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Vollständiger Abdruck der von der Fakultät für Elektrotechnik

und Informationstechnik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktor–Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. P. Lugli, Ph.D.
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1. Abstract

This work deals with the development of methods, algorithms and software

implementations, for the analysis, design and optimization of multilayered

radiating cylindrical structures.

A method based on the integral equation method (IEM) in connection

with method of moment (MOM) is developed. Dealing with IEM a key

problem is the computation of the Green’s function.

A novel method to compute the Green’s function for multilayered cylin-

drical structures is presented. Making use of the symmetry properties of the

cylindrical structure a circuit description of multilayered cylindrical struc-

ture in spectral domain (SD) is developed. The circuit model is based on

generalized transmission lines (GTL). The GTL method is used to com-

pute the spectral domain dyadic Green’s function components. The space

domain Green’s functions are computed using a quasi-analytical approach.

This means that we approximate the spectral domain Green’s functions us-

ing a poles/residues expansion into a series of exponential functions. The

poles and residues are estimated using the generalized pencil of function

(GPOF) method. Having the spectral domain components of the dyadic

Green’s function represented by exponential functions, the space domain

Green’s function is performed analytically.

The convergence of the cylindrical Green’s function near the source re-

gion are treated in details. For this purpose we consider that the Green’s

function is given in terms a series of cylindrical waves functions. Due to

the singularity of the Green’s function in the origin, the correct and fast

convergence in the near field is an important issue. In this work we present

a convergence analysis of the cylindrical Green’s function. In this context

the availability of simple and accurate reference models for the evaluation

of the method in the near field region is a key point. From the analytical

point of view, the problem is solved by the theory of distribution. In this
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work, we discuss the limitations of the classical description of the source re-

gion given by the theory of distribution from the numerical implementation

point of view.

In order to show the potentialities and to validate the method, we present

several challenge applications. The Green’s function is used with MOM for

the modelling of conformal cylindrical antennas embedded in a cylindrical

radome structure and circular conformal antenna array mounded around a

cylindrical mast acting as reflector. In order to demonstrate one important

advantage rotational symmetric structures, we present beamforming and

azimuthal scanning algorithms combined with electromagnetic simulations

of the antenna array without and with a three layers radome. Although

beam-shaping has advanced properties, the proposed method for numerical

modelling is rather fast and efficient. Indeed, due to the fast semianalytical

approach presented in this work, we show that the computation can be car-

ried out quasi simultaneously. The results are compared with measurements

and with results obtained with others commercial CADs.
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3. Preface

In this manuscript exterior calculus formalism is adopted. A short re-

view of the relation with the classical vector representation is given in

the Appendix E. A more complete treatment of the topic can be found

in [21, 29, 55]. It is interesting that this modern point of view was antici-

pated by Maxwell himself:

...We are here led to considerations belonging to the Geometry of Posi-

tion, a subject which, though its importance was pointed out by Leibnitz and

illustrated by Gauss, has been little studied. [51].
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4. Introduction

4.1. Problem Formulation

This work deals with the development of theoretical methods, algorithms,

software and hardware implementations for the analysis, design and opti-

mization of multilayered radiating cylindrical structures.

4.2. Motivations

Due to their excellent radiation characteristics and beam forming perfor-

mance, multilayered cylindrical antennas are growing of importance in a

multitude of RF communications and radionavigation applications. Over

the years applications spam direction finding, radar, sonar and smart an-

tenna [43].

Even though the symmetrical properties of the structure simplify the

modeling, the analysis and design of multilayered cylindrical radiating struc-

ture is a real challenge. The difficulties, for standard volume discretaizing

methods, arise from the complexity of the electromagnetic problem defi-

nition itself. Indeed, the fine structure details (multiple thin layers), the

presence of different dielectric materials, a high aspect ratio, cylindrical

shape, unbounded radiating problem, require a fine meshing and excessive

time and memory resources consumption are needed.

As an example, we have simulated, using WinFEKO [56], a hollow di-

electric cylinder of relative permittivity ε = 4.5 [8]. A short electric dipole

in axial direction, resonating at 800 MHz, was embedded inside the di-

electric cylinder, Figure 1. For a normal discretization step according to

the WinFEKO criterium [56]), we have used 500 MBytes fast memory and

the simulation time was around 20 min at one frequency. It follows that

1



2 Introduction

Figure 1.: Structure modelled with WinFEKO.

for more complicated problems and higher frequencies, analysis, design and

optimization of cylindrical multilayered conformal antennas, radome etc.,

can be a complex engineering task. More examples using other commercial

CAD tools will be given in Chapter 8.

An alternative solution of the problem can be a more sophisticated sim-

ulation environment like parallel processing in Grid environment [9,10,11].

However, such an emerging approach, would not offer the possibility of a

systematic way to investigate and design such cylindrical structures. Con-

versely, in such problems where significant geometry symmetry properties

can be exploited, a more understanding view of the electromagnetic prob-

lem can be used to introduce fast and accurate semianalytical simulation

techniques. In this work an alternative to the standard integral equation

method (IEM) in connection with the method of moments (MOM) [12,13,8]

is presented.
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4.3. Comparison with the State of the Art

Green functions for cylindrical structures have been treated in numerous

publications [2, 3, 7, 4]. Following the field solution type, and the usual

convention terminology used in the literature, two basic approach can be

followed to compute the Green’s function: the mixed potential integral

equation (MPIE) and electric field integral equation (EFIE). Following the

definition of the field potential, the MPIE exhibits a better numerical be-

havior of the EFIE in the source region since the singularity is one order

lower [49, 41]. In [1] analytical closed form expressions are given for two-

and three-layered cylindrical structures. The approach, basically follows

the modal expansion representation given in [7]. Also a recursive algorithm

formulation to compute the spectral domain Green’s function has been re-

ported in [6] which is basically a cylindrical wave expansion of the mixed

potential integral equation (MPIE). In this case, the space domain compo-

nents of the dyadic Green’s function are computed using a poles/residues

expansion approximation for the spectral domain Green’s functions intro-

duced in [35, 17]. Here the spectral domain Green’s function is represented

into series of cylindrical eigenmodes estimated via the generalized pencil of

function method (GPOF) which is basically a series of exponential func-

tions [17]. Therefore, after the approximation, the inverse Fourier integral

over the complex plane kz could be computed analytically in easy and fast

way [6]. Historically, this method is usually referred as image technique and

was already used in 1988 [45] and for planar structures in [35, 46] in 1991

and 1992 respectively. One of the key problem of this method is the slow

convergence of the expansion into series of cylindrical waves of the Green’s

function. In particular if (ρ′, ϕ′, z′) are the source coordinates, for ρ′ << ρ,

(ρ is the observation point), the cylindrical waves expansion forms a fast

convergent series. This is the case of [6] and [48]. Conversely, if the condi-

tion ρ′ << ρ is not satisfied, i.e., ρ′ and ρ are near each other, the cylindrical

wave expansion yields a slowly convergent series [47]. The convergence can

be improved by extracting the slowly convergent part of the Green’s func-

tion as reported in [47]. In the latter the convergence was investigated for

a given ρ′ and ρ and moving over z. The obtained Green’s functions in [47]

have been then compared with [6] chosen as reference model.
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The first contribution of this work is to introduce a network description

in spectral domain of the multilayered cylindrical structure. The network

analogy is given introducing a generalized transmission line (GTL) model

for the cylindrical layers in spectral domain [13, 12]. Such an approach

has several advantages. First in the implementation stage of the Green’s

function the electromagnetic boundary conditions are described simply via

connection with the ports and therefore the addition of the cylindrical layer

implies only an addition of a GTL. Therefore adding and removing layers

is a relatively easy task. Also relevant numerical advantages arise by the

introduction of the GTL description. Indeed, having a GTL model, we can

use e.g., a chain of ABCD matrixes which in lossless case and reciprocal me-

dia, has the property to have a unitary determinant [52]. As a consequence,

important numerical problems arising from matrixes inversion can be easily

handled. Also, the GTL introduces an additional important insight in the

design and optimization stage [12,8, 14].

To compute the space domain components of the Greens’s function we

have used a GPOF [6] approximation in spectral domain and therefore the

inverse Fourier integral could be analytically computed.

The second contribute of this work is a three dimensional convergence

analysis in the source region introducing accurate reference models. As

mentioned before one of the key problems is the analysis of the Green’s

function convergence for small |r − r′| where r′ describes the source re-

gion and r the observation space. In this work we have performed a three

dimensional convergence analysis of the Green’s function and shown the

convergence properties moving along ρ, ϕ, z in the near field region. Also

accurate reference models for near field computation have been discussed

and introduced. The reference model is based on static field approximation

for small space variation |r − r′| and method of moment (MOM).

4.3.1. Applications of the GTL-Green’s function and

Validation

The obtained Green’s function is used to model via MOM a conformal to

cylindrical surface axial dipole and circular array of conformal dipoles, con-

fined into a multilayered cylindrical structures. The dipole/s are mounted
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around a cylindrical reflector. To show the power of the method, simple

beamforming and azimuth scanning algorithm are performed on the fly to-

gether with the electromagnetic simulation and the performance is shown

in term of computational time. The results are validated with other com-

mercial CAD and measurements.

4.4. Structure of the Manuscript

In Chapter 5 the necessary definitions and mathematical preliminaries are

given. In Chapter 6 the GTL model of the cylindrical structure in spectral

domain and the Green’s function computations are presented. In Chapter 7

the validation and convergence of the Green’s function in the near field

are presented. The Chapter 8 deals with the use of the Green’s function

in MOM application of measurements. In Appendixes D.1.1 some partic-

ular potential Ansatz useful for implementations purposes are given. In

Appendix B some used mathematical tools used in the theoretical devel-

opment are shortly reviewed. In Appendix C implementation issues are

discussed. In the Appendix D some useful asymptotic approximation useful

for the far-field pattern visualization are reported. Finally in Appendix E

a short review of the differential form calculus is given.





5. Green’s function definition

5.1. Mathematical Preliminaries

In general, from the linearity of the Maxwell’s equations, the field can be

expressed in terms of the excitation currents by the integral representations

as follows

E(r) = jωµ

∫

V ′

Ge(r, r′) ∧ J (r′) (1)

where V ′ is the volume in which the sources are non-vanishing, r is the

observation point, r′ is the location of the source. The definition of the

Green’s function is given considering three dimensional current distribu-

tions corresponding to three infinitesimal electric dipoles at r = r′ and

oriented in three-orthogonal directions and having a unitary Dirac distri-

bution of the current. Since any arbitrary system of curvilinear system of

coordinates with coordinates u, v, w can be defined via embedding in the

three-dimensional Cartesian coordinate system x y, z as in [21], we start us-

ing Cartesian coordinates. In this case, the above mentioned Dirac current

distribution can be written as follows:

J (r) = J0x
δ(r− r′)dy ∧ dz+ J0y

δ(r− r′)dz ∧ dx+ J0z
δ(r− r′)dx∧ dy (2)

To compute the field at point r excited by the source defined in (2) and

located at point r′ we use the Green’s double one form [21, 30, 29] defined

as follows:

Gs(r, r′) = Gxx′dxdx′ +Gxy′dxdy
′ +Gxz′dxdz

′

+Gyxdydx
′ +Gyy′dydy

′ +Gyz′dydz
′

+Gzx′dzdx′ +Gzy′dzdy
′ +Gzz′dzdz

′
(3)

The Green’s double form relates the observation space r to the source space

r′. We introduce a curvilinear space of coordinates u, v, w. We assume it to

7



8 Green’s function definition

be an orthogonal coordinate system. In this case the curvilinear system of

coordinates can be directly defined from the Cartesian system of coordinates

calculating the metric coefficients [21]. In this case (3) can be directly extend

as follows:

Ge(r, r′) = Guu′g1g
′
1dudu

′ + g1g
′
2Guv′dudv

′ + g1g
′
3Guw′dudw′

+g2g
′
1Gvudvdu

′ + g2g
′
2Gvv′dvdv

′ + g2g
′
3Gvw′dvdw′

+g3g
′
1Gwu′dwdu′ + g3g

′
2Gwv′dwdv′ + g3g

′
3Gww′dwdw′

(4)

where g1, g2, g3 and g′1, g
′
2, g

′
3 are the metric coefficients of the observation

and source space respectively. In the same way we can write (2) as follows

J (r) = J0u
δ(r − r′)g2g3dw ∧ du+ J0v

δ(r − r′)g1g3du ∧ dw+

J0w
δ(r − r′)g1g2du ∧ dy

(5)

We introduce now the unit one-forms:

s1 = g1du s2 = g2dv s3 = g3dw

s′1 = g′1du
′ s′2 = g′2dv

′ s′3 = g′3dw
′ (6)

where the symbol ′ indicates the source space. Using (6) in (5) and (4) and

substituting in (199) we obtain

E(r) =
∫

V ′ Ge(r, r′) ∧ δ(r − r′)s′2 ∧ s′3 +
∫

V ′ Ge(r, r′) ∧ δ(r − r′)s′1 ∧ s′3+
∫

V ′ Ge(r, r′) ∧ δ(r − r′)s′1 ∧ s′2
(7)

Let us consider the first integral:

E(r) =
∫

V ′ Ge(r, r′) ∧ δ(r − r′))s′2 ∧ s′3 =
∫

V ′ [Guu′(r, r′)s1 +Gvu′(r, r′)s2 +Gwu′(r, r′)s3]δ(r − r′)(s′1 ∧ s′2 ∧ s′3) =

Guu′(r, r′)s1 +Gvu′(r, r′)s2 +Gwu′(r, r′)s3
(8)

In the same manner we can treat all the integrals of (7). Defining the E(r)

as one form in the following way

E(r) = Eus1 + Evs2 + Ews3 (9)

and considering (8) and (7) we can conclude

Gpq(r, r
′) = Ep(r)|J (r)=δ(r−r′)uq

(10)
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where Gpq(r, r
′) are the scalar components of the dyadic Green’s function

in direction p due to a q-oriented Dirac source, Ep are the three scalar

orthogonal components of the electric field and uq = sk∧sh for k, h = 1, 2, 3

and k 6= h are the orientation of the sources in the local system of coordinate.

Therefore the electric dyadic Green’s function is completely determined if

the electric fields produced by the orthogonal Dirac dipoles placed at r′ are

known.

5.1.1. The Sturm-Liouville Differential Equation

We assume an electromagnetic boundary value problem in which the solu-

tion can be given by separation of variables. If the boundary conditions

for the problem are homogeneous, one of the ordinary differential equation

will give a Sturm-Liouville type problem, which leads to a set of orthogonal

eigenfunctions as solutions.

In the following we will discuss and review some important basic proper-

ties of the Sturm-Liouville differential equation.

We start from the one-dimensional scalar homogeneous Sturm-Liouville

differential equation given in the following

d

dx

[

p(x)
dψ(x)

dx

]

+ [q(x) + λσ(x)]ψ(x) = 0, (11)

where ψ(x) is the unknown solution function, p(x), q(x) and σ(x) are real

and continuous within the definition range. Typically, p(x) and σ(x) are

positive and λ may be complex. If the interval of definition of the problem

is xε[a, b], then the solution of (11) are fixed if boundary conditions are

specified. The common boundary conditions are given by the following

ψ + ca
dψ

dx
= 0 for x = a, (12a)

ψ + cb
dψ

dx
= 0 for x = b. (12b)

where ca and cb are real. For the given boundary conditions, we express the

solution as infinite series of eigenfunctions ψn with the corresponding eigen-

value λn [21,31]. This is possible since ψ form an orthogonal set of functions

in the interval of definition in all the cases [31]. Therefore they form also a
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complete set of function which may be used to expand any arbitrary piece-

wise continuous function ψ(x) into a Fourier-type series. Accordingly, we

express the boundary value problem solution as

ψ(x) =

∞
∑

n=1

anψn(x) (13)

where ψ(x) are the normalized basis functions by σ(x) in the definition

interval xε[a, b] as follows

∫ b

a

σ(x)ψnψmdx =

{

1, n = m

0, n 6= m
(14)

and the unknown coefficients an can be obtained as in [21,31]

an =

∫ b

a

σψ∗
nψ(x)dx (15)

We introduce a perturbation term g(x). In this case the the inhomoge-

neous Sturm-Liouville differential equation for the given perturbation is of

the following form

d

dx

[

p(x)
dψ(x)

dx

]

+ [q(x) + λσ(x)]ψ(x) = g(x). (16)

If the perturbation term is described by a Dirac distribution at point x′

δ(x−x′) then the solution of (16) is a Green’s function G(x, x′) that satisfies

the following inhomogeneous Sturm-Liouville differential equation

d

dx

[

p(x)
dG(x, x′)

dx

]

+ [q(x) + λσ(x)]G(x, x′) = δ(x− x′), (17)

whereas G(x, x′) must fulfill appropriate boundary conditions. We assume

for the inhomogeneous problem the same boundary conditions as in the

homogeneous case (12). Since (17) is linear, the solution can be expressed

in terms of the perturbation term by the integral representations as follows

ψ(x) =

b
∫

x′=a

G(x, x′)g(x′)dx′ (18)
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Considering g(x) = δ(x− x′) and using the sampling property of the Dirac

function we obtain

ψ(x) = G(x, x′) (19)

where the Green’s function G(x, x′) may be considered as function of the

variable x with parameter x′ indicating the position of the perturbation.

Considering that ψn(x) are a complete set of basis function, according to

(19) the Green’s function can be expanded into eigenfunctions as in the

homogeneous case as follows

G(x, x′) =

∞
∑

n=−∞
an(x

′)ψn(x) (20)

In this case the complex amplitudes an(x
′) of the basis functions are de-

pendent on the location x′ and in general magnitude of the perturbation

term. There are several approaches for determining the unknown coefficients

an(x
′) [7, 21, 31, 32] which bring to different representation of the Green’s

function. For completeness, in the following the spectral representation will

be discussed while a more physical approach will be introduced and ex-

plained later. We first expand also the Dirac perturbation in eigenfunctions

using the same basis functions ψn(x) as follows:

δ(x− x′) =
∞
∑

n=1

anψn(x) (21)

Using (15) we compute the unknown coefficients an as follows

an =

b
∫

x=a

σψ∗
n(x)ψ(x)dx =

b
∫

x=a

σψ∗
n(x)δ(x− x′)dx = σψ∗

n(x
′) (22)

inserting the (22) into (21) we obtain

δ(x− x′) =
∞
∑

n=1

σψ∗
n(x

′)ψn(x) (23)

Inserting (20) and (23) into (17) we obtain

∞
∑

n=1

{

d

dx

[

p(x)
d

dx

]

+ [q(x) + λσ(x)]

}

an(x
′)ψn(x) =

∞
∑

n=1

σψ∗
n(x

′)ψn(x)

(24)
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Since the eigenfunctions ψn(n) must satisfy the eigenvalue equation (11) for

λ = λn
d

dx

[

p(x)
dψ(x)

dx

]

+ [q(x) + λnσ(x)]ψ(x) = 0, (25)

the (20 becomes

∞
∑

n=1

(λ− λn)an(x
′)ψn(x) =

∞
∑

n=1

σψ∗
n(x

′)ψn(x). (26)

therefore we conclude that for each n

an(x
′) =

ψ∗
n(x

′)

λn − λ
. (27)

Substituting the (27) into (20) we obtain the spectral representation of the

Green’s function G(x, x′)

G(x, x′) =

∞
∑

n=−∞

ψ∗
n(x

′)ψn(x)

λ− λn
(28)

where we observe the symmetry of the Green’s function in x and x′ and the

poles of the Green’s function at λ = λn

5.2. Field representation in terms of

potentials

We consider time-harmonic fields and therefore we will consider time-harmonic

potentials. In this case, an ejωt time-dependence is assumed and suppressed.

In presence of electric sources and in homogeneous regions the Faraday’s

law and Ampère’s law can be expressed in complex phasor representation

as follows

dH = jωε ? E + J (29a)

dE = −jωµ ?H (29b)

where ε and µ are the complex permittivity and permeability respectively,

J is the impressed electric current phasor. The equation (29) provides a
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system of six scalar equation to be solved to obtain the scalar component

of the electric and magnetic fields. Moreover the magnetic flux continuity

and Gauss’ law must also be considered

dB = 0 (30a)

dD = Q (30b)

where Q is electric charge density form. The (30a) and (30b) are related

with the fields via constitutive relations as follows

B = ?µH H =
1

µ
? B (31a)

D = ?εE E =
1

ε
?D (31b)

The (29) and (30) constitute a system of 12 scalar equations which can be

generally simplified introducing some potential functions in terms of which

the fields can be expressed. According to (30a) and (31b), d ? H = 0 the

magnetic field is divergence-free. Using the Poincaré’s lemma [21], H can

be expressed as the exterior derivative of a one form A as follows

H =
1

µ
? dA (32)

where the A is called magnetic vector potential form and any two-form ?H
with varnishing exterior derivative can be expressed as exterior derivative

of one-form [21]. Such a two form describes a solenoidal field. In the vector

potential form A is not divergence-free since i.e. d ? A 6= 0 and therefore

has a lamellar part and has also a solenoidal part since in general for one-

form dA 6= 0. By using the (32) we have imposed a condition for the

solenoidal part of A but the lamellar part remains not specified. Using (32)

the Maxwell’s equation (29b) must be satisfied

d(E + jωA) = 0 (33)

which represents the exterior derivative of a one-form that due to the

Poincaré’s lemma must vanish. As mentioned before in general dA 6= 0,

and therefore we introduce a scalar potential φ. Since ddφ = 0 we can

express the E as follows

E = −jωA− dφ (34)
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In such way the (33) is verified and in the following we will show that the not

yet specified lamellar part must satisfy the Lorenz condition. By inserting

the (32) and (34) into (29b)

d ? dA = jωµε ? (−jωA− dφ) + µJ (35)

Applying the Hodge operator in both sides of (35) and considering that

?? = 1 we obtain

?d ? dA = jωµε(−jωA− dφ) + µ ? J (36)

Since ?d ? dA = d ? dA we use the following identity

?d ? dA = −∆A + d ? d ?A (37)

into the (36)

−∆A + d ? d ?A = k2A− jωµεdφ+ µ ? J (38)

the above equation can be simplified to satisfy by forcing the lamellar part

of the vector potential one-form to satisfy the Lorenz condition as follows

d ? d ?A = −jωµεdφ (39)

rearranging the equation

d(?d ?A) = d(−jωµεφ) (40)

which is satisfied if

φ =
?d ?A
−jωµε (41)

With this choice of φ, (35) is reduced to

∆A + k2A = −µ ? J (42)

which represents the Helmholtz equation. Applying the Hodge operator and

exterior derivative to both sides of (34), we define the divergence as follows

d ? E = −jωd ?A− d ? dφ (43)



Field representation in terms of potentials 15

form the (30b) and (31b) and applying the Hodge operator to both sides of

the (43)

−1

ε
?Q = −jω ? d ?A− ?d ? dφ (44)

Moreover considering that for a zero-form the Laplace operator ∆φ = ?d ?

dφ, and from (41) we obtain the scalar Helmholtz equation

∆φ+ k2φ = −1

ε
?Q (45)

Finally, using the Lorenz condition (41), the field can be written in terms

of vector potential form as follows:

H =
1

µ
? dA (46a)

E = −jωA +
d ? d ?A
jωεµ

(46b)

In regions where only magnetic sources are presents, considering the duality,

the same arguments used for deriving the vector magnetic potential form A
and the scalar magnetic potential zero-form φ can be used for deriving an

electric vector potential F and scalar electric potential ψ. We obtain

E = −1

ε
? dF (47a)

H = −jωF +
d ? d ? F
jωεµ

(47b)

where J m denotes the impressed magnetic current phasor and Q m the

magnetic charge density. If both currents are present, we may use a su-

perposition and combining the fields part in terms of A and F as follows

E = −jωA +
d ? d ?A
jωεµ

− 1

ε
? dF (48a)

H =
1

µ
? dA− jωF +

d ? d ? F
jωεµ

(48b)





6. Green’s function for

multilayered cylindrical

radiating structures

6.1. Dyadic Green’s function definition for

multilayered cylindrical regions

We consider now a circular cylindrical coordinates system ρ, ϕ, z. The

coordinates are defined in the following interval:

u = ρ 0 ≤ ρ < +∞
v = ϕ 0 ≤ ϕ < 2π

w = z −∞ ≤ z < +∞
(49)

Since the cylindrical coordinates form an orthonormal coordinates system,

can be derived analytically directly from the Cartesian coordinates via the

metric coefficients. In particular they are given as in [21] as following:

g1 = 1 g2 = ρ g3 = 1

g′1 = 1 g′2 = ρ′ g′3 = 1
(50)

Therefore the unit-one forms are given as follows:

s1 = dρ s2 = ρdϕ s3 = dz

s′1 = dρ′ s′2 = ρ′dϕ′ s′3 = dz′
(51)

Considering (51) the expression of the Dirac current distribution is readily

obtained from (5) as follows:

J (r′) = J0ρ′ δ(r−r′)ρ′dϕ′ ∧dz′+J0ϕ′ δ(r−r′)dz′∧dρ′+J0z′ δ(r−r′)ρ′dρ′∧dϕ′

(52)

17
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Figure 2.: Cylindrical multilayered structure

where

δ(r − r′) =
δ(ρ− ρ′)δ(ϕ− ϕ′)δ(z − z′)

ρ′
(53)

since
∫

V ′

δ(ρ− ρ′)δ(ϕ− ϕ′)δ(z − z′)

ρ′
dρ′ ∧ ρ′dϕ′ ∧ dz′ = 1 (54)

Similarly, using (51) in (4) we obtain the Green’s double one form for cylin-

drical coordinates

Ge(r, r′) = Gρρ′dρdρ
′ + ρ′Gρϕ′dρdϕ′ +Gρz′dρdz

′

+ρGϕρ′dϕdρ′ + ρρ′Gϕϕ′dϕdϕ′ + ρGϕz′dϕdz′

+Gzρ′dzdρ
′ + ρ′Gzϕ′dzdϕ′ +Gzz′dzdz

′
(55)

Using (51) in (7) the equation (8), (9) and (10) are readily obtained form

the general case. We consider a circular cylindrically multilayered lossless

structure of M layers, infinitely extended in z direction as depicted in Fig. 2.

The double one form (55) can be directly used. If the source is placed at

the layer j and the observation point is at the layer i with 1 ≤ i, j ≤ M
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then (10) can be directly written as follows:

Gijpq(r, r
′) = Eip(r)|Jj(r)=δ(r−r′)uq

(56)

In the following section a procedure for deriving the scalar components

of the dyadic Green’s function is introduced.

6.1.1. Computational Method

The derivation of the Green’s function starts by modeling the source-free

cylindrical layers. We assume and neglect a time harmonic dependence of

the field ejωt. The electromagnetic field distribution for the geometry of

Figure 2 can be obtained in terms of z-directed transverse magnetic form

(TM) A = dzψA, and transverse electric vector potential form (TE) F =

dzψF . For the vector potential form Ansatz we observe that the structure

is translational invariant in z since is infinitely extended. Based on that we

may build the solution for each mode considering that the propagation along

z has an identical z-dependency of the type e−jkzz for each mode. Since

the dependency is identical also for all the cylindrical layers 1 < i < M , we

reduce the problem introducing an eigenfunction expansion in z direction

using a Fourier integral in the usual way [7, 32]

{

Ai

F i

}

= dz

∫

kz

{

ψ
i

A(ρ, ρ′, ϕ, ϕ′, kz)

ψ
i

F (ρ, ρ′, ϕ, ϕ′, kz)

}

e−jkz(z−z′)dkz (57)

where the Fourier transformations are performed at the point r′ = (ρ′, ϕ′, z′)

inside the cylindrical structure. Analogous considerations can be made for

the ϕ-dependency of the solution which is rotational invariant. As it stated

in Section 6.1 in this case the ϕ-dependency of the solution is bounded from

0 < ϕ < 2π. Therefore, while kz assumes a continuum of values, n is forced

to assume discrete values. In particular, if we require for each mode that

ψiA,F (ϕ) = ψiA,F (ϕ + 2π), then n is forced to be integer. Therefore, we

reduce the problem expanding in eigenfunctions using a Fourier series

{

Ai

F i

}

= dz
j

8π

+∞
∑

n=0

∫

kz

{

ψ
i

A(ρ, ρ′n, kz)

ψ
i

F (ρ, ρ′n, kz)

}

ejn(ϕ−ϕ′)e−jkz(z−z′)dkz (58)
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The ψ
i

A,F describe the radial dependency of the TM and TE potential

respectively and must be a solution of the radial boundary problem de-

scribed by the radial component of the homogeneous wave equation which

in cylindrical coordinates assumes the following form:
[

1

ρ

d

dρ

(

ρ
d

dρ

)

− n2

ρ2
+ k2

ρi

]

ψ
i

A,F = 0 (59)

where kρi
is the propagation constant at the layer i in ρ direction and kz

in z direction, with k2
i = k2

ρi
+ k2

z . In a radiation problem with excitation

confined inside the cylindrical structure cylindrical wave traveling outward

(along +ρ) and inward (along −ρ) are expected. The solution of the radially

boundary problem is therefore described in spectral domain by superposi-

tion of cylindrical waves as follows

ψ
i

F =
∞
∑

n=0

[

AinH
(1)
n (kρi

ρ) +BinH
(2)
n (kρi

ρ)
]

ψ
i

A =
∞
∑

n=0

[

CinH
(1)
n (kρi

ρ) +Di
nH

(2)
n (kρi

ρ)
] (60)

where Ain, B
i
n, C

i
n, D

i
n are unknown modal coefficients that will be deter-

mined from the boundary conditions, kρi
is the propagation constant at the

layer i in ρ direction and kz in z direction, with k2
i = k2

ρi
+ k2

z . They physi-

cally represent the waves amplitudes of the inward and outward cylindrical

waves described by H
(1)
n (kρi

ρ) and H
(2)
n (kρi

ρ), which denote Hankel func-

tions of the first and second kind respectively. We observe that due to the

symmetry of the structure we have reduced the problem to one-dimensional

homogeneous Sturm-Liouville problem which the solution is given by a com-

bination of cylindrical Hankel functions. That will insure the completeness

of the solution after the introduction of the Dirac sources. We note that in

using Hankel functions a proper normalization factor must be introduced

to insure numerical stability.

6.1.2. Parametric description of the cylindrical layer

In the following a parametric description of the cylindrical layers is intro-

duced. We start modeling the cylindrical interface. The TE and TM modes

are generally coupled at the cylindrical interface for kz 6= 0 and therefore
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cannot be studied separately. Considering that, from (60), as a function

of the unknown modal coefficients, the nth harmonic component of the

tangential field at the cylindrical interface is given in spectral domain as

superposition of TE and TM cylindrical waves as follows:

E
i

zn
(n, kz, ρ) =

k2
ρi

jωεi
ψ
i

A H
i

ϕn
(n, kz, ρ) = −∂ψ

i

A

∂ρ + jnkz

jωµiρ
ψ
i

F

H
i

zn
(n, kz, ρ) =

k2
ρi

jωµi
ψiF E

i

ϕn
(n, kz, ρ) = jkzn

jωεiρ
ψ
i

A +
∂ψi

F

∂ρ

(61)

Considering that the fields are represented by linear combinations of partial

waves, described by the coefficients Ain, B
i
n, C

i
n, D

i
n, we introduce a matrix

notation of (61) for each boundary surface as follows:













E
i

zn
(n, kz, ρ)

H
i

ϕn
(n, kz, ρ)

E
i

ϕn
(n, kz, ρ)

H
i

zn
(n, kz, ρ)













= Mi(ρ, n, kρi
)
<4×4>









Ain
Bin
Cin
Di
n









(62)

where Mi is a 4 × 4 matrix given as follows:

Mi =















0 0
k2

ρi

jωεi
H

(1)
n (ζi)

k2
ρi

jωεi
H

(2)
n (ζi)

−H(1)′

n (ζi) −H(2)′(ζi)
jnkz

jωµiρ
H

(1)
n (ζi)

jnkz

jωµiρ
H

(2)
n (ζi)

−H(1)′

n (ζi) −H(2)′

n (ζi) − jnkz

jωεiρ
H

(1)
n (ζi) − jnkz

jωεiρ
H

(2)
n (ζi)

k2
ρi

jωεi
H

(1)
n (ζi)

k2
ρi

jωεi
H

(2)
n (ζi) 0 0















(63)

where ζi = kρi
ρ. Each cylindrical layer is completely described by the

tangential components at its boundary surfaces. Considering this and us-

ing (62), we obtain a parametric model of the layer in the following way:

(

F+

F−

)

=

(

Mi+

Mi−

)

<8×4>









Ain
Bin
Cin
Di
n









(64)
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Figure 3.: Layers description

where

F+ = (E
i+

zn
(n, kz, ρ

+
i ), H

i+

ϕn
(n, kz, ρ

+
i ), E

i+

ϕn
(n, kz, ρ

+
i ), H

i+

zn
(n, kz, ρ

+
i ))T

F− = (E
i−

zn
(n, kz, ρ

−
i ), H

i−

ϕn
(n, kz, ρ

−
i ), E

i−

ϕn
(n, kz, ρ

−
i ), H

i−

zn
(n, kz, ρ

−
i ))T

(65)

and with ” − ” and ” + ” we name the inner side and outer side of the

boundary surface respectively as depicted in Fig. 3. Once a parametric

description of the layer is obtained, the connection between the layers is

given by the continuity condition of the tangential components, at the inner

and outer boundary surface. A more detailed description is introduced in

the Section 6.1.4.

Parametric description of the innermost and outermost layer

We consider now the innermost (i = 1) and outermost (i=M) layers. Since

the structure is extended ρ > 0, for ρ = 0 the finiteness condition must be

fulfilled for the layer i = 1.

Since H
(1)
n and H

(2)
n are singular at ρ = 0, we choose from (60) A1

n = B1
n

and C1
n = D1

n. In this way, by using the following linear relations between

Hankel functions

H(1)
n (kρ1ρ) = Jn(kρ1ρ) + jYn(kρ1ρ) (66)

H(2)
n (kρ1ρ) = Jn(kρ1ρ) − jYn(kρ1ρ) (67)
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we obtain a particular potential Ansatz for the innermost layer

ψ
i

F = 2A1
nJn(kρ1ρ)

ψ
i

A = 2C1
nJn(kρ1ρ)

(68)

Therefore, using (68) into (61), (63) becomes

M1
<4×2> =













2
k2

ρ1

jωε1
Jn(kρ1ρ) 0

−2J
′

n(kρ1ρ) 2 jnkz

jωµ1ρ
Jn(kρ1ρ)

2 jnkz

jωε1ρ
Jn(kρ1ρ) 2J

′

n(kρ1ρ)

0 2
kρ1

jωµ1
Jn(kρ1ρ)













(69)

Considering the outermost layer as free space region, only outgoing waves

exist vanishing at ρ = +∞ (radiation condition) and therefore from (60)

AMn = 0 and CMn = 0. In this case the particular potential Ansatz for the

outermost region is given by the following:

ψ
i

F = BMn H
(2)
n (kρM

ρ)

ψ
i

A = DM
n H

(2)
n (kρM

ρ)
(70)

Accordingly, using (70) into (61), the (63) becomes

M1
<4×2> =















k2
ρM

jωεM
H

(2)
n (kρM

ρ) 0

−H(2)′

n (kρM
ρ) jnkz

jωµMρH
(2)
n (kρM

ρ)
jnkz

jωεMρH
(2)
n (kρM

ρ)ρ) H
(2)′

n (kρM
ρ)

0
kρ1

jωµM
H

(2)
n (kρM

ρ)















(71)

Description of metallic layers

In this Section a parametric model for Perfect Electric Conducting Cylindri-

cal (PEC) surfaces will be derived. For radiating problems, the source can

be always assumed to be external to the PEC. We compute the field using

the equivalence principle and the impressed electrical polarization [21]. The

electric impressed polarization area on the surface of the PEC, Figure 4, is

related to the tangential components Ht of the magnetic field form in the

following way:

MeA(r) =
1

jω
dρy(dρ ∧H) =

1

jω
Ht =

1

jω
(Hzρdϕ+Hϕdz) (72)
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Figure 4.: PEC

Since inside the PEC the fields vanish, for an impressed polarization area the

tangential magnetic field can be univocally determined. The electric surface

polarization form is related to the surface density form in the following way:

MeA(rs) = jωJA (73)

In case of circular cylindrical coordinate the surface current density can be

written by as following.

JA = JAϕ
(ϕ, z)ρdϕ− JAz

(ϕ, z)dz (74)

At rs, i.e. at the boundary surface of the PEC,

MeA(rs) = jω(JAϕ
(ϕs, zs)ρsdϕ− JAz

(ϕs, zs)dz) (75)

Inserting (75) into (72) at rs, we obtain

Hzρsdϕ+Hϕdz = JAϕ
(ϕs, zs)ρsdϕ− JAz

(ϕs, zs)dz (76)
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According to (76) we obtain the value for the tangential magnetic compo-

nents on the PEC
Hz = JAϕ

(ϕs, zs)

Hϕ = −JAz
(ϕs, zs)

(77)

Next we define the boundary condition in spectral domain. A convenient

description is possible, if the spatial distribution of the currents is separable

in ρ, ϕ and z. We assume also the current symmetric in ϕ. In this case the

currents are sheets of currents of the form:
{

JAz
(ϕ, z)

JAϕ
(ϕ, z)

}

=

{

J0z
dz

J0ϕ
ρdϕ

}

Jz(z)Jϕ(ϕ). (78)

Such a current distribution can be represented in spectral domain defining

a Fourier transformation and expansion in z and ϕ direction respectively as

follows:

{

JAz
(ϕ, z)

JAϕ
(ϕ, z)

}

=

{

J0z
dz

J0ϕ
ρdϕ

}

j

8π

+∞
∑

n=0

Jϕ(n)e−jn(ϕ−ϕ′)

∫

kz

Jkz
(kz)e

jkz(z−z′)dkz.

(79)

where the spectral component of the current density sources can be de-

scribed as
{

JAz
(n, kz)

JAϕ
(n, kz)

}

=

{

J0z
dz

J0ϕ
ρdϕ

}

Jϕ(n)Jkz
(kz). (80)

Therefore, the magnetic field component can be determined in SD as follows

Hzn
(n, kz, ρs) = J0ϕ

Jϕ(n)Jkz
(kz)

Hϕn
(n, kz, ρs) = −J0z

Jz(n)Jkz
(kz)

(81)

when Jz(z) = δ(z) and Jϕ(ϕ) = δ(ϕ) then Jkz
(kz) = 1 and Jn(n) = 1/π for

n = 0, 1, 2.... and (81) becomes

Hzn
(n, kz, ρs) =

J0ϕ

π

Hϕn
(n, kz, ρs) = −J0z

(82)

From (82) we may note that cylindrical metallic boundary TE and TM

waves are uncoupled since if JAϕ
= 0 there is no Hz and/or JAz

= 0 there
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is no Hϕ. Since there are no impressed magnetic sources

MmA(r) =
1

jω
dρy(dρ ∧ E) = 0 (83)

and consequently for TE and TM waves

Ezn
(n, kz, ρs) = 0

Eϕn
(n, kz, ρs) = 0

(84)

Considering that a parametric description of the i boundary surface for a

PEC can be introduced in the following way













E
i

zn
(n, kz, ρs)

H
i

ϕn
(n, kz, ρs)

E
i

ϕn
(n, kz, ρs)

H
i

zn
(n, kz, ρs)













=









0 0

0 J0z

0 0

−J0ϕ
/π 0









(

Bin
Di
n

)

(85)

6.1.3. Source modelling

In the previous Sections we have derived a parametric representation of the

cylindrical boundary surfaces and layers. In the following section, similarly

to Section 6.1.2, we introduce the modelling of the sources. For this purpose

the currents flowing in a conformal interface layer between two adjacent

homogenous dielectric layers must be described in the spectral domain. In

the following section only z-oriented currents are considered but the result

is readily usable also for ϕ-oriented sources. Also in this case a convenient

description is possible, if the spatial distribution of the currents is separable

in ρ, ϕ and z. We assume also current symmetry in ϕ and ϕ′ = 0, z′ = 0.

In this case the current are sheet of currents of the form:

J(ρ, ϕ, z) = δ(ρ− ρ′)dρ ∧ JA(ϕ, z) =

ρdρ ∧ dϕJ0z
δ(ρ− ρ′)Jz(z)Jϕ(ϕ) + dz ∧ dρJ0ϕ

δ(ρ− ρ′)Jz(z)Jϕ(ϕ).
(86)

As previously, such a current density distribution form can be represented

in spectral domain defining a Fourier transformation and expansion in z
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and ϕ directions respectively as follows:

Jρ, ϕ, z) = ρdρ ∧ dϕ j
8π

+∞
∑

n=0
Jϕ(n) cos(nϕ)

∫

kz

J0z
δ(ρ− ρ′)Jkz

(kz)e
jkzzdkz+

dz ∧ dρ j
8π

+∞
∑

n=0
Jϕ(n) cos(nϕ)

∫

kz

J0z
δ(ρ− ρ′)Jkz

(kz)e
jkzzdkz

(87)

where, in this case, the cosine dependency in ϕ (rather than the more general

exponential dependency) reflects the symmetry of the current distribution

with respect to the angle. Therefore the spectral component of the current

can be described as

J(n, kz, ρ) = ρdρ ∧ dϕJ0ϕ
δ(ρ− ρ′)Jϕ(n)Jkz

(kz)+

ρdz ∧ dρJ0z
δ(ρ− ρ′)Jϕ(n)Jkz

(kz)
(88)

Furthermore, since the radial dependence of the current distribution is a

Dirac distribution, a transition from three-dimensional current density to

sheet current density can be done considering that

JA(n, kz) =

ρ2
∫

ρ1

δ(ρ− ρ′)dρ ∧ JA(n, kz) (89)

6.1.4. Interface Conditions

We now investigate an interface between layer i and layer i+ 1 for 1 < i <

M − 2. The interface has the radius coordinate ρ = ρ+
i = ρ−i+1. For an in-

terface without impressed currents the tangential fields must be continuous.

This can be formulated easily











E
−
ϕn,i+1

H
−
zn,i+1

E
−
zn,i+1

−H−
ϕn,i+1











−











E
+

ϕ,i

H
+

zn,i

E
+

zn,i

−H+

ϕn,i











=









0

0

0

0









. (90)
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Figure 5.: Source in an homogeneous layer

If electric sheets of currents Js,z,(i,i+1) and Js,ϕ,(i,i+1) are impressed at the

interface between layers i and i+ 1, we must write











E
+

ϕn,i+1

H
+

zn,i+1

E
+

zn,i+1

−H+

ϕn,i+1











−











E
−
ϕn,i

H
−
zn,i

E
−
zn,i

−H−
ϕn,i











=









0

−Js,ϕ,(i,i+1)

0

−Js,z,(i.i+1)









. (91)

We note that in such a representation the sources are always located at the

interfaces between two dielectric layers. We consider the case in which the

source is surrounded by a homogenous material. In this case we split the

region in two different layers having the same properties in such way that

the source is placed at the interface Fig. 5.

After the definition of the boundary conditions the electromagnetic prob-

lem is complectly defined. By applying systematically (91) at each boundary

surface we obtain a linear system of equation of unknown modal coefficients

Ain, B
i
n, C

i
n and Di

n. In the following section we will described the structure

of the system of equations and discussed the uniqueness of the solution.
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6.1.5. Calculation of the boundary conditions

We consider the structure of Fig. 2 composed by M layers. Each layer

1 < i < M contribute with four unknown modal coefficients. The inner-

most layer i = 1 either is metal or dielectric, contributes two unknown

modal coefficients. The outermost layer i = M either is infinitely extended

or metallic boundary or free-space contributes with two unknown modal

coefficients. The rest of the layers i.e. M − 2 layers, contribute with four

unknown coefficients. Therefore the number N of unknown modal coeffi-

cients is N = 2 + 4(M − 2) + 2 = 4(M − 1). On the other hands, by the

boundary conditions every layers contributes with four equations and there

are M −1 layers. Consequently the number of equations E is E = 4(M −1)

which is equal to N . Moreover, we may observe that, if the system is not

singular the uniqueness of the solution is also verified.

Numerical solution of the boundary conditions

We investigate the property of the solution. As it is stated before, by

applying systematically (91) at each boundary surface we obtain a system

of 4(M − 1) equations which we can rewrite in matrix notation as follows

LC = J (92)

where with L we indicate the matrix of all the boundary surfaces

L =

































B1 − B−
2 0 · · · 0

0 B+
2 − B−

3

...
. . .

... B+
i − B−

i+1

. . .

. . .

0 0 · · · B+
M−1 − B−

M

































(93)
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where B = Mi(ρ+) − Mi+1(ρ−), C a vector containing the unknown coef-

ficients of all the layers

C = (A1
nD

1
n A2

nB
2
nC

2
nD

2
n · · · AM−1

n BM−1
n CM−1

n DM−1
n AMn DM

n )T ,

(94)

and J is the source vector given by

J =
(

0 · · · Js,q(i,i+1) · · · 0
)T

(95)

The system (92) can be directly solved to calculate the coefficient C. In

solving (92) using standard matrix inversion, severe numerical problems due

to the singular behavior of the Hankel functions may occur. A more detailed

treatment of such problems is given in the Appendix C.

6.2. Network description

Transmission line models describe a field distribution in a wave-guiding

structure in terms of mode amplitudes. There are two basically different

approaches for describing a transmission line network in terms of wave am-

plitudes. In the first method, all transmission lines are characterized by their

characteristic impedance. This results in a very simple matrix description

(e.g. a S or T matrix) for the transmission line itself. In particular, reflec-

tion elements (e.g. S11 and S22) are zero in such a description. However,

if transmission lines of different characteristic impedance are connected, a

complicated connection matrix must be introduced. Second, the reference

impedance at all the ports is set to a fixed value. The matrix description

for transmission lines with a characteristic impedance not identical to the

global reference impedance is rather complicated. However the connection

of several line elements can be described in a rather simple way. In conclu-

sion, line elements with different impedance cause a relatively complicated

description either in the line or in the connection matrix. In the following

section a network description for the cylindrical layered structure in the

spectral domain will be derived as the parametric description of the cylin-

drical introduce in the section (6.1.2). Such a representation follows the

second approach described above.
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Figure 6.: Network Model

6.2.1. Power Conserving Field Mapping

As first step of the network determination, we describe the tangential com-

ponents of the electric and magnetic fields to voltages and currents at the

cylindrical interfaces. Using (64) we can directly map the cylindrical layer

into a network. Referring to (64) one can directly observe that each inner

layer must be described by a four port network for each mode. As dis-

cussed in section (6.1.3), the innermost and outermost layers are described

by four fields quantities and therefore a two port network is used, Fig. 6.

For non-TEM lines, a GTLM must be used. For implementation issues,

it is advantageous that the network is power conservative. Therefore, an

additional radius dependent normalization is introduced to achieve power

conservation in the network model. In particular, in the lossless case, the

power flowing through cylindrical surfaces containing the same dielectric

material must be constant. Using the Poynting’s vector and considering

power per unit length (as it is reasonable for a structure of infinite exten-

sion) one can write

2π
∫

ϕ=0

Re{E ∧ H∗}(ρ−i ) � uρρ
−
i dϕ =

2π
∫

ϕ=0

Re{E ∧ H∗)(ρ+
i } � uρρ

+
i dϕ (96)

That simplifies to
(

E
−
ϕ,i(H

−
z,i)

∗ + E
−
z,i(−H

−
ϕ,i)

∗
)

ρ−i =
(

E
+

ϕ,i(H
+

z,i)
∗ + E

+

z,i(−H
−
ϕ,i)

∗
)

ρ+
i

(97)
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From the (97) we can observe that to achieve a power conservative network

the field amplitudes must be proportional to the
√

ρ±i . We map the field in

the following way:

v±1,i

v0
=

E
±

ϕn,i

E0

√
ρ±i√
ρ0

v±2,i

v0
=

E
±

zn,i

E0

√
ρ±i√
ρ0

i±1,i

v0
=

H
±

zn,i

H0

√
ρ±i√
ρ0

i±2,i

i0
=

H
±

ϕn,i

H0

√
ρ±i√
ρ0

(98)

where E0, H0 and ρ0 are arbitrarily chosen normalization constants ensuring

appropriate units. With this field mapping, the electromagnetic boundary

conditions at the interfaces (90) are translated into connection between the

ports:










v+
1,i

i+1,i
v+
2,i

−i+2,i











=











v−1,i+1

i−1,i+1

v−2,i+1

−i−2,i+1











. (99)

With the field mapping as described above, this relation is equivalent to the

condition for lossless networks ofRe{vii∗i } = 0 where vi = (v−1,i, v
−
2,i, v

+
1,i, v

+
2,i)

T

and ii = (i−1,i, i
−
2,i, i

+
1,i, i

+
2,i)

T . Therefore lossless cylindrical structures are

mapped to lossless networks. The normalization factor
√
ρ in the field map-

ping accounts for the radial dependence of the power density for cylindrical

waves. Based on this and using (64) and (98) we obtain a parametric de-

scription

(

N+

N−

)

=

(

V+

I−

)

8×4









Ain
Bin
Cin
Di
n









(100)

where N+ = (vi
+

1 , ii
+

1 , ii
+

2 , vi
+

2 ) and N+ = (vi
−

1 , ii
−

1 , ii
−

2 , vi
−

2 ). Any other

parameter, e.g. impedance (Z), admittance (Y ) and also chain (A) may be

derived form (100). Alternative descriptions based on wave quantities can

be calculated, in particular scattering S and transmission T matrix forms.

Source modeling in the network description

In such representation the sources are placed at the interfaces of the cylindri-

cal layers. Using the network representation the interfaces are represented
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Figure 7.: Source in the Network Model

by connection between ports. Considering the (91), the discontinuity on

the tangential component of the magnetic field will be translated into a

step current discontinuity. In case of network it is relatively easy interpret

the contribute of the Dirac source. In particular considering the (88) and

that in case of Dirac source Jkz
(kz) = 1 and Jϕ(n) = 1/π for n = 0, 1, 2....,

the current i1,2 can be easily defined by i1,2 =
∫ ρ−−ε
ρ+−ε

J0

π δ(ρ− ρi)dρi. Defin-

ing J0

π = 1 the result is that the step discontinuity can be represented by a

unitary generator of current as depicted in Fig. 7. Depending on the orien-

tation of the sources, the generator is placed at port 1 or 2 or both. Once

that the network has been excited, the amplitudes of the modal coefficients

i.e. the amplitudes of voltage and current can be calculated in the entire

network. We choose E0 so that v0
√
ρ0/E0 = 1 and from (201) and the (98)

we obtain:

G
ij

pq(ρ, ρ
′, kz, n) = E

i

pn
(ρ, n, kz) |J(r)=uqδ(r−r′)=

vi1,2
√

ρ±i

(101)

where G
ij

pq(ρ, ρ
′, kz, n) are the spectral domain components of the p-directed

Green’s function due to the q-oriented source. Finally, the space domain

Green’s functions are given by:

Gijpq(r, r
′) =

j

8π

∫

kz

∞
∑

n=0

dkzG
ij

pq(ρ, ρ
′, kz, n)e−jn(ϕ−ϕ′)e−jkz(z−z′) (102)
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6.3. Space Domain Green´s functions

Once that spectral domain Green’s functions are obtained by using the

GTLM spatial domain Green’s functions must be calculated. The transfor-

mation contains a classical Fourier type integral given in (102). Such kind

of integral cannot be solved analytically. On the other hands, the use of

standard numerical integration techniques (e.g. trapezoidal) may be very

problematic due to the characteristics of the integral. Problems arise from

the facts, that the integration range is infinitely extended, the integrand may

contain rapidly oscillating terms and slowly decaying exponential terms. For

fast oscillating functions a high density sampling rate would be necessary,

while for slowly decaying functions raise the need for an extended integration

range. The combination of this two conditions results in a huge number of

samples and consequently long simulation time is required. The advantages

of the analytical pre-calculation of the Green’s function are therefore not

effective. An other important consequence is robustness. Using a merely

numerical technique, the characteristic of the integrand function i.e. os-

cillating frequency and decay rate, must be analyzed a-priori. In fact the

wrong choice of the integration parameters produces not correct results [16].

Therefore, a more advanced integration technique based on the Generalized

Pencil of Function (GPOF) [17, 6, 15, 16] will be used. Based on this ap-

proach an alternative representation of the Green’s function will introduced

in Section 6.3.1. In solving the Fourier integral (102), further problems arise

due to the singularities. This problem will be treated in the next section.

6.3.1. Analysis of the singularities

The kernel of the Fourier internal (102) contains the radial spectral domain

Green’s functions G
ij

pq(ρ, ρ
′, kz, n) given in (101). This is a function of the

radial wavenumber kρi
for all the cylindrical layers

G
ij

pq(ρ, ρ
′, kz, n) = Tkl

{

AinH
(1)
n (kρi

ρ) +BinH
(2)
n (kρi

ρ)

CinH
(1)
n (kρi

ρ) +Di
nH

(2)
n (kρi

ρ)
(103)
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where Tkl is an element of the linear operator T defined as follows

T =





k2
ρi

jωεi
(•) − ∂

∂ρ (•) + jnkz

jωµiρ
(•)

k2
ρi

jωµi
(•) jkzn

jωεiρ
(•) + ∂

∂ρ (•)





<2×2>

(104)

For each layer kρi
=
√

k2
i − k2

z , where ki is the wavenumber of the ith

layer and kz is the axial wavenumber which have to be the same for all the

layers by the phase matching. The Hankel functions are singular functions

for kρi
ρ→ 0. In the lossless case kρi

= 0 when kz = ±ki, Figure 8. Because

of kρi
is a multivalue function, e.g. Figure 9, the singularities may be poles

or branch points [27].

The complex values at kz = ±ki are not branch points [26] in the layers

i = 1, 2, ..,M − 1 due to the fact the regions are limited in ρ. In partic-

ular, considering that any two independent solution of the wave equation

are solution of the wave equation (59), with a different choice of different

branches of the Hankel functions they are still solution of the same wave

equation and the same boundary conditions are satisfied. Therefore, con-

sidering the uniqueness theorem, if the boundary conditions are unchanged,

the same field quantities are obtained for any arbitrary choice of the branch

and consequently they are single value functions.

We consider now the region unbounded in ρ and the source embedded in

the layer 1 ≤ j < M . The unbounded region corresponds with the layer

M in which the modal coefficients AMn = CMn = 0. Therefore the spectral

domain Green’s function (103) is characterized by Hankel function of the

second kind

G
Mj

pq (ρ, ρ′, kz, n) = Tkl

{

BMn H
(2)
n (kρM

ρ)

DM
n H

(2)
n (kρM

ρ)
(105)

In this case the branch cut cannot be chosen arbitrarily since the radiation

condition must be satisfied when ρ → +∞. In order to identify the cor-

rect branch and classify the kind of singularities we consider the following

approximation of the Hankel function of the second kind when ρ→ +∞

H(2)
n (kρM

ρ) v

√

2

πkρM
ρ
e−j(kρM

ρ+(2n+1)π/4) n = 0, 1, . . . ,+∞ (106)
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Figure 8.: Singularities in the complex plane kz in the lossless case.

Figure 9.: In this example kρi is real.
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(i) Principal branch. (ii) The Riemann sheets.

Figure 10.: Qualitative view of the principal branch and Reimann sheets.

We can rearrange (106) by separating the the real and imaginary part of

kρM
as follows

√

2

πkρM
ρ
e−j(kρM

ρ+(2n+1)π/4) =

√

2

πkρM
ρ
e(2n+1)π/4)eλiρe−jλrρ (107)

where λr = <{kρM
} and λi = ={kρM

}. Considering (107), in the layer

M only outward(+ρ) cylindrical waves exist and consequently the λr > 0.

Moreover, to satisfy the radiation condition λi 6 0 since for ρ → +∞
must be that eλiρ → 0. Therefore only the branch in the 4th quadrant

is allowed Figure 10i. We may conclude that the ±kM are singularities

branch points. The other singularities are poles and represent the guided

and unguided modes in the layered region and my be classified as leaky,

creeping or trapped waves [26, 32] and can be found in all the Riemann

sheets corresponding to the branch point of the outer layer, Figure 10ii.

The poles which are not in other Riemann sheets are modes which not

satisfy the radiation condition.

6.3.2. Choice of the Contour of Integration

As mentioned before, in the lossless case the singularities are on the real

axis at kz = ±ki. Since the integral is not defined through singularities
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poles and branch points, the integration contour cannot be chosen to be the

real axis. Therefore an alternative integration contour must be found.

Considering the Cauchy’s theorem [34] the integral in the complex plane

between two points is invariant for any arbitrary integration contour not

passing singularities. Therefore we are allowable to replace the (102) as

follows

Gijpq(r, r
′) =

j

8π

∞
∑

n=0

e−jn(ϕ−ϕ′)

∫

Γ

G
ij

pq(ρ, ρ
′, kz, n)e−jkz(z−z′)dkz (108)

where Γ is the new integration contour of the complex plane C. On the other

hands, since, by the Poincaré-Volterra Lemma [34], any analytic function

posses a countably many distinct values at any point of the complex plane

C, the analytic functions are always multivalue. That means that we have

to choose a region of the complex Γ-plane in which the integrand function is

single value. As discussed in the previously for the complex kρ-plane, if we

choose the branch which passes for the 4th quadrant, the radiation condition

is satisfied and together with the boundary conditions the uniqueness is

guarantied. Accordingly, we may choose the integration contour in the

complex kz-plane. In particular, it must be that <{kz} ≥ 0 and ={kz} ≥ 0

which is easily recognize to be the 4th quadrant in the complex kρ-plane.

As next steep we define complex contour Γ. Here some considerations

should be made. Since we perform the integral numerically, the choice of

the shape of Γ is related with the selection of the integration technique. The

numerical evaluation of the integral is a sensitive problem due to the dis-

cretization of the wavenumber and the infinite integration range. The first

one gives rise to aliasing and wrap-around errors because of the oscillatory

nature of the Hankel functions. The second aspect, related with the inte-

gration range is even more severe. The Cauchy’s Theorem of Residues guar-

anties in the continuous analytical cases that the integral is the summation

over all the residues of the function choosing an integration contour enclos-

ing all the singularities. If as in this case, the number of poles-singularities

may be found in an infinite range of values given by kz then the contour of

integration is extended to infinite. On the other hands, numerically the in-

tegration range must be truncated. In this case some significant poles of the

integrand function, may be not included and therefore an a preliminary in-
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vestigation of the behavior of the integrand function must be performed [16].

If the number of the cylindrical layer M is relatively large, e.g. 3-4, then

the complexity of the G
ij

pq(ρ, ρ
′, kz, n) increases while a pre-analysis of its

behavior becomes very complex.

Therefore we select an alternative integration technique based on Prony’s

method [36] introduced by Chow et al . [35]. The method enables to expand

G
ij

pq(ρ, ρ
′, kz, n) into a series of exponential functions in which the amplitude

of each exponential function is the value of the residue and its argument rep-

resent the estimated position of the pole. The method is used in connection

with a Mean Square Error(MSE) criterium introduced by [23]. The MSE

criteria allows a self-consistent estimation of the estimation error of the

poles and therefore of the truncation point. Further details on the Prony’s

method will be given in Section 6.4. In the following we will define the

discretization of the wavenumber discretization of the integration contour.

Definition of Γ(Complex Integration Contur)

In the choice of Γ we must consider that any complex function of a real vari-

able of a finite range can be approximated by the summation of exponential

functions using the Prony’s method [35]. The choice of the classical Prony’s

method requires uniform sampling of the complex valued function. There-

fore we split the contours in three linear Sections Γ1, Γ2 and Γ3, Figure 11.

The segmentation of the integration path in three parts brings some impor-

tant numerical advantages that will be explained later. The segmentation
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Figure 11.: Integration Path for Integration of Spectral Domain Green’s Function, Path

Parameters
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(i) (ii)

(iii) (iv)

Figure 12.: Visualization of the integration path with the |Gzz(ρ, ρ′, kz , n)| in free space

at frequency of 0.8GHz.

of the integration path can be represented by the parametric equation of a

straight line between two points (λ
(1)
zr , λ

(1)
zi ) and (λ

(2)
zr , λ

(2)
zi ) of the complex

plane kz as follows

λzr
(t) = λ(1)

zr
+ (λ(2)

zr
− λ(1)

zr
)t, (109)

λzi
(t) = λ(1)

zi
+ (λ(2)

zi
− λ(1)

zi
)t. (110)

where t is a real number in the interval [0, 1], λ
(1,2)
zr = <{kz} and λ

(1,2)
zi =

={kz} . It easy to see that for Γ1, (λ
(1)
zr , λ

(1)
zi ) = (0, 0) and (λ

(2)
zr , λ

(2)
zi ) =

(ks, ksT1), for Γ2, (λ
(1)
zr , λ

(1)
zi ) = (ks, ks

√

1 + T 2
2 ) and (λ

(2)
zr , λ

(2)
zi ) = (ks
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√

1 + T 2
2 , 0) and for Γ3 (λ

(1)
zr , λ

(1)
zi ) = (ks

√

1 + T 2
2 , 0), (λ

(2)
zr , λ

(2)
zi ) = (ks

√

1 + T 2
3 , 0), Figure 11. We observe that transformation( 109) and ( 110)

map the real variable t into a complex plane kz and therefore the GPOF

can be used. In the definition of the points (xi, yi) with (i = 1, 2) we have

introduced the parameters ks, T1, T2 and T3.

The choice of the integration parameters is related to the Cauchy’s the-

orem and the numerical integration technique by considerations made be-

fore. In fact truncation of the integration interval at kzmax
is defined by

ks
√

1 + T 2
3 which for completely fulfilling the Cauchy’s theorem should be

extended at infinite in order to close the integration path. If the integration

interval is truncated then the effect of the ={kz} which is defined by ksT1

becomes relevant. If ksT1 � kzmax
and G

ij

pq(ρ, ρ
′, kzmax

, n) ' 0, then the

effect from the vertical sections Γ1 and Γ2 become insignificant compared

to the integral along the horizontal section defined by Γ3, see Figure 6.3.2.

Finally the choice of T2 such that ks
√

1 + T 2
2 > max{ki} insures that inte-

gration path does not pass through branch points and singularities.

Discretization of the wavenumber

To numerically compute the integral (102) the integration kernel G
ij

pq(ρ, ρ
′,

kz, n) must be evaluated at discrete number of wavenumbers. As it was

mentioned, the classical GPOF method requires a uniform sampling of the

kernel function, and therefore we discretize the truncated wavenumber space

equidistantly as follows

λzr
(t) = λ(1)

zr
+ ∆λzr

T (l − 1),

λzi
(t) = λ(1)

zi
+ ∆λzi

T (l − 1).

t = T (l − 1)

T =
1

N − 1

l = 1, 2, . . . , N

(111)

where ∆λzr,i
= (λ

(2)
zr − λ

(1)
zr ) and kz(t) = kz = λzr

(t) + jλzi
(t). In order to

simplify the notation we redefine the spectral domain Green’s function in

the following way

G
ij

pq(ρ, ρ
′, kz, n) = Gn(kz) (112)
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The Green’s function is then sampled along the chosen integration path and

approximated in terms of poles expansion model as follows

Gn(kz) ≈ Gn(l) =

Ne
∑

p=1

bp(zp)
l−1. (113)

where Ne is the estimated number of poles, znp and bnp are poles and residues

respectively [16]. The parametric model of the Green’s function given in

(113) is usually called expansion in natural frequencies. The natural fre-

quencies are given by the complex quantities zp = espT , where T is the

discretization interval and in this case sp are cylindrical eigenvalues. The

technique here used for estimating the poles and residues will be discussed

in more details in Section 6.4. We proceed inserting the zp = espT and

l− 1 = t/T into (113) we obtain the following parametric representation of

the Green’s function

Gn(t) ≈
Ne
∑

p=1

bnpe
sn

p t. (114)

Next we insert (112) into (108) we obtain

Gijpq(r, r
′) =

j

8π

∞
∑

n=0

e−jn(ϕ−ϕ′)

∫

Γ

Gn(kz)e
−jkz(z−z′)dkz (115)

To simplify the notation we define

IΓn
=

∫

Γ

Gn(kz)e
−jkz(z−z′)dkz (116)

which must be solved for every n. Inserting (111) into (116), considering the

property of the parametric integral of a complex function, see Appendix B,

we obtain

IΓn
= (∆λzr

+ j∆λzi
)

1
∫

t=0

Gn(t)e
−j(z−z′)(λ(1)

zr
+jλ(1)

zi
+(∆λzr +j∆λzi

)t)dt (117)
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Defining ∆h = (z − z′)(∆λzr
+ j∆λzi

) and h = (z − z′)(λzr
+ jλzi

) we can

rewrite (117) as follows

IΓn
= g

∫

Γ

Gn(t)e
−j∆htdt

g =
∆he−jh

(z − z′)

(118)

Using (114) into (118) we obtain

IΓn
= g

Ne
∑

p=1

∫ 1

0

bnpe
sn

p te−j∆htdt = g

Ne
∑

p=1

bnp
e(s

n
p−j∆h) − 1

snp − j∆h
(119)

Substituting (119) into (115) we obtain the space Green’s function expres-

sion as follows

Gijpq(r, r
′) =

jg

8π

∞
∑

n=0

Ne
∑

p=1

bnp
e(s

n
p−j∆h) − 1

snp − j∆h
e−jn(ϕ−ϕ′) (120)

We now make some further considerations on the solution. The (119) rep-

resents the results of the Fourier integral for the semi-complex kz-plane ex-

tended form 0 to +∞. The complete solution is completely solution. Since

we have assumed the multilayered cylindrical structure infinitively extended,

the solution in the semi-complex kz-plane extended form 0 to −∞ can be

can be considered completely symmetric. Therefore the complete solution

in space domain is given as follows

Gijpq(r, r
′) =

jg

8π

∞
∑

n=0

Ne
∑

p=1

bnp

[

e(s
n
p−j∆h) − 1

snp − j∆h
+
e(s

n
p +j∆h) − 1

snp + j∆h

]

e−jn(ϕ−ϕ′)

(121)

6.4. The Generalized Pencil of

Function(GPOF) Algorithm

The (113) represents a parametric model description of the spectral domain

Green’s function in terms of space poles snp and residues bnp . The approx-

imation is performed over a summation of Ne complex exponential terms
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which represent the model order. Therefore the parametric approximation

of the Green’s function requires the knowledge of the model parameters snp ,

bnp and Ne to be completely characterized. The System Identification(SI)

theory offers a number of techniques for the estimation of the model pa-

rameters. In the present algorithm the SVD will be used for the order

estimation, the generalized PM based method, for the poles identification

and the LS approximation is used for computing the residues bnp by model

fitting to the available data. In the following Sections a brief review of the

GPOF algorithm will be given.

6.4.1. Model Order Selection

As first step the number of exponential functions/or the number of poles

Ne is estimated. The ensemble of Green’s function available samples can be

rearranged in a vector a vector of length N , Gp = [G[0] G[1] . . . G[N−1]]T .

The (113) can be rewritten in matrix form as follows:

Gp ' Ĝ = Zb. (122)

where Z is the poles based Vandermonde matrix given by

Z =











1 1 · · · 1

z1 z2 · · · zNe

...
...

...

zN−1
1 zN−1

2 · · · zN−1
Ne











(123)

and where zi, i = 1, 2, . . . , Ne are the poles, b = [b1, b2, . . . , bNe
]T the

residues vector. The model order Ne, can be estimated by using the SVD

of the correlation matrix R. The correlation matrix is an (L+1) × (L+1)

matrix given as follows

R = GH G (124)

where L is an integer number called also pencil parameter. The choice of

L is a sensitive to the data noise reduction. It has been shown in literature

that for an efficient noise filtering the pencil parameter gives minimum noise

effects within the range [N/3, N/2] [17]. After experimental testing it turned
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out that in our implementation, the best noise behavior is given for L =

bN2 c. The G is a (N − L) × (L+ 1) data matrix given by

G = [GL GL−1 . . . G0] (125)

with Gk being an (N − L) × 1 data vector given as

Gk = [ G[k] G[k + 1] . . . G[N − L+ k − 1] ]
T

(126)

and GH represents the Hermitian matrix of G. Using the SVD, the matrix

R can be written as follows

R = U Σ V (127)

where the U and V are the matrices made of the unitary eigenvectors of

RRH and RHR, and Σ is the diagonal matrix given as Σ = diag{σ0, σ1,

. . . , σr, }, with the positive quantities σ0 ≥ σ1 ≥ . . . σr ≥ 0 singular values

of R. Since in signal corrupted by noise the singular values correspondent to

the signal component are dominating those correspondent to the noise [23],

the model order or signal subspace dimension can be found by selecting the

P bigger singular values. In order to do this a threshold value D0 is fixed

and the number P is chosen such that the singular values SNR defined as

SNR(Ne) = 10 log10

∑P
i=1 σi

2

∑r
i=P+1 σi

2
(128)

satisfies the relation

SNR(Ne) ≥ D0. (129)

6.4.2. Poles estimation by GPOF method

Analogous to the Pencil Method(PM) [37] we collect the data sample infor-

mation of the spectral domain Green’s functions in two data matrixes G0

and G1 of dimensions (N − L) × L given by

G0 = [GL−1 GL−2 . . . G0] (130)

G1 = [GL GL−1 . . . G1] (131)



46 Green’s function for multilayered cylindrical radiating structures

Following the PM idea, looking the matrix structures of (130) we can rewrite

them as follows [16,23]

G0 = Z1BZ2 (132)

G1 = Z1BZ0Z1 (133)

where the matrix Z1,2 are given as follows:

Z1 =











1 1 · · · 1

z1 z2 · · · zNe

...
...

...

zN−L−1
1 zN−L−1

2 · · · zN−L−1
Ne











(134)

Z2 =

[

1 z1 · · · zL−1
1

1 zNe
· · · zL−1

Ne

]

(135)

and B = diag[bn1 , b
n
1 , . . . , b

n
Ne

], Z0 = diag[zn1 , z
n
1 , . . . , z

n
Ne

]. Since the G0 and

G1 are generally not full-rank [23] and not square (Ne ≤ L ≤ N −Ne), the

parameters zni with i = 1, . . . , Ne, are the generalized eigenvalues [38] of the

of the following non-square pencil matrix

P(z) = G0 − zni G1 (136)

Compared with standard Prony method [36] and the standard pencil of func-

tion method the poles are found directly solving the generalized eigenvalue

problem given in (136). We now illustrate the algorithm for computing the

generalized eigenvalues of (136). Considering (132) and (133) we can write

G
pi
0 G1 = Z

pi
2 Z0Z2 (137)

where pi denotes the Moore-Penrose pseudo-inverse [38]. From (137), we

can see the there are vectors pi of i = 1, . . . , Ne such that satisfy the fol-

lowing equations

G
pi
0 G0pi = pi (138)

G
pi
0 G1pi = zipi (139)

where pi are also called the generalized eigenvectors of the pencil matrix

P(z). Next from the generalized eigenvectors we derive the generalized
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eigenvalues. The first step is the computation of the pseudo-inverse. The

method, based on SVD, is extensively described in literature and here only

the result will be given [38]

G
pi
0 = VD−1HH (140)

where V and U are the matrixes of the left and right singular vectors

and D = diag{σ1, . . . , σNe
} with σi singular values. Considering (140),

G
pi
0 G0 = VVH and VHV = I. inserting (140) into (139)

VD−1HHG1pi = zipi (141)

left multiplying for VH

VHVD−1HHG1pi = D−1HHG1pi = VHzipi (142)

Naming as Zp = D−1HHG1pi and zi = VHpi and rearranging we obtain

(142)

(Z − zni I)zi = 0 (143)

which is an equivalent eigenvalue problem to (136). In this case the matrix

Ze is a square matrix of dimensions Ne ×Ne and therefore the eigenvalues

zni can be calculated in the usual way as follows

det(Z−z
n
i I) = 0 (144)

Knowing the generalized eigenvalues zni the value of the poles can be directly

extracted in the following way

sni = ln(zni )/T (145)

To complete the description of the GPOF algorithm, furthers considerations

can be made on the choice of pencil parameter L. Although the Prony

method and GPOF come from two different principles, if L = Ne the GPOF,

the G0 is square and the residue inverse is not required and therefore the

GPOF is equivalent to the Least Square (LS) Prony method to the original

PM [17].
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6.4.3. LS Model fitting

Once that the number of poles Ne and the eigenvalues zni are known, the

residues bni can be computed solving LS problems (122). This yields:

b = (ZHZ)−1ZHGp (146)

with Z defined as in (123).



7. Validation of the GPOF and

Space Domain Green’s

Functions

Key points in method developed in this work in computing the cylindrical

Green’s functions, are the correctness of the GPOF approximation for the

spectral domain (SD) Green’s functions and the spatial domain (SPD) con-

vergence of the Fourier series in the near field. This Chapter is dedicated to

the validation of the GPOF approximation, Section 7.1, and the Spatial Do-

main (SPD) computation of the dyadic component of the Green’s function,

Section 7.3.

7.1. GPOF Validation

As first step we derive from the multilayered cylindrical Green’s function

the free space case. The model will be used also in Section 7.3. Next, the

capability of approximation of the GPOF will be tested in the free space

case and in the more complex case of a multilayered structure.

7.1.1. Free Space Model

We consider first an electrical filament of current directed in z direction,

placed at the origin of the circular cylindrical system of coordinate, Fig-

ure 13i. We assume the density current distribution Fourier transformable

in z and we call J(kz) its transforation. For convenience, we rewrite (60)

49
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z

j r

J(z)

O

(i) Line source

z

j r

J(z)

O

c

(ii) Ampere integration

contour c

Figure 13.: In Figure 13i a line source in the center of the cylindrical coordinate system

ie represented. In Figure 13ii the Ampere integration contour is shown.

inserting the axial density current dependency in SD

ψF =

∞
∑

n=0

J(kz)
[

AnH
(1)
n (kρρ) +BnH

(2)
n (kρρ)

]

(147a)

ψA =

∞
∑

n=0

J(kz)
[

CnH
(1)
n (kρρ) +DnH

(2)
n (kρρ)

]

(147b)

In the free space case, no reflected waves exist and therefore An = 0 and

Cn = 0. Moreover, in free space the cylindrical TE and TM waves are

uncoupled. Therefore in the following only the radial magnetic scalar vector

potential 0-form will be used. The results are readily usable also for ϕ-

oriented sources. Since the source is a line placed at of the coordinate

system, then (241b) reduces to

ψA = D0J(kz)H
(2)
0 (kρρ) (148)

We consider now the nature of the source and characterize J(kz) [19]. Using

the Ampere theorem to the integration contour c, Figure 13ii, we have
∮

c

Hϕρdϕ = I(kz) (149)
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where I(kz) is the Fourier transformed of the axial current distribution.

Considering the small argument [50] approximation of the Hankel func-

tion (|kρρ| → 0) the Hϕ can be written as follows

Hϕ = −∂ψA
∂ρ

≈ D0J(kz)
2j

πρ
(150)

Inserting (150) into (151) we obtain

∫ 2π

0

D0J(kz)
2j

πρ
ρdϕ = 4jD0J(kz) ≈ I(kz) (151)

and therefore J(kz) = I(kz)/D04j. The space domain solution of the ψA is

given by the its Fourier back transformation in the following way

ψA =
j

8π

∫

kz

I(kz)

D0
H

(2)
0 (kρρ)e

kzzdkz (152)

If we consider the line source to be an Hertzian dipole of current mo-

ment Il/D0 = 1 [7, 19], the density current distribution is SD is given by

J(kz)/D0 = 1. This case is completely described in SD by the GTL model

described in Figure 14 and (152) reduces to

ψA =
j

8π

∫

kz

H
(2)
0 (kρρ)e

kzzdkz (153)

It is now straightforward to obtain a model for a point P = (ρ′, ϕ′, z′) 6= O.

Using the Addition Theorem for the Hankel functions [27, 19], ψA at the

point P in SD can be written as follows

ψA =















+∞
∑

n=−∞
H

(2)
n (kρρ

′)Jn(kρρ)ejn(ϕ−ϕ′) for ρ < ρ′

+∞
∑

n=−∞
Jn(kρρ

′)H(2)
n (kρρ)e

jn(ϕ−ϕ′) for ρ > ρ′
(154)

Due to the symmetry of the problem we consider the following proprieties

of the Hankel and Bessel functions [50]

J−n(z) = (−1)nJn(z) (155)

H
(2)
−n(z) = (−1)nH(2)

n (z) (156)
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+

i=1

r‘=0

ZTM(r)

r®¥

Figure 14.: Equivalent GTL representation for the region 0 ≤ ρ < +∞.

Considering the case ρ > ρ′ we can rewrite (154) in the following simplified

form

ψA = J0(kρρ
′)H(2)

0 (kρρ) + 2
+∞
∑

n=1

Jn(kρρ
′)H(2)

n (kρρ)e
jn(ϕ−ϕ′) (157)

Since for z-oriented Hertzian dipole the main contribute is the Ez compo-

nent of the electric field form, we use it for our model. On the other hands,

the Ez component of the field is related to the scalar component of the

dyadic Green’s function Gzz(r, r
′) by (56). Using (154) and (56) we obtain

Gzz′(r, r
′) = Ez|J (r′)=uzδ(r−r′) = 1

jωε

(

∂2

∂z2 + k2
)

ψA =

1
4πωε

+∞
∑

n=0
ejn(ϕ−ϕ′)

∫

kz

k2
ρJn(kρρ

′)H(2)
n (kρρ)e

jkz(z−z′)dkz
(158)

Defining the

Gzz′(ρ, ρ
′, kz) = Gn(kz) = k2

ρJn(kρρ
′)H(2)

n (kρρ) (159)

Inserting (159) into (158) we obtain

Gzz′(r, r
′) = 1

4πωε

+∞
∑

n=0
ejn(ϕ−ϕ′)

∫

kz

Gn(kz)e
jkz(z−z′)dkz (160)
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which is a well known cylindrical wave expansion of the Green’s func-

tion [27].

7.2. Numerical Results for the GPOF

In the following section, we test the capability of approximation of the

integrand function (102) of the GPOF algorithm.

For evaluating the correctness of the approximation we use as a reference

parameter the mean square error (MSE) defined in the following way

MSE =
1

(N − 1)

N−1
∑

k=0

∣

∣

∣
G[k] − Ĝ[k]

∣

∣

∣

2

(161)

In Section 7.2.1 the free space case is considered and the analysis is per-

formed for a fixed number of samples N . As next test we consider two

more complex cases. In Section 7.2.2 a Hertzian dipole near to a perfect

conducting cylindrical reflector is considered. In Section 7.2.3 a Hertzian

dipole is confined into a multilayered cylindrical structure. In these cases

the algorithm is also tested using as reference parameter the MSE and the

analysis is performed as function of the number of samples N.

7.2.1. Numerical Results for the Free Space case

As first test, we use as reference function the integrand function of (159),

sampled along the complex path of Figure 11 at source point ρ′ = 0.1 m

and observation ρ = 0.12 m . The approximated function by GPOF is

then compared for different mode indexes with the reference function at

λ = 0.2, 0.15, 0, 1 m . In all cases, the number of total number of samples

N = 150. The results are shown in Figure 27i, 27iii, 27v. We can observe

that the MSE behavior does not overcome the threshold of −20dB.

7.2.2. Numerical Results for Perfect Electric

Conducting Cylindrical Boundary

We consider a z-oriented Hertzian dipole placed near a Perfect Electric

cylinder, (PEC) Figure 16. The PEC is considered to be infinity in z di-
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Figure 15.: Comparison between the analytical exact solution SD Green s function with

the GPOF pole expansion approximation |Gzz(ρ, ρ′, kz , n)|.
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Figure 16.: Hertzian dipole placed near the PEC.
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Figure 17.: Equivalent GTL model in SD of the Hertzian dipole and cylindrical reflector.

rection and its radius ρc = 0.0615 m . The Hertzian dipole is placed at

point P ′ = (0.1015, 0, 1) m and the observation point P = (0.1016, 0, 1)

m . The Hertzian dipole generates a cylindrical Green’s function that can

be computed in spectral domain (SD) in the analytical closed form using

its equivalent transmission GTL model introduced in this work, Figure 17.

The dyadic Green’s functions components are computed as in (101) and the

component Gzz(ρ, ρ
′, kz, n) is considered. The obtained Green’s function is

then sampled in the complex kz-plane, Figure 11, and then compared with

its GPOF approximation in each region of the integration path Γi, with

i = 1, 2, 3, as indicated in Figure 11. For comparing we choose the same

number of samples N for each region of the path Γi and two different wave-

lengths. We may note that changing the number of samples N = 80 and

N = 180 a very good agreement can be observe in all the 3 region Γi and

also in this case the MSEdB does not overcome the threshold of −15dB in

all the cases. The results are summarized in Figures 18, 19, 20, 21.
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Figure 18.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 80, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.2 m .
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Figure 19.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 180, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.2 m .
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Figure 20.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 80, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.1 m .
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Figure 21.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 180, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.1 m .
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Figure 22.: In Figure is reported the layout of the structure.

7.2.3. Numerical Results for Multilayered Cylindrical

Structure

We consider a z-oriented Hertzian dipole confined inside a multilayered

cylindrical structure Figure 22i, 22ii. The underlined multilayered structure

is assumed to be infinitely extended in z-direction and composed of 6 layers

as depicted in Figure 22ii. The radii of the dielectric layers are ρc = 0.0615

m , ρ1 = 0.2450 m , ρ2 = 0.2490 m , ρ3 = 0.2700 m , ρ4 = 0.274, ρ5 → +∞,

Figure 22ii. The layer 1 is a PEC the layer 2, 3, 4, 5, are non-magnetic

materials described by the following dielctric constants: ε2 = 1, ε3 = 4.5,

ε4 = 1.1, ε5 = 4.5, ε6 = 1, Figure 22ii. The Hertzian dipole is embedded

in the layer 2 at point P ′ = (0.1015, 0, 1) m and the observation point

P = (0.1016, 0, 1) m . As in the previous example the cylindrical Green’s

functions that can be computed in spectral domain (SD) in the analytical

closed form using its equivalent transmission GTL model introduced in this

work, Figure 23. As in the previous example the component Gzz(ρ, ρ
′, kz, n)

is considered and sampled in the complex kz-plane. Similarly to the previous

case for comparing purposes, we choose the same number of samples N for

each region of the path Γi and two different wavelengths. In this case, for

N = 80 the MSEdB < −10dB while for N = 180 the MSEdB is below
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Figure 23.: Equivalent GTL model in SD of the Hertzian dipole and three layered struc-

ture.

−15dB. The results are summarized in Figures 24, 25,26, 27.

7.3. Nearfield Green’s Function

The usage of the Green’s function for Method of Moment (MoM) and other

electromagnetic applications, requires the knowledge of the nearfield. It is

known that infinitesimal concentrated sources create singular fields. It is

remarkable to point out that in literature a large production of scientific

publications on the topic has been occurring since 1960s [39, 40, 41]. Since

the understating of the singularities is essential for the use of the dyadic

Green’s function in numerical methods, in the following we will investigate

the singularities-type in the source region and develop a simple and intuitive

approach to deal with them in our algorithm. In Section 7.3.1 the prob-

lem of the singularities will be formulated. In Section 7.3.2 the problem of

the singularities for the cylindrical waves expansion is discussed. In Sec-

tion 7.3.3, we summarize the description of dipole in free space and offset

from the origin used as reference. In Section 7.3.4 we compare the results

obtain numerically and the analytical models and the limitations are dis-

cussed. In Section 7.3.5 we derive an advanced reference model and the

improvements are then shown and discussed in Section 7.3.7.
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Figure 24.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 80, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.2 m with

radome.
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Figure 25.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 180, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.2 m with

radome.
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Figure 26.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 80, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.1 m with

radome.



66 Validation of the GPOF and Space Domain Green’s Functions

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

|k
z
(z−z

0
)|

|G
zz(

ρ,
ρ 0,n

,k
z)|

 Analytical
 GPOF estimation

(i) Comparison between the

|Gzz(ρ, ρ′, kz , 0)| and is GPOF

approximation at λ = 0.1 m in Γ2.

0 10 20 30 40 50 60 70
−40

−35

−30

−25

−20

−15

10log10(|k
z
(z−z

0
)|)

M
S

E
dB

(ii) MSEdB at λ = 0.1 m in Γ1

60 70 80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

2.5

3

|k
z
(z−z

0
)|

|G
zz(

ρ,
ρ 0,n

,k
z)|

 Analytical
 GPOF estimation

(iii) Comparison between the

|Gzz(ρ, ρ′, kz , 0)| and is GPOF

approximation at λ = 0.1 m in Γ2.

60 70 80 90 100 110 120 130 140 150
−70

−60

−50

−40

−30

−20

−10

10log10(|k
z
(z−z

0
)|)

M
S

E
dB

(iv) MSEdB at λ = 0.1 m in Γ2

140 150 160 170 180 190 200
0

0.02

0.04

0.06

0.08

0.1

0.12

|k
z
(z−z

0
)|

|G
zz(

ρ,
ρ 0,n

,k
z)|

 Analytical
 GPOF estimation

(v) Comparison between the

|Gzz(ρ, ρ′, kz , 0)| and is GPOF

approximation at λ = 0.1 m in Γ3.

140 150 160 170 180 190 200
−140

−130

−120

−110

−100

−90

−80

−70

−60

10log10(|k
z
(z−z

0
)|)

M
S

E
dB

(vi) MSEdB at λ = 0.1 m in Γ3

Figure 27.: The analytical exact solution SD Green’s function |Gzz(ρ, ρ′, kz , n)| is sam-

pled into the complex plane indicated in Figure 6.3.2 and is compared its

GPOF pole expansion approximation. The number of samples for each Γi

i = 1, 2, 3 is N = 180, n = 0, ρ′ = 0.1015 m , ρ = 0.11 m and λ = 0.1 m with

radome.
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7.3.1. Singularities-Type in the Source Region

We consider the free space case since the singularity-source type does not

change with the structure. As was previously described with (199), the

field can be written as linear combination of current in the integral form as

follows [21]

E(r) = jωµ

∫

V ′

Ge(r, r′) ∧ J (r′) (162)

which is defined for r 6= r′. A more complete representation of the integral

equation can be given using the theory of distribution [41] in which also the

distance |r − r′| < ε with ε → 0 can be considered. In particular for the

dyadic Green’s function Ge(r, r′) we introduce the following distribution

Ge(r, r′) = PVV ′Ge(r, r′) + Ge(r, r′)i (163)

where Ge(r, r′)i is the contribution form the current in the small volume

V ′ containing the source and PV′
V Ge(r, r′) is the principal value of the

integral (162) in the volume V ′. Accordingly with the theory of distribution,

the contribution at distance |r−r′| < ε can be assigned to an interior dyadic

defined as follows [41]

Ge(r, r′)i =
J (r)LV ′

k2
(164)

where LV ′ a dyadic source [39,41] that depends only on the geometry of the

source. The physical interpretation was given in [39] and states that the

value of LV ′ is the electric field measured removing an infinitesimal volume

of a given shape. Inserting (164) and (163) into (162) we obtain a definition

for the integral equation including also the distance |r − r′| = 0

E(r) = jωµPVV ′

∫

V ′

Ge(r, r′) ∧ J (r′) +
J (r)LV ′

jωµε
(165)

the value of LV ′ , which depends only on the shape of the volume, is known

analytically in some special cases i.e. cube, spherical and cylindrical vol-

umes. The procedure to compute it analytically has been extensively treated

in literature [39,40,41] and in the following the result for the cylindrical case

is only reported for completeness, see Figure 28

LV ′ = 1
2 cos θ0Ixy + (1 − cos θ0)dzdz

′

Ixy = dxdx′ + dydy′
(166)
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Figure 28.: Circular cylinder dyad L.

Conversely, from the numerical view point a different approach is needed.

In fact the result (166) is rigorous but difficult to be used as reference model.

That will be extensively discussed in the next two Sections. In Section 7.3.5

an alternative reference model for numerical near field computation will be

introduced.

7.3.2. Singularities in the Cylindrical Waves Expansion

If the Green’s function is expanded into cylindrical waves, the singularity

problem, it is understood in terms of series convergence. To investigate

the problem we consider the dyadic component of the Green’s function

Gijzz′(r, r
′). Assuming that it is allowable to exchange the series with the
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integral we obtain

Gijzz′(r, r
′) = j

8π

∫

kz
Sn(ρ, ρ

′, ϕ, ϕ′, kρi
)e−jkz(z−z′)dkz

Sn(ρ, ρ
′, ϕ, ϕ′, kρi

) =
∑∞
n=0

k2
ρi

jωεi

(

Ain(ρ
′)H(1)

n (kρi
ρi) +Bin(ρ

′)H(2)
n (kρi

ρi)
)

e−jn(ϕ−ϕ′)

(167)

where kρi
=
√

k2
i − k2

z . For simplicity of notation we rename

Sn = Sn(ρ, ρ
′, ϕ, ϕ′, kρi

) (168)

We assume that ϕ−ϕ′ 6= 0 and z−z′ 6= 0 and |ρ−ρ′| < ε. For |kρi
ρi| → 0 the

series Sn forms a divergent series due to the singular behavior of the Hankel

functions. For large value of the Hankel function argument |kρi
ρi| → +∞

the Hankel functions tend to behave asymptotically like dumped exponential

functions. The complex modal amplitudes An(ρ
′) and Bn(ρ

′), computed by

matching the boundary conditions, represent the impressed excitation to

each mode at a given frequency. That means that their contribute tend

to vanish while n → +∞. In this case Sn forms a fast convergent series.

Therefore in order to have a fast convergent series we need to keep the

argument of the Hankel functions large enough introducing lossy accordingly

to what has been discussed in the Chapter 6. If |ϕ−ϕ′| < ε and z − z′ 6= 0

then Sn reduces to

Sn(ρ, ρ
′, ϕ, ϕ′, kρi

) =
∞
∑

n=0

k2
ρi

jωεi

(

Ain(ρ
′)H(1)

n (kρi
ρi) +Bin(ρ

′)H(2)
n (kρi

ρi)
)

(169)

Also in this case (169) forms a convergent series and the same considerations

previously discussed can be made.

7.3.3. Source Singularity-Type Analysis for an

Infinitesimal Electric Dipole Model.

Our purpose in this Section is to derive a reference model for the SPD com-

putation of the dyadic Green’s function. Since severe numerical problems

can appear for near field computation we shall concentrate our attention on

it. In Section 7.1, staring from the multilayered cylindrical Green’s func-

tions (102), we have derived the known free space case. In this Section, using
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the results of Section 7.1 we derive an analytical closed form for the free

space case usable as reference model. Making use of the theorem of unique-

ness of the solution one can write the following identities i.e. Sommerfeld

Identities (SI) [27, 42,19]

ψA =
j

8π

∫

kz

H
(2)
0 (kρρ)e

jkzzdkz (170)

e−jkr

4πr
=

j

8π

∫

kz

H
(2)
0 (kρρ)e

jkzzdkz (171)

Following the procedure of the Section 7.1 of can also easily verify that for

r′ 6= O and for ρ > ρ′ the following identities are verified

e−jk|r−r′|

4π|r − r′| =
j

8π

+∞
∑

n=1

∫

kz

Jn(kρρ
′)H(2)

n (kρρ)e
jn(ϕ−ϕ′)ejkz(z−z′)dkz (172)

Using the identities (171) and (172) we can compute for the free space case

an analytical closed form for the small electric dipole usable as reference.

We assume now the dipole place at P ′ = O and the observation point is

P = (ρ, ϕ, z). In this case the magnetic vector potential form A generated

by the z-oriented small electric dipole can be written as follows [28,21]

A = ψA(r, 0)dz =
µI0l

4πr
e−jkrdz (173)

where r is the distance of the observation point from the location of the

dipole and ψA is 0 double form Green’s function. Inserting (173) into (48)

we obtain

Hr = 0 (174a)

Hϕ = j
kI0l sin θ

4πr

[

1 +
1

jkr

]

e−jkr (174b)

Hθ = 0 (174c)

Er = η
I0l cos θ

2πr2

[

1 +
1

jkr

]

e−jkr (174d)

Eϕ = 0 (174e)

Eθ = jη
kI0l sin θ

4πr

[

1 +
1

jkr
− 1

(kr)2

]

e−jkr (174f)
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Transforming (174a) to (174f), into cylindrical coordinates (ρ, ϕ, z), we ob-

tain the Ez component

Ez =
1

jωε
I0l

e−jkR

2πR5

[

(1 + jkR)
(

2R2 − 3ρ2
)

+ (kρR)
2
]

(175)

where

R =
√

ρ2 + z2 (176)

We assume now the dipole place at P ′ = (ρ′, ϕ′, 0) and the observation

point is P = (ρ, ϕ, z). In this case the magnetic vector potential form A
generated by the z-oriented small electric dipole can be written as follows

A = ψAdz =
e−jk|r−r′|

4π|r − r′|dz (177)

Similar as for the dipole in the origin, we get [28]

Ez =
1

jωε
I0l

e−jkR
′

2πR′5

[

(1 + jkR′)
(

2R′2 − 3ρ′2
)

+ (kρ′R′)
2
]

(178)

with

ρ′ =
√

(ρ cos(ϕ− ϕ′) − ρ′)2 + (ρ sin(ϕ− ϕ′))2 (179)

R′ =
√

ρ′2 + z2 (180)

The latter represents the classical closed form expression of Ez component

of the the Hertzian dipole in cylindrical coordinate in free space. In the

following (178) will be used as reference model for the computation of the

z component of (102) in free space due to the z-oriented Hertzian dipole

whereas the considerations remain unchanged for ϕ and ρ-oriented electrical

dipoles and more in general u, v, w orthogonal-oriented dipoles.

7.3.4. Numerical results Results

In this Section the numerical solution for computing the SPD component of

the dyadic Green’s function (160) will be compared, in the near field region,

with its equivalent analytical model in free space described in the previous
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Figure 29.: The z-oriented Hertzian dipole at point P ′ = (1, 0, 1) m .
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Section in (179). We consider a z-oriented Hertzian dipole in free space

placed at point P ′ = (1, 0, 1)m of a circular cylindrical coordinate system

as depicted in Figure 29.

To verify the the convergence and the correctness of the spatial domain

Green’s function (121) in the near field, we investigate the behavior of the

Gzz(r, r
′) in the source region. Therefore we reduce the observation to the ε

environment i.e. |r− r′| < ε. As it has been explained in Section 7.3.1, the

Green’s function Ge(r, r′) is not defined in r = r′ where has a singularity

of the order 1/r3. Analytically the value of the field in the source region

can be computed introducing the distribution Gie(r, r′) which represents the

value of the field in the volume containing the source V ′.

Therefore, the analytical reference model (179) can be complemented in

the source region by the distribution Gie(r, r′). On the other hands, the

use of this model for reference purposes in numerical computation can be

problematic due to the definition of the ε region. To verify this effect,

we define the near field of the z-oriented Hertzian dipole assuming that

the effective length dipole is l = λ/50. In this case the Fresnel near field

region [28] can be defined 0.62
√

l3/λ < ε < 2l2/λ and therefore 8e−4λ <

ε < 1.8e−3λ.

We sample the field along ρ coordinate letting constant ϕ = 0 and z =

1.001 m . Defining the distance over λ from the Hertzian dipole in ρ direction

as
d

λ
=
ρ− ρ′

λ
(181)

We observe the field in the region 0.001 < d/λ < 4, Figure 30. Therefore

we observe the field in the near field inside the ε region and outside. We set

a relatively high number of angular mode n = 100. From the Figure 32 we

can see that the singularity of the Hertzian dipole appears already outside

the δ − ε, Figure 31.

On the other hands the analytical value assigned from the distribution

does not make sense outside the source region i.e. |r − r′| > ε. The usage

of the theory of distribution would require the implementation of the limit

ε → 0 to obtain the principal value of the integral which is a numerically

sensitive to errors [41].

Therefore, we can conclude that such a model cannot be used as refer-
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j
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e d

Figure 30.: Observation region over ρ.

ence model in the near field since the singularity cannot be described. On

the other hands a good convergence can be observed outside the ε region

where conversely the model may be used correctly as reference. Before to

introduce a more sophisticated model for the source region, an analysis of

the numerical convergence properties outside the region the will be shown

outside the source region where the effect of the singularity of the Hertzian

dipole is not relevant i.e. |r − r′| > δ − ε. In particular, we investigate the

convergence over ϕ letting ρ and z constant and in the second case the con-

vergence over z letting ϕ and ρ constant. In the first case the observation

region is taken for z = 1.001 m and ρ = 1.0025 m and moving around ϕ form

0 to 180 at λ = 0.1 m . The analysis is performed for three different values

of the angular modes n = 60, n = 80 and n = 120. Form Figures 33, 34 we

can conclude that the SDP component of the Green’s function computed

via (121) shows a substantially convergence stability above 80 angular mode

around the angle ϕ while a low relative error is observed. In the second case

in analogy with the ρ case, we define a distance over lambda as follows

d

λ
=
z − z′

λ
(182)
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Figure 31.: The region δ − ε indicates the region in which the effect of the singularity

becomes strong.

where the observation region is given for 0.0025 < d/λ < 1.4 with ϕ = 0,

ρ = 1.0025 m . Also in this case the convergence is substantially stable over

n = 80 angular mode while a relatively low relative error can be observed.

7.3.5. Near Field of a Conformal Cylindrical Radiating

Area

In this Section an alternative reference model for near field computation

will be introduced. In the second part the model will be used as reference

model for convergence analysis of (121).

7.3.6. Model Description

The idea is that instead of using an infinitesimal Hertzian dipole as reference

model, we use a small conformal sheet radiating area, Figure 35. We assume

that the surface of the sheet lA << λ. In this case for small distances form

the sheet |r − r′| < ε, the scalar Green’s function G(r, r′) can be expanded
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Figure 32.: Comparison between the |Gzz(r, r′)| observed along ρ direction inside and

outside the ε region and the Ez component of the Hertzian dipole (178). The

number angular modes n = 120 and λ = 0.1 m .

into a power series expansions as follows

G(r, r′) =
e−jk|r−r′|

4πε|r − r′| =
1

4πε

(

1

|r − r′| − jk − 1

2
k2|r − r′| + ...

)

(183)

therefore in this region, the singular behavior of the Green’s function is

equivalent to static case

G(r, r′) ' G0(r, r
′) =

1

4πε|r − r′| (184)

In this case the electric field may be derived from the scalar potential form

E = −dψA (185)

the scalar potential form is related to the scalar Green’s function by means

of the Coulomb integral equation

ψA(r) =

∫

V ′

Q′

4πε|r − r′| (186)

where Q′ is the charge distribution form given as follows

Q′(r′) = q′ρ′dρ′ ∧ dϕ′ ∧ dz′ (187)
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0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

φ°

|G
zz

(r
,r

0)|

 Integrated
 Hertzian Dipole

(iii) |Gzz | over ϕ for n = 80.

0 20 40 60 80 100 120 140 160 180
−40

−35

−30

−25

−20

−15

−10

−5

0

φ°

 E
rr

R
el

dB

  Relative Error in dB

(iv) Relative error over ϕ in dB for for n =

80.

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

φ°

|G
zz

(r
,r

0)|

 Integrated
 Hertzian Dipole
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Figure 33.: Comparison between the |Gzz(r, r′)| observed around ϕ direction and the Ez

component of the Hertzian dipole, (178). In this case the the field is sampled

outside the singular region at (d/λ = 0.03). The number angular modes

n = 60, n = 80, n = 120 and λ = 0.1 m .
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(v) |Gzz | over z for n = 120.
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Figure 34.: Comparison between the |Gzz(r, r′)| observed along z direction and the Ez

component of the Hertzian dipole, (178). In this case the field is sampled

outside the singular region at (d/λ = 0.03). The number angular modes

n = 60, n = 80, n = 120 and λ = 0.1 m .
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Figure 35.: Cylindrical Conformal Radiating Sheet of Current.

As the volume of the source contracts to a surface, the contribute of the

radial component of the charge in ρ and the from the end of the sheet

becomes varnishing small. Therefore the charge density is distributed on

the surface

Q′
A = dρ′yQ (188)

In this case, the Coulomb integral equation is transformed to two dimen-

sional integral equation as follows

ψA(r) = dρ′y

(∫

V ′

Q′

4πε|r − r′|

)

=

∫

S′

Q′
A

4πε|r − r′| (189)

where Q′
A is unknown. In the following a method of moment (MOM) algo-

rithm to solve the integral equation (189) to compute the unknown charge

distribution will be described.

We are consider an ideal metal surface. Therefore the surface is equipo-

tential. That means that the value of the potential over the surface of the

metal is constant and unknown. More explicitly we can rewrite (189) for

the conformal sheet of current in the following way

∫ ϕ′+ A
2ρ′

ϕ′− A
2ρ′

∫ z′+ l
2

z′− l
2

1

4πε

Q′
A(ρ′, ϕ′)

√

ρ′2(ϕ− ϕ′)2 + z′2
ρ′dϕ′dρ′ = ψA0

(ρ′, ϕ′) = const

(190)
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where the surface charge Q′
A is unknown. The (190) may be solved via the

MOM [52]. Since the dimensions of the sheet are small compared with the

wavelength, it is reasonable assume the charge concentrated at the center

of each subsection and expand the charge distribution in the following set

of basis functions

Q′
A(ϕ′, z′) =

Ns
∑

n=1

anΦn

Φn = δ(ϕ− ϕ′
n)δ(z − z′n)

(191)

Inserting (191) into the left side of (190) we obtain

Ns
∑

n=1

an

∫ ϕ′+ A
2ρ′

ϕ′− A
2ρ′

∫ z′+ l
2

z′− l
2

1

4πε

σAδ(ϕ− ϕ′
n)δ(z − z′n)

√

ρ′2(ϕ− ϕ′)2 + z′2
ρ′dϕ′dρ′ (192)

We choose as test function also Dirac (i.e. Galerkin method) functions to

define our inner product and we obtain for m 6= n

Zmn =

Nt
∑

m=1

Ns
∑

n=1

an

∫

S

δ(ϕ− ϕm)δ(z − zn)

(

∫

S′

1

4πε

δ(ϕ− ϕ′
n)δ(z − z′n)

√

ρ′2(ϕ− ϕ′)2 + z′2
ρ′dϕ′dρ′

)

ρdϕdρ

(193)

where we choose the number of basis functions (Ns) equal the number of

test functions (Nt). Also the we must define the inner product for the left

side of (189) we obtain

βm =

∫

S

δ(ϕ−ϕm)δ(z−zm)ψA0(ϕ, z) = ψA0(ϕm, zm) = ψA0 m = 1, ..., Nt

(194)

The case in which m = n describes the interaction of the charge with itself

and must be treated separately since is singular (|rm − rm| = 0). The self

interaction can be modelled in the usual way integrating in the subsection

surface as following

Zmm =

∫ w/2ρ′

−w/2ρ′
dϕ′

∫ b

−b

1

4πε

am
√

ρ′2(ϕ− ϕ′
m)2 + z′2m

dz′ =

w ln(b+
√

ρ′2 + b2) − w ln(−b+
√

ρ′2 + b2)

(195)
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Figure 36.: Arbitrary small sheet radiating surface.

Therefore we transformed (190) in a linear system of equation that can be

summarized in matrix notation as follows

Zmnan = βm (196)

The solution of (196) gives an accurate description of the charge distribu-

tion. Having computed the charge distribution the electric field form can

be computed in the usual way as follows

E = −dψA (197)

The (197) will be used as reference model for the near field computation.

The result can be easily extended for any other geometry of the surface that

can be described by an orthogonal system of coordinate, Figure 36

ψA(u, v) =

∫

S′

1

4πε

Q′
S(u, v)

√

s21 + s22
(198)

where s1 = g1du and s2 = g2dv.

7.3.7. Numerical Results for the Conformal Radiating

Sheet Area.

In this section the same set of simulations of Section 7.3.5 are repeated but

using for the radiating conformal sheet. We may note that such reference
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(ii) |Gzz | over ρ for n = 80.

Figure 37.: Comparison between the |Gzz(r, r′)| observed along ρ direction inside and

outside the ε region and the Ez component of the conformal radiating sheet

area. The number angular modes n = 80 and λ = 0.1 m and the minimum

distance (d/λ = 0.001).

model can serve also as reference model for the MOM computation when

subsection technique is used. In fact each subsection can be modelled as

well as the small radiating conformal sheet in the near field region in the

same way.
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(ii) Relative error over ϕ in dB for n = 60.
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(iii) |Gzz | over ϕ for n = 80.
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(iv) Relative error over ϕ in dB for n = 80.

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

7

8

9

10

φ°

|G
zz

(r
,r

0)|

 Integrated
 Conformal Cylindrical Sheet of Current

(v) |Gzz | over ϕ for n = 120.
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Figure 38.: Comparison between the |Gzz(r, r′)| observed around ϕ direction and the Ez

component of the conformal sheet radiating area. In this case the the field

is sampled at (d/λ = 0.001). The number angular modes n = 60, n = 80,

n = 120 and λ = 0.1 m.
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(i) |Gzz | over z for n = 60.
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(ii) Relative error over z in dB for n = 60.
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(iii) |Gzz | over z for n = 80.
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(iv) Relative error over z in dB for n = 80.
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(v) |Gzz | over z for n = 120.
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n = 120.

Figure 39.: Comparison between the |Gzz(r, r′)| observed around z direction and the Ez

component of the conformal sheet radiating area. In this case the the field

is sampled at (d/λ = 0.001). The number angular modes n = 60, n = 80,

n = 120 and λ = 0.1 m .



8. Application and Validation

In the following Chapter, the cylindrical Green’s function is applied with

MoM. In Section 8.1 the MoM formulation in SD in is given. In Section 8.2

the application to a radome problem is given and comparison with mea-

surements are presented. Finally in Section 8.3 the performance of the IEM

in terms of computation time and memory allocation are presented and

discussed.

8.1. Moment Method Formulation

We rewrite the field solution for the electric field form E in its integral

equation form [21]

E(r) =

∫

V ′

Gije (r, r′) ∧ J j(r′) (199)

where Gije (r, r′) is the dyadic Green’s function, J j(r′) is the current density

distribution, r and r′ are the observation and source coordinate, V ′ the

volume containing the sources, i and j are the observation and source layer.

Considering that the radiating element are sheets of current, the current

density J j(r′) is a surface current density expressed by [21]

J j(r′) = δ(ρ− ρ′)dρ ∧ J j
S′(ρ

′, ϕ′, z′) (200)

where J j
S′(ϕ′, z′) represents the current density form with components in ϕ

and z directions and S′ surface of the sources. Inserting (200) into (199) we

obtain

E(r) =

∫

S′

Gije (r, r′) ∧ J j
S′(r

′) (201)

For the MOM definition, it is of our interest to extract the tangential com-

ponent of the electric field. That can be done by eliminating the radial
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dependency as follows

Et(r) =

∫

S′

dρy(dρ ∧ Ge(r, r′)) ∧ JS′(r′) (202)

Similarly to the Chapter 6, considering the cylindrical symmetry, we expand

(202) in cylindrical waves and obtain

Et(r) =
+∞
∑

n=1

e−jn(φ−φ′)

∫

kz

Gt(ρ, ρ′, kz, n)

[

Jφn

Jkz

]

e−jkz(z−z′)dkz

(203)

where Gt(ρ, ρ′, kz, n) is the spectral domain representation of the dyadic

double one form

Gt(ρ, ρ′, kz, n) =

[

Gφφ′ Gφz′

Gzφ′ Gzz′

]

(204)

which in spectral domain representation is related with the tangential elec-

tric field as follows
[

Eφn

Ezn

]

=

[

Gφφ′ Gφz′

Gzφ′ Gzz′

] [

Jφn

Jkz

]

(205)

To define the MOM matrix representation we observe that over the metallic

surface of the radiating elements, we can expand the tangential component

of the electric and magnetic field form into a set on orthonormal basic

functions at ρ = ρ′

Et(r) =
∑Nb

l=1 V
p
n el(ϕ

′, z′)

Ht(r) =
∑Nb

l=1 I
p
nhl(ϕ

′, z′)
(206)

where p = ϕ, z, Nb is the number of basis functions, el(ϕ
′, z′) and hl(ϕ

′, z′)

are the basis structure functions for the electric and magnetic fields. We

assume to decompose the radiating surface element ϕ′, z′ in subsection to

which a given basic function is assigned. We also consider the structure

functions to be Fourier transformable and that can factorized in ϕ′ and z′

in the following way

el(ϕ
′, z′) = el(ϕ

′)el(z′)

hl(ϕ
′, z′) = hl(ϕ

′)hl(z′)
(207)
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We note that over the perfect metallic surface of the radiating elements the

JS′(r′) = Ht(r). Considering this and inserting (207) into (8.1) we obtain

[

V ϕl el(ϕ
′, z′)

V zl el(ϕ
′, z′)

]

=

+∞
∑

n=1

e−jn(φ−φ′
l)

∫

kz

Gt(ρ, ρ′, kz, n)

[

Iϕl hl(n)

−Izl hl(kz)

]

e−jkz(z−z′l)dkz

(208)

where Izl and Iϕl are the unknown complex current coefficients. Multiplying

both sides of (209) for e∗k(ϕ, z) and moving in the observation coordinate in

each subsection l we obtain that

[

V ϕl
V zl

]

= Zlk

[

Iϕl
−Izl

]

(209)

where

Zlk =
+∞
∑

n=1

e−jn(φk−φ′
l)

∫

kz

Gt(ρ, ρ′, kz, n)

[

hl(n)

hl(kz)

]

e−jkz(zk−z′l)dkz

(210)

The feeding point model will be specified in the next section when the

modelled antenna geometry for the specific application will be described.

8.2. Application and Validation

In this section a conformal dipole antenna is investigated with the IEM in-

troduced in this work. The dipoles is mounted around a conducting cylinder

of height 300 m m and diameter 105 m m . The dipole is embedded in a

cylindrical radome, Figure 43. The radome and characteristics are reported

in Table 1. The dipole width over the circumference is w = 0.01 m and

the height is L = λ/2 at 1.75 GHz. The gap width at the feeding point is
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Table 1.: Radome characteristics.

Radome material Polyethylene (PE)

Dielectric constant 2.25 (1.7 − 2GHz)

Height 300 m m

Inner Diameter 28 m m

Outer Diameter 29.2 m m

h = 0.001 m , Figure 40. Since w/λ = 0.0667 the current can be considered

to flow in axial direction. For the computation of the axial current dis-

tribution the MOM is applied in spectral domain using subsectional basis

functions of rectangular shape.

8.2.1. Modelling the effect of w

The influence of the w is accounted by modelling the angular ϕ dependence

of the current in one subsection, Figure 40. We observe that the influence

of w is relevant for the input impendence computation and the radiation

pattern. To choose the shape of the subsection modelling the effect of the

current along w, we investigate the four different shapes. We assume that

the current can be studied separately in ϕ and z and therefore JS′(ϕ, z) =

J(ϕ)J(z)ρdρ∧dϕ and to be Fourier transformable. Therefore we can write

at point P = (ρ = ρ′, ϕ, z)

JS′(ϕ, z) = ρdρ ∧ dϕ
+∞
∑

n=0

Jϕ(n)e−jn(ϕ−ϕ′)

∫

kz

Jkz
e−jkz(z−z′)dkz (211)

For the ϕ current we choose four different basis functions shapes: triangular

(rooftop), rectangular, Dirac, and roll-off cosines. At ρ′ = 0.05 m and z′ = 0

we investigate the convergence over ϕ of the different basis functions for

different number of angular modes, Figure 8.2.1. We can see that the lowest

relative error over ϕ is for the triangular basis functions already for n = 80

angular modes and therefore we choose triangular shape for modelling in

the current over ϕ, Figure 40.
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Figure 40.: Dipole geometry and qualitative description of the dipole discretization.

8.2.2. Antenna Feeding

The used excitation type in the antenna is a forced voltage Vg in the gap h.

The associate electric field form is E i = Egdz such that in the gap

Vg = −
∫ h/2

−h/2
E i = −hEg (212)

In this case the boundary conditions for the electric field impose that Ez = 0

on the dipole arms and Ez = Eg in the feeding gap. The current density

is solved transforming the integral equation (102) into a linear system of

equations.

8.2.3. Measurement Results

The comparison with the measurement is first performed in terms of Re-

turn Loss for the dipole in free space. For the fabricated antenna the used
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Figure 41.: Convergence analysis of different shape of the basis functions over ϕ for n =

80, 120.
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Figure 42.: Coaxially loaded ferrite balun.

balun is a ferrite loaded coaxial balun, Figure 42. The comparison between

measurements and simulation using the IEM are shown in Figure 44 and

good agreement can be observed. The comparison is then performed ver-

tical radiation pattern (VP) and horizontal radiation pattern (HP) of the

antenna in two different configuration. In the first case the VP and HP

are compared to the measured ones with only the cylindrical reflector and

the dipole, Figure 43i. In the second case the VP and HP are compared

with the measured at the previous configuration is embedded into a one

layer radome, Figure 43ii. In both cases the comparison is performed at

1.75 GHz. Also in these cases a good agreement with the measurement is

shown, Figures 45i, 45ii, 45iii and 45iv.



92 Application and Validation

(i) Conformal dipole an-

tenna and cylindrical

reflector.

(ii) Conformal dipole an-

tenna and cylindrical

reflector embed-

ded into cylindrical

radome.

Figure 43.: Measurement setup.
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Figure 44.: Return loss.

8.3. Comparison of Time/Memory

Performance

Having developed a semianalytical technique we expect a significatively im-

provements also in terms of time computation and memory requirement.

In this section the performance of the IEM method in terms of computa-

tion time and memory requirement is investigated and compared with a

popular commercial tool HFSS [54]. We have used a Matlab code to im-

plement the IEM method. To perform the comparison we use to different

structure: a three layer radome, a cylindrical reflector, Figure 46, and a cir-

cular conformal array of 8 conformal dipoles mounted around a cylindrical

reflector, Figure 50ii. The characteristics of the radome and the cylindri-

cal reflector are reported in Table 2 whereas the dipole dimensions and the

array parameters are reported in Table 3 and Table 4 respectively. The

dimension of the array’s dipoles are identical to these indicated in Table 3.
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Figure 45.: Comparison between simulated with IEM and measured Horizontal(HP) and

Vertical Pattern (VP) of the conformal finite length dipole at 1.75 GHz at

3.88cm from the cylindrical reflector.
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Table 2.: Simulated structure layout.

Cylindrical reflector diameter 0.297 m

Diameter of the radome 0.530 m

Layer 1 and 3 thicknesses 0.004 m

Layer 2 0.021 m

Dielectric constant layer 1 and 3 4.5

Dielectric constant layer 2 1.2

Table 3.: Dipole dimensions.

L 0.092 m

w 0.05 m

h 0.001 m

Location in ρ ρ′ = 0.1885 m

Layer 2 21 m

The comparison is performed 2 GHz. The field computations results are

compared in terms of far field horizontal pattern and good agreement can

be observed between both methods, Figure 47 and Figure 50i.

Performance with the radome and a conformal dipole.

We perform the simulation in a desktop computer with processor 2.4 GHz

Intel Pentium 4 processor and 1 GB fast DDR RAM. Exploiting the sym-

metry properties of the cylindrical structure, with HFSS we can simulate

1/4 of the structure. In this case approximately 33 k tetrahedra [54] are

needed for the simulation corresponding to v 500 MB memory allocation

and v 40 min for the complete simulation. For the IEM based on Matlab

code v 20 MB are needed for the variables allocation and v 1.3 min running

time.
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Figure 46.: Simulated structure.
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(i) Horizontal pattern computed with

HFSS vs. IEM in linear scale.

(ii) Relative error in dB over ϕ.

Figure 47.: Comparison between the horizontal pattern computed with HFSS and IEM

at f = 2 GHz.
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Table 4.: Array configuration dimensions.

Array diameter 131 mm

Cylindrical reflector diameter 123 mm
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Figure 48.: Comparison between the horizontal pattern computed with HFSS and IEM

at f = 2 GHz.

Performance with array of conformal dipoles.

Similarly to the previous case, we perform the simulation in a desktop com-

puter with processor 2.4 GHz Intel Pentium 4 processor and 1 GB fast DDR

RAM. Exploiting the symmetry properties of the cylindrical structure, with

HFSS we can simulate 1/4 of the structure. In this case approximately 40 k

tetrahedra [54] are needed for the simulation corresponding to v 700 MB

memory allocation and v 70 min for the complete simulation. For the IEM

based on Matlab code v 30 MB are needed for the variables allocation and

v 1.5 min running time.
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8.4. Beamforming and Azimuth Scanning

Application

The use of circular antenna arrays for smart antenna application offers im-

portant and obvious advantages in smart antenna applications. Because

the circular antenna array does not have edge elements, the directional

patterns obtained by this geometry can be electronically scanned in the

azimuth plane without significant changes of the beam shape. Recently it

has been also proved that the uniform circular arrays present the best per-

formance in terms of space resolution compared with uniform rectangular

antenna array (URA) [44]. Even though they present the best performance

in terms of space resolution, the most used antenna arrays for smart an-

tenna application is the URA. This is due to the difficulties arising form

the electromagnetic modelling in terms of computational resources as ex-

plained at the beginning of this work. Using the method developed in this

work we show the possibility to investigate the performance of the smart an-

tenna system presenting circular cylindrical symmetry combined on the fly

with the electromagnetic simulation. To verify that we have implemented

two simple algorithms. We consider a circular array of 8 conformal dipoles

mounted around a cylindrical reflector with a without a 3 layers radome.

The radome characteristics and the dimensions of the antenna array are

reported in Table 2 and Table 4 respectively. In the first algorithm first a

simple example of beamforming is presented. At the first step of the algo-

rithm only one antenna element is excited. At the second step the neighbors

elements placed at ±45 are excited with higher excitation voltages. At the

third step the voltage values of the elements placed at ±45 is increased of

a factor of 2. The simulation are performed with and without radome and

the results for the azimuth plane are shown in Figure 49. While an evident

effect of beamforming can be observed the simulation time with and with-

out radome is approximately of 1, 5 min and 3 min respectively. The second

algorithm implements a beam scanning of the azimuth plane of 360. The

dipoles are excited progressively and one by one with a constant excitation

voltage, Figure 50. In this case the simulation time for the cases with and

without radome is 8 min and 12 min respectively.
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(ii) Radiation pattern with radome.

Figure 49.: In Figures an example of beamforing of the azimuth plane with and without

radome is shown at 2 GHz.
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Figure 50.: In Figures are shown simulations of electronic beam scanning with and with-

out radome at 2 GHz.





9. Conclusions and Discussions

We have presented theoretical methods, algorithms and implementations

to deal with multilayered cylindrical radiating structures. The method is

based on integral equation method (IEM). A novel method to compute the

cylindrical multilayered dyadic Green’s function has been introduced.

The method is based on a network description of the spectral domain

(SD) cylindrical multilayered dyadic Green’s function. The network is built

using generalized transmission lines (GTL). We have shown that, due to the

completeness of the transmission line theory, the GTL method introduces

advantages in the implementation and design stage.

The convergence of the Green’s function in the source region has been

validated using two different reference models. The first reference model

was derived considering that in the free space case the cylindrical Green’s

function can be easily expanded into spherical waves and a closed form

solution can be obtained. However since the Green’s function exhibits a

singular behavior in the source region (1/r3), this simple model can be used

as reference model only in region where the field exhibits a less singular

behavior. This region can be estimated only numerically. In this case a

good agreement with Green’s function developed in this work is observed.

The problem of the singularity at the source region, from the theoretical

point of view, can be described making use of the theory of distribution. In

this case the field at the source can be computed analytically [41]. However

following the theory of distribution, the computation of the field around the

source involves a limit which is sensitive to numerical errors [41] and does

not improve the accuracy of the reference model.

A more physical model to validate the convergence of the Green’s function

for small space variations around the source is introduced using, instead of

an infinitesimal dipole, a small conformal radiation area. In this case for

small region around the source, i.e., |r − r′| < ε, the field can be approxi-
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mated to the static case. With this reference model we could achieve not

divergent field for distances from the source of the order of 0.001λ and test

the Green’s function convergence also in this region. Also in this case a

good agreement with Green’s function developed in this work was observed.

As mentioned, both reference models are derived in free space. More

complex structures can be validated using other known Green’s functions

derived with other methods or experimental results. In our case we have

applied the cylindrical Green’s function with MOM to model two different

structures: a conformal dipole antenna placed near a cylindrical reflector

and embedded inside a cylindrical radome structure and a circular array of

conformal dipoles mounted around a cylindrical reflector. Taking advan-

tages of the rotation and translational invariant properties of the structures

we have derived the method of moments (MOM) algorithm in spectral do-

main. While a good agreement with measurements and other commercial

softwares was observed, an important improvement in terms of computa-

tion resources and understanding has been achieved. As further application,

we have shown the potentialities of the method performing simple beam-

forming and azimuthal scanning algorithms performed quasi simultaneously

with electromagnetic simulations. For this purpose, a circular array of 8

conformal dipoles was mounted around cylindrical reflector. The simula-

tions where performed with and without a 3 layers cylindrical radome. The

excellent performance in terms of computational time shows an attractive

potentiality for full simulations of smart antenna systems based on multi-

layered cylindrical geometries.

9.1. Outlook

Further works related with the topic can be divided in different issues. The

first issue concerns with the GPOF method. In this work the estimation

of the number of the poles (model order), is done according to the singular

values of the autocorrelation function of the data matrix. This is a good

criterion for transient analysis in time domain [23]. In this case, the GPOF

is applied to spatial signals for each mode n and therefore to relatively

smooth functions. This fact in some cases produces numerical instability.

A better criteria to choose the model order should be introduced.
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The second issue concerns the further development of the GTL model.

They can be used for application purposes to introduce a systematical beam

shaping technique for cylindrical conformal antennas (e.g. ultra wide band

applications) or design of cylindrical multilayered radomes. Some prelimi-

nary results have been presented in [14,8].





A. Appendix

A.1. Potential Ansatz for z and ϕ-oriented

current

In many practical cases, in stats of a more general exponential ϕ-dependency

of the eigenfunctions e(jn(ϕ−ϕ′)), a sinusoidal dependency can be introduced.

The field distribution depends also on the proprieties of the excitations.

We consider a small dipole oriented in z-direction having a Dirac current

distribution

J = J0z′ δ(r − r′)ρ′dρ′ ∧ dϕ′ (213)

In this case we can expect that the Eρ, Ez and Hϕ are symmetric in ϕ,

while Eϕ, Hρ and Hz antisymmetric in ϕ. That must be reflected also in

the magnetic vector potential form A which shows a cosine angular depen-

dence while for the electric vector potential form F a sinusoidal angular

dependence must be shown. Therefore excited modes by a small electrical

dipole z-oriented can be represented by the following potential Ansatz:

{

Ai

F i

}

= dz
j

8π

+∞
∑

n=0

∫

kz

{

ψ
i

A(ρ, ρ′n, kz)

ψ
i

F (ρ, ρ′n, kz)

}

cos(n(ϕ− ϕ′))

sin(n(ϕ− ϕ′))
e−jkz(z−z′)dkz

(214)

Analogue consideration can be done for a small dipole ϕ-oriented having a

Dirac current distribution

J = J0ϕ′ δ(r − r′)dz′ ∧ dz′ (215)

In this case the Ansatz for the angular dependency, as excepted is specular

{

Ai

F i

}

= dz
j

8π

+∞
∑

n=0

∫

kz

{

ψ
i

A(ρ, ρ′n, kz)

ψ
i

F (ρ, ρ′n, kz)

}

sin(n(ϕ− ϕ′))

cos(n(ϕ− ϕ′))
e−jkz(z−z′)dkz

(216)
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B. Appendix

The aim of this Appendix in to review shortly the basic of the complex

parametric integration used in this work. A more detailed description is

presented in many good mathematical text books as in [25,34].

B.1. Complex Path Integration

We recall some useful properties of the complex parametric representation.

We consider a function f(z) = u(z) + iv(z) and a path Γ. We assume f to

be an analytic function in the complex Γ. We also assume, similarly to the

Chapter 6 to give the path Γ in its parametric representation. That means

that we can write the complex variable z as function of a parameter t in the

following way

z(t) = x(t) + iy(t) (217)

In this case the integral of the function f over the complex path Γ can be

written as follows

∫

Γ

f(z)dz =

∫

Γ

(u+ iv)(dx+ idy) (218)

using the parametric description of the variable z given in (217) we obtain

∫

Γ

f(z)dz =

∫

Γ

f(z(t))
dz

dt
dt =

1
∫

t=0

(u(t) + iv(t))

(

dx

dt
(t) + i

dy

dt
(t)

)

dt (219)
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For a linear path along passing by two specified points of the complex plane

(x1, y1) and (x2, y2) we have

x(t) = x1 + (x2 − x1)t (220)

y(t) = y1 + (y2 − y1)t (221)

dx

dt
= (x2 − x1) = ∆x (222)

dy

dt
= (y2 − y1) = ∆y (223)

(224)

In this case (219) can be rewritten as follows

∫

Γ

f(z)dz =

∫

Γ

f(z(t))
dz

dt
dt = (∆x+ i∆y)

1
∫

t=0

(u(t) + iv(t))dt (225)



C. Appendix

In Section 6.1.5 the numerical computation of the boundary condition has

been introduced. The purpose of this Appendix is to introduce an algorithm

to compute in most efficient way to solve the boundary conditions.

C.1. A static recursive approach

We may note that the matrix L, introduced in Section 6.1.5 is a diagonal

matrix. That is due to the fact that only adjacent layers interact. That

suggest that each boundary surface can be treated separately. In the fol-

lowing, we seek, staring from (64) a new parametric representation of each

boundary surface which may be used to reduce the problem. We consider

the interface M − 1 to M . From (64) the layer M and M − 1 is complectly

described in parametric way as follows:

(

F+
M−1

F−
M−1

)

=

(

MM−1+

MM−1−

)

<8×4>









AM−1
n

BM−1
n

CM−1
n

DM−1
n









(226)

(

F+
M

F−
M

)

=

(

MM+

MM−

)

<8×4>

(

BMn
DM
n

)

(227)

By applying the boundary conditions between the layer M−1 and M , from

the (90), we have that

F+
M−1 = F−

M (228)
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S‘ S‘
S‘S‘ S‘S‘

Figure 51.: In figure a qualitative description of the algorithm is given.

By using (226) and (227) we can rewrite (228) as following

(

MM−1+ − MM−1−
)

<4×6>



















AM−1
n

BM−1
n

CM−1
n

DM−1
n

BMn
DM
n



















=









0

0

0

0









(229)

which is an under determined system of equations. Considering the non

singular case, it exists a nullspace K of dimension two that salsifies (229).

In other words, K can be seen as a base of two vectors K = (b6×1
1 b6×1

2 )

that span the nullspace which is a solution of the (229)



















AM−1
n

BM−1
n

CM−1
n

DM−1
n

BMn
DM
n



















=
(

b1 b2

)

<6×2>

(

PM−1,M
1,n

PM−1,M
2,n

)

(230)
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MM-1 M-1MM-1 M-1

Figure 52.: In figure a qualitative description of the algorithm using the GTL model is

given.

where P i−1,i
l,n are two unknown parameters and 1 < i < M . Analyzing the

structure of the nullspace, we observe that the calculation of the fields at the

interface M − 1 are given by the first for lines of the nullspace KM−1
<4×2> =

(b4×1
1 b4×1

2 )M−1 while the fields at the interface M from the lower part

KM
<2×2> = (b4×1

1 b2×1
2 )M . Therefore, we can write that

FM−1+

= MM−1+

4×4









AM−1
n

BM−1
n

CM−1
n

DM−1
n









=

(

PM−1,M
1,n

PM−1,M
2,n

)

(231)

FM
−

= MM−1+

4×4

(

BMn
DM−1
n

)

= MM−1+

4×4 KM
<4×2>

(

PM−1,M
1,n

PM−1,M
2,n

)

(232)

form (229) and using (230) we can rewrite the (231) as follows

FM
−

= MM−

4×2K
M
<2×2>

(

PM−1,M
1,n

PM−1,M
2,n

)

(233)

We have derived a new parametric description of the outer layer. An anal-

ogous formulation can be repeated starting from the innermost layer. The

procedure can be recursively used starting form the innermost and outer

most layer until the source interface is reached, Figure 51. In this way the
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overall structure has been reduced to the source interface which is described

by 4 new parameters, 2 given by the right side recursion and 2 given by the

left side recursion. Form the algebraic point of view we have a system of

4 unknown in 4 variables that can be easily solved. Using the GTL model

the algorithm can be easily interpreted and implemented just reducing the

outermost layer to its equivalent load recursively, Figure, until to obtain en

equivalent network with the only current generator and equivalent loads.



D. Appendix

In this Appendix some useful formulas for the antenna pattern of the con-

formal cylindrical antenna will be derived. To compute the far field pattern

there are two basics approaches. The first one based on the equivalence

principle, consists of taking the field over in a closed surface containing the

sources. Then the field in the far field can be computed via applying a

two dimensional Fourier transformation[citazione] In cases in which semi-

analytical techniques can be exploited, a more convenient approach is to

use an asymptotic approximation for large distance from the antenna. In

this case the antenna pattern can be better shaped due the knowledged of

the Green’s function [14,8] as it is in this work.

D.1. Field Computations

The (46) and (47) report the field representation in terms of electric and

magnetic and electric vector potential form A and F . From the potential the

electric and magnetic field components, for a circular cylindrical coordinates

system can be computed as follows

Eρ =
1

jωε

∂2ψA
∂ρ∂z

Hρ =
1

ρ

∂ψA
∂φ

(234)

Eϕ =
1

jωερ

∂2ψa
∂φ∂z

Hϕ = −∂ψA
∂ρ

(235)

Ez =
1

jωε
(
∂2

∂z2
+ k2)ψA Hz = 0 (236)
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and

Eρ = −1

ρ

∂ψF
∂φ

Hρ =
1

jωµ

∂2ψF
∂ρ∂z

, (237)

Eϕ =
∂ψF
∂ρ

Hϕ =
1

jωµρ

∂2ψF
∂φ∂z

, (238)

Ez = 0 Hz =
1

jωµ
(
∂2

∂z2
+ k2)ψF . (239)

D.1.1. Farfield Expression

We consider a circular coordinates system as shown in Figure 53.

PSfrag replacements

x

y

z

z

ρ
ϕ

θ

r

r

Figure 53.: Coordinate system for farfield calculations.

For convenience, we rewrite (60) inserting the axial density current de-

pendency in SD

ψF =

∞
∑

n=0

J(kz)
[

AnH
(1)
n (kρρ) +BnH

(2)
n (kρρ)

]

(240a)

ψA =

∞
∑

n=0

J(kz)
[

CnH
(1)
n (kρρ) +DnH

(2)
n (kρρ)

]

(240b)

To compute the radiation characteristic we consider of outermost layer

M to be the free space. We consider the antenna to be in the transmission

mode (only outgoing cylindrical waves exist), and therefore AMn = 0 CMn =
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0. Moreover we assume to have an Hertzian dipole (J(kz) = 1). In this

case (240) becomes

ψF =

∞
∑

n=0

BMn H
(2)
n (kρM

ρ) (241a)

ψA =
∞
∑

n=0

DM
n H

(2)
n (kρM

ρ) (241b)

Also we consider the Hertzian dipole to an electrical dipole oriented in

z-direction. Exploiting the symmetry property of the source introduced in

the Appendix , the electric field form in the outermost layer can be written

as follows

EM (r) =

∞
∑

n=0

{

cos(n(ϕ− ϕ′))

sin(n(ϕ− ϕ′))

}∫

kz

BMn H
(2)
n (kρM

ρ) +DM
n H

(2)
n (kρM

ρ))dkz

(242)

The kernel of the integral (242) contains Hankel functions of the second kind.

Therefore to introduce an asymptotic approximation of the integral (242)

we shall consider the following asymptotic behavior of the Hankel functions

[19,28]

H(2)
n (x)

x→∞−→
√

2j

πx
jne(−jx) (243)

d

dx
H(2)
n (x)

x→∞−→
√

2j

πx
jn(−j)e(−jx) (244)

We use (243) to solve asymptotically the Fourier integral of the Ez compo-

nent. For the other field components only the results will be reported since

the computation is lengthy and similar to the one for the Ez component.
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Using (236) we compute the Ez component of the electric field

Ez =
1

jωε

(

∂2

∂z2
+ k2

) ∞
∑

n=0

cos(n(ϕ− ϕ′))

∫

kz

DM
n H

(2)
n (kρρ)e

jkz(z−z′)dkz

=
1

jωε

∞
∑

n=0

cos(n(ϕ− ϕ′))

∫

kz

k2
ρD

M
n H

(2)
n (kρρ))e

jkz(z−z′)dkz

(245)

when ρ→ +∞, using (243), (245) can be solved as follows

1

jωε

∞
∑

n=0

cos(n(ϕ− ϕ′))

+∞
∫

kz=−∞

k2
ρD

M
n

√

2j

πkρρ
jne(−jkρρ)ejkz(z−z′)dkz

=
1

jωε

∞
∑

n=0

cos(n(ϕ− ϕ′))

+∞
∫

kz=−∞

k2
ρD

M
n

√

2j

πkρρ
jne(j(kzz−kρρ))dkz

=
(1 + j)

jωε
k2
ρ,0

e−jkr

r

∞
∑

n=0

jnDM
n cos(n(ϕ− ϕ′))

(246)

where we have used the relation [19]

+k
∫

kz=−k

f(kz)

√

2j

πkρρ
jnej(kzz−kρρ)dkz

ρ→∞−→ f(kz,0)
1

r
jn(1 + j)e(−jkr) (247)

which is valid for

kz = −k sin θ (248)

kρ = k cos θ (249)

k2 = k2
z + k2

ρ = k2
z + k2

ρ (250)

r = ρ
√

1 + tan2 θ (251)

z = ρ tan θ (252)

From (246) it is understood that for a fixed observation point, the phase

with which modes of different kρ contribute to the field varies very fast.
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That is due to the exponential dependency e(−jkρρ) where for large values

ρ varies fast with kρ. On the other hands, the modal amplitudes DM
n , are

slowly varying terms. That means that modes with modes are cancelled

out for rapid phase changes and do not contribute to the integra. The only

modes that can contribute in the far field are the are with stationary phase

(d/dkz(kzz − kρρ) = 0). In this case a contribution to the integral occurs.

In other words, only cylindrical modes with kz = −k sin θ generate a farfield

at the elevation angle θ. The azimuthal pattern is determined by a weighted

sum of all the angular modes.

D.1.2. Farfield expression for cylindrical and spherical

coordinate

In this section the expression of for the far field field component in cylindrical

and spherical coordinates will be given.

We star with the farfield expressions for TM waves will be given

Eρ =
(1 + j)

jωε
kρ,0kz,0

e−jkr

r

∞
∑

n=0

jnDM
n cos(n(ϕ− ϕ′)) (253)

Eφ = 0 (254)

Ez =
(1 + j)

jωε
k2
ρ,0

e−jkr

r

∞
∑

n=0

jnDM
n cos(n(ϕ− ϕ′)) (255)

Hρ = 0 (256)

Hφ = (1 + j)(j)kρ,0
e−jkr

r

∞
∑

n=0

jnDM
n cos(n(ϕ− ϕ′)) (257)

Hz = 0 (258)

Since we are in far field, to obtain the field in spherical coordinates, it makes
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sense to transform the coordinate and obtain

Er = 0 (259)

Eθ =
(1 + j)

jωε
k2 e

−jkr

r
cos θ

∞
∑

n=0

jnDM
n cos(n(ϕ− ϕ′)) (260)

Eφ = 0, (261)

Hr = 0, (262)

Hθ = 0, (263)

Hφ = (1 + j)(j)k
e−jkr

r
cos θ

∞
∑

n=0

jnDM
n cos(n(ϕ− ϕ′)) (264)

For transversal electric modes, the same calculations can be repeated and

only expression in spherical coordinates are reported

Er = 0, (265)

Eθ = 0, (266)

Eϕ = −(1 + j)(j)k
e−jkr

r
cos θ

∞
∑

n=0

jnBMn sin(n(ϕ− ϕ′) (267)

Hr = 0, (268)

Hθ =
(1 + j)

jωµ
k2 e

−jkr

r
cos θ

∞
∑

n=0

jnBMn sin(n(ϕ− ϕ′) (269)

Hϕ = 0 (270)

Analyzing the fields one can find out, that TM modes produce a farfield

with only an Eθ and an Hϕ component. Similarly, TE modes only have

an Eϕ and an Hθ component. I both cases electric and magnetic field are

orthogonal and related by the impedance of the outermost medium (i.e. typ-

ically the free-space impedance). The Poynting vector is directed outward,

as expected. Fields generated by TM and TE modes are orthogonal.
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E.1. Exterior Differential forms

Scalar and vector fields may be represented by exterior differential forms,

which are essentially the expression under an integration symbol. In order

to describe this differential notation, it is shown in Table 5 along with the

corresponding vector notation for some of the most relevant electromagnetic

laws and relations.

A complete and detailed treatment of the differential forms can be found

in [21,29,55].

In a three dimensional curvilinear coordinate system with coordinates ρ=(u,

v, w), there are four differential forms given by

zero-form (scalar) : ϕ(r)

one-form (vector) : E(r) = Eu s1 + Ev s2 + Ew s3

two-form (pseudovector) : D(r) = Du s2 ∧ s3 +Dv s3 ∧ s1 (271)

+Dw s1 ∧ s2

three-form (pseudoscalar) : Q(r) = Q s1 ∧ s2 ∧ s3

whereas s1, s2 and s3 are referred as the unit forms and have been already

defined in Chapter 5.
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Table 5.: Correspondences between the main electromagnetic equations in conventional

vector notation and exterior differential form notation in the Laplace domain

Equation Vector Notation Differential Notation

Ampère’s

law curl H = s D + J dH = sD + J

Faraday’s

law curl E = −s B dE = −s B

Gauss’s

law div D = ρ dD = Q

Magnetic flux

continuity div B = 0 dB = 0

Electric constitutive

equation D = ε E D = ? ε E

Magnetic constitutive

equation B = µ H B = ? µH

Electric boundary

condition n × (E2 − E1) = −JmA y ∧ (E2 − E1) = −JmA

Magnetic boundary

condition n × (H2 − H1) = JeA y ∧ (H2 −H1) = JeA

Electric flux

boundary condition n � (D2 − D1) = ρs y ∧ (D2 −D1) = QA

Magnetic flux

boundary condition n � (B2 − B1) = 0 y ∧ (B2 − B1) = 0

Source power

density dPs = − 1

2
(E � J

∗

eA + E � J
∗

eA) Ps =
− 1

2
(E ∧ J ∗

eA+

H∧ J ∗

mA)

Power loss

density dPL = ωε′′

2
E � E

∗ + ωµ′′

2
H � H

∗ PL = ωε′′

2
E ∧ ?E∗ +

ωµ′′

2H∧H∗

Electric energy

density dWe = ε
4
E � E

∗ We = ε
4
E ∧ E∗

Magnetic energy

density dWm = µ
4
H � H

∗ Wm = µ
4
H∧H∗

Complex Poynting’s

vector T = 1

2
E × H

∗ T = 1

2
E ∧ H∗

Complex Poynting’s

theorem
T � ndS = −2s(dWm − dWe)

−dPL + dP0

dT = −2s(Wm −We)

−PL + P0
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