count]);
7 count++;
8 -
9 - while(retval != search);

Figure 5.9: Sample Code for Manual Loop Unrolling

In general, lookup-tables are prohibited due to the indeterministic memory access. A
workaround can be achieved by preloading the complete lookup-tables into L1 data
cache. With AMD Athlon and Intel Pentium III processors, the MMX PREFETCH op-
code can be used to achieve this. To validitate this, two restrictions must be considered:

1. The prefetch of the data has to be initiated in advance, in such a way, that the data
is definitely present when accessed.

2. The data has to fit into L1 data cache memory, together with all data needed be-
tween the prefetch and the lookup.

The first restriction requires an excellent knowledge of the hardware, and a series of tests
to determine the amount of code to be placed between prefetch and lookup while the
second can be checked easily.

Usually this technique is only suitable for lookup-tables which are small compared to the
L1 cache, otherwise the gain of the lookup-tables would be voided due to the load time of
the PREFETCH opcode. On the other hand, the processor bus shows its peak performance
during burst access to main memory. The tradeoff must be balanced as the case arises.

101

5 Experimental Validation

5.7 Real-Time Analysis

The approach of Lee et al., presented in [51] focuses on computation of the additional
preemption delay, by intersecting cachelines of preempted and preempting threads. In
order to perforn this, a detailed analysis of possible schedules is made, which is then
solved by an integer linear programming approach. Since this approach provides an
integrated approach for WCET and schedulability analysis, and is limited to instruction
cache effects, the adaption to uptodate processors is nearly impossible.

A quantitative comparison to some degree is only possible with the work of Busquets
et al. in [16]. The limitation is caused by the fact that in handling branch prediction it
is nearly impossible to bound the effect on the branch prediction solely by analysing the
preempting thread. Thus, the comparison is limited to the effect of caches and schedul-
ing.

As in [16] the PN series of the hartstone benchmark [83] are taken as the basis for devel-
oping the comparison test. The hartstone benchmark has been developed by Weiderman
and Kamenoff and provides a real-time systems performance benchmark. The PN series
is a set of 5 periodic threads with different, non-harmonic inter-arrival times. Due to the
age of the test, the processor performance given in the benchmark does not correspond
with modern processors, and some relevant data is not specified. To perform the test no
code is executed - both schedulability analysis are simply exercised.

Since the blocking time is equivalent in both approaches, it is not separately considered.
Additionally, the approach presented in this work will be used with a single triggering
tuple, in accordance with Section 4.1, thus reducing it to simple periodic threads, and
making the approaches compatible for comparison. The time needed to load the num-
ber of cachelines the thread utilises is specified with the term cache load. The value
scheduling penalty contains the time needed for a thread switch, and a penalty for the
interference of the other acceleration techniques (e. g. branch prediction or pipeline).

Table 5.4 provides the basis for the following investigation. Equation 2.2 of Busquets
et al. in the extrinsic interference γ j is comprised of the sum of the cache load. The
scheduling penalty for the approach in this paper, the penalty δi, is given by:

δi � schedulingpenaltyi � cacheloadi 	 usability f actor (5.1)

It has to be noted, that this method is only used for comparison of the approaches. The
usability f actor models, in this case, the amount of useful contents in the cache. Due to
the fact that the application is usually split in several measurement blocks the amount of
useful contents in the cache will be small when compared to the amount of data and code
loaded into cache during the execution of the application. In the final application, δi has
to be provided by the WCET analysis by analysing, not only the cache usage, but also the
other acceleration techniques as described in Sections 4.3.7 and 4.4.7. Figures 5.10 a)

102

5.7 Real-Time Analysis

Frequency Period Computation Cache Load Scheduling Test
Thread [Hz] [ms] Time [ms] [ms] Penalty[ms] System

1
2
3
4
5
6
7
8

31
17
12
10
7
6
5
3

32.26
58.82
83.33
100.00
142.86
166.66
200.00
333.33

2
4
5
7
9

10
13
21

0.50
1.00
2.50
2.75
3.25
4.25
5.25
2.25

0.10
0.11
0.11
0.12
0.13
0.14
0.14
0.16

1
1
2
2
1,2
2
1,2
1

Table 5.4: Sample Thread System

and b) give an overview of the response times of the sample systems threads with varying
usability of the cache contents. The dashed lines corresponds to the response time of the
threads, computed with the method of Busquets et al. [16]. In Figure 5.10 a) only the
thread set consisting of the threads 1, 2, 5, 7 and 8 is considered, which corresponds to
the setting in the hartstone PN series.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Usablility Factor

R
es

po
ns

e
T

im
e

a) b)

R
es

po
ns

e
T

im
e

Usability Usability

R
es

po
ns

e
T

im
e

100

10

0

90

80

70

30

20

40

60

50

0.2 0.4 0.5 0.6 0.7 0.8 0.9 1.00.1 0.3 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1.00.1 0.3

Task2 Task1

Task5

Task7

Task8

10

70

20

60

50

40

30

0

Task3

Task5

Task6

Task4

Task7

Figure 5.10: Response Times of the Sample Thread Systems with Varying Usability

It can easily be seen, up to a usability of 30 % of the contents of cache, that the new
approach is superior for the given thread system, while the approach degrades when a
utilisation of more then 40 % is reached. Analysis of a number of programs have shown

103

5 Experimental Validation

that a typical amount of useful data in the cache is about 30 to 40 percent.

In the second test system only threads 3, 4, 5, 6 and 7 are taken, thus simulating a set
of more uniform requirements. Figure 5.10 b) depicts the response times for this set of
threads. With this system the break even point of the two approaches is reached later at
approximately 70 %.

In the presented approach the usability of the cache is less, due to the method of estimat-
ing the WCET. The decision as to which of the two methods is superior also depends on
the method of WCET estimation, which has to provide the data regarding cache usage.

104

6 Conclusion

The main objective of this theses was to show the applicability of a measurement based
approach, to estimate the worst case execution time on up to date processors. The prob-
lem with modern processors is their built in indeterminism. The analysis of the Intel
Pentium III and AMD Athlon reveals that an approach with a cycle true simulator of the
processor is infeasible, due to the various acceleration techniques. At this point the ques-
tion arises as to why two such badly built processors were picked as application example.
The reasons are twofold. On one hand these processors belong to the mass market, and
are surely to appear in different disguises in many embedded systems, which by nature
are often real-time systems, if not allways in the classical sense of meaning. The second
reason is that the techniques found in these processors, which cause numerous problems
in worst case execution time estimation, are found more often in more typical embedded
processors. In this way caches have found their way into various processor cores, and
branch prediction is not far behind. An approach that provides good results on misbe-
having processors, will most likely provide also good results on processors having not
all, but a few of the fancy acceleration techniques.

To estimate the WCET, measurements on the hardware are taken. Prior to the start of
the measurements, the execution and acceleration units are set as far as possible in the
worst case state. The part of the execution and acceleration units, that can not be reliably
enforced into a given state, or where the worst case state is unknown, is randomised,
where appropriate, or covered by additional penalties added to the measured execution
time. By enforcement of the paths taken in the program, a reliable bound on the WCET
is possible. Additionally measurements can be deployed to bound the preemption delay
in such processors. The enforcement of paths in subroutines and loops make it necessary
to partition the program under test into several measurement blocks which are seperately
measured. Thus it is possible to ensure that all path combinations are covered. In algo-
rithms depending heavily on caches, the overestimation induced by measurement points
in critical small loops is enormous. This overestimation can be vastly reduced, by using
the coding rules described in this thesis. In addition to the measurement of application
software the analysis and measurement of the execution time of operating system func-
tionality has been shown.

105

6 Conclusion

As a means to provide a value for the confidence in the aquired results, the extreme value
statistics by Burns and Edgar (cf. [14]) approach is utilised. The approach has been
extended to be able to compute the extreme value probability density function of a whole
task consisting of several measurement blocks. Finally a scheduling analysis algorithm
is provided, that is capable of handling the additional time induced by the disruption
of the working set in the acceleration techniques of the processor whenever the task is
preempted.

The presented approach of estimating the execution time by utilising measurements can
be improved in various aspects. The current version of annotations is very simplistic and
has been only implemented to provide the absolute necessary features to make the mea-
surement based approach possible. The annotations can be extended to a more advanced
state and partly eliminated by using a localised symbolic execution unit. An overall
symbolic execution to provide loop bounds and detect infeasible paths will likely be to
complex.

A further extension to the approach is to use the results of the path enforcement in order
to bound the deviation of the different paths. This is especially usefull in small loop
bodies. In this case the deviation can be utilised to add a penalty on the execution time
measured of the uninstrumented loop. Thus a closer bounding of the WCET is possible,
while still retaining considerable control of execution paths. This can be supported by a
more extensive use of statistics.

106

Bibliography

[1] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers: Priciples, Techniques
and Tools. Addison–Wesley Publishing Company, 1986.

[2] ALLEN, A. O. Probability, Statistics, and Queueing Theory. Academic Press, Inc.,
111 Fifth Avenue, New York, 1978.

[3] AMD. AMD Athlon Processor Architecture. Sunnyvale, CA, USA, Aug. 2000.

[4] AMD. AMD Athlon Processor x86 Code Optimization Guide. Sunnyvale, CA,
USA, Sept. 2000.

[5] AMD. Whitepaper AMD Athlon Processor and AMD Duron Processor with Full-
Speed On-Die L2 Cache. Sunnyvale, CA, USA, June 2000.

[6] ANAND, V. B. Computer Graphics and Geometric Modeling for Engineers. John
Wiley & Sons, Inc., 605 Third Avenue, New York, 1993.

[7] ARNOLD, R., MÜLLER, F., WHALLEY, D., AND HARMON, M. Bounding worst–
case instruction cache performance. In Proc. of the IEEE Real–Time Systems Sym-
posium (RTSS’94) (Dec. 1994), IEEE Computer Society Press.

[8] ATANASSOV, P., KIRNER, R., AND PUSCHNER, P. Using real hardware to create
an accurate timing model for execution–time analysis. In Proceedings of the 1st
Real–Time Embedded Systems Workshop (RTES’01) (London, UK, Dec. 3 2001),
IEEE.

[9] BARABANOV, M. A Linux-based Real-Time Operating System. M.S. Thesis, June
1997.

[10] BASUMALLICK, S., AND NILSEN, K. Cache issues in real–time systems. In ACM
SIGPLAN Workshop on Languages, Compilers and Tools for Real–Time Systems
(LCTRS’94) (Orlando, FL, USA, June 21 1994).

[11] BLIEBERGER, J., FAHRINGER, T., AND SCHOLZ, B. Symbolic cache analysis for
real–time systems. Journal of Realtime Systems 18 (2000), 181–215.

107

Bibliography

[12] BURNS, A. Preemptive priority based scheduling: An appropriate engineering
approach. In Advances in Realtime Systems. Prentice–Hall International, Inc., 1994,
pp. 225–248.

[13] BURNS, A., AND EDGAR, S. Predicting computation time for advanced proces-
sor architectures. In Proceedings of the 12th Euromicro Conference on Real-Time
Systems (Stockholm, Sweden, June 19–21 2000).

[14] BURNS, A., AND EDGAR, S. The use of extreme statistics to predict computa-
tion time for advanced processor architectures with branch prediction. Tech. rep.,
University of York, United Kingdom, Department of Computer Science, Real-Time
Research Group, 2000.

[15] BURNS, A., AND EDGAR, S. Statistical analysis of WCET for scheduling. In Proc.
of the IEEE Real–Time Systems Symposium (RTSS’01) (London, United Kingdom,
Dec. 4–6 2001).

[16] BUSQUETS-MATAIX, J. V., GIL, D., GIL, P., AND WELLINGS, A. Techniques to
increase the schedulable utilization of cache-based preemptive real-time systems.
Journal of System Architecture 46 (2000), 357–378.

[17] BUSQUETS-MATAIX, J. V., WELLINGS, A., SERRANO-MARTIN, J. J., , ORS-
CAROT, R., AND GIL, P. Adding instruction cache effect to exact schedulability
analysis of preemptive real-time systems. In Proceedings of the 8th Euromicro
Workshop on Real-Time Systems (L’Aquila, Italy, June 10–12 1996), IEEECSP,
pp. 271–276.

[18] BUSQUETS-MATAIX, J. V., WELLINGS, A., SERRANO-MARTIN, J. J., , ORS-
CAROT, R., AND GIL, P. Adding instruction cache effect to schedulability analysis
of preemptive real-time systems. In Proceedings of IEEE Real-Time Technology
and Applications Symposium (Boston, June 12–14 1996), IEEECSP, pp. 204–212.

[19] CHAPMAN, R., BURNS, A., AND WELLINGS, A. Integrated program proof and
worst–case timing of SPARC Ada. In Proceedings of the ACM SIGPLAN Lan-
guage, Compiler, and Tool Support for Real-Time Systems (LCTS) workshop (Or-
lando, Florida, June 1994), ACM Press.

[20] COLIN, A., AND PUAUT, I. Worst case execution time analysis for a processor
with branch prediction. Journal of Realtime Systems 18 (2000), 249–274.

[21] COLIN, A., AND PUAUT, I. Worst case execution time analysis of the RTEMS
real–time operating system. In Proceedings of the 13th Euromicro Workshop on
Real-Time Systems (Delft, Netherlands, June 13–15 2001).

108

Bibliography

[22] ERMEDAHL, A., AND GUSTAFSSON, J. Deriving annotations for tight calcula-
tion of execution time. In Euro-Par’97, 20th Workshop on Real-Time Systems and
Constraints (Passau, Germany, Aug. 1997).

[23] EVERS, M., AND YEH, T.-Y. Understanding branches and designing branch pre-
dictors for high performance microprocessors. Proceedings of the IEEE 89, 11
(Nov. 2001), 1610–1620. Special Issue on Microprocessor Architecture and Com-
piler Design.

[24] FERRARI, D. Computer Systems Performance Evaluation. Prentice–Hall Interna-
tional, Inc., Englewood Cliffs, NJ, 1978.

[25] FERRARI, D., SERAZZI, G., AND ZEIGNER, A. Measurement and Tuning of
Computer Systems. Prentice–Hall International, Inc., Englewood Cliffs, NJ, 1983.

[26] FISHER, R. A., AND TIPPET, L. H. C. Limiting forms of the frequency distribu-
tion of the largest and smallest member of a sample. Proceedings of the Cambridge
Philosophical Society 24 (1928), 180–190.

[27] FOG, A. Branch prediction in the pentium family. Dr. Dobb´s Journal (1998).
http://x86.org/articles/branch/branchprediction.htm.

[28] FOG, A. How to optimize for the pentium family of microprozessors, 2000.
http://www.agner.org/assem/pentopt.zip.

[29] FRANK, B., ALBERT, K., AND YAKOLEV, A. WCET analysis of superscalar
processors using simulation with coloured petri nets. Journal of Realtime Systems
18 (2000), 275–288.

[30] FÄRBER, G. Prozeßrechentechnik. 2., völlig neubearb. Aufl. Berlin: Springer,
1992. 223 S., 116 Abb.

[31] GRESSER, K. An event model for deadline verification of hard real–time systems.
In Proc. Fifth Euromicro Workshop on Real Time Systems (Finland, June 1993),
IEEE, pp. 118–123.

[32] GRESSER, K. Schedulability Analysis for Event–Driven Real–Time Systems.
No. 268 in Fortschrittsberichte VDI, volume 10. VDI–Verlag, Düsseldorf, 1993.
Ph.D. Thesis, Institute for Real–Time Computer Systems, Technische Universität
München (in german).

[33] HARPER, J. S., KERBYSON, D. J., AND NUDD, G. R. Analytical modeling of set–
associative cache behavior. IEEE Transactions on Computers 48, 10 (Oct. 1999),
1009–1023.

109

Bibliography

[34] HEALY, C., SJÖDIN, M., RUSTAGI, V., WHALLEY, D., AND VAN ENGELEN, R.
Supporting timing analysis by automatic bounding of loop iterations. Journal of
Realtime Systems 18 (2000), 129–156.

[35] HERGENHAN, A., AND ROSTENSTIEL, W. Static timing analysis of embedded
software on advanced processor architectures. In Proceedings of the Design Au-
tomation and Test in Europe Conference (DATE2000) (Paris, France, Mar. 27–30
2000), pp. 552–559.

[36] HUR, Y., BAE, Y. H., LIM, S.-S., KIM, S.-K., RHEE, B.-D., MIN, S. L., PARK,
C. Y., LEE, M., SHIN, H., AND KIM, C. S. Worst case timing analysis of RISC
processors: R3000/R3010 case study. In 16th IEEE Real–Time Systems Symposium
(Pisa, Italy, Dec. 1995).

[37] INTEL. 8259A Programmable Interrupt Controller. www.intel.com, Dec. 1988.

[38] INTEL. 8254 Programmable Interval Timer. www.intel.com, Sept. 1993.

[39] INTEL CORPORATION. Intel Architecture Software Developer’s Manual Volume 3.
Mt. Prospect, IL, USA, 1997.

[40] INTEL CORPORATION. Intel Architecture Optimization Reference Manual. Mt.
Prospect, IL, USA, 1999.

[41] INTEL CORPORATION. IA-32 Intel Architecture Software Developer’s Manual Vol-
ume 1: Basic Architecture. Mt. Prospect, IL, USA, 2001.

[42] INTEL CORPORATION. IA-32 Intel Architecture Software Developer’s Manual Vol-
ume 2: Instruction Set Reference. Mt. Prospect, IL, USA, 2001.

[43] KAISER, A. K7 Branch Prediction. www.s.netic.de/ak, Dec. 1999.

[44] KENT, D. RAM Guide, Oct. 1998.
http://www.tomshardware.com/mainboard/98q4/981024/.

[45] KIM, S.-K., HA, R., AND MIN, S. L. Analysis of the impacts of overestimation
sources on the accuracy of worst case timing analysis. In Proceedings of the IEEE
Real–Time Systems Symposium (Phoenix, AZ, Dec. 1999).

[46] KIM, S.-K., MIN, S. L., AND HA, R. Efficient worst case timing analysis of
data caching. In Proceedings of the IEEE Real–Time Technology abd Applications
Symposium (RTAS’96) (1996), pp. 230–240.

[47] KLAR, R., DAUPHIN, P., HARTLEB, F., HOFMANN, R., MOHR, B., QUICK, A.,
AND SIEGLE, M. Messung und Modellierung paralleler und verteilter Rechensys-
teme. Teubner, Stuttgart, Germany, 1995.

110

Bibliography

[48] KOPETZ, H. Real–Time Systems — Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

[49] KUENNING, G. H. Kitrace: Precise interactive measurement of operating systems
kernels. Software: Practice and Experience 25, 1 (Jan. 1995).

[50] LEE, C., HAHN, J., SEO, Y., MIN, S., HA, R., HONG, S., PARK, C., LEE, M.,
AND KIM, C. Bounding cache-related preemption delay for real–time systems. In
18th IEEE Real–Time Systems Symposium (San Francisco USA, Dec. 3–5 1997),
IEEE, IEEE Computer Society Press.

[51] LEE, C., HAHN, J., SEO, Y., MIN, S., HA, R., HONG, S., PARK, C., LEE,
M., AND KIM, C. Enhanced analysis of cache-related preemption delay in
fixed-priority preemptive scheduling. IEEE Transactions on Software Engineer-
ing (1998).

[52] LEE, C., HAHN, J., SEO, Y., MIN, S., HA, R., HONG, S., PARK, C., LEE,
M., AND KIM, C. Bounding cache-related preemption delay for real–time sys-
tems. IEEE Transactions on Software Engineering 27, 9 (Sept. 2001), 805–826. A
previous Version also appeared at the Proceedings 18th IEEE Real–Imte Systems
Symposium 1997.

[53] LEE, J. K. F., AND SMITH, A. J. Branch prediction strategies and branch target
buffer design. IEEE Computer 17, 1 (Jan. 2 1984).

[54] LI, Y., AND MALIK, S. Performance analysis of embedded software using implicit
path enumeration. In Proceedings of the 32nd ACM/IEEE Design Automation Con-
ference (June 1995), ACM, pp. 456–461.

[55] LIM, S.-S., ET AL. An accurate worst case timing analysis for RISC processors.
IEEE Transactions on Software Engineering 21, Nr. 7 (July 1995), 593–603.

[56] LINDGREN, M. Deriving worst-case execution time by measurements. Tech. Rep.
Technical Report 00/26, Mälardalen Real-Time Research Center, Mälardalen Uni-
versity, Sweden, Nov. 2000.

[57] LIU, Y. A., AND GOMEZ, G. Automatic accurate time–bound analysis for high–
level languages. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers and Tools for Embedded Systems (LCTES’98) (Montreal Canada, June
19–20 1998), F. Müller, A. Bestravros, et al., Eds., Lecture Notes in Computer
Science, ACM SIGPlAN, Springer–Verlag, pp. 31–40.

[58] LUNDQVIST, T., AND STENSTRÖM, P. Integrating path and timing analysis us-
ing instruction level simulation techniques. In Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES’98)

111

Bibliography

(Montreal Canada, June 19–20 1998), F. Müller, A. Bestravros, et al., Eds., Lecture
Notes in Computer Science, ACM SIGPlAN, Springer–Verlag.

[59] LUNDQVIST, T., AND STENSTRÖM, P. An integrated path and timing analysis
method based on cycle-level symbolic execution. Journal of Realtime Systems 17,
2/3 (Nov. 1999), 183–207.

[60] LUNDQVIST, T., AND STENSTRÖM, P. Timing anomalies in dynamically sched-
uled microprocessors. In Proceedings of the IEEE Real–Time Systems Symposium
(Phoenix, AZ, Dec. 1999).

[61] MATTEO, C., ROBERTO, B., AND THOMAS, G. Approximation of worstcase
execution time for preemptive multitasking systems. In Proceedings of the ACM
SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems
(LCTES’00) (Vancouver Canada, June 18 2000), Lecture Notes in Computer Sci-
ence, Springer–Verlag.

[62] MAZZUCCO, P. The Fundamentals Of Cache, Oct. 2000.
http://www.systemlogic.net/articles/00/10/cache/.

[63] MÄCHTEL, M. Entstehung von Latenzzeiten in Betriebssystemen und Methoden
zur messtechnischen Erfassung. No. 808 in Fortschrittsberichte VDI, Reihe 8.
VDI–Verlag, Düsseldorf, Germany, 2001.

[64] MÜLLER, F. Static Cache Simluation and its Applications. PhD thesis, Deptȯf
Computer Science, Florida State University, June 1994.

[65] MÜLLER, F. Timing analysis for instruction caches. Journal of Realtime Systems
18 (2000), 217–247.

[66] MÜLLER, F., AND WEGENER, J. A comparison of static analysis and evolutionary
testing for the verification of timing constraints. In Proceedings of the Fourth IEEE
Real-time Technology and Applications Symposium (RTAS’98) (June 1998), IEEE,
pp. 179–188.

[67] NAMARISMHAN, K., AND NILSEN, K. Portable execution time analysis for RISC
processors. In ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Real–Time Systems (LCTRS’94) (Orlando, FL, USA, June 21 1994).

[68] PABST, T. The new athlon processor – amd is finally overtaking intel. Tom´s
Hardware Guide (Aug. 9 1999).
http://www4.tomshardware.com/cpu/99q3/990809/index.html.

[69] PARK, C., AND SHAW, A. Experiments with a program timing tool based on
source–level timing schema. IEEE Transactions on Computers 24, 5 (May 1991),
48–57.

112

Bibliography

[70] PETTERS, S. M., MUTH, A., KOLLOCH, T., HOPFNER, T., FISCHER, F., AND

FÄRBER, G. The REAR framework for emulation and analysis of embedded hard
real–time systems. Design Automation for Embedded Systems 5, 3 (Aug. 2000),
237–250.

[71] PUSCHNER, P., AND KOZA, C. Calculating the maximum execution time of real-
time programms. Journal of Realtime Systems (Sept. 1989), 159–176.

[72] PUSCHNER, P., AND V. SCHEDL, A. Computing maximum task execution times
— a graph–based approach. Journal of Realtime Systems (July 1995), 67–91.

[73] RAJKUMAR, R. Synchronization in Real–Time Systems. A Priority Inherintance
Approach. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.

[74] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Computers 39, 9
(Sept. 1991).

[75] STAPPERT, F., AND ALTENBERND, P. Complete worst–case execution time analy-
sis of straight–line hard real–time programs. Tech. Rep. 27/97, C–Lab, Fürstenallee
11, Paderborn, Germany, Dec. 1997.

[76] STAPPERT, F., AND ALTENBERND, P. Complete worst–case execution time anal-
ysis of straight–line hard real–time programs. Journal of Systems Architecture, The
EUROMICRO Journal 46 (2000), 339–355.

[77] STAPPERT, F., ERMEDAHL, A., AND ENGBLOHM, J. Efficient longest executable
path search for programs with complex flows and pipeline effects. In Interna-
tional Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(CASES 2001) (Atlanta, Giorgia, USA, Nov. 16–17 2001), pp. 132–140.

[78] SVOBODOVA, L. Computer Performance Measurement and Evaluation Methods:
Analysis and Applications. No. 2 in Elsevier Computer Science Library. American
Elsevier Publishing Company, Inc,̇ New York, 1976.

[79] THEILING, H., FERDINAND, C., AND WILHELM, R. Fast and precise WCET
prediction by spearated cache and path analysis. Journal of Realtime Systems 18
(2000), 157–179.

[80] US DEPARTMENT OF DEFENSE. Military Handbook: Reliability Prediction of
Electronic Equipment. Washington DC, USA, 1991. MIL-HDBK-217F.

[81] VON BÜLOW, A. Bestimmung der WCET auf AMD–Athlon Prozessoren unter
Berücksichtigung eines Realzeit–Betriebssystems, 2001. Diplomarbeit (masters
thesis) at the Institute for Real–Time Computer Systems, Technische Universität
München.

113

Bibliography

[82] WALL, G., BJÖRNFOT, L., AND ASPLUND, L. A source-level performance anal-
ysis tool for real-time systems. In Proceedings of the Swedish National Conference
on Real-Time Systems (Stockholm, Sweden, Aug. 25–26 1993).

[83] WEIDERMAN, N. H., AND KAMENOFF, N. I. Hartstone uniprocessor benchmark:
Definitions and experiments for real-time systems. Journal of Realtime Systems 4
(1992), 353–382.

[84] WICKER, S. B. Error Control Systems for Digital Communication and Storage.
Prentice–Hall, Englewood Cliffs, New Jersey, USA, 1995.

[85] WILSHIRE, P. Real Time Linux Applications and Use. Real Time Linux Workshop,
13-15.12.1999, TU Wien, 1999.

[86] WOLF, F., AND ERNST, R. Data flow based cache prediction using local simu-
lation. In Proceedings of High Level Design Validation and Test (Berkeley, USA,
Nov. 2000).

[87] WOLF, F., AND ERNST, R. Execution cost interval refinement in static software
analysis. Journal of Systems Architecture, The EUROMICRO Journal Special Issue
on Modern Methods and Tools in Digital System Design (2000).

[88] WOLF, F., AND ERNST, R. Intervals in software execution cost analysis. In Pro-
ceedings of International Symposium on System Synthesis (Madrid, Spain, Sept.
2000).

[89] WOLF, F., KRUSE, J., AND ERNST, R. Compact trace generation and power
measurement in software emulation. In Proceedings of International Symposium
on Microelectronics and Assembly (Singapore, Nov. 2000).

[90] WYMAN, C. The Advanced Micro Devices Athlon Processor. CS6810 Research
Paper, 1999.
http://www.cs.utah.edu/ � wyman/classes/arch/athlon.html.

[91] YE, W., AND ERNST, R. Embedded program timing analysis based on path cluster-
ing and architecture classification. In International Conference on Computer-Aided
Design (ICCAD ’97) (San Jose, USA, 1997).

[92] YEH, T.-Y., AND PATT, Y. N. Two level adaptive training branch prediction.
In Proceedings of the 24th annual International Symposium on Microarchitecture
(Albuquerque, NM USA, Nov. 18–20 1991), ACM, pp. 51–61.

[93] YODAIKEN, V. The RTLinux Manifesto. Department of Computer Science, New
Mexico Institute of Technology, Socorro NM 87801. www.rtlinux.org.

114

Bibliography

[94] YODAIKEN, V., AND BARABANOV, M. RTLinux Version Two. VJY Associates
LLC, 1999. www.rtlinux.org.

115

Bibliography

116

Index

tAWCET , 64, 68
tMWCET , 64
tWCET , 64

address
linear, 125
logical, 125
physical, 126
virtual, 126

address generation unit, 135
AGP, 31
AGU, 135
analysis

response time, 74

blocked, 63
blocking system call, 60
branch prediction, 36, 44, 138
Branch Target Address Cache, 138
branch target address cache, 48, 141
branch target buffer, 36, 40, 130
bridge

host, 31
north, 31

BTAC, 48, 138, 141
BTB, 36, 130, 141

cache
data, 127, 137
instruction, 127, 137
uniform, 127

cdf, 66
CFG, 4
computation time, 42
concentrators, 20
control flow graph, 4

controller, 21
CPUID, 35, 128
cumulative distribution function, 66

data cache, 35, 137
data TLB, 136
DDR SDRAM, 32
dead lock, 58
deadline, 16
deadlines

relative, 16
debug register, 37
determinism, 57
direct path, 135, 137
dispatch/execution unit, 33, 123
dominator tree, 87
DRAM, 32
DTLB, 136
dynamic branch prediction, 49

EDF, 52
EEMBC, 96
ES, 27
EV, 66
event driven monitor, 24
event filter, 20
event streams, 27
event trace, 19
event-driven, 19
exceptions, 55
extreme value statistics, 66

fall through, 36, 130
fetch/decode unit, 33, 122
fixed priority scheduling, 52
floating point unit, 135

117

Index

FPU, 135
frontside bus, 121
FSB, 121

GBH, 48, 138, 141
GHBC, 48, 138, 140
Global Branch History, 138
global branch history, 48, 141
Global History Bimodal Counter, 138
global history bimodal counter, 48, 140
GPOS, 52
GTL+ bus, 124

hardware monitor, 25
history counter, 130
host bridge, 31
hybrid monitor, 25

I. I. D., 66
ICU, 135
IEU, 135
ILP, 13
IMUL, 135
in–order unit, 122
in-order, 33
instruction cache, 35, 139
instruction control unit, 135
instruction decoder, 134
instruction pointer, 130
instruction pool, 33, 122
instruction TLB, 136
integer execution unit, 135
integer linear programming, 13
integer multiplication unit, 135
inter arrival time, 26
interrupt request, 55
interrupt service routine, 56
interrupt service routines, 23
interrupt stream, 74
interrupt streams, 27
IRQ, 55
IS, 27
ISR, 56

ITLB, 136

least recently used, 36
linear address, 125
logic modules, 20
logical address, 125
LRU, 36

macro op, 135
measurement objective, 17
memory type range register, 128
model specific registers, 142
monitor, 17
monitoring

full trace, 19
monitoring artifact, 23
MOP, 135
MTRR, 128

north bridge, 31

operating system
general purpose, 52
real-time, 52

out–of–order unit, 123
out-of-order, 33, 46
out-of-order execution, 30

paging mechanism, 35, 126
parallel execution, 30
pdf, 66
performance monitoring counter, 51,

133
performance monitoring counters, 37,

142
physical address, 126
PIC, 33, 55
PMC, 37, 133, 142
Predecode Cache, 138
predecode cache, 48, 141
preemption, 42
prefetching, 137
priority inheritance protocol, 59

118

Index

priority inversion, 58
probability density function, 66
probes, 20
programmable interrupt controller, 33,

55

RAM, 32
random access memory, 32
RAS, 36, 142
RAT, 122
ready, 63
real time clock, 32
real-time systems

firm, 16
hard, 17
soft, 16

register allocation table, 122
releasing system call, 60
reorder buffer, 122
response time analysis, 74
retirement unit, 33, 124
return address stack, 36, 142
return stack buffer, 48, 132, 142
RSB, 48, 132
RTA, 74
RTOS, 52
running, 63

sampling
statistic, 19

sampling monitor, 24
scheduler, 52
SDRAM, 32
second level cache, 36
semaphore, 57
smith prediction scheme, 130
software monitor, 25
SRAM, 32
synchronous interrupt, 55
system calls, 54, 60

tasks, 54
thread, 23

time stamp counter, 132, 142
timestamp counter, 37
TLB, 35, 127

data, 136
instruction, 136
miss/hit, 128

translation lookaside buffer, 35
translation lookaside buffers, 127
trap, 23, 55
TSC, 132

Uncacheable, 128

vector path, 135, 137
victim buffer, 137
victim cache, 137
virtual addresses, 126

Write Back, 129
Write Combining, 128
Write Protected, 129
Write Through, 129

119

Index

120

A Processor Description

A.1 Intel P6 Family

The Intel P6 family has been developed since 1995. The first step in this direction was
the Pentium Pro, which was built as a replacement for the Pentium class processors. The
roots of the P6 family go back to Intel 486, Intel 386, Intel 286 through to the 8068
processor in 1978. Various legacies in the register set, and the general structure of the
processor are the result of this development.

The Pentium Pro was only produced for a very short period of time, and was soon re-
placed by the Pentium II, the Pentium III and recently the Pentium 4. The development
was accompanied by minor changes in the structure (e. g. simultaneous multiprocessing
SMP capabilities), special purpose versions (e. g. Celeron and Xeon) and resizing of the
caches. The following will focus on the Pentium III as one of the newer processors.
The latest available Pentium III is code-named Coppermine. Newer versions of the Pen-
tium III, code-named Tualatin and Coppermine-T, are currently only provided to a very
limited number of customers.

A.1.1 General Structure

The basic structure of the processor has not changed since the days of the Pentium Pro.
Figure A.1 gives an overview of the basic building blocks of the P6 Family. One of the
specialities of this structure is that the CPU behaves on the outside as a complex instruc-
tion set computer (CISC) but internally the core is organised as a reduced instruction set
computer (RISC). In the further description of the processor these RISC instructions will
be called micro ops in accordance with the Intel documentation. Another notable feature
is that usually the CPU core works at a higher frequency to the rest of the computer.
This external frequency is called frontside bus or FSB frequency. The external frequency
has increased at a much slower rate than the internal frequency and lies at present at
133 MHz. Unless otherwise noted, the CPU core frequency is of relevance which is
currently pushed to a maximum of around 2 GHz.

121

A Processor Description

I n s t r u c t .
P o o l

D e c o d e
U n i t

E x e c u t e
U n i t

R e t i r e
U n i t

F e t c h L o a d S t o r e

I n s t r u c t .
P o o l

D e c o d e
U n i t

E x e c u t e
U n i t

R e t i r e
U n i t

F e t c h L o a d S t o r e

B u s I n t e r f a c e U n i tB u s I n t e r f a c e U n i t

L 1 D a t a C a c h e
L 1 I n s t r . -

C a c h e L 1 D a t a C a c h e
L 1 I n s t r . -

C a c h e

S y s t e m B u sS y s t e m B u s

I n t e l A . -
R e g i s t e r
I n t e l A . -
R e g i s t e r

L 2
C a c h e

C a c h e B u s

L 2
C a c h e

C a c h e B u s

Figure A.1: Building Blocks of the Intel P6 Architecture[41]

The CPU core is made up of of 5 basic building blocks. The fetch/decode unit is respon-
sible for the translation of the CISC into the micro ops and is constructed of two simple
and one complex opcode decoder, which decode in parallel. Each decoder translates one
CISC instruction, in one or more triadic micro ops, i. e.; two logical sources and one
logical destination of each micro op. Per clock cycle, up to 6 micro ops are produced (1
for the simple and 4 for the complex decoder). A detail which has to be noted here is
that, with one exception, jump and conditional jump opcodes share the complexity, i. e.;
short and near jumps are simple opcodes which can be decoded in the simple decoders,
whereas far jumps must be decoded by the complex decoders. The JCXZ opcode is the
exception as regards the complexity and decoder usage. Figure A.2 provides a more
detailed look into Intel’s P6 Core.

The register set of the Pentium compatible processors is known to be very small. Inter-
nally, fitting for a RISC CPU, the register set is build of 40 general purpose registers.
After the decoding, a dependency analysis is done to identify instructions which are in-
dependent of each other, for example, a move into a register from an arbitrary address is
usually independent from previous instructions using this particular register, but not the
same memory address. External registers and data are mapped to the internal register set
according to their dependency on utilising the register allocation table (RAT). This step
is essential for the later out–of–order execution. The RAT is also the bottleneck of the P6
as it can issue only 3 micro ops per cycle. The fetch/decode unit itself is an in–order unit
with speculative and parallel fetch, i. e.; the instructions are decoded in the order they are
in the instruction stream. As regards the speculative part, the decode unit incorporates
the branch prediction unit which is considered closely in A.1.4.

The micro ops are buffered in the instruction pool, formerly known as reorder buffer.
The decode unit is only loosely coupled to the other execution units, and decodes up to

122

A.1 Intel P6 Family

72−Entry TLB
4−Way, 16 Kbyte Data Cache

Store
Data
Unit

AGU
Load

Address
Unit

AGU
Store

Address
Unit

Architectural
Register File

FPU
SSE
MUL
DIV

IEU
shift

Integer/FP Register
Rename and Allocator

Reservation Station (20 Entries)

MMX IEU SSE MMV

Memory Order Buffer
(12 entry store, 16 entry load)

Bus
Interface

Unit

L2 Cache
Controller

System Interface

L2 SRAMs

(40 Entries)
Reorder Buffer

Predictor (512 Entries)
Dynamic Branch

Static Branch
Predictor

Fetch/Decode
Control

32−Entry TLB
4−Way, 16Kbyte Instruction Cache

3−Way Instruction Decoders

Figure A.2: Detailed Architecture of the Intel P6 Core [68]

40 CISC instructions in advance. The instruction pool has 40 micro op registers which
can each hold an micro op ready for execution, or one already executed but not yet
committed to machine state.

The dispatch/execution unit, as an out–of–order unit, utilises the dependence analysis of
the fetch/decode unit in order to feed the micro ops into the pipelines. The micro ops
are moved into the reservation station and wait until their operands are valid and they are
dispatched into a pipeline. Because of the dependency analysis this can be done while
maintaining the integrity of the data operated on. The execution unit contains two floating
points, two integer and one memory interface unit. The Intel documentation is inaccurate
when specifying the number of micro ops possibly executed per clock. Since the memory
interface can schedule 3 micro ops per cycle (1 load and 2 store), the execution units are

123

A Processor Description

clustered as depicted in Figure A.2 (cf. [68] and [28] Section 17). One of the integer
pipelines is specially equipped for branch micro ops. It is able to detect mispredictions
and, if this is the case, signals the branch target buffer to restart the pipeline. All micro
ops executed speculatively are tagged if they are connected to either the taken or the not
taken branch. When the branch micro op is finally executed, the pipeline signals whether
the branch was taken or not, and the wrongly executed micro ops are marked as unused,
thus invalidating the result. The memory interface unit is responsible for load and store
micro ops. A surprising piece of information is that the opcodes for multiplication and
division have a data independent execution time, i. e.; the values of the operands have no
influence on the execution time (cf. [28] Section 29).

Following confirmation of speculatively executed opcodes, the results must be commit-
ted to the machine state by the retirement unit. The retirement unit continuously monitors
the status of the micro ops in the instruction pool. Whenever a micro op is ready the re-
sult may be written to the corresponding memory, i. e.; usually the caches, or the CISC
Intel architecture register set. After retirement of an micro op it is removed from the
instruction pool. This strict separation of execution and commit of the micro ops is nec-
essary to allow the speculative execution. Another requirement to support speculative
execution is that the micro ops are retired in order, i. e.; that no micro op is retired before
all micro ops preceding this in the instruction stream are retired. This is necessary to
maintain data integrity in the case that the speculative execution is discarded because of
a mispredicted branch.

The connection of the processor to peripheral components, and the main memory, is
comprised of the GTL+ bus and the north bridge. The GTL+ bus is a shared bus, which
connects all processors within a SMP system and the north bridge. One of the basic fea-
tures of the GTL+ bus is that it supports multiple outstanding command/transaction pairs.
The peak bandwidth is GBit/s, but this is only reached for a very short time due to com-
munication overhead, bottleneck in the peripheral components and the main memory.
As previously mentioned, the frontside bus works on a lower frequency than the CPU,
which results in a certain granularity of time for all accesses to the rest of the system. A
single cycle CPU delay might therefore incur no delay at all when the processor has to
wait for a subsequent memory or I/O access, or it might incur a delay corresponding to
the CPU frontside bus frequency ratio.

A.1.2 Memory Management

The memory of a computer system is, next to the connection to the environment, the
main peripheral unit. The management of this elementary resource is therefore handled
with great care. This section gives an overview of the memory organisation within the
P6 family. Caches, as a matter of processing acceleration, are discussed separately in the

124

A.1 Intel P6 Family

next section.

The memory of the P6 family can be accessed in three ways:

1. Flat model.

2. Segmented model.

3. Real–Address Mode model.

In the flat model, the memory is addressable from 0 to 4 GByte. Code, data and I/O are all
within the same linear address space. An address for any byte, within this address space,
is called a linear address. In the segmented model the logical address is comprised of
a segment selector, and an offset within this segment. Figure A.3 depicts the translation
scheme. 8192 Segments of different types and sizes, with each segment up to 4 GByte
addressable space, are supported by the Intel architecture. Flat model and segmented
model are referred to as protected mode.

Logical
Address

�1�1�1�1�1�1��1�1�1�1�1�1��1�1�1�1�1�1��1�1�1�1�1�1��1�1�1�1�1�1��1�1�1�1�1�1�
+

31

31

15 0

0

02

Descriptor

Table

Segment Selector Offset

Linear Address

Figure A.3: Translation of Logical to Linear Addresses [81]

Bit 0 and 1 in the Segment selector specify privilege level which is likely to be the highest
priority in the case of real time systems. Bit 2 indicates if the Local or Global Descriptor
Table (LDT and GDT) should be used. The remaining bits, from 3 to 15, form the index
which selects the segment descriptor in the GDT or LDT. Sections 3.4 and 3.5 in [39]
give in–depth information on the subject of segment selectors, and the corresponding
descriptor tables.

The real–address mode model dates back to the times of 8086. It is composed like the
segmented model of segment selector and offset, but the segment size is fixed equally to
64 KByte, and the maximum linear address space of 1 MByte.

125

A Processor Description

The primary reason for using the segmented model is the protection the different seg-
ments provide. With this protection, it is possible to prevent, for example, the stack
from growing into the data or code. Because of the irrelevance of real address mode and
flat model, further discussion will concentrate on the segmented model. A additional
abstraction layer is introduced by the paging mechanism, which is transparent to the ap-
plication programs and generates additional flexibility and overhead for the system as a
whole. With the paging mechanism, the available memory is organised in page frames
of fixed size, which are usually aligned to a multiple of the page size. The page size is
the quantum of memory which can be alloted to a task and is typically 4 KByte. Some-
times it might be reasonable to use larger page sizes or to mix different page sizes, but
generally only 4 KByte pages are utilised.

In order for the paging mechanism to work it has to be supported by the operating system
and the hardware. Up until now the discussion was limited to the computation of the
linear from the logical, which are often referred to as virtual addresses. Now the mapping
from a linear to a physical address is considered. Figure A.4 shows how the mapping
from linear to physical address is accomplished.

�� �� ��������������������������������
31 21 11 0

Page Global
Directory

Page Table

Page

cr3

Linear AddressDirectory Table Offset

Figure A.4: Mapping of linear to physical addresses [81]

The linear address is split up into directory, table and offset part. Register cr3 points
to the page global directory, where the directory portion of the address selects an entry
pointing to a page table. Within the page table, an entry is chosen by the table part of the
address. This entry points to a physical page, and the offset portion of the linear address
points to the final physical address within this page. The mapping is done within the
processor hardware, but the page directory and page table reside in the main memory
and are usually administered by the operating system.

The paging mechanism allows the applications and the operating system to operate on
fixed virtual address space, even if the physical addresses might change from one exe-

126

A.1 Intel P6 Family

cution to the next, or despite swapping of memory portions to external storage devices.
Both changes are undesirable, and stem from the dynamic memory management used in
general purpose systems. The information regarding the paging mechanism is essential
for the test setup in Section 5.3. See [39] Sections 3.6 and 3.8 for further information on
the subject of paging.

The translation lookaside buffers (TLB) are little caches for the paging mechanism. As
previously explained, the paging mechanism is based on two kind of tables residing
in main memory: the page global directory and the page tables. In order to read a
value from main memory three memory accesses are needed to retrieve first the page
global directory entry, then the page table entry and finally the desired data. Because the
main memory is one of the slowest components in the computer system, a workaround
is used. Most processors providing a paging mechanism also provide caches for the
reference information. The Intel P6 family processors provide TLB entries for the most
recent pages, seperately accessed for instruction and data. The page sizes supported are;
4 KByte, 2 MByte and 4 MByte. The number of entries provided varies from type to
type but can be read with the CPUID opcode described in the following section. The
usual configuration has 32 instruction TLB entries, and 64 data TLB entries for 4 KByte
pages. It might happen, due to TLB misses, that two main memory accesses for the page
global directory, and the page table entry are necessary for the hardware to register that
it has an L2 Cache hit.

A.1.3 Caches

One of the main problems in modern microprocessors is keeping the instructions and
data flowing into the processing unit, at a rate that the processor has not to wait too long
for the memory fetches. The main memory speed has not developed as quickly as the
processor. Since the introduction of the Intel 486 DX, caches for instructions and data
were added. Older generations included only special purpose caches for the TLBs (cf.
Section A.1.2) and the segment registers. This section will solely concentrate on caches
for data and instructions. The cache is, next to the frequency development of the CPU,
the main reason for the high computing power of modern computers.

The cache structure of the P6 family is organised at two levels. While the first level (L1) is
split up into instruction cache and data cache, the second level (L2) cache is organised as
a uniform cache, i. e.; the cache holds data as well as instructions which were previously
used. The P6 family utilises an inclusive cache design i. e.; data and instruction in the first
level cache are also contained in the second level cache. In contrast, the AMD Athlon
has an exclusive cache design, i. e.; the data and instruction in L1 are not duplicated in
the L2 cache (see Section A.2.3). The size of a cacheline is generally 32 bytes. It should
be noted, that the physical address in main memory is the deciding factor for which set

127

A Processor Description

in the caches is chosen for the memory location storage. The logical and linear address
have no impact on this.

Due to the fact that the Pentium II and III share the main features as regards the caches
whereas the Pentium Pro differs considerably, the Pentium Pro will not be considered
further in this discussion.

The L1 cache of Pentium II and III is placed on a chip. There are 16 KByte each for
instructions and data. While the documentation (cf. [40]) states that both instruction and
data cache are 4-way set associative, tests with the CPUID opcode suggest that, on some
processors types, the data cache is 2–way set associative. The CPUID opcode provides
information on the processor type, the model specific extensions and the cache sizes (see
pages 3–114 to 3–127 in [42]). The cache associativity relays the number of cachelines a
physical memory location can be mapped to. pseudo least recently used (pseudo–LRU) is
utilised as replacement scheme for the L1-Cache . The documentation (cf. [40]) neither
states the implication of the “pseudo” prefix, nor the replacement scheme of the second
level cache.

The L2 cache is located off chip, but on the processor module, and is 128 KByte or
more in size. The most recent Pentium III, the Coppermine, has 256 KByte while older
Versions (Katmai) had 512 KByte. While the cache size has been cut down, the speed of
the L2 has been doubled. The Katmai worked with halve processor speed L2, and full
processor speed for L1 cache, while the Coppermine uses full processor speed for both
caches (cf. [28] Section 31). Further discussion will focus on the full speed L2 cache.
The second level cache is 4-way set associative. The timing data provided here is taken
from Intel’s optimisation guide [40] Section 1. These values can be used as a guideline
and plausibility check, but must be verified on the given system utilising measurements.
A Cache miss in L1 cache, with a hit in L2 cache, induces 4 to 10 clock cycles. An L2
miss needs at least 11 FSB cycles when the corresponding entry in the TLB , is present
(page table hit) and 3 additional FSB cycles on a page table miss. These cache load times
have been confirmed by measurements (cf. Section 5.3.2). As replacement scheme for
the L2 cache LRU is used as with the L1 cache.

The processor supports several methods for the caching strategy. These are not only
set for the whole system (register CR0), but are tagged to the page table and directory
entries as well, and can be set in the memory type range register (MTRR) for memory
regions. Though memory is the main application field of the caches, memory mapped
I/O is handled in the same way. This explains the number of caching strategies supported
which are briefly explained in the following.

Uncacheable (UC) These memory locations are directly read and written over the sys-
tem bus. No caching mechanisms apply.

Write Combining (WC) Like in UC, no caching is used, but the write accesses may be

128

A.1 Intel P6 Family

delayed and combined in the write buffer. This reduces memory accesses over the
system bus considerably.

Write Through (WT) In this case, read accesses go into the caches, but whenever a write
is issued by the processor the data is written not only to the cacheline but also back
to memory, with only a short possible delay in the write buffer.

Write Back (WB) If write back mechanism is enabled, reads and writes to the memory
are cached. Whenever cachelines are deallocated in the L2 cache, and a cacheline
is dirty, i. e.; a write operation was performed on the cacheline, the cacheline will
be written back to main memory. This is the most frequently used caching strategy,
since it avoids a lot of unnecessary writes to memory.

Write Protected (WP) Write protected is very similar to WT, but write commands are
written to the memory locations and the corresponding cacheline is invalidated.

More details on the strategies are described in Section 9.3 in [39]. It has to be noted that,
for the monitor, the write back strategy must be taken into account.

As a small side effect, it has to be considered what happens when a cacheline resides in
L1 data and L1 instruction cache. This can happen when code and data are not properly
separated, or in the case of self modifying code. Both situations are absolute malpractice,
even in non real-time applications. When a cacheline in data cache is written, which is
also held in the instruction cache, the instruction cacheline is invalidated and reloaded
on the next request. If the instruction executed on the modified cacheline follows closely
to the modifying instruction, a complete processor stall is initiated, i. e.; all computed re-
sults of the instruction in the modified cacheline will be invalidated, and after the cache-
line fill in the instruction cache the decoding and processing of the instruction will be
restarted. Obviously this has to be avoided and is fortunately taken care of already by
means of compilers and linkers. Thus, only hand optimised assembler code has to be
checked for this situation.

A.1.4 Branch Prediction

In addition to the caches, a number of other optimisation schemes are implemented in
the P6 family processors. They either belong to the category of branch prediction and
speculative execution, or they optimise the segmented memory accesses and paging.

The documentation from Intel ([39] Section 13.2.1, and [40] Section 2) is not completely
consistent as regards the branch prediction. Based on the sparse information from Intel,
papers from Agner Fog ([27] and [28]) and my own tests on the hardware, the following
branch prediction model has been chosen and utilised.

129

A Processor Description

The branch prediction scheme is closely coupled with the fetch/decode unit. A branch
is defined as a possible load into the instruction pointer register. Such a load occurs
whenever the next instruction to be executed is not the succeeding instruction in memory.
The branch opcodes are CALL, RET, and either conditional or unconditional jump (JMP
and Jxx) opcodes. The interrupt, and return from interrupt, (INT and RTI) opcodes can be
considered as branch opcodes, but are not covered by the branch prediction mechanism.

Whenever the fetch/decode unit encounters a branch opcode, the first test is whether the
address of the instruction is in the branch target buffer (BTB). The BTB of the P6 family
has 512 entries organised 16 way set associative, and the replacement scheme utilised is
pseudo random (cf. [28] Section 22). Again the term pseudo is not explicitly specified,
but can be expected to indicate a dependency on time and/or history. Bits 4 to 31 of the
address of the last byte of the branch instruction are used to identify the branch entries.
Bits 4 to 8 define the set, while all bits are used as the tag which is stored in the BTB.

When a valid entry for the branch is found in the BTB the dynamic and otherwise static
branch prediction scheme is used as depicted in Figure A.5. In the case of unconditional
branches, the branch is reasonably predicted as taken.

If the target address is unknown, the conditional branch is assumed to be not taken,
and the subsequent instruction is fetched. This is called fall through. This behaviour is
reasonable, since when the target address is unknown the other possibility for the decode
unit would be to be idle until the target address is known, which is usually not earlier than
the result if the instruction will branch. Because of this, the penalty for a misprediction
is small compared to no prediction at all. A source when this happens are, for example,
switch statements in C which are translated into indirect or indexed branches. With
these it has to be considered that an register indirect or indexed branch is assumed to
branch to the same address it did last time this instruction was encountered. If the target
address is known, the branch is assumed taken when the branch is directed backward,
and assumed not taken when the branch is directed forward. A backward branch is
usually a loop, where the prediction taken will lead to sensible results. In the case of
forward branches, following the branch would incur an additional cycle. In the case of
unconditional branches, these are predicted taken, even if the target address is unknown.
Since the address may be provided slightly before the instruction is completely through
the pipeline, up to six cycles are lost (cf. [40]).

The dynamic branch prediction scheme is described for Intel Pentium class, and P6 fam-
ily processors in [27]. The dynamic prediction is divided into two levels. The first level
was developed by Lee and Smith [53], and is called smith prediction scheme. It is already
implemented in the Pentium class processors, and consists of a two bit history counter
with saturation, i. e.; the counter will not wrap around at decrementing 0 or incrementing
3.

Figure A.6 shows the finite state machine of the prediction. The static transition is

130

A.1 Intel P6 Family

Target

known
Address

Backward
Branch

Branch
ditional
Uncon−

Target
Address in

BTB

Branch
Prediction

no

yes

Not TakenTaken Taken

Dynamic
Branch

Prediction

yes

no

yes

no

yes

no

Figure A.5: Static Branch Prediction Algorithm in Intel P6 Family

marked with a + correspond to a taken branch, and the ones marked with a - corre-
spond to a not taken branch. If the counter is in the lower two states (0 and 1) the branch
is predicted to be not taken, while in the upper states (2 and 3) the prediction is taken. In
the states 0 and 3 (strong not taken/taken), at least 2 consecutive occurrences of this in-
struction must deviate from the recent behaviour in order to change the prediction. This
avoids infrequent different behaviour (e. g. the controlling branch instruction of a nested
loop leaving the previous execution of the loop) from interfering with the prediction
scheme.

As second level of the dynamic branch prediction scheme, the work of Yeh and Patt [92]
has been used. Each BTB entry contains 16 of the previously described history counters,
and a 4 bit history shift register. As depicted in Figure A.7, the history shift register
selects one of the 16 history counters to be used for the branch prediction. Whenever
a branch is actually taken, a 1 is shifted into the history, otherwise a 0 is inserted. In
this way, repetitive patterns with a period of up to 16 are detected, and after a short
learning phase correctly predicted. Agner Fog describes detailed detectable patterns in

131

A Processor Description

t a k e n
n o t
t a k e n
n o t
t a k e n

P r e d i c t i o n :
B r a n c h
n o t t a k e n

P r e d i c t i o n :
B r a n c h
n o t t a k e n

P r e d i c t i o n :
B r a n c h
t a k e n

P r e d i c t i o n :
B r a n c h
t a k e n

3

2

1

0

3

2

1

0

+

-

+
-

+

-

+

-

+

-

Figure A.6: First Level of the Dynamic Branch Prediction of the P6 Family[27]

Section 22.2.4, in [28]. Periodic patterns with a period of up to 5 are predicted correctly,
after no more than two periods.

A further step in the branch prediction is the return stack buffer (RSB). This entity stores
the return address of, up to 16, calling hierarchies. Thus whenever a return opcode is
met, and the RSB is not empty, it will start decoding rather than waiting for the stack to
yield the address of the next instruction. Using the assumption that calls and returns are
always paired, the performance can be considerably increased. If the RSB is empty the
default branch prediction scheme described previously is used, i. e.; the RET opcode is
expected to branch to the address it has previously returned. In order for this to work, the
return utilises a BTB entry, regardless of whether the RSB is full or not. When a nesting
level deeper than 16 is reached, the innermost 16 entries are provided by the RSB, while
the outermost entries have to rely on a BTB entry, or as a last resort the common stack
(cf. Section 22.2.11 in [28]).

A.1.5 Builtin Monitoring Support

The Intel P6 family provides six debug registers to allow for generation of a debug ex-
ception on up to four addresses. The debug registers can be tuned to trigger an exception
on either the execution of the opcode, data write or read access, or I/O read or write
access at the given address.

In addition, the processor family has a number of model specific features that can be
utilised for the monitoring purpose. One is the time stamp counter (TSC), which counts

132

A.2 AMD Athlon

3

2

1

0

3

2

1

0

+

-

+

-

+

-

+

-

3

2

1

0

3

2

1

0

+

-

+

-

+

-

+

-

3

2

1

0

3

2

1

0

+

-

+

-

+

-

+

-

3

2

1

0

3

2

1

0

+

-

+

-

+

-

+

-

L o c a l B r a n c h H i s t o r y0 11 1

S e l e c t

Figure A.7: Second Level of the Dynamic Branch Prediction of the P6 Family[27]

the clock cycles in a 64 bit counter from power on (cf. Section 14.5 in [39]). This
allows one to perceive the measurement of code with a resolution in CPU cycle, without
the additional overhead of interrupt programming. There are a good many other model
specific registers which go well beyond the scope of this work and these can be found in
Section 8.4 in [39].

The two performance monitoring counters (PMCs) allow the recording of a number of
internal events, or the duration a certain condition is true. Internal events that can be
monitored with these counter are cache misses (individual for each cache), TLB misses
and branch prediction errors. Further detail on other possible events can be seen in
Appendix A in [39].

A.2 AMD Athlon

The AMD Athlon processor family resembles the Intel P6 family considerably. Much of
this similarity stems from the fact that AMD is “only” second source, and must therefore
be compatible with Intel’s x86 processor families. A short tabular comparison between
AMD Athlon and Intel Pentium III, from AMD´s point of view, is given on page 3 in [3].
The term Athlon actually refers to the whole of the AMD Athlon family up to the 3rd
generation of Athlon processors, which is code-named Thunderbird. The 4th generation,

133

A Processor Description

code-named Palomino is not considered throughout this dissertation.

The following sections will focus on the similarities and differences between the AMD
Athlon and the Intel Pentium III described in previous sections.

A.2.1 General Structure

The basic structure, as depicted in Figure A.1 for the Intel architecture, is also valid for
Athlon, while in detail varying considerably. As with the P6, the Athlon is externally a
CISC machine and internally has a RISC like load/store architecture. It is also similiar
to the P6 super scalar, i. e.; fed with fitting instructions, it can execute up to three instruc-
tions per clock. One of the basic requirements to support this is the 3-way instruction
decoder. Unlike the P6 family, the 3 decoders inside the unit are identical, i. e.; each
instruction can be fed to any of the three decoders.

32−Entry L1 TLB/256−Entry L2 TLB
2−Way, 64Kbyte Data Cache

MMX
FMUL

3DNow!3DNow!
MMX
FADD

Bus
Interface

Unit

L2 Cache
Controller

Fetch/Decode
Control

Branch
Predition Table

Predecode
Cache

Load/Store Queue Unit

Integer Scheduler (18−Entry)

FSTORE

FPU Register File (88−Entry)

FPU Stack Map/Rename

FPU Scheduler(36−Entry)

3−Way x86 Instruction Decoders

24−Entry L1 TLB/256−Entry L2 TLB
2−Way, 64Kbyte Instruction Cache

IEU AGU
0 0

IEU AGU
1 1

IEU AGU
2 2

Instruction Control Unit (72 Entry)

System Interface L2 SRAMs

Figure A.8: Basic Architecture of the AMD Athlon Core [4]

The processing core is built up of 9 parallel execution pipelines: 3 integer execution

134

A.2 AMD Athlon

units (IEU), 3 identical address generation units (AGU) and 3 floating point units (FPU).
The IEUs are identical, except for the integer multiplication unit (IMUL) attached to the
IEU0 and IEU1. The question arises, why implement 9 execution pipelines when only a
three-way decoder is used, and there is usually only enough instruction level parallelism
to feed a 4-way super scalar processor?

The general design outline in many RISC machines is aimed at keeping the common
case fast, and the uncommon case correct. This has led in the Athlon to a dual imple-
mentation of the decoding unit as regards instructions. There is a direct path for the
usual instructions, which are decoded into one or two macro ops (MOP). Unfortunately
the documents do not state, in how many MOPs an individual instruction is decoded.
The MOPs are register to register operations and therefore, while it is only implicitly
hinted by the term “load/store architecture” in the AMD documentation, a mapping of
operands to the internal register set is done (cf. [90]). They are similiar to Intel’s micro
ops RISC commands, but with a fixed 64 bit of length. This leads to additional MOP
level parallelism. The decoding unit can issue up to three MOPs per cycle. In the case of
uncommon instructions the vector path is used. The vector path utilises ROM routines
to decode these instructions rather then decoding in hardware. Per cycle only one com-
plex instruction can be fed into the microcode engine. Appendix G in [4] defines, for all
instructions, which of these instructions are decoded in the direct path and which in the
vector path. Unfortunately, the rule implied at the start of the section has been somewhat
degraded for the Athlon. Important, and probably very common, opcodes like POP, OUT,
MUL, IMUL, DIV and IDIV are implemented in the vector path. The MOPs produced with
the microcode engine are dispatched, together with the MOPs from the simple decoders
to the instruction control unit (ICU) which in turn feeds these either to the FPU or inte-
ger scheduler. The ICU, the integer and FPU scheduler are the core of the out-of-order
execution of the AMD Athlon.

The x86 floating point operations work with the floating point stack. This is a drawback
for a fast floating point processor. In order to circumvent this problem a remapping of this
stack to the 88-way internal register set is done. This is the first step in the floating point
pipeline after the decoding. The FPU scheduler is responsible for issuing the floating
point MOPs to the execution units. The three units are differently organised. The
first floating point unit is known as the adder pipe and supports 3DNow! add, MMX
ALU/shifter and simple floating point arithmetic. The second unit is the multiplier pipe.
It contains, in addition to 3DNow!/MMX multiplier and reciprocal unit, an MMX ALU
and a floating point multiplier/divider/square root unit. The last is responsible for loading
and storing operands. This step must be done separately from the load/store queue unit,
since the mapping of floating point stack to the internal register file must be taken into
account. Additionally, many MOP vector paths are mapped to this pipeline.

The EV6 bus, used to connect the processor with the host bridge, was developed for the
Alpha 21264 Processor, by the Digital Equipment Corporation (cf. [90]). In contrast to

135

A Processor Description

Intel’s shared GTL+ bus, the EV6 has a point-to-point topology. In this way, the impact
of other processors, within an SMP machine is reduced. To protect the data and instruc-
tion transfer additional ECC data is transmitted. As with the GTL+, it is a packed based
bus which allows 24 outstanding transactions, but utilises source synchronous instead of
common clocking, i. e.; the sender of data provides the clock signal. Thus, the delay on
the bus is negligible. This is one of the main reasons why the bus running currently and
effectively on 200 MHz – actual clocking is 100 MHz, but the transmission is done on
the rising and the falling edge – is scalable up to 400 MHz and beyond. Current peak
transfer is 1.6 GBit/s. As with the Intel P6 family, the Athlon processor is clocked with
a frequency which is higher than the rest of the system. Therefore, the Athlon suffers
the same quantisation of execution time delays, due to the access of processor external
resources.

A.2.2 Memory Management

Athlon memory management is very similar to that of Intel. A major difference would
jeopardise the compatibility. The Athlon has only been tuned with regards to the TLB
entries. The documentation (cf. [4] Appendix A) states the following data.

The TLB is split for L1 cache, L2 cache and instruction and data. The first level data
TLB (DTLB) is fully associative, and contains 32 entries (24 for 4 KByte pages and 8
for 2 MByte and 4 MByte pages), while the second level DTLB only supports 4 KByte
pages with 256 entries, and is 4-way set associative. The instruction TLB (ITLB) for L1
cache is also fully associative, and contains 24 entries (16 for 4 KByte pages, and 8 for
2 MByte and 4 MByte pages). The L2 ITLB is 4-way set associative, and contains 256
entries which can only map 4 KByte pages.

A.2.3 Caches

AMD Athlon cache design is very similar to that of the Digital Alpha 21264 (EV6) (cf.
[62]). The repeated use of Digital Equipment Corporation techniques, which have been
licensed by AMD, can be explained by the fact that the development of the Athlon was
led by Dirk Meyer, who was also head of development of the DEC 21264 at the Digital
Equipment Corporation labs.

Again, like the Intel P6 family, the Athlon has a two level cache design. The first level
is split into data and instruction cache, each 64 KByte. AMD started to produce Athlons
with 512 KByte L2 Cache on module. The tags for these were full speed on chip to
allow for a fast miss detection. Later they moved the L2 on chip, and reduced it to 256
KByte. This step is consistent with Intel’s decision to halve the cache from Pentium III

136

A.2 AMD Athlon

Katmai, to Pentium III Coppermine. While the external L2 Cache could be clocked with
1/3, 2/5, 1/2, 2/3 or 1 times the processor frequency, with a recommended value of 1/3,
the newer on–chip L2 is clocked with processor frequency. The move of the cache was
possible, due to the further miniaturisation from 0.25 micron to 0.18 micron technology,
and nearly doubled the number of transistors from about 22 millions to approxamiately
37 millions (cf. [90] and [5]).

A cacheline in AMD Athlon consists of 64 byte as compared to Intel’s 32 byte. A
speciality of the L1 data cache , mentioned in the AMD documentation (cf. [5] and
[3]), is its organisation into 8 banks thus allowing 2 concurrent load/store accesses of 64
bit. Instruction and data cache are dual ported, with dedicated snoop tags to avoid the
system coherency traffic. Predecoding begins when the instruction cache is filled. At the
load, additional information is generated, to help the efficient detection of boundaries
between the variable length x86 instructions, to distinguish direct path and vector path
instructions, and to identify branch instructions and their type. This information is stored
alongside the instruction cache.

Another feature of the Athlon L1 instruction cache is the implicit prefetching, aside from
the MMX PREFETCH opcode. Whenever a instruction cache miss occurs, not only the
cacheline containing the instruction is loaded, but also the subsequent cacheline, causing
the hit rate of the instruction cache to increase.

The L1 caches are each two way set associative, while the L2 is 16–way set associative.
Higher associativity has the advantage of higher hit rates, but at the cost of higher laten-
cies due to the search, and the need for a serious amount of additional transistors. To
provide optimal average performance, the L1 cache is kept fast by keeping associativity
low, and the L2 is designed with higher associativity to keep the hit rates high.

In contrast to the Intel P6 family the AMD cache design is exclusive, i. e.; the data
residing in the L1 cache is not duplicated in the L2 cache. Whenever data is displaced
out of the L1 cache, it has to be moved into the L2 cache. In order to accelerate the
move to the L2 in exclusive cache designs, the victim buffer or victim cache is introduced
(cf. [62]). In the case of the Athlon, the victim buffer can hold up to 8 cachelines. The
transfer to the victim buffer is done parallel to the load of the new cacheline into L1. If
the victim buffer is full, the write back is triggered and all the 8 Cachelines are written
back to L2. Figure A.9 shows the worst case effect in clock cycles of such a full victim
buffer write back, i. e.; 8 cachelines. First of all, the data is transferred into the L2 Cache,
then the L2 needs two additional cycles before providing the data. In the last step the L2
needs a further two cycles before being ready for new commands. In the case of a L2
miss, the fetch time for the relevant data will usually exceed the write back of the victim
buffer.

In order to save time, the victim buffer is drained, i. e.; partially written back whenever
the L2 cache interface is idle. Whenever a L1 Cache miss occurs, the victim buffer is

137

A Processor Description

#2: 2 cycle L2
turnaround

#4: 2 cycle L2
turnaround

#3: 8 cycle L1 get
first critical word

#1: 8 cycle VB
transfer to L2

#3: parallel L1
transfer to VB

L2−Cache

L1−Cache Victim Buffer (Full)

Figure A.9: Victim Buffer within an L1/L2 exclusive Cache Design [5]

searched first. If the required data is found in the victim buffer, the content of the victim
buffer has to be stored in the L2 and then the data is fetched back into L1. This is due to
the one way ports of the victim buffer, which saves a considerable amount of transistors.

A.2.4 Branch Prediction

The branch prediction of the AMD Athlon family is more complex by far when compared
to that of the Intel P6 family. It consists of four parts:� Predecode Cache� Global History Bimodal Counters (GHBC)� Global Branch History (GBH)� Branch Target Address Cache (BTAC)

A few decisions are taken in the predecode step. These are similar to the static prediction
scheme of Intel.

One major difference to the “static” branch prediction of the P6 family, is the distinc-
tion between short branches on one side, and near and far branches on the other. Short
branches come with a single byte offset as immediate operand, only allowing for 127
byte forward or 128 byte backward branch, relative to the consecutive instruction of
the branch instruction. The branch target address of these instructions is computed on

138

A.2 AMD Athlon

Branch
Prediction

Dynamic
Branch

Prediction

Short
Branch
Instr.

Compute
Target

Address

Not Taken

Conditional
Branch

yes

Target

BTAC
Address in

no

yes

Transfer
Control

yes

no

Taken

no

yes

no

Figure A.10: Prediction Scheme of the AMD Athlon

the fly, without utilising the AGU of the processor core. The difference between near
and far branches is that a near branch stays inside a memory segment, and a far branch
enters a new segment. Far branches can be further distinguished into control and non–
control transfers. A control–transfer changes the privilege level, i. e.; system call or task
change in general purpose systems. In this case the branch is always “mispredicted”.
Non-control transfers stay within the same privilege level. With near and non-control far
branches, BTAC is tested for a valid entry and, if this test fails, the branch is predicted
to fall through. In the case of unconditional branches, the branch is generally predicted
taken, with the exception of an invalid BTAC entry. If that is the case, even uncondi-
tional branches are predicted not taken. This does not slow down performance, due to
the unknown target address. Conditional branches with known target (i. e. BTAC hit or
short branch) utilise the dynamic branch prediction mechanism described below.

The predecode cache is closely coupled with the instruction cache. An instruction cache-
line is partitioned in four blocks, of 16 bytes each. Each block is assigned to a predecode
cache entry. While each predecode cache entry is assigned to two blocks, the blocks do
not stem from the two corresponding cacheline blocks within a cache set, but from two

139

A Processor Description

different sets. Figure A.11 shows the assignment. This fact would make the modelling
even more complex, since the two entries within a cache set are not equivalent, i. e.; the
behaviour will most likely differ, if the entries within a set are swapped.

51
2

C
ac

h
el

in
es

64 Byte

16 Byte Frame

12 Byte

0

255

256

511511

0

C
ac

h
el

in
e

4
E

n
tr

ie
s

p
er

255
256

2*
10

24
 E

n
tr

ie
s

"right" Cacheline within Set"left" Cacheline within Set

L1− Instruction Cache (2−way Set associative)

Predecode Cache

Figure A.11: Assignment of Cachelines to Predecode Cache Entries [81]

Each predecode cache entry provides three blocks for the branch prediction: Two for
branch instructions and one for a return. Thus “only” two branches, and one return
instruction within an aligned 16 byte frame, can be handled by the prediction scheme.
Instructions exceeding this limit are predicted to fall through. Since a jump utilises at
least two bytes, the possibility for more than two branch instructions within a frame is
rather low.

The prediction as to whether a branch is taken or not taken, is done by the global history
bimodal counters (GHBCs). They are built equivalent to Intel’s first level branch pre-
diction scheme, as described in Figure A.6 in Section A.1.4. There are currently 2048
GHBC implemented in the AMD Athlon family. The predecessor, the AMD K6-2 had
designed 8096 into them. While strongly reducing the number of GHBCs, the branch
prediction accuracy has not degraded from K6–2 to the Athlon. AMD claims a predic-
tion accuracy of 95 % which is slightly higher than Intel’s 90 %. This is due to the
organisation in 256 columns and 8 rows, and the second level of the prediction scheme
explained in the following paragraph.

140

A.2 AMD Athlon

G l o b a l B r a n c h H i s t o r y (G B H) :

0 1 001 11 10 1 001 11 1

2 5 6 C o l u m n s

B i t 4 - 6 o f B r a n c h

I n s t r u c t i o n A d d r e s s

8 R o w s

S e l e c t

S e l e c t

Figure A.12: Overview of the Dynamic Branch Prediction of the AMD Athlon

The second level of the prediction scheme is, at first sight, very similar to Intel’s. The
global branch history is an 8 bit shift register which stores whether the branch was taken
or not, individually for the last 8 retired branches. The GBH addresses the column of
the GHBC. The rows are selected by bits 4 to 6 of the branch instruction address, i. e.; a
predecode cache entry. Thus an individual branch instruction can use up to 256 GHBCs,
but each counter can be potentially used by 256 predecode entries. The algorithm is based
on the fact, that in reality only a small set of GHBCs are used by an individual instruction.
By not allocating individual GHBCs to a predecode cache entry, the utilisation of the
available counters is increased. In order to support this feature, the GHBCs are never
reset.

Corresponding to Intel’s BTB scheme, the target address of a branch instruction is stored
in branch target address caches (BTAC). The AMD Athlon has 2048 BTAC entries,
which correspond to the predecode entries as depicted in Figure A.13.

As each predecode cache entry supports up to two branch instructions, two predecode
cache entries share one branch target address cache (BTAC) entry. Within the Athlon
2048 BTAC entries are provided.

141

A Processor Description

1s
t

B
ra

n
ch

in
st

ru
ct

io
n

2n
d

 B
ra

n
ch

in
st

ru
ct

io
n

re
tu

rn

1s
t

B
ra

n
ch

in
st

ru
ct

io
n

2n
d

 B
ra

n
ch

in
st

ru
ct

io
n

re
tu

rn

A
d

d
re

ss
 1

A
d

d
re

ss
 2

10
24

 E
n

tr
ie

s

Branch Target Address Cache

10
24

 E
n

tr
ie

s

Predecode Cache

Figure A.13: Assignment of Predecode Cache Entries to Branch Target Buffer Entries
[43]

Another similarity between AMD Athlon and Intel P6 is the use of a return stack buffer
(cf. Section A.1.4), called return address stack (RAS) in the Athlon documentation. As
opposed to almost all other features, it is slightly smaller than Intel’s counterpart. The
AMD Athlon supports only 12 CALL/RET pairs as compared to Intel’s 16. Due to preemp-
tion or bad programming style, it may happen that the CALL/RET pairs in the RAS do not
match. In that case, when the mismatch is detected by fetching the relevant information
from the stack, a roll back like in a normal branch misprediction is initiated.

A.2.5 Built in Monitoring Support

The built in support in AMD Athlon processors, which can be utilised for the approach,
is very similar to what Intel provides. The time stamp counter is also implemented in
the Athlon and can be read with the same opcode as on the Intel P6. Unlike Intel’s two
performance monitoring counters, AMD Athlon has four of these. Since the possibilities
of Athlon´s PMCs vary, the values used for the programming are also different. Addi-
tionally, the model specific registers utilised for the PMC programming have different
addresses. A detailed description of the PMCs can be found in Appendix D in [4].

142

