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Prüfer der Dissertation:

1. Univ.–Prof. Dr.–Ing. Dr.–Ing. h.c. Dierk Schröder
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Kurzzusammenfassung

Schwerpunkt dieser Arbeit ist die Entwicklung einer theoretischen Grundlage für den prak-

tischen Entwurf adaptiver Systeme. In der Industrie bestehen adaptive Regler meist aus der

Erweiterung eines Standard–Regelkreises durch ein Parameterschätzverfahren. Störgrößen

machen eine korrekte Bestimmung der Parameter jedoch unmöglich. Es wird aufgezeigt, wie

Systeme mit unbekannten Parametern geregelt werden können, ohne dabei auf die Ergeb-

nisse einer Parameterschätzung zurückzugreifen. Die zusätzlich wirksamen, unbekannten

Störungen werden in drei Klassen unterteilt, für die je eine Methode zur Unterdrückung

erarbeitet wird: externe Störungen, nichtmodellierte Dynamik und zeitabhängige Parame-

ter. Im letzten Fall wird ein Ansatz basierend auf multiplen adaptiven Modellen verwendet,

der während regelmäßiger Forschungsaufenthalte in Yale entwickelt wurde. Experimentelle

Ergebnisse an einem Zweimassen–Versuchsstand schließen die Arbeit ab.

Abstract

The emphasis of this thesis is on developing a theoretical framework for the practical de-

sign of adaptive systems. The state of the art in industrial adaptive control is to combine

a parameter estimator with an (existing) linear control–loop. The success of the approach

depends upon the knowledge of the physical parameters after completion of the estimation

process. In the presence of disturbances, though, a correct estimation of the parameters

is impossible. It is first shown how a system with unknown parameters can be controlled

adaptively, without relying on parameter convergence. Following this, three classes of distur-

bances and the corresponding methods to reject them are developed: external disturbances,

unmodelled dynamics and time–variations. In the latter case, a new algorithm based on

multiple adaptive models is presented which was developed at Yale University during reg-

ular visits of the author at the Center for Systems Science. An experimental study of an

adaptively controlled two–mass system concludes the thesis.
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Chapter 1

Introduction

To control a process means to influence its behavior in order to achieve a desired goal. A

control system is one in which some quantities of interest are directed towards a prescribed

value despite of disturbances affecting the system. Examples can be found in virtually

any field of engineering and science. They range from ordinary applications such as the

temperature control in buildings to sophisticated flight control of an aircraft or motion

control of a robot manipulator. A short history serves to elucidate the train of thought

that led to the scientific exploration of systems and control and illustrates how the qualifier

“adaptive” entered the picture.

The central tool of control is the use of feedback which is introduced to correct for deviations

of a system from some desired behavior. If the system as well as the environment in which

it operates is known completely, it is possible to control the system using only feedforward

signals. The rationale for using feedback is that in the presence of perturbations, the output

of the system may be altered in an unexpected way. It is then necessary to detect such a

deviation and adjust the control input appropriately. The concept of feedback relies upon

the fundamental elements: measurement, comparison and adjustment. It formalizes the

common–sense procedure of monitoring the output of a system, comparing it with its desired

value and respond to errors by adjusting the input. Emerging from mechanical engineering,

control theory became an independent discipline in the late 1940’s, when Wiener introduced

the term “cybernetics” as the science of communication and control in the animal and the

machine. According to Wiener, the homeostasis (equilibrium) of the body temperature

is maintained through the use of feedback control. In the early 1960’s, Bellman felt that

control theory had already become a mathematical discipline that could exist independent of

its applications (Bellman, 1961 [8]). The mathematical foundations of control theory can be

traced back to the work of J.C. Maxwell who analyzed the stability of Watt’s flyball governor

1



2 CHAPTER 1. INTRODUCTION

in terms of differential equations describing the dynamics of the system (1868). His technique

was to linearize the differential equations of motion to find the characteristic equation of the

system. He studied the effect of the system parameters on stability and showed that the

system is stable if the roots of the characteristic equation have negative real parts. In 1892,

A.M. Lyapunov published a seminal paper on the “general problem of stability of motion”

which can be regarded as the foundation of modern stability theory (Lyapunov, 1892 [42]).

He not only introduced the basic definitions of stability that are in use today, but also proved

many of its fundamental theorems. The basic philosophy of his so–called second or direct

method comes from a physical observation: if the total energy of a system is continuously

dissipated, then the system, whether it is linear or nonlinear, must eventually settle down

to an equilibrium point. Thus, the stability of a system can be determined without actually

solving the associated differential equations. Control theory made significant strides, with

the use of frequency domain methods and Laplace transforms in the 1930s and 1940s and the

development of optimal control methods and state space analysis in the 1950s and 1960s. The

design techniques developed emphasize the importance of a mathematical model describing

the process to be controlled. The model of a system must be “simple enough” so that it

can be analyzed with available mathematical techniques, and “accurate enough” to describe

the important aspects of the relevant dynamical behavior. As dynamical systems became

more complex and controllers had to be faster and, at the same time, more accurate, simple

models were replaced by more complex ones. Uncertainty, regarding inputs, parameter values

and structure of the system increasingly entered the picture. When the uncertainties in the

plant and environment are large, fixed feedback controllers were found to be inadequate.

As a consequence, researchers became interested in new areas of automatic control, such as

adaptive, self–optimizing and self–organizing systems.

The term adaptation is defined in biology as the “advantageous conformation of an organism

to changes in the environment”. The term was introduced in control theory by Drenick and

Shahbender [16] in 1957, who defined an adaptive system as one that monitors its own

performance and adjusts its parameters in the direction of better performance. It was soon

realized that the definition lacks uniqueness since feedback itself has the ability to adjust

some quantities in order to improve the performance of a system. In fact, designing a system

that performs well even in the presence of uncertainties was the principal driving force for

inventing feedback. From a practical point of view, an adaptive system can be regarded as one

that copes with large changes in process dynamics and disturbance characteristics. A second

aspect is that adaptive techniques can be used to provide automatic tuning of controllers. In

this thesis, adaptive systems are defined as the special class of nonlinear systems that arises

when controlling a linear system with unknown parameters. The system can be thought of
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as having two feedback loops. One corresponding to the controller structure that is used

when the system is known and an additional one by which the parameters are adjusted.

In some cases, the adjustment loop is regarded as a (vanishing) perturbation of the linear

time–invariant closed–loop system. In fact, as the parameters converge, the adaptive system

becomes linear asymptotically. Another important observation is that the adjustment loop

is usually slower than the state feedback loop.

The part of adaptive control theory that is well established deals with parametric uncertain-

ties in the representation of the system. These are due to the lack of knowledge of system

parameters. Another class of uncertainty arises when structural information, e.g. regard-

ing the order of the plant, is missing. By its very nature, structural uncertainty cannot be

modelled and is hard to analyze. The questions that have been addressed in this context

regard the extend to which parameter adaptive control can be applied even when structural

uncertainty is present. The principal difficulty is to establish robust stability of the adaptive

system. Adaptive solutions have been derived under fairly idealistic conditions. Researchers

in the early 1980’s have shown that very simple adaptive system may become unstable if

the strong assumptions made in the stability proofs are violated. Numerous examples were

provided in which adaptive strategies performed poorly, and it was generally felt that adap-

tive algorithms cannot be used for practical adaptive control. Following a paper by (Rohrs

et al., 1985 [69]) an effort was made to analyze the mechanism that leads to instability and

to establish conditions for robust stability. A viewpoint that is widely agreed upon is that

disturbances may cause the estimates to drift along a solution manifold in parameter space

until stability is lost (Åström, 1995 [4]). This manifold is given by the set of estimates that

yield a zero identification error. To stop the migration process, conditions have to be im-

posed on the nature of the reference input. If the input signal is sufficiently rich the solution

manifold reduces to an equilibrium point —which would prevent the drift process.

In (Anderson et al., 1986 [5]) an attempt was made to develop a uniform theory for the robust

stability of adaptive systems. Most of the theoretical results obtained rely on approximations

of the nonlinear equations describing the adaptive process. The separation of fast system

and slow adaptive variables is used in averaging theory to derive conditions for stability

when the parameters are already close to their tuned values (Kokotovic et al., 1985 [38]).

All (fast) system variables are collected in the regression vector φ. Parameter adaptation

depends upon the product of the regression vector and the estimation error ε. The key

idea in averaging is to approximate the product φ ε by its average value avg{φ ε} calculated

under the assumption that the parameters are constant. The local behavior of the solution

is thus obtained by linearization of the averaged equations. The analysis is valid only in a

neighborhood of the tuned solution, i.e. assuming that the estimates are already close to
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those parameters which result in a stable closed–loop system. Furthermore, the averaged

equations may possess equilibria (obtained when avg{φ ε} = 0) even if the exact equations

do not have an equilibrium. The consequence of the analysis presented in (Anderson et al.,

1986 [5]) for the design of an adaptive control system is two–fold: first, keep the adaptive

gain small in order to decouple the time–scales of regressor and estimator. Second, enhance

the degree of persistence of excitation by adding small magnitude sinusoids to the reference

input.

In contrast to the work discussed above, here we are not interested in developing a theory

of robust stability for adaptive systems. Due to the nonlinear nature of the problem such

a theory has proven to be very elaborate while having few consequences for the adaptive

control practitioner. In fact, most of the implications, such as keeping the adaptive gain

small, are rather straightforward and do not require a universal theory. Moreover, the

motivation for using adaptive control in industrial applications comes from the fact that

adaptation (hopefully) improves the performance of the system when large uncertainty is

present. While stability is a major concern for the control theorist, it does not in itself

provide the reason why an adaptive controller should be used instead of a linear one, which,

in many practical cases, achieves the same goal of stabilizing the system. A number of

modifications of the adaptive law have been proposed in the literature, including dead-zone

(Peterson and Narendra 1982, [64]), σ–modification (Ioannou and Kokotovic, 1983 [32]) and

parameter projection (Praly, 1984 [68]). The idea is to eliminate the pure integral action

of the adaptive law and to keep the parameter error bounded. In this thesis we will not

delve into any of these approaches but merely assume that the system can be adaptively

controlled in a stable fashion (using any of the above methods). Our focus is to investigate

conditions under which the performance of the system can be improved when the latter is

affected by three specific classes of disturbances:

• external disturbances,

• unmodelled dynamics, and

• rapid time–variations.

In chapters two and three of the thesis the foundations of adaptive control are presented con-

sisting of the problem of parameter estimation and control based on the certainty equivalence

principle. The chapters are tutorial in nature and aim to provide the reader with all aspects

of adaptive control assuming that the plant operates under ideal conditions. Emphasis is

placed on the theoretical requirements needed to establish stability. It is demonstrated that

the methods proposed for linear systems with unknown coefficients have nonlinear counter-

parts provided that the state of the system evolves within a neighborhood of an equilibrium
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point. Once a nonlinear control law which meets the control objectives has been shown to

exist, a neural network is used to implement it. The theory presented is applied to control

problems that arise in the context of electrical drive systems.

Chapter four deals with the first class of disturbances in the above list. The objective is to

reject unknown external disturbances completely, provided that the latter can be expressed

as the output of a homogeneous difference equation. A new development is presented in

the case where the disturbance generating system is driven by a white noise sequence. It is

shown that a stochastic disturbance v(k) affecting the input of the system can be rejected

using a controller of augmented order, if v(k) is highly correlated with its past values. In

addition, extensions to the nonlinear domain are discussed.

In chapter five, a new method for minimizing the control effort in adaptive systems is

introduced. The success of adaptive control in a practical environment depends critically on

the nature of the control input. Design considerations, which assist in obtaining a smooth

input are therefore at the center of our discussion. Our first step is to demonstrate that the

dead–beat approach which is the preferred design technique in most theoretical papers on

adaptive control can be replaced by more practicable designs. In particular, it is shown that

by exploiting some very basic prior information about the plant, the sensitivity of the control

loop to noisy measurement can be reduced. Our second, and major step is to develop a new

procedure for optimizing the adaptive gain used in the parameter update algorithm. The

principal idea is that, in certainty equivalence control, the input u(k) is computed using the

most recent parameter estimate, i.e. its a posteriori value θ̂(k). But this means that, when

updating θ̂(k − 1), one may determine an optimal θ̂(k) in the sense that control based on

this parameter minimizes the control effort. The set of permissible θ̂(k)s is defined by the

regression vector and the adaptive gain 0 < η < 2. We formulate a constrained optimization

problem which minimizes the cost due to the rate |u(k) − u(k − 1)| and magnitude |u(k)|
of the input by determining the optimal gain η∗ at every instant of time. If the open–loop

plant is stable, the procedure provides an effective way of limiting actuator stress. Since the

optimized control input is also less oscillatory, the method enhances robustness to unmodelled

high–frequency dynamics.

Chapter six is devoted to the problem of rapid time–variations in systems with unknown

parameters which may be due to subsystem failures or large and sudden load variations. The

objective is to outline the principal ideas of the multiple model architecture which has been

established in recent literature (e.g. [54], [57]) and upon which our analysis in the following

chapter is based. An example serves to highlight the importance of appropriately locating

the models in a time–varying environment. The idea is that at least on model should be
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close to the parameters that the plant is likely to assume. It is clear that the procedure is

based on considerable prior information regarding the time–variation of the plant.

In chapter seven we consider the case where such prior information is not available. In

other words, all models are located far from the plant. To keep the problem analytically

tractable, it is assumed that the plant parameter θ assumes a finite number N of constant

values contained in a compact set S ⊂ R
p but switches between the elements of S at random

instants of time. Each parameter corresponds to an environment in which the plant operates,

e.g. corresponding to a specific disturbance affecting the system. Even in this special case we

have to assume that the time-variation is regular in some sense. In particular, it is assumed

that the failures and load variations that occurred in the past are likely to occur in the future

as well. A learning algorithm is proposed by which N models are updated simultaneously

and in a competing fashion. The algorithm causes the configuration of N models to evolve

gradually towards the configuration of the plant parameters. It is not known a priori which

model converges to which plant parameter but no two models converge to same parameter.

Although inspired by earlier work on motor learning and control [29], the algorithm as well

as the questions we raise regarding the stability of the adaptive system are new and have

not been addressed in the literature. The convergence is found to be a complex nonlinear

process which cannot be analyzed using standard arguments from stability theory. In fact,

the behavior of the algorithm is seen to be different from all adaptive processes known.

In our analysis, numerous special cases and problems are considered which highlight the

many aspects of the algorithm and set the stage for a succinct treatment of the problem.

Our contribution is to provide qualitative insights into the nature of convergence and to

develop a mathematical framework within which the problem can be addressed. The proof

of convergence remains an open question.

In chapter eight, the effectiveness of the adaptive schemes developed in this thesis can be

verified under real operating conditions. The objective is to control the speed of a rotational

mass which is coupled to an electrical drive through a flexible shaft. The inertias of the

drive and the load as well as the spring and damping constants are assumed to be unknown.

Deterministic disturbances, in the form of an (unknown) piecewise constant or sinusoidal

torque, are applied on the load side. The model used for control is of third–order and

reflects only the (dominant) mechanical part of the two–mass system. Hence, robustness

to unmodelled dynamics is a prerequisite for obtaining a stable closed–loop system. The

performance of the system is improved using an optimized, time–varying adaptive gain as well

as the multi–model approach of chapter six (in the case of a piece–wise constant disturbance).

In a addition to the methods developed in the theoretical chapters of the thesis, a procedure

for constraining the parameter estimates to a convex region in parameter space is presented,
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which further enhances the robustness of the adaptive system. In all these cases, a self–

tuning controller with fast and accurate response is obtained. The results serve to highlight

the effectiveness of adaptive schemes in an industrial control problem.
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Chapter 2

Parameter Estimation

When the parameters of a system are unknown, algorithms to estimate them naturally

assume fundamental importance. Their discussion therefore forms the starting point of our

investigation. The objective of this chapter is to review some of the standard estimation

algorithms available in the literature (see e.g. Isermann 1992 [35]). However, since our

ultimate goal is not system identification but adaptive control, the presentation focuses on

those properties of the estimation algorithms that will become useful when the estimator is

used as part of the adaptive controller.

Given a physical process, our objective is to derive a mathematical description for that pro-

cess. Since we are mainly interested in dynamical systems, such a description will assume

the form of a set of differential equations. If sufficient prior information is available, the

coefficients may be determined using the laws of physics. If, on the other hand, the process

is unknown, it may be possible to determine the coefficients by performing a series of ex-

periments and observing the nature of the system’s response. The problem then consists in

adjusting the parameters of an appropriately chosen model, such as to match its response to

that of the actual system. The success of this procedure critically depends upon the choice

of the model structure as well as on the algorithm used to adjust the parameters.

Choice of a model structure: Clearly, a complete description of any physical system would

have to be of infinite order. In practice however, one is only interested in the response of the

system to specific input signals within a limited frequency range. This enables one to separate

dominant and parasitic dynamics and describe the behavior of the system using reduced–

order models. Moreover, for practical purposes, the system may be assumed to be linear.

However, any physical system becomes nonlinear beyond a certain range of operation. Prior

information is needed in order to decide whether the model should be linear or nonlinear.

9
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The selection of the model is greatly influenced by the experience of the designer and depends

upon the specific application. In the following, we assume that the model structure is given.

The input–output characteristics of a large class of linear and nonlinear systems can be

written in the following simple form:

y(k) = φ(k − 1)T θ0 (2.1)

where φ(k) is a linear or nonlinear function of a finite sequence of inputs and/ or outputs:

U(k) = {u(k), u(k − 1), . . . , u(k −m)}
Y (k) = {y(k), y(k − 1), . . . , y(k − n)} (2.2)

φ(k) ∈ R
p (here: p = m+ n+ 2) is referred to as the regression vector. θ0 ∈ R

p corresponds

to the unknown parameter vector which has to be estimated, and y(k) is a scalar output,

measured at instant of time k.

Example 2.1 The logistic equation, a model of population growth,

x(k + 1) = a x(k)[1 − x(k)] =
[
x(k) x2(k)

] [ a

−a

]
(2.3)

is of the form (2.1). It displays chaotic behavior for e.g. a = 3.8.

Estimation Algorithm: The objective here is to use experimental data in order to determine

the unknown parameters. In the off-line case, data is available prior to analysis and treated

as a block of information. There is no constraint on the duration of the estimation process.

In the on-line case, sequential data is used to update the parameter estimates recursively,

using a relatively simple algorithm. A class of online–algorithms which has proven successful

in practical applications has the following general form:

θ̂(k) = θ̂(k − 1) +MP (k − 1)φ(k − 1)ε(k) (2.4)

where θ̂(k) is the estimate of θ0 at instant of time k. MP (k − 1) denotes the algorithm gain

and ε(k) is the modelling error

ε(k) = y(k) − ŷ(k) (2.5)

where ŷ(k) is the output of the identification model

ŷ(k) = φ(k − 1)T θ̂(k − 1) (2.6)

Depending upon the precise definitions of θ̂(·), MP (·) and ε(k), the algorithm may take

different forms. Some of them are discussed below.
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2.1 Projection Algorithm

In this case,

MP (k) =
1

φ(k)Tφ(k)
(2.7)

The algorithm can be motivated geometrically as follows. Given y(k) and φ(k − 1), all

possible parameter values θ∗ satisfying equation (2.1) lie on the hyperplane

H = {θ∗ | y(k) = φ(k − 1)T θ∗} (2.8)

Among all these candidate values for θ0, we choose θ̂(k) as the element on H which is closest

to θ̂(k − 1). In other words, θ̂(k) is the orthogonal projection of θ̂(k − 1) onto H. Notice

that the signed distance of θ̂(k − 1) to H is given by

dθ̂(k − 1) = −φ(k − 1)T θ̃(k − 1)

‖φ(k − 1)‖ (2.9)

where θ̃(k − 1) = θ̂(k − 1) − θ0. Since φ(k − 1) is orthogonal on H, the projection operator

used to update θ̂(k − 1) can be defined as follows

Proj{θ̃(k − 1)} =
φ(k − 1)

‖φ(k − 1)‖ dθ̂(k − 1) = −φ(k − 1)φ(k − 1)T

φ(k − 1)Tφ(k − 1)
θ̃(k − 1)

This is illustrated in figure (2.1).

θ0

θ̂(k − 1)

θ̂(k)

θ̂1

θ̂2

φ(k − 1)

φ(k)

θ̃(k − 1)

H

Figure 2.1: Projection Algorithm

We obtain

θ̂(k) = θ̂(k − 1) − φ(k − 1)φ(k − 1)T

φ(k − 1)Tφ(k − 1)
θ̃(k − 1) (2.10)



12 CHAPTER 2. PARAMETER ESTIMATION

Note that from (2.1) and (2.6) we have

ε(k) = φ(k − 1)T [θ0 − θ̂(k − 1)] = −φ(k − 1)T θ̃(k − 1) (2.11)

A problem with the projection algorithm is that there is a (remote) possibility of division

by zero when φ(k− 1) = 0. This can be easily overcome by adding a small positive constant

in the denominator of (2.10)

θ̂(k) = θ̂(k − 1) + η
φ(k − 1) ε(k)

c+ φ(k − 1)Tφ(k − 1)
(2.12)

where 0 < η < 2 is the adaptive gain and c > 0, usually c = 1.

2.1.1 Elementary Properties

When the parameters are updated according to equation (2.12), we obtain:

(i) ‖θ̃(k)‖ ≤ ‖θ̃(k − 1)‖ ≤ ‖θ̃(0)‖

(ii) lim
N→∞

N∑
k=1

ε(k)2

c+ φ(k − 1)Tφ(k − 1)
<∞ (2.13)

Property (i) corresponds to the fact that the parameter error is a nonincreasing function of

time. In other words, θ̂(k) is never farer from θ0 than θ̂(0). Property (ii) implies that the

modelling error, ε(k), when appropriately normalized, is square summable. This can be used

to show that the error does not grow faster than the signals contained in the regression vector

φ. The following arguments are used in the proof of (i) and (ii): Subtracting θ0 from both

sides of equation (2.12) we obtain a nonlinear difference equation describing the evolution

of the parameter error vector θ̃(k):

θ̃(k) = θ̃(k − 1) − η
φ(k − 1)φ(k − 1)T

c+ φ(k − 1)Tφ(k − 1)
θ̃(k − 1) (2.14)

Now, introduce the Lyapunov–function V (k) = ‖θ̃(k)‖2. Using (2.11) we obtain

‖θ̃(k)‖2 − ‖θ̃(k − 1)‖2 = η

[
−2 + η

φ(k − 1)Tφ(k − 1)

c+ φ(k − 1)Tφ(k − 1)

]
ε(k)2

c+ φ(k − 1)Tφ(k − 1)
(2.15)

Since, 0 < η < 2, and c > 0, the bracketed expression is strictly less than zero. This

already proves property (i). Hence, ‖θ̃(k)‖2 is a bounded nonincreasing function which can

be written as the following sum:

‖θ̃(k)‖2 = ‖θ̃(0)‖2 + η
k∑

i=1

[
−2 + η

φ(i− 1)Tφ(i− 1)

c+ φ(i− 1)Tφ(i− 1)

]
ε(i)2

c+ φ(i− 1)Tφ(i− 1)
(2.16)



2.1. PROJECTION ALGORITHM 13

Since ‖θ̃(k)‖2 is nonnegative whereas the sum is over negative semi–definite terms, property

(ii) follows. It can be shown that a third property holds, which states that two successive

parameter estimates approach each other as k → ∞:

(iii) lim
k→∞

‖θ̂(k) − θ̂(k − 1)‖ = 0 (2.17)

The properties have great significance for the proof of stability in adaptive control since

they have been derived under extremely weak conditions (in particular, φ(k) does not even

have to be bounded). Note, however, that we have not said anything about θ̂(k) necessarily

converging to θ0. Further conditions on the nature of the signals contained in the regression

vector φ(k) have to imposed to ensure parameter convergence.

Example 2.2 In order to illustrate the above properties consider the problem of identifying

a linear time-invariant system given by:

y(k + 1) = −a0y(k) − a1y(k − 1) + b0u(k) (2.18)

where θ0 = [ −a0 −a1 b0 ]T corresponds to the vector of unknown parameters and φ(k) =

[ y(k) y(k − 1) u(k) ]T . The plant is tested open–loop with a constant input signal u(k) ≡
5. The simulation in figure (2.2) illustrates that θ̃(k) = θ0− θ̂(k) is a nonincreasing sequence

and that ε2(k)/1+φ(k−1)T φ(k−1) → 0 irrespective of whether the plant (2.18) is stable or not.

Note however that in both cases the parameter error does not converge to zero. Each discrete

time–instant k corresponds to an interval of length TS = 10ms, i.e. t = kTS.

2.1.2 Parameter Convergence

The idea in establishing parameter convergence is to show that the parameter error θ̃(·) is

appropriately reflected in the identification error, such that if the latter is zero, the param-

eter error is zero as well. Intuitively, this means that θ̃(k − 1) is observable through the

identification error ε(k) = y(k) − φ(k − 1)T θ̂(k − 1).

In order to see this, we set c = 0 in equation (2.14) and write:

θ̃(k) = H(k − 1) θ̃(k − 1) (2.19)

where

H(k − 1) = I − φ(k − 1)φ(k − 1)T

φ(k − 1)Tφ(k − 1)
(2.20)

The solution at instant of time k > 1 can be given in the following form:

θ̃(k) = Φ(k, k0) θ̃(k0) (2.21)
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Figure 2.2: Properties of the Projection Algorithm

with the state transition matrix

Φ(k, k0) = H(k0 + k − 1) . . . H(k0 + 1)H(k0) =
k−1∏
i=0

H(k0 + i) (2.22)

In the error equation (2.11), which is repeated here for convenience, φ(k−1) is a time–varying

vector which maps the state θ̃(k − 1) onto the output ε(k).

ε(k) = −φ(k − 1)T θ̃(k − 1) (2.23)

Let us introduce the normalized identification error ē(·), [27]:

ε̄(k) = −φ(k − 1)T θ̃(k − 1)

‖φ(k − 1)‖ (2.24)

The following matrix can be shown to be the “observability Gramian” for the state space

system (2.19) with output equation (2.24):

GO(k0, k0 + T ) =
T−1∑
i=0

Φ(k0 + i, k0)
Tφ(k0 + i)φ(k0 + i)T Φ(k0 + i, k0)

φ(k0 + i)Tφ(k0 + i)
(2.25)
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The projection algorithm is globally exponentially convergent to θ0 provided that the fol-

lowing observability condition is satisfied

GO(k0, k0 + T ) ≥ c I c > 0 for all k0 and some fixed T > 0 (2.26)

To prove the statement, consider the Lyapunov function V (k) = θ̃(k)T θ̃(k). We know that

V (k + 1) = θ̃(k)TH(k)TH(k) θ̃(k)

= V (k) − θ̃(k)Tφ(k)φ(k)T θ̃(k)

φ(k)Tφ(k)

Summing up T terms we obtain

V (k + T ) = V (k) − θ̃(k)TGO(k, k + T )θ̃(k)

≤ (1 − c)V (k) c > 0

Since V (k + T ) > 0, we have c < 1. Notice that,

1 − c < e−c

Hence, V (k + T ) ≤ e−c V (k), or

V (knT ) ≤ e−cknV (0) (2.27)

where the index kn refers to steps of length T . Thus V (k) and hence θ̃(k) converges to zero

exponentially fast. �

It can be shown that the observability condition (2.26) is equivalent to the following simpler

expression:
T−1∑
i=0

φ(k + i)φ(k + i)T

φ(k + i)Tφ(k + i)
≥ c I c > 0 (2.28)

for all k and some fixed T > 0.

Intuitively, the condition means that over a fixed time interval T , the regression vector must

have a nonzero projection along any direction of the parameter space. In other words, if

θ̃ ∈ R
p then φ(k), . . . φ(k+T−1) must span the whole space R

p. The condition is also known

as persistence of excitation which reflects the fact that φ must be rich enough to excite all

modes of the system that is to be identified. Notice that the condition refers to the regression

vector not to the input of the system. The excitation can be provided by the input but may

be lost in closed–loop since feedback introduces dependencies among the variables appearing

in the regression vector (for further details, see e.g. Åström, Wittenmark 1995 [4]).
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Example 2.3 In the above example the input to the system is modified to contain three

distinct frequencies u(k) =
∑3

i=1 sin(kTS ωi), where TS is the sampling time. It is seen that

due to the richness of the probing signal, the parameter error θ̃ converges to (a neighborhood

of) zero. It should be kept in mind that even though the persistence of excitation condition

is satisfied the convergence rate may be very slow. θ̃(k) vanishes for k → ∞.
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Figure 2.3: Parameter convergence due to richness of the input signal

Example 2.4 The fact that persistence of excitation need not always be due to the control

input, can be appreciated if we return to the system (2.3) in example 2.1. It is well known

that for 0 ≤ a < 3 the solution tends to a fixed point, while for values a ≥ 3 it undergoes

a sequence of bifurcations. Points of periods ≥ 2 appear, and at a = 4 we find points

of all periods in the solution of the system, i.e. given any integer i > 0 we can find an

initial condition x(k0) such that x(k0 + i) = x(k0). The bifurcations are referred to as the

period–doubling route to chaos (see e.g. Guckenheimer 1983, [28]). A model of the form

x̂(k+ 1) = φ(k)T θ̂(k), with φ(k) = [x(k) x(k)2]T was used to identify the system. It is clear

that at a = 4 the regression vector is sufficiently rich, causing the parameters in figure (2.4)

to converge to the correct values while for a < 3, the identification error is zero without the

parameters converging to the correct values.
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Figure 2.4: Identification of the logistic map

2.2 Orthogonalized Projection Algorithm

If the persistence of excitation condition (2.28) holds and the vector φ(k) is orthogonal to

all its previous values φ(1), . . . , φ(k − 1) then the parameters converge in a finite number

of steps. This can be verified in figure (2.1) where the parameters converge after only two

projections, provided that φ(k) is orthogonal to φ(k−1). This suggests an improved version

of the projection algorithm in which the directions along which the parameters are updated

form a sequence of orthogonal vectors. It can be shown that there exists a time–varying

matrix P (k − 1) such that P (k − 1)φ(k) is the component of φ(k) which is orthogonal to

φ(1), . . . , φ(k − 1). The algorithm is given by

θ̂(k) = θ̂(k − 1) +
P (k − 2)φ(k − 1) ε(k)

φ(k − 1)T P (k − 2)φ(k − 1)
(2.29)

where

P (k − 1) = P (k − 2) − P (k − 2)φ(k − 1)φ(k − 1)TP (k − 2)

φ(k − 1)TP (k − 2)φ(k − 1)
(2.30)

with P (0) = I. In the event that φ(k−1)T P (k−2)φ(k−1) = 0, we may set θ̂(k) = θ̂(k − 1)

and P (k−1) = P (k−2) in order to exclude unbounded solutions. The vector P (k−2)φ(k−1)
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in equation (2.29) is the component of φ(k−1) which is orthogonal to all previous φ(·) vectors.

A proof of this statement can be found in (Goodwin 1984, [27]). Its principal ideas are as

follows. First it is shown that P (k)P (k) = P (k), i.e. the matrix P (k) is idempotent. Using

equation (2.30) it is proven that

P (0) . . . P (k) = P (k) (2.31)

The second step consists in showing that the null–space of P (k) is equivalent to the span of

φ(1) φ(2) . . . φ(k), i.e.

ker[P (k)] = span[φ(1) φ(2) . . . φ(k)] (2.32)

Hence, P (k)φ(k) = 0. But this means that P (k)φ(k − i) = P (k) . . . P (k − i)φ(k − i) = 0.

Hence,

φ(k − i)TP (k − 1)φ(k) = φ(k − i)TP (k − i) . . . P (k − 1)φ(k) = 0 (2.33)

This proves that P (k− 1)φ(k) is orthogonal to all previous vectors φ(k− i), i = 1, . . . , k− 1.

In addition, it can be shown that θ̃(k) is orthogonal to [φ(1) φ(2) . . . φ(k−1)]. This implies

that if the regression vectors span the whole parameter space, θ̃(·) must be zero. In other

words, the parameter estimates converge to θ0 in m steps provided that

rank[φ(1) φ(2) . . . φ(m)] = p (2.34)

where p is the dimension of the parameter space, i.e. θ0 ∈ R
p.

2.3 Recursive Least–Squares Algorithm

The algorithm above has the usual disadvantage of a possible division by zero. By adding a

small positive constant in the denominator of equation (2.29) we obtain a modified version

which corresponds to the well known Recursive Least–Squares Algorithm:

θ̂(k) = θ̂(k − 1) +
P (k − 2)φ(k − 1) ε(k)

1 + φ(k − 1)TP (k − 2)φ(k − 1)
(2.35)

where

P (k − 1) = P (k − 2) − P (k − 2)φ(k − 1)φ(k − 1)TP (k − 2)

1 + φ(k − 1)TP (k − 2)φ(k − 1)
(2.36)

with the initial estimate θ̂(0), and any positive definite matrix P (−1). If we compare (2.35)

to (2.12) we see that the basic structure of the algorithms are equivalent and that P (k − 1)

may be regarded as a time–varying matrix adaptive gain. Hence, it comes as no surprise that
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the algorithm has properties very similar to those of the projection scheme. For convenience,

these properties are listed below.

Given the system (2.1), if the parameters in (2.6) are updated according to the recursive

least–squares algorithm (2.35) and (2.36) we have

(i) ‖θ̃(k)‖2 ≤ κ‖θ̃(0)‖2 k ≥ 1

(ii) lim
N→∞

N∑
k=1

ε(k + 1)2

1 + φ(k)T P (k − 1)φ(k)
<∞

(iii) limk→∞ ‖θ̂(k) − θ̂(k − l)‖ = 0 for any finite l

(2.37)

where κ is the condition number of P (−1)−1

κ =
λmax[P (−1)−1]

λmin[P (−1)−1]

The proof is analogous to the one used in section (2.1.1) and is sketched here for completeness.

Using V (k) = θ̃(k)TP (k − 1)−1θ̃(k) as a Lyapunov–function, we have

V (k) − V (k − 1) = − ε(k)2

1 + φ(k − 1)TP (k − 2)φ(k − 1)
(2.38)

Hence, for all k ≥ 1,

θ̃(k)TP (k − 1)−1θ̃(k) ≤ θ̃(0)TP (−1)−1θ̃(0) (2.39)

Using the matrix inversion lemma (see e.g. Kailath 1980, [36]), (2.36) may be rewritten as

P (k)−1 = P (k − 1)−1 + φ(k)φ(k)T (2.40)

It follows that the smallest eigenvalue λmin[P (k)−1] is nondecreasing. This implies

λmin[P (−1)−1]‖θ̃(k)‖2 ≤ λmin[P (k − 1)−1]‖θ̃(k)‖2

≤ θ̃(k)TP (k − 1)−1θ̃(k)

≤ θ̃(0)TP (−1)−1θ̃(0)

≤ λmax[P (−1)−1]‖θ̃(0)‖2

(2.41)

This establishes property (i). Next, let us sum the right hand side of (2.38) from 1 to N

V (N) = V (0) −
N∑

i=1

ε(i)2

1 + φ(i− 1)TP (i− 2)φ(i− 1)
(2.42)

Property (ii) follows from the fact that V (N) is nonnegative. Finally, using straightforward

arguments which can be found in (Goodwin, 1984 [27]), we have that the change of the

parameter estimates tends to zero (Property (iii)).
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In most practical applications the recursive least squares algorithm is the preferred estimation

scheme since it is both fast and robust to measurement noise. The algorithm has fast initial

convergence rate but slows down dramatically when the covariance matrix P gets small after

a few iterations. This ensures parameter convergence even in the presence of a zero–mean,

white noise signal. When the parameters are time–varying, it may be necessary to reset

the matrix P at various times (preferably when one expects that a parameter change has

occurred). This is accomplished by the least–squares algorithm with covariance resetting.

Let R = {k1, k2, k3, . . . } be the instants of time at which the matrix is reset. Then for all

k /∈ R equation (2.36) is used to update P . Otherwise, for k = ki ∈ R

P (k) = c I c	 1 (2.43)

Since in between the reset instants the algorithm behaves as in the original case it is easy

to show that it retains the above properties (i) – (iii). However, prior knowledge as to when

parameter changes are likely to happen is required to determine the set of reset instants

R. An alternative approach which is used frequently in time–varying contexts is to apply

greater weight to more recent data by means of a “forgetting factor”. An algorithm which

exponentially discards old data is given by:

θ̂(k) = θ̂(k − 1) +
P (k − 2)φ(k − 1) ε(k)

λ(k − 1) + φ(k − 1)TP (k − 2)φ(k − 1)
(2.44)

with

P (k − 1) =
1

λ(k − 1)

[
P (k − 2) − P (k − 2)φ(k − 1)φ(k − 1)T P (k − 2)

λ(k − 1) + φ(k − 1)TP (k − 2)φ(k − 1)

]
(2.45)

where 0 < λ(·) < 1. It has been shown in (Åström, 1980 [1]) that the forgetting factor λ

must be time–varying in order to avoid “burst” phenomena if the data are not persistently

exciting. In such a case the parameter estimator can become unstable since the P matrix

begins to grow whenever the excitation is insufficient. Suggestions as to how to adjust

the forgetting factor depending on the information content of the data have been made in

(Åström, 1980 [1]; Cordero, 1981 [13]).

Finally, a condition similar to (2.28) can be given under which the parameter estimates,

which are updated according to equations (2.35) and (2.36) converge to the true value θ0.

Again, the regression vector has to be nonvanishing:

lim
k→∞

k∑
i=0

φ(i)φ(i)T = ∞ (2.46)
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Example 2.5 A comparison of the different estimation schemes presented so far is most

illuminating if the number of unknown parameters is large. The reason is that in a low–

dimensional parameter space few steps are needed to attain a region in which the estimation

error is small. In figure (2.5) the comparison is carried out using an unknown linear forth–

order system (i.e. eight unknown parameters). The probing input was again chosen to

be a combination of sine–waves of different frequencies. It is seen that with the projection

algorithm the identification error tends to zero but convergence is very slow. In the case of the

orthogonalized projection algorithm we observe a zero crossing of φ(k − 1)P (k − 2)φ(k − 1)

resulting in an infinite adaptation gain and instability. This is avoided when using the

recursive least squares algorithm by which a fast and accurate response is obtained.
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Figure 2.5: Comparison of different parameter estimation schemes
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2.4 Arbitrary Relative Degree

In discrete time, the relative degree of a system has an intuitive meaning. It corresponds to

the number d of sampling units after which an input signal u(·) affects the output y(·) of the

system. In the above choice of the model structure (2.1) it has been assumed that d = 1.

When d is arbitrary, the equation may be modified as follows:

y(k) = φ(k − d)T θ0 (2.47)

where φ(k− d) is a function of the vectors Y (k− d) and U(k− d) defined in equation (2.2).

Equivalently,

y(k) = H(q−1)φ(k)T θ0 (2.48)

where H(q−1) = q−d is a known filter transfer function. The estimation model is obtained

by replacing θ0 by the most recent parameter estimate, i.e. θ̂(k − 1). We end up with an

error equation of the following form:

ε(k) = −H(q−1)φ(k)T θ̃(k − 1) (2.49)

where θ̃(k−1) = θ̂(k−1)−θ0. This means that the estimation error −φ(k)T θ̃(k−1) is available

as the output of some transfer function H(q−1). Depending on whether this transfer function

is strictly positive real or not equation (2.49) corresponds to error model three and four

respectively, according to the classification introduced in (Narendra, 1989 [51]). The central

question in both cases is how the parameters are to be updated such that the estimation

algorithm is stable. If the transfer function H(q−1) in equation (2.49) is not strictly positive

real (i.e. error model four) a method involving the concept of the augmented error which is

due to (Monopoli, 1974 [46]) can be used to derive a stable estimation algorithm. Define

ε̄(k) = ε(k) + ε̃(k) (2.50)

where ε̄(k) corresponds to the augmented error and ε̃(k) to an auxiliary signal of the form

ε̃(k) = H(q−1)[φ(k)T θ̂(k)] − [H(q−1)φ(k)]T θ̂(k − 1) (2.51)

The reasoning behind this definition is that by means of the augmented error the standard

model structure is recovered. This can be seen as follows: Since θ0 is time–invariant we have

H(q−1)[φ(k)T θ0] = [H(q−1)φ(k)]T θ0 (2.52)

This can be used to show that

ε̄(k) = −[H(q−1)φ(k)]T θ̃(k − 1) (2.53)
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which corresponds to the standard error equation (2.11). Using H(q−1) = q−d we obtain:

ε̄(k) = −φ(k − d)T θ̃(k − 1) (2.54)

Hence, by replacing ε(·) by ε̄(·) and φ(k − 1) by [H(q−1)φ(k)] in the above algorithms,

the convergence analysis proceeds as in the standard case. It follows that ε̄(k) → 0,

i.e. the augmented error tends to zero. The question is what happens to the actual es-

timation error ε(k)? From the properties of the estimation algorithms it is known that

‖θ̂(k) − θ̂(k − 1)‖ → 0. This implies that the estimation model is asymptotically time–

invariant so that equality (2.52) holds with θ0 replaced by θ̂(k) = const. If follows that

the auxiliary error ε̃(k) defined in (2.51) tends to zero. In other words, ε(k) → ε̄(k) → 0 as

k → ∞.

2.5 An Example from Industry

So far, parameter estimation has been introduced as a way of identifying unknown dynamical

systems of the form (2.1). However, the ultimate objective is to use the parameter estimates

in order to control the system. A straightforward idea would be to wait until the parameters

converge and then design a (linear) standard controller assuming that the parameters have

converged to the true values. The approach is highly attractive to industry since it seems to

be a natural extension of existing (and well tested, hence trustworthy) design techniques to

systems with unknown parameters.

Consider the problem of controlling the speed of a rotational mass with inertia J . A typical

requirement is to keep the speed n of the mass constant even in the presence of an unknown

load which is represented by the signal v. A discrete–time description of the system can be

given as follows:

n(k + 1) = n(k) +
TS

J
[u(k) − v(k)] (2.55)

where TS is the sampling time and u(k) is the torque generated by an electrical drive.

Assuming that the torque of the load v = v0 is constant, we build an identification model of

the form

n̂(k + 1) = n(k) + θ̂1(k)u(k) + θ̂2(k) (2.56)

The objective is that the parameter estimates θ̂1 and θ̂2 converge to the actual parameters

of the system, i.e.

θ̂1(k) → TS

J

θ̂2(k) → −TS

J
v0

(2.57)
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A stationary value n(k) = n0 = const. in equation (2.55) is obtained when u(k) = v0. The

torque u0 required at the input of the system is equal to the torque of the load, which is

regarded as a parameter in this context. Hence, v0 = u0 is known. On the other hand,

any variation of the inertia J is not identifiable since the net torque driving the system is

zero. In order to see the effect of the inertia we have to cause a change in speed n. If,

e.g. u(k) = u0 > v0 we have constant acceleration and y increases linearly. Yet, it is still

impossible to separate the effects of J and v0 by observing the output of the system. The

reason can be given as follows:

An input signal u(k) is persistently exciting of order p if its two-sided spectrum is nonzero

at p points (or more). The order of the excitation has to be at least equal to the number

of unknown parameters. In order to separate the effects of the inertia and the load, it

is necessary to increase the frequency content of the input signal e.g. by setting u(k) =

sin(ω0 TS k). The two-sided spectrum of the sine is nonzero at ±ω0 and suffices to identify p =

2 unknown parameters. This is illustrated in figure (7.31) which displays the evolution of the

estimates in the (two–dimensional) parameter space. Once the parameters have converged,

u = 0.1 = v0 u = 1 > v0

u = sin(20πTSk)

θ0θ0θ0

Figure 2.6: Parameter convergence for input signals of different orders of excitation

the physical parameters can be recovered. By a slight abuse of notation (“θ̂(∞)” corresponds

to the value of θ̂ for which the estimation error is small in a sense specified by the designer)

we may write:

J =
TS

θ̂1(∞)
v =

θ̂2(∞)

θ̂1(∞)
(2.58)

Once J and v are known, the design of the controller proceeds using the usual frequency

domain criteria known from classical linear control theory.

Two comments are in order.
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• The approach is valid if identification and control are performed separately, i.e. the loop

is closed only after completion of the estimation procedure. In principle, this is possible

since speed control systems are open–loop stable. In practice, the primary motivation

for using adaptive algorithms is to improve the performance of an existing (but poorly

tuned) standard controller. The idea is to fine–tune the controller in an automatic

fashion based on the information obtained while the plant is in operation. But this

means that the parameters have to be adjusted even while controlling the plant. A

popular viewpoint is to disregard the time–variation of the plant and to treat the

system as a linear one. The argument provided is that adaptation is a slow process when

compared to the evolution of the state variables of the system. The system is considered

to be stable if the associated linear time–invariant system, obtained by “freezing” the

current parameter estimates, is stable. The following example demonstrates that this

is a hazardous approach which may lead to erroneous conclusions about the stability

of a system.

Example 2.6 Given a (continuous–time) system with time–varying parameters:

ẋ = A(t)x (2.59)

with

A(t) =


 −1 − 9 cos2(6t) + 6 sin(12t) 12 cos2(6t) + 4.5 sin(12t)

−12 sin2(6t) + 4.5 sin(12t) −1 − 9 sin2(6t) − 6 sin(12t)




The characteristic polynomial is time–invariant

χ(λ) = λ2 + 11λ+ 10 (2.60)

and has the eigenvalues λ1 = −1, λ2 = −10. Hence, the “frozen system” is stable at

every instant of time. One may be tempted to conclude that also the original system

is stable. This is in contrast to the solution curve depicted in figure (2.7) which starts

at the origin and tends to infinity.

• If the identification is indeed carried out in closed–loop the excitation necessary for

parameter convergence is generated through the reference input. This may lead to

a conflict since the signals required to identify the system are not always compatible

with the process requirements. This is particularly true if the number of unknown

parameters is large. If, in the example, the rotational mass tracks a piecewise con-

stant reference speed, identification is only possible when the speed changes from one
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Figure 2.7: Unstable linear time–varying system

constant value to another. In [39], an interesting solution has been proposed which in-

volves monitoring the reference signal. The parameters of the controller are initialized

such that the closed–loop system is stable and are only updated when a change in the

reference signal takes place.

Parameter estimation as discussed in this chapter is fundamental for designing stable adap-

tive controllers. However, the example illustrates that the approach most commonly en-

countered in industrial applications is to employ parameter estimators as a mere supplement

to an existing control setup. The concept is based on linear design principles and uses

the knowledge of the physical parameters of the system (acquired through the estimation

process). As a consequence, the identification procedure must take place off–line and no

control action can be taken before the parameters converge. If on–line identification is used

instead, the resulting problems of stability are often ignored. Furthermore, the controller

cannot be applied with confidence unless one ensures that sufficiently rich probing signals

are applied to the system. Prior testing may be required to see which probing signals result

in fast convergence. The persistence of excitation condition has been introduced uniquely as

a consequence of the design procedure which is linear in nature. It is seen that an unknown

system can be controlled in a stable fashion using much less information. This is at the

center of our discussion in the next chapter.



Chapter 3

Adaptive Control

The control of a dynamical system whose parameters are unknown is certainly among the

most fascinating achievements of modern control theory. Concepts like “learning”, “self–

tuning” and “artificial intelligence” have their roots in the solution of the adaptive control

problem. Many different approaches to adaptive control have been proposed in the literature

which can be broadly classified under two headings: Self–Tuning Regulators (STR) and

Model Reference Adaptive Control (MRAC). In the latter case, the basic idea is to cause

the system to behave like a given reference model. It is seen that the two approaches are

closely related. In fact, a self–tuning regulator in which process zeros are cancelled can

be interpreted as a model–reference adaptive controller. Stability of the resulting adaptive

closed–loop system remained an open question for almost a decade and was finally resolved

by (Narendra et al. 1980 [59]), (Goodwin et al. 1980 [26]) and (Morse 1980, [48]).

The design of an adaptive control system is conceptually simple. It consists of a parameter

estimator in combination with a controller structure that would result in a stable closed–

loop system if the parameters were known. In the design process, the estimates are used as

if they were the true parameters. This approach is commonly referred to as the Certainty

Equivalence Principle. By means of this principle it is possible to conceive a wide range of

combinations of estimators and controllers. We will be focused on some of them which have

proven stability and convergence properties. The design methodology adopted throughout

the thesis may be classified an indirect one, since the evaluation of the control law is indirectly

achieved via an identification model. The indirect method offers the possibility of extending

the design to the case where multiple identification models are used. This will be of interest

in Chapter 6. We shall see that even though the design relies on the parameters of an

underlying identification model, it is not necessary that the estimates converge to the true

parameters of the system. This is in contrast to the method presented at the end of the last

27
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chapter where knowledge of the physical parameters of the system was mandatory. In some

cases, it is possible to parameterize the system directly in terms of the controller parameters.

In such a case the controller is directly estimated and hence obtained using a direct approach.

3.1 Linear Adaptive Control

Our discussion starts with a system given by the linear state equations

x(k + 1) = Ax(k) + b u(k)

y(k) = cTx(k)
(3.1)

where x(k) ∈ R
n is the state of the system and u(k), y(k) ∈ R is the scalar input and output

variable respectively. A is a n× n matrix, b and c are n× 1 vectors. The system is assumed

to be both controllable and observable. The objective is to design a controller such that y(k)

tracks an arbitrary bounded reference output y∗(k) even as the parameters of the system

contained in A, b and c are unknown. The following presentation is guided by the paper

(Cabrera and Narendra, 1999 [9]). We first assume that the parameters of the system are

known and consider the exact tracking problem.

3.1.1 Exact Tracking

Given the linear system (3.1), determine an integer N and a controller

u(k) = fT
b x(k) + ff y

∗(k +N) (3.2)

where fb ∈ R
n×1 and ff ∈ R such that the closed–loop system satisfies:

1. x(k + 1) = [A+ b fT
b ]x(k) is asymptotically stable.

2. For every initial condition x(0) and arbitrary bounded reference sequence {y∗(k)},
|y(k) − y∗(k)| = 0 for k ≥ N , i.e y(k) is identical to y∗(k) after N steps.

It turns out that N is equal to the relative degree d of the system, where d is defined as the

integer satisfying the conditions cT b = cTAb = · · · = cTAd−2b = 0, cTAd−1b 
= 0. If no such

integer exists, the transfer function of the system is identically zero, and the relative degree

is defined to be ∞.

A convenient way to analyze the system is to transform it into normal form. It is well known

that for a linear system (3.1) with relative degree d there exists a global change of coordinates
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z = T−1 x, where T−1 is a nonsingular matrix defined by:

T−1 =

[
U

V

]
n×n

with U =




cT

cTA
...

cTAd−1


 V =




vT
1

vT
2
...

vT
n−d


 (3.3)

where U := span UT is a linear subspace of R
n and V is a basis matrix for V , which is a

completion of U to R
n, i.e. U ⊕ V = R

n. In addition, V is chosen such that vT
i b = 0 for

i = 1 . . . n− d. The normal form of the system (3.1) is obtained as:

z1(k + 1) = z2(k)

z2(k + 1) = z3(k)
...

zd(k + 1) = cTAd Tz(k) + cTAd−1b u(k)

zd+1(k + 1) = vT
1 ATz(k)

...

zn(k + 1) = vT
n−dATz(k)

y(k) = z1(k)

(3.4)

where cTAd−1b 
= 0 is the high–frequency gain of the system. The following notation is used:

The first d components of the state vector z(k) are denoted by ξ(k) and correspond to

ξ(k) = [z1(k) z2(k) . . . zd(k)]
T = [y(k) y(k + 1) . . . y(k + d− 1)]T (3.5)

whereas ζ(k) = [zd+1(k) . . . zn(k)]T refers to the nd = n − d remaining state variables.

Clearly, z(k) = [ξ(k)T ζ(k)T ]T . From the state equation (3.4) we obtain the subsystem,

ζ(k + 1) = Qζ(k) + Pξ(k) (3.6)

where Q ∈ R
nd×nd and P ∈ R

nd×d. If we constrain the output of the system to zero, ξ(k) ≡ 0,

equation (3.6) is homogenous and referred to as the zero–dynamics of the system. The zero–

dynamics describe the evolution of the internal state variables and play a fundamental role

in the solution of the tracking problem based on inverse control. This is seen as follows:

Using the normal form, it is clear that zd(k + 1) = y(k + d) is the variable directly affected

by the control input. Assuming that the desired output y∗(k+d) is known at instant of time

k, the control input has the following form

u(k) =
1

cTAd−1b
[y∗(k + d) − cTAdx(k)] (3.7)
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The control law results in exact tracking after d steps. However, this does not yet imply

that the closed–loop system is stable. Since ξ(k) is bounded, the boundedness of z(k) is

assured if the internal states ζ(k) are bounded. From (3.6) it is clear that ζ(k) is bounded

if and only if Q is an asymptotically stable matrix. In other words, the zero dynamics are

asymptotically stable. Since the system is linear, this corresponds to the fact that it is also

minimum–phase. In fact, if we assume that (3.1) is a minimal realization of the transfer

function H(z) = cT (zI − A)−1b, then the eigenvalues of Q correspond to the zeros of H(z).

Example 3.1 Given a third–order system of the form,

x(k + 1) =


 a11 a12 0

0 a22 a23

a31 0 a33


 x(k) +


 0

1

0


 u(k)

y(k) = [ 1 0 0 ] x(k)

(3.8)

it is readily verified that cT b = 0 and cTAb = a12, i.e. the relative degree is d = 2. The

matrix which transforms the system into normal form is obtained as

T−1 =


 1 0 0

a11 a12 0

0 0 1


 (3.9)

where vT
1 = [0 0 1] in the last row of the matrix completes the linear subspace spanned by

the first two rows. In addition, vT
1 b = 0. Carrying out the transformation yields

z(k + 1) =


 0 1 0

−a11a22 a11 + a22 a12a23

a31 0 a33


 z(k) +


 0

a12

0


 u(k)

y(k) = [ 1 0 0 ] z(k)

(3.10)

The control law, defined in equation (3.7), which results in exact tracking after two steps

reads

u(k) =
1

a12

(
y∗(k + 2) −

[
a2

11 a11a12 + a12a22 a12a23

]
x(k)

)
(3.11)

The stability of the closed loop system depends upon the stability of the zero–dynamics

which are given by the subsystem

z3(k + 1) = a33z3(k) + a31z1(k) (3.12)

If |a33| < 1 the system (3.8) is minimum–phase. This corresponds to the fact that the zero

of the transfer function

H(z) =
a12 (z − a33)

z3 − (a11 + a33 + a22)z2 + (a11a33 + a11a22 + a22a33)z − a31a12a23 − a11a22a33
(3.13)

is strictly stable. Hence, the control law (3.11) solves the exact tracking problem.
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3.1.2 Auto–Regressive Moving–Average Representation

In most practical control problems, the state variables are not accessible and control has to

be based only on inputs and outputs. In the following we derive a representation of the plant

which expresses the output at any instant as a linear combination of the past n values of the

input and n values of the output. From (3.1) it follows that


y(k)

y(k + 1)

y(k + 2)
...

y(k + n− 1)




=




cT

cTA

cTA2

...

cTAn−1



x(k) +




0

cT bu(k)

cTAbu(k) + cT bu(k + 1)
...

cTAn−2bu(k) + ...+ cT bu(k + n− 2)



(3.14)

Since the system is observable, the matrix

WO =




cT

cTA

cTA2

...

cTAn−1




(3.15)

is nonsingular. Using the notation Yn(k) := [y(k), y(k + 1), . . . , y(k + n− 1)]T and Un(k) :=

[u(k), u(k + 1), . . . , u(k + n− 1)]T to denote a sequence of input/output values we obtain:

x(k) = W−1
O Yn(k) −W−1

O LU [Un−1(k)] := L[Yn(k), Un−1(k)] (3.16)

where LU [Un−1(k)] corresponds to the last term in (3.14). Since y(k + n) = cTx(k + n),

y(k + n) = cTAn L[Yn(k), Un−1(k)] +
n−1∑
i=0

cTAn−1−ib u(k + i) (3.17)

Finally, shifting the time axis by n− 1 instants we obtain the autoregressive moving average

model (ARMA) of the plant:

y(k + 1) =
n−1∑
i=0

āi y(k − i) +
n−1∑
i=0

b̄i u(k − i) (3.18)

where āi and b̄i are constants depending on the coefficients of the linear equation (3.17). It is

seen that the system is completely determined by 2n parameters. The input at time k affects

the output at the next instant of time, i.e. d = 1. In the case of a higher relative degree
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d > 1, the expressions cT b, cTAb, ..., cTAd−2b in equation (3.14) are all zero. Equivalently,

the first d− 1 elements of the last sum in (3.18) are zero. If the time axis in (3.18) is shifted

by d− 1 instants we obtain

y(k + d) =
n−d∑

i=1−d

āi y(k − i) +
n−d∑
i=0

b̄i u(k − i) (3.19)

Equation (3.18) can again be used to express y(k + 1), y(k + 2), ..., y(k + d− 1) successively

in terms of the past values of the inputs and outputs. This results in the general ARMA

representation of the system (3.1) having arbitrary relative degree d ≥ 1:

y(k + d) =
n−1∑
i=0

aiy(k − i) +
n−1∑
i=0

biu(k − i) (3.20)

It is seen that the ARMA model can be written using the following shorthand notation

introduced in chapter 2:

y(k + d) = φ(k)T θ0 (3.21)

where φ(k) is the regression vector of the system defined as

φ(k) =

[
Yn′(k)

Un′(k)

]
(3.22)

with an obvious definition of Yn′(k) and Un′(k) similar to the one used in (3.16). θ0 contains

the 2n parameters of the system:

θ0 = [a0, a1, . . . , an−1, b0, b1, . . . , bn−1]
T (3.23)

Our control objective is to track an arbitrary bounded output sequence {y∗(k + d)}. If the

parameters are known, the equation

y∗(k + d) = φ(k)T θ0 (3.24)

implicitly defines the control law. We obtain,

u(k) = g[ y∗(k + d), Yn′(k), Ūn′(k), θ0]

= 1/b0 [y∗(k + d) − a0yk − · · · − an−1yk−n+1 − b1uk−1 − · · · − bn−1uk−n+1]
(3.25)

where Ūn′(k) = [u(k−1), u(k−2) . . . u(k−n+1)]. The application of this control law results

in exact tracking after d steps and bounded signals provided that the system is minimum–

phase. If the parameters are unknown, how should (3.25) be modified? In particular, how

should the parameters be updated such that the closed–loop system is stable? These are the

questions addressed in the adaptive control problem.
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3.1.3 Adaptive Control

The problem may be stated as follows: Determine a control law g[ y∗, Yn′ , Ūn′ , θ̂ ], dependent

on the estimated parameter values θ̂, as well as an adaptive procedure to update θ̂, such that

lim
k→∞

|y(k) − y∗(k)| = 0 (3.26)

and all the signals in the system remain bounded. Certain assumptions have to be made

concerning the plant in order to be able to determine a solution. These are summarized as

follows:

• an upper bound on the order n of the system is known,

• the relative degree d is known exactly,

• the zeros of the system lie strictly inside the unit circle.

The last assumption is equivalent to the fact that the system be minimum–phase. It can

be dropped when the problem is one of regulating the output at a constant value (set–point

control) or if the desired output is a specified periodic signal. Here, we are interested in

asymptotic tracking of an arbitrary bounded reference signal.

The solution to the adaptive control problem is based on a simple and intuitive concept,

known as the certainty equivalence principle. It states that, at every instant of time, the

parameter estimates are used as if they were the true parameters of the system. This enables

us to combine any parameter estimation algorithm with an arbitrary stabilizing control law.

In particular, u(k) can be obtained using equation (3.24) with θ0 replaced by θ̂(k):

y∗(k + d) = φ(k)T θ̂(k) (3.27)

Any of the parameter estimation algorithms introduced in chapter 1 can be used to generate

θ̂(k). Recall, that since the system is not explicitly parameterized in the control parameters,

our approach is indirect, i.e. the control law is obtained indirectly from the system model. In

other words, θ̂(k) is determined from an underlying estimation procedure using the following

estimation model:

ŷ(k) = φ(k − d)T θ̂(k − 1) (3.28)

Some care must be taken regarding the time index of the parameter estimate θ̂(·). If the

current desired output is y∗(k), an appropriate control input must have been generated d

instants of time ahead, i.e. at k − d. At this stage, parameter estimates up to θ̂(k − d) are

available, see equation (3.27). This is in contrast to the identification problem where u(·)
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need not be determined but is regarded as a given input signal. Hence, at instant of time

k, the control input u(·) up to k − 1 has already been determined. Consequently, a more

recent parameter estimate is available, i.e. θ̂(k − 1) in (3.28). Since equation (3.27) is also

the equation for the closed loop system, we obtain the following relationship between the

control error e(k) = y(k) − y∗(k) and the identification error ε(k) = y(k) − ŷ(k):

e(k) = ε(k) + φ(k − d)T [θ̂(k − 1) − θ̂(k − d)] (3.29)

The last term measures the rate of change of θ̂(k) and decays as the parameters converge.

Notice that it is zero whenever d = 1. In such a case the control and identification errors

are equivalent. The design procedure may be summarized as follows:

1. Determine the control law (3.25) which results in exact tracking if the parameters are

known and use θ̂(k) instead of θ0.

u(k) = g[ y∗(k + d), Yn′(k), Ūn′(k), θ̂(k)] (3.30)

2. Update the parameter estimates using one of the algorithms described in chapter 1

which are of the form

θ̂(k) = θ̂(k − 1) +MP (k − 1)φ(k − 1) ε(k) (3.31)

where MP is a (matrix) adaptation gain.

It turns out that, depending on the reference input, there exists a large number of parameters

values θ∗ that result in a stable closed–loop system and limk→∞ |y(k)− y∗(k)| = 0. In other

words, it is not necessary that the parameters converge to θ0 to solve the asymptotic tracking

problem. This will become clear in the following proof of stability.

3.1.4 Proof of Stability

The tracking error is defined as e(k) = y(k) − y∗(k). Using (3.29) we see that

|e(k)|
[1 + φ(k − d)T φ(k − d)]

1
2

≤ |ε(k)|
[1 + φ(k − d)T φ(k − d)]

1
2

+
‖φ(k − d)‖‖θ̂(k − 1) − θ̂(k − d)‖

[1 + φ(k − d)T φ(k − d)]
1
2

From the discussion of the properties of the parameter estimation algorithms in chapter 2 it

follows that
|ε(k)|

[1 + φ(k − d)Tφ(k − d)]
1
2

→ 0 (3.32)
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and

‖θ̂(k − 1) − θ̂(k − d)‖ → 0 (3.33)

Hence,

lim
k→∞

|e(k)|
[1 + φ(k − d)Tφ(k − d)]

1
2

= 0 (3.34)

The fact that the system is minimum–phase means that its inverse is strictly stable. If h is

the impulse response of the inverse system, we have that h ∈ l1, i.e. there exist some fixed

m1 > 0 and m2 > 0 such that for all k > 0,

|u(k − d)| ≤ m1 +m2 max
1≤κ≤k

|y(κ)| (3.35)

In other words, the input is linearly bounded by the output of the system1. It then follows

from the definition of φ(k) in (3.22) that

‖φ(k − d)‖ ≤ m3 +m4 max
1≤κ≤k

|y(κ)| for some m3 > 0,m4 > 0 (3.36)

Since |y(k)| = |e(k) + y∗(k)| ≤ |e(k)| + |y∗(k)|, and |y∗(k)| is bounded, we have

‖φ(k − d)‖ ≤ c1 + c2 max
1≤κ≤k

|e(κ)| for some c1 > 0, c2 > 0 (3.37)

In equation (3.34), the norm of the regression vector φ(k − d) can be either bounded for all

k, or grow in an unbounded fashion. In the former case, it directly follows that |e(k)| → 0

as k → ∞. If ‖φ(k− d)‖ grows in an unbounded fashion, then, by equation (3.37), it cannot

grow faster than |e(k)|. However, this leads to a contradiction of equation (3.34). Hence,

‖φ(k − d)‖ is bounded and

lim
k→∞

|e(k)| = 0 (3.38)

Comment: Inequality (3.35) can also be obtained under slightly more general conditions.

• All modes of the inverse system lie inside or on the unit circle. Any modes on the unit

circle are of multiplicity one, and

• all controllable modes of the inverse system lie strictly inside the unit circle.

This is true because the uncontrollable state variables are bounded if the roots on the unit

circle are simple. Thus, by superposition, only the controllable part of the system needs

to be considered [27]. The relaxation will permit us to extend the adaptive procedure to a

system of augmented order in chapter 4.1.

1Let S be the linear space of all sequences {xk}k≥0. lp is defined as the space of sequences for which the
series

∑∞
k=0 |xk|p converges. It is a subspace of S for all p ≥ 1: lp = {x ∈ S | ∑∞

k=0 |xk|p < ∞}. A system
satisfying (3.35) is said to be finite gain stable (Desoer and Vidyasagar, 1975 [15]).
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Example 3.2 A two–mass system consists of two rotational masses coupled by a flexible

shaft. The objective is to control the speed of one mass by the torque applied to the other

mass. The dynamics of the system may be described by a third–order differential equation.

Furthermore, it is easy to see that the system is minimum–phase (for more details see chapter

8). All parameters of the system are unknown. It turns out that if a zero–order hold sampling

method is employed to obtain a discrete–time state space description of the system, all entries

of the corresponding vectors c and b are nonzero. This means that the relative degree of the

sampled system is d = 1, since cb 
= 0. Furthermore, if the speed of one of the masses is

used as the output variable, the system is observable. This is all the information needed to

control the system using an underlying estimation model of the following structure:

ŷ(k + 1) = φ(k)T θ̂(k) (3.39)

where φ(k) = [y(k) y(k − 1) y(k − 2) u(k) u(k − 1) u(k − 2)]T and θ̂(k) ∈ R
6. Here, u(·)

corresponds to the torque applied to one mass, and ŷ(·) is an estimate of the speed of the

other mass. If ŷ(k + 1) is replaced by the desired value y∗(k + 1), equation (3.39) implicitly

defines the control law. The simulation results contained in figure (3.1) illustrate that –

starting from arbitrary initial estimates θ̂(0)– the adaptive control law results in stable,

asymptotic tracking of a bounded reference signal. The result is independent of the fact

whether the parameters converge to the true values (as on the right side of figure 3.1) or not

as in the case of a sine reference.

3.2 Nonlinear Adaptive Control Using Neural Networks

The results derived above apply to linear systems. In many cases linear approximations may

prove to be adequate for purposes of analysis and synthesis (of the controller). However,

all physical systems become nonlinear beyond a certain range of operation. The question

naturally arises as to whether the concepts and tools developed for linear systems may be

extended to the nonlinear domain. In such a case, the class of nonlinear systems, the domain

in which the representation of the system is valid, and assumptions made for identification

and control need to be clarified.

It is assumed that the nonlinear system to be controlled can be described by the state

equations

x(k + 1) = f [x(k), u(k)]

y(k) = h[x(k)]
(3.40)

where x(k) ∈ R
n is the state of the system, u(k) ∈ R denotes the input, and y(k) the output of

the system. f : R
n ×R → R

n and h : R
n → R are assumed to be unknown smooth functions
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Figure 3.1: Adaptive control of a two–mass system

f, h ∈ C∞. (Cn is the class of n–times continuously differentiable functions). Further, it is

assumed that f [0, 0] = 0, h[0] = 0, i.e. the origin is an equilibrium state of (3.40).

As in the linear case, the objective is to track an arbitrary output sequence {y∗(k)} using

a nonlinear controller. Only the input u(k) and output y(k) are assumed to be accessible.

The questions that arise in this context are whether a suitable mathematical input/ output–

representation exists, what structure should be used for the controller and the manner in

which identification and control are to be carried out. Considerable work has been reported

on all the above questions and we include in this section those that serve to highlight the

principal ideas of neurocontrol. A precise statement of the problem may be given as follows.

Given the system (3.40), determine an integer N , a scalar ∆ > 0, a neighborhood X of the

origin in R
n and an analytic function g : R

n × R → R, with g(0, 0) = 0, defining the control

law

u(k) = g[x(k), y∗(k +N)] (3.41)

such that the closed–loop system satisfies the following conditions:

1. x(k + 1) = f [x(k), g[x(k), 0]] is asymptotically stable.

2. For every initial condition x(0) ∈ X , and every reference sequence {y∗(k)} bounded

by ∆ for all k, |y(k) − y∗(k)| = 0 for k ≥ N .
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Paralleling our discussion in the linear case, we have stated the exact tracking problem. In

the asymptotic tracking problem, the second item is replaced by the condition that the

error tends to zero asymptotically, i.e. limk→∞ |y(k) − y∗(k)| = 0. It is seen that the exact

tracker is unique while the asymptotic tracker is not. However, the problems are equivalent

in that the conditions for obtaining a stable tracking control law are the same in both cases.

Determining the conditions that (3.40) has to satisfy to ensure the existence of a control law

g[x(·), y∗(·)] is the key to the solution of the nonlinear adaptive control problem [9].

All of the following statements are local in nature, i.e. they depend upon the linearization

of the nonlinear system around the equilibrium point:

x(k + 1) = Ax(k) + b u(k)

y(k) = cTx(k)
(3.42)

where ∂f(x,u)
∂x

∣∣∣
0,0

= A ∈ R
n×n, ∂f(x,u)

∂u

∣∣∣
0,0

= b ∈ R
n and ∂h(x)

∂x

∣∣∣
0

= c ∈ R
n. It is assumed that

the linearized system is both controllable and observable, so that the nonlinear system is

also controllable and observable in a neighborhood of the origin in R
n+1.

3.2.1 Nonlinear Normal Form

In order to derive a normal form for linear systems, the concept of the relative degree was

found to have central importance. It corresponds to the number of sampling instants, after

which the effect of a control input u(k) can be felt at the output. For nonlinear systems, a

local definition of the relative degree d may be derived.

The system (3.40) is said to have relative degree d at (x, u) = (0, 0) if there exists a

neighborhood X × U of the equilibrium state such that for all (x, u) ∈ X × U :

∂(h ◦ f i ◦ f [x(k), u(k)])

∂u(k)
= 0 for 0 ≤ i ≤ d− 2


= 0 for i = d− 1

(3.43)

where f i is the i-times composition of f . If there exists a i∗ ≥ 0 and a neighborhood X∗×U∗
of (0, 0) such that

∂(h ◦ f i∗ ◦ f [x(k), u(k)]

∂u(k)
= 0 at (0, 0)


= 0 for (x, u) ∈ X∗ × U∗\{(0, 0)}
(3.44)

the relative degree is not well defined. Since our ultimate aim is to develop general methods

for controlling nonlinear systems, we shall assume in what follows that the relative degree



3.2. NONLINEAR ADAPTIVE CONTROL USING NEURAL NETWORKS 39

of the system is well defined and known. In such a case it is possible to obtain a system of

local coordinates in which the system has normal form:

z1(k + 1) = z2(k)
... =

...

zd(k + 1) = F [ζ(k), ζ0(k), u(k)]

ζ0(k + 1) = D[ζ(k), ζ0(k), u(k)]

y(k) = z1(k)

(3.45)

where ζ = [z1, ..., zd]
T , ζ0 = [zd+1, ..., zn]T and z = [ζT ζT

0 ]T . The equation is the equivalent

of the normal form defined in (3.4) for linear systems. F : R
d × R

(n−d) × R → R and

D : R
d×R

(n−d)×R → R
(n−d) are analytic functions of their arguments. Also, ∂F (ζ,ζ0,u)

∂u

∣∣∣
0,0


= 0.

The intuition gained in the linear case suggests that ζ0(k) in equation (3.45) corresponds

to the internal state variables of the system. This can be verified as follows. Given an

initial state x(0) ∈ X ⊂ R
n, assume that a feedback controller has been designed such that

y(k) ≡ 0. The transformed system reduces to

zd(k + 1) = F [0, ζ0(k), u(k)] = 0 (3.46)

ζ0(k + 1) = D[0, ζ0(k), u(k)] (3.47)

The control input u(k) corresponding to the problem of zeroing the output is only a function

of ζ0(k). From (3.47), we obtain u(k) = g0[ζ0(k)] which leads to

ζ0(k + 1) = D[ 0, ζ0(k), g0[ζ0(k)] ] ζ0(0) ∈ X0 (3.48)

The autonomous dynamical system (3.48) is called the zero dynamics of the system. We

assume that the partial state vector ζ0(k) evolves in some neighborhood X0 of the origin

in order to ensure the existence of the corresponding maps. It describes the dynamics of

the system when the input and the initial condition are jointly chosen such as to make the

output identically zero. Asymptotic stability of the zero–dynamics implies that the internal

state of the system is bounded. As seen in the linear case, this is a prerequisite for a solution

of the tracking problem to exist.

3.2.2 Control Using Input-Output Data

In section 3.1.2 it was shown that if a linear system is observable, it can be described us-

ing only input-output data. The corresponding statement relating to the observability of

the nonlinear system (3.40) are substantially more complex. However, it has been shown
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in (Levin and Narendra 1996, [44]) that if the linearization (3.42) is observable, then the

nonlinear system is observable in a neighborhood X of the equilibrium state. This implies

that any state x(k) ∈ X can be uniquely determined by probing the system with an input se-

quence of sufficient length and observing the corresponding output sequence. From equation

(3.40) we have

y(k) = h[x(k)] = Ψ1[x(k)]

y(k + 1) = h[f(x(k), u(k))] = Ψ2[x(k), u(k)]
...

y(k + n− 1) = h ◦ fn−1[·] = Ψn[x(k), u(k), u(k + 1), . . . , u(k + n− 2)]

(3.49)

where fn−1 denotes the (n−1)-times iterated composition of f . Using the notation Yn(k) :=

[y(k), y(k + 1), . . . , y(k + n− 1)]T and Un(k) := [u(k), u(k + 1), . . . , u(k + n− 1)]T , we may

express (3.49) as follows

Yn(k) = Ψ[x(k), Un−1(k)] (3.50)

where Ψ : X × Un−1 → Yn and Un−1, Yn are the sets of all input/output sequences of

length n − 1 and n respectively. The key question is whether an inverse of the function Ψ

exists so that, as in the linear case, the state x(k) can be explicitly expressed in terms of

Yn(k) and Un−1(k). It is known that a continuously differentiable mapping f is invertible

in a neighborhood of any point x0 at which its linearization is invertible. Furthermore,

f(x, y) = 0 can be solved for x in terms of y in a neighborhood of any point (x0, y0) at which

f(x0, y0) = 0 and ∂f
∂x


= 0. The following theorems make these statements precise (see e.g.

Rudin 1964, [70])

The inverse function theorem

Let U be an open set in R
n and let f : U → R

n be a Ck function with k ≥ 1. If the Jacobian
∂f
∂x

∣∣
x0

is invertible at some point x0 ∈ U , then there exists an open neighborhood V of x0 in

U such that f : V → f(V) is invertible with a Ck inverse. �

The implicit function theorem

Let U be an open set in R
n ×R

m and let f : U → R
n be a Ck function with k ≥ 1. Consider

a point (x0, y0) ∈ U where x0 ∈ R
n and y0 ∈ R

m with f(x0, y0) = 0. If the Jacobian
∂f
∂x

∣∣
x0,y0

is invertible at (x0, y0), then there exist open sets Vn ⊂ R
n and Vm ⊂ R

m with

(x0, y0) ∈ Vn × Vm ⊂ U such that to every y ∈ Vm there corresponds a unique x such that

(x, y) ∈ U and f(x, y) = 0
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If this x is defined to be ψ(y), then ψ is a Ck mapping ψ : Vm → Vn with ψ(y0) = x0 and

f(ψ(y), y) = 0 for y ∈ Vm

�

Hence, equation (3.50) can be solved for x(k) provided that the Jacobian ∂Ψ
∂x(k)

|0,0 is invertible.

But the Jacobian is merely the observability matrix of the linearized system and hence (3.40)

is locally observable if (3.42) is observable. Since the latter has been assumed to be true it

follows that

x(k) = ψ[Yn(k), Un−1(k)] (3.51)

in a neighborhood of the equilibrium state and ψ ∈ C1 : R
n × R

n−1 → R
n. From (3.49) we

have,

y(k + n) = Ψn+1[x(k), Un(k)]

= Ψn+1[ψ[Yn(k), Un−1(k)], Un(k)]

:= F̄ [y(k + n− 1), . . . , y(k), u(k + n− 1), . . . , u(k)]

(3.52)

This is equivalent to

y(k + 1) = F̄ [y(k), . . . , y(k − n+ 1), u(k), . . . , u(k − n+ 1)] (3.53)

which is an exact representation of the nonlinear plant valid in some neighborhood of the

equilibrium point (0, 0). The equation is referred to as the nonlinear auto-regressive moving-

average (NARMA) model of the system, see (Narendra, 1996 [50]). It shall be emphasized

that the representation exists only if the inputs and outputs of the system are restricted to

a neighborhood in which the implicit function theorem can be applied.

In the preceding section a normal state space representation of the nonlinear system was

derived which served to highlight the concepts of relative degree and zero dynamics. The

following discussion illustrates how the relative degree and the zero dynamics can be retrieved

in the NARMA representation of the system. Following the same steps as above, but starting

with the normal form (3.45) rather than (3.40) it can be shown that the following input-

output representation exists locally in the neighborhood of an equilibrium point:

y(k + 1) = F̄ [y(k), y(k − 1), . . . , y(k − n+ 1), u(k − d+ 1), . . . , u(k − n+ 1)] (3.54)

As a consequence of the relative degree d > 1, the equation does not depend on the most

recent d − 1 values of the input. The representation (3.54) exists provided that the system

has a well defined relative degree. In order to obtain (3.54), the internal states ζ0(k) have

to be expressed in terms of the inputs and outputs of the system. If the linear model (3.42)

is observable, it can be shown (using the implicit function theorem) that there exists an
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analytic map φ : R
n × R

(n−d) → R
(n−d), valid for some (Yn, Un−d) ∈ Yn × Un−d and ζ0 ∈ X0,

such that

ζ0(k) = φ[Yn(k), Un−d(k)] (3.55)

Suppose a sequence of inputs U0
n−d = [u0(k−d+1), . . . , u0(k−n+1)] has been chosen, such

that y(k) ≡ 0, for all k > 0, then the internal states ζ0(k) = φ[ 0, U0
n−d(k)] evolve as the zero

dynamics of the system and the zeroing sequence satisfies

F̄ [0, 0, . . . , 0, u0(k − d+ 1), . . . , u0(k − n+ 1)] = 0 (3.56)

This difference equation is referred to as the input-output zero dynamics of the system. As in

the linear case, we construct a d-step ahead predictor by expressing y(k+1), . . . y(k+ d− 1)

successively in terms of Yn and Un using the NARMA representation (3.54) for each y(k+ i),

i ∈ {1, . . . d− 1}:
y(k + d) = F [y(k), . . . , y(k − n+ 1), u(k), . . . , u(k − n+ 1)] (3.57)

This is the nonlinear equivalent of equation (3.20). In the above statement of the exact

tracking problem we were looking for conditions under which the control law defined in

(3.41) exists. We are now in a position to state these conditions.

If the system (3.40) has a well defined relative degree and asymptotically stable zero dynamics

then there exists an analytic function G of the form

u(k) = G[y(k), . . . , y(k − n+ 1), u(k − 1), . . . , u(k − n+ 1), y∗(k + d)] (3.58)

which solves the exact tracking problem in a neighborhood of the origin. The conditions

are seen to be equivalent to those in the linear exact tracking problem. In order to obtain

the control law, y(k + d) in equation (3.57) is replaced by its desired value y∗(k + d). The

implicit function theorem then assures the existence of the control law G in equation (3.58).

It solves the exact tracking problem provided that the system has a stable inverse. The role

of the zero dynamics is to assure that the system state remains in a neighborhood of the

equilibrium state in which the implicit function theorem is valid. The closed–loop system

can be written as the sum of an unforced system and a perturbation term depending on

y∗(k + d) and the internal states of the system. Using the normal form (3.45) it is easy

to see that asymptotic stability of the zero dynamics implies asymptotic stability of the

autonomous part of the closed–loop system. The fact that the system state remains in some

neighborhood then follows from Malkin’s theorem on stability under perturbations [9].

The emphasis of this section has been in deriving conditions for the existence of nonlinear

control laws which solve the exact tracking problem. This may be regarded as the algebraic

part of the adaptive control problem. The analytic part consists in using artificial neural

networks to approximate the corresponding maps. This will be discussed in following section.
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3.2.3 Practical Neurocontrol

Any discrete-time dynamical system can be represented using linear functions, such as sum-

mations, multiplication by constants and delays, as well as nonlinear functions. A massively

parallel interconnection of many of these basic functions is commonly referred to as a neural

network. Architectures which have found wide application are the radial basis function net-

work (RBFN) and the multi-layer perceptron network with at least one hidden layer (MNN).

It has been shown that both types are capable of approximating any continuous function

on a compact set to any degree of accuracy (see Cybenko 1989, [14]; Hornik 1989, [30];

Chen 1991, [10]). While other approximators, such as polynomials, splines, trigonometric

series, and orthogonal functions share the same property, neural networks represent a very

conveniently parameterized class of nonlinear maps. The fact that a relatively small num-

ber of parameters is needed to represent even complex functions, makes them attractive for

identification and control of nonlinear systems.

The key idea of neurocontrol is to use neural networks in order to approximate the nonlinear

maps involved in the solution of the exact tracking problem. This is part of a three step

design procedure which is briefly described below.

Step 1: At this stage, we are interested in identification only. A neural network is trained

to approximate the input–output behavior of the plant. It has been demonstrated that the

dynamical behavior of the plant can be described by means of the static map F : Yn×Un → R

defined in equation (3.57). The map depends upon the vector

φ(k) =

[
Yn′(k)

Un′(k)

]
(3.59)

introduced in (3.22). In much the same way as in the linear case (cf. equation 3.28) the

identification model uses the vector φ(k) to generate an estimate ŷ(k) of the output of the

plant except that in this case, a neural network is used to parameterize the solution:

ŷ(k) = N1[Yn′(k − d), Un′(k − d), θ̂1(k − 1)] (3.60)

The network parameters θ̂1 are trained using the identification error ε(k) = N1 − y(k). The

adjustment is carried out along the negative gradient of the cost function J(θ̂1) = ε(θ̂1)
2,

θ̂1(k) = θ̂1(k − 1) − 2η
∂ε(k)

∂θ̂1(k − 1)
ε(k) (3.61)

with a sufficiently small step size η, i.e. 0 < η 
 1. Details regarding training methods

based on gradients can be found in (Widrow 1990, [75]; Narendra 1991, [60]; Werbos 1990,

[76]).
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Figure 3.2: Neurocontrol

Step 2: This step consists in determining the map G defined in equation (3.58). It can

be initiated once the identification error ε(·) in step 1 is small. A second network N2 is

used providing an input u(k) to the first network N1. Figure (3.2) displays the resulting

closed–loop system. N2 is of the form

u(k) = N2[y(k), y(k − 1), . . . , y(k − n+ 1), u(k − 1), . . . , u(k − n+ 1), y∗(k + d)] (3.62)

Its parameters θ̂2 are trained such as to minimize the control error e(k) = y(k)− y∗(k). It is

clear that once the error is zero, θ̂2 is constant and N2 represents the control law for exact

tracking.

Step 3: The reason for working with N1 instead of the plant during the training phase

in step 2 is that it is not clear whether N2 stabilizes the system even as its parameters

are being adjusted. A proof of stability paralleling the one presented for linear systems

in section 3.1.4 is missing to date. Once the control error e(·) is small, one has sufficient

confidence to apply the control law represented by N2 to the actual system. Step 3 then

consists in replacing N1 by the plant. Step 2 is omitted whenever the control input can

be computed algebraically from (3.60). In (Narendra 1997 [61]) it has been suggested that

a general NARMA representation could be approximated by a model in which the control

input u(k) appears linearly. The use of such models simplifies the design of neurocontrollers

substantially.

Example 3.3 The flux linkage ψE generated in the stator of a separately excited DC ma-

chine is a nonlinear function of the exciting current iE. The nonlinearity is due to the

saturation of the magnets at high currents, which is often approximated by a sigmoid static

magnetizing curve h(iE), while hysteresis effects are neglected. In discrete–time, the follow-
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ing state space model is obtained

ψE(k + 1) = ψE(k) + TS uE(k) − TSRE iE(k)

iE(k) = h−1[ψE(k)]
(3.63)

RE is the resistance of the field circuit while TS = 1ms denotes the sampling time. RE is

assumed to be known but the magnetizing curve h[·] is unknown. By reducing the flux, a DC

motor can be operated above base speed. Since ψE is not directly measured, the objective is

to control the exciting current iE which is the output variable in (3.63). The voltage uE(k)

is generated by a converter which –given the above sampling time– can be approximated by

a unit delay: uE(k + 1) = u(k). The standard way for controlling iE is to linearize (3.63)

at a given operating point (ūE, ψ̄E) and to design a PI–control loop which is usually tuned

to the “absolute value optimum” (see Schröder 2001, [71]). This may lead to the following

problem. At low currents, the differential inductance dΨE

diE
is large, so a large controller gain

kp is needed to cause the output iE to respond fast and accurately to e.g. a step input

i∗E. As iE increases, the flux saturates, i.e. the inductance dΨE

diE
decreases. If the gain of the

controller is kept at a high level the closed loop system may become unstable. Clearly, kp has

to be adjusted. There are many technical realizations of this adjustment which can be found

in (Schröder, 2001 [71]). From a theoretical point of view, we are looking for a nonlinear

map u = G[i∗E, iE, ·] with small gain at high currents and large gain at small currents. As

seen in the following simulation, a neural network can be used to implement such a map,

even if the exact shape of the saturation function h[iE] is unknown. For the purpose of

illustration, we assume that i∗E is a square wave and that the onset of the saturation occurs

at low currents (< 1/10 of the nominal current iE0). From a practical point of view, much

weaker assumptions could be made (in particular, a DC drive behaves almost linearly up

to 1/2 iE0) but the settings allow us to study the effect of the nonlinearity in a general field

circuit.

An input–output representation of the system is obtained directly from (3.63)

iE(k) = h−1[b0 u(k − 2) + h[iE(k − 1)] − a1 iE(k − 1)] (3.64)

which is of the form (3.54). In order to derive the d = 2 step ahead predictor, (3.64) is

successively used to express iE(k + 1) and iE(k + 2) in terms of past values, following the

procedure described in section 3.2.2. This leads to the map

iE(k + 2) = F [iE(k), u(k − 1), u(k)] (3.65)

Note that no Jacobians are involved in checking observability and, hence, existence of the

map F . Furthermore, the system has no zero dynamics. This assures the existence of a
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(global) control law

u(k) = G[i∗E(k + 2), iE(k), u(k − 1)] (3.66)

which is approximated by the neural net. In figure (3.3), the PI–controller is tuned mod-

erately in order to prevent instability. This results in poor tracking performance. If a

neurocontroller is used instead, the output of the system iE follows the reference current

i∗E much more closely, even while keeping the amplitude of the input uE within the bounds

500 . . . 600V prescribed by the power converter. �
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Figure 3.3: Field current control of a separately excited DC drive; left: neurocontrol, right:

PI-control

The adaptive control methodology involving neural networks offers a unified solution for a

very general class of unknown, nonlinear systems. However, due to the local nature of the

implicit function theorem, the results are restricted to a neighborhood of the equilibrium

state. It has been shown (Aeyels, 1981 [7]), that by increasing the number of input-output

measurements up to (2n + 1), the system becomes globally observable. The implications

of this result for both identification and control need further investigation. Even when a
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solution is known to exist (in some neighborhood of the equilibrium state), it is generally

impossible to demonstrate stability of the adaptive law. In most cases, gradient methods are

used which do not have proven stability properties. A class of systems for which stability of

the adaptive closed loop system can be established is given by

y(k + 1) =
l∑

i=0

ai fi[y(k), ..., y(k − n+ 1] +
n−1∑
i=0

biu(k − i) (3.67)

where the functions fi(·), i = 0...l are assumed to be globally Lipschitz and known. In this

case, the regression vector assumes the form

φ(k) = [f1[·], . . . , fl[·], u(k), . . . , u(k − n+ 1)] (3.68)

and the procedure described in (3.1) for linear systems can be applied.
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Chapter 4

Disturbance Rejection

The previous chapter dealt with the problem of controlling a system with unknown, constant

parameters. In this chapter we consider the case where, in addition, the system is subject to

unknown, external disturbances. It is seen that under certain conditions, the problem can

be translated to the previous one if a controller of extended order is used. The approach

is based on the well–known fact from linear control theory that deterministic disturbances

containing a finite number of frequencies can be completely rejected by placing appropriate

poles in the feed–forward path of the control loop. According to the internal model principle

(Francis and Wonham 1976 [24]), this can be regarded as a procedure of expanding the

system by a “disturbance model” which generates an additional input that compensates the

effect of the disturbance.

The main purpose of this chapter is to discuss how this linear design rule extends to the

case where the parameters of the plant and the disturbance model are unknown. It is

seen that both deterministic and stochastic disturbances can be rejected using the same

method of augmenting the state space of the closed–loop system. In the stochastic case, the

performance improvement is seen to depend upon the impulse response of the disturbance

model. If the latter decays fast, the disturbance affecting the system is almost pure white

noise which cannot be eliminated. Pseudo–linear regression algorithms can be employed

in this case to minimize the variance of the resulting output error. If, on the other hand,

the impulse response is slowly decaying, the disturbance is highly correlated with its past

values and can be rejected almost completely, as in the deterministic case. In the nonlinear

domain, a similar procedure can be adopted provided that certain properties of the nonlinear

system hold. These properties, defined in terms of the linearized system, guarantee the

existence of an input-output representation of the augmented system. The main theoretical

questions that arise in this context are similar to the ones discussed in chapter 3. It is

49



50 CHAPTER 4. DISTURBANCE REJECTION

seen that nonlinear disturbance rejection is possible if the state of the system remains in a

neighborhood of the origin. In summary, whenever an external disturbance can be described

as the output of an unforced system of known order, it can be eliminated completely. The

importance of this result lies in the fact that the proposed method not only guarantees

stability under perturbations but also compensates for the perturbation, even as the latter

is not known completely.

4.1 Linear Disturbance Rejection

4.1.1 Deterministic Disturbances

Let the system (3.1) be affected by an external, bounded, deterministic disturbance v(k),

Σ : x(k + 1) = Ax(k) + b u(k) + bvv(k)

y(k) = cTx(k)
(4.1)

where x(k) ∈ R
n is the state of the system, A ∈ R

n×n the system matrix, b ∈ R
n×1 and

bv ∈ R
n×1 are input vectors and y(k) a scalar output, i.e. c ∈ R

n×1. The signal v(k) is

assumed to be the output of the following unforced system

Σv : xv(k + 1) = Avxv(k)

v(k) = cTv xv(k)
(4.2)

where xv(k) ∈ R
nv , Av ∈ R

nv×nv and cv ∈ R
nv×1. The equation may be regarded as a model

which generates the external disturbance. If Av is a Schur matrix (with eigenvalues inside the

unit circle), xv(k) and v(k) tend to zero asymptotically. If, on the other hand, Av is unstable,

xv(k) will grow in an unbounded fashion and the control needed to reject the disturbance

will also be unbounded. Since our interest is in bounded disturbances, we assume that Av

is a stable matrix with simple eigenvalues on the unit circle. Hence v(k) can be expressed

as a finite sum of sinusoidal signals (including a constant). Our objective in this case is to

determine u(k) in the composite system Σ ◦ Σv such that limk→∞ |y(k) − y∗(k)| = 0 where

y∗(k) is the desired output and y∗(k + d) = r(k) is known at instant of time k.

The solution involves determining the input–output representation of both Σ and Σv. The

key step then is to use the homogeneous difference equation obtained from (4.2) in order to

eliminate v(k) from (4.1). This is best illustrated by the following example where n = nv = 1.

Example 4.1

y(k + 1) = ay(k) + v(k) + u(k) (4.3)

v(k) = avv(k − 1) av = ±1 (4.4)
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Figure 4.1: Disturbance as output of homogeneous difference equation

If v(k) is known, the input u(k) can be computed from equation (4.3) to achieve exact

tracking. From equations (4.3) and (4.4) we have v(k) = avv(k− 1) = av[y(k)− ay(k− 1)−
u(k − 1)], i.e. the value of v(k) depends only on past values of y(·) and u(·). By choosing

u(k) = y∗(k + 1) − (a+ av) y(k) + ava y(k − 1) + avu(k − 1) (4.5)

exact tracking is achieved in two steps. Note that v(k) is not known explicitly but is com-

pletely defined by its value at time (k− 1), which, in turn can be expressed in terms of past

values of both the input and the output. �

The idea is readily generalized to the case where the system as well as the disturbance model

are of higher order. The input–output representations obtained in this case are:

Σ : y(k + d) =
n−1∑
i=0

ai y(k − i) +
n−1∑
i=0

bi u(k − i) +
n−1∑
i=0

ci v(k − i) (4.6)

Σv : v(k + 1) =
nv−1∑
i=0

αi v(k − i) (4.7)

The steps to eliminate the disturbance from Σ by means of the autonomous system Σv are

as follows: If n > nv, (4.7) is used to express v(k − n+ 1), . . . v(k − nv) in (4.6) in terms of

v(k) . . . v(k−nv +1), otherwise this step is skipped. Then, (4.6) is solved for v(k−nv +1) and

the result used to express the r.h.s. of (4.7) in the more recent values of v(·) and the inputs

and outputs of the system. By shifting the time axis (4.7) backwards by one step we again

obtain an expression for v(k−nv +1) which is used to eliminate v(k−nv +1) from (4.6). The

procedure is repeated nv times until the r.h.s of the second equation is expressed completely

in terms of the inputs and outputs of the plant. In the final stage, the first equation (4.6)

contains only the current value v(k) which, in turn is eliminated using (4.7). The resulting

equation represents the disturbance–free composite system. With nv being the order of the

disturbance generating system, nv steps were needed to eliminate v(·). Consequently, the
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dimension of the system has increased by nv:

Σ̄ : y(k + d) =
n+nv−1∑

i=0

aiy(k − i) +
n+nv−1∑

i=0

biu(k − i) (4.8)

Clearly, the equation is of the form (3.20) and the same control law as in case without

external disturbances can be applied, except that it now depends on the past (n + nv − 1)

values of the signals of the system:

u(k) =
1

b0

[
y∗(k + d) −

n+nv−1∑
i=0

aiy(k − i) −
n+nv−1∑

i=1

biu(k − i)

]
(4.9)

The procedure is more transparent if we use an equivalent representation of the system (4.1)

given by

A(q−1)y(k) = q−dB(q−1)u(k) + q−dG(q−1)v(k) (4.10)

where
A(q−1) = 1 − a1q

−1 − · · · − anA
q−nA

B(q−1) = b0 + · · · + bnB
q−nB

G(q−1) = g0 + · · · + gnG
q−nG

are polynomials in the delay operator q−1. The relative degree d is assumed to be known and

B(q−1) is a Hurwitz polynomial. The disturbance v(k) is generated by homogenous system

of the form
v(k) = [ d1q

−1 + · · · + dnD
q−nD ]v(k)

:= [ 1 −D(q−1) ]v(k)
(4.11)

If we solve equation (4.10) for v(k) and use the result to substitute v(k) in (4.11) we obtain

DAy(k) = q−dDB u(k) (4.12)

which corresponds to a system model the order of which has been augmented in order to

account for the presence of the disturbance. For ease of notation, the explicit dependence of

the polynomials on q−1 has been omitted. Replacing y(k) in equation (4.12) by y∗(k) and

solving for u(k) yields the equivalent of control law (4.9).

u(k − d) =
1

b0

[
y∗(k) − [1 −DA] y(k) − [DB − b0]u(k − d)

]
(4.13)

The application of the control law results in the closed–loop system:

y(k) = y∗(k) + q−dGD v(k) (4.14)

The effect of using a controller of augmented order is immediately evident, since, according

to (4.11), D v(k) = 0. If the parameters of the system are unknown, the control law is
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determined on the basis of an underlying identification model. This model is of augmented

order:

ŷ(k) = φ(k − d)T θ̂(k − 1) (4.15)

where φ(·) ∈ R
n+nv and θ̂(·) ∈ R

n+nv . Since (4.8) has been shown to be a valid representation

of the composite system Σ ◦ Σv, we conclude that there exists a constant parameter vector

θ∗ for which y(k) = y∗(k). It is seen that the zeros of the augmented system are given by

the original zeros plus the poles of the disturbance model. Since the latter is stable, the

zeros of the polynomial DB in equation (4.12) lie inside or on the closed unit circle and

the zeros of the transfer function q−dB/A obtained from (4.12) after pole–zero cancellation,

i.e. its controllable modes, lie strictly inside the unit circle. In view of the comment made

in chapter 3.1.4 the same arguments as in the disturbance–free case can be used to proof

stability of the adaptive controller based on the augmented system.

As seen in equation (4.10), the relative degree d is the same as in the original system. The

orders n and nv must be known. In most practical situations, prior information about the

plant as well as the disturbance is available. As an example, if the disturbances are harmonic,

nv is equal to the (expected) number of nonzero points in the two-sided spectrum of the

disturbance signal. Using the parameter estimates θ̂(·) = [â0, . . . , ân+nv−1, b̂0, . . . , b̂n+nv−1]
T

obtained from (4.15) the control law reads:

u(k) =
1

b̂0(k)

[
y∗(k + d) −

n+nv−1∑
i=0

âi(k)y(k − i) −
n+nv−1∑

i=1

b̂i(k)u(k − i)

]
(4.16)

Since the controller is based on the augmented system Σ̄, exact cancellation of the disturbance

is achieved. It is clear that the method asymptotically introduces poles in the feed–forward

path of the control–loop which correspond to the poles of the disturbance model. As an

example, the effect of a sinusoidal disturbance with frequency ω can be nulled by introducing

a pair of complex conjugate poles at z = e±iωTS . The resulting disturbance transfer function

has a notch at ω. These facts are well–known from linear systems theory. It is also known

that the linear method fails if the frequency of the disturbance is not known exactly. The

benefit of the adaptive version is that the frequency need not be known but the parameters

are tuned automatically to generate a notch at the appropriate frequency such that, in any

case, limk→∞ |y(k)− y∗(k)| = 0. In addition, slow drifts of the disturbance frequency can be

tracked.

Example 4.2 Assume that the two–mass system of example (3.2) is subject to a sinusoidal

disturbance of unknown frequency ω. The unforced system generating v(·) is given by

Σv : v(k + 1) = 2 cos(ωh) v(k) − v(k − 1) (4.17)
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This is already more than we need to know. In fact, all that is needed to design an adaptive

controller eliminating v(·) is the order nv = 2 of the disturbance generating system. Figure

(4.2) displays the performance of the adaptive system, as the output is required to track a

piecewise constant signal. The frequency of the disturbance is constant in the first 2 plots

and (slowly) time–varying in the last row of figure 4.2.
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Figure 4.2: Adaptive rejection of disturbances with unknown frequency ω = 1 . . . 5 rad/s

4.1.2 Stochastic Disturbances

In the following, we will assume that the linear plant described in equation (4.1) is affected

at the input by correlated noise v(k). As in the previous section, v(k) is the output of a

disturbance generating system. In contrast to equation (4.2), Σv is driven by a white noise
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sequence {w(k)}.
Σv : xv(k + 1) = Avxv(k) + bww(k)

v(k) = cTv xv(k)
(4.18)

where bw ∈ R
nv×1 and w(k) has the following properties:

E{w(k)|k − 1} = 0 a.s (4.19)

E{w(k)2|k − 1} = σ2 σ2 <∞ a.s (4.20)

lim supN→∞
1
N

N∑
t=1

w2(k) <∞ a.s. (4.21)

In other words, the white noise has zero conditional mean, finite variance σ2 and is mean

square bounded. As in the previous section, we assume that Σ and Σv have an input-output

representation. The problem is to design a control law u(k) such that y(k) follows a desired

reference signal y∗(k) as closely as possible. Due to the presence of the noise the control

error e(k) = [y(k) − y∗(k)] cannot be made zero, but its expected value can be minimized.

The effect of w(k) on v(k) obviously depends upon the parameters of Σv, i.e. the matrix

Av and the vectors bw and cv. We shall successively consider the control strategies when all

the parameters are known, and when the parameters are unknown and have to be estimated

on-line. In the former case we have a linear stochastic control problem, and in the latter case

we have a linear stochastic adaptive control problem. Further, before proceeding to solve

the two problems analytically, we shall discuss qualitatively the nature of the disturbance,

and the conditions under which significant improvement in performance can be expected.

A Qualitative Analysis

Proceeding as in section 4.1.1, it is possible to obtain an augmented input-output model Σ̄

of order n+ nv:

y(k + 1) =
n+nv−1∑

i=0

āiy(k − i) +
n+nv−1∑
i=d−1

b̄iu(k − i) +
n+nv−1∑
i=d−1

c̄iw(k − i) (4.22)

In order to obtain the d−step ahead predictor form, the time axis is shifted and the outputs

y(k + d− 1) . . . y(k + 1) are expressed in terms of past values, see chapter 3.1.2.

Σ̄ : y(k + d) =
n+nv−1∑

i=0

ai y(k − i) +
n+nv−1∑

i=0

bi u(k − i) +
n+nv−1∑

i=0

ciw(k − i) (4.23)

From equation (4.23), it is clear that all past values of the white noise (i.e. w(k − i), i =

0, . . . , n + nv − 1) affect the output at time k + d. The question that has to be addressed
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Figure 4.3: Correlated noise affecting a linear system

is the extent to which the control input at instant k can compensate for these values of the

noise. This is discussed by means of the following simple examples:

Order of the disturbance model nv = 0

First, let the order of the disturbance generating system be nv = 0:

Σ̄ : y(k + 1) = ay(k) + u(k) + w(k) (4.24)

Note that w(k) is an unknown random variable. Since w(k) is not known at instant of time

k, no control input u(k) can be defined that will compensate for w(k). However, solving the

difference equation we have

y(k) = aky0 +
k−1∑
i=0

ak−1−i[u(i) + w(i)] (4.25)

with the initial value y(0) = y0. We see that y(k) is affected by all previous values w(i),

i = 0...(k− 1) of the white noise, and therefore contains information about the disturbance.

By choosing the control input u(k) = r(k) − fb y(k) a tracking controller is realized that

cancels all past disturbance values but not the present one. fb is the feedback gain. The

control error becomes:

e(k + 1) = y(k + 1) − r(k) = (a− fb) y(k) + w(k) (4.26)

The variance of the control error, E{e2(k + 1)} = (a − fb)
2E{y2(k)} + σ2, has a minimal

value for fb = a. Hence, the best choice for the control law in the case nv = 0 is obtained by

simply ignoring the presence of the white noise w(k) in Σ̄.

Order of the disturbance model nv > 0

Proceeding to a more interesting case, we now assume that the order of the disturbance

generating system Σv is greater than zero. The signal v(k) is correlated with v(k − 1), i.e.
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E{v(k)v(k − 1)} 
= 0. Once again, considering simple models for both Σ and Σv, we have

for example,

Σ : y(k + 1) = ay(k) + u(k) + v(k)

Σv : v(k + 1) = avv(k) + bww(k)
(4.27)

The transfer function of the disturbance model Σv is Fv(z) = v(z)
w(z)

= bw

z−av
, with |av| < 1. It is

clear that Σv may be thought of as an IIR–filter with white–noise input. For different values

of the eigenvalue of Σv the nature of the output and the maximum values it assumes are

different. For purposes of comparison, we would require the range of values assumed by the

disturbance to be the same in all cases considered. We assume that the high frequency gain

bw = bw(av) can be determined experimentally for this purpose. Three values of the pair

[bw, av] and the corresponding evolution of v(k) for a specified white noise sequence {w(k)}
are displayed in figure (4.4).
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Figure 4.4: Correlated noise v(k) for different values of the pair [bw, av] in equation (4.27):

(a) [1, 0], (b) [0.35, -0.8], (c) [0.09, 0.99]

The impulse response of the filter Σv in equation (4.27) is given by

h(k) = bw a
k−1
v k ≥ 1 (4.28)

Assuming that v(0) = 0, the output v(k) can be determined as

v(k) =
k−1∑
i=0

h(k − i)w(i) = bw

k−1∑
i=0

ak−1−i
v w(i) (4.29)

Hence, |v(k)| = |bw|
∣∣∣∑k−1

i=0 a
k−1−i
v w(i)

∣∣∣. If the eigenvalue av is close to ±1, the impulse

response h(k) decays slowly and the contribution of the last sum to the magnitude of v(k)

is large. Consequently, |bw| has to be reduced in order to keep v(k) within the same bounds

for all eigenvalues av ∈ (−1 . . . 1). If |av| increases the correlation of v(k) with its past values

also increases:

E{v(k)v(k − 1)} = av E{v2(k − 1)} + bw E{w(k − 1)} · E{v(k − 1)}
= av E{v2(k − 1)} because of (4.19)

(4.30)
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At the same time, |bw| is reduced. Hence, the effect of the noise in the determination of

disturbance signal v(k) becomes negligible. In summary we have,

• |av| ≈ 0: v(k) is (delayed) pure white noise

• |av| < 1: v(k) is colored noise

• |av| ≈ 1: v(k) depends mainly on its past values

If |av| ≈ 0 and |bw| = 1, the disturbance affecting the system is delayed pure white noise.

The response cannot be improved by a controller of augmented order. On the other hand,

if |av| ≈ 1, the gain |bw| is small and the resulting output highly correlated with its past

values. From equation (4.29) we know that v(k) is affected by all previous values of the

white noise, i.e. E{v(k)w(k− i)} 
= 0 , i = 1 . . . k. Thus, the effect of past values of w(·) can

be indirectly observed through the autoregressive part of the disturbance model Σv. Since

|bw| ≈ 0, this part dominates the effect of the current white noise input. In this case, a

controller based on the augmented system rejects disturbances almost completely. In the

example, the elimination of v(k) yields:

Σ̄ : y(k + 1) = (av + a) y(k) − a avy(k − 1) − avu(k − 1) + u(k) + bww(k − 1) (4.31)

Since |bw| ≈ 0, the term due to the white noise w(k − 1) is neglected in the control law:

Γ : u(k) = y∗(k + 1) − (av + a)y(k) + a avy(k − 1) + avu(k − 1) (4.32)

If v(k) is highly correlated with its past values the impact of the sum of the past values of the

noise is large with respect to present ones. In such a case a substantial improvement of the

performance is obtained, if the order of the controller is augmented. The same qualitative

behavior is observed if Σv is a general nv– order system as defined in (4.18). Its impulse

response is given by

h(k) = cTvA
k−1
v bw k ≥ 1

If the eigenvalues of Av are close to the unit circle, the impulse response decays slowly and the

contribution of past values of the noise is large. At the same time, the elements of the vectors

cv and bw have to be made small such that the maximum amplitude of the disturbance is the

same for all stable eigenvalues of Av. This is best illustrated by considering a disturbance

generating system of order nv = 2. Supposing that Σv has a pair of complex conjugate

eigenvalues which are close to the unit circle, the output v(k) is a damped sinusoid, which

is the natural response of the homogeneous part of the filter, while the contribution of w(k)

to the output v(k) is small. Therefore, the disturbance can be treated as the output of a

homogeneous system and expansion of the state space can be used to reject them.
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Example 4.3 Let the system Σ and the disturbance model Σv be two second-order systems:

Σ : x(k + 1) =

[
0 0.2

1 0.1

]
x(k) +

[
0

1

]
u(k) +

[
0

0.5

]
v(k)

y(k) = [ 1 2 ]x(k)

(4.33)

and

Σv : xv(k + 1) =

[
α −β
β α

]
xv(k) +

[
bv1

bv2

]
w(k)

v(k) = [ cv1 cv2 ]xv(k)

(4.34)

The eigenvalues of Σ and Σv are z1 = 0.5 , z2 = −0.4 and z1v,2v = α ± i β respectively. In

the simulation, zv1, zv2 are placed arbitrarily within the unit circle corresponding to different

degrees of correlation of v(k) with its past values. The objective is to investigate if a control

law based only on the autoregressive part of Σv would yield acceptable results. Since the

gain |v|/|w| also depends on the location of the eigenvalues, the correction factors cv1 and

cv2 were chosen such that the peak-to-peak variation of v(k) remained the same throughout

the experiment in order to obtain comparable results. Since both systems Σ and Σv are

observable the corresponding ARMA representations exist. After the elimination of v(k) we

obtain an extended 4th-order system Σ̄ of the form:

Σ̄ : y(k + 1) = a0y(k) + a1y(k − 1) + a2y(k − 2) + a3y(k − 3) + b0u(k)+

+b1u(k − 1) + b2u(k − 2) + b3u(k − 3) + c2w(k − 2) + c3w(k − 3)
(4.35)

where ai, bi, ci are constants depending only on the location of the eigenvalues z1v,2v of the

disturbance model. With y∗(k + 1) = 0.5 sin
(

2πk
10

)
+0.5 sin

(
2πk
20

)
being the reference signal,

the control law for asymptotic tracking of the reference output is given by:

u(k) = 1
b0

[y∗(k + 1) − a0y(k) − a1y(k − 1) − a2y(k − 2) − a3y(k − 3)−
−b1u(k − 1) − b2u(k − 2) − b3u(k − 3)]

(4.36)

Again, the contribution of the white noise to the current output is neglected. The simulation

results are displayed in figure (4.5). In the first case, the eigenvalues of Σv are z1v = z2v = 0

and hence the disturbance v(k) affecting Σ is pure white noise v(k) = z−2w(k). Since there

is no correlation of the noise v(k) with its past values, the performance of the controller is

poor. A similar result is obtained in the second case, where z1v, z2v are close to zero. In the

subsequent cases, the eigenvalues are placed closer to the unit circle corresponding to a large

time constant of the impulse response of the filter Σv. Since previous values of the output

v(k) are now the dominant part of the disturbance, almost complete rejection is achieved

using a controller (4.36) based on the augmented system. This becomes particularly evident

in the last case, where a pair of complex conjugate eigenvalues with |zv1,2| ≈ 1 is considered

and v(k) is almost harmonic. �
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Figure 4.5: Plant output y versus reference output y∗ for various locations of the poles of

the disturbance model
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y(k + d)

w(k + d)

y◦(k + d)

y∗(k + d)

Figure 4.6: Minimum variance control

Stochastic Adaptive Control

In principle, an adaptive version of the above control laws can be obtained by simply replacing

the coefficients in (4.32) or (4.36) by their estimated values. A question arises, as to how

the estimation model should be chosen. If the noise terms are neglected in the definition of

the regression vector, the resulting output error will have zero mean since E{w(k)} = 0 for

all k > 0, but its variance may be large. In this paragraph we briefly discuss the stochastic

adaptive control problem and present one of its solutions.

In studying this problem it is standard to assume that the white noise sequence {w(k)} not

only drives the model generating the stochastic disturbance input v(k) but also affects the

output of the system y(k) directly. Let us start with a simple example:

Σ : y(k + 1) = ay(k) + cw(k) + w(k + 1) + u(k) (4.37)

with |a|, |c| < 1. w(k) cannot be used in the definition of the estimation model Σ̂, since it is

not measurable. The idea is to use the model error ε(k) = y(k) − ŷ(k) instead of w(k):

Σ̂ : ŷ(k + 1) = ây(k) + ĉε(k) + u(k) (4.38)

The motivation for using ε(k) to replace w(k) is that, if the parameters converge to their

true values, the residual identification error ε(k) = y(k)− ŷ(k) is white noise w(k). By virtue

of the certainty equivalence principle, the control law is obtained by replacing ŷ(k + 1) in

(4.38) by y∗(k + 1):

Γ : u(k) = y∗(k + 1) − ây(k) − ĉε(k) (4.39)

It is obvious that no u(k) at time k can compensate for the noise w(k + 1) at time k + 1.

However, Γ asymptotically cancels out the effect of the noise w(k) at instant of time k. The
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expected value of the squared error satisfies E{[y(k+1)−y∗(k+1)]2|k } = E{w2(k+1)|k } =

σ2 as k → ∞, and equation (4.39) is referred to as a minimum variance controller. �

The concept can be generalized as follows. The plant is usually given as an ARMAX (ARMA

with eXogenous input) model:

A(q−1)y(k) = q−dB(q−1)u(k) + C(q−1)w(k) (4.40)

where A,B and C are polynomials in the delay operator q−d, of degrees nA, nB and nC

respectively:

A(q−1) = 1 + a1q
−1 + a2q

−2 + . . . +anA
q−nA

B(q−1) = b0 + b1q
−1 + b2q

−2 + . . . +bnB
q−nB

C(q−1) = 1 + c1q
−1 + c2q

−2 + . . . +cnC
q−nC

(4.41)

It is assumed that the roots of C(q−1) lie strictly inside the unit circle. {w(k)} is a white

noise sequence with the properties (4.19) to (4.21). Since C(q−1) is monic, w(k) directly

affects the output y(k) at a given instant k. The control input is obtained by minimizing

the mean–square tracking error E{[y(k + d) − y∗(k + d)]2}. It can be shown (see Goodwin,

1984 [27]) that this is equivalent to

min
u(k)

E{ [yo(k + d | k) − y∗(k + d)]2} (4.42)

where yo(k + d | k) is the optimal d-step ahead prediction of y(k):

yo(k + d|k) = E{y(k + d)|k} (4.43)

In certainty equivalence control, the estimated parameters are used to determine u(k). From

the discussion in chapter 3.1 it is clear that the control input is based upon an underlying

estimation process. More precisely, u(k) is defined implicitly by an equation of the form

y∗(k + d) = φ(·)T θ̂(·) where the regression vector φ(·) is yet to be defined. If the parameter

estimates are determined such that φ(·)T θ̂(·) is equal to yo(k+d | k), then the corresponding

u(k) clearly minimizes the expression in (4.42). In other words, the optimum is attained

whenever φ(·)T θ̂(·) → yo(k + d|k).
Numerous methods have been proposed in the identification literature to deal with the

problem of parameter estimation in a stochastic environment (see e.g. Landau, 1998 [43]).

As an example, we present the extended least–squares (ELS) algorithm which belongs to the

class of pseudo linear regression algorithms. The distinctive feature of this class of algorithms

is that the components of the regression vector depend upon previous values of the estimated

parameters. As described above, the idea is to design an estimator producing an error ε(·)
that becomes white noise asymptotically.
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Equation (4.40) can be rewritten as

y(k) = [1 − A(q−1)] y(k) + q−dB(q−1)u(k) + C(q−1)w(k) (4.44)

Adding and subtracting [C(q−1) − 1] ε(k) we obtain

y(k) = [1 − A] y(k) + q−dB u(k) + C w(k) + [C − 1]ε(k) − [C − 1]ε(k)

= φ(k − 1)T θ0 + C w(k) − [C − 1]ε(k)
(4.45)

using

φ(k − 1) = [y(k − 1), ..., y(k − nA), u(k − d), ..., u(k − d− nB), ε(k − 1), ..., ε(k − nC)]T

θ0 = [−a1, . . . ,−anA
, b0, . . . , bnB

, c1, . . . , cnC
]T

The elements of θ0 are the coefficients of the polynomials in equation (4.41). The identifica-

tion model reads:

ŷ(k) = φ(k − 1)T θ̂(k − 1) (4.46)

Subtracting (4.46) from (4.45) we obtain:

ε(k) =
1

C(q−1)
φ(k − 1)T [θ0 − θ̂(k − 1)] + w(k) (4.47)

Using ε(k), the parameters are updated according to

θ̂(k) = θ̂(k − 1) + P (k − 1)φ(k − 1) ε(k) (4.48)

where P (k−1) is a matrix satisfying P (k)−1 = P (k − 1)−1 + φ(k)φ(k)T , P (−1)−1 > 0. Note

that ŷ(k) in equation (4.46) is called the a priori prediction, obtained before the parameters

have been updated. The algorithm can be improved by making use of the most recent

parameter estimate. We obtain the a posteriori prediction:

ȳ(k) = φ(k − 1)T θ̂(k) (4.49)

A posteriori prediction errors are sometimes used in the definition of the regression vector to

simplify the convergence analysis of the algorithm. However, the distinction is of secondary

importance. In any case, the entries of the regression vector depend upon previous values of

the estimated parameters. It is seen that ε(k) will become white noise asymptotically if the

parameter error θ̃(k − 1) = [θ0 − θ̂(k − 1)] → 0 or, alternatively, the first term in equation

(4.47) tends to zero.

The a posteriori estimate ȳ(k) obtained by the ELS algorithm is the optimal one-step-ahead

prediction of y(k), i.e. ȳ(k) = E{y(k)|k − 1)}. Equation (4.49) allows us to determine the

effect of the past values of the noise on the future response of the plant. With the justification
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provided above, the adaptive controller Γ is designed on the basis of the optimal prediction

of the system output. The control input is obtained by replacing the predicted output ȳ(k)

by the desired output y∗(k).

y∗(k) = φ(k − 1)T θ̂(k) (4.50)

When solving this equation for u(k) it follows that all past noise terms are cancelled out.

Hence, the control law is the stochastic equivalent of the deadbeat–control law obtained

from (3.27) in the deterministic case. The residual error has minimum variance. To ensure

convergence of Γ to the minimum variance controller the following conditions have to be

satisfied:

1. The orders nA, nB and nC of the polynomials in equation (4.41) are known.

2. The relative degree d is known and equal to 1 (in this case).

3. B(z−1) has all roots inside the unit circle.

4. [1/C(z−1) − 1
2
] is positive real.

While conditions 1 to 3 are the same as in the deterministic case, condition 4 is characteristic

for estimation techniques based on pseudo linear regressions. It ensures that the extended

least–squares algorithm has convergence properties similar to those of its deterministic coun-

terpart (2.37). For further insight, see e.g. (Ljung 1999 [45]). Condition 2 can be relaxed

to allow for d > 1. Subject to the above assumptions regarding the system and assumptions

(4.19) to (4.20) regarding the noise we obtain that both u(k) and y(k) are mean square

bounded and that the output y(k) of the plant tracks y∗(k) with minimum variance:

lim
N→∞

1

N

N∑
k=1

E[y(k) − y∗(k) | k − 1]2 = σ2 (4.51)

where σ2 is the variance of the white noise w(k) affecting the system.

Comment: The augmented system (4.23) can be written in the form (4.40), except that

C(q−1) is not monic, since the v(·) in equation (4.1) does not directly affect the output y(·).
The derivation of the ELS algorithm was based on the assumption that the a posteriori

estimation error becomes white noise asymptotically. Hence, the fact that C(q−1) is monic

is critical and we have the assume that {w(k)} directly affects the output.

Example 4.4 Given a second–order plant subject to a stochastic input disturbance v and

affected at the output by white noise w,

[1 + a1q
−1 + a2q

−2] y(k) = q−1[b0 + b1q
−1]u(k) + q−1g0 v(k) + w(k) (4.52)

where v(·) is the output of a first–order system driven by white noise:

[1 + d1q
−1] v(k) = q−1w(k) (4.53)
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Figure 4.7: Adaptive minimum–variance control

The augmented system obtained by eliminating v(k) in equation (4.52) reads

[1 + (d1 + a1) q
−1 + (a2 + d1a1) q

−2 + d1a2 q
−3] y(k) =

= q−1[b0 + (b1 + b0d1) q
−1 + d1b1 q

−2]u(k) + [1 + d1q
−1 + g0q

−2]w(k)
(4.54)

and is of the form (4.40). All coefficients are assumed to be unknown, but C(q−1) = 1 +

d1q
−1 + g0q

−2 satisfies the conditions stated in point 3 of the above list. The d = 1 step

ahead identification model is of the form ŷ(k + 1) = φ(k)T θ̂(k) where

φ(k) = [y(k) y(k − 1) y(k − 2) u(k) u(k − 1) u(k − 2) ε(k) ε(k − 1) ε(k − 2)]T (4.55)

θ̂(k) ∈ R
9 is the vector of parameter estimates and ε(k) = ŷ(k) − y(k). θ̂(k) contains the

parameters upon which the adaptive minimum variance control law is based:

u(k) = 1/θ̂4(k) [y∗(k + 1) − θ̂1(k)y(k) − θ̂2(k)y(k − 1) − θ̂3(k)y(k − 2) (4.56)

−θ̂5(k)u(k − 1) − θ̂6(k)u(k − 2) − θ̂7(k)ε(k) − θ̂8(k)ε(k − 1) − θ̂9(k)ε(k − 2)]

The simulation displayed in figure (4.7) reveals, that the closed loop system tracks an ar-

bitrary reference input and that the control error becomes white asymptotically. Due to

the presence of noise, the degree of excitation is superior to the one obtained when no dis-

turbances are present. As a consequence, the parameter error θ̃ converges to zero. In the

last row, the SPR condition has been verified, i.e. [C(z−1) − 1/2] has been evaluated for all

z−1 = eiωTS , ωTS = −π . . . π.
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Figure 4.8: Nonlinear oscillation generated by a first-order discrete-time system

4.2 Nonlinear Disturbance Rejection

In this section, we consider the case where the plant Σ as well as the disturbance generating

system Σv is nonlinear:

Σ : x(k + 1) = f [x(k), u(k), v(k)]

y(k) = h[x(k)]

Σv : xv(k + 1) = fv[xv(k)]

v(k) = hv[xv(k)]

(4.57)

where f : R
n × R × R → R

n, h : R
n → R and fv : R

nv → R
nv , hv : R

nv → R are

unknown C1– functions of their arguments. As in the linear case, the objective is to determine

a control input u(k) such as to make xv(k) unobservable through the output y(k). Our

interest is in bounded nonvanishing disturbances v(k). In the nonlinear domain, the class of

unforced systems Σv which generate a disturbance signal having the required properties is

not immediately evident. We assume that Σv is of the following form:

Σv : v(k + 1) = α v(k) − βfv[v(k)] (4.58)

where α > 1 and β are constant parameters. Since the linear part of the system (4.58) is

unstable, β has to be chosen such that the nonlinearity fv[v(k)] prevents v(k) from growing

in an unbounded fashion. If so, v(k) lies in a compact set S ⊂ R. The initial value v(0) has

to be chosen from this set.

Example 4.5

Σv : v(k + 1) = 3v(k) − 2 v(k)3 (4.59)

For this particular choice of the parameters and for the initial condition v(0) ∈ (−√
2;
√

2)

\{−1, 0, 1}, Σv generates a bounded nonvanishing output, shown in figure (4.8). The figure
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also displays the linear and nonlinear parts of equation (4.59) in a one-dimensional map

which illustrates the mechanism: Starting from an initial point v(0) near the origin, v(k) at

first grows linearly until the nonlinear function becomes dominant for larger values of v(k).

The parameter β is chosen such that v(k) is mapped back to a point v∗(0) within the linear,

unstable region. Since v∗(0) does not necessarily coincide with the original point v(0), the

oscillation generated by Σv may not be periodic. In fact, systems of the form (4.58) with

α > 1 may give rise to quasiperiodic and chaotic motion. A classical example is the logistic

map

v(k + 1) = 4v(k) − 4v2(k)

for values v(0) ∈ [0, 1]. Hence, in order to represent e.g. a periodic disturbance, the function

fv(·) in equation (4.58) has to be appropriately chosen. �

The principle of nonlinear disturbance rejection is the same as in the linear case and relies

upon a system representation of augmented order. This representation is obtained by elim-

inating v(k) from the input–output model of the plant. In section (3.2), the existence of an

input–output model of the nonlinear state–vector representation was seen to depend on the

observability of the linearized system. A similar condition is needed in order to derive an

input–output model of the composite system Σ ◦Σv. The linearized equations are given by:

x(k + 1) = Ax(k) + b u(k) + bvv(k)

xv(k + 1) = Avxv(k)

y(k) = cTx(k)

v(k) = cTv xv(k)

(4.60)

where A = ∂f(x,u,v)
∂x

∣∣
0
∈ R

n×n, b = ∂f(x,u,v)
∂u

∣∣
0
∈ R

n, bv = ∂f(x,u,v)
∂v

∣∣
0
∈ R

n, c = ∂h(x)
∂x

∣∣
0
∈ R

n and

Av = ∂fv(xv)
∂xv

∣∣
0
∈ R

nv×nv , cv = ∂hv(xv)
∂xv

∣∣
0
∈ R

nv . The Jacobians are evaluated at the origin of

the composite system. In the linear case, it was seen that if the pairs [c, A] and [cv, Av] are

observable, the system has a linear input-output representation of dimension (n+nv), given

by equation (4.8). Under the same conditions, a nonlinear input–output map of the form

Σ̄ : y(k + d) = F [Yn+nv(k), Un+nv(k)] (4.61)

exists locally in the neighborhood of the origin in extended state–space R
n+nv . The map

describes a system of extended order where Yn+nv(k) = [ y(k), ..., y(k − 〈n + nv − 1〉)],
Un+nv(k) = [u(k), ..., u(k − 〈n + nv − 1〉)] and d ≥ 1. Given Σ̄, the problem of distur-

bance rejection consists in determining a tracking control law such that the closed–loop

system is asymptotically stable and tracks any bounded reference trajectory {y∗(k)}. Since

Σ̄ represents a system of augmented order, from which the explicit dependence on v(k) has
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been removed, the design of the controller proceeds as in the disturbance-free case. As seen

in chapter (3.2) a solution to the problem exists provided that the relative degree d is well

defined and the zero–dynamics are stable. Since the disturbance rejection problem is solved

e(k + 1)
v(k)

u(k) y(k + 1)
y∗(k + 1)

Figure 4.9: Neurocontrol in the presence of disturbances

by designing a controller based on the NARMA–model of Σ̄ we have to assume that the

values of inputs {u(k)} and outputs {y(k)} do not leave the neighborhood U × Y in which

the NARMA–model is valid. This implies that the reference trajectory {y∗(k + d)} lies in

that neighborhood.

Example 4.6 The following example reveals some practical aspects while designing a neu-

rocontroller for disturbance rejection. We consider the second-order system,

Σ : y(k + 1) =
3 y2(k)[1 − v2(k)] tanh y(k − 1) + u(k)

1 + y2(k) + y2(k − 1)
(4.62)

In the simulation, the bounded disturbance v(k) was chosen to be the filtered output of

equation (4.59), described by the following homogenous input–output map:

Σv : v(k + 1) = 0.2v(k) + 0.2v(k − 1) + [v2(k − 1) − 1][v(k) − v(k − 1)] (4.63)

From the above discussion it is clear that there exists a local NARMA representation of the

composite system which is of augmented order n + nv = 4. However, control based this

model was found to result in poor performance. Hence the order of the NARMA–model was

further increased. This can be thought of as a way of increasing the domain in which the

augmented input–output representation is valid. If the composite system is of 5th–order,

almost complete disturbance rejection was obtained:

Σ̄ : y(k + 1) = F(Y5(k), U5(k)) (4.64)

with Y5(k) = [y(k), . . . , y(k − 4)]T and U5(k) = [u(k), . . . , u(k − 4)]T . A multilayer neural

network (MNN) of the form N 3
10,25,35,1 (i.e. a three–layered NN with a single output, 35
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Figure 4.10: Tracking performance using a neurocontroller; (i): no disturbance rejection,

(ii): disturbance rejection with insufficient number of input-output measurements, (iii): ap-

plication of the control law defined in equation (4.65).

neurons in the first hidden layer, 25 neurons in the second hidden layer, and a 10-dimensional

input vector) is used to identify the augmented system (4.64). After 350000 iterations with

a step size of η = 0.1, perfect matching of the model and plant is achieved. Once the

identification process is complete, a second neural net is trained to approximate the nonlinear

map representing the controller:

Γ̄ : u(k) = Nc(y
∗(k + 1), y(k), . . . , y(k − 4), u(k − 1), . . . , u(k − 4)) (4.65)

The network is of the form N 3
10,15,25,1 and is trained for 100000 steps with a step size of

η = 0.01. Note that, since the controller Γ̄ is in the feedback–loop of a dynamical sys-

tem Σ̄, the parameter adjustments in the second neural network have to be carried out

using dynamic backpropagation. However, dynamic gradient methods are computationally

intensive, so a static method is used to generate approximate gradients. The resulting track-

ing performance is shown in figure (4.10) where the reference trajectory was chosen to be

y∗(k + 1) = sin(2πk/10) + sin(2πk/20). �

When comparing the results of the last two chapters one realizes, that most arguments from

linear theory have nonlinear counterparts. Although the results are valid only in a certain
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neighborhood of the equilibrium state, they provide the justification for transferring linear

methods to certain nonlinear problems. In fact, the problem of rejecting disturbances which

are the output of an unforced system was solved for both linear and nonlinear systems by

using the same concept of extending the order of the controller.

While dealing with stochastic disturbances, it was seen that the above method results in

good performance provided that the disturbance is highly correlated with its past values. In

addition, it was shown that the estimation error could be used to cancel out the effect of

past values of the noise. This resulted in a minimum variance control law. It is only natural

to assume, that a similar method exists in the nonlinear domain, if the latter is restricted to

a neighborhood of an equilibrium state. Further work is needed to investigate whether the

variance of the control error can be minimized even as the plant is nonlinear

y(k) = f [y(k − 1), . . . , y(k − nA), u(k − 1), . . . u(k − nB), w(k), . . . , w(k − nC)] (4.66)

and {w(k)} is a white noise sequence.



Chapter 5

Design Considerations

Adaptive controllers are quite complicated devices. Although many successful applications

to various practical problems exist (see e.g. [51], Chap. 11), there are no general rules which

cover all aspects of a given design problem. The available theory has to be complemented

by simulations and experiments before using adaptive schemes in real–world processes. In

the following chapter, we set out to address some of the practical issues of adaptive control

of linear systems with unknown parameters. Among the many questions that arise we focus

on the ones which directly build upon the theory presented thus far.

As a first step, we discuss an alternative to the deadbeat concept which was used extensively

in the preceding chapters. Due to its simplicity, deadbeat–control is theoretically appealing

but, on the other hand, impractical since it requires the system to respond accurately over the

entire frequency range [0 . . . 1/2 TS]Hz. This inevitably leads to an excessively large control

effort. It is seen that within the model reference framework it is possible to impose an

(almost) arbitrary closed–loop behavior onto the system. Thus, as far as the choice of the

controller structure is concerned, the design process becomes amenable to linear design rules.

It shall be noted that obviously the linear viewpoint is admissible only if we assume that

the parameters have converged to some constant values. During the adaptation process the

system is nonlinear and offers little insight into the nature of the signals generated in closed

loop. Even if the system is stable the control input may be transiently large and oscillatory

due to the time–variation of the parameters. In some cases, it may prove advantageous

to reduce the speed of adaptation such that the system behaves (almost) like a linear one.

In others, the control effort is large due to an unfavorable initialization of the parameter

estimates. In such a case the adaptation speed has to be increased such that the parameter

attain stable regions in parameter space. A systematic way of selecting the “right” adaptive

gain is presented in the second part of this chapter. In particular, we develop a novel approach

71
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to the problem of limiting the actuator stress in adaptive control. The requirements on the

rate and magnitude of the input are typically large during the initial phase of parameter

convergence. This motivates the use of an optimization algorithm which minimizes the

rate and magnitude of the input through a variation of the adaptive gain η. In certainty

equivalence control, the input signal u(k) is defined in terms of the most recent estimate

θ̂(k). This means that, given θ̂(k − 1), the update θ̂(k) can be determined such as to result

in a minimal control effort. How this is to be carried out even while assuring the stability of

the adaptive closed–loop system is demonstrated in section 5.2.1.

A substantial reduction of the control effort can also be achieved if — based on prior in-

formation about the plant — the estimates are initialized close to the actual parameters.

The idea is that, with small transient errors, the system behaves almost like a linear one.

However, a phenomenon which has been observed frequently in practice is that even if the

estimates θ̂ are initialized close to the actual parameters θ0, they typically “jump away”

before converging, i.e. the parameter error θ̃ = θ̂ − θ0 is large during the initial stages of

parameter convergence no matter how small θ̃(0) is. The effect is caused by unmodelled

dynamics. Any physical system can be modelled only partially so that, in general, the or-

der of the system is larger than that of the model. This mismatch generates a disturbance

signal whose magnitude depends upon the input of the system. If unmodelled dynamics are

excited, the identification error is large, causing the parameter estimates to diverge from the

actual values. It was soon realized that the presence of unmodelled dynamics may provoke

instability of the adaptive system. The origin of this instability lies in the fact that the error

between the plant and the model is not exclusively due to unknown parameters but due to a

structural uncertainty regarding the order of the plant. An approach to keep the parameter

estimates bounded is to introduce a relative dead-zone (Kreisselmeier 1986, [41]) the size of

which depends upon a suitably defined modelling error. The size of the dead–zone (which

also gives a bound on the tracking error) can be reduced if the modelling error is small.

An interesting application of the above optimization procedure is to smooth the control in-

put by imposing an appropriate rate constraint on u(k). The idea is that high–frequency

components contained in the input signal are attenuated, such that no unmodelled dynamics

(which are typically due to fast parasitics) are excited. The optimized adaptive scheme en-

hances robustness to unmodelled dynamics, since it affects the nature of the input generated

in the adaptive loop. In the example included in section 5.3, the modelling error was so

small that the dead-zone could be completely dispensed with.
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5.1 Choice of the Reference Model

The design steps presented in chapter 3 follow a very simple procedure: In order to determine

the control law, the output ŷ(k + d) of the identification model is replaced by the reference

output y∗(k + d). The equation thus obtained implicitly defines u(k). When all parameters

converge to their true values, the procedure clearly corresponds to implementing a deadbeat–

controller. The resulting closed–loop system has a pole of multiplicity d at z = 0. It is well

known that deadbeat–control is impractical since the cancellation of the process poles entails

an excessive control effort and high sensitivity to measurement noise. An important question

is whether the design procedure can be modified such as to obtain a more general class of

controllers. In many applications, PI-controllers are employed. If the parameters of the

system are known, the controller is tuned to optimal values using standard procedures, e.g.

the symmetrical optimum [71]. When the system is unknown, it is not even clear whether

the PI-controller is capable of stabilizing the system.

In model reference adaptive control (MRAC) the question of stability is resolved by requiring

the closed–loop system to match a given, stable reference system. In fact, the deadbeat

approach corresponds to the most primitive case where the reference model consists of a

simple d-step delay. A large variety of control laws can be conceived through the choice

of different reference models. The objective of the following paragraph is to outline the

principal design steps involved in adaptive control based on an arbitrary reference model.

The problem may be subdivided into two parts:

1. Determine a controller, parameterized in the vector of unknown parameters θ, such

that there exists a constant θ ≡ θ0 for which the closed–loop system matches a given

reference system.

2. Determine an adaptive procedure by which the vector of parameter estimates θ̂(·) is

to be updated such that limk→∞ |y(k) − y∗(k)| = 0

An equivalent representation of the system (3.20) is given by

A(q−1)y(k) = q−dB(q−1)u(k) (5.1)

where A(q−1), B(q−1) are polynomials in the delay operator q−1 of degrees nA and nB

respectively as in equation (4.10) or (4.41). Item one of the above list corresponds to the

algebraic part of the problem which consists in finding an appropriate controller structure.

The reference system is given by

C(q−1)y∗(k) = q−d∗D(q−1)r(k) (5.2)
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where r(k) is a bounded piecewise–continuous function of time. For the control law to be

causal, the relative degree d∗ of the reference system must be greater than or equal to that

of the plant, i.e. d ≤ d∗. Since the plant is linear the controller will also be linear,

M(q−1)B(q−1)u(k) = z−[d∗−d]D(q−1)r(k) −N(q−1)y(k) (5.3)

with unknown polynomials M(q−1), N(q−1) of degrees nM and nN that have yet to be

determined.

The analytic part, which is stated in item 2, deals with the problem of determining adaptive

laws by which the parameters of the controller are adjusted such that they evolve towards

the desired values and the output of the system asymptotically tracks the reference output

while all signals of the system remain bounded.

Algebraic Part

The first step in the adaptive control design is to demonstrate that the controller structure

has enough freedom to ensure the existence of a solution assuming that the parameters are

known. The point here is to show that there is a constant parameter vector θ0 for which the

closed–loop system matches the reference system. Inserting the control law (5.3) into (5.1)

we obtain

[M(q−1)A(q−1) + q−dN(q−1)] y(k) = q−d∗ D(q−1) r(k) (5.4)

where M(q−1) and N(q−1) are unknown polynomials in the unit delay operator q−1. Com-

paring this to the reference system (5.2), M(q−1) and N(q−1) have to be determined such

that the following equality holds:

M(q−1)A(q−1) + q−dN(q−1) = C(q−1) (5.5)

The existence of two polynomials M(q−1) and N(q−1) that satisfy the equation is guaranteed

by the following fact known as Bézout’s lemma:

Let P (q−1) and Q(q−1) be polynomials of degrees nP and nQ respectively which are relatively

prime. Then polynomials M(q−1) and N(q−1) exist such that for any arbitrary polynomial

C(q−1) the following equality holds:

M(q−1)Q(q−1) + P (q−1)N(q−1) = C(q−1) (5.6)

In our case, P (q−1) = q−d and the monic polynomial A(q−1) are clearly coprime. In the

adaptive context we are not interested in actually determining the polynomials. All we need

to show is their existence. For the purpose of analysis, though, it may be of interest to
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compute M(q−1) and N(q−1). Let us first consider the case where C(q−1) is monic and the

relative degree of the system is d = 1. A straightforward calculation yields M(q−1) = 1 and

N(q−1) = q [C(q−1) − A(q−1)].

For an arbitrary C(q−1) and d > 1 the computation is more involved. Choosing polynomials

of degrees nM ≤ d− 1 and nN ≤ n− 1, we write

M(q−1) = m0 +m1 q
−1 + · · · +md−1 q

−d+1

N(q−1) = n0 + n1 q
−1 + · · · + nn−1 q

−n+1

The closed–loop denominator polynomial C(q−1) has the general form

C(q−1) = c0 + c1q
−1 + · · · + cn∗ q−n∗

with degree n∗ ≤ d+ n− 1. Recalling that

A(q−1) = 1 − a1q
−1 − · · · − anA

q−nA

we equate the coefficients of both sides of equation (5.5). In the following vector notation

the i-th row contains the coefficients pertaining to the i-th power of the delay operator q−i.


−an 0 . . . . . . 0 | 1 0 . . . . . . 0

−an−1 −an 0 . . . 0 | 0 1 . . . . . . 0
...

... | ...
...

−an−d . . . −an−1 | 0 0 . . . 1 0 . . . 0
...

... | 0 0 0 0 1 0 0

1 . . . −ad−1 | 0 . . . 0

0 1 . . . −ad−2 | ...
. . .

... | ...
...

0 . . . 0 1 | 0 . . . 0







md−1

md−2

...

...

m0

nn−1

...

...

n0




=




0

0

0

cn∗

cn∗−1

...

...

...

c0




Since q−d and A(q−1) are relatively prime, the matrix is nonsingular and hence unique

coefficients mi, i = 0, . . . d− 1 and nj, j = 0, . . . n− 1 can be determined such that equation

(5.5) is satisfied.

Example 5.1 Consider the second–order system

[1 − a1q
−1 − a2q

−2] y(k) = q−2 b0u(k)

which has relative degree d = 2. A controller which shifts the closed–loop poles of the system

to arbitrary locations may be given in the following form

[m0 +m1q
−1] b0 u(k) = d0 r(k) − [n0 + n1q

−1] y(k) (5.7)
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Figure 5.1: Closed–loop pole assignment: (i) plant, (ii) closed–loop system, (iii) closed–loop

system after pole-zero cancellations

Its parameters are obtained by solving


−a2 0 1 0

−a1 −a2 0 1

1 −a1 0 0

0 1 0 0


 ·



m1

m0

n1

n0


 =



c3

c2

c1

c0


 (5.8)

where ci, i = 0 . . . 3 are the coefficients of the reference system:

[c0 + c1q
−1 + c2q

−2 + c3q
−3] y(k) = q−2 d0 r(k) (5.9)

The resulting controller coefficients are

m0 = c0

m1 = c1 + a1c0

n0 = c2 + a1c1 + (a2
1 + a2)c0

n1 = c3 + a2c1 + a2a1c0

(5.10)

and may be collected in the vector θ0 = [m1 m0 n1 n0]. How the poles of an unstable plant

are shifted to match the pole–zero map of the reference system can be verified in figure (5.1).

Unstable zeros are used to cancel the poles of the plant which lie outside of the unit circle.

In the adaptive case, the values of the controller coefficients cannot be determined since the

system is unknown. However, by equation (5.8), θ0 is known to exist. �

Analytic Part

The solution to the analytic part is based on a simple and intuitive concept, the certainty

equivalence principle which was already introduced in chapter 3.1. At every instant of time,
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the parameters values generated by an estimator are used as if they corresponded to the true

parameters of the system. From equation (5.5) we know that

C(q−1)y(k) = M(q−1)A(q−1) y(k) + q−dN(q−1) y(k) (5.11)

which is equivalent to

C(q−1)y(k) = q−d [M(q−1)B(q−1)u(k) +N(q−1) y(k)] (5.12)

because of (5.1). Collecting past values of inputs and outputs of the system, as in (2.1), we

obtain

C(q−1)y(k) = φ(k − d)T θ0 (5.13)

where

φ(k − d) = q−d [ u(k) . . . u(k − nB − nM) y(k) . . . y(k − nN) ]T

θ0 = [ m0b0 . . . mnM
bnB

n0 . . . nnN
]T

Replacing θ0 by the vector of parameter estimates θ̂(k) yields

C(q−1)ŷ(k) = φ(k − d)T θ̂(k − 1) (5.14)

If the identification error is defined as ε(k) = C(q−1)[y(k)− ŷ(k)], the error equation has the

same form as in (2.11):

ε(k) = C(q−1)y(k) − φ(k − d)T θ̂(k) = φ(k − d)T [θ0 − θ̂(k − 1)] (5.15)

Hence, any of the standard algorithms introduced in chapter 1 can be used to adjust the

parameters. The central step in the controller design is to replace ŷ(k) in equation (5.14) by

the desired output y(k)∗. We obtain

C(q−1)y∗(k) = φ(k − d)T θ̂(k − d) (5.16)

which implicitly defines the controller u(k − d). By virtue of the certainty equivalence

principle we regard the parameter estimates in equation (5.16) to be the true parame-

ters and solve for u(k − d). The principle has the effect of relating the control error

ε(k) = C(q−1)[y(k) − y∗(k)] to the identification error. More precisely,

e(k) = ε(k) + φ(k − d)T [θ̂(k − 1) − θ̂(k − d)] (5.17)

which is obtained by adding and subtracting C(q−1)y∗(k) in equation (5.15). Since (5.17) is

of the form (3.29) the proof of stability proceeds as in chapter 3.1.4. The simulation in figure

(5.2) illustrates that the success of adaptive pole placement depends upon the nature of the
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input signal. After the parameters have converged to some constant values, the closed–loop

system matches the reference model only in the case of a random input. However, it is

also demonstrated, using Bode plots (column 3 of figure 5.2), that the frequency response

matches that of the reference system at the frequencies at which the system has been excited

(see e.g. row 2 of the figure: r(k) = sin(ω0 TSk) where ω0 corresponds to the eigenfrequency

of the reference model).

Figure 5.2: Adaptive Pole Assignment

If the system is observable, i.e. a representation of the form (5.1) exists, the poles of the

closed–loop system can be placed at arbitrary locations through the choice of a reference

model. This means that the whole spectrum of linear design rules can be applied to optimize
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µ = 0
µ = 1

Figure 5.3: Example 2: Root locus for µ = 0 . . . 1

the behavior of the closed–loop system. As an example, we include here a way of making

the closed–loop system insensitive to measurement noise. It should be kept in mind that,

obviously, the property holds only once the parameter have converged.

Example 5.2 Let the reference system be given by[
A(q−1) + µ [1 − A(q−1)]

]
y∗(k) = q−1 µ r(k) (5.18)

where A(q−1) corresponds to the eigen–dynamics of the plant and µ ∈ [0 . . . 1]. For µ = 1, the

reference model imposes deadbeat behavior, whereas for µ = 0 the poles of the plant remain

unchanged. Using the Diophantine equation (5.5), an immediate choice of the controller

polynomials is M(q−1) = 1 and

N(q−1) = µ q [1 − A(q−1)] (5.19)

The control law reads

u(k) =
µ

B(q−1)
r(k) − µ

q [1 − A(q−1)]

B(q−1)
[y(k) + w(k)] (5.20)

where w(k) is the output measurement (white) noise. If the output is highly corrupted by

noise and the plant itself is stable it may be advisable to have a low gain µ in the feedback

path of the system. In the limit, C(q−1) = A(q−1) and µ = 0. But this means that the

eigen–dynamics of the reference model are the same as those of the plant. Even though

A(q−1) is assumed to be unknown, in practice there is always some prior knowledge about

the plant. In the case of the two mass system, example 3.2, it is known e.g. that A(q−1) has a

pole at 1 and a complex conjugate pair of poles somewhere inside the unit circle. C(q−1) can

be chosen accordingly. If C(q−1) is parameterized as above, the root locus diagram provides

an immediate relationship between the smallness of µ and the fact that the poles of C(q−1)
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Figure 5.4: Adaptive rejection of measurement noise

lie close to the poles of the original system (→ see figure 5.3). Now suppose that, exploiting

our prior knowledge about the two–mass system, we select C(q−1) as described above, an

adapt the parameters using an RLS algorithm, we observe that the noise contained in the

input signal u(k) is reduced substantially. The response to a piecewise constant reference

signal is only slightly altered and corresponds to the step response of a second–order system

with small overshoot, as seen in the upper right part of figure 5.4. Clearly, a noise–free

control input u(k) can only be expected if the parameters converge to the true values. The

necessary excitation is provided by u(k) itself, which contains the measurement noise. As

the parameters converge, the noise is damped and the degree of excitation decreases.

5.2 Input Constraints

A common aspect to all real–world control systems is that the control variables are con-

strained due to the limited power of the actuator. Such limits have the form of amplitude,

rate or acceleration constraints and constitute a most commonly encountered class of non-

linearities. Ignoring their presence may have severe consequences on the performance of the

system or cause instability. If the actuator limitations are formulated in terms of a sat-

uration nonlinearity in the feedback path of the linear system, the well known circle and
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Popov criteria provide frequency–domain sufficient conditions for the stability of the origin

of the overall system (see Narendra and Taylor, 1973 [62]). These classical criteria may be

applied graphically in the case of a single–input single–output system. More recently, results

have been obtained regarding the fundamental issue of determining conditions under which

a system is stabilizable with bounded input (Sontag, 1984 [72]).

In the context of optimal control, the problem can be formulated as one of minimizing a

cost–functional, e.g. the squared tracking error, subject to a set of inequality constraints.

The standard controller used in most adaptive schemes is determined from

y∗(k) = [1 − A(q−1)] y(k) + q−dB(q−1)u(k) (5.21)

and minimizes the cost function

J(k) =
1

2
[y(k) − y∗(k)]2 (5.22)

at every instant of time k > 0. The resulting input corresponds to a one–step ahead control

law, since J(k) is minimized on a one–step basis rather than on the infinite time horizon. If

hard constraints are present, the optimization is subject to inequalities representing, e.g. an

amplitude limitation u0 of the actuator.

|u(k)| ≤ u0 (5.23)

If the minimization of (5.22) is carried out subject to (5.23) it is not clear whether the result-

ing control input stabilizes the system. A resort is to convert (5.23) into a soft constraint and

solve an unconstrained optimization problem. In (Goodwin, 1984 [27]), such a procedure

has been adopted using the quadratic cost–function

J ′(k) =
1

2

{
[y(k) − y∗(k)]2 + γ u(k − d)2

}
(5.24)

The penalty γ on the control effort is increased until the amplitude constraint u(k−d)2 < u2
0

is satisfied. Conditions on the stability of the optimized closed–loop system can be stated in

terms of the system polynomials A(q−1) and B(q−1) and the weight on the control effort γ.

The implicit assumption made in this case is that the optimal control law ensures that the

constraint is always satisfied. Hence, stability is analyzed in the absence of the saturation

nonlinearity. However, no guarantee can be given that u remains inside the prescribed bounds

for all k > 0 as k → ∞. A crucial assumption is therefore that the system remains stable

even if the constraint is not satisfied. This is especially true if the controller is adaptive. The

control input in this case is determined on the basis of the estimated parameters. Hence,

the control effort varies as the estimates evolve. In course of the estimation process, the
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constraints may be violated since the correct value of the weight γ on the control effort

cannot be determined ahead of time. Hence, establishing stability of the adaptive system

including actuator saturation is essential before any optimization techniques can be applied.

An early effort to deal with the effect of saturation in adaptive systems is reported in (Mo-

nopoli, 1975 [47]) where the concept of the augmented error is used to represent the effect

of an excessive control signal (i.e. with magnitude greater than a prescribed value). A more

recent result is presented in (Annaswamy and Kárason, 1995 [6]). The authors show that

the control input generated by a standard adaptive one–step ahead controller in conjunction

with a magnitude–limiting saturation nonlinearity results in global stability if the open–loop

plant is stable. Moreover, if the open–loop plant (in discrete time) has at least one pole

on or outside the unit circle, the adaptive system has bounded solutions provided that the

parameters as well as the system state is initialized within a compact set. It is shown that if

the initial conditions exceed certain values, the adaptive system may become unstable with

saturated inputs if the open–loop system is unstable.

In the following, we assume that the open–loop system is stable. Our aim is to improve the

performance of the adaptive controller by optimizing the system with respect to the control

effort using a similar cost function as in (5.24). However, the drawback of the procedure in

[27] is that optimality holds only asymptotically, i.e. once the parameters converge. This

is because the optimal controller structure is derived assuming that the parameters are

known. If the parameters are unknown, the most one can expect is that the control input

u approaches the optimal control input u∗ asymptotically (which indeed has been shown in

[27]). The procedure –which is intrinsically linear– does not take into account the cost that

is due to the adaptation process. Hence, an excessive control effort due to an unfavorable

evolution of the parameter estimates θ̂(k) cannot be prevented. The procedure is limited to

deriving an optimal controller structure. As seen in the preceding section, such a structure

can also be found through a proper choice of the reference model. In the following, we assume

that the optimal structure has been determined, i.e. at θ0, all constraints are satisfied. We

address the question whether the adaptive process can be optimized such as to cause minimal

control effort. Given θ̂(k − 1), we determine the most favorable θ̂(k) in the sense that it

minimizes the cost function:

J [η, r(k)] = γ1 u(k)
2 + γ2 ∆u(k)2 (5.25)

where ∆u(k) = |u(k) − u(k − 1)| measures the rate of change of the input signal and γ1, γ2 ∈
R are weighting factors. The novelty here is that the optimization is carried out at every

instant of time using the adaptive gain η (not the control input u) as an optimization variable.

Given a parameter estimate θ̂(k − 1), this results in an optimal choice of the update θ̂(k),
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i.e. the control law determined from θ̂(k) minimizes the above performance criterion.

5.2.1 Optimization of the Adaptive Gain

The idea of optimizing the adaptive gain η is motivated by the observation that the control

input generated in the adaptive loop is large and oscillating primarily during the initial phase

of parameter convergence when the amount by which the parameters are adjusted is large.

The system is strongly nonlinear and none of the approximate methods (e.g. averaging),

which assume quasi–linearity, apply. In view of this practical and analytical difficulty, an

obvious choice would be to reduce the speed of convergence, i.e. to set the adaptive gain η

close to zero. However, the improvement was soon found to be inconsistent, since in some

cases, the parameters appearing in the denominator of the control law were close to zero,

and a large adaptive gain would have proven advantageous to decrease the magnitude of the

control input.

It is clear that without knowing the system it is impossible to predict the kind of control

input required to meet a given control objective. Moreover, if the parameters of the con-

troller are time–varying, and no assumptions on the nature of the time–variation are made,

straightforward tools for the analysis of the system do not exist. Undoubtedly, adaptation

is a nonlinear process and offers little insight into the signals generated in closed loop. On

the other hand, notice that the overall adaptive procedure consists of two components which

both result from simple optimization problems. First, the controller itself which minimizes

a criterion defined in terms of the tracking error, second, the parameter estimator which –in

the case of the projection algorithm presented in chapter 2.1– minimizes the cost function

JP =
1

2
‖θ̂(k) − θ̂(k − 1)‖2 (5.26)

subject to

y(k + d− 1) = φ(k − 1)T θ̂(k) (5.27)

where d denotes the relative degree of the system. The minimization of JP in equation (5.26)

results in

θ̂(k) = θ̂(k − 1) + η(k)
φ(k − 1) ε(k + d− 1)

1 + φ(k − 1)Tφ(k − 1)
(5.28)

where usually η(k) ≡ 1 and ε(k) is the identification error defined in (5.15). The optimization

is performed on a one–step ahead basis, i.e. based on the current estimate the new estimate

is determined such that it is closest to the current one while satisfying the system equation

(5.27). This geometric viewpoint does offer some insight into the nature of the sequence

{θ̂k} generated by the estimator. However, it does not yet relate to the performance of the



84 CHAPTER 5. DESIGN CONSIDERATIONS

adaptive system, in particular to the control input which results if the estimates are used in

the feedback loop as parameters of the controller. Such a relationship will be established in

the following paragraph.

The control input at instant of time k is defined implicitly by equation (5.16) or, equivalently,

C y∗(k + d) = φ(k)T θ̂(k) (5.29)

and is based on the most recent estimate θ̂(k). Using the definition of the reference system

(5.2) we obtain

qd−d∗D r(k) = θ̂1(k)u(k) + θ̂2(k)
T φ̄(k) (5.30)

where the vectors φ and θ̂ have been partitioned as follows: φ(k) = [u(k) φ̄(k)T ]T and

θ̂(k) = [θ̂1(k) θ̂2(k)
T ]T . Substituting θ̂1(k) and θ̂2(k) in (5.30) by the right hand side of

equation (5.28) and solving for u(k) yields

u(k) =
α0(k) − η(k)α1(k)

β0(k) + η(k) β1(k)
(5.31)

where the scalars α0, α1, β0, β1 are given by:

α0(k) = qd−d∗D r(k) − θ̂2(k − 1)T φ̄(k)

α1(k) =
ε(k + d− 1) φ̄(k − 1)T φ̄(k)

1 + φ(k − 1)Tφ(k − 1)

β0(k) = θ̂1(k − 1)

β1(k) =
ε(k + d− 1)u(k − 1)

1 + φ(k − 1)Tφ(k − 1)

(5.32)

This means that u(k) is a function of the adaptive gain η(k). If η(k) 
= 1 the resulting

parameter update θ̂(k) does not correspond to a minimum of JP defined in (5.26). However,

from the arguments provided in chapter 2.1.1 it is clear that η may be chosen arbitrarily

within the interval 0 < η < 2 without impairing the convergence properties of the algorithm.

In figure (5.5), the allowed range of η is illustrated for a system with two unknown parameters

θ1 and θ2. It is immediately clear that the parameter error ‖θ̃(k − 1)‖ does not increase as

long as 0 ≤ η ≤ 2 thereby satisfying elementary property (i) in chapter 2.1.1. Since this is

the property upon which the proof of stability in chapter 3.1.4 is based, the adaptive gain

may be any number η ∈ (0 ; 2). This additional degree of freedom can be utilized to improve

the signal properties of the control input. We formulate the following static optimization

problem:

Given θ̂(k− 1) and the regression vector φ(k− 1) as well as r(k) and φ̄(k) defined in (5.30),

determine η∗(k) ∈ (0 ; 2) such that

J [ η∗(k) ] = γ1 u(k)
2 + γ2 ∆u(k)2 → min (5.33)



5.2. INPUT CONSTRAINTS 85

x

θ0

θ̂(k − 1)

θ̃(k − 1)

θ̂(k)

θ̂1

θ̂2

φ(k − 1)

η = 1

η = 2

η < 0

η > 2

Figure 5.5: Allowed values of η using a projection algorithm

Example 5.3 Given a system of the form

y(k) = a0 y(k − 1) + b0 u(k − 1) (5.34)

with unknown parameters a0, b0. For simplicity, assume that the reference model reads:

y∗(k) = r(k − 1) (5.35)

Let k = 1. The estimates of a0 and b0 are initialized at θ̂1(0) = θ̂2(0) = 0. Hence, the

estimation error satisfies ε(1) = y(1). We assume that φ(0) = [u(0) y(0)]T is an arbitrary

vector satisfying ‖φ(0)‖ = 1. Further, let r(0) = 1. Then, α0(1) = 1, α1(1) = 1
2
y(1)2 y(0),

β0(1) = 0 and β1(1) = 1
2
y(1) y(0) in the above definition (5.32). The control input is given

by

u(1) =
1 − η

2
y(1)2 y(0)

η y(1) y(0)
(5.36)

The cost J [η, r(0) = 1] generated by u(1) is visualized by rotating the vector φ(0) (where

‖φ(0)‖ = 1) around the origin in the θ̂1–θ̂2 plane. For every given φ(0), the adaptive gain

η assumes 100 evenly spaced values within the interval [0 ; 5]. The orientation of φ(0)

determines the direction, and η the amount by which the parameters are updated, according

to the equation

θ̂(1) =
η

2
φ(0)y(1) (5.37)

The cost associated with θ̂(1) is displayed in figure (5.6) as a function of θ̂1(1) and θ̂2(1). The

light shaded area corresponds to those θ̂(1) which are obtained using η within the (allowed)

range (0; 2). All other estimates are marked as the dark area. From the figure it is clear

that for any regression vector φ(0) there exists a favorable choice of parameter estimates
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which minimizes J [η, r(0) = 1]. However, if φ(0) is parallel to the θ̂1–axis, then θ̂2(1) = 0

or, equivalently, the denominator of (5.36) is zero. As expected, J [η, r(0) = 1] → ∞ in this

case, irrespective of the value of η. �

Figure 5.6: Cost due to input magnitude and rate as a function of θ̂(1)

As seen in the example, J has a vertical asymptote at ηA = −β0(k)/β1(k)

η → η−A : J → +∞
η → η+

A : J → +∞ (5.38)

Furthermore, a straightforward calculation in which we use (5.31) to substitute u(k) in

equation (5.33) shows that
d J

d η

∣∣∣
ηopt

= 0

at

ηopt(k) =
(γ1 + γ2)α0(k) − γ2 β0(k)u(k − 1)

(γ1 + γ2)α1(k) + γ2 β1(k)u(k − 1)
(5.39)

which corresponds to a global minimum since J [ηopt] = 0 and J [η] > 0 for all η ∈ R\{ηopt}.
However, ηopt may not satisfy the inequality constraint. In order to determine the constrained
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1.9

Figure 5.7: Constrained (∗) and unconstrained (◦) minimum of J

optimal value η∗ ∈ (0 ; 2), we distinguish four cases which are illustrated in figure (5.7). The

graphs displayed correspond to a cross section through the above ”cost landscape” along a

given direction φ(0). The case number can be found in the top left part of each subplot.

Cases 1 and 2 correspond to the situation where the vertical asymptote at ηA and the

unconstrained minimum ηopt lie outside the interval I = (0 ; 2). Define the compact interval

I ⊃ Ī = [0.1 ; 1.9]. The best choice for η∗ is to be equal to the upper (lower) bound

of Ī, respectively. In case 3, we still have ηA /∈ I but ηopt lies on the same side of the

vertical asymptote as I. Since J is convex on (ηA, ∞), η∗ = max{0.1, min(ηopt, 1.9)}. Case

4 corresponds to the (rare) case that ηA ∈ I. If ηopt /∈ I we set η∗ = argmin{J [0.1], J [1.9]}
otherwise η∗ = ηopt. The optimal value η∗ is indicated in each case at the position of the

constrained minimum (∗).
The optimization is carried out at instant of time k, using the most recent output mea-

surement y(k) which is contained in φ̄(k) of equation (5.32). At the same time, u(k) is

available:

u(k) =
α0(k) − η∗(k)α1(k)

β0(k) + η∗(k) β1(k)
(5.40)

Proposition: The adaptive controller defined in (5.40) is stable and optimal with respect

to the instantaneous cost function (5.33).

Proof : Clear from the properties of the parameter estimation algorithm and the fact that
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η∗(k) ∈ Ī ⊂ I = (0 ; 2) for all k > 0. �

5.2.2 Discussion

At every instant of time k, k > 0, a static optimization problem is solved in order to determine

u(k). Once the parameters converge, the control effort is independent of η. Notice that at

every instant of time an optimization problem is solved without awareness of the cost–to–go.

In particular, the way in which the current control input u(k) affects the future evolution of

the cost is not accounted for in the optimization procedure. To obtain an exact solution, the

objective should be to minimize the control effort over the infinite time–horizon rather than

on a one–step basis. This is a dynamic optimization problem which consists in determining

the optimal trajectory η̄∗(k), k ∈ [0 ∞) which causes θ̂(k) to converge to θ0 while minimizing

the effort of the associated adaptive tracking controller. However, it is seen that the cost–

to–go depends upon θ0 and the future regression vectors φ(k) which are both unavailable

at instant of time k, since the system is unknown. We have to ask the question whether

the sequence {η∗k} obtained by static optimization is a valid approximation of the optimal

trajectory η̄∗(k). While this is a hard question the following reflection may be helpful: The

critical point is that the cost may become large at some future instant k + N , N > 0 due

to an unfavorable choice of η(k) at instant k. Suppose the system is unstable, then a large

input may be called for to prevent the output of the system from growing. In such a case, it

is clearly futile to minimize the control effort at instant of time k. For an even larger control

input will be needed at a later stage, when the state variables of the system have already

grown in magnitude. The solution in this case would be not to optimize the adaptive gain

until the parameters have moved into a stable region in parameter space. The problem is

that there is no way to decide this at the current instant k since the large cost arises only at

a later stage k+N . In addition, the parameters can only be updated using the information

contained in the regression vector and it is obviously not clear where the stable regions in

parameter space are. To avoid such difficulties, we assume that the plant is open–loop stable,

i.e. there exist positive constants n1, n2 such that,

|y(k)| ≤ n1 + n2 max
1≤κ≤k−d

|u(κ)| (5.41)

Further, it is reasonable to assume that there exists a class K–function1 α(·) such that

α(|y(k)|) ≤ |u(k)|. This general inequality refers to any stabilizing controller and states that

the magnitude of u(k) required to keep the solutions bounded is at least as large as a quantity

1A function α : [0, ∞) → [0, ∞) is said to be of class K if it is continuous, strictly increasing and α(0) = 0,
see e.g. (Sontag, 1998 [73]).
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that increases with the magnitude of the output y(k). As an example, the linear stabilizer

u = −ay (for relative–degree–one systems and a sufficiently large) satisfies the inequality.

The lower bound on |u| is critical since we are discussing the possibility of a future increase of

the cost due to an unfavorable choice of the current adaptive gain η(k). But the lower bound

α(|y(k)|) on the magnitude of u is non–growing if the open–loop plant is stable. Actually, it

is bounded by the input u itself as seen in (5.41). Hence, the minimization of the current u(k)

does not entail a future increase of the magnitude of the control input required to stabilize

the system. But this means that the one–step optimization results in a trajectory which is

arbitrarily close to the optimal trajectory (determined only in hindsight). The condition was

that the plant is open–loop stable. Note that most practical systems are stable to begin with,

and if they are not, an underlying non–adaptive controller can be used to stabilize them.

Extensive computer simulations have consistently shown that the optimization procedure

results in a substantial reduction of the control effort.

Example 5.4 We assume that the system is given by equation (5.34) with unknown pa-

rameters a0, |a0| ≤ 1 and b0 and the reference model is defined by

[1 + c1q
−1] y∗(k) = q−1r(k) (5.42)

with input r(k) = 10 sin(22π kTS). The control law obtained from (5.31) is given by:

u(k) =
[r(k) − θ̂2(k − 1)][1 + y(k − 1)2 + u(k − 1)2] − η(k) [y(k − 1)ε(k) y(k)]

θ̂1(k − 1) [1 + y(k − 1)2 + u(k − 1)2] + η(k) [u(k − 1)ε(k)]
(5.43)

The objective is to determine η(k) such that the control effort J(k) = 0.1u(k)2 + 0.9∆u(k)2

is minimized at every instant of time. This would result in an optimal evolution of the

parameter estimates, while at the same time, the control error tends to zero. On the right–

hand side of figure (5.8), a constant gain was used η(k) ≡ 1. The output y approaches the

output y∗ of the reference system and the parameters are seen to converge to the correct

values θ̂1 → b0 = 2 and θ̂2 → (c1 − a0) = −0.5. However, the control effort spent during

the initial transient phase (i.e. before the parameters converge), is significant (row 4 in the

figure) and the corresponding input u(k) large and oscillatory. If the optimal gain η∗(k) is

determined at every instant of time and used in equation (5.43) to compute the control input,

the same output performance is achieved with almost zero effort, as displayed in the right

column of the figure. It is seen, that parameter convergence is much slower in the optimized

case. On one hand, this further emphasizes the fact that high–frequency components of

the control input have been removed effectively. For, if the control effort is minimized, the

degree of persistency of excitation also decreases which implies that the time constant 1/c

in equation (2.27) increases. On the other hand, if the designer is interested in determining
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Figure 5.8: Minimizing the control effort of a first–order adaptive system

the actual physical parameters of the system even while controlling the plant adaptively, a

large and excitatory control input u(k) will be needed and the weights of the cost function

in the optimization procedure have to be chosen appropriately. Hence, there is a trade–off

between fast convergence using a rich input u(k) or slow convergence with minimal control

effort. This is particularly true in a higher–dimensional parameter space as seen in the next

experiment.

Example 5.5 The objective is to control the speed of a two–mass system with unknown

parameters θ0 ∈ R
6, as in example (3.2). The control input needed for adaptive control

was found to be large and oscillatory. The result is repeated here for convenience, on the

left part of figure (5.9). The control effort –measured by means of a cost function of the

form (5.33) with γ1 = 0 and γ2 = 1– is excessively large (> 1011) in the case with constant

adaptive gain η(k) ≡ 1 and vanishes if η(k) = η∗(k). Since the degree of excitation is high in

the former case, the parameters are seen to converge fast and the input u(k) corresponds to

that of a linear controller afterwards. It should be kept in mind, though, that in a practical

environment we cannot afford to apply inputs of the form displayed the left part of the figure

over an extended period of time. Hence, the optimization of the adaptive gain is mandatory
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in this case. The same experiment is again repeated in chapter 8 (see figure 8.12) where the

optimization procedure is tested under real–world conditions.
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Figure 5.9: Optimal adaptive control of an unknown two–mass system (simulation)

5.3 Unmodelled Dynamics

The control effort spent to achieve a desired objective was at the center of the discussion in

the previous section. In this section, we highlight another aspect which is also related to the

nature of the control input generated by an adaptive system. It has been recognized very

early that adaptive systems are highly sensitive to unmodelled dynamics (see e.g. Ioannou,

1983 [32]; Rohrs, 1985 [69]). If the control input has significant power in a high–frequency

range, the presence of parasitic modes may cause the adaptive procedure to become unstable.

This non–robustness has its roots in the restrictive assumptions made in the proof of stability,

i.e. that the plant order and relative degree be known. Instability phenomena have been

investigated using linearization (Rohrs, 1985 [69]), averaging (Åström, 1983 [2]) and singular

perturbation techniques (Kokotovic, 1986 [37]) and numerous methods have been developed

to prevent signals from growing in an unbounded fashion.
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A large body of work is available on general robustness of adaptive systems assuming that

the system is subject to bounded disturbances. The basic idea is to eliminate the pure

integral action of the adaptive law. In (Egardt 1979, [17]; Peterson 1982, [64]) a dead–zone

is introduced which consists in stopping the adaptation when the control error becomes

smaller than some prescribed value. The drawback of this approach is that knowledge of

an upper bound on the disturbance is needed to implement the dead–zone. A conservative

bound leads to large tracking errors, even when the disturbances are small or zero. No prior

information is needed in the case of the σ−modification scheme introduced by (Ioannou,

1983 [32]). An additional term −σθ̂(k) is used in the parameter update law to introduce

“leakage”, i.e. convert the pure integral into a first–order system. However, as in the case

of the dead–zone, zero residual tracking errors cannot be guaranteed when the disturbances

are removed. A much celebrated approach proposed by (Narendra, 1987 [52]) is to replace

σ by a term proportional to the output error |e(k)|. The rationale for using such a term

is that it tends to zero with the output error. Hence, when there is no disturbance, the

correction term tends to zero as well. Yet another approach requires the reference input

to be persistently exciting of sufficient order. If no disturbances are present, this results

in exponential stability of the overall adaptive system (Morgan and Narendra, 1977 [49]).

Hence, arguing from linear systems theory, a bounded disturbance would lead to a bounded

error. However, care must be taken since the behavior of the nonlinear perturbed system

cannot be concluded directly from that of the unperturbed system. As shown in (Narendra,

1983 [53]), the statement is valid if the degree of persistent excitation is greater in some

sense than the amplitude of the disturbance.

When unmodelled dynamics are present, global stability cannot be guaranteed by any of

the above methods. The unmodelled dynamics acts as a disturbance which can no longer

be assumed to be bounded since it results from a structural uncertainty. Even stating

the problem is not straightforward since the nature of the disturbance varies significantly

according to the kind of parasitics contained in a system. The most commonly encountered

practical examples are fast actuator dynamics or high–frequency oscillations of mechanical

components.

Any model reflects only the dominant part of a physical system. In other words, the system

to which the control is applied is invariably of larger order than what one cares to model.

In (Ioannou 1987, [34]), a class of unmodelled dynamics is considered which consists of both

additive and multiplicative plant perturbations. The plant is given in the following form

G(s) = G0(s)[1 + µ∆2] + µ∆1 (5.44)

where G0(s) is the transfer function of the modelled part of the plant. ∆1, ∆2 is an additive
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and multiplicative perturbation, respectively and µ > 0 a small number. Robustness is

achieved by using a modified adaptive law which employs a normalizing signal and a −σθ
term. Prior information is needed regarding an upper bound on the norm of the controller

parameters and a bound on the stability margin of the poles of the unmodelled dynamics.

The idea of a normalizing signal also appears in (Kreisselmeier 1986, [41]; Praly 1983 [67]).

In addition, the authors propose a projection technique which keeps the parameter estimates

bounded within a specified sphere in parameter space. The approach requires bounds on the

unknown parameters as well as on the plant zeros. Alternatively, a relative dead–zone can

be introduced in order to keep the parameter error bounded.

In the following section, a different viewpoint is taken. Our objective is to demonstrate —

using simulations— that an optimal control input, such as the one obtained in the previous

section, may be the key to a simple and intuitive solution to the problem. We assume that

the effect of unmodelled dynamics can be described by an external disturbance ξ(k) with

|ξ(k)| ≤ ξ0. The upper bound ξ0 depends upon the frequency content of the input to the

system. The idea is based on the well–known fact that if the latter is low in the high–

frequency range, no unmodelled dynamics are excited and, hence, ξ0 can be made small.

Parts of this section have been presented at a conference (Feiler, 2003 [19]).

5.3.1 The Full–Order Case

In the following, the dependency of the polynomials A,B,C, . . . on q−1 is omitted for nota-

tional convenience. In the ideal case, it is assumed that the order of the system deg[A] = n

is known.

Ay(k) = q−dB u(k) (5.45)

As explained in chapter 5.1, the structure of the controller is determined using Bézout’s

identity C = M A + q−dN . Multiplying both sides of the equation by y(k) and using (5.45)

we obtained

C y(k) = q−d [M B u(k) +N y(k)] (5.46)

When y(·) is replaced by y∗(·) the equation implicitly defines the controller. We introduced

the shorthand notation

C y(k) = φ(k − d)T θ0 (5.47)

where φ(k − d) contains past values of y(·) and u(·) and θ0 the corresponding (unknown)

coefficients. θ0 is replaced by a vector of parameter estimates θ̂(·) which are updated using

one of the estimation algorithms presented in chapter 2. The key quantity for identification
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is the error signal ε(k) which contains all the information about the unknown parameter

vector θ0:

ε(k) = C y(k) − φ(k − d)T θ̂(k − 1)

= −φ(k − d)T θ̃(k − 1)
(5.48)

where θ̃ = θ̂ − θ0 denotes the parameter error. The proof of stability, which was presented

in chapter 3.1.4, resides on the fundamental property of the parameter estimator, that the

identification error ε cannot grow faster than the signals of the system contained in the

regression vector φ. More precisely, recall that if ε is defined as in (5.48), we have

lim
k→∞

ε(k)2

1 + φ(k − d)Tφ(k − d)
= 0 (5.49)

Using (5.49) and the fact that the system is minimum–phase it was shown that the assump-

tion that φ grows without bound leads to a contradiction and that the control error tends

to zero.

5.3.2 The Reduced–Order Case

In the reduced–order case, only the order n̄ < n of the dominant part of the system (and its

relative degree d) is assumed to be known.

Ā ȳ(k) = q−dB̄ u(k) (5.50)

where deg(Ā) = n̄ < n. Notice, that the relative degree d is the same as in (5.45). The output

ȳ(·) of the reduced–order system is merely of theoretical interest and cannot be measured.

Proceeding as in the ideal case, we determine polynomials M̄ and N̄ such that

C = M̄ Ā + q−dN̄ (5.51)

If we had y(k) = ȳ(k) (no unmodelled dynamics) we could use Ā y(k) = q−d B̄ u(k) from

equation (5.50) and write

C y(k) = q−d [M̄ B̄ u(k) + N̄ y(k)]

= φ(k − d)T θ̄0

(5.52)

Notice that θ̄0 ∈ R
2n̄ is of reduced dimensionality. In our case, y(k) = q−d B

A
u(k) 
= ȳ(k) and

we obtain:

C y(k) = q−d [M̄ B Ā /A u(k) + N̄ y(k)]

= φ(k − d)T θ̄0 + ξ(k − d)
(5.53)
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This is the equivalent of equation (5.46) where

ξ(k) = M̄

[
Ā B − B̄ A

A

]
u(k) (5.54)

which quantifies the effect of unmodelled dynamics. As above, θ̄0 is replaced by an estimation

vector θ̂. We obtain the identification error:

ε(k) = C y(k) − φ(k − d)T θ̂(k − 1)

= φ(k − d)T [θ̄0 − θ̂(k − 1)] + ξ(k − d)

= −φ(k − d)T θ̃(k − 1) + ξ(k − d)

(5.55)

As expected, the identification error is not only due to the estimation error φ(k − d)T θ̃(k − 1)

but also due to unmodelled dynamics ξ(k− d). Now, suppose that the same procedure as in

the ideal case is used to derive the adaptive controller, i.e. using certainty equivalence, u(k)

is determined from

C y∗(k) = φ(k − d)T θ̂(k − d) (5.56)

where θ̂(·) ∈ R
2n̄ is the estimation vector which is updated on the basis of the identification

error ε(k). The question that needs to be addressed is whether there exists a constant

parameter vector θ0, for which ε(k) = 0. It is clear that no such vector exists in general.

However, within a limited frequency range, |ε(k)| can be made small. A second question is

whether an equation of the form (5.49) can be established in the reduced–order case. Let

us investigate this in the context of the projection algorithm, introduced in chapter 2.1.

Property (ii), which was restated in (5.49), was established by showing that the norm of the

parameter error ‖θ̃(k)‖ forms a nonincreasing sequence. In the reduced–order case, we have

θ̃(k) = θ̂(k) − θ̄0 and obtain

‖θ̃(k)‖2 − ‖θ̃(k − 1)‖2 = 2η
φ(k − d)T θ̃(k − 1) ε(k)

1 + φ(k − d)Tφ(k − d)
+ η2 φ(k − d)Tφ(k − d) ε2(k)

[1 + φ(k − d)Tφ(k − d)]2
(5.57)

The r.h.s is equivalent to

η

[
ξ2(k − d)

ε2(k)
− 1 − [φ(k − d)T θ̃(k − 1)]2

ε2(k)
+ η

φ(k − d)T φ(k − d)
1 + φ(k − d)T φ(k − d)

]
ε2(k)

1 + φ(k − d)T φ(k − d)
(5.58)

From the expression it is clear that there exists a class K function σ(‖ · ‖) such that if

ξ(k − d)2 ≤ σ(‖φ(k − d)T θ̃(k − 1)‖2) (5.59)

the bracketed expression in (5.58) is always negative. Whenever ξ(k − d) = 0, we have that

ε(k) = −φ(k − d)T θ̃(k − 1) and we recover equation (2.15). If the inequality holds we have

that

‖θ̃(k)‖2 = ‖θ̃(0)‖2 + η
k∑

κ=0

ρ(k)
ε2(k)

1 + φ(k − d)Tφ(k − d)
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Figure 5.10: Full– and reduced order system

where ρ(k) < 0 for all k > 0. This means that the normalized identification error tends to

zero as in (5.49) using the same argumentation as in chapter 2.1.1, i.e. the fact that ‖θ̃(k)‖2

is nonnegative. Inequality (5.59) implies that ξ → 0 when the parameters converge. Going

back to the definition of ξ in equation (5.54) we see that ξ(·) = 0 whenever [Ā B − B̄ A]

vanishes. In frequency domain, this corresponds to the fact that the transfer functions

H(z−1), and H̄(z−1) of the full– and the reduced–order system are equal:

H(z−1) =
z−dB(z−1)

A(z−1)
=
z−dB̄(z−1)

Ā(z−1)
= H̄(z−1) (5.60)

where z−1 = e−jωTS and TS is the sampling time. The equality holds when no unmodelled

dynamics are excited by the input signal. By assumption, ξ is due to high–frequency para-

sitics. Hence, the frequency responses of H(e−jωTS) and H̄(e−jωTS) can be matched up to a

maximum frequency ω∗. (5.60) is satisfied if the power spectrum of the input signal is zero

for all ω > ω∗.

The following simulation demonstrates that the method developed in section (5.2) provides

an effective way of removing high–frequency components of the control input. The idea is

to minimize the rate ∆u(k) of the input signal.

Example 5.6 Consider the third order system

[1 − a1q
−1 − a2q

−2 − a3q
−3] y(k) = q−1b0 u(k) (5.61)

which is to be approximated by the first–order system

[1 − āq−1] y(k) = q−1b̄ u(k) (5.62)

The full–order system has a (dominant) pole at z1 = 0.9 and a pair of complex conjugate

poles at z2,3 = 0.9 e±1.885i corresponding to an eigenfrequency of f0 = 300Hz of the parasitic
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system. The Bode diagram and pole zero map of the corresponding transfer–functions are

displayed in figure (5.10). The reference system is selected to be:

[1 − c1q
−1] y∗(k) = q−1d0 r(k) (5.63)

where c1 = 0.3 and r(k) = 10 sin(14π k TS) + 5 sin(18π k TS) with sampling time TS = 1ms.

The controller will be determined from the first–order system and used for the third–order

system. The control law reads

u(k) =
d0 r(k) − θ̂2(k) y(k)

θ̂1(k)
(5.64)

where θ̂1,2 are the unknown controller parameters which are to be adjusted such that θ̂1 → b̄

and θ̂2 → [ā− c1].
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Figure 5.11: Linear and adaptive controller in the presence of unmodelled dynamics

The simulations contained in figure (5.11) reveal an interesting phenomenon: In both cases,

the parameters have been initialized at the correct values θ̂(0) = [b̄ (ā− c1)]
T . On the left

hand side, no adaptation is allowed, i.e. the parameters are fixed at their initial values. It is

seen that the presence of the parasitic poles causes a deviation |y − y∗| 
 1 but the overall

system is stable. This corresponds to our expectations since, with fixed parameters, the

system is linear. If we allow the adjustment of the parameters (right part of the figure), the

system behaves well initially but becomes unstable due to a drift of the parameters. The

drift is caused by an error due to unmodelled dynamics which becomes large whenever the

control input u(·) is oscillatory and contains frequencies which excite the parasitic system.
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The effect can be suppressed by optimizing the adaptive gain with respect to the rate of the

input signal ∆u(k). The cost function J in equation (5.33) is minimized at every instant of

time using γ1 = 0.1 and γ2 = 0.9. The resulting time–varying adaptive gain 0.1 ≤ η∗ ≤ 1.9

is used to update the parameter estimates θ̂(k) ∈ R
2 upon which the control law (5.64) is

based.
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Figure 5.12: Adaptive control in the presence of unmodelled dynamics using time–varying

(left) and constant (right) adaptive gain η

In figure (5.12), the first 450 milliseconds of the simulation are displayed in a zoomed section

(rows 2-7). The tracking performance is excellent in the case with time–varying adaptive gain

whereas signals grow in an unbounded fashion if a constant adaptive gain is used. In both

cases, the parameter estimate θ̂(0) = [5 0.5] was initialized far from the true values. While

in the former, the optimization prevents u(k) from becoming large, in the latter case u(k)

is found to be large and oscillatory. As a consequence, the contribution of the unmodelled
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dynamics to the identification error is large, causing the parameter estimates to drift (without

bound). Compare row 5 on the left and right side of the figure to appreciate the effect of

the optimization on the evolution of the parameters. Rows 6 and 7 of the figure display the

cost and the power spectrum associated with the control input. If a time–varying gain is

used the resulting input hardly produces any cost and has nonzero power only at frequencies

corresponding to the reference input r(k). With constant gain η = 1, the input as significant

power at all frequencies up to Nyquist frequency. �

In this chapter it has been demonstrated that the performance of adaptive schemes can be

improved through an appropriate choice of the controller structure and the adaptive gain.

The emphasis was placed on obtaining a smooth control input which satisfies magnitude

and rate constraints imposed by the actuators of the system. An interesting connection to

robustness in the presence of unmodelled dynamics was pointed out in the last section. The

stability properties of the adaptive system are the same in the regular and the optimized

case. However, even without unmodelled dynamics, the optimized version results in better

performance in the sense that the same tracking response can be achieved with less control

effort. The point to note is that it is the improved performance which helps us to obtain

stability when the system is subject to structural disturbances. Future work is required to

derive a quantitative measure of the robustness obtained through the optimization of the

control input. In particular,

• How an upper bound ω∗ on the frequency content of the control input translates into a

rate constraint in time–domain (assuming that the input is a continuous function of the

system states and the parameters, i.e. no switching is allowed) has to be investigated.

• The optimization has to be combined with one of the well-known robustification tech-

niques, such as signal normalization and relative dead–zone. Even though the intro-

duction of a dead–zone was not found to be necessary in the above example and the

experiments carried out in chapter 8, it becomes indispensable when deriving stability

guarantees in the presence of unmodelled dynamics. This is because the cost function

(5.33) formulates only a soft constraint, i.e. it is not known a priori to what extent

high–frequency components of the control input are attenuated.
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Chapter 6

Rapidly Time–Varying Systems

The third class of disturbances considered in this thesis is due to large and sudden changes

in the parameters of the system. In fact, one of the primary reasons for considering adaptive

control in practical applications is to compensate for large variations of the plant parameters.

Despite this fact, a coherent theory of adaptive control exists only when the unknown system

is time–invariant. The accepted philosophy is that if an adaptive system is fast and accurate

when the plant parameters are constant but unknown, it would also prove satisfactory when

the parameters vary with time, provided the latter occurred on a relatively slower time–scale.

The analytical difficulties encountered while dealing with unknown, time–varying systems

are due to the following factors. If θ : N0 → R
2n is the (time–dependent) control parameter

vector which is used to compensate for variations in plant parameters, it must first be

shown that a vector function θ∗ : N0 → R
2n exists such that the control error is zero

when θ(k) ≡ θ∗(k). In practice, this is not easy to accomplish since the analysis of the

resulting system involves time–varying operators. Even when θ∗(k) has been shown to exist,

the derivation of a stable adaptive law is difficult since the error equations involved are

nonlinear and non–autonomous. Using the parameter error θ̃(k) = [θ̂(k) − θ∗(k)] one may

attempt to apply a standard adaptive algorithm to adjust θ̂(k). Due to the time–variation

of θ∗, an additional term ∆θ∗(k) = [θ∗(k) − θ∗(k − 1)] appears on the r.h.s of the update

equation which makes the system non–autonomous. Moreover, convergence has to be proven

(in a pointwise fashion) in function space.

Results have been obtained in the continuous–time case under the assumption that the un-

known plant parameter vector is the output of an asymptotically stable linear time–invariant

system with constant input. In this case, stability was established without modifications of

the adaptive law (see Narendra, 1989 [51]). Simulation studies have been carried out for

101
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the case where the dynamics of the plant parameters is governed by a linear second–order

system. When the frequency of the parameter variation is low, a standard adaptive law was

seen to result in a small output error. For general time–variations, a robust adaptive control

approach has been proposed by (Tsakalis, 1987 [74]). Discrete–time results have been ob-

tained by (Kreisselmeier, 1982 [40]) and (Narendra, 1987 [58]). In the latter case, a bound

on the parameter θ∗(k) and its variation ∆θ∗(k) was established for which the standard

adaptive law ensures stability.

All the above results are based on the assumption that the parameter variation is slow in

some sense. If this is not satisfied, but the parameter perturbations are small in magnitude,

robust control is generally preferred. However, as systems become more complex, situations

where the parameters vary both rapidly and by large amounts arise with increasing frequency.

Typical examples are mechanical processes with large variations in load, actuator failures

or transition control tasks in chemical systems. It was to cope with such situations that a

methodology based multiple models has been introduced by (Narendra and Balakrishnan,

1992 [54]). The general methodology as well as the principal results are summarized below

(see also Narendra et al., 2003 [23]).

6.1 Multi–Model Adaptive Control

From the very beginning, the interest of adaptive control theorists was centered around adap-

tation in changing environments. However, due to mathematical tractability, they confined

their attention to time–invariant systems with unknown parameters. The control algorithms

that have proven stability properties are characterized by an adaptive law which is given in

the form of a differential equation. Once the evolution of the parameters towards their true

values (or –more generally– towards a solution manifold) is governed by a differential equa-

tion, the long–term behavior of the adaptive system can be studied in terms of a dynamical

system and becomes amenable to powerful tools from the qualitative theory of nonlinear

differential equations (e.g. convergence of the parameters is studied in terms of the stability

of an associated dynamical system). It is clear, though, that this may not be the fastest

way to determine the parameters since adaptation thus defined is inherently incremental.

Note that when the unknown parameters appear nonlinearly, it may even be impossible to

find a differential equation that describes the evolution of the parameter estimates towards

their true values. In these cases, the parameters are determined by optimizing an error func-

tion, e.g. θ̂ = argmin{ε(θ̂)2}, and the resulting trajectory in parameter space is generally a

non–smooth curve. It is in the same spirit that one may wish to allow for switching while
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adapting the parameters of an unknown system.

The advantage of switching would be to provide fast response to time–variations occurring

in the system. Even, if no such variations take place, the tracking error is quite often unac-

ceptably large and oscillatory during the initial phase of parameter convergence, when there

are large errors in the estimates. This observation provided the motivation for developing

an optimized version of the adaptive scheme in chapter 5.2. In this chapter we present a

methodology, which –in addition to providing improved response in the case of time-invariant

parameters– opens up new ways of controlling systems with large and sudden variations in

the parameters.

Since the method was originally proposed in 1992, many other approaches have been reported

in the adaptive control literature. However, only a few have been demonstrated to be stable.

Since it is well known that efficient design methods for different classes of control systems can

be developed only when their stability properties are well understood, we focus our attention

on stability issues in multi–model based adaptive control. In particular, we will be interested

in the assumptions that have to be made to assure stability. In a time–varying environment,

the effectiveness of the approach depends critically on the location of the models. How

adaptation and learning are to be combined to accomplish the latter efficiently, will be at

the center of our discussion in chapter 7.

6.1.1 General Methodology

In this section the motivation of the approach as well as its basic concepts are presented.

The style is entirely qualitative and sets the stage for the quantitative analysis undertaken

in section 6.2. The basic idea for using multiple models comes from biology: every biological

system is faced with a multiplicity of choices at any instant of time. As the environment

changes, it demonstrates an ability to rapidly modify its strategy such as to maintain optimal

performance. Such an ability involves recognizing the specific situation that has arisen and

taking an appropriate control action which is selected from a set of available strategies. In

order to acquire a repertoire of strategies the biological system learns from past experience.

Hence, it is the ability of the system to learn and store information, and combine it with

adaptation that is responsible for its performing satisfactorily in rapidly varying situations.

It is this feature of biological system behavior that underlies the idea of multi–model adaptive

control.

A mathematical description that captures the essential aspects of a physical system is gener-

ally referred to as a model of that system. It is clear that the kind of models generated for a
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Figure 6.1: Multi–Model Adaptive Control (MMST)

given system may vary significantly according to what the designer regards to be its essential

characteristics. Since it is reasonable to assume that diverse models may be appropriate

for describing different environments, the use of multiple models arises naturally. The basic

architecture for adaptive control based on multiple models (MMST) may be described as

follows [57]:

The structure of the control system is shown in figure (6.1). The plant Σ to be controlled

has an input u and output y. A reference model with piecewise continuous input r provides

the desired output y∗, and the objective is to cause the control error e = y − y∗ to tend

to zero, (or lie within specified bounds) for large values of time. N identification models

Ξ1,Ξ2, . . .ΞN are used in parallel to estimate the parameters of the plant each of which

generates an estimated output ŷi, i = 1, 2, . . . , N . The estimation error of the jth model

Ξj is defined as εj = y − ŷj. Corresponding to each model Ξj there exists a controller Γj
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such that Ξj together with Γj in the feedback–path behaves like the reference model Σ∗. At

every instant, based on a switching criterion, one of the model/controller pairs, e.g. [Ξj, Γj],

is chosen. Consequently, the output uj of the jth controller is used to control the plant.

Given prior information about the plant (e.g. that the latter is linear, nonlinear, stochastic,

slowly time-varying etc.), the design problem is to choose the models Ξj and the controllers

Γj together with the rules for switching to obtain best performance, and demonstrate that

the overall system is stable.

For mathematical convenience, as well as for a precise definition of the control problem, it

is assumed that the plant and all the identification models (unless otherwise stated) can be

parameterized in the same fashion. If the unknown plant parameter is a vector θ0 and the

estimates of θ0 given by the models are θ̂i, we assume that θ0 and θ̂i(i = 1, 2, . . . , N) ∈ S ⊂ R
p

where S is a compact set. For ease of exposition, we shall refer to θ0 as the plant and θ̂i

as a model. The general problem of MMST can also be considered as one of choosing

θ̂i(i = 1, 2, . . . , N) so that for any θ0 ∈ S the control objectives can be achieved and the

overall system is stable. In the paragraphs that follow, further details concerning the models,

the switching criterion, and the manner in which the control input is to be computed are

discussed.

6.1.2 Models

As stated in the introduction, a large variety of models can be chosen including continuous-

time or discrete-time, linear and nonlinear models. If the plant is subjected to disturbances,

a model of extended order may be called for. Note that if models with feedback are used in

the estimation procedure, there is the possibility that the models become unstable for some

values of their parameters. In such cases, even when the controlled plant is stable and has

a bounded output, the outputs of the models may grow in an unbounded fashion. To avoid

this, the models are chosen to be of the series-parallel type [51], i.e. the regression vector

contains measured input–output values of the plant and is the same for all the models.

Models with constant parameters θ̂i are referred to as fixed models while those which are

continuously updated based on input–output data are referred to as adaptive models. Fixed

models require very little computational overhead and are mainly used to provide better

initial conditions for parameter estimation. Using computer simulations, the use of N − 2

fixed models and two adaptive models was found to be a reasonable compromise between

computational complexity and performance in many adaptive problems [55]. If a fixed model

θ̂i is selected (according to a performance criterion) at any instant k0, an adaptive model with
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parameter vector θ̂a is initiated using θ̂i as an initial condition. If at a later time k1 a different

fixed model θ̂i+1 is chosen, the adaptive model θ̂a is discarded and a new one is initiated at

θ̂i+1. Details regarding this procedure can be found in (Narendra and Balakrishnan 1997,

[57]). If fixed models are to play an important role in the adaptive process their parameters

must lie close to those of the plant, even as the latter varies with time. Since the plant

parameter vector θ0 is unknown and can vary arbitrarily, this is possible only if a very large

number of fixed models is used within the compact set S. Alternatively, the location of the

models is determined based on past experience assuming that the latter is available. Yet

another approach, which does not require any prior information about the location of θ0,

will be presented in chapter 7.

6.1.3 Switching and Tuning

Tuning is the process of incrementally adjusting the parameters of the control or estimation

model. This is the method used in classical adaptive control where the evolution of the

parameters is described by a differential equation. When multiple models are used, param-

eters can change discontinuously. To motivate the need for switching in an adaptive control

system, we consider the case where it is known a priori that the plant can assume only one

of two values (i.e. the plant parameter vector satisfies: θ0 ∈ {θ1, θ2}). Corresponding to

each of the above, it is also known that controllers Γ1 and Γ2 exist such that θi together with

Γi in the feedback path matches a stable reference model. It is further assumed that the

plant θi together with controller Γj(j 
= i) results in instability. If the plant were to switch

rapidly between θ1 and θ2 the adaptive method used must be able to detect the change in

the plant and switch to the appropriate controller to avoid instability. Since only the inputs

and outputs of the plant are assumed to be known, detection of the change in the plant

has to be concluded from the output estimation errors εi. Switching is desirable to react to

rapid changes in the plant characteristics and avoid instability. Since the number of models

is finite, while the number of values that the plant can assume within S is infinite, tuning

is necessary if the control error is to tend to zero asymptotically. The essence of MMST

is to combine switching and tuning efficiently such as to improve the performance of the

closed–loop system while keeping all signals bounded. The control input u resulting from

this procedure is in general piecewise–continuous.

A crucial role in the design of MMST is played by the switching criterion which determines

when to switch from one model to another and which of the models should be the new one.

A number of different performance indices can be defined based on the identification error

ε(k) to determine which of the models best fits the plant at any instant. These may assume
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the following forms:

(i) Ji(k) = ε2i (k)

(ii) Ji(k) =
k∑

ν=0

ε2i (ν)

(iii) Ji(k) = α ε2i (k) + β
k∑

ν=0

ε2i (ν)

(iv) Ji(t) = α ε2i (k) + β

k∑
ν=0

ρk−νε2i (ν) (6.1)

The criterion (i) represents instantaneous values of the square of the output error, (ii) the

integral of the former, (iii) a linear combination of (ii) and (iii), and (iv) a modification of (iii)

which includes a forgetting factor determined by the parameter ρ ∈ [0 ; 1]. Based on one of

the criteria (i)–(iv) the model/controller pair [Ξj, Γj] is used at every instant of time using

Jj(k) = mini Ji(k). Criterion (i) invariably results in rapid switching between controllers

while relatively slow switching is achieved using (ii). As a consequence, the control errors

are larger in the latter case. For satisfactory operation in rapidly time-varying environments,

criterion (iv) is generally preferred and the parameter ρ is selected to achieve a compromise

between speed and performance.

6.1.4 Control

The control input to the system is computed based on the parameters of the model that

performs best according to one of the above criteria. The approach of using the parameters

of an estimation model to determine the control input is referred to as an indirect one, in

contrast to the direct approach where the controller parameters are identified directly based

on the control error e. From the above discussion it is clear that the indirect approach is

inherent to the MMST methodology. While a multiplicity of models can be used concurrently

to estimate the plant, only one controller can be used at any instant to determine the control

input.

Notice that the overall performance of the system will be judged on the basis of the control

error e, whereas the choice of the controller at any instant is based on a performance index

that depends upon the estimation error ε. As seen in chapter 3.1.3, equation (3.29), the

control error deviates from the identification error by an amount depending upon the time–

variation of the parameter. If a fixed controller is used, the two are equivalent. However,

in general, the controller has to be adaptive in order for e to vanish. But this means that
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the control based on the model with the smallest estimation error need not result in the

smallest control error. This is the principal difficulty encountered when attempting to derive

a quantitative measure of the performance improvement obtained through MMST.

6.1.5 Benefits

While being a natural extension of conventional adaptive control (as considered in chapter 3)

to time–varying situations, the MMST methodology offers a number of intuitively appealing

and practically relevant advantages:

• Its principal use is to detect changes in the environment (e.g. due to time–varying

disturbances) and initiate appropriate control action.

• When the information needed to design an adaptive controller (e.g. its relative degree,

order of the plant) is missing, multiple models can be used to obtain it.

• An application, which is pointed out in [11], is to combine the advantages of different

models. One of the models, designed analytically, may assure stability, while another,

designed heuristically, may have better performance. A proper combination of the two

results in a stable system with improved performance.

• By placing fixed models in the neighborhood of the points in parameter space which

the plant is likely to assume, the time for the parameters to converge can be reduced

substantially and, hence, performance improved. Recall that, in the absence of a

persistently exciting input, the models do not have to be close to the plant, since the

identification error is small anywhere near the hypersurface defined in equation (2.8).

But if the models are close, the error will be small for any input.

Example 6.1 Given a discrete–time plant described by,

y(k + 1) = a(k)y(k) + b(k)u(k) (6.2)

where the plant parameter vector θ(k) = [a(k) b(k)] is piecewise constant and switches

between the elements of a finite set S = {θ1, θ2, θ3, θ4, θ5} of unknown vectors. As indicated

in figure (6.2), θ2 corresponds to an unstable plant, while θ4 is stable with eigenvalue z = −1,

and all other parameter vectors are strictly stable. The objective is to control the plant

such that the output tracks the desired output y∗(k + 1) = sin(2π k/100) + sin(2π k/90) with

small errors even as the plant parameters change discontinuously from one element in S

to another at random instants of time. The switching is assumed to be governed by an
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ergodic Markov chain, where p = 0.9 is the probability of remaining at a given parameter

θi, i = 1 . . . 5 and q = 0.025 is the probability of switching to one of the other parameters.

The first row of the figure displays the nature of the time–variation of the plant. Part (i)

shows the response of the system using classical adaptive control with a single model. The

performance is clearly unacceptable and the parameters do not converge anywhere. In

part (ii), the location of the plant parameters is assumed to be known so that five fixed

models having parameters identical to the plant can be used. At any instant, the current

plant parameter is detected and the system is controlled using the parameters associated

with the best model. In order to ensure a fast response, the instantaneous switching crite-

rion is used to decide which of the models performs best. It is seen that an error occurs at

the instants following a switching of the plant parameters, which persists over an interval of

length d, where d is the relative degree of the system. To avoid the error, the “new” control

input u would have to be computed d instants before a switching occurs. It is clear that

this is impossible since the switching sequence is unknown. Hence, the error is inherent. In

part (iii), the fixed models are replaced by adaptive ones which are initialized within a small

neighborhood N = {θ̂ | ‖θ̂− θi‖ < ε, i = 1 . . . 5} of the plant parameters, i.e. ε = 0.5. If the

identification error of a given model θ̂i, i = 1 . . . 5, is small, this model is updated while all

other models retain their current position in parameter space. The combined performance

criterion (iv) in equation (6.1) with α = β = 1/2 and ρ = 0.3 was found to result in accept-

able performance. In addition, observe that the parameters approach the true parameters

of the system. Finally, in part (iv) of the figure the experiment is repeated, but in this case,

the models are initialized in a larger neighborhood, ε = 1. The performance is seen to be

similar to case (i). The example demonstrates, that the performance of the MMST approach

in a time–varying environment critically depends on the location of the models and, hence,

the prior information about the plant. �

6.2 Proof of Stability

Stability proofs have been derived for linear deterministic and stochastic systems as well as

certain classes of nonlinear systems [23], [63]. In all these cases, the unknown parameters

are assumed to be constant. The principal stability question encountered in MMST can be

qualitatively described by considering two models Ξ1 and Ξ2 and two controllers Γ1 and Γ2.

The estimated output given by the two models is ŷ1 and ŷ2 respectively and the corresponding

estimation errors are ε1 and ε2. We assume that the plant Σ is stable with controller Γ1 in

the feedback path and unstable with Γ2. If, based on the switching criterion, Ξ2 is chosen
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at a specific instant, the controller Γ2 would be used in the feedback path resulting in an

unstable closed loop. The question that has to be addressed is how the switching criterion

should be chosen such as to result in the controller switching to Γ1 in a finite time. In what

follows, we present the proof of linear deterministic adaptive control using multiple models

which builds upon the arguments presented in chapter 3.1.4 in the single model case. Three

different configurations of models are considered:

(i) N adaptive models

(ii) One fixed model and one adaptive model

(iii) N − 2 models and 2 adaptive models

The plant is described by the deterministic equation

y(k + d) =
n−1∑
i=0

aiy(k − i) +
n−1∑
i=0

biu(k − i) (6.3)

where the constant parameters ai and bi are unknown. As in 3.1.3, the plant is assumed to

be minimum–phase and its relative degree d (delay) and order is known. The objective of

the control is to determine a bounded input u(k) such that the output of the plant y(k+ d)

asymptotically tracks a given bounded reference output y∗(k+d). It is assumed that y∗(k+d)

is known at time k (or alternately if y∗(k+d) = r(k), r(k) is specified). The reference model

in this case is a pure delay of d units, i.e. it has the transfer function z−d.

6.2.1 Case (i): All adaptive models

From our discussion in chapter 3.1.4 it is clear that a single model is sufficient to control an

unknown plant in a stable fashion. The objective of this paragraph is to show that this is

also the case when multiple models are used. More importantly, the closed–loop system is

stable even as the switching between the models (and, hence, the corresponding controllers)

is carried out in a random fashion.

If N models are used to estimate the plant parameters, and at time k the ith model θ̂i is

chosen, the control input u(k) is computed from the equation

y∗(k + d) = φ(k)T θ̂i(k) (6.4)

The control error at time k is given by

e(k) = εi(k) + φ(k − d)T [θ̂i(k − 1) − θ̂i(k − d)] (6.5)
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where εi(k) is the identification error of the ith model, see equation (3.29). If the model at

the next instant is chosen randomly as θ̂j, the control error e satisfies an equation similar to

(6.5) with i replaced by j. This process can be repeated at every instant and a model chosen

randomly from θ̂i, i = 1 . . . N . The important fact to note is that the regression vector is

the same for all of them. The parameters of all the models are estimated using the same

algorithm, only the initial conditions are different. From the properties of the estimation

algorithm (see e.g. chapter 2.1.1) we know that ‖θ̂i(k − 1) − θ̂i(k − d)‖ → 0 for all i. Hence

both terms on the right hand side of equation (6.5), when normalized, i.e. εi(k)

[1+φ(k−d)T φ(k−d)]
1
2

and φ(k−d)T [θ̂i(k−1)−θ̂i(k−d)]

[1+φ(k−d)T φ(k−d)]
1
2

tend to zero. Hence, using the same arguments as in the single

model case, it follows that e(k) grows at a slower rate than ‖φ(k)‖, ‖φ(k)‖ is bounded, and

limk→∞ e(k) = 0.

In the proof, any one of the adaptive controllers is chosen randomly to control the system.

This implies that with multiple models, the question of stability can be decoupled from that

of performance and the switching procedure can be based entirely on the latter. Notice, that

the proof can be directly extended to the case where adaptive models are either introduced

or removed, provided that at least one model (referred to as a free–running model) is not

disturbed during the adaptive process.

6.2.2 Case (ii): One adaptive model and one fixed model

If the plant is time–invariant, the benefit of having multiple models is that if the latter

are initialized at different locations in parameter space, one model θ̂i, i = 1 . . . N , may be

close to the plant and will result in a smaller error εi. However, if no adaptive model is

close to the plant, there may be no improvement in performance. It is clear that keeping

all models adaptive requires considerable computational overhead and is not efficient since

a single adaptive model was found to be adequate for stability in section 3.1.4. The idea

is to replace N − 1 adaptive models by fixed ones. These can be thought of as providing

convenient initial conditions for adaptation. In this section we consider the case of N = 2

models, one adaptive and one fixed.

The adaptive and the fixed model result in error equations ε(k) = θ̃(k)Tφ(k) and εf (k) = θ̃T
f φ(k)

respectively where, in general, only the error of the adaptive model ε(k) tends to zero. If

|ef (0)| < |e(0)| and switching criterion (iii) in equation (6.1) is used, the system will initially

start with the fixed model, and the control corresponding to it will be applied. However,

since Ji(k) is bounded while Jf (k) (of the fixed model) grows monotonically with k, the

system will switch to the adaptive model in a finite time. In the non–generic case that
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the fixed model is identical to the plant, εf (k) is zero and no switching occurs. The above

arguments are still valid if an arbitrary number N of fixed models are used. Notice that

εf (k) can be zero on a subsequence {kt}, t = 1 . . .∞ because the regression vector φ(kt) is

orthogonal to θ̃f at those instants of time. If criterion (i) is used, switching will not stop in

finite time since ε(kt) > εf (kt). This emphasizes the importance of using an integral criterion

in a time–invariant situation.

6.2.3 Case (iii): (N-2) fixed models and 2 adaptive models

If the fixed model in the previous paragraph is closer to the plant than the adaptive model (as

determined by the performance criterion J), the system switches to it and switches back to

the adaptive model once ε(k) has become small. However, faster tracking can be obtained if

a new adaptive model is initialized at the same value as the fixed model. In view of the above

discussion, the fixed models have to be located based on the past performance of the plant.

One adaptive model is free–running and is included to assure stability. A second model is

initiated whenever a fixed model is found to be superior. A large number of fixed models

may be needed to obtain one model with distinguished performance at which the adaptation

can be initiated. The reinitialization of the second adaptive model is central for improving

the performance of the system. If at any instant k0, Jf (k0) is found to be a minimum, the

adaptive model is initialized using the parameter vector θf and the performance index Jf (k0).

The adaptive process is continued. If, at a later instant k1, a different fixed model (with

parameter θg 
= θf ) is superior, the adaptive model is discarded and a new one is initialized

at θg and Jg(k1).

The introduction of the additional (re–initialized) model does not adversely affect the sta-

bility of the overall system. Let the system switch between fixed and adaptive models at

every instant of time. From the arguments provided in section 6.2.2, this can only last for

a finite interval of time, since the performance index of the free–running adaptive model

will eventually become smaller than the indices of all the fixed models. It is seen that the

existence of the free–running model is the key argument for convergence. If the plant is

rapidly time–varying, the error of a single adaptive model cannot tend to zero and the argu-

ments are substantially more difficult. In this case, all models can be made adaptive and the

switching criterion modified by using a finite window (i.e.
∑k

k−T e
2(ν)) or a forgetting factor

0 < ρ ≤ 1. In the ideal case, Ji(k) → 0 for all adaptive models, while Jf (k) > 0 for the fixed

models. The fundamental assumption made in this context is that at least one adaptive

model is close to every parameter that the plant is likely to assume. This has already been

observed in cases (iii) and (iv) of example 6.1.
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Figure 6.2: Multi–Model Adaptive Control (MMST)
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Chapter 7

Self–Organization

In this section we pursue our discussion on adaptive control of rapidly time–varying systems.

The parameter vector θ of the system is assumed to switch randomly between the elements

of a finite set S = {θ1, θ2, . . . , θN} where θj, j ∈ Ω = {1, 2, . . . , N} are unknown constant

vectors and the instants at which the switching takes place are also unknown. The integer

N (or an upper bound on N) is assumed to be known. As seen in the previous chapter, a

single adaptive model is –in general– not capable of assuring stability of the time–varying

system. If multiple (≥ N) adaptive models are used one has to show that the errors of at

least N such models tend to zero in order to obtain a bounded output error. In this context,

the assumption that the models are initialized close to the plant parameters was seen to be

of fundamental importance.

In this chapter, no such constraint is imposed upon the initialization of the models. A

method is proposed by which N models are simultaneously updated in order to identify the

elements of the set S. The approach relies upon a time–varying adaptive gain, the magnitude

of which depends upon the errors of all the models with respect to the plant parameter that

is in existence at a given instant. Extensive simulation studies reveal that for any initial

condition, the N identification models converge to N different plants contained in the set S.

The convergence is found to be a complex, nonlinear process. Our principal objective is to

prove theoretically that the proposed learning algorithm results in the convergence. This is a

formidable problem, and the investigations of the past two years have demonstrated that nu-

merous special cases and problems have to be addressed before the appropriate mathematical

tools are in place for dealing with the problem theoretically in a succinct fashion.

In the following, detailed analyses of the various issues are presented, often with a qualitative

flavor. Such qualitative explanations are essential to an understanding of the theoretical diffi-

115
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culties involved. The emphasis is on algebraic systems and on providing simple explanations

for the manner in which the N models converge to the N plants. The insights provided by

the convergence in such static systems motivates the use of similar procedures in dynamical

systems. Parts of the following discussion were presented at the twelfth Yale Workshop on

Adaptive and Learning Systems (Feiler and Narendra, 2003 [21]).

7.1 Introduction

Even in the non–adaptive case, theoretical results on the stability of time–varying systems

are sparse. They are restricted to special cases, such as vanishing or periodic time–variations.

In adaptive control, our goal is to use feedback in order to match the output of an unknown

time–varying system to a known time–invariant (reference) system. The indirect approach

consists in adjusting an identification model to obtain a small error and use the parameters

of the model for control. The following example illustrates that in a time–varying context,

its success in assuring bounded solutions critically depends upon the location of the models.

x(k + 1) = a(k)x(k) + u(k) a(k) ∈ S = {a, −a}, a > 1 (7.1)

The plant switches between the values ±a periodically with period 2T . The stabilizing

controller is defined as u(k) = −â(k)x(k) where â(k) ∈ {â, −â}, â > 0 are the parameters

of two (fixed) models. We determine the size of the neighborhood U = {â : |a − â| ≤ ε}
within which the models have to be located such that the closed–loop system has bounded

solutions. A straightforward calculation shows that,

|x(k + T )| =
∣∣(a+ â) · (a− â)[T−1]

∣∣ |x(k)| !≤ |x(k)| ∀ k > 0 (7.2)

At every instant, the controller is determined based on the model that performs best. Due to

the relative degree d = 1 of the plant, an erroneous control law will be applied at the instant

following a switching. This results in an unstable gain (a + â) > 1 in equation (7.2). With

an appropriately chosen â > 0, a stable gain (a− â) < 1 is obtained over the remaining T −1

instants of the switching interval. As the switching frequency increases the contribution of

the unstable gain becomes large. By solving the inequality in (7.2) for the worst case T = 2,

we obtain, √
a2 − 1 ≤ â ≤

√
a2 + 1 (7.3)

which determines the size of the neighborhood U and, hence, the location of the fixed models.

If adaptive models are used they must enter the neighborhood U in a single step if the control

law is to result in bounded solutions and the switching interval is T = 2. In general, at least
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p steps are needed for the adaptive model to converge to an unknown vector θ ∈ R
p where

p is the number of unknown parameters. This motivates the use multiple models, switching

and tuning. If there is a fixed model θ̂i in the neighborhood Uj of every plant θj, j = 1 . . . N ,

we may switch to θ̂i whenever the corresponding plant is in existence. Adaptation is thereby

achieved in a single step regardless of the dimensionality p of the parameter space. In view of

the above discussion, the closed–loop system will have bounded solution even if the switching

is fast (T = 2).

If the parameters of an unknown plant vary slowly, or if the parameters vary discontinuously

but remain approximately constant for a long period of time, classical adaptive control can

be used with a single model. If, however, the plant variations are both rapid and large,

the MMST approach has been found to ensure bounded solutions provided that at least

one of the N fixed models is sufficiently close to the plant so that adaptation from that

model results in satisfactory performance. It is clear that the choice of the models is an

important consideration while using the MMST approach. In papers dealing with the latter

it is claimed that the choice of the models would be based on the past performance of the

system —in other words, it involves a learning process [56].

It is obvious that the ways in which plant parameters can vary are infinite and would corre-

spond to the entire class of bounded piecewise continuous functions. To make the problem

analytically tractable we consider only the case where θ assumes a finite number N of con-

stant values, i.e. θ ∈ S = {θ1, θ2, . . . , θN}. Even in this special case, θ can switch randomly

between the elements of S. The switching is assumed to be regular in the sense that every

element of the set is assumed at least once within an interval of finite length T ∗ > 0, and

the plant remains constant over an interval of minimum length T > 0. Again, to keep the

arguments simple, we assume that θ(k) is periodic with period NT , where θ(k) ≡ θj, j ∈ Ω,

for T units of time. It is assumed that N is specified but that the elements of S and the

interval T are unknown. The first objective then is to determine the values θj asymptoti-

cally. A second objective is to define a control law, based on the best estimate, such that

the overall system is stable and all signals remain bounded. In focusing on this problem, we

are influenced by earlier work by (Kawato et al., 2001 [29]) on motor learning and control.

However, unlike our predecessors, our primary interest is in the stability of systems which

learn and adapt at the same time.

Even though the description that we have given thus far corresponds roughly to the problems

encountered in practice, we would like to abstract from this situation a problem that can

be posed analytically whose solution would contribute greatly to our understanding of the

control of unknown and rapidly time–varying dynamical systems. The following is a succinct
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statement of such a problem.

7.1.1 Qualitative Description

The elements of the vector θ represent the unknown parameters of a linear dynamical system.

θ can assume one of a finite number N of constant values θj, j ∈ Ω, and switches between

them at random instants of time but remains constant over an interval T = [kt, kt+1]. If

θ(k) = θj at a given instant, we shall refer to it as the jth environment. If kt and the jth

environment, which exists over the interval T are known (note that j and not θj is assumed

to be known), the identification problem becomes a relatively straightforward one. In such

a case, N models can be used to identify the N values θj, j ∈ Ω, with only one model

being updated at every instant of time (knowing that the jth environment exists at that

instant). The problem becomes truly difficult when neither kt nor the environment j which

is in existence are known at any instant. It is then not evident which of the N models has

to be updated. Our objective is to adapt N models simultaneously so that every model

converges to a different element of the set S, and the controlled system is stable.

7.1.2 The method

Assuming that θ(k) ∈ S = {θ1, θ2, . . . , θN}, where θj, j ∈ Ω = {1, 2, . . . , N} are unknown

constant vectors, N estimation models are used at every instant to generate estimates of the

elements of S. Under the assumption that θ(k) assumes every value θj ∈ S at least once in

a finite interval of length T , the objective is to determine the class of algorithms that will

result in convergence of each θ̂i(k) to one of the unknown parameter vectors θj, such that

for each element of S there is one model and no two models converge to the same element.

The idea is that to each model θ̂i an adaptive gain is assigned which depends on its relative

performance (i.e. when compared to all the other models). More precisely, the step–size, by

which parameter vector θ̂i is updated depends both on its estimation error εi(k) as well as the

errors εl(k), l 
= i of all the other models. If there is an l 
= i such that εl(k) is less than εi(k),

the step–size ηi(k) is decreased. If, in turn, εi(k) is the smallest among all the estimation

errors then ηi(k) is large. From the above discussion it is clear that in order to control the

system in a stable fashion, the models must be distributed in parameter space, such that for

every plant parameter θj, there is a model contained in its neighborhood Uj. The motivation

for introducing performance–dependent step–sizes is precisely to prevent all models from

converging to the same point. But this implies, that only the model that is close to a given

neighborhood Uj should be updated using a large step–size. This is in contrast to the fact
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that εi may become small as a result of the scalar product εi(k) = −φ(k− d)T [θ̂i(k− 1)− θ]

even while the parameter error θ̃i(k− 1) = [θ̂i(k− 1)− θ] is large at that instant. To prevent

this, the performance has to be assessed by means of a criterion Ji(k) defined in (6.1) as a

function of εi and its past values.

Finally, notice that the algorithm is such that the distribution of the models takes place

without help by a supervisor/ coordinator. This is possible since every model has full in-

formation about the performance of all its competitors. Hence, the title of this chapter,

self–organization (of multiple adaptive models).

7.1.3 Statement of the Problem

Consider a linear time–varying dynamical system,

y(k + d) =
n−1∑
ν=0

aν(k) y(k − ν) +
n−1∑
ν=0

bν(k)u(k − ν) (7.4)

In other words, y(k + d) = φ(k)T θ(k), using the time–varying plant parameter vector

θ(k) = [a0(k), . . . , an−1(k), b0(k), . . . , bn−1(k)]
T

and φ(k) = [y(k), . . . , y(k − n + 1), u(k), . . . , u(k − n + 1)]T . It is known that θ(k) ∈ S =

{θ1, θ2, . . . , θN} where S ⊂ R
2n. M adaptive models are defined,

ŷi(k + d) = φ(k)T θ̂i(k) i = 1 . . .M, M ≥ N (7.5)

where θ̂i(k) and ŷi(k + d) are estimates of θ ∈ S and y(k + d) respectively. To keep our

arguments simple, we set M = N (→ see section 7.2.2 for a discussion regarding the number

of models required for convergence). In order to update the models θ̂i(k), any standard

estimation algorithm of the form (2.4) can be used

θ̂i(k) = θ̂i(k − 1) +MP (k)φ(k − d)εi(k) (7.6)

where εi(k) = y(k) − ŷi(k) is the estimation error which satisfies

εi(k) = −φ(k − d)T [θ̂i(k − 1) − θ] (7.7)

In view of its simplicity and geometric interpretation, we choose the parameter projection

algorithm, i.e.

MP (k) =
ηi(k)

φ(k − d)Tφ(k − d)
(7.8)
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While the projection vector φ(k − d) is the same for all models, its length varies according

to the error εi(k) and step–size ηi(k) associated to every model θ̂i(k), i ∈ Ω. The step–size

is a function of the performance of θ̂i(k) relative to all the other models:

ηi(k) = η0

1
Ji(k)

1
J1(k)

+ 1
J2(k)

+ · · · + 1
JN (k)

0 < η0 ≤ 1 (7.9)

As stated earlier, the performance index Ji(k) is used to determine which model is closest to

a given plant θj. In general, this cannot be concluded from the instantaneous error εi(k) but

requires observing a sequence of estimation errors {εi(k), . . . , εi(k − T0)} over an interval of

sufficient length T0. This will be made more precise at a later stage (in section 7.3.1). For

the moment we assume that the performance index provides an unambiguous measure of the

parameter error, i.e. the model with the smallest performance index Ji(k) = mins∈Ω Js(k)

corresponds to the model that is closest to θj in parameter space, θ̃i(k) = mins∈Ω ‖θ̂s(k)−θj‖.
As a consequence of (7.9), only the closest model is updated by a large amount and, hence,

its advantage over the other models consolidated. Notice that the nonlinear function (7.9)

does not define a “winner takes it all”– policy since the sum of all step–sizes equals η0, i.e.

ηl(k), l 
= i, is zero only in the limit when Ji(k) → 0 as k → ∞ (if indeed θ̂i converges to θj).

In the case of convergence, there must be a stage after which θ̂i enters the critical neigh-

borhood Uj of θj. In order for the closed–loop system to be stable, there must be one of

the N models in every such neighborhood Uj, j = 1, . . . N . If the corresponding parameters

are used to define the control law, we obtain bounded solutions even as the system switches

randomly between the elements of the set S. In addition, the tracking error tends to zero,

as the models converge to their respective parameters θj, j = 1, . . . N . As seen previously,

the control action will be incorrect over an interval of length d after a switching in the envi-

ronment has occurred. Suppose that θ(k− 1) ≡ θ1 and θ(k) ≡ θ2. Then the control input at

instant k− d should have been computed based on the parameter estimate at instant k, i.e.

θ2. However, at k − d it is not known that the environment changes at k nor which θj ∈ S

exists at that instant. A critical assumption is therefore that the interval T over which the

plant is constant is sufficiently large in order to allow for the controller to compensate for

its erroneous first d steps during the remaining T − d instants of time.

The following assumptions [A] are made:

1. The system is of known, constant order n and relative degree d.

2. It is minimum–phase for every constant value θ ∈ S.

3. θ(k) assumes every value θ ∈ S at least once in a finite interval of length T ∗ and

remains constant over an interval T ≥ max{T0, d+ 1}.
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Hence, while the system is rapidly time–varying in the sense that the parameter variations

are rapid and large, it is slowly time–varying when compared to the impulse responses of its

time–invariant subsystems. Our objective is twofold:

1. Prove that the algorithm defined in equations (7.6), (7.8) in conjunction with the time–

varying adaptation gain (7.9) results in asymptotic convergence of each θ̂i(k) to one of

the unknown parameter vectors θj, such that for each element of S there is a model

and no two models converge to the same element.

2. Determine a bounded control input based on the model that performs best (according

to a criterion that has to be specified) such that the tracking error tends to zero except

for finitely many instants at which the environment switches.

7.2 Parameter Convergence in Static Systems

Our first objective is to identify a set of plants. While this is a standard problem if the

elements of the set are identified one by one, the specific problem here is that the identification

is carried out for all plants simultaneously. In the problem statement, an algorithm to update

the parameters has been proposed consisting of a standard projection scheme (7.6) and a

time–varying adaptive gain (7.9). The justification for using this algorithm comes from

extensive simulation studies in which the algorithm was seen to be effective in solving the

simultaneous identification problem. The simulations will be presented at a later stage. Here,

we are primarily interested in proving that the algorithm indeed results in the convergence

of a set of models to the set of plants.

While attempting to prove convergence, it is useful to consider static systems which are

substantially simpler analytically and at the same time retain the principal features of the

original problem. When no dynamics are present, the parameters are adjusted at every

instant based on their distances to the prevailing plant parameter θ which is an element of

the set S = {θ1, θ2, . . . , θN}. If Ŝ = {θ̂1, θ̂2, . . . , θ̂N} is the set of model parameter vectors the

error vector between elements of S and Ŝ is given by θ̃ij where θ̃ij = θ̂i − θj. The first index

i refers to the ith model, whereas the second index refers to the jth environment, which

corresponds to a point in R
p, e.g. p = 2n. Let the distance of the ith model to the jth

point be denoted by dij = ‖θ̃ij‖. For convenience of notation the plant index j is dropped

whenever no particular reference is made to any specific element in S. We assume that an

algorithm can be determined by which the norms of all the error vectors are reduced at every
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instant according to the equation

θ̃i(k + 1) = θ̃i(k) − ηi(k)θ̃i(k) (7.10)

where the step–size ηi(k) depends upon the distances di(k), i ∈ Ω of all models. We define:

ηi(k) = η0

1
d q

i (k)

1
d q
1 (k)

+ 1
d q
2 (k)

+ · · · + 1
d q

N (k)

q > 1 (7.11)

In contrast to (7.9), the step–size is directly defined in terms of the parametric distance

di(k). Since di is known for all i ∈ Ω the location of an element θ ∈ S in p–dimensional

parameter space could also be determined using p + 1 distance measurements (provided

that N ≥ p + 1). However, as stated above, the static algorithm is merely an abstraction

of the situation encountered in the dynamical case. Hence, all elements of the set S are

identified simultaneously by sequentially updating the position of N adaptive models, the

self–organization of which we are interested in studying. In intuitive terms, all models move

concentrically towards the point that is currently in existence. The amount by which they

update their positions is governed by equation (7.11). The objective is to show that the

models separate and converge to different elements of the set S.

The plant parameters θ(k) assume a finite number N of constant values, i.e. θ ∈ S =

{θ1, θ2, . . . , θN}. We assume that {θ(k)} be an ergodic Markov process with state space S.

Because of ergodicity, there is a T ∗ > 0 so that the plant assumes every element of S at least

once over an interval of finite length T ∗, i.e. for every θj, j ∈ Ω, there is a t ∈ [k, k + T ∗]

for which θ(t) ≡ θj. T ∗ is referred to as a cycle. As an example, we assume that θ(k) is

periodic with period T ∗ = TN , where θ(k) ≡ θj ∈ S for T units of time. In such a case, the

algorithm defined in equations (7.10) and (7.11) yields:

Proposition 7.1 For every θj ∈ S there is a unique θ̂i ∈ Ŝ which satisfies:

lim
k→∞

‖θ̂i(k) − θj‖ = 0

�

Each model converges to a different element of S. Since no prior information is available

about the possible location of the parameters θj ∈ S, j ∈ Ω we assume that the model pa-

rameters are initialized at random, i.e. no model is distinguished with respect to any element

of S. Simulation studies have revealed that the parameters converge in a non–monotonic

fashion. Hence, no straightforward arguments exist, by which parameter convergence can

be established. An additional difficulty arises from the fact, that it is not clear a priori

which model converges to which parameter. Indeed, depending on initial conditions and the

environment any model may converge to any of the parameter vectors θj.
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In the following, we present a detailed analysis of those aspects of the algorithm which serve

to set up a mathematical framework within which the convergence problem can be addressed.

The proof itself remains an open question.

7.2.1 Time–invariant Environment

In the definition of the time–varying adaptive gain the inverse of the distance of any model

to the point that is currently in existence is raised to the power q. It is seen that q critically

influences the convergence properties of the algorithm. This can be appreciated even in the

case where no switching occurs, i.e. the environment is time–invariant.

Let {θ̂1, θ̂2, . . . θ̂M} be a collection of models. Simulations studies have revealed that for q ∈
[0, 1] all models converge to the same point whereas for q ∈ (1, ∞) only the one that is

closest converges. In the second case, the algorithm was tested for q ≤ 12, since any larger

exponent leads to small numbers which cannot be handled numerically by the computer.

In the following, we provide a proof that the value q = 1 indeed separates two qualitatively

different ways of convergence. Without loss of generality, we assume that the number of

models is M = 3 and d1 < d2 < d3. We obtain the nonlinear coupled difference equations:

d1(k + 1) = d1(k) − [d2(k)d3(k)]
q d1(k)/dS(k) (7.12)

d2(k + 1) = d2(k) − [d1(k)d3(k)]
q d2(k)/dS(k) (7.13)

d3(k + 1) = d3(k) − [d1(k)d2(k)]
q d3(k)/dS(k) (7.14)

where dS(k) = [d2(k)d3(k)]
q +[d1(k)d3(k)]

q +[d1(k)d2(k)]
q is the normalizing term. The time

index k will be omitted wherever no confusion arises.

First notice, that since θ̂1 is closest it must converge for any q. This can be seen as follows.

Dividing equation (7.12) by [d2d3]
q we obtain:

d1(k + 1) = d1(k) − d1(k)

1 +
[

d1

d2

]q
+
[

d1

d3

]q (7.15)

In view of the above assumption,
[

d1

d2

]
< 1 and

[
d1

d3

]
< 1. Hence,

d1(k + 1) < d1(k) − 1/3 d1(k) (7.16)

But this means that 0 ≤ d1(n) < (2/3)n d1(0), and hence

lim
n→∞

d1(n) = 0 (7.17)

In proving the second property, i.e. the fact that limk→∞ d2(k) 
= 0, limk→∞ d3(k) 
= 0, for

all q > 1, we rely on the following lemma.
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Lemma 7.1 Given the scalar difference equation

x(k + 1) = [1 −m(k)]x(k) x(0) > 0 (7.18)

where 0 < m(k) < 1 for all k ∈ [0 ∞). If m(k) < 1/kq and q = 2 there exists a constant

c̄ > 0 such that limk→∞ x(k) → x̄ > c̄ x(0). �

Proof. Let m(k) = 1/kq and k > 1. The solution of (7.18) can be computed explicitly as

x(n) =
n∏

k=2

[
1 − 1

kq

]
x(0) (7.19)

For q = 1 we obtain,

x(n) =

[
n− 2

n− 1

] [
n− 3

n− 2

]
. . .

3

4

2

3

1

2
x(0) =

1

n− 1
x(0) (7.20)

Hence, x(n) → 0 as n→ ∞. In contrast to that, for q = 2 the infinite product becomes,

x(2n− 1) =

[
(2n− 1)2 − 1

(2n− 1)2

]
·
[
(2n− 2)2 − 1

(2n− 2)2

] [
n− 1

2n− 3

]
· ... ·15

16

8

9
· 3

4
· x(0)

=

[
n

(2n− 1)

]
· 1 · ... ... · 1 · 1 · x(0)

= [n/(2n− 1)] x(0)

(7.21)

As n → ∞ we obtain x(n) → 1/2x(0). In other words, the above inequality holds with

c̄ = 1/2. �

In the following, we show that θ̂2 and θ̂3 satisfy the conditions of the lemma. The update

equations for the models (7.13) and (7.14) are of the form (7.18) where m corresponds to

[d1d3]
q/dS and [d1d2]

q/dS respectively. In the case of θ̂2, we divide (7.13) by [d3 d2]
q and

obtain

m(k) =

[
d1

d2

]q
1 +
[

d1

d2

]q
+
[

d1

d3

]q < [d1(k)

d2(k)

]q

(7.22)

Hence, if we can show, that dq
1(k)/d

q
2(k) < 1/kq and q = 2, then θ̂2 satisfies the conditions

of the above lemma. The evolution of d1/d2 is governed by the following equation:

d1(k + 1)

d2(k + 1)
=

(dq
2 + dq

3) d
q
1

(dq
1 + dq

3) d
q
2

d1(k)

d2(k)
(7.23)

A straightforward calculation shows that the first term on the right hand side is strictly less

than one, for any fixed q > 0. Hence there exists a constant a > 1 such that

d1(k + 1)

d2(k + 1)
<

1

a

d1(k)

d2(k)
(7.24)
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for all k > 0. This is equivalent to

d1(n)

d2(n)
<

[
1

a

]n

· d1(0)

d2(0)
<

[
1

a

]n

(7.25)

since d1(0)/d2(0) < 1. But this means, using (7.22), that there is a k̄ > 0 such that,

m(k) <

[
1

aq

]k

<
1

kq
for k > k̄ and any fixed q > 0 (7.26)

The last inequality holds because any geometric sequence decays faster than a harmonic

sequence. Hence, the conditions of the lemma are fulfilled, so

lim
k→∞

d2(k) =

{
0 , q = 1

d̄2 > 0 , q = 2
(7.27)

By the same arguments, it can be established that also d3 does not tend to zero if q = 2.

Hence, only θ̂1, i.e. the closest model, converges.
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Figure 7.1: Converge of the models for different values of the parameter q

7.2.2 Elementary Properties

Even when the environment is constant the algorithm displays an important property: The

models compete for the largest adaptive gain and only the closest one converges if q = 2. It

is clear that this is a prerequisite for the convergence in a time–varying environment which

involves a sorting process, i.e. no two models must converge to the same point.

Proving that the sorting process indeed takes place even when the environment switches, is

substantially more difficult than the analysis performed in the time–invariant case. In the

following section, some elementary properties of the algorithm are collected which are easily

accessible.
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Convergence to a Convex Hull

In order to motivate the algorithm, we assumed that all the models are initialized far from

the plants in parameter space. Hence, none of the models is distinguished with respect to

any plant and we expect all models to behave similarly. Given the set S = {θ1, θ2, . . . , θN}
of plants, we define a convex hull H of S ⊂ R

p as follows:

H = {λ1θ1 + · · · + λNθN | θi ∈ S, λi ∈ [0, 1] and ΣN
i=1λi = 1, i = 1 . . . N}

The following statement refers to models lying outside the convex hull H:

Lemma 7.2 Given i ∈ Ω with θ̂i /∈ H, then θ̂i converges monotonically to H,

i.e. dist(θ̂i(k), H) := diH(k) → 0 monotonically as k → ∞. �

Proof. From the algorithm we see that every model reduces its distance to an element

contained in H at every instant k > 0. The lemma follows from the definition of the distance

of a model θ̂i to the set H
diH(k) := min

ξ∈H
‖θ̂i(k) − ξ‖

�

Hence, without loss of generality, all models can be initialized inside the convex hull (→ see

figure 7.2).

Models

Plants

H

diH
ξ

θ1

θ2

θj θ̂i

Figure 7.2: Convex hull of the plants

Ordering of the steps

The previous statement holds for the set of all models. In this paragraph we examine the

dynamics of an individual model. The quantities of interest are the distances dij = ‖θ̃ij‖ =
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‖θ̂i−θj‖ between all the models and all the plants. If, at a given instant, the plant parameters

are θ(k) ≡ θj we obtain from equation (7.10),

dij(k + 1) = dij(k) − ηij(k)dij(k) (7.28)

for all i ∈ Ω and any fixed j ∈ Ω. As before, the plant index j is omitted whenever no

particular reference to any element θ ∈ S is made. The exponent q in the definition of the

adaptation step–size η(k) in equation (7.11), was found to be a critical parameter. For q > 1,

we observed competitive behavior among the models in the case where the environment is

constant. This relates to a fundamental property, which can be stated as follows: The

amount by which the models reduce their distances to the prevailing plant parameter is

ordered according to their relative distances from that parameter. We will refer to such an

amount as a “step” which is defined by:

si(k) = di(k + 1) − di(k) = ηi(k)di(k) (7.29)

Using the definition of ηi from equation (7.11) we obtain

si(k) =
dq

1 . . . d
q
[i−1] di d

q
[i+1] . . . d

q
N∑N

k=1

∏
l �=k d

q
l

(7.30)

Let the indices i ∈ Ω be assigned such that

d1 < d2 < · · · < dN (7.31)

The following lemma regarding the ordering of the steps holds:

Lemma 7.3

di < di+1 ⇒ si > si+1 ∀ i ∈ Ω iff q > 1 (7.32)

Proof. From equation (7.30) we have:

si = 1
dS
dq

1 . . . d
q
i−1 di d

q
i+1 . . . d

q
N

si+1 = 1
dS
dq

1 . . . d
q
i di+1 d

q
i+2 . . . d

q
N

(7.33)

where dS =
∑N

k=1

∏
l �=k d

q
l . We obtain

si

si+1

=
dq−1

i+1

dq−1
i

> 1 since di+1 > di and q > 1

�
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θ̂1θ̂1 θ̂1

θ̂2θ̂2 θ̂2

θ̂3θ̂3 θ̂3

θ1θ1θ1

θ2θ2θ2

θ3θ3θ3

Figure 7.3: Evolution of the parameters for different values of q

The simulation in figure (7.3) illustrates the importance of the condition q > 1 in the case

of three models and three plants. At every step, the formation of the models is ordered

with respect to the prevailing plant parameter θ, in the sense that the ratio of the distances
di+1

di
> 1 increases:[

di+1

di

] ∣∣∣
k+1

=
1 − ηi+1

1 − ηi

di+1

di

∣∣∣
k

=
dq

i+1

∑
l �=i+1 dq

l

dq
i

∑
l �=i d

q
l︸ ︷︷ ︸

>1

di+1

di

∣∣∣
k
>
di+1

di

∣∣∣
k

(7.34)

The inequality follows from the fact that di+1 > di. At any step, the algorithm performs

an elementary sorting operation with respect to the current plant parameter. Our aim is

to prove that the subsequent application of an elementary sorting operation to the set of

models results in overall organization of the models.

θ1
θ1

θ2

θ2

θ3
θ3

θ̂i
θ̂i θ̂i+1

θ̂i+1

Figure 7.4: The effect of a step to θ1 in two different configurations

It is clear that a step towards the current plant parameter also affects the distances to all

the other parameters. While the former results in an advantage of the closest model it is
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not clear whether it contributes to the overall organization of the models. As illustrated

in figure (7.4) this entirely depends on the geometry of the model–plant configuration. If

θ1 and [θ2, θ3] are on opposite sides of θ̂i, the fact that di+1/di increases at a step to θ1

results in a reinforcement of the “pole position” of θ̂i with respect to θ1 while θ̂i+1 remains

closer to θ2. In the right part of the figure the same step seems to be detrimental for the

overall organization since θ̂i gains with respect to θ1 and θ2. The step results in “mixing”,

i.e. it is not clear, whether θ̂i eventually converges to θ1 or θ2. Since no assumptions on

the location of the plant are made there exists an infinite number of possible configurations.

This constitutes the hard part of the proof.

Equilibrium Set

An equilibrium corresponds to the situation where the amount by which all models are

updated in parameter space is zero. In other words,

sij(k) = 0 (7.35)

for all i, j ∈ Ω and all k > 0. It is clear that, for (7.35) to hold, at least one of the factors

in the numerator expression of (7.30) must be zero. Since S consists of N distinct values, a

model cannot have zero distance to more than one plant.

Without loss of generality assume that s11 = 0 because d11 = 0, i.e ‖θ̂1 − θ1‖ = 0. This

implies d1j 
= 0 for all j \ {1}. Once the plant switches to θ2, the distance di2, i 
= 1 of a

different model must be zero in order to obtain s12 = 0. The same is true for every θ ∈ S.

Since the numerator in equation (7.30) is the product of N such distances we conclude:

If one model θ̂i is in an equilibrium state, i.e. di(k + 1) = di(k) ∀ k > 0, then for every θj ∈ S

there must be a model θ̂l for which ‖θ̂l − θj‖ = 0, for all j, l ∈ Ω, i.e. for every plant there

must be a model with zero distance. It follows that all models attain the equilibrium set

simultaneously, i.e. they converge simultaneously. Note that the number of models M may

exceed the number of plants N .

Lemma 7.4 If M < N , no model converges. If M = N , all models converge simultaneously

and have zero distance to the plants asymptotically. Finally, if M > N , all models converge

simultaneously but only N of them have zero distance asymptotically (→ figure 7.5). �

The invariant set is defined as

E = {dij | df(i) j = 0 whenever f(i) = j, for all i, j ∈ Ω}
where f(·) : Ω → Ω is a rearrangement of the model indices such that every model has the

same index as the plant to which it converges. Note that since any model may converge to
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any plant (depending on the initial conditions) there are N ! possible rearrangements of the

model indices.

M = 3, N = 4

M = 4, N = 4

M = 5, N = 4

θ̂1

θ̂1

θ̂1
θ̂2

θ̂2

θ̂2

θ̂3

θ̂3

θ̂3

θ̂4

θ̂4

θ̂5

θ̂5

θ1

θ1

θ1

θ2

θ2

θ2 θ3

θ3

θ3

θ4

θ4

θ4

Figure 7.5: For convergence, M ≥ N

7.2.3 Cycle vs. Instantaneous Dynamics

The dynamics of the models in parameter space is given by equations (7.10) and (7.11). Since

the environment switches the right–hand side of the resulting state equations is discontinuous.

Moreover, since the switching is time–dependent, the system is nonautonomous. Under the

assumption that the switching is periodic, we may determine the interval T over which

the environment is constant and define a new time scale where one instant corresponds to

an interval of length NT which will be referred to as a “cycle”. The resulting mapping

(corresponding to a Poincaré–section of the original orbit → see e.g. [12]) is autonomous.

In view of the definition of the step–size η, we propose a mathematical description of the

system using only distances. It is clear that the state of the system at a given instant can
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α1 α2

L

Figure 7.6: Geometry of a model-plant configuration

be described by the distances dij between the elements of the set of plants S and the set

of models Ŝ. If M = N , we obtain N2 state variables. However, at a given instant, only

N of the N2 distances are “effective states”, in the sense that their evolution is described

by a difference equation of the form (7.28). If θ(k) ≡ θj at a given instant, the state of the

system consists of N distances d1j(k), . . . , dNj(k). All other distances diΛ(k), Λ = Ω \ {j},
are output variables which correspond to the distance of model θ̂i to all points which are not

in existence at instant k. However, their role changes once θ(k) = θl, l ∈ Λ.

In summary, only N distances are effective states at a given instant but all N2 distances

assume the role of an “effective state” within a cycle. The output is a function not only

of the state but depends also on the geometry of the model–plant configuration. This is

illustrated by the following example.

Example 7.1 Choose N = 2 points θ1, θ2 ∈ R
2 and locate M = 2 models θ̂1(0), θ̂2(0)

arbitrarily in R
2. Define L = ‖θ2 − θ1‖. We consider the dynamics of θ̂1 over one cycle

NT = [0 , 2] where θ(0) ≡ θ1 and θ(1) ≡ θ2, i.e. T = 1. Equivalent equations hold for θ̂2.

When θ1 is in existence, the dynamics are described by:

d11(1) = [1 − η11(0)] d11(0)

d12(1) =
√
d2

11(1) + L2 − 2 d11(1)L cosα1(1)
(7.36)
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Figure 7.7: Output function for different values of the angle αi at θi

Here, d11 is a state variable and d12 can be regarded as the output of the system since it is

given by an algebraic equation which depends on d11. In addition, the output is a function

of the angle α1 at θ1 which, in turn, depends on the initial condition θ̂1(0), see figure (7.6).

As mentioned above, geometry plays a key role in the convergence problem. A step towards

θ1 reduces the distances to both points if α > π/2, while for α < π/2 and d2
11 + d2

12 < 1 (i.e.

inside the Thales–circle of diameter L) a step towards θ1 results in an increase of distance

to θ2. This is illustrated in figure (7.7), using L = 1 for simplicity. At the next instant, θ2

is in existence and we obtain:

d12(2) = [1 − η12(1)] d12(1)

d11(2) =
√
d2

12(2) + L2 − 2 d12(2)L cosα2(2)
(7.37)

In this case, d12 is the state and d11 is the output of the system. Equivalent statements about

the dependency of the output value on the angle α2 at θ2 as above hold and are illustrated

in the right part of figure (7.7). The angle α2, in turn, is determined by θ̂1(1), i.e. it depends

upon the previous step in which θ1 was in existence. Hence, it is possible to determine d11(2)

from d11(0) and d11(0). However, the map is not unique since η11(0) and η12(1) have not

been specified yet. From definition (7.11) it is clear that η11(0) depends not only on d11(0)

but also on the distance of the second model, d21(0). The same is true for η12(1) which

depends on d12(1) and d22(1). But this means that, when determining d11(2), the evolutions

of both models θ̂1 and θ̂2 enter the equation. Using (7.36) and (7.37) and the corresponding

equations for θ̂2 it is possible to compute a mapping fcyc : R
4 → R

2:

[d11, d12]
+ = fcyc ([d11, d12, d21, d22]) (7.38)

where the superscript + refers to the distances after a cycle of length 2 (since T = 1). The

simulation in figure (7.8) demonstrates that the phase trajectory of the system has the shape
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of the output function ( → figure 7.7) since at a given instant only one of the distances is a

state variable. Note that for different switching periods and identical initial conditions the

models converge to two different equilibrium points. While [d11, d12] → [0, 1] in the left

simulation, [d11, d12] → [1, 0] in the right simulation when T = 2. The objective is to show

that the ω–limit set of the dynamical system defined by (7.38) is equal to one of the limit

points.
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Figure 7.8: Convergence of 2 models to the vertices of a convex set

The algebraic expression for fcyc is very complex and does not offer any insight into the

behavior of the corresponding dynamical system. Because of lemma 7.2 the models mono-

tonically converge to the line, which represents the convex hull of θ1, θ2. Hence, we may

assume that θ̂1, θ̂2 have already been initialized on the line connecting θ1 and θ2. The de-

pendency on geometry disappears, since α1 ≡ 0 and α2 ≡ 0 for all k > 0. In this case it is

reasonable to present an algebraic expression for fcyc. Again, to keep the expression simple,

we assume that T = 1 and η0 = 1, where η0 is the nominal step–size used in (7.11). In

contrast to the general case, only two distances d11(0) and d21(0) are necessary to uniquely

determine the solution at the end of a cycle, since d12 = L − d11 and d22 = L − d21. We

obtain [d11, d21]
+ = fcyc([d11, d21]):

d+
11 =

d11
3

d21
2 + d11

2 +

[
L− d11

3

d21
2 + d11

2

] [
1 +

[
Ld21

2 + Ld11
2 − d11

3
]2[

Ld21
2 + Ld11

2 − d21
3
]2
]−1

(7.39)

d+
21 =

d21
3

d21
2 + d11

2 +

[
L− d21

3

d21
2 + d11

2

] [
1 +

[
Ld21

2 + Ld11
2 − d21

3
]2[

Ld21
2 + Ld11

2 − d11
3
]2
]−1

(7.40)
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The evolution of the models in parameter space is described by nonlinear coupled difference

equations (7.39) and (7.40) in which the dependency on the environment has been removed.

Note that the equation is only valid for T = 1. It is clear that this representation is equiv-

alent to the “instantaneous” equations (7.36) and (7.37). However, it may offer analytical

advantages, since the system is autonomous. On the other hand, the algebra involved is

substantially more complex than in the case where individual steps are considered.

A central question regards the stability and region of attraction of an equilibrium point.

Example 7.2 Suppose that the models are initialized close to θ1, and θ2, i.e. d11 < ε and

d21 > L−ε. The question is whether the equilibrium point [d11, d21] = [0, 1] is asymptotically

stable. If so, we are interested in its region of attraction, i.e. we ask for the largest ε such

that
d+

11 < d11 ∀ d11 < ε

d+
21 > d21 ∀ d21 > L− ε

(7.41)

A straightforward calculation, in which we replace d11 in equation (7.39) by ε and d21 by L−ε
yields ε < ε0 = 0.4. Figure (7.9) illustrates that d+

11 −d11 < 0 for all ε < ε0 and d+
21 −d21 > 0

for all ε < 3/2 ε0. Hence, fcyc is a contraction mapping whenever ε < min{ε0, 3/2 ε0} = ε0

and [0, 1] is asymptotically stable with region of attraction A = {[d11, d21] | d11 < ε0, d21 >

1 − ε0}. It is clear that the computations are substantially more complex when the period

over which the environment is constant is T > 1 or when the number of plants and models

is N > 2.
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Figure 7.9: Relative decrease (increase) of d11 (d21) as a function of ε

The model update equations (7.28) define a dynamical system. Its positive orbit is described

by the sequence {dk}∞k=0 where dk ∈ R
N2

. When considering cycles, we are looking at a

subsequence of the form {dkt}∞t=0 with kt ∈ N, kt → ∞ as t→ ∞ and (kt − kt+1) = T ∗ = NT .
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The objective is to show that {dkt}∞t=0 converges to an element d̄ ∈ E in the ω–limit set E,

i.e. one of the N ! equilibria defined above. For if this is the case, the “full” sequence {dk}∞k=0

also converges to d̄ ∈ E since d̄ is invariant, i.e. the system initialized at d̄ remains there for

all k even if k 
= kt. This is clear from our discussion in section 7.2.2. In particular, there is

no closed orbit contained in the finite set E.

If some property P can be proven for {d(kt)} it is only because another property P ′ which

is related to P holds for the original sequence {d(k)}. In order to understand (and exploit)

the relationship between P and P ′, considerable insight into the qualitative behavior of the

algorithm is needed. This is provided in the next section.

7.2.4 Qualitative Behavior of the Algorithm

Extensive simulation studies have been carried out which resulted in asymptotic convergence

of N models to N plants independent of the value of N (→ figure 7.11). In this section,

some of the characteristic features of the algorithm are collected. The central observation

is that the configuration of the models gradually becomes more ordered. This property was

already shown to depend on lemma 7.3, i.e. the fact that the steps of the models are ordered

according to their relative distances to the prevailing plant parameter. Since the equation

describing the dynamics of the models become very complex when N is large, an effort was

made to establish convergence using only lemma 7.3 and pure logic. Although, the approach

turned out to be inconclusive it provides a great deal of insight into the different stages of

the ordering process.

Convergence Logic

Knowing that the plant parameter assumes the value of every element of S at least once in

an interval of finite length T ∗ the objective is to determine the logic behind the ordering

process which ultimately leads to convergence. Intuitively, “order” refers to the fact that all

the models attain a distinguished position with respect to different elements in S.

Definition A model θ̂i has a distinguished position with respect to a point θj ∈ S if there

is a k̄ > 0 such that

‖θ̂i(k) − θj‖ = min
s∈Ω

‖θ̂s(k) − θj‖ ∀ k > k̄

θ̂i is the closest among all the models with respect to θj. The key point to note is that it

remains closest for all k ∈ (k̄, ∞). The definition is prompted by an observation that has
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Figure 7.10: Convergence of 10 models to 10 plants (periodic environment with T = 2)

been made through simulation studies that if a model remains closest to a particular point

it also converges to that point. The question is, whether a model θ̂i which is distinguished

with respect to θj at instant k will be replaced by another model θ̂i+1 at any future instant

of time. The fact that the role of being distinguished passes from one model to another will

be referred to as an “overtake”. It is intuitively clear that there can be no model θ̂i which

remains in a distinguished position with respect to more than one point. For, as figure (7.7)

illustrates, the closer θ̂i approaches one point, the more it increases its distance from the

other points. Hence, if θ̂i has multiple distinguished positions initially, there must be an

overtake. The critical step in proving self–organization is to show that there will be only

a finite number of overtakes. In other words, we have to show that there will be a stage

when every model remains in a distinguished position for all future instants of time. We

summarize:

Fact 1: If θ̂i is distinguished with respect to θj, it converges to θj. �

This can be seen as follows: The fact that θ̂i is distinguished implies (by lemma 7.3) that its

step towards θj is the largest among the models: si > sl, ∀ l ∈ Ω/{i}, where si was defined
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in equation (7.29). It does not yet imply that, at the end of a cycle, θ̂i ends up closer to θj

than it was before. This will be true only eventually, when the number of possibilities for θ̂i

to depart from θj has decreased. Suppose (in contradiction) that the distance dij = ‖θ̂i−θj‖
increases.

Fact 2: dij does not increase for all k > 0, unless θ̂i is overtaken with respect to θj. �

An overtake with respect to θj means that another model θ̂f appears with the property that

dfj < dij. Suppose that dij increases but no such model θ̂f appears. The increase of dij is due

to the steps sil towards all the other points θl, l ∈ Ω/{j}. The exact amount of the increase

is given by the projection of sil onto the radius of the circle around θj which we denote by

σil, see figure (7.11). This means that the distance of θ̂i to the set S/{θj} decreases in some

sense. However, θ̂i cannot be closest to all the points θl, l ∈ Ω/{j}. It follows, that σil is

bounded by the step of some other model which is closer to θl than θ̂i is. As k → ∞, the

step sij = σij to θj is the only quantity which is not bounded by the distance of any other

model. Hence, there must be a stage k0 after which dij decreases.

σil
sil

θj

θl+1θl

θN

θ̂i

θ̂+
i

sij

Figure 7.11: Evolution of ‖θ̂i − θj‖ over a cycle

If, on the other hand, θ̂f takes over with respect to θj and remains close to it, dij cannot

decrease but the same argument as before holds for θ̂f , i.e. there must be a stage after which

dfj decreases. The most adverse situation is when θ̂i and θ̂f interchange their role of being

the closest model with respect to θj over a number of cycles. In such a case, we have to

show that the oscillation cannot persist. In other words, the conditions for the existence of
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overtakes have to be investigated.

Fact 3: A sufficient condition for an overtake is that θi is closest to more than one point. �

Actually, a necessary condition would be more useful to prove the non–existence of over-

takes. However, such a condition could not be established since it requires a more detailed

description of the model configuration (such as the state–space description discussed in sec-

tion 7.2.3). Much effort was spent in the attempt to establish that an overtake can lead to

at most N − 2 future overtakes. The idea was that if θ̂f and θ̂i interchange their roles, they

must end up close to each other. Additional information is provided by the fact, that an

overtake can only happen indirectly, i.e. at a step to a point contained in S/{θj}. Supposing

that θ̂f took over θ̂i at a step to θk, the conjecture was that –after the overtake– the pair

θ̂f − θ̂i is close to the line connecting θj and θk.
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Figure 7.12: Overtakes

Figure (7.12) displays a simulation of the case N = 3. The models are initialized (k = 0)

such that θ̂1 (marked by an x) is closest to θ1 and θ3. Hence, by fact 3, there must be an

overtake, which indeed takes place at instant of time k = 150. θ̂2 (marked as •) is now

closest to θ1. At k = 330, θ̂3 (marked as o) takes over θ̂2 which completes the total number

of N −1 = 2 overtakes. On the left side of the figure, the index of the model which is closest

to θ1 is displayed as a function of time. A cycle consists of 3 × 10 steps and is marked by a

dotted line (−−).

The arguments provided by pure logic are weak and qualitative in nature. In particular, they

fail to establish that the degree of organization in the model–plant configuration increases. It

is clear that a quantitative “measure of organization” is needed which adequately describes

the fact that the models gradually attain distinguished positions. Such a measure could

be the distance between the models, or the ratio of the distances of different models to a
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point. In the case of 3 models, an intuitive quantity is given by the area of the triangle

formed by the 3 models which attains a maximum when the models converge. However, a

typical phenomenon observed in simulation studies is that it is always possible to find initial

conditions such that the chosen quantity behaves in a non–monotonic fashion initially (→
figure 7.13). Coming back to figure (7.12), it can be verified that the instants at which the

area decreases (roughly) coincide with the instants at which an overtake takes place.

Figure 7.13: Self Organization in the 3/3 case: The area of the inner triangle (as well as its

perimeter) decreases initially and then increases monotonically up to the point where the

inner and outer triangle match.

Nonmonotonic Convergence

Most quantities which provide an intuitive measure of the overall organization of the models

turned out to evolve in a nonmonotonic fashion. However, it can be shown that in the

neighborhood of an equilibrium point, the solutions converge monotonically. In order to

illustrate this we define a (reduced) state–space consisting of the diagonal elements dii of

the N ×N matrix [dij]i,j ∈Ω of all possible distances between the models and the plants (→
figure 7.15). Every model θ̂i is associated with a point θi in parameter space and is initialized

in an ε− neighborhood of θi. If ε is sufficiently small, the distance of the models to their

respective points decreases, i.e. at the end of a cycle we have d+
ii < dii for every i ∈ Ω.

As seen in section 7.2.3, the computation of such an ε requires knowledge of the map

d+
ii = fcyc(dij) i, j ∈ Ω which depends on all N2 distances. In order to avoid the algebraic
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complexity of determining fcyc, the following simplification of the algorithm is proposed. In-

stead of updating the models at every instant of time, their location is fixed during a cycle.

The adjustment vectors which result at every instant are summed up and used to update the

location of the model only after the cycle is complete. The modification can be thought of as

a worst–case scenario. For, if indeed every step contributes to convergence, the improvement

is less pronounced if only the average over the steps within a cycle is used. The algebraic

complexity, in turn, is reduced substantially.
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Figure 7.14: Monotonic convergence

Example 7.3 The models are initialized at a distance ε from the corners of the triangle in

figure (7.14) with side lengths L1, L2, L3 respectively. The condition for d+
ii < dii is that the

step towards θi is larger than to any other point θj, j 
= i. If the models are updated at the

end of a cycle, the condition can be restated in terms of a single step, since the configuration

is symmetric, i.e. dii = ε for all i ∈ Ω. In figure (7.14), s∗2 ≥ s2 and s∗3 ≥ s3 denote the

largest possible steps of the models θ̂2 and θ̂3 towards θ1. Because of the symmetry, the

relative steps s∗2/s1 and s∗3/s1 are equal to the maximum relative amounts by which the first

model θ̂1 departs from θ1 (at a step towards θ2 and θ3),

s∗i
s1

=
s1i

sii

=
ε

Li − ε
i = 2, 3 (7.42)

The last equality follows from the elementary properties of the algorithm and q = 2. Using
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an upper bound s∗ on this amount we require that the following inequality holds:

s1 > 2s∗ s∗ = max{s∗2, s∗3} (7.43)

Since L3 = min{L1, L2, L3}, the closest competitor of θ̂1 is θ̂3, i.e. s∗ = s3. We know that,

s1

s3

=
d3

d1

=
L3 − ε

ε
(7.44)

Evaluating (7.43) gives ε < L3/3. �

The example illustrates that there is an ε∗ such that convergence is monotonic for all ε < ε∗.

If we increase ε beyond ε∗, the distances dii, i ∈ Ω evolve in a non-monotonic fashion.

For certain initial conditions, the solutions do not tend to the origin in [dii]-space. From the

discussion in section (7.2.2) it is clear that there are 6 equilibria, corresponding to N ! possible

permutations of the models and plants. As an example, θ∗4 in figure (7.15) corresponds to

the situation where θ̂1 converges to θ3, θ̂2 to θ2 and θ̂3 to θ1, i.e. d11 = 1, d22 = 0 and d33 = 1.
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εε

ε

ε

θ∗1

θ∗2
θ∗3

θ∗4

Figure 7.15: [d11, d22, d33] – space

If the models in the above example are initialized far from the vertices of the triangle, it is

not clear where they are going to converge to. The regions of attractions of the 6 equilibria

overlap, i.e. the neighborhood of a given θ̂1(0) with θ̂1 → θ∗1 contains initial conditions which

give rise to trajectories converging to θ∗i , i 
= 1. The trajectories in [d11, d22, d33]–space are

not unique, since N2 = 9 distances are needed to locate the models in parameter space.

Hence it is impossible to display the different regions in figure (7.15). However, we assume

that they have complex (maybe fractal) borders.

The following experiment was performed to illustrate the behavior of the algorithm if the

models are not initialized close to any equilibrium point. In this experiment, the models
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are arranged at the vertices of a small equilateral triangle (→ see figure 7.16) which is

shifted along an even grid in parameter space, covering a total of 120 000 positions each

corresponding to a different initial condition. The algorithm is started but only the evolution

of one model θ̂1 is traced. If θ̂1 ends up at θ1 the corresponding initial condition is marked

by •, if it ends up at θ2, • is used and if it is θ3 the initial condition is marked by • in figure

(7.17).

θ1θ2

θ3

θ̂1

Figure 7.16: Experiment: models form a small equilateral triangle

The highly erratic nature of convergence appears to be similar to the one discovered in an

experiment performed by (Peitgen, 1986 [65]), the so–called “magnetic pendulum”: The

movement of an oscillating iron ball (corresponding to the first model θ̂1) over three magnets

is studied and the regions of attraction of each of the magnets (corresponding to one of the

above equilibria) is determined. It is seen that if the iron ball is released in the neighborhood

of one magnet, it comes to rest over the same magnet. If, in turn, it is not close to a particular

magnet it may stop over any of them. The magnetic pendulum and the convergence problem

studied here have the common property that complex dynamics arise from a competitive

situation. In the first case, an iron ball is subject to multiple competing forces. In the

second, the plants compete for one of the models contained in the configuration [θ̂1, θ̂2, θ̂3].

The regions of attractions for the magnetic pendulum are displayed in figure (7.18). They

possess a beautiful symmetric structure which has been studied in the literature [66]. When

comparing this to figure (7.17) it should be kept in mind that the latter is the result of a pro-

jection of a 9–dimensional space onto the plane. Moreover, the vector–field is time–varying

and depends on the location of three models θ̂1, θ̂2, θ̂3. Hence, from a dynamical systems

point of view the convergence problem investigated here is substantially more complex.
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Figure 7.17: Regions of attraction, θ̂1
•→ θ1, θ̂1

•→ θ2, θ̂1
•→ θ3

The fact that no simple borders exist between the regions of attraction of the N ! isolated

equilibria suggests that the models are attracted non–uniformly, i.e. the speed by which a

model approaches an equilibrium point is not uniquely determined by its initial condition

but varies with time. Intuitively, if θ̂1 lies in the region of attraction of θ1 it initially seems

to come close to the other vertices of the triangle before decreasing its distance to θ1. This

is in line with our previous observation, that convergence is non–monotonic.

Existence of a special point M∗

When the models θ̂i are initialized inside an ε∗–neighborhood of θi, they are already in

a “distinguished” position in the sense of the definition in chapter 7.2.4. In other words,

the models have departed from each other and the sorting process is almost over. Let us

consider the reverse situation, i.e. the models are initialized at the same point with zero

distance to each other: θ̂1(0) = θ̂2(0) = . . . = θ̂N(0) := θ̂(0). An interesting phenomenon can
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Figure 7.18: Magnetic Pendulum: Regions of Attraction

be observed in this case. As expected, the models do not converge to any of the equilibria.

This is clear from the fact that due to their initialization, the “stacked” models behave like a

single model θ̂, and hence M = 1 and M < N (→ lemma 7.4). It is seen, however, that there

exists a unique limit cycle to which the models θ̂(k) converge as k → ∞. This cycle has the

same period NT as the time–variation of the plant. Hence, if we look at the dynamics after

a cycle (i.e. its Poincaré section), a characteristic point M∗ is obtained to which all models

θ̂(k) ∈ R
p converge. The importance of M∗ is that it is the same for all initial conditions

θ̂(0) ∈ R
p. In figure (7.19), the convergence of θ̂ to M∗ is illustrated displaying both the

instantaneous solution (marked by −) and the cycle (marked by −). Further, even if the

models are initialized with a nonzero but small distance from each other they invariably

seem to approach M∗ before converging to the vertices of the triangle. On the right side

of figure (7.19), the trajectories of θ̂1 are shown which come close to M∗ before converging.

The corresponding trajectories of θ̂2 and θ̂3 are hidden. Two stages can be distinguished in

the convergence process. In the initial stage, the models merely “position” themselves (in
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Figure 7.19: Existence of a characteristic point M∗

the neighborhood of M∗) without noticeably increasing the order of the configuration. In

the second stage, the models diverge from M∗ thereby approaching the plants located at

the vertices of the triangle. A similar observation can be made for systems involving N > 3

plants and models. It suggests that M∗ is a saddle–type equilibrium point. The models first

follow a stable direction leading to M∗ and then are repelled from M∗ along the unstable

direction.

**
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θ̂3
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Figure 7.20: Convergence in two stages

Figure (7.20) illustrates that, with fixed θ̂2 and θ̂3, a small variation of the initialization

θ̂1(0) causes the first model θ̂1 to converge to three different plants. The evolution of the

θ̂1–trajectory depends sensitively on initial conditions but invariably approaches M∗ before

tending to one of the equilibria. The right–hand side of the figure shows that the models
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[θ̂1, θ̂2, θ̂3] also collectively approach M∗ and expand only after attaining a neighborhood of

M∗.

7.2.5 Restriction to a 1-dimensional subspace

So far, no restrictions have been imposed on the location of the models and the plants. In this

section, we assume that the plants lie on a straight line in R
p on which all the models have

been initialized. This simplified situation does have relevance for the dynamic case, provided

that Ji in (7.9) is defined in terms of the instantaneous error. This will be elaborated on in

section 7.3.1. The motivation comes from the fact that in a standard parameter estimation

scheme, the parameters are updated along the regression vector formed by measured inputs

and outputs of the system. If there are multiple adaptive models they all use the same

vector. Only the length of the vector differs according to the respective errors of the models.

With an appropriately chosen Ji, the plants lie on a straight line in p−dimensional space

and the dynamics of the models can be studied in a 1-dimensional subspace defined by that

line.

x x x x

θ1 θ2 θ3 θ4

θ̂1 θ̂2 θ̂3 θ̂4

Figure 7.21: 1-dimensional subspace

It is clear that the restriction to the line reduces the variety of model–plant configurations.

In particular, the output equations which reflect the dependence on geometry (see example

7.1) are simplified. Still, the algebraic complexity of the equations describing the dynamics

over a cycle remains, as seen in the 2/2–case (two models and two plants) in section 7.2.3.

A key point to note is stated in the following lemma.

Lemma 7.5 In a 1–dimensional subspace, the system has only one equilibrium point. �

Proof. From lemma 7.3, we know that the steps of the models are ordered. This implies

that two models on a line cannot cross each other. Hence, the models converge in the order in

which they have been initialized. With reference to figure (7.21), the equilibrium is attained

whenever ‖θ̂i − θi‖ = 0, i = 1, . . . , 4, i.e. in dii–space, the only equilibrium is the origin.

Note that –despite the geometric simplicity– overtakes, as defined in section 7.2.4 do take

place. In figure (7.21), θ̂4 is close to both θ3 and θ4. Hence, according to fact 3 in the above
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section an overtake (effectuated by θ̂3) with respect to θ3 must occur. However, θ̂3 can never

be closer to θ4 then θ̂4, i.e. the order is fixed. Even though the complexity of the problem

has been reduced drastically, the key problem –consisting of the nonmonotonic behavior of

the algorithm– remains.

2/2 case → 3/3 case

A fact frequently encountered by researchers in systems theory is that the hardest theoretical

questions arise at the transition from 2nd–order to 3rd–order systems. In some sense, this is

found to be the case even in this problem. Strictly speaking, the state of the system depends

upon N2 distances, where N is the number of models and plants. However, as discussed

earlier, only N distances are “effective states” at a given instant. It is therefore reasonable

to refer to N as the order of the system.

2/2 case: Initialize 2 models θ̂1, θ̂2 at arbitrary locations on the line connecting θ1 and θ2.

The state of the system is given by four distances, dij(k) = ‖θ̂i(k)−θj‖, i, j ∈ {1, 2}. Hence,

in view of the above comment, we refer to this as the second–order case.

x x

θ1 θ2

θ̂1 θ̂2

x(k)

Figure 7.22: 2/2–case

We define x(k) = d21(k) − d11(k) = d12(k) − d22(k), where the last equal sign is due to the

fact that the models are on the line. Without loss of generality, assume d11(0) < d21(0), i.e.

x(0) > 0. If the environment is periodic with period T = 2 and θ(0) ≡ θ1 and θ(1) ≡ θ2 we

obtain:
x(1) = x(0) + [η11(0)d11(0) − η21(0)d21(0)]

x(2) = x(1) + [η22(1)d22(1) − η12(1)d12(1)]
(7.45)

From (7.11) we have (using q = 2),

∆x = η11d11 − η21d21 =
d11d21(d21 − d11)

d 2
11 + d 2

21

≥ 0 if θ(k) = θ1 (7.46)

∆x = η22d22 − η12d12 =
d12d22(d12 − d22)

d 2
12 + d 2

22

≥ 0 if θ(k) = θ2 (7.47)

It is seen that ∆x = 0 whenever dij ∈ E = {d11 = 0 ∧ d22 = 0} which is equivalent to the

fact that x = ‖θ1 − θ2‖ = L. Hence, {x(k)} is a monotonically increasing sequence bounded
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above by L. Suppose that limk→∞ x(k) = l < L. Then x(k + 1)= l+ ∆x(k) with ∆x(k) > 0

for all dij ∈ R
+
0 \ E. Hence, limk→∞ x(k) = L. We see that the distance x between the

models increases at every step by a finite amount independent of which plant is in existence.

Thus, L− x(k) serves as a Lyapunov function by which the convergence of the models to E

can be established.

3/3–case: The quantities of interest are the distances between the plants L1 = ‖θ1 − θ2‖
and L2 = ‖θ2 − θ3‖ as well as the distances between the models x1 = d21 − d11 > 0 and

x2 = d31 − d21 > 0. By the same arguments as in the 2/2–case, x1 and x2 are monotonically

increasing as long as there is no plant in between two models. However, by the very fact

that the distance between the model increases, there must be a stage where θ̂2 and θ̂3 are on

different sides of θ2. This is illustrated in figure (7.23).

x x x

θ1 θ2 θ3

θ̂1 θ̂2 θ̂3

x1 x2

Figure 7.23: 3/3–case

When θ2 is in existence, only x1 increases whereas x2 decreases by an unknown amount. If

θ̂2 remains to the left of θ2, x1 is monotonically increasing and the arguments of the 2/2-

case may be applied to prove convergence of θ̂1 to θ1 and θ̂2 to θ2. From the discussion

in chapter 7.2.2, it is clear that this implies that also θ̂3 must converge, since all models

converge simultaneously. However, whether θ̂2 crosses θ2 or not depends on the distances of

all three models to θ3 since a crossing can only occur when θ3 is in existence. In the adverse

situation, θ̂2 crosses and remains to the right of θ2 even at a step towards θ1. Again, if it

were possible to establish that θ̂2 remains there forever, the same arguments as above could

be used, to show that x2 is the quantity which monotonically increases. The critical point is

that while such an argument may exist, it cannot be established using the distance between

the models. Hence, the ideas used for the second-order system cannot be transferred to the

third order case and V = Li − xi(k), i = 1, 2 fails to be a Lyapunov–function.

Monotonic quantity

The above discussion reinforces the fact that a monotonic quantity is needed in order to

establish convergence. The simulations of the previous chapter provided evidence of the

existence of a critical point M∗. In view of its location near the center of gravity of the plants
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it may be regarded as a “center of convergence” which temporarily attracts all models. It

furthermore marks an intermediate stage which separates the contraction phase (where all

models accumulate near M∗) from the expansion phase (where the models approach their

respective plants). The question addressed in this paragraph is whether such a critical point

M∗ exists even on the line connecting the plants and if so, whether it helps us to overcome

the difficulties caused by the apparent non–monotonicity of all quantities relevant for the

proof of convergence.

In order to determine M∗, all models have to be initialized at the same point θ̂(0), i.e. on

top of each other. The resulting trajectory is referred to as the θ̂M∗–trajectory (knowing

that θ̂M∗ →M∗). The evolution of θ̂M∗ may be uniquely described by the distance dM∗(k) =

‖ θ1 − θ̂M∗(k)‖. Since the models have zero relative distance, they behave like a single model

and the update equation is linear:

dM∗(k + 1) =
[
1 − η0

N

]
dM∗(k) (7.48)

where N is the number of models. If N = 3 and the environment switches at every instant

θ̂M∗

θ1 θ2 θ3

L1 L2

Figure 7.24: Evolution of θ̂M∗

of time, we may determine θ̂+
M∗ at the end of a cycle as

d+
M∗ =

[
1 + 1/3 η0

2 − η0 − 1/27 η0
3
]
dM∗ + 1/3 η0 L2 − 1/9 η0

2L1 + 2/3 η0 L1 (7.49)

L1, L2 are the distances among the plants. The eigenvalue of the linear first–order equation

(7.49) lies strictly inside the unit circle for all η0 > 0. Hence dM∗ → d̄M∗ = ‖θ1 − M∗‖
without overshoot, where

d̄M∗ =
3L2 − η0 L1 + 6L1

1/3η0
2 − 3 η0 + 9
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marks the critical point M∗, to which all trajectories converge if the models are initialized

on top of each other.

Let us now consider an arbitrary initialization of the models, where θ̂1(0) 
= θ̂2(0) 
= θ̂3(0).

In the previous section an attempt was made to define a Lyapunov–function in terms of the

distances x1 and x2 between the models. However, the approach was found to be inconsistent

since neither of the quantities evolved in a monotonic fashion for all initial conditions.

This is re–examined in the following experiment. The quantity of interest is defined to be

x = d31 − d11, i.e. the distance between the two “boundary” models θ̂3 and θ̂1 (→ see figure

7.25). The objective is to see whether x or a quantity related to x increases in a monotonic

fashion such that the same argument as in the above 2/2–case can be used to establish

convergence. The step towards the intermediate plant θ2 is again found to be critical. If the

associated model θ̂2 is sufficiently close to θ2 it provides an upper bound on the update steps

of the boundary models towards θ2. It is seen, though, that there is a large number of initial

conditions θ̂2(0) for which x decreases when evaluated after a cycle. This is not surprising

θ1

θ1

θ2

θ2

θ3

θ3

x

x

θ̂1

θ̂1

θ̂2

θ̂2

θ̂3

θ̂3

Figure 7.25: Contraction and separation part (of the convergence process)

since from the previous discussion we know that converges takes place in two stages. If

the models are initialized in an ε–neighborhood of their respective plants, the first stage is

less pronounced, since the “degree of organization” among the models is already high. This



7.2. PARAMETER CONVERGENCE IN STATIC SYSTEMS 151

can be observed in the upper part of figure (7.25) – the models directly enter the expansion

phase and x increases monotonically. In the lower part, the two models θ̂2 and θ̂3 are close to

each other while x1 = d21 −d11 is large. This “unbalanced” initialization clearly corresponds

to a low degree of organization. In such a case, the models are attracted by M∗ before

expanding, which accounts for the decrease of x in figure (7.25). We ask the question how

this situation compares to the case where the models start with zero organization, i.e. zero

distance among each other. To this end, two θM∗–trajectories (defined above) are initialized

at θ̂1(0) and θ̂3(0). In other words, we obtain θ̂1M∗ and θ̂3M∗ which start at the same points

as the trajectories of the boundary models. The idea is that if the actual model configuration

is only slightly better than the stacked configuration, the corresponding trajectories must

diverge from θ̂iM∗ , i ∈ {1, 3}, in a monotonic fashion. If the initial organization among

the models is poor (but nonzero) it is plausible that the models first follow θ̂iM∗ and then

gradually separate. While the separation of the models (measured by means of the distance

x = d31−d11) occurs only once the models have reached a neighborhood ofM∗, the divergence

from θ̂iM∗ takes place independent of the model location. θ̂iM∗ , i ∈ {1, 3}, serve as worst–case

“reference” trajectories for the boundary models θ̂1 and θ̂3. No other trajectory converges

to M∗ at a faster rate. But this implies that the distance between θ̂iM∗ and θ̂i increases at

every step. Hence if we subtract xr = ‖θ̂3M∗ − θ̂1M∗‖ from x, we obtain a monotonically

increasing quantity. This is illustrated in the right column of figure (7.25), where the dark–

shaded part corresponds to the distance xr between the reference trajectories. Intuitively,

we are subtracting the part that is due to the contraction phase (of the convergence process)

from the evolution of x.

The qualitative description that we have given so far is the quintessence of a large number

of numerical experiments. It provides the basis for a quantitative treatment of the problem.

Such an analysis has been initiated but was incomplete at the time of the preparation of

the thesis and, hence, is not included here. The main difficulty is due to the fact that the

dynamics of the models is governed by a composition of N maps each one consisting of

N nonlinear coupled difference equations. Hence, even in a low–order case (N = 3) the

algebraic expression for the evolution of the models cannot be handled easily and does not

offer any structure unless it is appropriately simplified. It is this simplification that needs

further investigation.

The key result in our study of static systems is that the interplay between the “contraction”

and the “separation”–process is responsible for the non–monotonic convergence observed in

the simulations. As mentioned previously, it suggests the existence of a saddle point at M∗.

This could be verified in the 2/2-case where the map [d11, d21]
+ = fcyc ([d11, d21]) has been

determined, see equations (7.39) and (7.40).
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Evaluating the Jacobian at dM∗ = 2/3L we obtain

∂fcyc

∂di1

∣∣∣
i=1,2

=

[
5/4 −1

−1 5/4

]
(7.50)

which indeed has a stable eigenvalue λ1 = 1/4 with eigenvector [1 1] and an unstable

one λ2 = 9/4 with eigenvector [1 −1]. In figure (7.26), the solutions in [d11, d21]–space are

displayed. The line d11 = d21 separates two invariant regions. Υ corresponds to the situation

where θ̂1 is initialized closer to θ1 than θ̂2, in Ῡ the situation is reversed. Invariance of the

regions follows from lemma 7.5.

d11

d21

M∗

Υ

Ῡ

Figure 7.26: Existence of a saddle point

7.3 Dynamic Systems

In static systems the distances in parameter space were directly used to update the loca-

tion of the models. In real–world problems, we have to use the output of a dynamic (i.e.

containing at least one integrator) system in order to adjust the parameters. In general,

a sequence of output measurements is necessary to gain information about the parameter

error and generate an appropriate update vector. The length of this vector is determined

by the performance–dependent adaptation gain defined in (7.9). The question addressed

in this chapter is whether a self–organization process –similar to the one observed in static

systems– takes place, such that each model converges to a different element of the set
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S = {θ1, θ2, . . . , θN}. In particular, conditions have to be determined under which the dy-

namic system has the same convergence properties as its static counterpart.

Depending upon the choice of the performance criterion in (7.9), different static analogies

are obtained. If Ji is an integral–type criterion and the plant is constant over a sufficiently

long interval T , the update direction of the models is concentrical with respect to the current

plant parameter vector θ ∈ S. If, in turn, an instantaneous criterion is used, the models

evolve along a single direction and the static analogy would be that all plants and models are

confined to a line (→ section 7.2.5). It is seen that the choice of the performance criterion

varies significantly according to the nature of the time–variation and the size of the set S.

In principle, it is possible to obtain convergence of all the models, even as the plant switches

randomly within the elements of the set S.

The ultimate objective is to determine a control law that stabilizes the system and matches

the output of the unknown time–varying system to the output of a known time–invariant

reference system. In contrast to the identification problem, it is impossible that the tracking

error tends to zero. As pointed out previously, the error will be nonzero at the instants

following a switching (as a consequence of the relative degree of the system). The principal

question is whether a certainty equivalence controller based on the parameter estimates

guarantees bounded solutions even if the models are far from the plants.

7.3.1 Identification

In the following, we examine the equivalence between the static and the dynamic identifica-

tion problem. Let us start with an example.

Example 7.4 Consider the first–order, time–varying system

y(k + 1) = θ(k) y(k) + u(k) (7.51)

where θ(k) assumes a finite number of constant unknown parameters θj ∈ S ⊂ R, j ∈ Ω.

Using estimation models of the form,

ŷi(k + 1) = θ̂i(k) y(k) + u(k), i ∈ Ω (7.52)

we obtain the identification error:

εi(k + 1) = y(k) [θ̂i(k) − θ(k)] (7.53)

If y(k + 1) is the measured output, and y(k) 
= 0, equation (7.53) can be solved for the

parameter error θ̃i(k) = [θ̂i(k)− θ(k)] and has a unique solution. We obtain the update rule
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for the parameter estimates

θ̃i(k + 1) = θ̃i(k) − ηi(k) θ̃i(k) (7.54)

which is the same as equation (7.10). Hence, in this one–dimensional case, the static and

dynamic cases are equivalent. �

In general, when S ⊂ R
p, p > 1, it is impossible to uniquely determine θ̃i(k) from the error

equation

εi(k) = −φ(k − d)T θ̃i(k − 1) (7.55)

However, under the additional assumption that the regression vector φ(·) is persistently

exciting, the error signal εi(·) contains sufficient information about θ̃i(·).

Integral performance criterion

For the moment, let us assume that φ is persistently exciting. Notice, that while the ex-

citation is usually provided by the (reference) input to the system, an additional source of

excitation is opened up by the switching of the plant parameters. Hence the assumption is

not a strong one. It implies that over a finite interval of length T0, the regression vector φ

has a nonzero projection along any direction in parameter space. Hence, after T0 steps we

have enough equations to determine the unique solution of equation (7.55). Persistence of

excitation corresponds to the fact that the matrix GO(k0, k0 + T ) defined in (2.25) satisfies:

GO(0, T0) ≥ c I c > 0 for some fixed T0 > 0 (7.56)

where k0 = 0. The condition is equivalent to the fact that the system given by (7.6) and (7.7)

is observable on the interval [0, T0]. This means that it is possible to uniquely determine

θ̃i(0) from the knowledge of the output εi(k) over the interval k ∈ [0, T0]. In other words, if

ε1 and ε2 are the error signals of two models then

ε1[k, 0, θ̃1] = ε2[k, 0, θ̃2] ∀ k ∈ [0, T0] ⇒ θ̃1 = θ̃2

Hence, in order to determine the parameter error of a model at instant k it is necessary to

observe its output error over an interval of length T0. If (7.56) holds for some fixed T0 > 0

then the parameter projection algorithm is globally exponentially convergent. In such a case,

‖θ̃i‖ forms a strictly monotonically decreasing sequence and ‖θ̃i(k)‖ → 0. Equation (7.56)

suggests the definition of a performance index, defined in terms of a finite sequence of output

errors:

Ji(k) =
k∑

ν=k−T0

ε2i (ν) (7.57)
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Figure 7.27: Dynamic parameter adjustment

If the interval over which the plant is constant is sufficiently long, T 	 T0, the criterion

provides a well–defined measure of the parametric distances. These are the quantities needed

in the definition of the adaptive gain (7.9). However, no attention has yet been paid to the

fact that the system is time–varying. The fact that signals are summed over a window of

length T0 implies that the result contains previous errors that do not always correspond to

the plant that is currently in existence. In a time–varying environment it is impossible to

obtain θ̃i(k) unless the instants at which the plant switches from one element in S to another

are known a priori which, of course, corresponds to the trivial situation. Similarly, with the

above performance criterion, it is not possible to correctly determine the closest model in

parameter space at every instant of time. To some extend, the problem can be taken care

of by using a performance index with exponential forgetting factor:

Ji(k) = αε2i (k) + β
k∑

ν=k−T0

ρk−νε2i (ν) ρ ∈ [0, 1] (7.58)

While (7.58) enables us to select any blend between an instantaneous and the integral per-

formance criterion, prior information about the nature of the time–variation is needed to

select an appropriate one.

Figure (7.27) illustrates the case where θ̂3 turns out to be the best model when comparing

its performance J3 (defined in 7.57) to the performance of the other models. The plant
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satisfies θ(k) ≡ θ3 over an interval of length T . The gain η3 assigned to θ̂3 is large at every

update step during which θ3 is in existence. Once the plant switches, the largest gain will

not immediately pass to another model since, again, T0 observations are necessary to assess

the performance of all the models when a new plant is in existence. As a consequence, the

vector obtained by summing up T0 steps does not exactly coincide with θ̃33 = [θ̂3 − θ3], since

it will inherently contain a number of erroneous steps. If θ(k) ≡ θ3 over a long interval

T 	 T0, the share of these steps will be small and the sum vector be a good approximation

of the static case, where θ̃33 is used to update the location of the models.

Instantaneous performance criterion

The introduction of a forgetting factor in equation (7.58) is motivated by the fact that

the resulting performance criterion reflects a time–variation more promptly than a criterion

where the errors of past and present instants are weighted equally. As ρ becomes small,

the impact of past errors decreases. In this section, we investigate the properties of the

algorithm when ρ = 0, i.e. only instantaneous errors are used to assess the performance of

the models. According to equation (7.5), the regression vector φ is the same for all models.

This is a consequence of the the series–parallel architecture used in the definition of multiple

models. The measured output is used instead of the estimated one in the definition of the

regression vector. The models are merely predictors of the plant output and do not possess

eigen–dynamics. The parameters of the models are updated according to the equation:

θ̂i(k) = θ̂i(k − 1) + ηi(k)
φ(k − d)εi(k)

φ(k − d)Tφ(k − d)
(7.59)

where

ηi(k) = η0

1
ε q
i (k)

1
ε q
1 (k)

+ 1
ε q
2 (k)

+ · · · + 1
ε q
N (k)

q > 1 (7.60)

using

Ji(k) = εqi (k) (7.61)

It follows that the parameters of all the models are adjusted using the same projection

vector. In other words, at instant of time k, all models move in same direction φ(k − d) —

or opposite to φ(k− d) depending upon the sign of εi(k) = −φ(k − d)T θ̃i(k − 1). Let us first

assume that the regression vector is constant.

Example 7.5 The time–varying moving–average system

y(k + 1) = θ(k)Tφ(k) (7.62)
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where θ(k) ∈ S = {θ1, θ2, θ3}, S ⊂ R
2 and φ(k) = [u(k) u(k − 1)]T is to be identified using

N = 3 models. We set u(k) ≡ 1 ∀ k > 0. Since each element of S consists of two

unknown parameters, φ(k) is not sufficiently exciting. The models converge to a point on

the hyperplane

Hj = {θ̂ | φ(k − d)T [ θ̂ − θj] = 0} ∀ k ∈ [k, k + T ] (7.63)

Hj represents the set of solution points associated to an element θj ∈ S, j = 1 . . . 3, since

the identification error vanishes at any point on Hj, for all k ∈ [k, k + T ] where θj is

in existence. In the present case, Hj corresponds to the line through θj and orthogonal to

φ(k) ≡ const. (see figure 7.28). But this means that the convergence problem can be reduced

to a one–dimensional subspace corresponding to the line parallel to φ. �

Figure 7.28: Line analogy

The parameters take a single step to converge to a point on Hj if they are updated according

to (7.59) and ηi ≡ 1. All models use the same direction φ(k−d) to update their parameters.

For the analysis of the case where ηi 
= 1 is defined as (7.60), it is possible to focus on the

component of the parameter error θ̃i(·) which is orthogonal to Hj. This component is given

by

ϑ̃i(k − 1) = −φ(k − d) εi(k)

‖φ(k − d)‖2
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Using (7.55), we may rewrite ϑ̃i(k − 1) as

ϑ̃i(k − 1) =
φ(k − d)

‖φ(k − d)‖ ‖θ̃i(k − 1)‖ cos[α(k − 1)] (7.64)

where α(k− 1) is the angle between φ(k− d) and θ̃i(k− 1). The models differ only by their

distance δi(k) = ‖θ̃i(k)‖ cosα(k) from the hyperplane Hj where δi ∈ R. The evolution of

ϑ̃i(k) may be described as (→ see equation 7.59):

ϑ̃i(k) = ϑ̃i(k − 1) − ηi(k) ϑ̃i(k − 1) (7.65)

Since ϑ̃i(k) is known, the equation is equivalent to the static update equation (7.10), where

all models and plants evolve on a straight line.

Now, suppose that φ(k) is not constant. Since all models use the same regression vector, a

similar argumentation as above could be used to reduce the problem to the 1–dimensional

subspace defined by the line parallel to φ(k). However the situation is more difficult. This

is because, the set of solution points defined in (7.63) is smaller if φ(k) is time–varying. It

collapses to a single point when φ(k) is persistently exciting. If the instantaneous error is

used in the definition of the step–size ηi(k) in (7.60), a model which is far from the solution

point may misleadingly be assigned a large step–size. It is hard to determine how this

affects the overall convergence process. In the special case where φ(k) forms a sequence

of orthogonal vectors (as in the case of the orthogonal projection algorithm, chapter 2.2),

we obtain a set of independent convergence processes associated with each direction of the

regression vector φ(k), k > 0. In figure (7.28) we consider two directions, marked as φ and

Pφ, where φ ⊥ Pφ. Any adjustment along Pφ does not alter the location of the models on φ

and vice versa. In order words, the adjustments are completely decoupled and can be studied

separately, as if the associated regression vectors were constant. This has two implications:

First, the analysis of the overall convergence is simplified, since it can be carried out using

the “on–the–line” static analogy for each direction separately. Secondly, new equilibrium

points appear at the intersections of the hyperplanes corresponding to each θj, which are

indicated by a “+” in figure (7.28). They result from the fact that for a given model θ̂i to

converge it suffices that its identification error εi is zero for one of the regression vectors, i.e.

either φT [θ̂i−θj] = 0 or PφT [θ̂i−θj] = 0, while any of the other models can be used to satisfy

the other error equation. In other words, every model converges to a vector θ̄i, i ∈ {1, 2, 3},
whose elements coincide with the elements of the collection [θ1, θ2, θ3] of the true plants but

not necessarily to the elements of a single vector θj, j ∈ {1, 2, 3}. Additional processing may

be required (after convergence) before the identification result can be applied for control.



7.3. DYNAMIC SYSTEMS 159

7.3.2 Certainty Equivalence Control

As stated in the introduction, the objective is to control a linear time–varying system where

θ(k) assumes a finite number N of constant, unknown values, i.e. θ ∈ S = {θ1, θ2, . . . , θN} ⊂
R

p. From equation (7.4) we have,

yj(k + d) = φ(k)T θj (7.66)

where θj ∈ S is the plant parameter that is in existence over an interval T = [kt, kt+1],

t > 0. As in the static case, multiple adaptive models generate the estimates of the plant

parameters. The models have the following form,

ŷi(k + d) = φ(k)T θ̂i(k) (7.67)

where θ̂i ∈ R
p, i ∈ Ω which are updated simultaneously using the performance–dependent

adaptive gain ηi(k) defined above. The control law is determined at every instant based

on the model that performs best according to the switching criterion (6.1). Note that the

criterion for selecting the controller may be different from the criterion used in the definition

of ηi(k). The objective is to cause y(k) to track an arbitrary bounded signal y∗(k) that is

the output of a time–invariant reference system. If, at a given instant, θ̂∗i are the parameters

corresponding to the best model, the control input is determined assuming that θ̂∗i are the

true values of the plant parameters. In other words, u(k) is computed from the equation

y∗(k + d) = φ(k)T θ̂∗i (k) (7.68)

The design procedure is seen to be identical to the one used in conventional adaptive control.

By virtue of the certainty equivalence principle, the model parameters are regarded as the

true parameters of the system. As seen in chapter 3.1.4, the proof of stability relies upon

the fact that the estimation error cannot grow faster than the signals of the system. This, in

turn, was seen to depend upon the property of the estimation algorithm, that the parameter

error θ̃(k)T θ̃(k) is a non–increasing function of time (→ equation 2.16). If the plant is time–

varying it is generally impossible to define a non–increasing sequence of parameter errors

θ̃, unless there is a set of models that converges to the N distinct parameters that the

plant assumes. If the parameter error is then defined to be the error of the closest model,

there must be a stage after which the error does not increase. But this is precisely, what is

accomplished by the above control law defined in terms the best estimate θ̂∗i . By virtue of the

simultaneous identification scheme introduced earlier, all models converge simultaneously to

the set S. Unlike regular MMST (chapter 6), the models converge even if there are not

initially distinguished with respect to any plant parameter. This enables us to define a
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parameter error θ̃∗(k) = [θ̂∗i (k) − θj], i, j ∈ Ω, the norm of which is non–increasing after

some stage k > k̄, independent of which plant is in existence at that instant. The only

exception are the instants following a switching of the plant. Since this error is only due

to the relative degree of the system (not the fact that ‖θ̃∗‖ increases), similar arguments

as in the time–invariant case can be used to proof stability of the closed–loop system. The

assumptions made at the beginning of this chapter are found to be relevant. In particular,

it must be assumed that the system is minimum–phase for every θj ∈ S and that the plant

remains constant over at least T = max{T0, d + 1} instants of time. The last condition

reduces to T > d if an instantaneous switching criterion is used for the definition of the

step–size and the selection of the controller.

Example 7.6 Given the second–order system

y(k + 1) = a0(k) y(k) + a1(k) y(k − 1) + u(k − 1) (7.69)

where a(k) ∈ R
2 assumes one out of five unknown values S = {θ1, θ2, θ3, θ4, θ5} randomly

as in example 6.1. The parameter region for which the open–loop system is stable is

indicated by the triangle in figure (7.29). Only θ2 and θ3 correspond to stable plants.

We compare the performance of a controller based on the regular multi–model switching

and tuning approach (MMST) of chapter 6 to the simultaneous identification approach

(SIC) introduced in this chapter. The objective is to track a desired output of the form

y∗(k + 1) = arctan(5 sin 2πk
150

) + 1
2
sin 2πk

60
. In both cases, a certainty equivalence controller is

determined using the parameters of the model that performs best. To avoid frequent switch-

ing, the sum over T0 = 10 subsequent errors is used as a switching criterion together with a

forgetting factor of ρ = 0.9, i.e.

Ji(k) =
k∑

ν=k−T0

(0.9)k−ν ε2i (ν) (7.70)

In MMST, only the best model (according to (7.70)) is updated while the location of the

other models is retained. In the SIC–approach all models are updated at every instant using

a performance–dependent step–size ηi(k) as defined in (7.9). The closest model is determined

by means of the criterion (7.70), with T0 = 3.

The top part of figure (7.29) displays the evolution of the models in parameter space. Only

two models are found to be adaptive in the MMST case. The approach clearly fails since

the plant assumes five distinct values which cannot be represented by two models. In SIC,

all models – which are initialized far from the plants – are adapted and gradually approach

the five points. Even though the trajectories are found to be highly erratic and convoluted,
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there is a stage k̄ after which all models have entered a neighborhood of their respective

plants. The parameter error associated with each model–plant pair is non–increasing, for all

k > k̄, and the above argumentation can be used to obtain a stabilizing control law. As a

consequence, all signals are bounded in the SIC–case and the tracking error tends to zero

except for the instants following a switching. In the lower part of figure (7.29) the outputs y∗

and y of the reference and the actual system are displayed as well as the input u generated

by the adaptive controller. We focus on a rather advanced time–interval k ∈ [7000, 8000]

(models have reached the above neighborhoods). Observe that on the right part of the figure

(SIC) the sequence of model indices clearly reflects the time–variation of the plant. �.
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Figure 7.29: Tracking in a time–varying environment
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7.4 Future Research

In this chapter, a new algorithm for locating multiple adaptive models in a time–varying

environment has been introduced. The emphasis of our discussion has been on developing a

mathematical framework within the subsequent problems of simultaneous identification

and control can be addressed. Furthermore, by providing numerous qualitative insights

into the behavior of the algorithm we have prepared the ground for a quantitative analysis.

The methodology opens up a large number of avenues for future research. Some of these are

stated below.

Static Systems

• Convergence was seen to take place in two stages: contraction and separation (of N

adaptive models). However, the equations describing the evolution of the models are

too complex as to allow us to exploit this observation analytically. Can the equations

be made simpler (e.g. in a transformed coordinate system)?

• The simulations suggest the existence of a saddle point M∗. Can this be verified

analytically? Do local properties (in the neighborhood of M∗) provide any insight?

• Convergence has been investigated assuming that the time–variation is periodic. What

arguments are needed to show that N models converge if the plant switches randomly

between the elements of the set S and the switching is governed by an ergodic Markov

θ1θ1θ1

θ2θ2θ2

θ3θ3θ3

θ̂1θ̂1θ̂1

θ̂2θ̂2θ̂2

θ̂3θ̂3θ̂3

Figure 7.30: Convergence of 3 estimates to 3 fixed random points in R
2 with the following

property: A point stays where it is with probability 0.8 and switches to on of the two

other points with probability 0.1. In all three simulations the same initial conditions for the

estimates were used.
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chain (→ figure 7.30)?

• How must the algorithm be modified if the points θj ∈ S, j = 1 . . . N are replaced by

compact sets?

Dynamic Systems

• The assumption that the system assumes each value contained in the set S at least

once within a finite interval of length T was critical. An environment which satisfies

this condition may be referred to as “persistently exciting”. Is it possible to define

persistence of excitation for time–varying systems the way it is defined in classical

adaptive control (for time–invariant systems)? The fact that the system is switching

does not necessarily imply that the regression vector is persistently exciting as the

following example indicates.

Example 7.7 Consider the system

y(k + 1) = [y(k) u(k) u(k − 1)] θ(k)

where θ(k) ∈ S = {θ1, θ2, θ3}, S ⊂ R
3. Suppose u(k) ≡ 1, ∀ k > 0. Then φ is

time–varying because of y(k) –but not persistently exciting. �.

• To what extent can the results obtained for static systems be applied to the dynamic

case? Why does the proposed scheme converge at all, if the performance is defined in

terms of the instantaneous error?

• Supposing that the models incidentally lie close to the plant how does the performance

of the proposed scheme compare to adaptive control using multiple models, switching

and tuning (MMST)?

• How must the algorithm be modified if the set S is infinite and the time–variation of

the plant is continuous, i.e. θ(k) is an (arbitrary) continuous function of time? Is it

nevertheless possible to control the system in a stable fashion if only a finite number

of models is used?

Nonlinear Systems

The situation where the time–varying system is nonlinear is discussed in some detail. Suppose

that the system is given by

y(k + 1) = fi[Y (k)U(k)] (7.71)
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where U(k) = [u(k), . . . u(k−n+1)] and Y (k) = [y(k), . . . y(k−n+1)] is a sequence of inputs

and outputs respectively. Equation (7.73) is known as the nonlinear autoregressive moving–

average (NARMA) representation of a nonlinear system having delay d = 1. The mapping

f : R
n ×R

n → R represents a one–step–ahead predictor for the output of the system. Let us

assume that the system assumes one of a finite set of right hand sides S = {f1, f2, . . . , fN} at

least once over an interval of finite length T . As in the previous section, the objective is to

estimate the elements of the set S and to build a controller based on the best estimate. For

simplicity, we assume that the NARMA model may be approximated using a simplified model

in which the control input occurs linearly [61]. This permits an easy algebraic computation

of the control input.

yj(k + 1) = fj[Y (k), U(k)] + gj[Y (k), Ū(k)]u(k) (7.72)

where Ū(k) = [u(k−1), . . . u(k−n+1)]. As in the previous sections, N adaptive models are

used to generate estimates of the maps fj, gj respectively (where j ∈ Ω). Since the system

is nonlinear a radial basis function network (RBFN) is used to approximate the mappings

using input–output data. Each model consists of 2 RBFN’s:

ŷi(k + 1) = Fi(x)
T θ̂i(k) + Gi(x)

T ψ̂i(k)u(k) (7.73)

where F(·),G(·) : R
n → R is a vector of radial basis functions defined on a n-dimensional

input space. The network parameters θ̂i and ψ̂i are updated using the algorithm (7.59),

(7.60) with φ replaced by F and Gu(k) respectively. A certainty equivalence controller is

then defined by

u(k) =
y∗(k + 1) −Fi∗(x)

T θ̂i∗(k)

Gi∗(x)Tψi∗(k)
(7.74)

where the index i∗ refers to the model that best fits the plant according to one of the

performance criteria defined above.

Example 7.8 Consider an unknown nonlinear, time–varying plant which assumes one of

the following right hand sides periodically with period T = 1500 s

y(k + 1) =




y(k)u(k − 1)

1 + y(k)2
+ u(k)

cos y(k)

1 + u(k − 1)2
+ u(k)

sin3 y(k)

1 + 1
2
cos2 y(k − 1)

+ u(k)

(7.75)

Since the system is linear in u(k), the control input may be directly computed according to

equation (7.74) where Gi∗(x)
Tψi∗(k) ≡ 1 ∀ k > 0. The RBFN used to approximate the first
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term in (7.75) consists of a set of radial basis functions of the form

Fl = exp
[−0.5(x− cl)

T diag{25}(x− cl)
]
, l = 1 . . . 16

where x ∈ R
2 and cl are equally spaced centers over a square [−1 1] × [−1 1]. Figure

a)

b)

c)

d)

Identification

Control

y,
ŷ

y,
y∗

η i
p
la

n
t

n
o
.

Figure 7.31: Identification and Control of a nonlinear time-varying system

(7.31) displays the results of an identification procedure (a) with u(k) = sin 2π k
350

as well as

the performance of a tracking controller (b) for the desired output y∗(k + 1) = 0.2 sin 2π k
400

+

0.3 sin 2π k
225

. In (c) and (d) it is seen that different RBFNs specialize in the different right–hand

sides that the plant assumes periodically. �



Chapter 8

Application: Two–Mass System

In order to demonstrate that the theory contained in this thesis can be applied successfully to

an industrial control problem we present an experimental study performed on a servo drive

system. Industrial processes often require electrical drives with high dynamic performance.

Servo drive applications unavoidably include mechanical transfer elements such as shafts,

gears or belts. A perfect coupling would consist of an absolutely rigid shaft, no friction in

the bearings and gears with no backlash. However, such elements do not exist in practice.

The imperfections introduced by the transfer elements have to be considered in high dynamic

speed drives.

M MJ1 J2

cX

dX

n2n1

vu

Figure 8.1: A Two-Mass System

In particular, an elastic coupling may cause resonant frequencies to lie within the bandwidth

of the speed controller resulting in degraded response and the onset of weakly–damped

oscillations of the mechanical load. Drives with considerable transmission elasticity and

small friction and backlash effects may be efficiently modelled by a linear two–mass system.

This is the kind of system considered in this chapter. It consists of two rotational masses of

inertias J1 and J2, the first one being the mass of a motor and the second one corresponding

to the mass of the load. Typically, J1 
 J2. The masses are coupled through a flexible

transmission shaft which is modelled as a spring–damper element with stiffness cX and

viscous damping coefficient dX . A schematic representation of the system is provided in

167
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figure (8.1). A torque v may be applied on the load side acting as an (unknown) disturbance

signal. The objective is to control the speed of the load n2 through the motor torque u such

that n2 tracks an arbitrary bounded reference speed n∗
2 while the parameters of the system

are assumed to be unknown.

8.1 Model of the Plant

Before deriving the mathematical model of the plant, let us take a look at the hardware com-

ponents involved. The experimental plant consists of two synchronous drives with integrated

encoders, two voltage source power converters, a brake unit, A/D (analog to digital) and

D/A converters as well as a computer on which the adaptive control is implemented. The

first motor is used to generate the drive torque while the second motor generates disturbance

signals.

J1 J2

S
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50Hz, 400V/230V
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Figure 8.2: Electrical configuration of the plant

Synchronous Drives: The synchronous motors used in this system are excited by “rare

earth” permanent magnets which result in a power density superior to DC motors because

the limiting effects of the mechanical commutator are absent. The nominal power of each

motor is equal to 4.8 kW, the nominal torque generated 23 Nm and the nominal speed 2000
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r.p.m. An integrated encoder measures the position of the shaft with a resolution of 2048

bars/rev. The speed signal is obtained by differentiation.

Power Converters: The actuator is given by a voltage source PWM thyristor converter with

DC–link voltage of 510 . . . 620V . If the link voltage exceeds 620V it is connected to the brake

resistor contained in the brake unit. On the machine–side, the converter outputs pulse–width

modulated rectangular voltages the fundamental components of which are prescribed by the

voltage command signal. Despite the superimposed harmonics (caused by the modulator)

the resulting currents in the electrical drive can be considered close to sinusoidal since the

switching frequency of 5 . . . 7.5 kHz is relatively high.

The principle of controlling the currents in the synchronous motors is similar to the field

orientated control of an induction motor except that no flux model is needed to estimate the

rotor flux and slip frequency. Since the latter is obviously zero the rotor position is directly

used as the angle of reference. Field orientation has the effect of rendering the dynamic be-

havior of the synchronous machine similar to that of the DC machine which is substantially

simpler since the interaction of flux and armature current is absent. Hence, these quantities

can be controlled directly and independently. In a typical configuration, the torque gener-

ating current iq is controlled by an underlying control loop while the direct component id is

regulated to zero. The response of the current control loops may be approximated by lag

elements with a time constant of 2ms or less. Since the minimal sampling interval used in

this setup is 10ms the time constant is negligible. Hence, the power converter together with

the synchronous drive may be viewed as a torque–generating unit responding to command

signal with practically no delay. In other words, the electrical components of the plant are

part of the fast, parasitic dynamics of the system.

The torque is thus assumed to be directly available at the input u of the two–mass system

which, in turn, corresponds to a (damped) linear oscillator with eigenfrequency around

10Hz. Hence, the mechanical components represent the dominant dynamics of the plant.

These are the ones for which a mathematical model is built. In (Schröder 2001, [71]) we find

a continuous–time state space model for the elastic coupling of two rotational masses:
 ṅ1

∆ϕ̇

ṅ2


 =


 −dX

J1
− cX

J1

dX

J1

1 0 −1
dX

J2

cX

J2
−dX

J2




 n1(t)

∆ϕ(t)

n2(t)


+




u(t)
J1

0

−v(t)
J2


 (8.1)

With reference to figure (8), the state is given by the angular velocity n1 of the motor and

the velocity n2 of the load. ∆ϕ denotes the angle between the masses. The parameters

cX , dX , J1 and J2 are assumed to be unknown. However, it is clear from the laws of physics

that all parameters must be positive. The transfer–function from the input u to the output
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n2 of the system has a zero at s = −cX/dX which is negative real since cX > 0 and dX > 0,

i.e. the system is minimum-phase. Since the adaptive controller will be implemented on a

computer, it is useful to work with a discrete–time model. The state and input variables are

sampled using a zero–order hold method, i.e. the variables are assumed to be constant over

the sampling interval TS = 10ms. For shorter intervals, TS < 10ms we may get unstable

zeros even though the continuous–time plant is minimum–phase. This corresponds to the

well–known fact that rapid sampling may give rise to non–stably invertible systems (→ see

Åström et al. 1984 [3] and Goodwin, et al. 1986 [25]). If x(t) = [n1(t) ∆φ(t) n2(t)]
T and Ă,

b̆ denote the system matrix and input vector in (8.1) respectively we obtain

x(tk+1) = eĂ(tk+1−tk) x(tk) +

∫ tk+1

tk

eĂ(tk+1−τ) dτ b̆ u(tk) (8.2)

The discrete–time state space model of the plant is therefore given by

x(k + 1) = Ā x(k) + b̄ u(k)

n2(k) = [ 0 0 1 ] x(k)
(8.3)

which is of the form (3.1) where Ā = eĂ TS and b̄ =
∫ TS

0
eĂτ̄ dτ̄ b̆ using τ̄ = tk+1 − τ . The

system is completely observable through the output n2 which is the only measured signal in

our plant. We may therefore express the 3–dimensional state vector of the discrete system in

terms of 3 subsequent output measurements. After some standard calculation (see chapter

3.1.1) we obtain an auto–regressive moving–average (ARMA) model of the two–mass system:

n2(k + 1) =
2∑

i=0

ain2(k − i) +
2∑

i=0

biu(k − i) +
2∑

i=0

civ(k − i) + ξ(k + 1) (8.4)

Clearly, ai, bi, ci are nonlinear functions of the physical parameters J1, J2, cX , dX . An addi-

tional disturbance signal ξ(k + 1) is present which reflects the nonlinear effects such as dry

friction, nonlinear spring characteristics as well as the parasitic electrical part of the plant,

in short, all effects that have not been included into the model. We assume that ξ is small

compared to the state of the overall system, such that if the latter is bounded, ξ is bounded

as well. For notational convenience we define

θ0 = [ a0 a1 a2 b0 b1 b2]
T

φ(k) = [ y(k) y(k − 1) y(k − 2) u(k) u(k − 1) u(k − 2)]T
(8.5)

and obtain

n2(k + 1) = φ(k)T θ0 +
2∑

i=0

civ(k − i) + ξ(k + 1) (8.6)
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8.2 Design of the Adaptive Controller

Summing up the prior information about the plant, we know that the system is minimum–

phase, of third order and delay one. Given a reference model with delay d∗ ≥ 1 and an

arbitrary bounded input, e.g. r(k) = n20 + sin(ω TSk), the objective is to design a controller

which tracks the output of the reference model n∗
2(k) = q−d∗ D(q−1)

C(q−1)
r(k) while keeping all

signals in the system bounded:

lim
k→∞

|n2(k) − n∗
2(k)| ≤ χ (8.7)

‖φ(k)‖ ≤ φ̄ <∞ for all k > 0 (8.8)

where χ > 0 is some small value which is zero if ξ = 0. Let the closed–loop transfer function

be denoted by H(q−1). If H∗(q−1) is the transfer function of the reference system note

that our objective is to match H(q−1)r(k) and H∗(q−1)r(k) as closely as possible which is

different from matching the transfer functions themselves, i.e. H(e−jωTS) ≡ H∗(e−jωTS), for

all ω ∈ [0, π/TS]. The last equality may only be obtained if the regression vector φ(k) is

persistently exciting of sufficient order. If no disturbances are present, the only source of

excitation is the reference input r(k). Note, however, that the nature of the reference signal

is dictated by the process requirements not the mathematical ones (related to the richness of

φ(k)). In some cases, a pseudo–binary noise signal is added to the reference signal to enhance

excitation. It should be kept in mind, though, that the presence of unmodelled dynamics

generally interdicts such an action since it invariably leads to the problem of matching a

low–order model to a high–order plant. The design proceeds in three steps:

Step 1: Controller structure

In chapter 5.1, it was shown that the reference model may be chosen to be an arbitrary

stable system with relative degree greater than or equal to d. In the experiment we proceed

as in example (5.2) where the denominator of the reference model was defined to be

C(q−1) = A(q−1) + µ [1 − A(q−1)] (8.9)

and µ ∈ [0 . . . 1]. A(q−1) is chosen to be some polynomial having a complex conjugate pair

of poles and an additional pole at z = 1. Here, we have exploited the prior knowledge that

the two–mass system consists of a linear oscillator and a pure integrator. For µ = 1, the

reference model corresponds to a deadbeat control system which causes the load speed n2(k)

to be equal to its desired value after only d = 1 instant of time. For the moment, let us
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assume that v(k) ≡ 0, for all k > 0. If the parameters were known we would set

C(q−1)n∗
2(k) = φ(k − 1)T θ0 (8.10)

and solve for u(k). Since the parameters are unknown, an identification model has to be set

up which generates estimates of θ0. In view of the previous equation, an obvious choice for

such a model is

C(q−1) n̂2(k) = φ(k − 1)T θ̂(k − 1) (8.11)

where

θ̂(k) = [â0(k) â1(k) â2(k) b̂0(k) b̂1(k) b̂2(k)]
T (8.12)

The identification error is equal to

ε(k) = C(q−1)n2(k) − φ(k − 1)T θ̂(k − 1)

= φ(k − 1)T [θ0 − θ̂(k − 1)] + ξ(k)
(8.13)

It contains the effects of both the parametric error

θ̃(k) = θ̂(k) − θ0 (8.14)

and the residual error ξ(k) due to unmodeled dynamics. As above, we set

C(q−1)n∗
2(k) = φ(k − 1)T θ̂(k − 1) (8.15)

and solve for u(k). By virtue of the certainty equivalence principle the estimates θ̂(k) are

used as if they were the actual parameters θ0 of the system. This has the effect of relating

the control error to the identification error by an equation of the form (3.29). In this case,

the control error e(k) becomes

e(k) = C(q−1)n2(k) − C(q−1)n∗
2(k) = −φ(k − 1)T θ̃(k − 1) + ξ(k) (8.16)

which is actually equivalent to the identification error (8.13) because of d = 1. Since the sys-

tem is minimum–phase the adaptive controller defined by equation (8.15) is stable provided

that ξ is sufficiently small in the sense of our discussion in section 5.3.

If the torque on the load side is nonzero but constant, i.e. v(k) = v0, it may be regarded as

an (unknown) parameter. The system equation reads

n2(k + 1) = φ(k)T θ0 + cV v0 + ξ(k + 1)

= φ1(k)
T θ1 + ξ(k + 1)

(8.17)

where cV = c0 + c1 + c2 from equation (8.4),

θ1 = [ a0 a1 a2 b0 b1 b2 cV v0 ]T

φ1(k) = [ y(k) y(k − 1) y(k − 2) u(k) u(k − 1) u(k − 2) 1 ]T
(8.18)
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In this case, the adaptive controller is defined by

C(q−1)n∗
2(k) = φ1(k − 1)T θ̂(k − 1) (8.19)

where θ̂(k) ∈ R
7.

A third case has been studied, in which v(k) = sin(ωhk + ϕ) where the frequency ω and

phase ϕ of the disturbance are unknown. As discussed in chapter 4.1.1, complete elimination

of the disturbance can be achieved if the order of the controller is augmented. It has been

shown that a disturbance–free plant representation exists which is obtained by eliminating

v(k) in equation (8.6) using a second–order homogenous system. For the convenience of the

reader we restate this fact. Setting ξ(k) = 0, a representation of the plant (8.6) is given by

A(q−1)n2(k) = q−1B(q−1)u(k) + q−1G(q−1)v(k) (8.20)

where

A(q−1) = 1 − a0q
−1 − a1q

−2 − a2q
−3

B(q−1) = b0 + b1q
−1 + b2q

−2

G(q−1) = c0 + c1q
−1 + c2q

−2

The disturbance signal v(k) is generated by a homogenous system of the form

v(k) = [ d1q
−1 + d2q

−2 ]v(k)

:= [ 1 −D(q−1) ]v(k)
(8.21)

If we solve equation (8.20) for v(k) and use the result to substitute v(k) in (8.21) we obtain

n2(k + 1) = [ 1 −D(q−1)A(q−1) ]n2(k + 1) +D(q−1)B(q−1)u(k) (8.22)

which corresponds to a system model the order of which has been augmented in order to

account for the presence of an unknown sinusoidal disturbance. The system equation now

reads

n2(k + 1) = φ2(k)
T θ2 + ξ(k + 1) (8.23)

where

θ2 = [ d1 + a0 d2 − d1a0 + a1 −d2a0 − d1a1 + a2 −d2a1 − d1a2 −d2a2 . . .

. . . b0 b1 − d1b0 b2 − d1b1 − d2b0 −d1b2 − d2b1 −d2b2 ]T

φ2(k) = [ y(k) y(k − 1) y(k − 2) y(k − 3) y(k − 4) . . .

. . . u(k) u(k − 1) u(k − 2) u(k − 3) u(k − 4) ]T
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It is seen from the composition of θ2, that even if the parameters of the plant were known,

the augmented system is unknown if the coefficients d1, d2 of the disturbance model are not

available. In such a case, we design an adaptive controller of the form

C(q−1)n∗
2(k) = φ2(k − 1)T θ̂(k − 1) (8.24)

where θ̂(k) ∈ R
10. It follows that the principal design objective in step 1 is the choice

of an appropriate order of the identification model which forms the basis for the adaptive

controller. This choice depends strongly on the prior information regarding the order of the

undisturbed plant as well as the nature of the disturbance (constant or sinusoidal).

Step 2: Parameter estimation

In order to adjust the parameter vector θ̂ on the basis of the identification error ε, any

one of the estimation algorithms introduced in chapter 2 can be used. As expected, best

results are obtained with the recursive least square algorithm which is both fast and robust

to measurement noise. However, the algorithm cannot be used without taking precautions.

It is precisely the speed of the algorithm that causes problems. Even if we chose the initial

estimate θ̂(0) close to the actual parameters θ0, the algorithm may cause the estimates

to “jump away” from θ0 because of the perturbation term ξ in the identification error.

Experimental data indicate that the jump phenomenon is particularly pronounced if the

control input generated in the adaptive loop is large and oscillatory. This is in line with our

expectations since the perturbation ξ is large whenever unmodelled dynamics are excited by

a high–frequency input. The fact that the parameters jump or drift away from the actual

parameters may have fatal consequences on the stability of the system which have been

observed by many adaptive control practitioners (see e.g. IEE Colloquium 1997 [31]). In

order to prevent instability, two alternative methods have been employed in this experiment:

• Select the reference model according to equation (8.9) with 0 < µ ≤ 0.1.

• Constrain the parameter estimates to lie in a convex region in parameter space.

The rationale behind the first method is that – assuming that the system is known – the

control law resulting from (8.9) is given by

u(k) =
µ

B(q−1)
r(k) − q [1 − A(q−1)]

1/µB(q−1)
n2(k) (8.25)

At sampling intervals of TS = 10 . . . 100ms the coefficients of the denominator polynomial

B(q−1) are close to zero. In the adaptive context this is critical since it causes the corre-

sponding estimates to evolve within a small neighborhood of zero. This inevitably leads
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to a (transiently) large control input u. If µ in the above equation is a small number, the

effect can be compensated for. Even though no guarantee can be given that the parameter

estimates remain away from zero, the performance is improved substantially, since the actual

coefficients of the denominator polynomial are far from zero.

An interesting result has been obtained when applying the second method (Feiler et al., 2003

[20]). In this case, the reference model is of deadbeat–type, i.e. µ = 1. Instead of shifting

the actual coefficients of the polynomial B(q−1), their estimated values are constrained to lie

in a convex region of parameter space, such that if the system were frozen at a given instant,

B̂(q−1) would be stable. Even though the modification cannot be justified theoretically, the

nature of the control input was seen to improve drastically if the parameters are constrained.

From an intuitive viewpoint, we may argue that, as the matrix adaptation gain P tends

to zero, the adaptive controller is almost time–invariant. Suppose then that B̂(q−1) in

the denominator of the controller is unstable. This is not meaningful, since our system is

known to be minimum–phase so all its zeros lie inside the unit circle. Hence it is reasonable

to constrain the parameters as described. The closed convex region Υ within which the

estimates θ̂ are required to lie is defined as follows:

Υ = {θ̂ | θ̂[4]z
2 + θ̂[5]z + θ̂[6] 
= 0,∀ |z| ≥ 1} (8.26)

where θ̂[i] denotes the i–th component of θ̂ and [ θ̂[4] θ̂[5] θ̂[6] ] = [ b̂0 b̂1 b̂2 ], see equation

(8.12). In a two–dimensional subspace of R
7, Υ has the shape indicated in figure 8.3. It is

��

1

1

2

2

−1

−1−2

−2

θ̂5

θ̂4

θ̂6

θ̂6 = 1θ̂6 = 2

Figure 8.3: Convex region Υ

essential to guarantee that the parameter error does not increase even though the parameter

estimates evolve in a closed region in R
7. The procedure described in (Goodwin 1984, [27])

is adopted here to ensure convergence of the RLS–algorithm. The parameters are updated
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as follows:

θ̂(k) =



θ̂(k − 1) +

P (k − 2)φ(k − 1) ε(k)

1 + φT (k − 1)P (k − 2)φ(k − 1)
if θ̂ ∈ Υ

P (k − 1)1/2ρ̂(k)′ if θ̂ /∈ Υ

(8.27)

where ρ̂(k)′ is the projection of ρ̂(k) = P (k − 1)−1/2θ̂(k) onto the boundary of Ῡ, and

Υ
P−1/2−→ Ῡ. The reason for working in a transformed coordinate basis is that we have to

assure that the quantity V (k) = θ̃(k)TP (k− 1)−1θ̃(k) = ρ̃(k)T ρ̃(k), defined in chapter 2.3, is

non–increasing. We transform the coordinate basis of the parameter space by the following

linear time–varying transformation

ρ̂(k) = P (k − 1)−1/2 θ̂(k) (8.28)

This involves computing the square root of the inverse matrix P (k− 1)−1 at every instant of

time k. The square root is well–defined since P (k−1)−1 is positive definite for all k > 0. With

the orthogonal matrix U which diagonalizes P−1, i.e. P−1 U = U diag{λ1(k − 1) . . . λ7(k − 1)},
we obtain at every instant of time:

P−1/2 = U diag{
√
λ1, . . . ,

√
λ7} UT (8.29)

The image Ῡ(k) of the convex region Υ under the linear transformation P−1/2 is again

convex. We now project ρ̂(k) orthogonally onto the boundary of Ῡ(k) to obtain ρ̂(k)′ for

which

‖ρ̂(k)′ − ρ0‖2 ≤ ‖ρ̂(k) − ρ0‖2 (8.30)

since any point on the boundary of Ῡ(k) is closer to the true parameter ρ0 = P (k− 1)−1/2θ0

in the transformed space than a point outside Ῡ(k). Moreover, by projecting orthogonally,

we pick the ρ̂(k)′ on Ῡ(k) which is closest to ρ̂(k). Finally, we put θ̂(k)′ = P (k − 1)1/2ρ̂(k)′.

The use of transformed coordinates has the effect of assuring that

θ̃(k)′TP (k − 1) θ̃(k)′ ≤ θ̃(k)TP (k − 1) θ̃(k) (8.31)

which is equivalent to the fact that V (k) does not increase as required. Once the estimates

have converged to some constant values θ̂, the closed–loop system may be represented using

transfer–functions as displayed in figure 8.4.

8.3 Experimental Results

The tests were performed on the system displayed in figure 8.5, the principal technical

features of which have been presented in chapter 8.1. The adaptive algorithms have been
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b0 + b1z
−1 + b2z

−2

z − a0 − a1z−1 − a2z−2

1

b̂0 + b̂1z−1 + b̂2z−2

â0 + â1z
−1 + â2z

−2

n2r = n∗
2 z ū

ξ

Figure 8.4: Closed loop system for constant control parameters θ̂

implemented in a real–time–environment using Matlab
� and XpcTarget

�. The speed of

the second mass n2 is the quantity to be controlled by a torque u generated in the machine

connected to the first mass; n2 is required to follow the speed n∗
2 of the reference system as

closely as possible.

Figure 8.5: Two-Mass System

8.3.1 General performance

Figure (8.6) displays the response of the adaptively controlled system to a set of reference

signals. The results are collected column–wise. The sampling time used in this experiment

was TS = 0.1 s. Column one displays the tracking performance using a sinusoidal reference

input (with offset): r(k) = 50 + 5 sin(0.2π kTS) + 5 sin(0.4π kTS). In column two, the fre-

quency of the sinusoid is increased. In column three, the system is seen to follow a random

reference input r(k) = 100 +w(k), w being a random number within the interval [−15, 15].

The plant is initially controlled using (arbitrary) fixed parameters. At t = 10 s adaptation

is turned on, i.e. the parameters are adjusted. It is seen that, in all three cases, the output



178 CHAPTER 8. APPLICATION: TWO–MASS SYSTEM

n2 almost perfectly tracks the reference output (see row 4 of the figure) while keeping the

input torque u bounded, |u| ≤ 23Nm (row 2).
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Figure 8.6: Closed loop system for constant control parameters θ̂

It shall be noted that the results (particularly regarding the evolution of the input u) could

not have been obtained without constraining the parameters to the convex region defined in

(8.26). This is illustrated in the next experiment, figure 8.7. In the left column, the controller

works without constraining the parameter estimates to the convex region Υ. Assuming

that the parameters evolve on a much slower time–scale than the state of the system, the

adaptation is frozen at every instant of time and the roots of the polynomial B̂(q−1) in (8.25)

– corresponding to the poles z1 and z2 of the controller transfer function – displayed in row

3 of the figure. There is one pole which lies (close but) outside the unit circle. The control

input u is large and oscillatory thereby exciting unmodelled dynamics. Still, the signals

remain bounded due to the presence of the actuator saturation |u| ≤ u0. Also, notice that

the system is open–loop stable. Hence n2 cannot grow without bound if the average input
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u is zero. On the right hand side, the same experiment is performed but the parameter

estimates are constrained to lie in Υ at every instant of time. The effect can be observed

in row 3: as soon as the parameters hit the boundary of Υ, i.e. the controller poles become

unstable, the parameter estimates are projected back in the interior of Υ in such a way that

the poles lie at |z| = 0.7, i.e. inside the unit circle. The evolution of the control input u

changes dramatically.
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Figure 8.7: Effect of constraining the parameters to the convex set Υ (I)

To further underscore the fact that by constraining the parameters we do not merely keep

the parameter error bounded but significantly alter the nature of the control input, the

experiment is repeated and the results reported in figure (8.8). In contrast to above, the

parameters are constrained in both cases. In the left column, the parameter estimates have

been constrained to lie within Υ1, which was chosen in such a way as to keep the poles of the

(frozen) controller transfer function within a circle of radius 1.1, i.e. |zi| ≤ 1.1, i = 1, 2 and

in the right column Υ2 was chosen to ensure that |zi| ≤ 1. This seemingly small difference

results in a substantial reduction of the control effort spent to achieve identical tracking

performance. The result obviously needs to be analyzed further analytically to be of any
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theoretical significance. Here we merely document the improvement which was found to be

consistent over all (>50) the experiments performed.
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Figure 8.8: Effect of constraining the parameters to the convex set Υ (II)

Remark: Turning on the adaptation at t = 10 s is merely for the purpose of better illus-

trating the transient response of the adaptive system. Further, the effect of static friction

can be suppressed by starting the adaptation only once the system is in motion.

8.3.2 Modification of the Reference System

For the purpose of analysis, the true physical parameters of the two–mass system are of

interest. The inertias of the two aluminum flywheels can be calculated from the geometry

of the construction to be J1 = 0.166 kg m2 and J2 = 0.333 kg m2. The spring constant of

the flexible shaft is determined experimentally and is given by c = 410 Nm/rad. Even with

considerable insight into the mechanical properties of the plant it is impossible to correctly

determine the damping which acts as a speed–dependent braking torque and hence cannot be

separated from the effect of Coulomb friction. Its value is simply set to be d = 11 Nms/rad
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by fitting the model to measured input–output data. This results in an eigenfrequency of

the oscillator at f0 = 10 Hz. The (approximate) knowledge of the parameters of the system

has the following implications on our design.

The sampling time TS = 0.1s chosen in the previous experiments was inappropriate since

it violates the sampling theorem which requires 1/TS ≥ 2f0. Hence, provided the natural

oscillation of the system is excited (e.g. by a step input), the true output signal cannot be

reconstructed from the sampled output (aliasing). As a consequence, the sampling interval

has to be decreased. However, if the sampling time is small, another difficulty arises. Using

the approximated parameters obtained above, we generate a discrete–time model of the plant

in the form of an ARMA model, as in equation (8.20). The coefficients ai, bi, i ∈ {0, 1, 2}
are displayed in figure (8.9). It is seen that the coefficients bi tend to zero as TS → 0.
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Figure 8.9: Dependence of the coefficients of the discrete–time model on TS

This is critical since B̂(q−1) = b̂0 + b̂1q
−1 + b̂2q

−2 is in the denominator of the control law

(8.25). The expected difficulty here is that if the true coefficients bi assume values close to

zero, the estimated coefficients b̂i evolve in a neighborhood of zero. While this neighborhood

may be contained in the region Υ for which the polynomial B̂(q−1) is stable, the gain of

the resulting controller becomes excessively large. Hence, no improvement can be expected

by constraining the parameter estimates. It is also impossible to define a new region Υn by

excluding an open neighborhood of zero from Υ (i.e. to bound the parameters b̂i, i ∈ {0, 1, 2}
from below), since the true parameters may lie outside that region. It is the latter aspect

that can be corrected through an appropriate choice of the reference system.

As shown above, if the reference model is chosen according to (8.9) a factor 1/µ appears in

the denominator of the control law. As µ→ 0, the gain of the control law decreases, since the

closed–loop behavior approaches that of the open–loop plant. In the experiment, displayed in

figure (8.11), such a reference model has been chosen using the physical parameters obtained
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Figure 8.10: Control of the two–mass system using TS = 0.01 s: (i)–fixed controller, (ii)–

adaptive controller with µ = 1 (deadbeat), (iii)– adaptive controller with µ = 0.1 (generalized

reference model)

above in order to determine A(q−1) in equation (8.9). The response of the system is shown

using a sinusoidal and a piecewise constant reference input. The sampling time is set to TS =

0.01 s. In order to demonstrate that the above physical parameters are merely approximate

ones, a non–adaptive controller of the same structure (8.25) was initialized at the “true”

parameters and µ = 0.1 in part (i) of the figure. The resulting control input is unacceptably

large and oscillating between positive and negative saturation of the actuator and had to be

turned off after a few seconds in order to avoid rupture of the shaft. A similar performance

is observed in the adaptive case if the reference model is chosen to be a pure delay (part ii).

This confirms our expectations, since for TS = 0.01 s the coefficients bi are already close to

zero. Furthermore, it is clear that, by decreasing the sampling time, we have increased the

frequency range over which the closed–loop system has to respond as a one–step delay. This

can be corrected by setting µ = 0.1, as in (iii). It is the only case where the performance

of the system is found to be satisfactory. As we take a closer look at the evolution of the
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signals, we observe that the control input is still oscillatory. So far, a recursive least–squares

algorithm has been used to update the parameters. If it is substituted by a projection

algorithm, we observe the same qualitative behavior, but the use of this simple algorithm

opens up the possibility of optimizing the adaptive system with respect to the control effort.

This is at the center of our attention in the next experiment.
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Figure 8.11: Case (iii), input signals

8.3.3 Optimization of the adaptive gain

As discussed in chapter 5.2, the control effort can be measured by means of a cost function

J(k) = γ1 u(k)
2 + γ2 ∆u(k)2 (8.32)

Using the adaptive gain η, introduced in equation (2.12), as an optimization variable, a

procedure was outlined to determine the sequence {η∗(k)}, such that J(k) assumes a minimal

value at every instant of time k > 0. In order to ensure stability, η∗ was constrained to lie

within the interval (0, 2). If the procedure is applied to the real system we obtain the results

displayed in figure (8.12). In the left column, the adaptive gain satisfies η ≡ 1 ∀ k > 0, while

in the right column the gain has been optimized with respect to the cost function J where

γ1 = 0.05 and γ2 = 0.95.

The objective is to track a piecewise constant, random signal of the form r(k) = 50 + w(k)

where w ∈ [−20 , 20] with minimal control effort. In row 5 of the figure it is seen that the
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Figure 8.12: Tracking of a random reference input using a standard (left) and optimized

(right) adaptive scheme

optimized version of the adaptive controller hardly produces any cost. As a consequence,

the input signal u is less oscillatory than in the case where η ≡ 1 while the performance of

the output n2 is equivalent in both cases. The same experiment is repeated for a sinusoidal

reference input, in figure (8.13). It is seen that by optimizing the gain and, hence, the evo-

lution of the estimates in parameter space, the same output performance as in the standard

case can be obtained with much less control effort.

8.3.4 Disturbance Rejection

The very fact that adaptive control is applied to a real–world process implies that it has to

cope with disturbances such as noise and unmodelled dynamics. The modifications of the
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Figure 8.13: Tracking of a sinusoidal reference input using a standard (left) and optimized

(right) adaptive scheme

adaptive scheme regarding the region in which the parameter estimates evolve as well as the

step–size by which they are updated may be viewed as an effort to reject disturbances which

are intrinsic to real–world applications.

In the presence of unmodelled dynamics, the nature of the control input is not only a question

of performance but also of stability. As discussed in chapter 5.3, if the control input excites

the unmodelled part of the plant, a disturbance signal results which may cause the estimates

to drift to an unstable region in parameter space. Such a disturbance may be regarded a

“hidden” one, since it does not appear when the parameters are known and a linear control

concept is used (unless the reference input itself has significant high–frequency content).

In the following experiments we are interested in “explicit” deterministic disturbances, which

enter the system in the form of a disturbance torque v on the load–side of the two–mass
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system. Such a disturbance typically arises due to variations of the load or due to an out–

of–balance rotational mass. It may consequently be assumed to be either piecewise–constant

or sinusoidal. In the latter case, an approach has been presented (→ chapter 4.1.1) which

consisted in augmenting the state–space of the system by the dimension of a disturbance

generating system. This can be appreciated in the next experiment displayed in figure (8.14).

The objective here is to regulate the speed n2 of the output to zero in spite of the presence of

a sinusoidal disturbance of unknown frequency. The amplitude of the disturbance torque is

equal to almost half the maximum torque generated by the electrical drives |v| = 10Nm. To

the left of the figure the same controller as in the disturbance–free case is used, i.e. the order

of the system has not been augmented. It is seen that the output error remains nonzero.

In the right part of the figure the order has been increased by two. Notice that we have a
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total of ten unknown parameters in this case. It is seen that the disturbance can be rejected

completely.
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Figure 8.15: Rejection of a time–varying sinusoidal disturbance torque v

The last two rows of the figure contain a Bode diagram of the disturbance transfer function

obtained after the parameters converge to some constant values. In the augmented system

we find a notch at the disturbance frequency ωv = 3 rad/s. Notice that since the controller

is adaptive the location of the notch is adjusted such that it always corresponds to ωv.

In the non–augmented case, the parameters cannot converge anywhere if the disturbance

persists. Hence it does not make any sense to determine the frequency response of the system.

However, for comparison purposes, the Bode diagram has been computed using an average

of the parameter estimates obtained in the interval [40 s . . . 50 s]. The same experiment is

conducted using a sinusoidal disturbance with (slowly) time–varying frequency. It is seen

that the notch in the disturbance transfer function tracks the disturbance frequency ωv,

figure (8.15). Again, the Bode diagram is determined from a (time–invariant) average of the

parameter estimates θ̂ over a finite window. Naturally, the above procedure for minimizing

the control effort can also be adopted in combination with a controller of augmented order.

In order to illustrate this, the adaptive gain η of a 5th–order adaptive controller is optimized.
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The two–mass system is required to track a piecewise–constant random signal and reject a

sinusoidal disturbance of amplitude |v| = 10Nm. In the left column of figure (8.16), with

constant gain η ≡ 1, significant control effort is spent to achieve the goal. In the right

column, with time–varying gain η∗(k), the effort (displayed in row 5) is minimized and the

resulting control input less oscillatory.
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Figure 8.16: Rejection of a sinusoidal disturbance with minimal control effort

If the disturbance is piecewise constant, the order of the controller does not have to be

augmented. As indicated in equation (8.18), the constant disturbance can be treated as

an unknown parameter. In other words, the disturbance is converted into a parametric

uncertainty. The parameter is assumed to be constant over an interval of some minimum

length but then changes discontinuously from one unknown level to another. If the time–

variation occurs infrequently, regular adaptive control is able to cope with the problem as

illustrated by the experiment contained in figure (8.17).

If the recursive least–squares algorithm is used to adjust the parameters, a forgetting factor
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Figure 8.17: Rejection of a piecewise constant disturbance

has to be introduced, or –alternatively– the matrix adaptation gain “revitalized”. Such

revitalization is carried out by resetting the gain preferably at those instants at which a

time–variation occurs. This requires a mechanism for detecting the variation. Secondly, it

is seen that if the parameters do not remain constant over a sufficiently long interval, the

plant becomes unstable. It is in such rapidly time–varying situations that the multi–model

approach (MMST) is found to be effective.

8.3.5 Adaptive Control using Multiple Models

A central question in MMST regards the location of the fixed models. In the following

experiment, N = 25 models where located in parameter space on an evenly spaced scale

along the θ̂[7]–axis, where θ̂[7] denotes the element of the vector θ̂ corresponding to the

constant disturbance v0. The models represent 25 different levels of v0 within a range of

−10Nm to +10Nm including a model for v0 = 0Nm. All other parameters θ̂[1], . . . , θ̂[6]

of the 25 models where initialized at the same values obtained from previous experiments

where no disturbance was present. The switching criterion was chosen to be of the form (iii)

defined in equation (6.1), except that the summation is carried out over a window of finite
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length, i.e. Ji(k) = 0.5 ε2i (k) + 0.5
∑k

ν=k−T0
ε2i (ν), where T0 = 5. Let us first observe the

performance of the system if a single adaptive model is used (→ figure 8.18). The control
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Figure 8.18: Adaptive control in the presence of disturbances using a single model

input is oscillatory and the signals remain bounded only because the amplitude of the input

was hard–limited by a saturation nonlinearity. With the above choice of multiple models

the performance can be improved substantially. At every instant k > 0, an adaptive model

is initialized using the parameters of the fixed model that performs best, i.e. θ̂(k) = θf

where Jf (k) = mini∈{1...25} Ji(k) and discarded once another fixed model θg surpasses the

performance of the adaptive model. At this point, a new adaptive model is initialized at θg.

Since the fixed models lie close to the plant in parameter space, the choice of the models

almost directly reflects the time–variation of the load. This can be verified in row 4 of

figure (8.19). The MMST approach enables us to detect changes in the environment and

provide a quick response by initiating an appropriate control action based on the best model.

Whenever the adaptive model is reinitialized at some fixed point in parameter space, the

corresponding gain matrix used in the recursive least squares algorithm is reset, so that

adaptation from that point is fast. The performance of the system is seen to be far superior
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to the single model case both from the point of view of the output error as well as the nature

of the control input.
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Figure 8.19: Adaptive control in the presence of disturbances using multiple models

This concludes our discussion of the experimental results as well as the thesis itself. Future

work needs to be done regarding the prior information required to improve performance in

a time–varying environment. The procedure introduced in chapter seven, which employs

self–organization and learning principles to locate multiple models effectively in parameter

space represents a most promising avenue of future research. Specific future problem areas

have been formulated at the end of chapters five and seven and are not repeated here.

Having investigated the behavior of adaptive systems in both theory and practice it is the

conviction of the author that the nonlinear nature of adaptive schemes is wrongly regarded as

an obstacle and should be exploited instead. In chapter five, the step–size η is considered an

additional design variable by which the performance of the system could be optimized. This is

impossible if the parameters are trained off–line, i.e. using a linear control approach combined

with a parameter estimator as in the industrial example discussed in chapter two. Even

though the proof of stability (presented in chapter three) offers less insights than the stability
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criteria obtained for linear systems, a lot of intuition was developed throughout the thesis

regarding the behavior of adaptive systems. Chapters four, five and six develop new strategies

for rejecting disturbances and improving the performance even when large uncertainties are

present. The solutions proposed are not derived from linear design methodologies but use

distinctly nonlinear features to generate a new kind of system behavior. Still, our choice of

algorithms is very limited and mainly dictated by mathematical tractability. Adaptation as

it occurs in biology has a much more far–reaching character regarding the way information

is processed, stored and used for control. Emulating this ability will be the goal of future

investigations. This requires new adaptive configurations, such as the one investigated in

chapter seven. Again, it is a nonlinear function that governs the evolution of multiple

adaptive models in such a way that they converge to different points in parameter space.

The increasing appearance of nonlinear strategies in many theoretical developments is in

sharp contrast to what is currently being implemented in actual real–world applications.

Linear strategies represent the preferred design technique despite the fact that, in view of

growing demands on system performance, new features such as self–tuning and adaptation

are called for. The acceptance of nonlinear control schemes is traditionally low since no intu-

ition has been acquired regarding the behavior of the controller in a real–world environment.

In this thesis, the emphasis was on investigating the behavior of adaptive controllers in the

presence of disturbances. The choice of the problem classes was itself motivated by practical

applications and includes external disturbances, unmodelled dynamics and time–variations.

The experimental results presented in chapter eight strongly support the effectiveness of the

proposed solutions. No outcome seems more desirable to the author than having increased

the esteemed reader’s motivation to further explore the potential and intuition behind the

nonlinear process called adaptation.
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Nomenclature

η adaptive gain (step–size of the parameter estimator)

η∗ optimized adaptive gain

µ positive real variable

φ regression vector

θ0 true system parameters

θ̂ parameter estimates (general)

θ̂i parameter estimates (fixed model)

θ̂a parameter estimates (adaptive model)

θ̂M∗ critical trajectory of parameter estimates tending to M∗ (chapter 7)

θ∗ constant parameters, e.g. after convergence

ε small positive number defining a neighborhood around a critical point

ε(k) identification error

ε̄(k) augmented error

ξ(k) residual error due to unmodelled dynamics

χ upper bound on the control error

ζ0 state variables corresponding to the zero dynamics

ω frequency [rad/s]

Σ plant

Ξ model

Σv disturbance model

Σ̄ composite system Σ ◦ Σv

Γ controller

Υ region in parameter space

Ω index set: Ω = {i ∈ N | i ≤ N, N > 0}

A system matrix A ∈ R
n×n (state–space representation)

b input vector b ∈ R
n×1

c output vector c ∈ R
1×n

A(q−1) polynomials in q−1, similarly: B(q−1), C(q−1), ...

cX spring constant

dX damping constant

d relative degree

dij ‖θ̂i − θj‖, i.e. distance of model i to plant j

e(k) control error
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f, g, h nonlinear maps

i integer, index

k discrete time instant

k0 initial time

p dimension of parameter space

n order of the system

n̄ reduced order of the system

nv order of the disturbance model

nX deg[X], where X is a polynomial

si amount by which model θ̂i is updated (“step”)

t time (in seconds)

q−1 delay operator (discrete–time)

v(k) deterministic disturbance

v0 constant disturbance

F nonlinear map (NARMA–model)

G nonlinear control law

H convex hull

N neural network approximating F or G
U ,X ,Y neighborhoods of the origin

H(·) transfer function

I finite interval of time

J performance criterion

K interval over which the plant parameters remain constant

MP , P matrix adaptation gains

M∗ critical model configuration (chapter 7)

N number of estimation models (MMAC)

S set of parameters assumed by a time–varying plant

T interval of finite length

TS sampling time, i.e. t = kTS

V (k) Lyapunov function

x state vector

z state vector (in transformed coordinates)

MMST Multiple Models, Switching & Tuning

SIC Simultaneous Identification and Control
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