Lehrstuhl fiir Effiziente Algorithmen
der Technischen Universitiat Miinchen

Efficient Algorithms for On-Line
Scheduling and Load Distribution
in Parallel Systems

Stefan Bischof

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen
Universitdt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. E. Jessen
Priifer der Dissertation:
1. Univ.-Prof. Dr. rer. nat. E. W. Mayr
2. Univ.-Prof. Dr. rer. nat. Chr. Zenger

3. AufSerordentlicher Univ.-Prof.
Dr. techn. G. J. Woginger,
Technische Universitiat Graz / Osterreich
(schriftliche Beurteilung)

Die Dissertation wurde am 21.1.1999 bei der Technischen Universitit
Miinchen eingereicht und durch die Fakultit fiir Informatik am 9.9.1999
angenommen.

Preface

In the day of internet hype everything needs a home page, and so has this
thesis: http://wwmv. bi schof - web. de. If you have any comments or
questions, please direct them to st ef an@i schof - web. de

The hardcopy version (also called “book”) of this thesis is available at
your favorite book store or from “Libri Books on Demand” (ISBN: 3-89811-
444-9) at a moderate price.

I would like to thank the B. G. Teubner Verlagsgesellschaft for the kind
permission to reprint parts of the article “Classification and Survey of
Strategies” [BE97] in Chapter 3.

Abstract

The efficient operation of parallel computing systems requires the best
possible use of the resources that a system provides. In order to achieve
an effective utilization of a parallel machine a smart coordination of the
resource demands of all currently operating applications is necessary.
Dynamic resource management is particularly essential for the parallel
solution of irregular problems that arise frequently, for example, dur-
ing numerical simulations. On-line scheduling and load distribution are
widely used techniques for the assignment of resources in a dynamic
fashion. This thesis provides a theoretical treatment of both approaches
and presents efficient on-line scheduling and load distribution algorithms
for a wide range of problems.

On-line scheduling of parallel job systems with the goal to minimize
the total execution time is studied as a promising framework for the effi-
cient execution of large-scale parallel applications. Under the assumption
that the execution times of the jobs meet certain requirements, several ef-
ficient on-line scheduling algorithms for various network topologies are
described. Thorough competitive analysis shows that almost all of the
proposed on-line scheduling algorithms are optimal or near-optimal from
a worst-case point of view. It is demonstrated that runtime restrictions
improve the competitive performance achievable by on-line scheduling
algorithms for parallel job systems, and therefore a satisfactory utilization
of a parallel system can be guaranteed in this case.

Dynamic load distribution is used for partitioning problems for par-
allel execution. The only assumption is that a given class of problems
has a certain bisection property. Such classes of problems appear, for
example, in the context of distributed hierarchical finite element simu-
lations. The sequential and parallel algorithms presented to tackle this
load distribution problem yield provably good load balancing even in the
worst case. Furthermore, under reasonable stochastic assumptions, it is
shown that the average-case performance of these algorithms is sub-

iv Abstract

stantially better than the worst-case bounds and surprisingly close to
the optimum solution in some cases. Extensive simulation studies com-
plement the mathematical analysis, and the results demonstrate that a
satisfactory balancing quality can be achieved in this model by efficient
algorithms. An integration of the sequential algorithm into existing finite
element software already yielded a significant decrease of the total execu-
tion time.

Acknowledgments

This thesis would have never been written without the help and assistance
of many people.

First of all, I would like to thank my advisor Ernst W. Mayr for his
steady support and guidance, for introducing me to scheduling, load
balancing, and the analysis of algorithms, for giving me indispensable mo-
tivation and the right ideas at the right time, and for his gorgeous treasure
of bibliographic references.

I'm grateful to all my present and former colleagues at the Chair for
Efficient Algorithms. The friendliness and helpfulness that I encounter
each single day makes working here a real pleasure for me.

Furthermore, I thank my coauthors of several papers on load bal-
ancing, Angelika Steger, Ralf Ebner, Thomas Erlebach, and Thomas
Schickinger for all the helpful discussions and inspiring ideas, for carefully
reading the papers and most parts of this thesis, for their outstanding and
successful cooperation, and for the large amount of their work they con-
tribute to this thesis.

Valuable discussions with several other researchers improved this
work considerably. In particular, I would like to thank Klaus Jansen,
Gerhard Woeginger, Amos Fiat, Jifi Sgall, and Shang-Hua Teng for their
stimulating ideas.

I would like to express my thankfulness to my parents for many things
they taught me, for their help and understanding.

I'm grateful to my family for all their patience, support, and loving.
Purring on my lap, my two cats Hagar and Attila were always willing to
give me a break. My beloved children Daniela and Samuel make the nights
shorter but my days much brighter. But most of all, I thank my marvelous
wife Susanna for her encouragement and never-ending love.

Deut. 6:4-5 Matt. 22:37-39

To my wife Susanna

Contents

Preface

Abstract
Acknowledgments
List of Figures

List of Tables

1 Introduction
1.1 Synopsis of Previous and Related Work
1.2 ThesisOutline

2 On-Line Scheduling and Load Distribution: A Comparison

3 Classification and Survey of Load Distribution Strategies
3.1 C(lassification of Load Distribution Strategies
311 SystemModel
3.1.2 TransferModel
3.1.3 Information Exchange
314 Coordination
315 Algorithm
3.2 A Survey of Load Distribution Strategies in Examples
3.2.1 The Diffusion Approach
3.2.2 Bidding and Balanced Allocations
3.2.3 Load Distribution by Random Matchings
3.24 Precomputation Based Load Distribution

4 On-Line Scheduling of Parallel Jobs with Runtime Restrictions
41 Preliminaries.
4.2 Previousand Related Work
4.3 Jobs with Unit Execution Time

iii

xiii

XV

37

Contents

4.3.1
4.3.2
4.3.3
43.4
4.3.5

A General LowerBound
CompleteModel
Hypercube
2-Dimensional Array
Other Topologies

4.4 Job Systems with Restricted Runtime Ratio

441
442
443
444

A General LowerBound
CompleteModel
Characteristics of the RRR Algorithm
Other Topologies

Load Balancing for Problems with Good Bisectors
5.1 Using Bisectors for Load Balancing

51.1
51.2
5.1.3

Tight Analysis of Algorithm HF
A Better Bound for Small N
Generating more Subproblems

5.2 Application to Distributed Finite Element Simulations

521
522
523
524

Recursive Substructuring
Application of Algorithm HF
Runtime Examples
Further Improvements

5.3 Weighted Trees with Good Bisectors
5.4 C(lassification of AlgorithmHF

Parallel Load Balancing for Problems with Good Bisectors
6.1 Parallel Load Balancing

6.1.1

Parallelizing Algorithm HF

6.12 AlgorithmBA,

6.1.3

Combining BA and HF: Algorithm BA-HF

6.1.4 Managing the Free Processors
6.2 SimulationResults,

Average-Case Analysis of Load Balancing using Bisectors

7.1 Definitions and Outline of the Analysis
7.2 Expected Number of Heavy Nodes
73 Concentration
74 From HeaviesttoHeavy

Conclusion

81 SummaryofResults.
8.2 Open Problems and Future Work

Contents xi

Prerequisites 155
Bibliography 157

Index 173

3.1
3.2

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

51
52
5.3
54
5.5
5.6
5.7
5.8
59

5.10
5.11
5.12
5.13

6.1

List of Figures

Diffusionina4 x4mesh 27
Matching (bold lines)ina4 x4mesh. 31
4-dimensional hypercube 40
The LEVEL(PACK) Algorithm 48
Weighting function for the analysis of BIN PACKING algo-

rithms. 50
Job system used in lower bound proof 53
Optimumschedule 54
On-line schedule generated by LEVEL(FF) 54
Packing of jobs in the optimum schedule 60
Difficult job system for RRR-scheduling 62
The RRR Algorithm 65
The RRR_ADAPTIVE Algorithm 69
Bad job system for deterministic greedy on-line schedulers . 73
Algorithm HF (Heaviest Problem First) 77
Example of a bisectiontree, .. 79
Branches obtained from the example tree 79
Composed leaf-branches obtained from the example tree . . 79
Plot of discrete (dotted) and continuous worst-case bounds . 83
Comparison of general and improved upper bound 88
Worst-case leaf-branch and bisection tree for N =4, o = 411 . 88
Static system of a short cantilever 91
A coarse discretizing mesh and the resulting binary tree

data structure for the short cantilever. 93
The discretizing meshes for the domain of the short cantilever 95
Runtime results for 1,279 treenodes 95
Runtime results for 11,263 treenodes 96
The 5 cases for v in proof of Theorem59 99
Algorithm PHF (ParallelHF) 106

xiv List of Figures
6.2 Algorithm BA (Best Approximation of ideal weight) 111
6.3 AlgorithmBA-HF 117
6.4 Comparison of the average ratio for & ~ U[0.1,0.5], 0 =1.0 . 125
6.5 Influence of the number of processors 125
6.6 Comparison of the average ratio for & ~ U[0.01,0.5], 0 =1.0 126
6.7 Comparison of the average ratio for & ~ U[0.1,0.25], 0 = 1.0 126
6.8 Comparison of the average ratio for & ~ U[0.01,0.25], 0 = 1.0 127
6.9 Comparison of the average ratio for & ~ U[0.1,0.15], 0 = 1.0 127
6.10 Comparison of the average ratio for & ~ U[0.01,0.02], 0 = 1.0 128
6.11 Comparison of the ratio generated by Algorithm BA and
Algorithm HF fora=01 128
6.12 Influence of the threshold parameter o on the average ratio

of Algorithm BA-HF for & ~ U[0.1,0.5], o € {1.0,2.0,3.0} . . 129

3.1
3.2
3.3

4.1

51
5.2

6.1
6.2

List of Tables

Classification scheme for load distribution strategies 18
Classification of diffusion and bidding 34
Classification of random matchings and precomputation

based load distributiono 0oL 35
Frequently used notations 42

Worst-case ratio of Algorithm HF for different valuesof av. . 82
Classification of Algorithm HF 101

Sample variance of some experiments (0 =1.0) 122
Comparison of the worst-case upper bounds and the ob-
served minimum, average, and maximum ratios for & ~
U[0.01,0.5],0=1.0 e 123

Chapter 1

Introduction

The solution of large computational problems requires efficient algo-
rithms as well as powerful computing and communication hardware.
Challenging and important problems, whose solution involves complex
calculations and huge amounts of data, originate from many different
areas such as, for example, numerical simulation of physical processes,
computational biology and chemistry, data mining in large databases, au-
tomotive and aerospace design, or financial analysis.

Despite the impressive advances in the performance of microproces-
sors, memory chips, and other hardware components, the solution of
many large-scale computational problems in a reasonable amount of
time requires the use of a parallel system that connects a large number
of the most powerful processors via a high speed network. The aggre-
gated processing speed, memory size, and network throughput of state
of the art parallel computers is already enormous [DMS98], and will
increase even more over the next years [MCP*98]. However, the peak
performance of a supercomputer, which is achieved solving very regu-
lar problems such as dense systems of linear equations, is far from being
reached when problems have to be solved that have fewer inherent paral-
lelism or show an unpredictable dynamic behavior during execution.

Ideally, an efficient parallel algorithm would keep all computational
nodes of a parallel system busy in order to minimize the overall execution
time that is used to solve a particular problem. In many cases, however,
it is difficult and time-consuming to partition a given problem into sub-
problems of almost equal size that can subsequently be processed in
parallel. Consider, for example, the decomposition of an irregularly struc-
tured mesh of a finite element simulation.

2 Introduction

A fact that complicates this situation even more is that for many par-
allel applications, e.g., adaptive numerical simulations, the number and
workload of individual subproblems cannot be predicted with sufficient
precision at compile-time or when the application starts computation.
Moreover, in a large parallel system jobs might arrive without a full
specification of their resource demands such as execution time or mem-
ory. Efficient and effective resource management is therefore a major issue
that has be addressed in order to exploit the large potential of parallel
systems as far as possible.

The above discussion makes it clear that a resource management fa-
cility is often forced to make decisions in a state of uncertainty since it
has only partial knowledge about the future. The amount of knowledge
might be even smaller when complete information about the current state
of the parallel system is not available. It is a challenging task to devise
efficient algorithms that cope with the handicap of incomplete knowledge
and achieve solutions that are best possible under such circumstances.

Competitive analysis of on-line algorithms [BE98, FW98] is a fre-
quently used framework to deal with incomplete information in a for-
malized manner from a worst-case point of view. An on-line algorithm
learns it input piece by piece and has to generate valid partial solutions
based on the knowledge of the past and the presence, but without secure
information about the future. The goal is to optimize a certain objective
function. Competitive analysis means that the quality of an on-line algo-
rithm is measured by comparing its performance to that of an optimal
algorithm that knows the whole input in advance. More precisely, an
on-line algorithm ALG for a minimization problem is c-competitive for
a ¢ > 1if for all inputs the value of the solution produced by ALG exceeds
the value of an optimum solution by at most a factor of c¢. The compet-
itive ratio of an on-line algorithm is the infimum over all ¢ for which it
is c-competitive (see also Section 4.1 on page 39). Therefore, competitive
analysis is a worst-case measure that aims at comparing different on-line
algorithms for the same problem.

Approximation algorithms and on-line algorithms are closely related.
Both try to compute a “good” approximation for an optimization prob-
lem. However, the approximation algorithm has limited computational
resources (e.g., only time polynomial in the length of the input may
be permitted), whereas an on-line algorithm has limited knowledge of
the input during the computation. Therefore, efficiency is an important
additional characteristic of on-line algorithms in order to be practically

Introduction 3

useful. But in many settings it turns out that algorithms that achieve the
best competitive ratio are also computationally very simple and thus de-
serve the predicate real time.

The analysis of on-line algorithms frequently uses adversary argu-
ments. In order to maximize the competitive ratio, the adversary con-
structs an input that is unfavorable for the on-line algorithm but comes
in handy to an optimal off-line algorithm. An oblivious adversary has
to fix the input in advance whereas an adaptive adversary may react to
the decisions of the on-line algorithm. This distinction is often crucial for
randomized on-line algorithms that try to improve their competitiveness
by the use of random bits. However, the two adversary types are equally
strong for deterministic on-line algorithms.

On-line scheduling is a popular and widely studied technique to tackle
dynamic resource management problems where full knowledge about the
input instance cannot be assumed. In general terms, scheduling is con-
cerned with the problem of allocating resources over time to sets of jobs
such that no given allocation restriction is violated in order to optimize
some objective function [BEP*96].

Competitive analysis allows for a thorough mathematical analysis and
a rating of different on-line scheduling algorithms (or on-line schedulers
for short) from a worst-case point of view. However, it is assumed in this
model that an on-line scheduler is a sequential algorithm that has a full
record of past events and complete information about its environment. In
the context of dynamic resource management, these assumptions might be
too restrictive. A sequential on-line scheduling algorithm may be a bottle-
neck that might lead to an unpredictable performance decrease in certain
situations.

Therefore, load distribution is also frequently used for resource man-
agement with incomplete information, although often in a less formal way.
Load distribution can be defined [Sch97b] as the assignment of entities (ob-
jects to be processed) to targets (distribution units that provide resources)
in order to meet given requirements. In addition, a load distribution algo-
rithm may be able to subdivide certain entities into several smaller entities
in order to distribute the workload among the targets. The decision pro-
cess of a (dynamic) load distribution strategy uses load-state information
about the parallel system accumulated at run-time (the term dynamic is
often added to emphasize this fact, but we omit it for brevity) in order to
find, for example, a “good” execution location for a new job, or to trans-
fer some of the workload of an overloaded to an underloaded processor.

4 Introduction

To provide scalability, these assighment decisions can be reached concur-
rently by a parallel or distributed algorithm.

We will study on-line scheduling and load distribution problems from
a theoretical point of view. The main focus will be on the design and thor-
ough worst-case or average-case analysis of efficient algorithms for these
problems. Although this requires some simplifying assumptions regard-
ing parallel systems and applications, our models certainly reflect the
decisive characteristics of many resource management problems that
are of practical relevance. Due to the generality of our approach, the
proposed algorithms are widely applicable and provide provably good
performance.

1.1 Synopsis of Previous and Related Work

Scheduling and load distribution problems have been studied intensively
for decades. This fruitful and ongoing research is documented in a vast
amount of scientific articles and numerous books. It is therefore beyond
the scope of this thesis to give a complete account of the work that has been
done in this field up to now. However, throughout this thesis, relevant
previous and related work is surveyed and many pointers to the literature
are provided.

In particular, Chapter 2 reviews the on-line machine load balancing
model and a general framework for on-line resource management. In
Section 3.2, selected load distribution strategies are described in or-
der to reveal basic algorithmic techniques that have been developed to
tackle the load distribution problem. Furthermore, Section 4.2 reviews re-
sults on non-preemptive on-line scheduling of parallel jobs and also gives
some results regarding the computational complexity of the correspond-
ing off-line problems.

In addition, a thorough introduction to scheduling theory and a good
overview of results regarding multiprocessor scheduling as well as other
important scheduling models can be found in [BEP*96]. SGALL [Sga98]
provides an excellent and up-to-date survey of algorithms and results
for on-line scheduling problems, and a taxonomy of on-line scheduling
problems is given that comprises (among other criteria) a general problem
definition, several different on-line paradigms (see also Chapter 2), possi-
ble objective functions, important job characteristics, and frequently used
machine models.

1.2 Thesis Outline 5

1.2 Thesis Outline

In Chapter 2, On-Line Scheduling and Load Distribution: A Comparison, a
comparative study of on-line scheduling and load distribution is made in
order to expose the major differences of these techniques from our point of
view. Then, Chapter 3, Classification and Survey of Load Distribution Strate-
gies, presents a comprehensive classification scheme for load distribution
strategies. From the vast body of literature on this topic a survey of se-
lected load distribution strategies is given to exemplify basic algorithmic
methods that were developed to tackle the load distribution problem.

On-line algorithms for scheduling parallel job systems are studied in
Chapter 4, On-Line Scheduling of Parallel Jobs with Runtime Restrictions,
under the assumption that the execution times of the jobs meet certain
requirements. For parallel job systems with unit execution time it is
shown that for an arbitrary interconnection topology of the parallel sys-
tem no deterministic or randomized on-line scheduling algorithm can
achieve a competitive ratio better than 2. It is also shown that this gen-
eral lower bound can be improved for particular network topologies. A
generic on-line scheduler for the unit execution time model is presented
that achieves optimal or near optimal (up to small additive constants)
competitive ratio for several network topologies. To investigate the en-
tire bandwidth between unit and arbitrary running times of the jobs, the
parallel job systems are classified according to their runtime ratio, i.e., the
ratio between the longest and shortest execution time of any job. Again,
for an arbitrary network topology, a general lower bound on the competi-
tive ratio of any deterministic or randomized on-line scheduler is derived
that depends only on the maximum runtime ratio of a class of parallel job
systems. For parallel systems that support arbitrary allocation of proces-
sors to parallel jobs, an on-line scheduler with near optimal (up to a small
additive constant) competitive ratio is proposed.

In Chapter 5, Load Balancing for Problems with Good Bisectors, a general
load balancing approach using bisectors is described. A class of problems
has a-bisectors if every problem in the class can be subdivided into two
subproblems whose weight is not smaller than an a-fraction of the origi-
nal problem for a fixed o > 0. It is shown that the existence of a-bisectors
for a class of problems allows good load balancing for a surprisingly large
range of values of . Algorithm HF, an efficient load balancing algorithm
for this model, is proposed, and a tight worst-case upper bound on the ra-
tio between the maximum load generated by this algorithm and the ideal

6 Introduction

load (uniform partition) is derived that depends only on a. This bound
implies performance guarantee 2 when o > 1/3 and performance guaran-
tee3whena >1-1/ V/2 for this algorithm (an algorithm has performance
guarantee p if the maximum load produced by the algorithm is at most a
factor of p larger than the maximum load of an optimum solution). Two
strategies to use Algorithm HF for load balancing distributed hierarchical
finite element simulations and experimental results are presented. For this
purpose, a certain class of weighted binary trees representing the load of
such applications is shown to have 1/4-bisectors.

Based on the results on this sequential load balancing algorithm, par-
allel algorithms for this load balancing model are studied in Chapter 6,
Parallel Load Balancing for Problems with Good Bisectors, in order to reduce
the balancing overhead. First, a parallel implementation of Algorithm HF
is derived that produces the same load distribution as the sequential algo-
rithm at the expense of a substantial communication overhead. Therefore,
a simpler and faster parallel load balancing algorithm, Algorithm BA, is
introduced. The bound on the worst-case load imbalance for this algo-
rithm, however, is shown to be worse than the corresponding bound
for Algorithm HEF. Algorithm BA-HEF, an integration of Algorithm BA
and Algorithm HF (or its parallelization), is shown to combine the
main advantages of both approaches. The results of extensive sim-
ulation experiments regarding the load imbalance incurred by the three
proposed parallel algorithms in the average case are reported.

The average-case balancing quality of Algorithm HF is analyzed in
Chapter 7, Average-Case Analysis of Load Balancing using Bisectors. As-
suming a natural and rather pessimistic distribution for the average
case, it is shown that the maximum load generated by Algorithm HF
does not exceed the ideal load (uniform partition) by a factor of 2 + ¢
with high probability. Moreover, ¢ is close to zero already for moderate
numbers of processors. From this analysis faster and simpler variants of
Algorithm HF and its parallelization are derived.

Finally, Chapter 8, Conclusion, summarizes and discusses the results
derived and presented in Chapters 2-7. A number of open problems
arising from these results are described, and possible directions for fu-
ture work are given.

Many of the results described in this thesis have been obtained in joint
work with Angelika Steger, Ralf Ebner, Thomas Erlebach, Ernst W. Mayr,
and Thomas Schickinger. Preliminary versions of some of the results con-
tained in Chapters 3-7 were accepted for presentation and publication

1.2 Thesis Outline 7

at various conferences, or were otherwise published. In particular, the
classification scheme for load distribution strategies and a brief survey
of selected strategies appears in [BE97]. Some of the results for on-line
scheduling parallel jobs with runtime restrictions were presented at the
International Symposium on Algorithms and Computation (ISAAC'98)
[BM98a] and the Workshop on On-Line Algorithms in Udine (OLA’98).
The article is accepted for a special issue on on-line algorithms of The-
oretical Computer Science that will be published on the occasion of
OLA’98. Preliminary results on this topic can also be found in [BM98b].
The results obtained for load balancing for problems with good bi-
sectors from Chapter 5 were announced in part at the the Workshop
on “Anwendungsbezogene Lastverteilung!” (ALV’98) [BEE98a] and the
EURO-PAR Conference on Parallel Processing (EURO-PAR’98) [BEE98D].
A preliminary version of these results is contained in [BEE98c]. The par-
allelization of this approach given in Chapter 6 was be presented at the
International Parallel Processing Symposium and Symposium on Parallel
and Distributed Processing (IPPS/SPDP’99) [BEE99]. Finally, the results
regarding the average-case analysis of load balancing using bisectors were
announced at the European Symposium on Algorithms (ESA’99) [BSS99].

1Applica’fion oriented load distribution

Chapter 2

On-Line Scheduling and Load
Distribution: A Comparison

Solving irregular problems efficiently in parallel or sharing a parallel com-
puter effectively among a set of users are challenging and important tasks.
Not surprisingly, these and related problems have triggered intensive
research, both theoretical and applied, that led to a variety of differ-
ent approaches to tackle such tasks. Among these, on-line scheduling
and load distribution have received considerable attention in the scien-
tific literature. In this chapter we give a comparison of these two widely
used techniques for dynamic resource management in parallel systems,
and briefly review two related approaches.

The vast amount of articles published on on-line scheduling and load
distribution (often using differing problem formulations and assumptions,
as well as inconsistent and sometimes contradictory terminology) makes
it difficult to rate the relative merits of alternative strategies. This com-
parison aims at exposing the main differences between on-line scheduling
and load distribution from our point of view. In order to do so, we keep
our discussion as informal as possible. A more detailed description of the
properties of load distribution strategies is given in the next chapter.

The task of a scheduling algorithm for parallel systems, no matter
whether off-line or on-line, is to compute a schedule, i.e., an assignment
of processors (and possibly other resources) to jobs over time such that

1. at every moment in time each processor is assigned to at most one
job,

10 On-Line Scheduling and Load Distribution: A Comparison

2. each job is executed and eventually completed,

3. all constraints imposed by the particular scheduling model are
obeyed.

The goal is to optimize or approximate a given objective function,
for example the total schedule length. This corresponds directly to the
efficiency requirements stated above. The performance of an on-line
scheduler is measured by the competitive ratio, i.e., relative to an opti-
mum solution with respect to the given objective function. This allows for
a comparison of different on-line schedulers from a worst-case point of
view.

There are several possibilities for the knowledge and abilities of an
on-line scheduling algorithm (cf. [Sga98]). We describe two of them to
illustrate the general practice in on-line scheduling:

e Scheduling jobs one by one. This variant is analogous to other
“classical” on-line problems like list-update or paging. The jobs
are ordered in a list and input one by one to the on-line scheduler
in this order. Each arriving job has to be assigned consistently with
previous decisions to a processor (or the requested number of pro-
cessors in the case of parallel jobs), and must receive a start-time
before the next job is presented. The assignment of a job is irrevoca-
ble, but all job characteristics are revealed as soon as a job is passed
to the on-line scheduler.

e Unknown job characteristics. Often, a job can be scheduled with-
out full knowledge of its characteristics. For example, the running
time of a job may be unknown until the job finishes execution, or the
number of successors might be unknown in the case of dependen-
cies. The on-line scheduler is aware of all currently available jobs
and may choose any of them to be scheduled next. Job assignments
may be modified using preemptions or restarts if these activities are
allowed.

We note that it is possible in both cases to delay the execution of a job for
an arbitrary time-span.

Load distribution problems are often stated less formally. To capture
the generality of the problem, the main purpose of load distribution can
be defined as the assignment of entities (e.g., jobs) to targets (e.g., proces-
sors) in order to meet given requirements [Sch97b]. Furthermore, some

On-Line Scheduling and Load Distribution: A Comparison 11

load distribution methods may provide the additional functionality of
generating the entities dynamically by partitioning larger problems into
subproblems. A load distribution strategy is potentially aware of all jobs
currently in the system, but the knowledge about the job characteristics
can vary from complete to none depending on the particular model.

There are two important subclasses of load distribution:

e Load balancing tries to keep the deviation of the current system
load from the best possible distribution of that load (with respect
to a given metric) as small as possible.

e Load sharing is less ambitious and the goal here is to keep all proces-
sors busy whenever possible.

The available means to reach such goals include the initial placement of
newly created or arriving jobs, the reassignment of existing jobs that have
not yet started execution, and the preemptive migration of running jobs.

A major difference between on-line scheduling and load distribution
is that at any moment in time a load distribution algorithm may assign
more than one job to a single processor for execution without specifying
the order or mode in which these jobs have to be processed. Rather, this
decision is frequently left to a local scheduling algorithm on each proces-
sor. According to the well-known classification scheme of CASAVANT and
KUHL [CK88] load distribution as defined above would be classified as
global dynamic scheduling since it is only concerned with the decision
where to assign (and potentially execute) a job. However, we prefer to re-
serve the notion scheduling to those algorithms that explicitly generate a
schedule.

A further distinction arises from the often more complex decision
structures of load distribution strategies. On-line schedulers are usually
sequential algorithms that act as a centralized control unit of the parallel
system. In contrast, many load distribution strategies have a distributed
or hierarchical decision structure. This means that several components
may decide about load transfers independently or coordinated in some
way (see Section 3.1.4 for a detailed discussion). The scalability of
such approaches is one the most appealing features of load distribution.
Although there is already some work about fault-tolerant distributed on-
line algorithms [Asp98], it remains an important open problem to develop
meaningful on-line paradigms and an appropriate definition of competi-
tive performance for parallel or distributed on-line scheduling algorithms.

12 On-Line Scheduling and Load Distribution: A Comparison

The competitive analysis of on-line scheduling algorithms gives worst-
case upper bounds on the performance of these algorithms that are
directly related to the intended use of these scheduling algorithms. For
example, we might have the result that the length of an on-line sched-
ule is never more than twice the length of an optimum schedule. Load
distribution, however, is often applied as a heuristic to decrease, e.g., the
running time of a parallel application, or to improve other performance
measures. This makes the theoretical analysis of such approaches difficult
or virtually impossible. Furthermore, if we resort to more restricted load
distribution models that are amenable to thorough mathematical analy-
sis (e.g., [XL97]), the results are usually limited to the load distribution
strategy itself. The implications of such results for the running time of a
parallel application, for example, are not immediately clear, and are often
determined by experimental results only.

An interesting hybrid of the on-line paradigm and load distribution is
the on-line machine load balancing model (a good survey by AZAR can be
found in [Aza98]). It incorporates the possibility to assign multiple jobs to
a single machine at any instant in time. The jobs have to be assigned one by
one without delay. The assignment of a job increases the load of the target
machine by the amount that is specified by the corresponding coordinate
of its vector of load values for the duration of that job. The duration of a
job may be known or unknown to the on-line algorithm. Possible goals are
to minimize the maximum load of any machine or to minimize the aver-
age delay of any job. The precise definition of this resource management
model allows the competitive analysis of a variety of on-line problems in-
cluding, e.g., the assignment of bandwidth to communication requests in
networks, or the assignment of queries to database servers.

A general framework for on-line resource management problems was
proposed by LEONARDI and MARCHETTI-SPACCAMELA [LMS95, Leo96].
It is assumed that a sequence of jobs arrives one by one, each of which
can be scheduled using an individual set of alternatives. Each alternative
describes a possible combination of various kinds of resources that are
sufficient to fulfill the demands of that job. Two different classes of on-line
resource management problems can be distinguished with respect to the
objective function:

e Benefit problems. The goal is to maximize the total benefit collected
from the subsequence of jobs that can be scheduled without exhaust-
ing the available resources.

On-Line Scheduling and Load Distribution: A Comparison 13

e Cost problems. The goal here is to minimize the amount of resources
that is used in order to process all jobs presented to the on-line algo-
rithm.

Benefit problems are modeled as linear programs which are solved in an
on-line fashion, whereas methods similar to the on-line machine load bal-
ancing problem are used for cost problems. This framework was applied
successfully to a variety of on-line scheduling and routing problems.

Chapter 3

Classification and Survey of
Load Distribution Strategies

In this chapter we first present a comprehensive classification scheme for
load distribution strategies. It is aimed at providing a better orientation
in the confusing diversity of approaches that were proposed up to now.
Furthermore, the scheme may serve as a guideline for future research since
it states many important aspects of load distribution problems in a clear
and understandable way. In Section 3.2 we give a brief survey of selected
well-known and recently developed load distribution strategies.

3.1 Classification of Load Distribution Strategies

Classification schemes are helpful tools in making the tasks of comparison
and evaluation easier. Several such schemes for the purpose of classify-
ing load distribution have been designed [LMR91, SKS92, Lud93, RR96,
DMP97, XL97] but so far none of them has been generally accepted.
Furthermore, these schemes differ much in the extent to which techni-
cal details have been included. Therefore, in a joint effort, a team of more
than a dozen researchers (from two research projects at Technische Univer-
sitdit Miinchen and an industrial partner) has developed several clear-cut
and well-defined classification schemes for different, mainly orthogonal
aspects of load distribution for parallel applications [SS97].

In this book [SS97], a general classification scheme regarding objec-
tives, integration level, structure, and implementation of load distribution

16 Classification and Survey of Strategies

is given [Sch97b]. In addition to the classification scheme for load distri-
bution strategies presented in this chapter, a classification scheme for load
models [R6d97] and migration mechanisms [Ste97] was proposed. A load
model describes the properties and interpretation of the load index that is
used to represent the “system load”. Moreover, it comprises policies re-
garding the measurement and propagation of the load index and possibly
the adaptivity of those policies. Migrations mechanisms are the tools that
are necessary to realize the assignment decisions of the load distribution
strategy. Generally, this includes any transfer of an entity to a different
target. But it should be mentioned that the term migration is often used in
the literature to describe the preemptive transfer of processes or threads.
SCHNEKENBURGER [Sch97a] applied these classification schemes to a va-
riety of load distribution approaches.

Over the past 30 years, numerous strategies for load distribution have
been proposed by researchers working in a large number of different areas
of computer science. The individual strategies have sometimes been eval-
uated by thorough mathematical analysis, sometimes by simulation, and
sometimes by appealing to the intuition of the reader. As a consequence, it
is extremely difficult to compare different load distribution strategies and
to determine which strategy will perform best in a particular scenario.

A fact that complicates this task even further is that most load distribu-
tion strategies proposed in the literature rely on very specific assumptions
about the system and the application at hand. Unfortunately, such as-
sumptions are often only implicit in the presentation of the strategy,
and must be made explicit in order to determine whether a strategy is
appropriate for a particular load distribution problem.

Our classification scheme for load distribution strategies is intended
to make comparison and evaluation of different strategies easier. We note
that the technical details of a particular implementation do not play a ma-
jor role for the presentation and understanding of a strategy. Usually, a
strategy need not specify for which particular kind of entities and targets
it was designed. The same strategy could, in principle, be used to assign
different kinds of entities (e.g., processes, threads, or database queries)
to different kinds of targets (e.g., workstations, multiprocessor nodes, or
data base servers). In addition, a strategy is not concerned with measur-
ing load or calculating load indices on the individual targets or with the
technical mechanisms used for assigning entities. Furthermore, the local
scheduling policy used for processing several entities on a single target
is not considered part of the load distribution strategy. The classification

Classification of Load Distribution Strategies 17

scheme is intended to extract only the basic underlying strategy of an ap-
proach to a load distribution problem.

Of course, we do not want to imply that somebody looking for
an adequate load distribution strategy should evaluate different strate-
gies independently from a particular problem. Instead, it is essential
to choose a strategy that matches the involved system and application
requirements well. Therefore, the classification scheme was designed to
include those aspects of a strategy that are necessary in order to estimate
the expected performance on a particular system with certain properties.

The strategy classification scheme we propose is hierarchical and in-
cludes criteria pertaining to system model, transfer model, information
exchange, coordination, and algorithm. The scheme is sketched in Ta-
ble 3.1. A detailed description follows.

3.1.1 System Model

The underlying system model is one of the strongest classification crite-
ria for load distribution strategies. If the system at hand does not
match the system for which the strategy was designed, it is highly
questionable whether the strategy can be of any use for that system.
The relevant components of a system as seen by a load distribution
strategy are the entities that represent the load and the targets to which
the entities can be assigned. In addition, it is in general quite helpful to
know where the motivation for the design of a particular strategy came
from. Therefore, we include the following criteria:

e Model Flavor:
For several load distribution strategies it is obvious where the moti-
vation for the selection of that particular strategy originated. Many
strategies are based on the analogy with physical systems, e.g., the
diffusion algorithm [Cyb89] or the gradient model algorithm [LK87].
Such strategies try to imitate physical systems where a kind of load
distribution is accomplished as a consequence of the laws of nature.

Other strategies originate from combinatorial models (e.g., see [GM94,
GMO96] and Section 3.2.3). Here, the load distribution problem is usu-
ally formalized as a discrete mathematical problem and tackled by
employing results from graph theory, scheduling theory or related
fields.

18 Classification and Survey of Strategies

Table 3.1: Classification scheme for load distribution strategies

| System Model
Model Flavor physical, combinatorial, microeconomic, random,
fairness, none, ...
Target Topology (heterogeneous) NOW, bus, mesh, fully connected,
Entity Topology grid-like, tree-like, non-interacting entities, . ..
| Transfer Model

Transfer Space

systemwide, long range, short range, neighbor-
hood

Transfer Policy

preemptive, non-preemptive

| Information Exchange

Information Space

systemwide, long range, short range, neighbor-
hood, central

Information Scope

partial, complete, none

| Coordination

Decision Structure

distributed, hierarchical, centralized

Decision Mode

autonomous, cooperative, competitive

Participation

global, partial

| Algorithm

Decision Process

static, dynamic

Initiation sender, receiver, sender & receiver, central, timer-
based, threshold-based

Adaptivity fixed, adjustable, learning

Cost Sensitivity none, low, partial, high

Stability Control | none, not required, partial, guaranteed

Economical systems have also inspired researchers to design anal-
ogous load distribution strategies [BP97]. This model is usually
referred to as the microeconomic model.

If the target of a newly created or arriving entity is chosen at ran-
dom, we classify the model as probabilistic or random. If a fair use of
resources is the only obvious motivation for the strategy, the model
flavor is fairness. (Note that our notion of fair should be understood
in an intuitive sense, not related to any formal definitions of fair-
ness that one can find in the context of distributed systems). Some
heuristics are not related to any particular analogy, and are therefore
classified as model flavor none.

Classification of Load Distribution Strategies 19

It should be mentioned that the above terms do not form a complete
list, because strategies with a model flavor different from the ones
mentioned here will surely be encountered now and then.

Target Topology:

Parallel or distributed computer systems that are used in prac-
tice use a variety of different interconnection networks. There are
bus-based shared memory multiprocessors, workstation clusters
interconnected by ATM networks [ATM95], or distributed mem-
ory multiprocessors with static (hypercube, torus) or dynamic (IBM
RS/6000 SP) network topologies [Lei92, AG94].

Even though a strategy does not need to be restricted to any par-
ticular type of computer system, it still requires or assumes that the
targets are interconnected in an appropriate way. This is due to the
fact that a load distribution strategy must use the interconnection
network to communicate load information and to transfer load ob-
jects.

In practice, distributed computer systems are often simply networks
of workstations interconnected by Ethernet or ATM. Besides, mod-
ern parallel computer systems like IBM RS/6000 SP or Cray T3E
(see [AGY4]) have abandoned the classical store-and-forward rout-
ing in favor of more efficient routing paradigms, e.g., wormhole or
virtual-cut-through routing or reconfigurable networks. With these
developments, the communication latency does not depend much
on the distance of the communication partners in the network any-
more. Nevertheless, it is still necessary in such networks to limit the
contention on individual links or buses. Hence, the target topology
remains an important characteristic of parallel systems.

Another aspect of parallel systems that should be taken into account
is whether they are homogeneous (all targets are the same type, and
an executable file can be executed on any target) or heterogeneous.
If a load distribution strategy can deal with heterogeneous systems,
e.g., with heterogeneous NOWs (networks of workstations), the term
heterogeneous is added to the entry for the criterion target topology in
the classification scheme. Otherwise, it is assumed that the strategy
deals only with homogeneous systems.

Entity Topology:

Independent from the target topology, typical parallel application
programs have a specific communication structure as well. For ex-
ample, traditional solvers for differential equations distribute the

20

Classification and Survey of Strategies

data in a grid-like pattern and communicate intermediate results
only among neighboring processes, whereas divide-and-conquer
algorithms usually result in a tree-like communication pattern. An-
other possible scenario features non-interacting entities (abbreviated
by n.-i. entities) that do not communicate with each other at all, e.g.,
sequential applications running on a parallel system.

Many load distribution strategies do not take the entity topology into
account, i.e., they assume that the entities (load objects) are non-
interacting. Obviously, such a strategy can cause severe problems
if this assumption is not justified. It is likely to create high communi-
cation load by placing communicating entities at targets very distant
from each other. Other strategies use information about the entity
topology in order to keep communicating entities on neighboring
targets.

3.1.2 Transfer Model

The basic task of a load distribution strategy is to transfer entities from
heavily loaded targets to lightly loaded or idle targets. We refer to such
transfers as load transfers. The following criteria specify which assump-
tions a strategy makes about the transfer model.

e Transfer Space:

Whereas some load distribution strategies transfer entities from
heavily loaded targets only to neighboring targets, other strategies
do not impose such a limit and transfer entities over greater dis-
tances in the network. In the former setting, the transfer space is
neighborhood. 1f entities are transferred to non-neighboring targets,
the transfer space can be short range (more than the direct neigh-
bors, but still only a rather small part of the network), long range
(a substantial part of the network, but not the whole network), or
systemwide (no restrictions). The distinction between long range and
short range cannot be defined formally and remains intuitive in na-
ture. In cases where such a distinction does not make sense, the term
restricted can be used instead.

Transfer Policy:

A crucial distinction between different load distribution strategies is
whether they transfer an entity from one target to another even if the
entity is already being processed (e.g., if the entity is a running UNIX

Classification of Load Distribution Strategies 21

process), or whether an entity is processed until completion on the
target to which it has been assigned in the first place. This distinction
between preemptive strategies employing migration of currently pro-
cessed entities and non-preemptive strategies employing only initial
mapping of entities to targets is ubiquitous in scheduling and load
distribution theory.

3.1.3 Information Exchange

In addition to the communication overhead caused by the actual transfer
of entities, a load distribution strategy increases the communication load
of the network through the exchange of load-state information as well. It
is desirable that this exchange of information uses up only a negligible
amount of network resources, but it is also clear that good load distribu-
tion is difficult to achieve if the information available for evaluating the
benefit of potential load transfers is outdated or incomplete.

e Information Space:

Whereas transfer space expresses the distance over which entities
are transferred by the load distribution strategy, information space
is concerned with the transfer of load-state information. Similar to
the transfer space, systemwide information space means that the load
distribution strategy transfers load-state information without restric-
tions on the distance of communicating targets in the network, and
restricted information space can be further divided into long range,
short range or neighborhood. Furthermore, there are strategies which
transfer load-state information to a single central manager. In this
case, the information space is central. Finally, strategies which do not
transfer any load-state information have empty information space.

e Information Scope:
In addition to the information space, load distribution strategies also
differ in the extent to which they collect load-state information be-
fore reaching a load-transfer decision. Bidding algorithms [SS84]
(see Section 3.2.2), for example, typically take into account only the
load-state information from a small subset of all targets. Hence, they
are classified as having partial information scope. The more recently
developed precomputation based load distribution algorithm, how-
ever, collects load-state information from the whole system (through

22

Classification and Survey of Strategies

local communications) in order to determine the actual load trans-
fers (see [BS96] and Section 3.2.4). Therefore, its information scope
is complete. As mentioned in Section 3.1.1, there are load distribution
strategies that use no load-state information from other targets at all.
The information scope of such strategies is classified as none.

3.1.4 Coordination

Typically, load distribution problems arise in parallel or distributed sys-
tems made up of a large number of more or less independent components.
Hence, different load distribution strategies can also be characterized by
how they make sure that load-transfer decisions can be reached effectively
and in a coordinated manner in such a distributed system.

e Decision Structure:

Due to our limited intuition for parallel and distributed systems,
load distribution strategies are understood most easily if they em-
ploy a central authority which gathers load-state information and
makes all decisions regarding load distribution activities. Unfor-
tunately, such a centralized decision structure is likely to create a
bottleneck once the system grows larger.

At the opposite end of the spectrum, there are load distribution
strategies where each target in the system can make decisions
about potential load transfers. Such a distributed decision structure
is scalable, but if there is too little coordination among the targets the
effects of different load transfers may cancel each other out or even
worsen the load imbalance.

A compromise between these two approaches is to employ a hierar-
chical decision structure. Such a strategy has many of the advantages
of distributed decision making (including sufficient scalability) and
avoids the bottleneck of a central decision maker by replacing it with
a hierarchy of decision makers.

Decision Mode:

If the load distribution strategy allows targets to decide about po-
tential load transfers independently from each other, we classify
the decision mode of the strategy as autonomous. For example, a
strategy where an overloaded target transfers load to another ran-
domly picked target has this property. Usually, however, targets

Classification of Load Distribution Strategies 23

cooperate in order to make sure that load transfers take place only
if all involved targets agree. We call this latter alternative coopera-
tive decision mode. A third possibility is competitive decision mode.
Microeconomic strategies, for example, can usually be classified as
competitive, because entities or targets compete for services medi-
ated by brokers, without consideration for the needs of others.

e Participation:

This criterion classifies a load distribution strategy with respect to
the number of targets which participate in load distribution activ-
ity at the same time. Many proposed load distribution strategies
assume that all targets in a system jointly stop executing tasks
at certain times and participate in a global load distribution phase
until the load is sufficiently balanced. Frequently, it is also assumed
that the system is synchronized and that all targets execute the load
distribution activities in lock-step.

Whereas such strategies with global participation are often much eas-
ier to analyze, problems arise when they are to be applied in loosely
coupled parallel computer systems where global synchronization is
very time-consuming. Here, strategies with partial participation in
load distribution activities seem much more appropriate. If the load
on a certain subset of targets is unbalanced, only these targets par-
ticipate in load transfers while the remaining targets can continue to
execute their normal work load.

3.1.5 Algorithm

The classification criteria subsumed here are intended to capture general
characteristics of the load distribution algorithm used to implement the
strategy.

e Decision Process:
The decision process of a load distribution algorithm is static if it
does not depend on load-state information accumulated at runtime.
Static load distribution algorithms include compile-time partitioning
of parallel applications and mapping of tasks to predefined or ran-
dom locations.

Typically, however, the term “load distribution algorithm” already
implies a dynamic decision process, whereas static load distribu-
tion algorithms are more commonly referred to as partitioning

24

Classification and Survey of Strategies

algorithms, mapping algorithms, or embedding algorithms. This
classification scheme is intended to be used for dynamic load dis-
tribution algorithms, and hence many of the other criteria do not
apply to static algorithms.

Initiation:

The detection of load-imbalance in the system is a problem that must
necessarily be addressed when one needs to employ a load distri-
bution strategy in practice. Possible alternatives for strategies with
partial participation are sender initiation with load distribution activ-
ity being initiated by overloaded targets, and receiver initiation with
load distribution activity being initiated by underloaded or idle tar-
gets. These two can also be combined (sender & receiver initiation).
Another possibility is to have a central component that initiates
load distribution activity. In addition, it is possible to differentiate
between timer-based and threshold-based initiation. The former refers
to a strategy that performs load distribution activity after fixed time
intervals, the latter to a strategy that starts load distribution as soon
as the load or load imbalance exceeds a certain threshold.

Adaptivity:

An important aspect concerning the flexibility of a load distribution
strategy is its adaptivity. A fixed strategy is independent of the cur-
rent overall load level and of the characteristics of the entities present
in the system. Since the required load distribution activity depends
heavily on these dynamically changing factors, however, many re-
searchers have designed strategies which are adjustable to the current
load or other properties of the system. Another interesting approach
are learning strategies that try to improve the effectiveness of their
load distribution activities by learning from past experiences.

Cost Sensitivity:

A load distribution algorithm should not disregard the costs that are
necessarily incurred by every kind of load distribution activity, i.e.,
communication overhead and migration costs. After all, load dis-
tribution is usually only a means to achieve the goal of short
response-times or high through-put of a system. If a load distri-
bution algorithm keeps the load in the system perfectly balanced
at all times but slows down the overall system substantially by
the overhead created, this is not a satisfactory solution. Therefore,
algorithms should also be classified according to the extent to
which they take the costs imposed by load distribution activities

Classification of Load Distribution Strategies 25

into account. The cost sensitivity of a load distribution algorithm
is classified as none, low, partial or high.

e Stability Control:

One of the shortcomings of certain load distribution strategies is that
they may lead to system instability. A load distribution algorithm
is part of the overall system, and the gathering of load-information
and the transfers of entities form one target to another contribute
to the total load. Furthermore, the load situation may change
substantially from time to time, and it is important that the load
distribution algorithm does not increase the system load inade-
quately in such moments due to useless load transfers. In the
worst case, it may happen that all resources of the system are oc-
cupied by load distribution activities, without any progress being
made towards a more balanced state or a more lightly loaded sys-
tem.

Therefore, a load distribution algorithm should be designed to keep
the system stable at any time. For some algorithms, stability control
(i.e., particular steps taken in order to avoid system instability) is
not required, because any system instability is made impossible by
the inherent nature of the algorithm. Stability is guaranteed if the
load distribution algorithm employs special means that keep the
system stable under all conditions. For example, an algorithm can
restrict the number of migrations of a single entity. Partial sta-
bility control adjusts certain parameters according to the current
load-situation or according to the number of transfers of entities
that happened in the recent past. But in the worst case these
precautions might fail to keep the system stable. Finally, there are
algorithms that do not take instability problems into account at all.
These are classified as having stability control none.

Note that the individual classification criteria are not completely or-
thogonal to each other. In the following, we summarize the obvious
dependencies. Classifying transfer space or information space as neigh-
borhood, short range or long range makes sense only if the target topology
is not bus-based or fully connected. If information scope is none, infor-
mation space must be empty. If decision making is centralized, decision
agreement must be classified as cooperative (viewing the fact that all tar-
gets agree to leave the load distribution decisions to the central authority
as a kind of passive cooperation). If the decision process is static, the cri-
teria pertaining to information exchange and to coordination, as well as

26 Classification and Survey of Strategies

the criteria initiation, adaptivity and stability control do not seem to be
applicable.

Finally, it should be noted that we have decided not to include the spe-
cific criterion which a strategy tries to optimize (e.g., system throughput
or total execution time) in the classification scheme. The reason is that the
exact optimization criterion is not even specified for many strategies. Fur-
thermore, given a specific optimization criterion and complete advance
knowledge about all application characteristics (task execution times, task
dependencies, communication requirements), the optimization problem is
NP-hard in almost every scenario [G]79]. Hence, load distribution strate-
gies are usually heuristic approaches, and the quality of a strategy with
respect to a certain criterion can frequently only be estimated by simula-
tions.

3.2 A Survey of Load Distribution Strategies in
Examples

Due to the vast amount of papers written about load distribution strate-
gies, a comprehensive survey would be beyond the scope of this thesis. So
we restrict this survey to four typical examples in order to reveal basic
techniques for load distribution. The diffusion approach and the bidding
algorithm are “classical” strategies that are used in quite a number of
systems and applications. In addition, we describe two novel algo-

rithms with interesting properties. Many other strategies are surveyed in
[LMR91, WLR93, XLL94a, FWM94, KGV94, SHK95, X1.97, DMP97, Sch97a].

3.2.1 The Diffusion Approach

Diffusion is a well-known load distribution strategy (LDS for short) and
has been evaluated theoretically [Cyb89] as well as in practical experi-
ments [WLR93]. The diffusion LDS works like this: at the beginning of
a load-distribution round every target collects the load values of all of its
neighbors. Consider two neighboring targets i and j. If the load of i is
greater than the load of j then ¢ sends a certain part of this load-difference
to j. Otherwise 7 receives some load from j. The amount of load that is
transferred depends on the structure of the network. At the end of every
load distribution round the targets update their load values. The diffusion

A Survey of Load Distribution Strategies in Examples 27

LDS performs a certain number of rounds necessary to achieve a nearly
balanced state.

Formally, if we denote the load values of n targets at the beginning of
round t > 1by (14,15, ... 1) the load exchange is given by the equation

Jer@)

where I'(7) is the set of direct neighbors of i and 0 < «;; < 11is the diffusion
parameter of 7 and j. As a target cannot give away more load than it pos-
sesses, we must have 1 — Zje re) %j = 0 for 1 < ¢ < n. CYBENKO [Cyb89]
showed that this iteration converges against the uniform distribution if
certain conditions hold.

Of course, the question arises how to set the diffusion parameters to
obtain the fastest convergence. For example, it can be shown for mesh
connected networks of dimension d > 1 that o;; = 1/(2d) is opti-
mal [XL94b, XL97]. This means that the load of i (not on the border of
the mesh) is just the average of the load of its neighbors after each round.

:D

N
NN

f
(=

(=)
N

(o)
N

B
(=)

=)
=)

Figure 3.1: Diffusion in a 4 x 4 mesh

Figure 3.1 shows one iteration of the diffusion algorithm in 4 x 4 mesh
using the optimal diffusion parameter] . Each target is labeled by its load
value and the arrows indicate the amount and direction of the load trans-
fer. Note that the average load is 10 and that the maximal deviation from
the mean is reduced from 22 to 7.

28 Classification and Survey of Strategies

The speed of convergence of load balancing algorithms of the diffu-
sion type can be increased by keeping a limited memory of the past load
transfers across each edge [GMS96]. More precisely, in each round, the
amount of load transferred over an edge depends on the current gradient
along this edge as well as the amount transferred in the previous round.
However, the load of a target might be smaller than the total load that
has to be transferred to its neighbors, and therefore a strategy to fulfill the
unsatisfied demands in future rounds is needed.

A further step in this direction is proposed in [DFM98]. They describe
a general framework for the analysis of diffusion type LDSs, and present a
novel iteration scheme that converges within a number of rounds against
the uniform distribution that depends only on the target topology and is
independent of the initial load values. Their approach uses ideas similar
to the precomputation based LDS described in Section 3.2.4.

In practice, the assumptions that all targets perform load distribution
synchronously and the load is arbitrarily divisible are unrealistic, but it is

possible to adapt the diffusion LDS for asynchronous systems and integer
load values [WLR93, Son94].

3.2.2 Bidding and Balanced Allocations

One common procedure to obtain a fair price for a merchandise is to put it
up for auction. Let us briefly describe a simple, no-minimum, one-round
auction:

An auctioneer starts with a request for bids for a certain object to a set
of bidders and then waits for bids. If any bids are made within a given
period of time, the auctioneer selects the best one and knocks down the
object to the highest bidder (ties are broken arbitrarily by the auctioneer).

This is the basic idea of bidding algorithms. To perform load distribu-
tion, there are two natural possibilities for the job of the auctioneer:

e Overloaded targets select some load for transfer to other, hopefully
less loaded targets and send requests for bids for the selected entities
to a certain number of targets (e.g., its direct neighbors). The targets
evaluate the offered piece of load with regard to their own load sit-
uation and may choose to return a bid containing their rating of the
entity or their current load index. If the initiating target receives any
suitable bid in a certain amount of time and is still overloaded, it

A Survey of Load Distribution Strategies in Examples 29

transfers the entity to the chosen bidder. Otherwise another request
for bids is sent to a greater or different set of potential bidders (see
[SS84] for a detailed description of this strategy).

e Underloaded targets offer their unused capacity instead of burden-
some load. This strategy was proposed by [NXG85] as a distributed
“drafting” algorithm for load distribution.

If a target is allowed to make several bids in different auctions that take
place concurrently, the strategy has to make sure that all transfers can be
fulfilled and that the system remains stable. See [Rad96] for implementa-
tion details of the bidding strategy.

Since the analysis of the bidding strategy in a distributed system is very
difficult, we now consider an allocation strategy [ABKU94] that is similar
to the bidding strategy and admits a thorough analysis. Suppose that we
place n balls (i.e., the entities are independent jobs of unit size) one by one
into n bins (targets) by putting each ball into a randomly chosen bin. It
can be shown that with high probability there are ©(Inn/Inlnn) balls in
the fullest bin after placing all n balls (see [RS98] for a simple and tight
analysis of this result).

However, if for each ball d > 2 bins are chosen independently and
uniformly at random, and the ball is placed into the least full among these
bins (ties are broken arbitrarily), then AZAR, BRODER, KARLIN, and UP-
FAL [ABKU94] showed that the number of balls in the fullest bin drops to
InInn/Ind+O(1) with high probability. Note that this strategy results in an
exponential decrease of the maximum load in comparison to the “blind”
random allocation process.

The selection of d bins is directly related to the request for bids of the
auctioneer of the bidding strategy, and the chosen bins make bids by re-
sponding with their current load. Of course, there is a trade-off between
the number of bins queried and the resulting maximum load. The prob-
lem of finding optimal values for d when placement costs are taken into
account is studied in [DDLM95].

This simple randomized allocation strategy yields good load balancing
with high probability using only little information exchange. However, it
is a sequential strategy for a simplified load distribution scenario. This
“shortcoming” has triggered a series of papers to extend the work of
AZAR, et. al. in several directions. In particular, parallel and continuous
allocation and load balancing processes, weighted jobs (balls), and other

30 Classification and Survey of Strategies

objective functions such as the maximum waiting time have been consid-
ered.

First, it was shown [ACMR95] that this strategy can be enhanced to
work in parallel and asynchronous systems by introducing several com-
munication rounds between sending and receiving targets to resolve
conflicts. STEMANN [Ste96] presented and analyzed an algorithm for
the case that m > n balls are allocated in parallel using the collision pro-
tocol that originated in randomized shared memory simulations [MSS95].
This work in turn was generalized in [BMS97] to weighted jobs (balls).
Their analysis uses the degree of uniformity of the weights (i.e., the ratio
between the average and the maximum weight) to bound the number of
communication rounds that is necessary to obtain a maximum load that is
optimal up to a constant factor.

In most systems the load information that is necessary to reach a place-
ment decision has to be retrieved sequentially from the bins. If a fixed
number d > 2 of queries is made to place a ball, even if the first chosen
bin is empty, another d — 1 bins have to be accessed. CZUMA] and STE-
MANN [CS97] therefore presented an adaptive variant of the sequential
allocation process where the number of bins queried in order to place a
ball depends on the loads of the bins previously inspected by that ball.
They also analyzed the impact of a limited number of reassignments on
the achievable maximum load.

Another important extension are infinite allocation and continuous
load balancing processes. These scenarios are usually specified by a
job arrival (generation) process and a deletion (service) process which
both last for a potentially infinite time. The main focus of interest is
on the long-term behavior of such processes. MITZENMACHER [Mit96a,
Mit96b] introduced the “supermarket model” where a Poisson stream of
customers (jobs) arrives, and the service time for a customer is exponen-
tially distributed with mean 1. Each customer polls d > 2 servers and
joins the shortest (FIFO) queue. An infinite parallel allocation process is
analyzed in [ABS98] using the idea to line up arriving jobs at d queues si-
multaneously. This requires, however, to delete the unserviced replicates
of a job as soon as the job has been serviced for the first time. Finally, a
parallel continuous load balancing algorithm for this scenario is proposed
and analyzed in [BFM98]. A load balancing step is locally initiated by a
processor only if its load is above a certain threshold. If so, d potential bal-
ancing partners are randomly chosen. Again, a collision protocol is used
to avoid “flooding” of an underloaded target.

A Survey of Load Distribution Strategies in Examples 31

3.2.3 Load Distribution by Random Matchings

Many parallel and distributed systems can be modeled as a graph G =
(V, E), where the nodes of the graph represent targets and the edges rep-
resent direct communication links between targets.

A matching of G is any subset of edges M C E such that no two edges
of M share an endpoint (see Figure 3.2).

OO~
OO On®
(—O—O—0O
O—O—0O—0

Figure 3.2: Matching (bold lines) in a 4 x 4 mesh

Matchings are useful to perform local load distribution in parallel: if
a node 7 is an endpoint of an edge e = {i,j} in the matching, it tries to
reduce the load difference with the other endpoint j. Since no two edges of
a matching are adjacent, any node is involved in at most one load transfer.
This is a desirable feature due to limited communication capabilities of
network interfaces.

The random matchings LDS [GM94, GM96] performs a certain number
of synchronous rounds of the following form:

1. Generate a random matching M of G by a distributed algorithm.

2. Equalize the load of the endpoints of each edge in M.

The exact number of rounds necessary to achieve a nearly balanced load
distribution with high probability depends on the degree of connectivity
of the system.

32 Classification and Survey of Strategies

To describe Step 1 more precisely, let d be the maximum number of
neighbors of any node i and let S; denote a set of edges maintained by each
node i. All S; are empty at the beginning of each round. The generation
of a random matching proceeds in two steps executed in parallel by every
node:

. . Lo . . “qe 1
(a) For every incident edge e: insert e into S; with probability ¢ .

(b) Resolve conflicts by executing an agreement protocol. This protocol
makes sure that

o there is at most one edge in S; and

e if S; = {{i,j}} then S; = {{j,7}} (and consequently the union of
all S;, ¢ € V, constitutes a matching of G).

An important characteristic of a random matching generated by the
above algorithm is that the probability to be part of the matching is at
least 1/8d for each edge.

To evaluate the effectiveness of an LDS we need a measure for the im-
balance in the system. Commonly used measures are, for example, the
difference between the highest and lowest load of any target, or the max-
imum deviation from the mean. In large systems, however, these criteria
might not allow to judge the overall load situation correctly since a single
target may signal a very bad load situation in an almost perfectly balanced
system. Therefore, it is reasonable to define the potential of a vector of load
values l1, b, ... , 1, in a system of n targets as @ = Y ., (I; — I)*, where [de-
notes the average load. Clearly, the influence of a single target is reduced
considerably according to this measure (see [AAG*95] for a detailed dis-
cussion of a wider class of imbalance measures).

It can be shown [GM94, GM96] that each round of the random match-
ing LDS reduces the potential by a factor depending on the system
topology if the potential is sufficiently large (otherwise load distribu-
tion isn’t necessary anyway). Furthermore, Step 2 of the algorithm can

be modified so that at most one unit of load is transferred in each round.
This variant is analyzed in [GLM*95].

3.24 Precomputation Based Load Distribution

All LDSs presented so far reach their load transfer decisions on a small
information base. Since most load transfers are very time-consuming

A Survey of Load Distribution Strategies in Examples 33

(especially when they are preemptive), it is only natural to study algo-
rithms that gather more load information in order to avoid superfluous
load transfers.

One way of reducing load transfers is to compute a load distribution
scheme before any transfers take place. Let G = (V, E) be a graph repre-
senting a parallel or distributed system. We replace each undirected edge
e = {u,v} in E by two directed edges (u, v), (v, u) to indicate the direction of
the load transfers. A load distribution scheme is a function ¢ that assigns
a transfer value to each directed edge such that:

1. 8((u,v) = —0(@,w) W, v} € E,
2. 1, + Z(u,v) (u,v))=1 YveV,

where [, is the load of node v and [denotes the average load. For simplic-
ity, we assume that [and the d-values are integers. Load distribution is
performed by moving §((u, v)) load units from u to v if this value is posi-
tive. If 0((u,v)) < O then u receives this much load from ». Hence, a load
distribution scheme is like a road map that we can use to distribute the
system load equally.

The precomputation based LDS presented in [BS96] (c.f. also [B6h96, p.
23-95]) is designed for tree-connected systems. The reason is that a load
distribution scheme can be computed efficiently for trees. The algorithm
consists of two phases:

1. Precompute a load distribution scheme. This requires three steps:

(a) Starting from the leaves of the tree, every node v (with exception
of the root r) calculates the total load of the subtree rooted at v
and sends this value to its parent.

(b) The root calculates the average load [and broadcasts [to all
nodes.

(c) After receiving the broadcast-message, every node v € V' \ {r}
computes 6(v, parent(v)). This is accomplished by subtracting
[* [nodes_in_subtree| from the total load of the subtree rooted
at v. Finally, v sends this value to its parent.

2. Perform the actual load transfers according to the load distribution
scheme. This is done in a number of rounds because a node might
have to wait for some of the load it must transfer. The number of
rounds, however, is bounded by the diameter of the tree.

34 Classification and Survey of Strategies

This two phase approach is also employed by the diffusion type algo-
rithm in [DFM98] (see Section 3.2.1). There, the second phase is formalized
as a flow scheduling problem, and certain greedy heuristics for this prob-
lem are analyzed.

It is straightforward to generalize the precomputation based LDS to
system-topologies that are cross products of trees. A grid (or mesh), for
example, is the cross product of two linear arrays. First, the algorithm
balances all rows in parallel and is then applied a second time to balance
the columns of the grid.

Table 3.2: Classification of diffusion and bidding

‘ ‘ ‘ Diffusion ‘ Bidding ‘
System Model
Model Flavor physical microeconomic
Target Topology mesh fully connected
Entity Topology n.-i. entities n.-i. entities
Transfer Model
Transfer Space neighborhood systemwide
Transfer Policy preemptive non-preemptive
Information Exchange
Information Space || neighborhood systemwide
Information Scope partial partial
Coordination
Decision Structure distributed distributed
Decision Mode cooperative competitive
Participation global partial
Algorithm
Decision Process dynamic dynamic
Initiation timer-based | sender & receiver
Adaptivity fixed fixed
Cost Sensitivity none none
Stability Control none none

In Table 3.2 and Table 3.3, four of the load distribution strategies dis-
cussed in this section are classified according to our classification scheme.
It should be mentioned that the initiation of load distribution activities is
not clearly specified for the diffusion strategy [Cyb89], for the strategy that
employs random matchings [GM94, GM96], and for the precomputation
based strategy [BS96]. These strategies can also be implemented using dif-

A Survey of Load Distribution Strategies in Examples 35

ferent initiation than given in the table. Furthermore, we note that stability
control may be considered as not required for these three strategies, because
they employ load distribution phases with global participation. These
load distribution phases always result in a balanced system. Neverthe-
less, it is possible that load distribution phases are initiated at unfavorable
moments and cause an unnecessary slowdown of the system, and hence
we choose to classify stability control for these strategies as none.

Table 3.3: Classification of random matchings and precomputation based
load distribution

| | Matchings | PLB |
System Model
Model Flavor combinatorial | combinatorial
Target Topology arbitrary tree
Entity Topology n.-i. entities n.-i. entities
Transfer Model
Transfer Space neighborhood | neighborhood
Transfer Policy preemptive preemptive
Information Exchange
Information Space || neighborhood | neighborhood
Information Scope partial complete
Coordination
Decision Structure distributed hierarchical
Decision Mode cooperative cooperative
Participation global global
Algorithm
Decision Process dynamic dynamic
Initiation timer-based central
Adaptivity fixed fixed
Cost Sensitivity none none
Stability Control none none

Chapter 4

On-Line Scheduling of Parallel
Jobs with Runtime Restrictions

In many situations the problem arises to find a schedule for a set of parallel
jobs [FR95, FR96, FRS*97, BEP*96]. Such a set could be, for example, a par-
allel query execution plan generated by the query optimizer of a parallel
database management system [Rah96, GI97]. In this chapter we propose
on-line scheduling algorithms for such problems that generate satisfac-
tory schedules if the individual running times of the jobs do not differ too
much.

The scheduling model studied in this chapter assumes that each paral-
lel job demands a fixed number of processors or a specified sub-system
of a certain size and topology (depending on the underlying structure
of the parallel machine considered) for its execution. It is not possible
to run a parallel job on fewer processors than requested, and additional
processors will not decrease the running time. This reflects the common
practice that the decision on the number of processors is made before a
job is passed to the scheduler based on other resource requirements like
memory, disk-space, or communication intensity. The processors must be
allocated exclusively to a job throughout its execution, and a job cannot be
preempted or restarted later. This is a reasonable assumption because of
the large overhead for these activities on parallel machines. Furthermore,
there may be precedence constraints between the jobs. A job can only be
executed if all of its predecessors have already completed execution. Most
frequently, precedence constraints arise from data dependencies such that
a job needs the complete input produced by other jobs before it can start
computation.

38 On-Line Scheduling of Parallel Jobs

We are concerned with on-line scheduling throughout this chapter to
capture the fact that complete a priori information about a job system is
rarely available. However, it has been shown [FKST98, Sga94] that the
worst-case performance of any deterministic or randomized on-line algo-
rithm for scheduling parallel job systems with precedence constraints and
arbitrary running times of the jobs is rather dismal, even if the precedence
constraints between the jobs are known in advance. Therefore, we study
the case that there is some a priori knowledge about the execution times
of the individual jobs but the dependencies are unknown to the scheduler.

Three different gradations for this additional knowledge are studied
in this chapter. The first model of runtime restrictions requires that all
job running times are equal and that this fact is known to the on-line
scheduler. We give a level-oriented on-line algorithm for this problem
that repeatedly schedules a set of available jobs using a packing algo-
rithm and collects all jobs that arrive during a phase for execution in
the next phase. For parallel systems that support arbitrary allocation of
processors to jobs and 1-dimensional arrays we show that this algorithm
is 2.7-competitive if the FIRST FIT BIN PACKING heuristic is used. Due to a
lower bound of 2.691 on the competitive ratio for every deterministic on-
line scheduler, our algorithm is almost optimal. For hypercube connected
machines, we present an optimal on-line scheduling algorithm with com-
petitive ratio 2. Further results are derived for 2-dimensional arrays and a
general theorem for arbitrary interconnection topologies is given.

We then explore the entire bandwidth between unit and arbitrary exe-
cution times and capture the variation of the individual job running times
by a characteristic parameter that we call runtime ratio (the ratio of the
longest and shortest running time). The results for the proposed on-line
schedulers demonstrate a smooth, linear transition of the competitive ra-
tio from the case of unit execution times to unrelated execution times that
is governed by the runtime ratio. Our second model postulates that the
runtime ratio of a job system is reasonably small and that the on-line
scheduler knows the shortest execution time (but not the runtime ratio
itself). For any T > 2 a family of job systems with runtime ratio Ty is
given that bounds the competitive ratio of any deterministic or random-
ized on-line scheduler by (T +1)/2 from below. This general lower bound
holds for any network topology and remains valid even if the scheduler
knows the actual runtime ratio in advance.

An on-line scheduler designated RRR (Restricted Runtime Ratio) for
parallel systems supporting arbitrary allocations is described, and we

Preliminaries 39

demonstrate that this algorithm is (Tg/2 + 4)-competitive for any job
system with runtime ratio at most Tz . Therefore, the RRR Algorithm is
nearly optimal up to a small additive constant. The assumption that the
shortest execution time is known to the on-line scheduler can be dropped
without much loss of competitive performance. We present a modified
algorithm called RRR_ADAPTIVE for this third model, and show it to be
(Tr/2 + 5.5)-competitive. Two main characteristics of these algorithms are
discussed to show that they are essential to reach a competitive ratio that
is close to the lower bound. Further results are given for other network
topologies.

The remainder of this chapter is organized as follows. In Section 4.1
we introduce our scheduling model, some notation and definitions, as
well as basic techniques for analyzing on-line scheduling algorithms.
We then discuss previous and related work on on-line scheduling of
parallel jobs in Section 4.2. Section 4.3 presents nearly optimal on-line
schedulers for jobs with unit execution time, whereas in Section 4.4 we
study job systems where the ratio of the running times of the longest
and shortest job is bounded. We describe and analyze on-line schedul-
ing algorithms for parallel systems supporting arbitrary allocations that
are optimal up to small additive constants.

4,1 Preliminaries

Let NV denote the number of processors of the parallel computer-system at
hand. A job system is a non-empty set of jobs J = {J1, Jo,..., J} where
each job specifies the type and size of the sub-system that is necessary for
its execution together with precedence constraints among the jobs in J
given as a partial order < on J. If J, < J,, J, cannot be scheduled for
execution before J, is completed. We define the size of a job as the number
of processors it requests. A task is a job of size 1, i.e., it requires exactly one
processor for execution. Note that tasks as well as jobs of size N can appear
in job systems for any network topology. A job system that only contains
tasks is a task system. A schedule for a job system (7, <) is an assignment of
the jobs to processors and start-times such that:

e each job is executed on a sub-system of appropriate type and size,
e all precedence constraints are obeyed,
e each processor executes at most one job at any time,

e jobs are executed non-preemptively and without restarts.

40 On-Line Scheduling of Parallel Jobs

The interconnection topology of the parallel computer-system may im-
pose serious restrictions on the job types that can be executed efficiently
on a particular machine. On a hypercube, for example, it is reasonable to
execute jobs only on subcubes of a certain dimension rather than on an
arbitrary subset of the processors. On the other hand, a number of inter-
connection networks do not restrict the allocation of processors to parallel
jobs. For example, the CLOS-network of the very popular IBM RS/6000 SP
system, which uses an oblivious buffered wormhole routing strategy, jus-
tifies the assumption that the running time of a job only weakly depends
on a specific processor allocation-pattern (see [AG94, p. 512] for a short
description of this system and [SSA*94] for in-depth information on its
interconnection network). Therefore, the various types of interconnection
networks have to be treated separately.

" A

A

Figure 4.1: 4-dimensional hypercube

The complete model assumes that a job J, requests n, processors (1 <
n, < N) for execution and any subset of processors of size n, may be al-
located. The terminology has been chosen in analogy to a complete graph
on N nodes. This model was called PRAM model in [Sga94, FKST93], but
since the results for this model are not restricted (cf. the above discussion)
to this abstract parallel machine model we prefer to use the name ‘com-
plete model’.

Preliminaries 41

The r-dimensional hypercube (see Figure 4.1) consists of N = 2" proces-
sors, labeled from 0 to N — 1, and has 72"~! point-to-point communication
links. Two processors are connected iff the binary representations of their
labels (an r-bit string) differ in exactly one bit. As a consequence, each
processor is directly connected to r = log, NV other processors (see [Lei92]
for properties of hypercubes). A job J, can only request a d,-dimensional
subcube (0 < d, < r) for its execution.

Another topology frequently used for parallel computing is the r-
dimensional array with side-lengths (Ni,N,,...,N,), N; > 2 for i =

1,2,...,r (also called r-dimensional grid or mesh). The label of a pro-
cessor is an r-dimensional vector z = (x1,2,...,2,) with 0 < z; < N;
fori=1,2,...,r. Two processors = and y are connected iff "', [z; — y;| =

1. Note that hypercubes form the subclass of arrays with side-length 2
in every dimension. Eligible job types are sub-arrays with side-lengths
(N{,N;,...,N}),1 < N; < N,. The dimension of a job can be less than r if
one or more of the V] are equal to 1.

It is always possible to transform a job system (7, <) into a directed
acyclic graph D = (J,E) with (J,,J,) € E & J, < J,. Removing all
transitive edges from D we obtain the dependency graph induced by (7, <)
(see Figure 4.4 on page 53 for an example). We call two jobs J, and J,
dependent if J, < J, or J, < J,, and independent otherwise. We shall use
the terms dependency and precedence constraint interchangeably. The length
of a path in the dependency graph induced by (7, <) is defined as the sum
of the running times of the jobs along this path. A path is called critical if
its length is maximum among all paths in the dependency graph induced

by (J, <).

Assume that all jobs have running time 1 and let P be a longest path
in D ending at job J. Then depth(J) is defined as the number of nodes
in P. If we partition a schedule for such a unit execution time (UET) job
system into timesteps of length 1, the depth of a job indicates the earliest
possible timestep (EPT) in which J can be scheduled. The i’th level of D is
the set of (independent) jobs { J € J | depth(J) = i }. Motivated by the
above observation, a level of D is often referred to as an EPT level of the
corresponding job system (7, <).

A job is available if all predecessors of this job have completed exe-
cution. An on-line scheduling algorithm is only aware of available jobs
and has no knowledge about their successors. We assume that the on-line
scheduler receives knowledge about a job as soon as the job becomes avail-
able. This event, however, may depend on earlier scheduling decisions.

42 On-Line Scheduling of Parallel Jobs

The work of a job is defined as the number of requested processors,
multiplied by its running time. A schedule preserves the work of a job if
the processor-time product for this job is equal to its work. The efficiency of
a schedule at any time ¢ is the number of busy processors at time ¢ divided
by N. In general, the running time of a job is also unknown to the on-line
scheduler and can only be determined by executing a job and measuring
the time until its completion. In Section 4.3, though, we study the case of
unit execution times and therefore restrict the on-line model there to the
case of unknown precedence constraints.

Throughout the chapter we use the notations shown in Table 4.1 (cf.
[Sga94, FKST98]) for a given job system (J, <). To simplify our presen-
tation, we do not attach the job system or schedule as arguments to the
notations in Table 4.1. The relationships should always be clear from the
context. Further notation is introduced when needed.

Table 4.1: Frequently used notations

Topt | Length of an optimum off-line schedule for (7, <)
Tarc | Length of a schedule for (J, <) generated by algorithm ALG

Tmax | Maximal length of any path in the dependency graph induced by
(J,=)

tmin | Minimal running time of any job in J

tmax | Maximal running time of any job in J
|S| | Length of a schedule S

T., | Total time of a schedule for (7, <) when the efficiency is less than
a,l<a<l

Our goal is to generate schedules with minimum makespan, i.e., to
minimize the completion time of the job finishing last. We evaluate the
performance of our on-line scheduling algorithms by means of com-
petitive analysis [ST85, BE98, FW98]. We call a deterministic on-line
scheduling algorithm ALG c-competitive if for all N: Ty, < ¢ - Top for
all job systems that can be executed on N processors. The infimum of the
values ¢ € [1,00] for which this inequality holds is called the competitive
ratio of ALG.

It is possible to define the competitiveness of an on-line scheduler as a
function of N rather than for arbitrary N. We call ALG f(N)-competitive for
N processors, if Targ < f(N) - Top for all job systems that can be executed
on N processors, where f : N — {z € R | z > 1}. However, for technical

Preliminaries 43

reasons, we do not define a competitive ratio in this case. There are two
advantages of the latter definition. First, it can provide more detailed in-
formation about the competitiveness of an algorithm for particular choices
of N. Second, it allows to distinguish between on-line algorithms that have
an asymptotically unbounded competitive ratio. We will use the first def-
inition almost exclusively since f(N) is often quite complicated and we
will encounter only algorithms with constant competitive ratio.

For randomized algorithms working against an oblivious adversary
we have to modify these definitions slightly. Let RALG be a randomized
on-line scheduler. We call RALG c-competitive if for all N: E[Tgac] <
¢ - Tope for all job systems that can be executed on N processors, where
the expectation is taken over all random choices made by RALG. The infi-
mum of the values ¢ € [1, oo] for which this inequality holds is called the
(expected) competitive ratio of RALG. As above it is possible to modify this
definition such that the competitiveness of RALG is a function of N.

The competitive ratio clearly is a worst-case measure. It is intended
to compare the performance of different on-line algorithms that solve the
same problem, since it is in general impossible to compute an optimum
solution without complete knowledge of the problem instance. An optimal
on-line algorithm is one with a best possible competitive ratio. See [BE9S,
FWO98] for a thorough treatment of the fundamental concepts in on-line
computation and competitive analysis.

The following two lemmata provide useful tools for the competitive
analysis of our scheduling algorithms.

Lemma 4.1 Let S be a schedule for a job system (T, <) such that the work of each
job is preserved. Let 0 < oy < ap < 1and 3 > 0. Suppose that the efficiency of
S is at least oy at all times and T, < B14pt. Then

1 _
5| < <ﬂ+ a‘:”) Ty

See [Sga94] for a proof of this lemma.

Lemma 4.2 Consider a schedule for a job system (J , <). Then there exists a path
of jobs in the dependency graph induced by (J , <) such that whenever there is no
job available to be scheduled, some job of that path is running.

This lemma is due to GRAHAM [Gra66, Gra69]. The proof given there still
holds for parallel jobs since it uses only the structure of the dependency
graph.

44 On-Line Scheduling of Parallel Jobs

4.2 Previous and Related Work

Extensive work on non-preemptive on-line scheduling of parallel jobs
with or without precedence constraints was done by FELDMANN, KAO,
SGALL, and TENG [FKST98, Sga94, FST94]. However, these results for
general job systems are bad news for users of parallel computers since
they show that no deterministic on-line scheduler for N processors can
have competitive ratio better than N. That is, the competitive ratio
is asymptotically unbounded, and even randomization cannot improve
this unsatisfactory situation substantially.

One possibility to improve the performance is to restrict the maximum
job size to AN processors, 0 < A < 1. Given this restriction it has been
shown that the GREEDY algorithm is optimal for the complete model
with competitive ratio 1+ 5. Setting A = 1/2, for example, yields a 3-
competitive algorithm.

Another alternative is the use of virtualization. This means that a paral-
lel job J, which requests n, processors is executed on a smaller number
of processors n, by the use of simulation techniques with a predeter-
mined increase in running time. Under the assumption of proportional
slowdown (the running time of a job is enlarged by the factor n,/n})
it can be shown that there is an optimal on-line scheduler for the com-
plete model with competitive ratio 1 + &, where ¢ = (1 + Vv5)/2 is
the golden ratio. This improves a previous off-line result of WANG
and CHENG [WC92] with asymptotic performance guarantee 3. For the
hypercube, an O(log N/ loglog N)-competitive algorithm has been given,
and similar results [FKST98, Sga94] hold for arrays. The two approaches
just described can be combined to yield an optimal on-line scheduler with

VANZ+1-1
2X

competitive ratio 2 + for the complete model.

Both approaches, though, have a severe drawback that arises due to the
memory requirements of parallel jobs. Restricting the maximum size of a
job to AN processors can thus severely restrict the problem size that can
be solved on a particular machine. This is often unacceptable in practice
because solving large problems is the main reason for the use of parallel
computers besides solving problems fast. Virtualization may be impossi-
ble or prohibitively expensive if such memory limitations exist.

The job systems used in the lower bound proofs in [FKST98, Sga94] for
the general case reveal an unbounded ratio of the running times of the
longest and shortest job. Therefore, we think it necessary to study the

Jobs with Unit Execution Time 45

influence of the individual running times on the competitive ratio of
on-line schedulers for our scheduling problem. To gain insight into this
relationship it is only natural to start with unit execution times as is done
in Section 4.3. It turns out that the problem becomes manageable with
small constant competitive ratio even if nothing is known about the prece-
dence constraints.

To fill the gap between these two extremes — totally unrelated running
times versus unit execution times — we identify the runtime ratio (the ra-
tio of the running time of the longest and shortest job) as the distinctive
parameter of a job system for the achievable competitive ratio. The impor-
tance of this parameter has also been demonstrated recently in [CM96]
for off-line scheduling of jobs with multiple resource demands, both
malleable (allowing for virtualization with proportional slowdown) and
non-malleable.

Although we are interested in on-line scheduling, it might be appro-
priate to briefly mention some complexity results for the corresponding
off-line problems. Not surprisingly, almost any variant of these sched-
uling problems is NP-hard. BLAZEWICZ, DRABOWSKI, and WEGLARZ
[BDW86] have proved that it is strongly AP-hard to compute optimum
schedules for job systems with unit execution time and no dependen-
cies if N is part of the problem instance. For any fixed N they showed
that the problem can be solved in polynomial time. Furthermore, it
is known [GJTY83] that the problem is NP-hard for task systems with
precedence constraints that are the disjoint union of an in-forest and and
an out-forest. The scheduling problem for job systems with arbitrary job
running times and without dependencies is strongly NP-hard for every
fixed N > 5 [DL89]. If precedence constraints consisting of a set of chains
are involved, the problem of computing an optimum 2-processor schedule
for a job system is also strongly NP-hard [DL89].

4.3 Jobs with Unit Execution Time

In this section, we restrict our model to the case where all jobs have the
same execution time. When the dependency graph is known to the
scheduler this problem has been intensively studied by GAREY, GRA-
HAM, JOHNSON and YAO [GGJY76]. We show that similar results hold
in an on-line environment, where a job is available only if all its predeces-
sors have completed execution.

46 On-Line Scheduling of Parallel Jobs

4.3.1 A General Lower Bound

We will show in this section that for any network topology no determinis-
tic or randomized on-line scheduling algorithm can achieve a competitive
ratio better than 2. In the randomized case we will assume an oblivious
adversary.

We assume a parallel system with N > 2 processors. To prove the
claim for deterministic algorithms, we use the following job system. This
job system has N — 1 levels with N + 1 tasks on each level. Again, the de-
pendencies are assigned dynamically by the adversary according to the
decisions of the deterministic on-line scheduler. The task from level i,
1 < i < N — 2, scheduled last by the on-line scheduler is designated to
be predecessor of all tasks on level ¢ + 1. Therefore any deterministic on-
line scheduler ALG needs at least 2 timesteps to schedule all tasks of one
level. In an optimum schedule, on each level the task with dependencies
is scheduled first together with /N — 1 other tasks from the same level. The
N — 1 remaining tasks are scheduled in timestep N. This gives the desired
lower bound on the competitive ratio of deterministic algorithms:

TALG>2(N_1)=2_1.
Tt = N N

To derive the lower bound for randomized on-line schedulers working
against an oblivious adversary, we need only a slightly more complicated
job system. It now consists of N levels with N + V/'N tasks on each level
(for convenience we may assume w.l.o.g. VN € N). N tasks on level i,
1 <4 < N —1, are selected by the adversary in advance to be predecessors
of all tasks on level i + 1. We refer to the tasks without successors in this
job system as terminal tasks. The optimum solution first schedules all non-
terminal tasks level by level. This takes time N — 1. Then, the (N — 1)v/N +
N++VN=NVN+N remaining terminal tasks are scheduled in additional
VN + 1 timesteps. Thus, Tope = N +V/N.

The randomized algorithm RALG receives N + VN independent tasks
from level 1 in the beginning or if a new level becomes available. Only
after termination of the N non-terminal tasks on level 7, 7 < N — 1, the
N ++/N tasks on the next level become available. We define the length of
the partial schedule for level 7, 1 < ¢ < N — 1, as the time that elapses
from the moment when level i becomes available to the moment when
level 7 + 1 becomes available. Clearly, the sum of these partial schedule

Jobs with Unit Execution Time 47

lengths is a lower bound on the total length of the on-line schedule. If
RALG schedules any one of the V/N terminal tasks on level i before a non-
terminal task, the length of the partial schedule for level 7 will be at least 2.
Therefore, we have to bound the probability that RALG schedules all N
non-terminal tasks first. In this case the length of the partial schedule will
be at least 1. Since there is only one choice for this event to happen out
of (N*YM) possible choices, we can upper bound the probability that the
length of the partial schedule is in the interval [1,2) by

— -N
() = () = (e g) e
By linearity of expectation we have:

E[Tiuel > (N = 1D@ VY 1+(1-27Y).2) > 2N -4
Thus,

E[TRALG] > 2N_4 _ 2_4/N N
Tt ~ N+VN 1+1/y/N Nooo

Summarizing, we have the following

Theorem 4.3 For an arbitrary network topology the competitive ratio of any de-
terministic or randomized on-line algorithm for scheduling UET job systems is at
least 2.

The job systems used in the proof of Theorem 4.3 contain no paral-
lel jobs. Therefore the derived lower bound is valid for task systems as
well as job systems. This result has been obtained independently by Ep-
STEIN [Eps98].

Interestingly, the above lower bound for deterministic algorithms is
identical to the lower bound proved by SHMOYS, WEIN, and WILLIAMSON
[SWWO95] for task systems with arbitrary running times but without prece-
dence constraints.

4.3.2 Complete Model

In this section we present a generic on-line scheduler for UET job systems.
We will show that a certain variant of this algorithm is optimal for the
complete model up to a very small additive constant.

48 On-Line Scheduling of Parallel Jobs

The LEVEL Algorithm (see Figure 4.2) collects all jobs that are available
from the beginning. Since available jobs are independent we can easily
transform the problem of scheduling these jobs to the BIN PACKING prob-
lem: the size of a job divided by N is just the size of an item to be packed,
and the timesteps of the schedule correspond to the bins (see [CGJ96] for
a survey on BIN PACKING). Let PACK be an arbitrary BIN PACKING algo-
rithm. We parameterize the LEVEL Algorithm with PACK to express the
fact that a schedule for a set of independent jobs is generated according to
PACK. Thereafter, the available jobs are executed as given by this schedule.
Any jobs that become available during this execution phase are collected
by the algorithm. After the termination of all jobs of the first level a new
schedule for all available jobs is computed and executed. This process re-
peats until there are no more jobs to be scheduled. Note that the LEVEL
Algorithm works for any interconnection topology if an appropriate pack-
ing algorithm is used as a subroutine. We will exploit this observation in
the following sections.

Algorithm LEVEL(PACK):
begin
while not all jobs are finished do

begin
A:={JeJ|Jisavailable}; // nextEPT level
schedule all jobs in A according to PACK;
wait until all scheduled jobs are finished;
end;

end.

Figure 4.2: The LEVEL(PACK) Algorithm

First, we use the Next-Fit (NF) bin-packing heuristic for scheduling on
each level. NF packs the items in given order into a so-called active bin. If
an item does not fit into the active bin, the active bin is closed and never
used again. A previously empty bin is opened and becomes the next active
bin.

Theorem 4.4 LEVEL(NF) is 3-competitive.
Proof: The number of iterations of the while-loop is exactly the length of a

critical path in the dependency graph. There are two possibilities for each
level:

Jobs with Unit Execution Time 49

1. The partial schedule for this level has length 1. Let 7} denote the
number of levels of this type.

2. The partial schedule for this level has length > 2. By the packing
rule of NF it is clear that the average efficiency of 2 consecutive
timesteps in such a partial schedule is > 1/2. From this we con-
clude that the average efficiency of all timesteps except possibly the
last one is > 1/2. Let 7> denote the number of final timesteps with
efficiency < 1/2 in partial schedules for levels of this type.

Since Ty + To < Thnax < Topt we can apply Lemma 4.1 with a; = 1/N,
a, =1/2, 3 =1, yielding;:

2
TLEVEL(NF) < (3 - N) Topt- 0

Since NF can be implemented to run in linear time (in the number of
items to be packed) the scheduling overhead is very low when NF is used
to compute partial schedules. Now we use the First-Fit (FF) bin-packing
heuristic instead of NF to achieve a better result with only a modest in-
crease of the scheduling overhead. FF in contrast to NF considers all
partially filled bins as possible destinations for the item to be packed.
An item is placed into the first (lowest indexed) bin into which it will
fit. If no such bin exists, a previously empty bin is opened and the
item is placed into this bin. It has been shown [Joh74] that FF has time-
complexity ©(nlogn) for a list of n items.

Theorem 4.5 LEVEL(FF) is 2.7-competitive.

The proof of this theorem uses the weighting function from [GG]Y76]. Let
W :[0,1] — [0, 8/5] be defined as follows (cf. Figure 4.3):

ga for Ogagé,

9 1 1 1
W(a): ga—%—o for §<C¥S?,

gO[+E for §<a§§,

6 4 1

gOé'f'E for E<C¥S1

We also need the following results from [GGJY76]:

50 On-Line Scheduling of Parallel Jobs

W(a)

8
5

pim ol

Q=

[N
[eSIE
N[

Figure 4.3: Weighting function for the analysis of BIN PACKING algorithms
Lemma 4.6 Let B denote a set of items with total size < 1. Then
17
i < —.
> W(size(b)) < o
beB
If all sizes are < 1/2,

> Wi(size(h)) < g .

beB

Theorem 4.7 If L is a list of items with sizes < 1,

FR(L) < Y W(size(z)) + 1.

rEeL

Together with the above lemma this theorem provides the best known
upper bound for the number of bins used by first-fit. If L* is the number
of bins used in an optimum packing of L, first-fit uses at most [(17/10)L*]
bins. Now we are ready to prove Theorem 4.5:

Jobs with Unit Execution Time 51

Proof: Let J be a job system with unit execution time and arbitrary prece-
dence constraints. We define

W(T) =) Wi(size(j)/N).

JjET

Thus W () is the total weight of all job sizes. Let [be the number of levels
of the job system. For 1 < ¢ < [let U; be the set of jobs of each level. By
Theorem 4.7 we can upper bound the length of the partial schedule for
each level 5, 1 <7 <[, generated by LEVEL(FF):

TLEVEL(FF)(Ui) < W(UZ) + 1.

We can think of an optimum packing of J with the dependencies re-
moved as a partition of 7 into J* sets each of which has total size < 1.
Applying Lemma 4.6 yields W(J) < %j *. Together with the fact that the
length of the optimum schedule for J without dependencies cannot be
longer than the length of the optimum schedule for 7 we conclude:

l
TLEVEL(FF) = Z TLEVEL(FF)(Ui)

1=1

l
<S W)+
i=1

=W(T)+1 < 1.7 Tope + 1.

Since | = Tinax < Topt, the result follows. O

The result for the LEVEL(FF) Algorithm is nearly optimal. To show
this, we give an asymptotic lower bound of 2.691 on the competitive ratio
of each deterministic on-line scheduling algorithm. For the sake of clarity,
we first prove a slightly weaker lower bound of 2.69 T;,,; — 4 on the length
of a schedule generated by a deterministic on-line scheduler. Using Salzer
numbers we refine this construction to derive the asymptotic lower bound.

Fix N € N, N > 7-1806, and let

A= PJ ., B = gJ +1,

C:={—J+1, D=N-A-B-C-1.

52 On-Line Scheduling of Parallel Jobs

The job system (see Figure 4.4) consists of [> 4 levels with one chain
of | — 4 tasks and [jobs of size A, [— 1 jobs of size B, | — 2 jobs of size C,
[— 3 jobs of size D.

Additional dependencies are assigned dynamically by the adversary
depending on which parallel job of each level is scheduled last by the
on-line algorithm. This is possible because the on-line scheduler cannot
distinguish between the parallel jobs on the same level. The optimum
schedule has length [and is shown in Figure 4.5. Here, the parallel
job with successors is scheduled first on each level. Contrary to the op-
timum solution, the on-line scheduler is forced to schedule and execute all
jobs on one level to make the jobs on the next level available. The sched-
ule generated by LEVEL(FF) is thus the best possible on-line schedule (see
Figure 4.6) and has length

-1 -2 -3
l+[> -‘+[c -‘+ [ﬂ-‘ +(1—4)>2691—4,
if24(1—1),61(—2),and 42 1 (I — 3). It is easy to see that any [€ N with
42 | [fulfills the above conditions.

The following sequence (;),.y Was investigated by SALZER [Sal47]:

t1 =2,
tiv1 = tz(tZ — 1) + 1, for i > 1.

The first five numbers of this sequence are 2, 3,7, 43, 1807. Closely related
is the following series:

(4.1) By = i

i=1

> 1.69103.

t; —1
There are two basic relations for the Salzer numbers that can be derived
inductively from their definition:

ko 1 k
Z;+tk+1—1:1’ gti:tkﬂ_l.

i=1

Let A; = [N/t;] +1,1 < i < k, be the sizes of the parallel jobs on the
first £ levels. Setting A,y = N — Zfﬂ A; — 1, we can conclude that

Ak+1 <

N N
-1 Apq > —(k+1).
Tpe1 — 1 ’ P e — 1 ()

Jobs with Unit Execution Time

53

Jobs scheduled last by the
T) Level
//// f \\ on-line scheduler
| |
A 1—1Jobs
|
\

/

I
|
|
|
|

Figure 4.4: Job system used in lower bound proof

It is easy to see that t;,1 — 1 jobs of size Aj,; can be scheduled in one
timestep on N — 1 processors. To ensure that no more than ¢;,; — 1 jobs
of size A1 can be co-scheduled on N processors we choose N > (k +
1)(tk+2 — 1). The job system again consists of [> k +1 levels with one chain

54 On-Line Scheduling of Parallel Jobs
N
— D

C

B
Z
ol [|] e
7
g
=
&

A

1 . Time
0 l 21
Figure 4.5: Optimum schedule
N I I
&
2
o B
Q
el]
~
A
B
T Time
0 l 21 2.691

Figure 4.6: On-line schedule generated by LEVEL(FF)

Jobs with Unit Execution Time 55

of [—(k+1) tasks and [—(i—1) jobs of size A4;, 1 < 7 < k+1. Dependencies are
assigned dynamically as above. The length of the optimum schedule is [,
whereas every schedule generated by a deterministic on-line scheduler
has length at least

k+1 .
P_t(%ﬂ = (k+1).

From this and (4.1) we see that the competitive ratio can be brought arbi-

trarily close to 1 + Ay, for £ — oo, | = w(k).

The competitive ratio of LEVEL(FF) is in the interval [1 + hy, 2.7]. This
can be improved if the maximum size of a job is restricted to | N/2]:

Theorem 4.8 LEVEL(FF) is 2.5-competitive, if no job requests more than half of
the total number of processors.

Proof: Analogous to the proof of Theorem 4.5 using the second inequality
of Lemma 4.6. 0

The same bound holds if the Next-Fit-Decreasing (NFD) bin-packing
heuristic (presort the items in non-increasing order, then use NF) is used
instead of FE. This follows easily form the fact that the average efficiency

of 2 consecutive timesteps in a partial schedule for a level generated by
NFD is > 2/3 in this case.

Similarly to the unrestricted case, an asymptotic lower bound > 2.4 on
the competitive ratio of any deterministic on-line scheduler for this prob-
lem can be derived. Further restrictions of the maximum job size might
yield somewhat better competitive ratios for the LEVEL Algorithm, but
this situation is already handled well by the GENERIC Algorithm in
[FKST93, Sga94] which achieves competitive ratio 1 + 1/(1 —), if no
job requests more than AN, 0 < A < 1, processors. For example, A\ =
1/2 yields competitive ratio 3 for the GENERIC Algorithm that is valid for
job systems with arbitrary execution times.

We also remark that the results of this section remain valid if we as-
sume a 1-dimensional array of length N as interconnection topology
instead of using the complete model, since the BIN PACKING algo-
rithms assign consecutive processors to the jobs and the assignments in
different timesteps are independent from each other.

56 On-Line Scheduling of Parallel Jobs

4.3.3 Hypercube

In this section the problem of on-line scheduling job systems with arbitrary
precedence constraints and unit execution times for hypercube connected
parallel computers is studied. We will show that the LEVEL Algorithm,
using a suitable packing algorithm for hypercubes, achieves competitive
ratio 2 which matches the lower bound of Theorem 4.3 exactly. Hence, this
algorithm is optimal.

It is not difficult to schedule a set of independent parallel jobs each of
which requests a subcube of a certain dimension. First, we sort the jobs by
size in non-increasing order. To avoid fragmentation, we use only normal
subcubes for job execution:

Definition 4.9 A k-dimensional subcube is called normal, if the labels of all its
processors differ only in the last k positions.

For each timestep of our schedule we allocate jobs from the head of
the sorted list to normal subcubes while there are unscheduled jobs left
and the hypercube is not completely filled. If the timestep is full, we have
to add a new timestep to our schedule (if there are any unscheduled jobs
left). It is easy to see that the efficiency of this schedule for independent
jobs is 1 in all timesteps except possibly the last. We refer to this strategy
as PACK_HC. The algorithm for job systems with arbitrary dependencies is
just the LEVEL algorithm using PACK_HC instead of a 1-dimensional BIN
PACKING algorithm.

Theorem 4.10 LEVEL(PACK_HC) is an optimal deterministic on-line scheduler
with competitive ratio 2.

Proof: The number of iterations of the while-loop is exactly the length
of a critical path in the dependency graph. Thus Tc; < Thax < Topt-
Since the efficiency of the schedule is at least 1/N all the time, we have
by Lemma 4.1:

1-1/N 1
Tieverne < (1 + 1 /) Topt = (2 - N) Topt .

Since Theorem 4.3 implies the optimality of LEVEL(PACK_HC) the claim
of the theorem follows. O

Jobs with Unit Execution Time 57

4.3.4 2-Dimensional Array

We have seen in Section 4.3.2 that the problem of computing an on-line
schedule for a UET job system with dependencies for a 1-dimensional ar-
ray can be solved by using BIN PACKING as a subroutine. In this section
we generalize these results for 2-dimensional arrays. Let (N, N;), N; > 2,
¢ = 1,2, denote the vector of side-lengths of the 2-dimensional array, and
let (j1,72), 1 < ji < N;, denote the vector of side-lengths of a parallel
job J to be scheduled. If we normalize the side-lengths to fit into the unit
square [0, 1]% i.e., (z,y) := (j1/N1, j2/N2), the problem of scheduling a set of
independent jobs transforms into the 2-DIMENSIONAL GEOMETRIC PACK-
ING [GW95] problem which is defined as follows:

INSTANCE: List of items L = {(z1, 1), (®2,%2), .- -, (@Tn,¥n)}, 0 < 23,y < 1,
1< <n.

SOLUTION: A packing of L into a sequence of unit squares such that

1. each item is entirely contained in exactly one unit square with all
sides parallel to the sides of the bin,

2. no two items contained in the same bin overlap,

3. the orientation of each item is the same as the orientation of the unit
square in which it is contained (i.e., items must not be rotated).

MEASURE: The number k of unit squares used for the packing.
GOAL: Minimize k.

The generalization of this problem to higher dimensions is straightfor-
ward.

As already seen in Sections 4.3.2 and 4.3.3 the main difficulty is to find a
“good” packing algorithm. We adapt a result of L1 and CHENG [LC90] for
3-DIMENSIONAL GEOMETRIC PACKING. Although this packing algorithm
is asymptotically inferior to the Hybrid First-Fit (HFF) Algorithm [CGJ82]
it yields a better upper bound on the competitive ratio for the LEVEL Al-
gorithm due to a smaller additive constant in the performance estimates.

The basic building blocks of this packing algorithm are the following
two algorithms called L* and LY. Both algorithms try to pack a given list of
items into one unit square by packing certain subsets of items into layers.
A layer (or shelf) of a packing in direction of the z-axis is a rectangle of
width 1 such that

58 On-Line Scheduling of Parallel Jobs

1. the interior of each item is either completely inside or completely
outside of the rectangle,

2. each item inside the rectangle intersects the bottom of the rectangle,

3. every vertical line through the rectangle intersects at most one item.

The height of a horizontal layer is determined by the maximum height of
all the items it contains. Vertical layers are defined analogously.

Algorithm L” first packs all items with z; > 1/2 and puts each such
item in a separate horizontal layer starting at the origin of the unit square.
All remaining items are packed in their relative order into layers using the
Next-Fit Algorithm in direction of the z-axis: Whenever an item does not
fit into the active layer, the active layer is closed and never used again. A
new layer is created atop the previous layer (if possible) and becomes the
active layer. Algorithm LY is identical to Algorithm L* except that it works
in the direction of the y-axis.

A very similar packing algorithm (assuming that rotation of items is al-
lowed) was described by MEIR and MOSER [MM68]. The following lemma
is an immediate consequence of Theorem 4 in their article:

Lemma 4.11 Let L = {(xla yl)’ (‘7"2’ ?JZ); SRR (Ina yn)}/ Tiy Yi < 1/ 1 <i:<mn, be
a list of items such that:

1 2 >y;,1<i<n,
222> 2 Y,
Then L can be packed into a unit square using Algorithm L*.

An analogous statement holds for Algorithm LY. It is shown in [LC90]
that if any one of the three conditions in the above lemma is violated, the
algorithm may not be able to generate a legal packing.

To generate a packing for an arbitrary list of items we split L into 2
sublists L, = {(zs,%:) € L | x; > yi} and Ly == {(zi,4:) € L | yi > zi}.
Items with size x;; > 7/32 are packed into separate unit squares. The
remaining sublists are sorted by the appropriate coordinate and then split
further into sublists with total size between 7/32 and 7/16 that can now be
packed by Algorithm L* or LY respectively. We refer to this algorithm as
PACK_2D. The next lemma is obvious from the description of PACK_2D:

Jobs with Unit Execution Time 59

Lemma 4.12 If L = {(x1, 1), (2, Y2), - - -, (T, Yn)} 15 a list of items, then
PACK_2D(L) < %ix ;+2
- — 7 — Zy't I

where PACK_2D(L) denotes the number of unit squares used by PACK_2D to
pack L.

To compute an on-line schedule for UET job systems with dependen-
cies for 2-dimensional arrays we use the LEVEL Algorithm in combination
with PACK_2D.

Theorem 4.13 LEVEL(PACK_2D) is 46/7-competitive.

Proof: For each EPT level in the dependency graph there are at most 2
time steps in the on-line schedule generated by LEVEL(PACK_2D) with ef-
ficiency less than 7/32. Let N := N1 N,. If N > 5 we can apply Lemma 4.1
with a; =1/N, ap =7/32, and 3 = 2. This yields:

1-2/N 46 64
TieveL(Pack2p) < (2 + Té) Topt = <7 - ﬁ) Topt -

For N < 5 the claim follows from the fact that the efficiency of the on-line
schedule is always at least 1/N. O

To obtain a lower bound for deterministic on-line scheduling algo-
rithms we adapt the job system of the lower bound construction for the
complete model (cf. Section 4.3.2). The only change occurs in the defini-
tion of the job side-lengths. Let

(3] [5])
o (32 2])
o= (-[3] = [])
poe (v |8 e [2])

It is easy to see that jobs of type A cannot be scheduled together. Fur-

thermore, at most 2 jobs of type B, at most 2 jobs of type C, and at most 4
jobs of type D can be executed in one timestep if N; > 13,7 =1,2.

60 On-Line Scheduling of Parallel Jobs

The optimum solution needs time [because it is possible to schedule
one job of type A-D together with a task from the chain (see Figure 4.7).

Figure 4.7: Packing of jobs in the optimum schedule

Again, the on-line scheduler can be forced to schedule the job system
level by level and therefore the schedule length is at least

[—11 [1-2] [I-3
z+[. %[. %[. W+(1—4)>3.255—5.5,

if | > 61is even.

Thus, we have an asymptotic lower bound of 3.25 on the competitive
ratio of any deterministic on-line scheduler for 2-dimensional arrays with
side-lengths at least 13.

4.3.5 Other Topologies

We have seen so far that the LEVEL Algorithm performs quite well for
several interconnection topologies that are frequently used in parallel sys-
tems. For these results the existence of an efficient packing algorithm that

Job Systems with Restricted Runtime Ratio 61

guarantees a reasonable utilization of the resources is fundamental. The
following theorem gives a general result for arbitrary networks:

Theorem 4.14 Let PACK be a packing algorithm for a given network T, let
(J,=) be a job system with job types suitable for T, J' C J an arbi-
trary subset of independent jobs, and w : J — R a weighting function. If
PACK(J") < 3 ez w(j) +c for a constant ¢ € Ny, and if 3, ; w(j) < a - Topt
for a constant a € R*, it holds that

TieveL(Pack) < (a+ C)Topt .

The proof of this theorem is analogous to the proof of Theorem 4.5. It
is not hard to see that all upper bounds on the competitive ratio of our
on-line algorithms in this section could be derived using the above theo-
rem. However, since the weighting function w is very simple in all but one
case, we preferred to give the more direct proofs using Lemma 4.1. This
approach has also the advantage of yielding somewhat better bounds on
the competitive ratio for small numbers of processors.

4.4 Job Systems with Restricted Runtime Ratio

We have shown in the preceding section that for various network topolo-
gies on-line scheduling of parallel jobs with unit execution time and
precedence constraints is possible with small constant competitive ratio.
On the other hand, if execution times are arbitrary, there exists no on-
line scheduling algorithm with acceptable competitive performance for
this model [FKST98, Sga94]. It is therefore only natural to explore the case
that job runtimes are restricted by some criterion other than unit execution
time in order to achieve a satisfactory competitive ratio.

For a set of jobs J we therefore define the runtime ratio RR(J) :=
tmax/tmin- In this section we study the problem of on-line schedul-
ing job systems with dependencies where the runtime ratio is bounded
from above by a parameter T > 1 which is not known to the on-line
scheduler. This problem often arises in practice when a priori estimates
of the maximal and minimal running time of any job are available but the
actual running times are unknown. This situation also makes it clear that
the parameter T cannot be used as additional information for scheduling
decisions by the on-line scheduler and is therefore not part of the problem

62 On-Line Scheduling of Parallel Jobs

instance. Indeed, our results show that this knowledge is not necessary
for the on-line scheduler to achieve a near optimal competitive ratio that
depends only on 7.

441 A General Lower Bound

First, we give a lower bound of (T + 1)/2 on the competitive ratio of any
deterministic on-line scheduler that holds for any interconnection topol-
ogy.

For simplicity we normalize the running time of the shortest job to 1.
The job system used in this lower bound argument is very simple (see
Figure 4.8) and consists of N > 2 layers with two tasks and one parallel
job of size N on each layer. The parallel job depends on one of the tasks
on the same layer and is predecessor of both tasks of the following layer.
The task scheduled first by the on-line scheduler is assigned running time
Ty and the remaining task runs for 1 unit of time and is predecessor of the
parallel job which also needs 1 unit of time for execution.

Layer 1 Layer 2 Layer N

Jobs are given by:
(#Proc, Time)

[]
[]

1,1)

(1,Tp) (N, 1)

Figure 4.8: Difficult job system for RRR-scheduling

Clearly, the makespan of any schedule generated by an on-line sched-
uler is at least N(Tg + 1). If Ty is sufficiently large (e.g.,, Tr > 2), the
optimum solution first schedules the critical path which has length 2NV

Job Systems with Restricted Runtime Ratio 63

followed by the tasks of length Ty in parallel. The competitive ratio of any
deterministic on-line scheduler is thus lower bounded by
N (TR + 1) . TR +1

[4

ON +Tp Nooo 2

Next we show that the lower bound of (T + 1) /2 also holds for ran-
domized on-line scheduling algorithms working against an oblivious
adversary. To show this, we modify the job system slightly. Each layer
of the job system now has [v/N] tasks instead of two. Exactly one of these
[v/N] tasks is predecessor of the parallel job of size N. This task and the
parallel job have running time 1 whereas all remaining tasks run for time
Tgr. The parallel job is predecessor of all tasks of the following layer (if
any). All running times and dependencies are assigned in advance and
do not depend on the decisions and random choices of the randomized
on-line scheduler.

We can lower bound the length of the partial schedule for each layer
generated by the on-line algorithm as follows. In the best case the on-line
scheduler picks only one task for execution and this task is the predecessor
of the parallel job on the same layer. Then the length of the partial sched-
ule for this layer is at least 2. In any other case the length of the partial
schedule will be at least T + 1 because a task with running time 7% has to
be executed ahead of the parallel job. From this we can readily compute a
lower bound on the expected schedule length for any randomized on-line
scheduler RALG. Since no on-line algorithm can distinguish between the
tasks of one layer, the probability that the length of the partial schedule
is in the interval [2, T + 1) is at most 1/[v/N] which is the probability to
choose the “right” task. Using linearity of expectation we conclude:

E[Trael > N (1/[VN] -2+ (1= 1/[VN]) - (Tr + 1))
=N (Tr+1)+o(N).

As before it is easy to see that the optimum schedule length is 2V +
([VVN] — 1)Tx. This yields the desired lower bound on the competitive
ratio of any randomized on-line scheduling algorithm against an oblivious
adversary:

N(Tg +1)+o(N) . Tr+1
AN +([VN] =)Ty Noe 2

We summarize the preceding discussion in the following

64 On-Line Scheduling of Parallel Jobs

Theorem 4.15 For an arbitrary network topology the competitive ratio of any de-
terministic or randomized on-line algorithm for scheduling any job system (7, <)
with RR(J) < Tr on that topology cannot be smaller than (I'r +1)/2.

4.4.2 Complete Model

We now describe an algorithm for the complete model designated RRR
(see Figure 4.9) that is (I’r/2 + 4)-competitive. A key feature of this algo-
rithm is the distinction between big jobs that request more than half of the
total number of processors and small jobs with size < | N/2].

Let o := a(t) denote the efficiency at time ¢. The RRR Algorithm tries
to keep the efficiency at least 1/2 whenever possible. There are two rea-
sons that hinder the RRR Algorithm from achieving this goal. First, there
might be no job available and second, there might not be enough proces-
sors available to schedule a big job.

The second case is much more severe than the first one which can be
handled by the GRAHAM argument (cf. Lemma 4.2) without much loss of
performance. Therefore, the RRR Algorithm must prevent big jobs from
being delayed too long in order to bound the fraction of the total sched-
ule length with low efficiency. This is done by occasionally stopping to
schedule small jobs, if all big jobs request more processors than currently
available and the efficiency is below 1/2.

We present two versions of the RRR Algorithm. The first one assumes
that ¢min is a known quantity. Again, we normalize the running time of the
shortest job to 1 and a unit of time refers to this normalized time quantum.
In the second version we remove this assumption and employ an adaptive
waiting strategy to maintain a comparable competitive ratio. The RRR Al-
gorithm maintains two sets, L; and L,, containing the available big and
respectively small jobs. We assume that any job that becomes available is
immediately inserted into the appropriate set, and we will not state this
activity explicitly in the pseudo-code description of our algorithms.

Theorem 4.16 The RRR Algorithm is (Tr/2+4)-competitive for any job system
(J, <) withRR(T) < Tg.

Proof: We partition the schedule generated by the RRR Algorithm into 3
different kinds of phases:

Job Systems with Restricted Runtime Ratio 65

Algorithm RRR
begin
while L, # () do
schedule a big job exclusively;
while not all jobs are finished do
begin
while L, # () do
schedule small jobs greedily;
if L, # () then
if a big job can be scheduled then
doit;
else
if « > 1/2then
wait for a scheduled job to finish;
else // start of a delay phase
collect small jobs that become available
during the next 2 units of time;
schedule those jobs greedily and
then wait for all scheduled jobs to finish;
while L; # () do
schedule a big job exclusively;
fi;
fi;
else
wait for next available job;
fi;
end;
end.

Figure 4.9: The RRR Algorithm

1. Efficiency is at least 1/2.
2. Efficiency is below 1/2 and there is no job available.

3. Efficiency is below 1/2 and the algorithm waits for the termination
of all jobs.

We refer to the third type as a delay phase and denote the total time of
each kind by T%1/2 , Thojob , and Tyelay respectively. The total time of the RRR
schedule that is spent in phases of type 1 and 2 can easily be bounded by

66 On-Line Scheduling of Parallel Jobs

3 Topt , because we have T/, < 2T, by a straightforward area-argument
and Thojob < Tmax < Topt by Lemma 4.2.

It remains to show that Tyelay < (Tr/2+1)Top: . We define a delayed job as
a big job that was available at the beginning of a delay phase. Let ¢; denote
the start time of delay phase :. First, we bound the length of a delay phase
by T + 2. If no small jobs become available during the first two units of
time after the beginning of a delay phase, no more jobs are scheduled until
all currently running jobs terminate. Since the running time of any job is
no more than Tg, such a delay phase lasts at most time 7.

On the other hand, if small jobs become available during the first two
units of time, these are collected and scheduled greedily at time ¢} = ¢; + 2
(resp. t; < t; + 2 if all jobs running at time ¢; terminate before two units
of time have elapsed) in addition to those jobs still running at time ¢ . If
the total size of these small jobs (i.e., the total number of processors that
all these small jobs request) is no more than the number of idle processors
at time ¢;, they can be scheduled immediately. Clearly, the length of a
delay phase is bounded by T + 2 in this case. Should the total size of the
small jobs exceed the number of idle processors at time ¢; we can schedule
enough small jobs to raise the efficiency above 1/2 as long as small jobs
that were collected during the interval [¢;, ¢{] are available. The time-span
while the efficiency is at least 1/2 is, of course, a phase of type 1 and not
part of the delay phase. Obviously, the length of the second part of a delay
phase is bounded by T, and therefore the length of a delay phase is always
bounded by Ty + 2.

Let d denote the number of delay phases in a schedule generated by
the RRR Algorithm. We distinguish two cases:

1. d = 1: We have to show that the optimum solution needs at least
time 2. This follows immediately from the fact that each delayed
job must have a predecessor in the job system because otherwise it
would have been scheduled earlier.

2. d > 1: This case will be proven by constructing a chain of jobs in the
dependency graph with total execution time at least 2d. From that
we have T,y > 2d and together with Tye.y < d(Tx + 2) the claim
follows.

The construction of this chain proceeds as follows: Starting with an
arbitrary delayed job that is scheduled after delay phase d we observe that

Job Systems with Restricted Runtime Ratio 67

there must be a small job that is ancestor of this delayed job and is avail-
able immediately after the delayed jobs of delay phase d — 1 (i.e., without
having a small job as direct predecessor that is itself scheduled after the de-
layed jobs of delay phase d — 1) because otherwise this delayed job would
have been scheduled earlier. We add such a small job at the front of the
chain.

To augment the chain, we state the possibilities for the direct prede-
cessor of a small job that is scheduled by the RRR Algorithm immediately
after the delayed jobs of delay phase i:

Type 1: Delayed job of delay phase i or
big job that is successor of a delayed job of delay phase ¢,

Type 2: Small job collected during delay phase 3,
Type 3: Small job running from the beginning of delay phase i.

This is due to the fact that the RRR Algorithm schedules all small jobs that
are available by time ¢ before the delayed jobs of delay phase :.

We continue the construction inductively according to these three pos-
sibilities. If there is a direct predecessor of Type 1 of the small job that is
currently head of the list, we can repeat the initial construction step of the
chain and add a delayed job and its small ancestor at the front of the chain.
When there is no direct predecessor of Type 1 but a direct predecessor of
Type 2, we add 2 more jobs at the front of the chain: the Type 2 job and
a direct predecessor of this job that was running at the beginning of the
delay phase during which this Type 2 job was collected. Finally, if there
is only a direct predecessor of Type 3, we add this job at the front of the
chain. The inductive construction stops as soon as the head of the chain
is a small job that is scheduled before the delayed jobs of the first delay
phase.

To complete the proof, we show that the total execution time of the jobs
along this chain is at least 2d. The construction of the chain starts with 2
jobs, a delayed job and its small ancestor. Since the minimum running time
of any job is 1, these 2 jobs need at least 2 units of time for execution in any
schedule. If the construction proceeds by adding a Type 1 job, the same
argument applies. Continuing with a Type 2 job means that again 2 more
jobs were added to the chain. If a Type 3 job is encountered, we know that
this job must have execution time at least 2 because it is direct predecessor
of a small job that is scheduled immediately after the delayed jobs of the

68 On-Line Scheduling of Parallel Jobs

delay phase the Type 3 job belongs to. Thus, for each delay phase in the
schedule generated by the RRR Algorithm, the above construction adds
jobs with total execution time at least 2 to the chain. O

The assumption that ¢, is known to the RRR Algorithm can be
dropped by employing an adaptive waiting strategy without much loss
in competitive performance. We describe this adaptive version separately
in order to keep our presentation modular. The modifications of the RRR
Algorithm are as follows (see also Figure 4.10): Since ¢min is now unknown
the RRR_ADAPTIVE Algorithm does not collect small jobs during the first
delay phase. In all following delay phases (if any), the algorithm calcu-
lates ¢!, , the minimum execution time of any finished job up to the start
of delay phase i. The duration during which small jobs are collected is
now limited by 2¢: .. (and, of course, by tmay since the collection of jobs
ends as soon as all scheduled jobs finish their execution).

Theorem 4.17 The RRR_ADAPTIVE Algorithm is (T'r/2 + 5.5)-competitive for
any job system (J , <) with RR(J) < Tg.

Proof: With the notation of the proof of Theorem 4.16 we conclude analo-
gously that the above theorem holds for d = 1. If d > 1, we have

d
Tdelay <d- Tmax + 2 Z t:nin :

1=2

i=2 Umin
that after delay phase i, 1 < ¢ < d, at least one delayed job has to be
scheduled. Let t%! := ¢y, . The running time of such a delayed job is at
least ¢}l , since this job is executed before the start of delay phase i + 1 (if
i < d). Even in an optimum schedule all delayed jobs must be scheduled
sequentially because they require more than half of the available proces-

sors for execution. Therefore:

First, we show that 2 Zd <2 Topt — 2 tmin - To see this, we observe

d+1

d
(4.2) 2Tt > 2 tiin =2 tiin + 2tmin -
1=2

1=2

As in the proof of Theorem 4.16 we can construct a chain of jobs in
the dependency graph with total execution time at least (2d — 1)tmin . The
only difference in the construction is that there is no collection of small
jobs during the first delay phase and therefore a Type 3 job might only

Job Systems with Restricted Runtime Ratio 69

Algorithm RRR_ADAPTIVE

begin
1:=0; //1icountsthe number of delay phases
while L, # () do

schedule a big job exclusively;
while not all jobs are finished do
begin
while L, # () do
schedule small jobs greedily;
if L, # () then
if a big job can be scheduled then
doit;
else
if « > 1/2 then
wait for a scheduled job to finish;
else // start of a delay phase
if i > 0 then
1:=1+1;
tt .. := current minimum execution fime;
collect small jobs that become available
for fime <2, ;
schedule those jobs greedily
and then wait for all scheduled jobs to finish;
else
1:=1+1;
wait for all scheduled jobs to finish;
fi;
while L, # (do
schedule a big job exclusively;
fi;
fi;
else
wait for next available job;
fi;
end;
end.

Figure 4.10: The RRR_-ADAPTIVE Algorithm

70 On-Line Scheduling of Parallel Jobs

run for time ¢, in this delay phase. This yields another lower bound on
the optimum schedule length:

(43) Topt > (Zd - 1)tmin-

From (4.2) and (4.3) we conclude:

d
Tdelay < d- Tmax + 2 Z tfnin

1=2
S d- tmax +2Topt - 2tmin
< @127k Topt + bmax . 2 Topt

- 2d—1
T 5
S (74‘5) Topt-

If the number of delay phases of a schedule is less than (T + 1)/2, we
can derive a better upper bound:

2

Tdelay < (d + 2) Topt -

However, this bound is useful for a posteriori analysis only, since the
number of delay phases can be arbitrarily large. Since the total sched-
ule time that is spent in phases of type 1 and 2 (cf. proof of Theorem 4.16)
is bounded by 3 Ti,p, the proof is complete. O

Clearly, both algorithms can easily compute the runtime ratio RR(J)
for any scheduled job system 7. From this, we can bound the actual per-
formance for the generated schedules:

Trrr < (RR(T)/2 +4) Topt
TRRR_ADAPTIVE S (RR(J)/z + 5-5) Topt .

For practical purposes it is desirable to have tools that allow to control
the performance of a scheduler in addition to worst-case guarantees such
as the competitive ratio. Let Ti,;; be the sum of the execution times of all
big jobs in J, and let W,a1 denote the total work of all jobs. Then we have
the following lower bound on the length of an optimum schedule:

Topt > max {Wtotal/ N ’ Tinax ; Tbig} .

Again, our on-line algorithms can compute Wi and T,z during the
scheduling process. Assuming that the on-line scheduler has knowledge

Job Systems with Restricted Runtime Ratio 71

of the predecessor/successor relationships (which usually will be the case
after all jobs have been scheduled), Ti.x can be computed by searching a
longest path in the dependency graph. The quotient of the length of the
on-line schedule and the above lower bound is then an upper bound for
the performance of our on-line schedulers.

4.4.3 Characteristics of the RRR Algorithm

Both algorithms presented in the previous section have two characteristics
that we study in more detail in this section:

e Waiting. If not all processors for a big job to be scheduled are avail-
able, the algorithms wait until all currently executing jobs terminate.

e Collecting. Although the algorithms decide to wait they first collect
and then jointly execute small jobs that become available during a
specified time-span after a delay phase has started.

We show that waiting is (in a restricted sense to be made precise) neces-
sary for deterministic on-line schedulers for any interconnection topology
to achieve a competitive ratio that is close to the general lower bound of
Section 4.4.1. Furthermore, we argue that collecting is essential for the
RRR Algorithm.

To this aim, we say that an on-line scheduler is greedy if some avail-
able job is scheduled whenever this is possible. Clearly, the RRR and
RRR_ADAPTIVE algorithms are not greedy in the sense of this defini-
tion. The next theorem shows that a greedy algorithm cannot reach the
lower bound:

Theorem 4.18 The competitive ratio of a deterministic greedy on-line scheduler
for job systems with runtime ratio no more than Tg on an arbitrary network is
unbounded.

Proof: As in the proof of the general lower bound we construct a job
system that consists of N > 5 layers (see Figure 4.11). Each layer has a
task that is predecessor of a parallel job of size N on the same layer. Fur-
thermore, there is a chain of tasks of length £ > 2 and k additional tasks
numbered from 1 to k. Task j > 2 is successor of the (j — 1)’th task of
the chain. Consequently, each layer starts with 3 independent tasks. The

72 On-Line Scheduling of Parallel Jobs

parallel job is predecessor of these 3 task on the next layer (if any). The task
on each layer scheduled first by the on-line scheduler is chosen as Task 1
with running time Ty by the adversary. The next one will be the head of
the chain with running time Tp — ¢ with ¢ > 0. The remaining task runs
for 1 unit of time.

We normalize the beginning of each partial schedule to time 0. Since
the algorithm is greedy the parallel job becomes available at time 1 but
cannot be scheduled. At time Tr — ¢ the first task of the chain finishes
and two more tasks become available. These tasks are immediately sched-
uled since there are enough processors available. Again, the task from the
chain is assigned running time Tx — ¢ whereas Task 2 runs for time Tj.
This pattern is repeated until all tasks of this layer finish their execution.
Finally, the greedy on-line scheduler is able to schedule the job of size V.
The length of each partial schedule is thus at least k7% for € sufficiently
small.

The optimum solution schedules the UET jobs first followed by the N
chains in parallel. The remaining kN tasks are scheduled in parallel at
the end of the optimum schedule. It is easy to see that the length of the
optimum solution is less than 2(N + kT%).

From this we can instantly conclude that the competitive ratio of a de-
terministic greedy on-line scheduler cannot be less than k7%/2. Choosing
k as a function of N such that k(N) = w(1) but k£ = o(IV) yields the claim of
the theorem. O

After having shown the importance of waiting we now study the in-
fluence of collecting. Since non-greedy on-line schedulers may employ
very different waiting strategies we only consider the RRR Algorithm
in the complete model. We modify the RRR Algorithm by omitting the
collection of small jobs during the first 2 units of time of a delay phase.
Furthermore, we drop the restriction that big jobs have to be scheduled
exclusively in certain situations. We refer to this modified algorithm as
RRR_SIMPLE.

We show now that the performance of the RRR_SIMPLE Algorithm is
substantially worse than the performance of the RRR Algorithm. The ad-
versary again uses a job system that consists of N > 5 layers. Each layer
has 5 tasks. A job of size N — 2 requiring one unit of time for execu-
tion is added to each layer but the first one. This job depends on one
task from the preceding layer. The first 3 tasks of each layer scheduled
by the RRR_SIMPLE Algorithm are assigned running time 7% . The fourth
one is chosen as the predecessor of the parallel job and runs for 1 unit of

Job Systems with Restricted Runtime Ratio 73

Layer 1 Layer 2
Jobs are given by:
(#Proc, Time)
(17TR_€) (17TR_€) (15TR_€) (15TR_€)
Task 1 Task 2 Task 1 Task2| | |- >
(1a TR) (1a TR) (1a TR) (1a TR)
]]
L L L L
(1,1) (N, 1) (1,1) (N, 1)

Figure 4.11: Bad job system for deterministic greedy on-line schedulers

time. Finally, the fifth task scheduled needs time 1 + ¢, ¢ > 0, for execution
and is predecessor of all tasks on the next layer (if any).

This timing makes sure that the job of size N — 2 becomes avail-
able to the on-line scheduler before the tasks of the same layer. Thus,
the RRR_SIMPLE Algorithm enters a delay phase and this prevents the
available tasks from execution until all tasks from the preceding layer
have finished. But even then only 2 tasks can be scheduled in parallel
with the job of size N — 2. Therefore, it is not hard to see that for ¢ suffi-
ciently small the competitive ratio of the RRR_SIMPLE Algorithm cannot
be smaller than Ty + 1.

4.4.4 Other Topologies

The RRR and RRR_ADAPTIVE algorithms rely heavily on the complete
model assumption which avoids fragmentation of the idle processors.
On other topologies like hypercubes and arrays fragmentation is likely
to occur frequently when jobs with unknown execution times are sched-
uled in parallel.

SGALL [Sga94] has shown that no deterministic or randomized on-
line algorithm can be o(log N/ loglog N)-competitive for N processors for
scheduling job systems with arbitrary running times on a 1-dimensional

74 On-Line Scheduling of Parallel Jobs

array even when virtualization is allowed. The proof can be modified for
job systems (7, <) with RR(J) < Tg to show that no deterministic on-
line scheduler for 1-dimensional arrays can have competitive ratio better
than Ty .

To obtain upper bounds on the competitive ratio for arbitrary network
topologies we use the LEVEL Algorithm. It is understood that the job pack-
ings computed by the packing subroutine are executed sequentially. The
following theorem is a straightforward generalization of Theorem 4.14:

Theorem 4.19 Let PACK be a packing algorithm for a given network T, let
(J,=) be a job system with job types suitable for T and RR(J) < Tg,
J' C J an arbitrary subset of independent jobs, and w : J — R a weight-
ing function. If PACK(J') < > e w(j) + ¢ for a constant ¢ € No, and if
Y ies W) < a- Top foraconstant a € R, it holds that

TLEVEL(PACK) < (a + C)TR ' Topt .

Proof: Let J; denote the set of jobs when all running times of the jobs in J
are reduced to 1, and let S and S; denote the schedules generated by the
LEVEL algorithm for both job systems. Clearly, |S| < Ty |S1|. Since Topi(J)
cannot be smaller than T;,p«(J1) the claim of the theorem follows. O

For hypercubes the above theorem yields that the LEVEL(PACK_HC)
Algorithm is (27y)-competitive. This result can be improved if we drop
the assumption that the individual packings are executed sequentially.
Rather, we use a modification of PACK_HC to generate a partial sched-
ule for the whole level. In the beginning the jobs of a level are sorted by
size in non-increasing order as before. Then, jobs are scheduled from the
head of the sorted list to normal subcubes while there are idle processors
or no more jobs left. Whenever a job finishes, PACK_HC is able to reuse all
the processors if there are enough unscheduled jobs. Therefore, the effi-
ciency of a partial schedule is 1 except possibly for time at most 7% at the
end of the partial schedule. With Lemma 4.1 we have that this algorithm
is (T + 1)-competitive.

Chapter 5

Load Balancing for Problems
with Good Bisectors

In this chapter we study load balancing for a very general class of prob-
lems. The only assumption we make is that all problems in the class have
a certain bisection property. Such classes of problems arise, for example,
in the context of distributed hierarchical finite element simulations. We
show that a satisfactory load balancing quality can be achieved even in
the worst case using a quite simple strategy. The tight worst-case upper
bound on the maximum load generated by this algorithm depends only
on the particular bisection property of the class of problems under con-
sideration. Although our approach may appear sequential in nature at
first sight, we provide efficient parallel algorithms for our load balancing
model in the next chapter. Furthermore, we show how our general results
can be applied to numerical applications in several ways.

The remainder of the chapter is structured as follows. In Section 5.1 we
present and analyze a very general algorithm that computes a good load
distribution for classes of problems with a-bisectors. Section 5.2 briefly
explains distributed finite element simulations with recursive substruc-
turing. Two strategies for applying the algorithm from Section 5.1 to these
applications are discussed. Section 5.3 shows that certain weighted trees,
which model the load of applications in numerical simulations like the
one discussed in Section 5.2, have 1/4-bisectors. This implies that the
maximum load generated by our novel load balancing algorithm for
these applications exceeds the ideal load (uniform distribution) by at
most 9/4. In Section 5.4 we classify the new algorithm according to the
scheme presented in Chapter 3.

76 Load Balancing for Problems with Good Bisectors

5.1 Using Bisectors for Load Balancing

In many applications a computational problem cannot be divided into
many small problems as required for an efficient parallel solution directly.
Instead, a strategy similar to divide and conquer is used repeatedly to divide
problems into smaller subproblems. We refer to the division of a problem
into two smaller subproblems as bisection. Assuming a weight function
w that measures the resource demand, a problem p cannot always be bi-
sected into two subproblems p; and p, of equal weight w(p)/2. For many
classes of problems, however, there is a bisection method that guarantees
that the weights of the two resulting subproblems do not differ too much.
The following definition captures this concept more precisely.

Definition 5.1 Let 0 < a < 1. A class P of problems with weight function w :
P — R* has a-bisectors if every problem p € P can be efficiently divided into
two problems p; € P and p, € P with w(p1) + w(pz) = w(p) and w(p;), w(pz) €
[aw(p), (1 — a)w(p)].

For a class of problems P that has a-bisectors we refer to « as the bi-
section parameter of P. When a problem p € P is bisected into p; and p,
such that w(p;) < w(p,) we let & := w(p;)/w(p) and call & the actual bisection
parameter of that bisection.

The above definition characterizes classes of problems that have a-
bisectors in a very abstract way. In a particular application, problems
might correspond to subdomains of a numerical computation, to parts
of a simulated system, to parts of the search space for an optimization
problem (cf. [KZ93]), or to program execution dags.

Note that this definition requires, for sake of simplicity, that all prob-
lems in P can be bisected, whereas in practice this is not the case for
problems whose weight is below a certain threshold. We assume, how-
ever, that the problem to be divided among the processors is large enough
to allow further bisections until the number of subproblems is equal to the
number of processors. This is a reasonable assumption for most relevant
parallel applications.

A definition very similar to ours (using the term a-splitting) is used
by KUMAR, GRAMA, and RAO [KV87, KGV94] [KGGKY%, pp. 315-318]
under the assumption that the weight of a problem is unknown to the
load balancing algorithm.

Using Bisectors for Load Balancing 77

5.1.1 Tight Analysis of Algorithm HF

Algorithm HF(p, V)
begin
P :={p}.
while |P| < N do
begin
g :=a problem in P with maximum weight;
bisect ¢ intfo ¢ and ¢;
P:=PU{q,e})\{d¢}
end;
return P;
end.

Figure 5.1: Algorithm HF (Heaviest Problem First)

Figure 5.1 shows Algorithm HF, which receives a problem p and a
number N of processors as input and divides p into N subproblems by
repeated application of a-bisectors to the heaviest remaining subprob-
lem. Using a priority queue for the subproblems, we can implement
Algorithm HF to run in time ©@(Nlog N) provided that a bisection of
a problem takes constant time. Subsequently, the subproblems have to
be sent to the processors adding communication costs depending on the
topology of the network.

A perfectly balanced load distribution on N processors would be
achieved if a problem p of weight w(p) was divided into N subproblems
of weight exactly w(p)/N each. The following theorem gives a worst-case
bound on the ratio between the maximum weight among the NV subprob-
lems produced by Algorithm HF and this ideal weight w(p)/N. The case
that more than N subproblems are generated is discussed in Section 5.1.3.

Theorem 5.2 Let P be a class of problems with weight function w : P — R* that
has a-bisectors. Given a problem p € P and a positive integer N, Algorithm HF
uses N — 1 bisections to partition p into N subproblems p;, ... , px such that

max)<< —= .
1§i§NW(pz)_ N e

where

«

Te = FJ 1= a)lsl2,

78 Load Balancing for Problems with Good Bisectors

Proof: It is obvious that Algorithm HF uses N — 1 bisections to partition p
into NV subproblems. In the following we show that the stated inequality
regarding the maximum weight among these subproblems holds.

We introduce the bisection tree TN to represent the run of the algorithm
on input p and N. The root of 7' is the problem p. If the algorithm bi-
sects a problem ¢ into ¢; and ¢, nodes ¢; and ¢, are added to TpN as
children of node ¢. In the end, T} has N leaves, which correspond to
the N subproblems computed by the algorithm, and all problems that
were bisected by the algorithm appear as internal nodes with exactly
two children. We observe that the run of any bisection-based load bal-
ancing algorithm corresponds to a certain bisection tree. Figure 5.2 gives
an example of a bisection tree for a problem of weight 44 from a class of
problems with 1-bisectors. We follow the convention of drawing the node
with greater weight among two children of the same parent as the left
child of that parent.

The following properties hold for bisection trees arising from classes of
problems with a-bisectors. Let the leaves of the tree be p;, ..., py and let
m = MaXi<i<N W(pz)

(@) w(g) > m for all internal nodes ¢

(b) w(g) > ﬁw(q') if ¢’ is a child of ¢

(a) holds because the algorithm always bisects a subproblem of maximum
weight; since one of the p; has weight m, there must have been at least one
subproblem of weight > m during the whole run of the algorithm, and
thus the algorithm never bisected a problem of weight < m. (b) follows
directly from w(q') < (1 — a)w(g), which holds because the algorithm uses
a-bisectors.

Now remove from the bisection tree all internal nodes which are not
parent of a leaf. This partitions the bisection tree into a number of dis-
joint branches, whose shape can be that of a leaf-branch (one of the internal
nodes of the branch has two leaf children) or that of an internal branch (all
the internal nodes of the branch have exactly one leaf child). The branches
obtained from the example tree of Figure 5.2 are shown in Figure 5.3. Our
goal is to derive a lower bound on the average weight of the leaves in each
branch.

Consider a leaf-branch with & internal nodes, k£ > 1. Denote its internal
nodes by v1, vy, ..., v such that v;,; is the parent of v; for 1 < < k — 1.

Using Bisectors for Load Balancing

79

Figure 5.2: Example of a bisection tree

(a) leaf-branch (b) leaf-branch (©) mternal branch

Figure 5.3: Branches obtained from the example tree

Figure 5.4: Composed leaf-branches obtained from the example tree

80 Load Balancing for Problems with Good Bisectors

Furthermore, let ¢; denote the leaf child of v; for 2 < 7 < k, and let ¢y and
c1 denote the leaf children of v; . As (a) implies w(v,) > m, we have by (b)

w(v;) > (ﬁ)i_lm forl < < kandw(g) > o (ﬁ)l_lm forl <i < k.
The average weight of the leaves ¢y, ..., ¢t can now be bounded from
below as follows:

1 k 1 k 1 i—1
) >
k+1ZZO:W(CZ) = k+1<m+;a(1—a) m)

1 “— 1
= E+1 <m(1—a)+am§m>
1

= 3 (m(l—a)+m(a—1) (Pﬁ))

m
(k+ 1)1 —)1

If there are internal branches, we do not deal with them separately but
instead attach them to leaf-branches. For example, one can consider the
leaf-branches one by one and attach to each leaf-branch all internal
branches that intersect the path from the leaf-branch to the root of the
bisection tree and that have not been attached to a different leaf-branch
before. Here, attaching an internal branch to a leaf-branch means mak-
ing the root of the leaf-branch a child of the bottom-most internal node
of the internal branch, resulting in a new leaf-branch. We call the leaf-
branches obtained by attaching zero or more internal branches to an
original leaf-branch composed leaf-branches. Observe that conditions (a)
and (b) are satisfied for these composed leaf-branches as well. Hence, the
lower bound above also pertains to the average weight of the leaves in
such a composed leaf-branch. The bisection tree from Figure 5.2 contained
two leaf-branches and one internal branch as illustrated in Figure 5.3. At-
taching the internal branch to one of the leaf-branches gives the composed
leaf-branches shown in Figure 5.4.

As every leaf of the bisection tree appears in exactly one composed
leaf-branch, we conclude that mingey W is a lower bound on the
average weight of all leaves in the bisection tree. Therefore, we obtain

N

_ 1
(5.1) w(p) = ;w(pi) > Nm.min FrDa—aF T

Using Bisectors for Load Balancing 81

Besides, we observe that

G2 IR G DA - maxeen (R DA —aF)

and we claim that (k + 1)(1 — «)*~! as a function of k¥ € N is maximized for
E=|1/a] —1. To see this, let f(k) = (k+1)(1 — a)*~" and consider the ratio
fk)/ f(k—1)=(1 - a)(k +1)/k. We obtain:

>1 fork<%—1
=1 fork:%—
<1 fork>1-1

k)
Fk—1)

For a fixed value of «, f(k) is monotone increasing from k£ = 1 to k =
|1/a| — 1 and monotone decreasing for larger values of k. If 1/« is not
an integer greater than 2, f(k) is maximum only for k = [1/a] — 1. If 1/
is an integer greater than 2, f(k) is maximum for k¥ = |1/a] — 1 and for
k = |1/a] — 2. In any case we have maxgen ((k +1)(1 — a)*7") = f(|1/a) —
1) = r,, and the theorem follows with (5.1) and (5.2). O

For some values of o, Table 5.1 gives worst-case bounds on the ratio
between maxi<;<ny w(p;) and ‘”T(p) as well as a value of k£ for which (k +
1)(1 — a@)* ! is maximized. These bounds show that the worst-case devia-
tion from the ideal load distribution, in which w(p;) = WT(”) foralll <i <N,
is bounded by a small constant for a wide range of c. We observe that r,, is
equal to 2 for « > 1/3, below 3 fora > 1 — 1/v/2 = 0.159, and below 10 for
a > 0.04. Hence, Algorithm HF achieves provably good load balancing
for classes of problems with a-bisectors for a surprisingly large range of c.
Note that in many cases an ideal load distribution cannot be achieved by

any algorithm.

Corollary 5.3 Let P be a class of problems with weight function w : P — R*
that has o-bisectors. Given a problem p € P and a positive integer N, Algo-
rithm HF uses N — 1 bisections to partition p into N subproblems py, ..., py
such that

w(p) 1
e < Ty e(l—a)Inl;

Proof: In the proof of Theorem 5.2 it was shown that

(5.3) max w(p;) < WT(p) . I}clng((k +1)(1 —).

1<i<N

82 Load Balancing for Problems with Good Bisectors

Table 5.1: Worst-case ratio of Algorithm HF for different values of o

o k | ratio «o k | ratio o k | ratio
0.02 | 49 | 18.96 021 | 3| 2.50 031 |2]| 207
0.04 | 24| 9.78 022]3] 243 032 (2] 204
0.06 | 15| 6.73 0.23 | 3| 237 0.325 | 2 | 2.025
008 | 11| 5.21 024 | 3] 231 033 | 2| 201
0.10 | 8| 4.30 02512 225 0.331 | 2 | 2.007
012 7| 3.72 0261 2] 222 0.332 | 2| 2.004
0.14| 6| 3.29 027 | 2| 2.19 0.333 | 2 | 2.001
016 | 5| 2.99 028 | 2| 216 0.334 | 1| 2.00
018 | 4| 2.76 029 | 2| 213 040 (1] 2.00
0.20| 3| 256 030 | 2| 210 050 (1] 2.00

Observe that the term maximized on the right hand side of this inequality
is a differentiable function of k. Therefore, we define f : R* — R* by
f(k) = (k+1)(1 — a)*L. The derivative of f is:

f)=1—a)* 1 - (k+1)Inl —a)+1).
The derivative is zero for
k+1)In(1 —a)=-1,

which is the case only for k = 71 — 1.

Substitution yields fk) = (e(l —a)’ln ﬁ)_l , and this is the global
maximum of f. Hence,

1

e(l—a)ln ﬁ ’

max((k+1)(1 -)" 1) <

and the corollary follows directly from inequality (5.3). O

In Figure 5.5 the worst-case bound on the ratio between maxi<;<n w(p;)
and w(p)/N from Theorem 5.2 as well as the continuous approximation of
this bound (e(1 — @)?In)" from Corollary 5.3 are plotted for 0.08 <
a < 0.5. It turns out that the continuous approximation of the bound
matches the discrete bound (cf. Table 5.1) almost exactly for « < 0.3. To
complete this part of our analysis, we observe that the exact upper bound
on the ratio between max;<;<y w(p;) and w(p)/N is 2 for o« > 1/3.

Using Bisectors for Load Balancing 83

ratio

5.0 1

4.5 1

4.0 1

3.5 1

3.0 1

2.5 1

2.0 T T T [0
0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50

Figure 5.5: Plot of discrete (dotted) and continuous worst-case bounds

Now we give a lower bound on the worst-case ratio between the maxi-
mum weight subproblem generated by Algorithm HF and the ideal value
given by a uniform partition. This will show that the upper bound from
Theorem 5.2 is tight.

Theorem 5.4 For each 0 < « < 1 there exists a class of problems Q* that has
a-bisectors and contains a family of problems (¢'),en such that

li maxXi<;<n, W(Qé) _

) w(g') B
N

Q>

where Ny = [1/c| - 28 — 1 and ¢}, g5, ... , qly, are the subproblems generated by
Algorithm HF on input ¢' and N;.

Proof: Let Q* be a class of problems with weight functionw : P —+ R* and
the following properties:

(a) each g € Q* withw(g) > 1 can only be partitioned into 2 subproblems
of weight w(g)/2 each

84 Load Balancing for Problems with Good Bisectors

(b) each ¢ € Q* withw(g) < 1 can only be partitioned into 2 subproblems
of weight (1 — a)w(g) and aw(q)

(c) for every ! € N there is a problem ¢' € Q% of weight w(q') = 2!
y P g

Clearly, Q“ has a-bisectors according to Definition 5.1.

Let k = |1/a| — 2. For a given [€ N, choose a problem ¢! € 9% of
weight 2! and let N, = (k + 2)2! — 1. On input ¢' and N;, Algorithm HF
proceeds as follows. After the first 2! — 1 bisections, there are 2* subprob-
lems of weight 1 each. We assign level 0 to these problems and call them
active. As the weight of each active problem is < 1, the next 2' bisections
performed by the algorithm subdivide all active problems on level 0 and
generate subproblems of weight 1 — o and «, which are assigned level 1.
Now the 2! problems on level 1 with weight 1 — a become active. This
process is repeated such that in phase 4, ¢ > 0, the algorithm subdivides
all 2! problems of weight (1 — @)’ on level i. At the end of phase i there are
(i +2)2! subproblems altogether. The subdivision process is finished when
exactly one active subproblem on level k of weight (1 — a)* remains.

To ensure that the algorithm indeed subdivides the active problems on
level 7 in phase i for all 0 < 7 < k and not the heaviest inactive problem,
which has weight q, it is required that (1 — «)* > «a. This is obvious for
k =0,1. For k > 2, recall that the series (1—1/(k+1))* is strictly decreasing.
It converges to e ! from above. Note that k£ = |1/« — 2 implies o < 1/(k +
2) < 1/4. Hence,

1 * 1\ 1 1
—a)f>(1-—) >(1- >Z>>q.
(I1-) —<1 k+2> —(1 k+1) e~ 4~ ¢

In the end, Algorithm HF has generated (k + 2)2' — 1 subproblems and
a maximum weight of (1 — a)*. Thus,

l_W(ql)_ PRY _ ol
@gj@lW(qi)— N, 1-a)(k+2-27),

and the assertion of the theorem follows by substituting k¥ = [1/a| — 2 and
taking into account lim;_,,, 27" = 0. O

We can use the same construction to show that Algorithm HF is optimal
from a worst-case point of view.

Using Bisectors for Load Balancing 85

Corollary 5.5 Let A be a deterministic or randomized bisection-based load
balancing algorithm for classes of problems that have a-bisectors. Assume fur-
thermore that A is restricted to perform at most N — 1 bisections. Then, the
worst-case upper bound on the (expected) ratio between the maximum weight
subproblem generated by A and the ideal weight cannot be smaller than r,,.

Proof: For a problem p in a class of problems that has a-bisectors the com-
plete bisection tree T, is defined as the complete binary tree of infinite height
with root p that results if each subproblem is bisected recursively.

With the notations of the preceding theorem it is a straightforward cal-
culation to show that for/ € N T_qz contains exactly N; nodes of weight at
least (1 — «)¥. Thus, after N, — 1 bisections there will be a subproblem of
weight at least (1 — a)*, no matter how A works. We conclude from the
preceding theorem that the asymptotic lower bound r, also holds for A. O

5.1.2 A Better Bound for Small ¥V

Note that the bound of Theorem 5.2 is independent of N, the number of
desired subproblems. Although we have shown that this bound is tight
asymptotically, it is possible to obtain a better bound if N is sufficiently
small. Again, we will show that this improved bound is tight. To establish
this result, we need the following

Lemma 5.6 Let o« < 1/5,2 < k < 1/«. Then, with the assumptions of The-
orem 5.2, for any leaf-branch of a bisection tree with k leaves p1,p, ... ,py and
root p:

max w(p;) < w(p)(1—a)*~.

1<i<k

Proof: If all bisections are exact a-bisections we conclude that the maxi-
mum weight subproblem generated by Algorithm HF has weight w(p)(1 —
@)t since o < (1 — @) for k < 1/a and @ < 1/5. Clearly, the upper
bound remains valid if the maximum weight subproblem is the leftmost
leaf of the leaf-branch.

Therefore, we consider the case that the maximum weight subproblem
does not result from the last bisection step. Let m := maxi<j<x w(p;). The
combined weight of the maximum weight leaf and the 2 leaves generated
in the last bisection step is at least 2m. The total weight of the remaining

86 Load Balancing for Problems with Good Bisectors

leaves can be bounded from below by

m<<1ia)k3_1>

using the same argument as in the proof of Theorem 5.2. Thus,

w(p)
T () e

l1-a

Y

and it remains to show that the right hand side of this inequality is no
more than w(p)(1 — a)* 1. But since « < 1/5and k < 1/a we have

0.64+¢ !
(1—a)+(1—a)f!

(<1ia>k3+1> (1 —a)f . O

Theorem 5.7 Let P be a class of problems with weight function w : P — R*
that has o-bisectors, and assume oo < 1/5. Given a problem p € P and a positive
integer N < 1/a, Algorithm HF uses N — 1 bisections to partition p into N
subproblems p., ... , py such that

1 <
<

max w(p;) < w(p)(l —a)™ .

Proof: We will show that the worst-case bisection tree is a single leaf-
branch if the assumptions of the theorem hold. The claim then follows
immediately from the previous lemma.

Let us assume that the bisection tree generated by the run of Algo-
rithm HF is not a single leaf-branch. Consequently, the bisection tree has
internal nodes which are not parent of a leaf. We call these nodes cut-nodes.
Let m := max;<;<y wW(p;). Observe that a cut-node has weight at least 2m.
If there are 2 or more cut-nodes we distinguish two cases. First, assume
that there are 2 cut-nodes such that one is neither an ancestor nor a de-
scendant of the other. Then their combined weight is at least 4m and thus
m < (1/4)w(p). But we have 1/4 < e™! < (1 — @)~ by the assumptions
of the theorem. If there are 2 cut-nodes ¢; and ¢, such that ¢; is an ancestor
of c;, we know that ¢; is the parent of an internal node not on the path
between ¢; and ¢, and thus the weight of ¢; is at least 3m. We conclude
that m < (1/3)w(p) < e~'w(p) in this case.

Using Bisectors for Load Balancing 87

Now consider the case that there is exactly one cut-node c. If the max-
imum weight leaf is not in the subtree rooted at c we conclude w(p) > 3m
and finish the proof for this case as above. Otherwise, let the children of
c be z and y and assume without loss of generality that the maximum
weight leaf is contained in the leaf-branch rooted at z. Denote the num-
ber of bisection steps in the leaf-branch rooted at z (y) by d, (d,), and let
N’ denote the number of leaves in the subtree rooted at c¢. Observe that
N >4,1<d,,d) <N —-3andd, +d, = N'—2. Aswehave o <1/5and
the maximum weight leaf is contained in the leaf-branch rooted at z, we
conclude w(z) > m(ﬁ)dw using Lemma 5.6. Since any internal node in the
leaf-branch rooted at y has weight at least m, we have w(y) > m(ﬁ)dy_1 as
in the proof of Theorem 5.2. Combining these two bounds and substituting
dy=N'—2—d, yields:

dy N'—3—dg N'—1
w(w)+w(y>zm((ﬁ> +(i22) >2m(1ia) ’

where the last inequality is equivalent to (1 — @)V ~1=% + (1 — @)%*? > 1.
This can be shown to hold for @ < 1/5 by a straightforward calculation
using analytic techniques. Hence, using w(c) = w(z) + w(y) we have

54 w(o) 2 m (1 a)Nll.

Assume that there are d, nodes, d, > 0, above ¢ on the path from c to
the root p of the bisection tree. Observe that

d,
55 w2 wo) (1)
1-«
As N = N’ +d,, Equations (5.4) and (5.5) imply m < w(p)(1 —a)¥~1. O

It is easy to verify N(1 — a)V-1 < r, for N < [éj observing that the
left-hand side of this inequality is monotone increasing from N = 1 to
N = |1] and the inequality trivially holds for the latter value of N. Fig-
ure 5.6 compares the general with the improved upper bound on the ratio

between max;<;<y w(p;) and WT("’) for N = 8.

Let & be the real root of the equation (1 — a)?+(1 — @)’ —1 = 0. It can be
shown that & ~ 0.245122 is the largest possible value for o in Lemma 5.6
and Theorem 5.7. For a > & there are indeed leaf-branches and bisection

88 Load Balancing for Problems with Good Bisectors

General upper bound r,

Improved upper bound for N =8

2.5 . . .
0.050 0.075 0.100 0.125

(07

Figure 5.6: Comparison of general and improved upper bound
trees with a maximum weight leaf that is heavier than the upper bound
provided by Lemma 5.6 and Theorem 5.7. If we choose o = 1/4 and
N = 4, for example, there is a leaf-branch whose maximum leaf weight
is (3/7)w(p) > (3/4)*w(p). Furthermore, it is possible to construct bisection

trees with maxi<j<ny w(p;) = w(p)(1 — @)/(2 — @) for N =4, a < (3 — /5)/2.
Figure 5.7 illustrates these exceptional cases for N = 4.

1

Figure 5.7: Worst-case leaf-branch and bisection tree for N = 4, oo = ;

Using Bisectors for Load Balancing 89

5.1.3 Generating more Subproblems

It is suggestive to improve the balancing quality of Algorithm HF or any
other bisection-based load balancing algorithm for our model by gener-
ating more than NV subproblems that are subsequently assigned to the N
processors. We show in this subsection that this is indeed possible and
discuss possible drawbacks of this approach.

If we assume that a bisection-based load balancing algorithm generates
N’ > N independent subproblems, the assignment of those subproblems
to the NV processors is an instance of the MULTIPROCESSOR SCHEDULING
problem [BEP*96, Gra66, Gra69]. Since the decision variant of this problem
is N'P-complete in the strong sense if N is part of the problem instance, it
is unlikely that an efficient (i.e., polynomial time) algorithm to compute
an optimum solution exists. Therefore, we have to use approximation al-
gorithms to find solutions that are as close to the optimum as possible.

It has been shown [HS87] that MULTIPROCESSOR SCHEDULING admits
a polynomial approximation scheme'. However, it seems difficult to use
this or related [HS86, Fri84] results for our purposes because we are inter-
ested in the deviation of the maximum load of the approximate solution
from the ideal average load.

Therefore we use GRAHAM’s list scheduling algorithm [Gra66, Gra69]
to assign the N’ subproblems generated by Algorithm HF. List scheduling
proceeds as follows: Given a list of jobs with fixed weights, the job from
the head of the list is deleted and assigned to the currently least loaded
machine until the list is empty. We refer to this extension of Algorithm HF
as Algorithm HFL, and denote by wr(rﬁ;(N’) the maximum load that Algo-
rithm HFL generates on /N processors using N’ — 1 bisections.

Theorem 5.8 Let P be a class of problems with weight function w : P — R*
that has a-bisectors. Given a problem p € ‘P and positive integers N, N', it holds
for Algorithm HFL that

A polynomial approximation scheme (PAS) is a family of algorithms {A.} such that
A, produces a (1 + ¢)- approximate solution. The running time of A. is polynomial in the
length of the input for fixed . This means that the running time of a PAS may be, for
example, exponential in 1/e.

90 Load Balancing for Problems with Good Bisectors

Proof: For N' < N the claim follows immediately from Theorem 5.2. As-
sume now that N' > N and let p;,ps,...,pn denote the subproblems
that resulted from calling HF(p,N'). Consider any processor k that has
received load wﬁﬁ’fw) and let p; be the last subproblem assigned to it by
the list scheduling algorithm. Since k was the least loaded processor when
p was assigned, its load was at most w(p)/N. Thus, we have

(NN') w(p) < w(p) '
Wmax S ot w(p) < F 122})\(}{ w(p;).
As Theorem 5.2 implies maxj<;<ny' wW(p;) < w(p)/N' - r, the proof is com-
plete. 0

If we choose N' > 2N the worst-case upper bound of the above theo-
rem is better than the one provided by Theorem 5.2 for any a < 1/2. The
upper bound of Theorem 5.8 can be improved slightly if max;<;<n w(p;) >
2w(p)/N by first sorting the list of subproblems according to their weight
in non-increasing order.

There are two possible drawbacks of this approach. First, the load bal-
ancing overhead increases and therefore the gain in balancing quality has
to be greater than the additional overhead in order to reduce the overall
runtime of the application. Second, in some applications the bisection of
a problem entails communication during the execution of the generated
subproblems. A greater number of subproblems therefore most likely in-
creases the network load. Again, this may outweigh the improved load
balance.

5.2 Application of Algorithm HF to Distributed
Finite Element Simulations

In this section, we present the application of Algorithm HF for load bal-
ancing in the field of numerical simulations with the finite element (FE)
method [Bra97, Bur87, Sch84]. The FE method is used in statics analysis,
for example, to calculate the response of objects under certain loading and
boundary conditions.

In [Hiit96, HS94], an adaptive FE method based on the principle of
recursive substructuring has been developed. It is an iterative procedure
where in several runs of computation the result is improved automatically

Application to Distributed Finite Element Simulations 91

until a predefined accuracy is reached. The costs for achieving this accu-
racy are much lower than with a non-adaptive procedure.

5.2.1 Recursive Substructuring

Starting an analysis with the FE method, an object is described by defin-
ing its shape and its structural properties. Then, the boundary and loading
conditions have to be imposed on the object. A system of partial differen-
tial equations describes the relation between external loads and internal
forces.

As an example from structural engineering, we consider a short can-
tilever under plane stress conditions, a problem from the domain of plane
elasticity. The quadratic panel is uniformly loaded on its upper side. The
left side of the cantilever is fixed as shown in Figure 5.8 (cf. [Hiit96, HS94]).

E =100000
thickness = 0.01

1.0 Poisson ratio = 0.3

plane stress

AV

1.0 !

Figure 5.8: Static system of a short cantilever

The physical properties for the material of the cantilever are given by
the Young’s modulus E and the Poisson ratio v. The differential equations
(5.6) and (5.7) describe the response of the object under the external loads
(see [Sch84)):

FE .82u+ E .82v+ FE .8211,_
1—12 922 2(1—v) 0zdy 2(1+v) Oy

(5.6) —f

92 Load Balancing for Problems with Good Bisectors

E v A E 0*u s E 0%
1—v2 0y* 2(1—v) 0xdy 2(1+v) O0x?

(57) =-9,
where v and v are the unknown displacements and f and g the external
forces in z- and y-direction, respectively.

We substructure the physical domain of the cantilever recursively (Fig-
ure 5.9, left). With the method of [Hut96, HS94], a tree data structure is
built reflecting the hierarchy of the substructured domain (see Figure 5.9,
right). In each node, points on the separator line represent unknown val-
ues of displacement, and points on the border carry variable boundary
conditions imposed by the parent node. Each tree node contains a sys-
tem of linear equations whose stiffness matrix S determines the unknown
displacement values dependent on the external forces:

(8)-(1)

In the leaves, the system of linear equations is constructed by a standard
FE discretization. Roughly speaking, the equations are obtained by an ap-
proximation of the functions u, v, f, and g by linear combinations (@, 9,
f, and g, respectively) of partially bilinear basis functions with limited
support within the discretizing mesh, and some additional algebraic and
analytical transformations. The system of linear equations of an internal
tree node is assembled out of the equations of its children, as described in

[Hiit96].

(S

Now, the task is to solve all those systems of linear equations. We
use an iterative solver which traverses the tree several times, promoting
displacements in top-down direction and reaction forces in bottom-up
direction. In each node, the amount of work to be done stays the same
during the iterations. But since the adaptive structure of the tree is not
known a priori, it is essential to have a good load balancing strategy before
the parallel execution of the solving phase.

5.2.2 Application of Algorithm HF

We assign a load value /(v) to each tree node v, given by
U(v) = Cy np(v) + Cs ns(v)

with n,(v) points on the border without boundary conditions (grey points
in Figure 5.9), and n,(v) points on the separator line of node v (black points

Application to Distributed Finite Element Simulations 93

Free Boundary — 3%
Separator
Fixed Boundary

yv 1X_l] Incomp. Points

l A
: i

Figure 5.9: A coarse discretizing mesh and the resulting binary tree data
structure for the short cantilever

belonging to the borders of both children in Figure 5.9). The load value
¢(v) models the computing time of node v, where the constants Cs and
Cy are independent of node v and C; ~ 6 C,. Points with fixed boundary
values as well as incompatible points on the separator (white points) do
not contribute to the load value 4(v).

We can interpret the FE tree as an approximate (potential) bisection tree
by accumulating the load of all nodes in the subtree rooted in node v to get
the weight value w(v):

(v) = £(v) if v is a leaf
W)= (v) +w(cr) + w(cp) if v is internal or the root,

where ¢; and ¢, are the children of v.

94 Load Balancing for Problems with Good Bisectors

The weight values are collected during the tree construction phase by
simply counting and accumulating the number of points on the separator
of each tree node.

If we want to apply Algorithm HF to this tree of weight values, we
must specify which bisection steps the algorithm can perform. Our first
approach is to define a bisection step as the removal of the root node v of a
subtree. This yields two subtrees rooted at the children ¢; and ¢, of v, and
v is ignored for the remainder of the load balancing phase.

Such bisection steps do not exactly match Definition 5.1, because the
weight of node v exceeds the weight sum w(c;) + w(c,) of the children
by ¢(v). However, {(v) (work load of the one-dimensional separator) is
negligible compared to w(v) (work load of the two-dimensional domain)
in our application if the FE tree is large enough. Hence, the results of The-
orem 5.2 and Corollary 5.3 are well approximated.

Algorithm HF chops N subtrees off the FE tree, each of which can be
traversed in parallel by the iterative solver. These N subtrees contain the
main part of the solving work and may be distributed over the available V
processors. The upper N — 1 tree nodes cannot exploit the whole number
of processors, anyway. Therefore, such a distribution does not sacrifice
parallel potential in the upper tree levels.

5.2.3 Runtime Examples

EBNER and PFAFFINGER [EP98] described a parallel implementation of
the recursive substructuring technique that uses the dataflow language
FASAN as coordination and automatic parallelization platform. In our
implementation, however, a hand-coded parallel version based on PVM
(see [BDG*94]) is used in order to keep the communication overhead as
low as possible. The number of solver iterations (tree traversals) was fixed
to 100. The experiments were run on a cluster of workstations of type
HP 9000/720.

Figure 5.11 shows the runtime results of the numerical simulation of
the short cantilever under uniform load described above. In this experi-
ment we have chosen a rather small FE tree with 1,279 element nodes and
maximum depth 11 (see the left discretizing mesh in Figure 5.10, represent-
ing the leaves of the FE tree). Since the adaptivity was limited to only two
additional levels in the FE tree, the node weights resulted in o = 0.18571.

Application to Distributed Finite Element Simulations 95

397.81 38863

37073 35453

Figure 5.10: The discretizing meshes for the domain of the short cantilever

= 50 static load balance -&— |
2 a0t 8 load balance with Algorithm HF —— |
) \
E 30 1
5ot pegee, 1
5 B R S N - SN
= 10]
?

O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 45 6 7 8 9 1011 12 13 14 15 16
number of workstations

Figure 5.11: Runtime results for 1,279 tree nodes

For 2 workstations, the partitioning generated by Algorithm HF is
identical to the static partitioning (just chopping off the root node).
Further speedup from 4 to 6 processors with Algorithm HF occurs earlier
than with static partitioning (from 6 to 7 processors). In this comparatively
small problem, it is mainly the critical path (cf. Section 4.1) of the FE tree
that determines the lower bound on the tree traversal time and inhibits
further acceleration with more than 6 processors.

The effect of Algorithm HF is more significant in larger simulations,
where adaptivity for high numerical accuracy is distinct and where it is

96 Load Balancing for Problems with Good Bisectors

350 [T T T T T T T T T T T T T T T T]
static load balance =
1 load balance with Algorithm HF -+
300]
g o250 1
) |
o \
£ 200 - | :
E *\ \\D""Elwr“
o 150 r s]
[¢D) \
> \ e B m B @ g B
o oo '+‘x\%_“+\ g B
“ 100 r B 1
50 1
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 45 6 7 8 91011121314 15 16
number of workstations

Figure 5.12: Runtime results for 11,263 tree nodes

essential to split the biggest subtrees. The runtime results of a computa-
tion with a deeper FE tree of maximal depth 17 are shown in Figure 5.12.
It contains 11,263 nodes (see Figure 5.10, right side), and the value of the
bisection parameter o = 0.10615 is rather bad. Here, the runtime improve-
ment with Algorithm HF is more significant, since the load value ¢(p) of
the root p is relatively small compared to the weight sum w(p) of the whole
FE tree. We observe that the distributed iterative solver is up to 70% faster
with application of Algorithm HF in comparison to the static partitioning
if at least four processors are used. Even on 16 processors, static partition-
ing does not split the subtree which is responsible for the overall execution
time.

Nevertheless, we clearly have to recognize once more the strong in-
fluence of the critical path of the FE tree on the parallel execution time.
Employing Algorithm HF, we almost reach the minimum execution time
using only 8 processors. This implies that larger numbers of processors
can only be used efficiently if the the FE tree is of adequate size and struc-
ture.

Weighted Trees with Good Bisectors 97

5.2.4 Further Improvements

For arbitrary adaptive FE simulations, we cannot give a limit for the bisec-
tion parameter o using the bisection method described above. If a gets too
small, there are two possibilities to prevent an unsatisfactory partitioning;:

e During the tree construction phase, we can choose between horizon-
tal and vertical bisection of the subdomain of each node, whichever
leads to the larger local value of .

e Moreover, we might set [V as a small multiple of the number of avail-
able processors, so there is still a chance to compensate a small «
value by assigning multiple partitions to one processor. We expect
that the increased load balancing overhead and the additional net-
work load will be tolerable because of the coarse granularity of our
parallel application (see also Section 5.1.3).

To avoid the small-a-problem completely, another strategy using Al-
gorithm HF allows the removal of a single edge of a tree as a bisection
step. This strategy partitions the entire given FE tree into N subtrees of
approximately equal size. Section 5.3 shows that FE trees satisfying the
conditions

lv) < Uer) + 4 c2)
o) > Ue) (=1,2)

have good bisectors. This application of Algorithm HF also takes into
account that the main memory resources of the processors become the
limiting factor if very high accuracy of the simulation is required. In this
case, finding a partitioning of the entire tree (not only a set of equal-sized
subtrees ignoring their ancestors in the tree) is necessary.

5.3 Weighted Trees with Good Bisectors

Let 7 be the set of all rooted binary trees with node weights ¢(v) satisfying:

(1) £(v) < U(cy) + ¥(cp) for nodes v with two children ¢; and ¢,
(2) £(v) > L(c) if cis a child of v

The weight of a tree 7' = (V, E) in T is defined as w(T') =), ., £(v).

vEV

98 Load Balancing for Problems with Good Bisectors

This class 7 of binary trees models the load of applications in hier-
archical finite element simulations, as discussed in Section 5.2. Recall
that in these applications the domain of the computation is repeatedly
subdivided into smaller subdomains. The structure of the domains and
subdomains yields a binary tree in which every node has either two chil-
dren or is a leaf. The resource demands (CPU and main memory) of the
nodes in this FE tree are such that the resource demand at a node is at most
as large as the sum of the resource demands of its two children. In order to
parallelize the computation, it is necessary to distribute the FE tree among
a number of processors in a balanced way.

Note that Conditions (1) and (2) ensure that the two subtrees obtained
by removing a single edge from a tree in 7 are also members of 7.

The following theorem shows that trees from the class 7 can be %—

bisected by removal of a single edge unless the weight of the tree is
concentrated in the root.

Theorem 5.9 Let T = (V, E) bea tree in T, and let r be its root. If £(r) < fzw(T),
then there is an edge e € E such that the removal of e partitions T into subtrees
Ty and T, with w(Ty), w(13) € [Fw(T), 3w(T)].

Proof: We give a simple method to find the required edge. Pick an ar-
bitrary node v of 7" as a start node. While 7"\ {v} contains a subtree 7"
with w(T") > %w(T), replace v by the node adjacent to v which is con-
tained in 7”. This process always terminates after less than |V/| iterations
at a node v such that all subtrees 7" in T \ {v} satisfy w(I") < 3w(T). We
claim that at least one of these subtrees also satisfies w(7") > %W(T), and
thus the edge connecting v and 7" can be picked as the required separator
edge. In order to prove the claim we distinguish several cases regarding
the position of v in T (see Figure 5.13). For every case the assumption that
all subtrees of T'\ {v} have weight < jw(T) will lead to a contradiction.

Case 1: v has degree 3. Let u be the parent of v. Let 77 be the subtree
of T\ {v} that contains u, and let 75 and 75 be the other two subtrees.
Assume that all three subtrees have weight < iw(T). Consequently, v must
have weight > %W(T) because w(T') = w(T) + w(71>) + w(T3) + £(v). But then
u must also have weight > 1w(T) because it is the parent of v, and this
implies w(T1) > jw(T). A contradiction.

Case 2: v has degree 2 and is the root of T'. Let T} and 75 be the two
subtrees of 7'\ {v}, and let u; and u, be the corresponding children of v. If
both subtrees have weight < iw(T), it follows also that #(uq) < iw(T) and

Weighted Trees with Good Bisectors 99

Figure 5.13: The 5 cases for v in proof of Theorem 5.9

Uup) < }IW(T), which implies ¢(v) < f(u1) + (up) < %W(T). On the other

hand, w(T') = w(T}) + w(T3) + £(v) implies £(v) > sw(T). A contradiction.

Case 3: v has degree 2 and is not the root of T'. Let u be the parent of v,
and let ¢ be the child of v. Let 77 be the subtree in 7"\ {v} that contains u,
and let 75 be the other subtree. If both subtrees have weight < jw(T),
w(T') = w(T) + w(13) + £(v) implies ¢(v) > %W(T). But then 4(u) > 4(v) >
1w(T). A contradiction.

Case 4: v has degree 1 and is a leaf of T. Let 77 be the tree T\ {v},
and let u be the parent of v. Assume that w(7}) < }IW(T). Then w(T') =
w(Th) + ¢(v) implies ¢(v) > ?IW(T). But then w(77) > 4(u) > ¢(v) > %W(T). A

contradiction.

Case 5: v has degree 1 and is the root of T'. Let 77 be the tree T\ {v}.
As l(v) =4(r) < %W(T), w(T') = ¢(v) + w(T}) implies w(17) > }IW(T). O

According to Theorem 5.2 a problem p from a class of problems that has
%-bisectors can always be subdivided into NV subproblems p;, ..., py such
that max;<;<y w(p;) < WT(”) - 2. The following corollary gives a condition
on trees in 7 that ensures that they can be subdivided into N subproblems
using j-bisectors.

Corollary 5.10 Let T = (V, E) be a tree in T, and let r be its root. Let N be
a positive integer. If w(T') > %(N — 1)¢(r), Algorithm HF partitions T into N
subtrees by cutting exactly N — 1 edges such that the maximum weight of the

resulting subtrees is at most 3 - % .

Proof: After k bisection steps according to Theorem 5.9 there are k + 1
subtrees. There is at least one subtree 7" with weight at least % . Let ' be

100 Load Balancing for Problems with Good Bisectors

w(T) w(T) 4 4
the root of T". If k +1 < N, we have w(T") > 75 > T > 34(r) > 34(r'),
and another bisection step is possible.

The upper bound on the maximum weight of any subtree follows di-
rectly from Theorem 5.2 for a = 1/4 (see also Table 5.1). O

Note that an optimal min-max k-partition of a weighted tree (i.e., a par-
tition with minimum weight of the heaviest component after removing &
edges) can be computed in linear time [BP95, Fre91]. These algorithms are
preferable to our approach using Algorithm HF in the case of trees that
are to be subdivided by removing a minimum number of edges. Since the
heaviest subtree in the optimal solution does obviously not have a greater
weight than the maximum generated by Algorithm HE the bound from
Corollary 5.10 still applies and provides a non-trivial worst-case perfor-
mance guarantee for these optimal algorithms as well. We are not aware
of any efficient parallel algorithm for solving this tree partitioning prob-
lem optimally. Therefore, the parallel algorithms for load balancing with
good bisectors presented in the next chapter also provide a good and fast
parallel approximation for classes of trees with good bisectors.

5.4 Classification of Algorithm HF

We apply the classification scheme for load distribution strategies that was
presented in Chapter 3 to Algorithm HF (see Table 5.2). Since it is straight-
forward to classify Algorithm HF, we only give a few remarks regarding
some of the classification criteria.

Our system model and the theoretical analysis of Algorithm HF is
purely combinatorial. Assuming that the subproblems can be solved in-
dependently, we clearly have non-interacting entities that are transferred
non-preemptively through the whole system. Algorithm HF can be used
for any target topology and uses complete information in a centralized
fashion (we will show how to overcome this “shortcoming” in the next
chapter). All targets participate in the load distribution cooperatively. The
algorithm is dynamic since all decisions are made during runtime and the
weights of the subproblems are used as load values. Load distribution is
initiated by the parallel application at the location of the initial problem.

Classification of Algorithm HF

101

Table 5.2: Classification of Algorithm HF

| System Model |
Model Flavor combinatorial
Target Topology arbitrary
Entity Topology non-interacting entities

| Transfer Model |

Transfer Space

systemwide

Transfer Policy

non-preemptive

| Information Exchange

Information Space | central
Information Scope | complete

| Coordination I
Decision Structure | centralized
Decision Mode cooperative
Participation global

H Algorithm H
Decision Process | dynamic
Initiation central
Adaptivity fixed
Cost Sensitivity none

Stability Control

not required

Chapter 6

Parallel Load Balancing for
Problems with Good Bisectors

In this chapter we extend the results for our load balancing model ob-
tained in the previous chapter to parallel algorithms in order to reduce
the balancing overhead as much as possible. We present efficient parallel
load balancing algorithms for problems with good bisectors that maintain
identical or comparable worst-case bounds on the balancing quality. The
results apply to a large class of parallel machines since the algorithms use
only a few basic primitives that can be performed efficiently in parallel.
To provide additional insight into the average-case behavior and the rel-
ative performance of the proposed algorithms, we carried out extensive
simulation experiments regarding the load imbalance incurred by the pro-
posed load balancing algorithms.

We assume a parallel system that consists of N processors, numbered
from 1 to N. The number of a processor is referred to as its id. The i-th
processor is denoted P, . Initially, a problem p resides on P; and P, is called
busy, while the other processors are idle and called free. A free processor
becomes busy when it receives a subproblem from a busy processor. The
goal of a parallel load balancing algorithm in this model is to split p into
N subproblems p;, ps, . . ., py such that subproblem p; can subsequently be
processed by P;, 1 < ¢ < N. However, it is allowed to split p into fewer
than N subproblems. In this case, some processors remain idle.

Furthermore, we assume that the bisection of a problem into two
subproblems requires one unit of time and that the transmission of a
subproblem to a free processor requires one unit of time. Our results

104 Parallel Load Balancing for Problems with Good Bisectors

can easily be adapted to different assumptions about the time for bi-
sections and for interprocessor communication. Finally, we assume that
standard operations like computing the maximum weight of all subprob-
lems generated so far or sorting a subset of these subproblems according
to their weights can be done in time O(log N). This assumption is satisfied
by the idealized PRAM model [JaJ92], which can be simulated on many
realistic architectures with at most logarithmic slowdown.

The remainder of this chapter is organized as follows. Section 6.1
first presents and analyzes a parallel implementation of Algorithm HF
and discusses certain drawbacks regarding the communication over-
head of this parallelization (Section 6.1.1). Consequently, Algorithm BA,
a highly parallel load balancing algorithm for problems with good bi-
sectors, is described and analyzed (Section 6.1.2). Then it is shown that
Algorithm BA-HF, which is a combination of Algorithm BA and Algo-
rithm HEF, can be used to obtain both a very fast parallel runtime and a
performance guarantee for the balancing quality that is arbitrarily close
to the one for Algorithm HF (Section 6.1.3). The management of free pro-
cessors for the three parallel algorithms is discussed in Section 6.1.4. To
compare the proposed parallel load balancing approaches, we give simu-
lation results in Section 6.2 for the achieved load distribution under certain
stochastic assumptions.

6.1 Parallel Load Balancing

Although Algorithm HF achieves good load balance even in the worst
case, its drawback is that it is a sequential algorithm that bisects only one
problem at a time. Hence, the time for load balancing grows (at least)
linearly with the number of processors. If the number N of processors
is large, it is clearly advantageous to use a parallel algorithm for the
decomposition of a given problem into the desired number of subprob-
lems. We assume that each bisection step is performed sequentially on
one processor. Therefore, the time spent in load balancing can be reduced
substantially if several bisection steps are executed concurrently on differ-
ent processors.

Recall that the problem that is to be partitioned resides on a single pro-
cessor initially and that the other N — 1 processors are free. For now we
assume that a processor that bisects a problem can quickly acquire the
number of a free processor and, after bisecting the problem into two

Parallel Load Balancing 105

subproblems, send one of the two subproblems to that free processor.
In Section 6.1.4 we will discuss ways to implement such a management
of free processors in a parallel system without increasing the asymptotic
running time.

6.1.1 Parallelizing Algorithm HF

Algorithm HF repeatedly bisects the remaining subproblem with maxi-
mum weight. For a sequential implementation, one would use a priority
queue to hold the remaining subproblems and, in each step, remove the
maximum weight subproblem from the priority queue, bisect it into two
subproblems, and insert the two resulting subproblems into the queue.
In this section, we describe a possible parallelization of Algorithm HF.
We refer to this parallel version of Algorithm HF as Algorithm PHFE
Algorithm PHF is shown in Figure 6.1. Steps that require a form of
global communication (communication involving more than two pro-
cessors at a time) are shaded in the figure; on most parallel machines
these steps will not take constant time, but time @(log N). The pseudo-
code in Figure 6.1 is considerably more detailed than the code given for
the other algorithms presented in this chapter. This is because an ad-
equate description of Algorithm PHF requires showing the code for a
particular processor F;, whereas sketching the bisection process from a
global perspective will be sufficient for the parallel algorithms presented
in Sections 6.1.2 and 6.1.3.

In order to parallelize Algorithm HF, we must, on the one hand, per-
form several bisections simultaneously, but, on the other hand, ensure that
no subproblem is bisected unless it would also have been bisected by the
sequential Algorithm HF. Fortunately, the following two simple observa-
tions are helpful:

e Subproblems with weight greater than WT(”) - 7o are certainly bisected
by Algorithm HE. Consequently, such subproblems can be bisected
in parallel.

e Subproblems with weight at most WT(”) are certainly not bisected any
further. These subproblems can be assigned to a processor immedi-
ately.

Hence, Algorithm PHF can carry out a first phase of load balancing as
follows. Before the first bisection is made, the values w(p), N, and «

106 Parallel Load Balancing for Problems with Good Bisectors
Algorithm PHF(p, N)
// code for P;
begin
ifi=1thenq:=p;
else wait until a problem ¢ is received;
fi;
while w(g) > “2 ., do
begin
bisect ¢ intfo ¢; and ¢»;
(@) send ¢, to a free processor;
q:=4qu.
end;
(b) barrier;
// start of phase ftwo
(¢) f:=number of free processors;
repeat
(d) m = Mmaximum weight of remaining subproblems;
(e) h := numiber of proc. with subproblem > m(1 — «);
if » < f then
if w(g) > m(1 — a) then
bisect ¢q into ¢; and ¢;
(f) send ¢, T0 a free processor;
q:=q
fi;
else
determine the f heaviest subproblems;
if ¢ is among them then
bisect ¢q into ¢; and ¢,;
(g) send ¢, to a free processor;
q = qu
fi;
fi;
f=r- min{ha f}'
(h) if f > 0then barrier; fi;
until f =0;
end.

Figure 6.1: Algorithm PHF (Parallel HE)

Parallel Load Balancing 107

are broadcast to every processor. Unlike the sequential Algorithm HF,
Algorithm PHF therefore requires advance knowledge of the bisection
parameter o of the given class of problems. Then, P; bisects the origi-
nal problem p into p; and p, , and then sends p, to P .

Whenever a processor gets a subproblem ¢ in the following (either a
free processor gets it from a busy processor or a busy processor gets it
from a bisection performed on the same processor), it checks whether w(q)
is greater than WT(”) -1 and, if so, bisects it into two subproblems and sends
one of the two subproblems to a free processor. (The question of deter-
mining which free processor the problem is sent to in this step (a) without
increasing the asymptotic running time will be treated in Section 6.1.4.)
This phase ends when all subproblems have weight at most WT(”) “Tq . (De-
tecting this in a distributed system is not trivial, but standard techniques
for distributed termination detection can be employed. Once the termina-
tion of the first phase is detected, the free processors can be informed about
this with a broadcast message.) A barrier synchronization is performed in
step (b) to ensure that all processors finish the first phase of the algorithm
at the same time. (Free processors that have not received a subproblem
during the first phase go to step (b) of the algorithm directly as soon as
they are informed about the termination of phase one.)

What is the running time for this first phase? Consider the bisection
tree representing the bisections performed in the first phase. Let D denote
the maximum depth of a leaf in this bisection tree. Under our assump-
tions, the running time for the first phase is clearly bounded by O(D).
Now observe that a node at depth d in the bisection tree has weight at
most w(p)(1 — a)¢. Therefore, D can be at most log . N. The running time

for the first phase can thus be bounded as follows.

Lemma 6.1 The running time for Algorithm PHF during phase one is bounded
from above by O(log% N).

Note that the running time for phase one is, for constant «, larger than
log N only by a constant factor. For comparison, recall that log N time is
already required for broadcasting a value from one processor to the other
N — 1 processors in most models of parallel machines.

If one was only interested in obtaining a parallel algorithm with the
same performance guarantee as Algorithm HF, it would be sufficient
to stop the load balancing after this first phase and leave the remain-
ing free processors idle. However, as can be seen from the simulation

108 Parallel Load Balancing for Problems with Good Bisectors

results presented in Section 6.2 as well as the average-case analysis pro-
vided by [BSS99], the maximum load achieved by Algorithm HF is much
smaller than the worst-case bound for many problem instances, especially
when « is small. Therefore, the balancing quality of this approach would
often be worse than what can be achieved if all available processors are
used. Thus it is desirable to aim at a parallel solution that produces the
same partitioning as the sequential Algorithm HFE.

In order to achieve this, Algorithm PHF continues as follows. After
the barrier synchronization in step (b), the number f of free processors is
calculated in step (c) and made known to all processors. Let f; denote this
initial value of f. At the same time, the free processors can be numbered
from 1 to f, and the id of the i-th free processor can be stored at F;. (This
way, any processor can later on determine the id of the i-th free processor
by questioning P;. No global communication is required.)

Then, the second phase of the algorithm consists of iterations of the
following steps:

1. Determine the maximum weight m among the subproblems gener-
ated so far (m is broadcast to all processors).

2. Determine the number h of processors that have a subproblem of
weight at least m(1 — «), and number them from 1 to & (h is broadcast
to all processors).

3a. If h < f, all h processors that have subproblems of weight at least
m(1 — «) bisect their subproblem; the ¢-th such processor sends one
of its two resulting subproblems to the i-th free processor that has
not received a subproblem in a previous iteration.

3b. If h > f, the f heaviest subproblems are determined and numbered
from 1 to f (employing either selection or sorting as a subroutine);
for 1 < ¢ < f, the processor with the i-th among the f heaviest sub-
problems bisects its subproblem and sends one of the two resulting
subproblems to the i-th free processor that has not received a sub-
problem in a previous iteration.

In each iteration, the value of f represents the number of remaining free
processors. Every processor can update its copy of f locally by subtracting
min{h, f}. The load balancing terminates when there are no free pro-
cessors left, i.e., when f = 0. Observe that the min{h, f} subproblems
chosen for bisection in each iteration would also have been bisected by

Parallel Load Balancing 109

the sequential Algorithm HEF, because none of the bisections in the cur-
rent iteration can generate a new subproblem with weight greater than
m(1 — «). Hence, Algorithm PHF produces the same partitioning of p into
N subproblems as Algorithm HF.

Note that global communication is required in every iteration of phase
two. The values of m and h can be determined and broadcast to all pro-
cessors in steps (d) and (e) by simple prefix computations (see [J&4]92]) in
time O(log N). The barrier at the end of every iteration takes time at most
O(log N) as well. In all iterations except the last one, no further global
communication is required: a processor that bisects a problem in that iter-
ation can determine the id of a free processor by a single request to one of
the processors Py, ... , Py . Only in the last iteration it can be necessary to
determine the f heaviest subproblems and number them from 1 to f. This
can be done by employing a parallel sorting or selection algorithm (see
[J4]92]). The time requirement is also O(log N), but with a larger constant
than for the simple prefix computations.

Taking all this into account, the reader may easily verify that the
running time for one iteration of phase two is O(log N) under our as-
sumptions. In addition, the maximum weight among all subproblems
is reduced at least by a factor of (1 — «) in each iteration (unless all free
processors receive a subproblem in the iteration, in which case the al-
gorithm terminates). As it is clear that the maximum weight can never
become smaller than 2 | the algorithm will terminate no later than after
I iterations if I satisfies the following inequality:

w(p) r_ w(p)
T'Ta'(l—a) ST'

This can be rewritten as
{EJ A-a)lEl2 <,
o'
This inequality is implied by the following inequality
(6.1) 1-a)lal2<a.
From (1 — @)« < 1/e and (1/e)™a = a we conclude (1 — a)a "« < . Thus,

(6.1) is satisfied for I + | 2| —2 > 11n 1, which surely holdsif I > Z1In 2.
Hence, we obtain the following lemma.

110 Parallel Load Balancing for Problems with Good Bisectors

Lemma 6.2 The number of iterations performed by Algorithm PHF in phase two
is bounded from above by ~1In =<, and each iteration takes time O(log N). Alto-
gether, phase two has running time O(In = log N).

Lemmata 6.1 and 6.2 can be summarized by the following theorem.

Theorem 6.3 Given a class P of problems with a-bisectors for a fixed constant c,
there is a parallel implementation of Algorithm HF, called Algorithm PHF, that
subdivides a problem from P into N subproblems in time O(log N). The resulting
subproblems are the same as for the sequential Algorithm HF.

While the described parallel implementation of Algorithm HF has op-
timal running time for constant o under our assumptions, there are also
drawbacks of this approach. First, we have completely ignored the man-
agement of free processors in phase one so far. Although we will show
in Section 6.1.4 that this can be implemented without increasing the
asymptotic running time, it must be expected that substantial commu-
nication overhead will occur if many processors want to acquire the id
of a free processor simultaneously. Further, the second phase of Algo-
rithm PHF requires global communication in each iteration; effectively,
the described implementation simulates a specialized parallel priority
queue (see [BTZ98, BDMRY6, San98] for further information on parallel
priority queues) that allows selection of the min{, f} heaviest remaining
subproblems. While this overhead may be small on parallel machines with
high-bandwidth and low-latency interconnection networks, it is likely to
limit the speed-up achievable with this algorithm in practice on less pow-
erful platforms, like networks of workstations.

6.1.2 Algorithm BA

To overcome the difficulties encountered with Algorithm PHF, we now
propose an alternative algorithm for the load balancing problem that is in-
herently parallel. This algorithm tries to execute as many of the necessary
bisection steps as possible concurrently while maintaining a worst-case
bound on the resulting maximum load comparable to the bound for Algo-
rithm HE

The maximum load generated by this algorithm in the worst case is
larger than the worst-case bound for Algorithm HF only by a small con-
stant factor. In addition, the management of free processors can be realized

Parallel Load Balancing 111

efficiently for this algorithm, and no global communication is required at
all. Furthermore, we will show in the next Section that it is possible to
integrate Algorithm BA and Algorithm HF into an efficient parallel load
balancing algorithm that combines the advantages of both approaches.

Algorithm BA (see Figure 6.2) receives a problem p from a class of
problems that has a-bisectors and a number N of processors as input.
Its output is a set containing the N subproblems generated from p. If
N =1, the output is the singleton set {p}. If N > 1, the problem p
is bisected into subproblems p; and p,, and the N processors are parti-
tioned between the two subproblems according to their relative weight.
Subproblem p; receives N; > 1 processors, ¢ = 1,2, and N; + N, = N. Then,
Algorithm BA is invoked recursively with input (p;, IV;), ¢ = 1, 2. Note that
these recursive calls can be executed in parallel on different processors.
The output is the union of the two sets of subproblems generated by the
recursive calls. We observe that 1 < N; < N, holds for each bisection step
during the run of Algorithm BA if w(p;) < w(p,). Furthermore, note that
Algorithm BA does not require knowledge of the bisection parameter o of
the given class of problems.

Algorithm BA(p, N)
begin
if V> 1then
bisect p into p; and p,;
/] assume w.l.0.g. w(p1) < w(p>)
a = w(pr)/w(p).
if AN — |aN| < a then
N1 = L@NJ,
else
Nl = [&N],
fi;
Ny :=N — Np;
return BA(p1, N1) U BA(p2, V2);
else
return {p};
fi;
end.

Figure 6.2: Algorithm BA (Best Approximation of ideal weight)

In each bisection step Algorithm BA chooses N; and N, such that the

112 Parallel Load Balancing for Problems with Good Bisectors

maximum of w(p;)/N;, i = 1,2, is minimized. More precisely, the following
minimization problem is solved:

min max
N1+N2=N
N1,Np21

{W(Pl) W(Pz)}
N, N, |

We assume w.l.o.g. that w(p;) < w(p,) and therefore & = w(p;)/w(p) is the
actual bisection parameter of that bisection. Clearly, the above minimiza-
tion problem reduces to the decision whether &N should be rounded up
or down to obtain /V; . This can be done by checking if

& < 1-é&
|aN| — N — [aN]’
since w(p1) = aw(p), w(p2) = (1 —a&)w(p). If &N is an integer, (6.2) holds with

equality. Otherwise let [&N] = &N +u, |[&N| = &N —d, with0 < d,u < 1,
u +d = 1. Itis easy to see that (6.2) holds iff d < 4.

(6.2)

Next, we will prove a series of lemmata in order to obtain a perfor-
mance guarantee for Algorithm BA. The first lemma gives an upper
bound on the rounding error made by Algorithm BA in a single bisec-
tion step.

Lemma 6.4 Let P be a class of problems with weight function w : P — R* that
has a-bisectors. Given a problem p € P and an integer N > 2, it holds for each
bisection step made by Algorithm BA:

w(p) wp)| _wp) N
max{ Nll’ N;}S N N_-1’

where N; > 1 is the number of processors assigned to subproblem p; , i = 1,2, by
Algorithm BA.

Proof: We assume w.l.o.g. that w(p;) < w(p,) and let d, u be defined as
above. We have to distinguish two cases:

Case1: d < &. Then Ny = |&N |, and
max {W(Pl) W(Pz)} _ w(p1)

M N M
_ w(p) aN
- N 4N —d
w(p) aN

VAN

Parallel Load Balancing 113

w(p) N

N N-1
Case 2: d > &. Then N; = [aN], u < (1 — &), and
ax {W(Pl) w(p2) } _ w(p2)

Ny N,
_ w(p) (A-&N
N N —(4N +u)
< w(p) (1-&N
N N-aGN-(1-a)
B w(p) N
- N N-1° O

Now we analyze the ratio between the maximum weight subproblem
produced by Algorithm BA and the ideal weight for small numbers of
processors.

Lemma 6.5 Let P be a class of problems with weight function w : P — R*
that has a-bisectors. Given a problem p € P and a positive integer N < 1/«
Algorithm BA uses N —1 bisections to partition p into N subproblems ps, ... ,pn
such that

max w(p;) < w(p)(1 —)l 2]

1<i<N

Proof: It is easily seen that Algorithm BA uses N —1 bisections to partition
p into N subproblems for any positive integer N. Now we show that the
above inequality regarding the maximum weight among these subprob-
lems holds.

Consider a path Q@ = (90,¢1,-.-,q), 0 < £k < N — 1, from the root
p =: qo of the associated bisection tree TpN to some leaf p; =: q,, i €
{1,...,N}. Let N; denote the number of processors assigned by Algo-
rithm BA to problem ¢;, 0 < j < k. Using Lemma 6.4 we conclude:

w MON
i) < z(vp)'gjvjil
For fixed k, Hf 01 N—J— is maximized if each factor is as large as possible.
Since Ny_1 > 2and N; > N, +1 it follows that Nj—1 < ﬁgz 3 I Therefore,
w(p)

w(p;) < (k +1).

114 Parallel Load Balancing for Problems with Good Bisectors

Since there are £ bisection steps along () we have:

w(p;) < w(p)(1 — a)*.
Thus,
w(p)

)< i Y
122)1(\/“’@2) <N Oslglsa]élmm{k +1,N(1 — a)*}

It remains to show that || < N(1 — o)l 2], The case N = 1 is trivial. If
N > 2, it holds that

N1 -a)l?] 2N<1—l) ng

as1/N > a. O

The following lemma provides an upper bound on the increase of the
average weight per processor of a subproblem that has been assigned a
certain number of processors by Algorithm BA.

Lemma 6.6 Let P be a class of problems with weight function w : P — R*
that has o-bisectors. Let further bep € P, p > o, and N € N. Then, for any
subproblem p generated by Algorithm BA on input (p, N) that has been assigned
N > p/a+1 processors it holds that:

A

W) W) o
N T N

Proof: Similarly to the proof of Lemma 6.5 we consider the path @ =
(o, q1, - - - , q) from the root p =: gy of the bisection tree TpN to p =: q;. With
Lemma 6.4 we have:

wp) _wo) 11N
N = N 1:N;-1
(6.3) o) l’:l
w 1
=T']UO<“NJ._1)’

where N, is the number of processors assigned to subproblem g;, 0 < j <.
To bound the product H;:é(l +1/(N; — 1)) we show thatfor 0 < j <1 —1:
1 1

<(l—a)—.
I

(6.4)

Parallel Load Balancing 115

In order to derlve (6.4) we have to prove - L l—afor0<j<]—1.
If Nja = N; — |&;N;], where &; is the actual blsect1on parameter of the
(j + 1)-th bisection on (@, we conclude
Njy—1 Nj—@&;N;+d;j—1
N;j—-1 N; -1
< Nj —&;N;+ad; —1
- N; -1
= 1-¢
< 1l-a.

The remaining cases can be proven analogously

Note that (6.4) implies ﬁ <(1-a)l 9 . Therefore,

-1 1 = 1
g<1+Nj_1) : H<1+(1_a)l JNl—1>

3=0

-1
[e oo
§=0

(N T (-t
cNi-) T (- a)
(N7 (1-a)/a
ea/p-(1-a)/a

el—al/p.

IN

VAN

IN

The claim of the lemma now follows from (6.3). O

We are now in a position to bound the ratio between the maximum
weight subproblem produced by Algorithm BA and the ideal weight by
an appropriate combination of Lemmata 6.5 and 6.6.

Theorem 6.7 Let P be a class of problems with weight function w : P — R* that
has o-bisectors. Given a problem p € P and a positive integer N, Algorithm BA
partitions p into N subproblems pn, ... ,py such that

max w(p;) < 2/ W(p) : BJ (1=)l

1<i<N

Proof: If N < 1/q, the theorem follows from Lemma 6.5. Therefore, we
assume N > 1/« for the remainder of this proof. Again, we consider a path

116 Parallel Load Balancing for Problems with Good Bisectors

Q = (g0, q1, - - ,qx) from the root p =: ¢y of the bisection tree TPN to some
leaf p; =: i, ¢ € {1,...,N}. Let g.,1 be the first node on this path (i.e., the
node with minimum index) such that N;;; < é, where N; is the number

of processors assigned to subproblem ¢;, 0 < j < k. Using Lemma 6.5 we
conclude:

+ 1 1
(65) w(py) <). H (- ali),
Nia (67
Since N; > 1/a we can apply Lemma 6.6 for ¢; with p = 1 — «. This yields:
w(g) _ wp)
. < ——-e.
(66) N =N €

It remains to consider the bisection step at subproblem ¢;. By Lemma 6.4
and from N, > 1/a we derive:

wig) _wlg) N _wig) 1
Nl+1 B Nl Nl—l_ Nl 1—0[.

6.7)

Combining (6.5), (6.7), and (6.6) completes the proof because the bounds
are valid for any root-to-leaf path. O

Now we analyze the running time of Algorithm BA. The management
of free processors for Algorithm BA is very simple and does not intro-
duce any communication overhead (see Section 6.1.4). Therefore, the
running time of Algorithm BA in our model is obviously bounded by
the maximum depth of a node in the bisection tree representing the
run of Algorithm BA, because in every step of the algorithm the inter-
nal nodes at one level of the bisection tree are bisected in parallel.

Consider a problem p that is to be split among V,, processors and that
is bisected into p; and p, by Algorithm BA. Inequality (6.4) from the proof
of Lemma 6.6 shows that each of p; and p, receives at most N,(1 — o) + &
processors. As N,(1 — a) + o < N,(1 — a/2) for N, > 2, the number of
processors is at least reduced by a factor of (1 — «/2) in each bisection step,
and thus the depth of a leaf in the bisection tree can be at most log - N.

1-a

Thus, we have the following theorem:

Theorem 6.8 Given a class P of problems that has «-bisectors for a fixed con-
stant o, Algorithm BA subdivides a problem from P into N subproblems in time
O(log N).

Parallel Load Balancing 117

6.1.3 Combining BA and HF: Algorithm BA-HF

The worst-case upper-bound on the ratio between the maximum weight
subproblem produced by Algorithm BA and the ideal weight w(p)/N,
which is stated in Theorem 6.7, is not as good as the one for Algorithm HFE.
To obtain a highly parallel algorithm for our load balancing problem with
a performance guarantee very close to the one for Algorithm HF we inte-
grate Algorithm BA and Algorithm HF by dividing the bisection process
into two phases. While the number of processors available for a particular
subproblem is large enough, Algorithm BA-HF (see Figure 6.3) acts like

Algorithm BA-HF(p, N)
begin
if N >o/a+1then
bisect p into p; and p,;
/] assume w.l.0.g. w(p;) < w(py)
&= W(pl)/N,
if AN — |aN| < & then
N1 = LCA\{NJ,
else
N1 = [CA\{N—I,
fi;
Ny =N — Ny,
return BA-HF(p,, N7) U BA-HF(p,, N>);
else
return (P)HF(p,N);
fi;
end.

Figure 6.3: Algorithm BA-HF

Algorithm BA. However, if the number of processors assigned to a sub-
problem is below a certain threshold, Algorithm HF is used to partition
this subproblem further. To define this threshold precisely, we assume
that Algorithm BA-HF has knowledge about the bisection parameter o
of a given problem class. Algorithm HF is invoked by Algorithm BA-HF
if N < o/a +1, where 0 € R* is a parameter predefined by the appli-
cation to reach the desired performance guarantee. (If a is not known,
Algorithm BA-HF can still be used after setting the threshold for N di-
rectly. In this case, however, it is not possible to ensure a performance
guarantee better than that for Algorithm BA.) Note that the two phases

118 Parallel Load Balancing for Problems with Good Bisectors

of Algorithm BA-HF are not completely separate; while some processors
are still assigning processors to subproblems according to Algorithm BA,
others may already have switched to Algorithm HF.

Depending on the value of o/, it may be advantageous to choose
either the sequential Algorithm HF or Algorithm PHF for the imple-
mentation of the second phase of Algorithm BA-HF: If o/a is very
small, the simple sequential implementation of Algorithm HF may be
perfectly sufficient; if o/a is somewhat larger, it may be beneficial to
employ Algorithm PHF. The discussion of this trade-off depends on the
particular parallel architecture used.

The next theorem gives a bound on the quality of the load balancing
achieved by Algorithm BA-HFE.

Theorem 6.9 Let P be a class of problems with weight function w : P — R*
that has a-bisectors. Given a problem p € P, a positive integer N, o € (0,1/2],
and o > «, Algorithm BA-HF partitions p into N subproblems ps, ... ,py such
that

max w(p;) < WT(p) cell=ofe (1 + g) “To -

1<i<N o
Proof: The proof is analogous to the proof of Theorem 6.7. O

According to this theorem we can bring the worst-case bound of Al-
gorithm BA-HF on the ratio between max;<;<n w(p;) and WT@) arbitrarily
close to the corresponding bound for Algorithm HE. For any ¢ > 0, if we
let o > 1/In(1 +¢), the performance guarantee of Algorithm BA-HF is
increased at most by a factor of 1 + € in comparison to Algorithm HF.

Regarding the running time, it is clear that the first phase of Algo-
rithm BA-HF is at most as long as the running time for Algorithm BA
and can thus be bounded by O(log N) for fixed «. If o and, therefore, o/«
are considered constants as well, the second phase of Algorithm BA-HF
requires only constant additional work per processor, no matter whether
the sequential Algorithm HF or Algorithm PHF is used. In this case, the
overall running time for Algorithm BA-HF is O(log N). If o is allowed to
be arbitrarily large, it is necessary to use Algorithm PHF in the second
phase of Algorithm BA-HF in order to achieve running time O(log N), be-
cause if the sequential Algorithm HF were used, the running time would
be O(log N + o/a). Using Algorithm PHF in the second phase of Algo-
rithm BA-HF, we get the following theorem.

Parallel Load Balancing 119

Theorem 6.10 Given a class P of problems that has o-bisectors for a fixed con-
stant o, Algorithm BA-HF subdivides a problem from P into N subproblems in
time O(log N).

6.1.4 Managing the Free Processors

In the previous sections we have assumed that a processor that wants
to send a newly generated subproblem to a free processor can quickly
acquire the id of a free processor. Now we investigate how difficult the
realization of this access to free processors is in the context of the different
load balancing algorithms.

For Algorithm PHEF, the problem of managing the free processors is
the most challenging. In the first phase, it can be the case that a large
number of processors bisect problems in parallel simultaneously and
need to get access to a free processor in order to send a newly gener-
ated subproblem to it. Each sender must get the id of a different free
processor. Basically, this task can be viewed as mapping a dynamically
growing tree onto the processors of the parallel architecture [Lei92, pp.
410-430]. Depending on the machine model, various solutions employing
distributed data structures for managing the free processor may be appli-
cable: (randomized) work stealing [BL94], dynamic embeddings [Lei92,
LNRS92, AL91, Heu96], etc. In the following, we outline a solution that
employs a modified version of Algorithm BA as a subroutine.

Let Algorithm BA be an algorithm that is identical to Algorithm BA
except that it does not bisect any subproblems with weight at most WT(”) T
The first part of phase one of Algorithm PHF consists of an execution of
Algorithm BA on inputs p and N. Theorem 6.8 implies that this execution
takes time O(log V). At the end of this execution, only subproblems of
weight greater than WT@) -7 have been bisected. Furthermore, no remaining
subproblem can be heavier than WT(”) ‘e LéJ (1-a) 2511, This follows from

Theorem 6.7, because the only subproblems of weight greater than WT(”) “Ta
that are not bisected by Algorithm BA are those that have been assigned to
a single processor, and these subproblems would not have been bisected

by Algorithm BA either.

The second (and last) part of phase one of Algorithm PHF is very
similar to phase two and consists of a constant number of iterations
(for fixed «) in each of which all remaining subproblems with weight

120 Parallel Load Balancing for Problems with Good Bisectors

greater than WT("") - ro are bisected. Each such iteration can be imple-

mented in time O(log N) by numbering the free processors, numbering
all remaining subproblems with weight greater than WT(”) - To , bisecting all
these heavy subproblems, and sending one of the two new subproblems
generated from the i-th heavy subproblem to the i-th free processor. As
each iteration reduces the maximum weight among the remaining sub-

problems at least by a factor of (1 — «), we can conclude from

that [ij + [log 1 e] iterations suffice to reach a situation where all re-
1-a
maining subproblems have weight at most WT@) “To

After the end of the first phase of Algorithm PHEF, the remaining free
processors are determined and assigned numbers in time O(log N). As
explained in Section 6.1.1, this knowledge can be exploited during the
second phase of Algorithm PHF as follows: a busy processor can locally
determine the number of the free processor to which a newly generated
subproblem must be sent, and a single request to another processor suf-
fices to acquire the id of that free processor.

Although the solution outlined above shows that the management of
free processors during phases one and two of Algorithm PHF can be
implemented without making the asymptotic running time larger than
O(log N), it is clear that substantial communication overhead is caused.
Therefore, Algorithm PHF will perform best in practice if the network is
very powerful or if the number of processors is not too large.

For Algorithm BA, the management of the free processors can be done
in a very simple and efficient way. With each subproblem g, we simply
store the range [¢, j] of processors available for subproblems resulting
from q. Initially, the original problem p has the full range [1, N] of pro-
cessors available. When p is divided into p; and p, such that p; gets N,
processors and p, gets N, processors, p; stays on P; and gets the range
[1, N1], while p; is sent to Py,;; and gets the range [/V; + 1, N]. Similarly,
a problem ¢ with range [, j] is always bisected at P;, and the resulting
subproblems ¢; and ¢, with corresponding numbers of processors N; and
N, = j+1 —1i— Nj are associated with ranges [¢,7 + Ny — 1] and [i + Ny, j],
and problem g, is sent to processor i + N; . In this way, each processor can
locally determine to which free processor it should send a newly gener-
ated subproblem, and no overhead is incurred for the management of free
processors at all. This is one of the main advantages of Algorithm BA.

Simulation Results 121

For Algorithm BA-HF, the simple management of free processors that
is applicable for Algorithm BA can be used while the number of proces-
sors for a subproblem is large. For subproblems that are to be partitioned
among a small number of processors (N < ¢/a + 1), the management of
free processors is trivial if the sequential Algorithm HF is used. If Algo-
rithm PHF is used in the second phase of Algorithm BA-HF, however, the
more complicated management of free processors described above can be
deployed. As this method with expensive communication is used only
for small numbers of processors, the communication overhead should be
small enough to achieve good running times in practice.

6.2 Simulation Results

To gain further insight about the balancing quality achieved by the pro-
posed algorithms, we carried out a series of simulation experiments.
The goal of this simulation study was to obtain information about the
average-case behavior of Algorithms BA and BA-HF in comparison to
Algorithm HF. Since Algorithm PHF produces the same partitioning
as Algorithm HE no separate experiments were conducted for Algo-
rithm PHF. The following stochastic model for an average-case scenario
that may arise from practical applications seems reasonable: Assume that
the actual bisection parameter & is drawn uniformly at random from the
interval [a, 6], 0 < @ < # < 1/2, and that all N — 1 bisection steps are in-
dependent and identically distributed. We will write & ~ Ule, 3] if & has
uniform distribution on [«, 5]. Such an assumption is valid, for example,
if the problems are represented by lists of elements taken from an ordered
set, and if a list is bisected by choosing a random pivot element and par-
titioning the list into those elements that are smaller than the pivot and
those that are larger. Some of the experimental results for Algorithm HF
(see below) were confirmed by thorough mathematical analysis in [BSS99].

We repeated each simulation experiment 1000 times to obtain data that
is statistically meaningful. In each experiment the ratio between the maxi-
mum load generated by our algorithms and the uniform load distribution
was recorded. The main focus of interest was on the sample mean of the
observed ratios for all three algorithms, but also the maximum and min-
imum ratio, as well as the sample variance was computed. Algorithm
BA-HF is identical to Algorithm HF if N < o/« + 1. Consequently, the
entry for Algorithm BA-HF is omitted in our plots and tables if the initial
number of processors is smaller than the threshold.

122 Parallel Load Balancing for Problems with Good Bisectors

Simulations of this stochastic model for several choices of the interval
[, Bland N = 2%, k € {5,6,...,20}, were performed. We chose the num-
ber of processors as consecutive powers of 2 to explore the asymptotic
behavior of our load balancing algorithms. The reader should therefore
bear in mind that all but one of the plots are to a logarithmic scale. Choos-
ing N as a power of 2 is possible since the results shown depend smoothly
on N under the above stochastic assumptions if the interval [« 3] is not too
small. Figure 6.5 shows the full range from N = 32 to N = 64 processors for
& ~ U[0.1,0.5], o = 1.0, to provide a detailed view of the results shown in
Figure 6.4. The influence of the threshold parameter o on the performance
of Algorithm BA-HF in our stochastic model was also studied.

Table 6.1: Sample variance of some experiments (o = 1.0)

|logN| &~U[01,05] [a~U[0.01,025] |
BA [BA-HF | HF || BA |[BA-HF| HF

5 [0.093] 0.045 [0.011 || 0.482] 0.482 | 0.062
10 [0.048 | 0.032 | 0.000 || 0.321 | 0.194 | 0.003
15 [0.030 | 0.022 | 0.000 || 0.194 | 0.186 | 0.000
20 [0.020 | 0.015 |0.000 || 0.163 | 0.147 | 0.000

It is remarkable that the sample variance was very small (see Table 6.1)
in almost all cases. Only if an interval [«, 2«] with very small a was cho-
sen, a significantly higher sample variance was observed. This is at least
partially due to the much higher ratios that result from permanent “bad”
bisections (see Figure 6.10). Even more astonishingly the outcome of each
experiment was fairly close to the sample mean of all 1000 experiments in
every simulation. Especially for Algorithm HF the observed ratios were
sharply concentrated around the sample mean for larger values of N (see
Table 6.2). Motivated by these observations, we analyze the average-case
behavior of Algorithm HF under the above stochastic assumptions in the
next chapter.

In all experiments Algorithm HF performed best and Algorithm BA-
HF outperformed Algorithm BA. For all but one choice of [«,] the
observed ratios differ at most by a factor 3 for fixed N. The perfor-
mance gap increases with the number of available processors. This is
due to the fact that the performance of Algorithm BA (and therefore
also of Algorithm BA-HF during its first phase) suffers from accumu-
lated rounding errors when the number of processors grows. However,
it follows from Lemma 6.5 that this process converges as N approaches

Simulation Results 123

infinity. We have shown in the previous sections that all three algorithms
have worst-case upper bounds on the ratio that depend solely on «.. There-
fore, for fixed «, the ratio generated on any input by our load balancing
algorithms is bounded from above by a constant. In each of our simu-
lations the average and even the maximum ratio were substantially
lower than the corresponding worst-case bound (see Table 6.2). These
bounds were calculated according to Lemma 6.5, Theorems 6.7, 6.9, 5.2,
and 5.7. This indicates that the performance of the proposed load balanc-
ing algorithms for practical applications will most likely be significantly
better than the worst-case guarantees.

Table 6.2: Comparison of the worst-case upper bounds and the observed
minimum, average, and maximum ratios for & ~ U[0.01,0.5], 0 = 1.0

| BA |
log N ub min | avg | max
5 2725 || 1.70 | 2.73 | 4.98
10 166.12 || 3.14 | 4.01 | 5.80
15 166.12 || 4.31 | 5.04 | 6.47
20 166.12 || 5.27 | 6.03 | 8.16
‘ BA-HF ‘
log N ub min | avg | max
10 101.51 || 1.99 | 2.27 | 3.40
15 101.51 || 2.40 | 2.92 | 4.72
20 101.51 || 3.16 | 3.88 | 5.89
| HF |
logN | wub min | avg | max
5 2343 || 1.55 | 1.94 | 2.63
10 3735 || 1.87 | 1.96 | 2.08
15 373511194 | 1.96 | 1.98
20 373511196 | 1.96 | 1.97

Figures 6.4-6.8 reveal that the average ratio produced by Algorithm HF
is almost constant for the whole range of N =32to N = 220 = 1048576 pro-
cessors and depends only on the particular choice of the interval [o, 3].
This is due to the length of the interval from which the actual bisection pa-
rameter is drawn which is at least 0.15 in each simulation setup. Therefore,
bisections with small & are compensated by bisections that generate sub-
problems with roughly equal weight. We observed that the distribution

124 Parallel Load Balancing for Problems with Good Bisectors

of the weights of the subproblems generated by Algorithm HF is highly
regular in these cases: If the subproblems were sorted by non-increasing
weight after a sufficiently large numbers of bisections the difference of two
consecutive weights in this order was almost constant. This phenomenon
allows for a steady reduction of the maximum weight by the selection rule
employed by Algorithm HF in consecutive bisection steps. Only when the
range for the actual bisection parameter is very small (cf. Figures 6.9-6.11)
the observed ratios change with varying numbers of processors. This re-
sults from the existence of many subproblems whose weights are close to
the maximum weight at certain stages during the run of Algorithm HE.

It is intuitively clear that no bisection-based load balancing algorithm
is able to perform well (in comparison with the ideal uniform load dis-
tribution) when each bisection step has the least possible &. Figure 6.11
shows a comparison of Algorithm BA and Algorithm HF for & = 0.1. This
computation was done only once since there are no random choices in this
case. It turns out that the resulting ratios are separated by the worst-case
upper bound ry; < 4.31 of Algorithm HE Therefore, Algorithm BA is
inferior to Algorithm HF from a worst-case point of view. It is also worth
noticing that the ratios generated by Algorithm BA are way below the up-
per bound provided by Theorem 6.7 for the numbers of processors under
consideration. This might indicate that this upper bound is not tight.

Finally we studied the influence of the threshold parameter o on the
average-case performance of Algorithm BA-HF. Figure 6.12 shows that the
improvement of the average ratio is approximately 10% when o increases
from 1.0 to 2.0 and another 5% when o = 3.0. Therefore, we can expect a
sufficient balancing quality from Algorithm BA-HF using relatively small
values of o. This ensures that the inherent parallelism of Algorithm BA
can be almost fully exploited during the first phase of Algorithm BA-HF
and Algorithm HF (or PHF) is only used on a small number of processors
during the second phase.

Simulation Results

125

avg. ratio
4.0 1
+-*BA
/.'/
-~
35 7] _ "
/r/‘ A/"BA-HF
Ve _ A
- _a
3.0 1 e _a-t
A
n//./ A’A/
2.5 1 o’ =i
. // /A/
/, k/A
(4 ,A//
204 -4
0-—0—-0—-—0—0—0—0——0-—0-0-0—-0—0—0—0—-0HF

1.5

5 6 7 8 9 10111213 14 15 16 17 18 19 20

— log N

Figure 6.4: Comparison of the average ratio for & ~ U[0.1,0.5], 0 = 1.0

avg. ratio
ceeoooo°o°BA
2.4 - oo _o0°°° °°
*)) °
eg0e®0 ©
[]
2.2 A
AAAAAAAAAAAAAABA-HF
A, Aahaddsadaasta
AAL
201 *
1.8 - ©0000009000000000000000000000000o0HF
1.6 T T T T T T T T T

32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Figure 6.5: Influence of the number of processors
(&~ U[0.1,0.5], 0 = 1.0)

126

Parallel Load Balancing for Problems with Good Bisectors

6.0
5.5
5.0 1
4.5 1
4.0 1
3.5 1
3.0 1
2.5 A1
2.0

1.5

avg. ratio

— A
’A'"

o-—o-—g—o—o—-o——o——o——o——o——o-—&—o—o—-o——oHF

log N

5 6 7 8 9 10111213 14 15 16 17 18 19 20

Figure 6.6: Comparison of the average ratio for & ~ U[0.01,0.5], 0 = 1.0

avg. ratio
5.0 A o
,r’."./-., oA
4.5 ./,,*
40 o ol _a-+BA-HF
0’/./ _A/"/’k’
3.5‘ /// X’k,k’
/. —_
301 ¢ X,,f“‘
254 «*"
0 0-—0—-g—-0—0—-0—0——0-—0-0-0—-0—0—0—o0—-o0 HF
1.5 T T T T T T T T T T T T T T T T logN
5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20

Figure 6.7: Comparison of the average ratio for & ~ U[0.1,0.25], 0 = 1.0

Simulation Results 127
avg. ratio
9 .
«-*BA
8 T /./,.‘
/‘/
7_ ‘///'
-
6 1 e~ .- ~BA-HF
» Pt
5 1 i -t
/./ ,A//k/
i e
A/
a-A7
31 °_—°-—:—o—-o—-o——o——o——o——o——o——o—o—o—-o——oHF
2 T T T T T T T T T T T T T T T T logN
5 6 7 8 9 1011 12 1314 1516 17 18 19 20

Figure 6.8: Comparison of the average ratio for & ~ U[0.01,0.25], 0 = 1.0

avg. ratio

6.0 -
5.5 1
5.0 1
4.5 1
4.0 H
3.5 1
3.0 1
2.5 1

\\o’*r@—o-o_-o——o——o——o-—o—o—-o——oHF

2.0

T T T T T T T T T T T T logN
9 10 11 12 13 14 15 16 17 18 19 20

Figure 6.9: Comparison of the average ratio for & ~ U[0.1,0.15], 0 = 1.0

128 Parallel Load Balancing for Problems with Good Bisectors

avg. ratio
42 - o—o—*—*BA
—o-—*’."
37 S
’/
32 - .7 _a-4-4BA-HF
/'. ‘,—A—A—*——"""’—k—k *
27 - T
£ 7
s\ X
22 A VAN
d \
o //o\\
].7 1 \\ /D o\ o/’°HF
i \\ o’ AN ol
12 \ 6// o /c/
7 1 L he
o,-o
2 T T T T T T T T T T T T T T T T logN
5 6 7 8 91011121314 1516 17 18 19 20

Figure 6.10: Comparison of the average ratio for & ~ U[0.01,0.02], 0 = 1.0

ratio

6.0 - AN e A le” *~« *BA
5.5 1 .

5.0 1
4.5
4.0 1
3.5 1

301 e Tel, eTTes e o

To.1

254 /
2.0

T T T T T T T T T T T T T T T T logN
56 7 8 9 101112 13 14 15 16 17 18 19 20

Figure 6.11: Comparison of the ratio generated by Algorithm BA and Al-
gorithm HF for & = 0.1

Simulation Results 129

avg. ratio
3.3 .,f'a:l.O
o
//./
-¢ ag=20
/.’ -
2.9_ /‘/ //., /'AO'=3O
L g /'. -
.’//'/ //.// /A//x
P a &
25 T ,./ /.,/ X/
o« a” AT
/.// /r/./,.k/‘
o - A
2.1 T /.// /'//k/‘
o o
i
1.7 IX T T T T T T T T T T T T T T T IOgN
5 6 7 8 9 1011121314 1516 17 18 19 20

Figure 6.12: Influence of the threshold parameter o on the average ratio of
Algorithm BA-HF for & ~ U[0.1,0.5], o € {1.0,2.0,3.0}

Chapter 7

Average-Case Analysis of Load
Balancing using Bisectors

The upper bounds on the maximum load produced by Algorithm HF
given in Section 5.1 ensure an acceptable balancing quality even in
the worst case for an impressive range of the actual bisection param-
eter. However, if the left boundary of this range gets too close to zero,
the worst-case bounds increase dramatically. But in our lower bound con-
struction in Section 5.1, a long sequence of “bad” bisections was necessary
to come close to the worst case. Therefore, one might expect that Algo-
rithm HF (or some other bisection-based load balancing algorithm for our
model) performs much better on average than the worst-case upper bounds
indicate. We show in this chapter that this is indeed the case assuming a
straight-forward and rather pessimistic random distribution for the indi-
vidual bisection steps.

Recall the stochastic model that we used to obtain the simulation re-
sults for our load balancing algorithms (see Section 6.2): The actual
bisection parameter is drawn uniformly at random from the interval
[0,5],0 < a < 3 < 1/2,and all N — 1 bisection steps are independent
and identically distributed. In this chapter, we study this average-case
scenario for @« = 0,4 = 1/2 and N — oo. We will show that in this case
the maximum load generated by Algorithm HF is sharply concentrated
around two times the ideal load (uniform partition).

The remainder of this chapter is structured as follows. In Section 7.1
we state some necessary definitions and give a brief outline of our anal-
ysis. Section 7.2 presents a formula for the expected number of problems

132 Average-Case Analysis of Load Balancing using Bisectors

in the bisection tree whose weights exceed a given value although the bi-
section process runs forever. Furthermore, we show in Section 7.3 that
the outcome of this stochastic process is sharply concentrated around its
expectation using AZUMA'’s tail bound for martingales. Then, the results
concerning the average-case behavior of Algorithm HF are derived. Fi-
nally, in Section 7.4 we describe how these results can be used to reduce
the computational complexity of our sequential and parallel load balanc-
ing algorithms if the above stochastic assumptions hold.

7.1 Definitions and Outline of the Analysis

For our analysis we assume that Algorithm HF receives a problem p
and executes infinitely many iterations of the while-loop (cf. Figure 5.1
on page 77). We consider the infinite bisection tree (IBT) T° generated by
this process. This tree grows larger with each iteration of Algorithm HE
There is a one-to-one mapping from the subproblems produced by Algo-
rithm HF to the nodes in the IBT. At every point in time the subproblems
in P correspond to the leaves in the part of Ty which has been generated
so far. Therefore, N now counts the number of subproblems generated so
far and is no longer a fixed input parameter of Algorithm HE. One can also
imagine that the IBT exists a priori and Algorithm HF visits all nodes one
by one. When we say that Algorithm HF visits or expands a node in the
IBT, we adopt this view on the model.

Now we define our probability space formally: Let (2 := [0, 1]N with the
uniform distribution. As usual in the continuous case, the set of events is
restricted to the o-field F := EN where

B:={IN[0,1]| € B},

and B denotes the Borel sets over R.

An element (&4, Gz, ...) € 2 has the following interpretation: &; corre-
sponds to the relative weight of the, say, left successor of the node which
is split by the i-th bisection. We do not consider the actual bisection pa-
rameter (which is equal to &; or (1 — &;)), since studying U[0, 1] instead of
U[0, 0.5] simplifies some calculations, and it is in most cases irrelevant for
our arguments which successor node is heavier. Consequently, we call &;
the generalized actual bisection parameter of bisection i. The following defini-
tion states this concept in terms of classes of problems:

Expected Number of Heavy Nodes 133

Definition 7.1 A class P of problems with weight function w : P — R* has
uniform bisectors if every problem p € P can efficiently be divided into two

problems py, p> € P with w(py) +w(p,) = w(p) and w(p)/w(p) ~ U0, 1].

Note that we could use (0,1)Y instead of [0,1]" as the sample space
throughout our analysis without any modifications in the proofs. How-
ever, since & = 0 might result from a randomized bisection subroutine, we
decided to use the more general formulation.

We call a node v in an IBT d-heavy, iff w(v) > d and accordingly we use
the notion d-light. If the value of d is obvious from the context, we just say
heavy and light for short.

Let P be a class of problems with weight function w : P — R" that has
uniform bisectors, and let C' denote the complete binary tree of infinite
height. Given a problem p € P and a number d € R*, we define for each
node v € C the random variables

o 1 i) >4
v)0 otherwise.

Since C is a superset of the nodes in any IBT 7)°, H 4= o HY counts
the number of d-heavy nodes in . If a node v is not contained in >,
H? = 0. The random variables H¢ directly correspond to the performance
of Algorithm HE, since H? equals the number of iterations after which the
set P of subproblems generated by Algorithm HF contains only d-light
nodes. This is due to the fact that Algorithm HF visits all d-heavy nodes
before it expands any d-light node.

For brevity, we denote by W the weight of the initial problem p. Finally,
for v € T;°, v # p, we define X, to be the weight of v relative to its parent
v in the tree, i.e., X, := w(v)/w(u). Clearly, X, ~ U[0, 1].

Our analysis proceeds as follows: First we will show that the ex-
pected number of d-heavy nodes E[H?] is comparatively small. Then
we will prove that H? is sharply concentrated around E[H?], and thus
H? is small with high probability. Finally, the results for Algorithm HF
follow easily.

7.2 Expected Number of Heavy Nodes

Consider a node v; on level | of T3 (level 0 contains only the root of the
tree, level 7 contains all nodes at BFS-distance i) and denote its ancestors

134 Average-Case Analysis of Load Balancing using Bisectors

on levels 0,1,...,1 — 1 by v, v1,...,v_1. Using the notation introduced
above, we have

l
(7.1) w(v) =W -] Xo -

i=1

The following lemma enables us to analyze the distribution of products
of U[0, 1]-distributed random variables exactly.

Lemma 7.2 Let Xy, Xs,. .., X, be independent random variables with exponen-
tial distribution and E[X;] =1/, 1 <i <n. Then for X := Y ", X,
- G e >0,

otherwise.

Pr[X <t] = {(1)

Proof: See [Fel71, p. 11]. O

The distribution shown in Lemma 7.2 is a special case of the gamma
distribution and is also known as Erlang distribution. It can be rewritten in
a form which is more convenient for our purposes:

n—1 i n—1 i 00 i

1=0 1=0 i=n

Itis easy to show (see [Fel71, p. 25]) that a random variable X; ~ U[0, 1]
can be transformed to a random variable Y; := —In X; with exponential
distribution and E[Y;] = 1. If we want to analyze X := [], X;, we can
equivalently analyze Y := —InX. Combining this fact with Lemma 7.2
yields the following lemma.

Lemma 7.3 Let X := [[., X; be the product of independent random variables
with X; ~ U[0,1]. If we defineY asY := —In X, we obtain for t € [0,1]

Pr[XEt]=Pf[Y§—lnt]:t-§:

=n

(— Int)
E

1
Proof: See [Fel71, p. 25]. O

In the following discussion we will often be concerned with the proba-
bility p¢ that an arbitrary node on level [in the IBT is d-heavy.

Expected Number of Heavy Nodes 135

Lemma 7.4 Let P be a class of problems with weight function w : P — R* that
has uniform bisectors. Furthermore, let p € P, d € R* such that w(p) > d, and
let v; be an arbitrary node on level | of T;°. Denote the ancestors of v, on levels
0,1,...,1—=1bywy,v1,...,v_1. Then for

pi = Prw(v) > d]

it holds that:
72) Z ln(W/ d))Z
!
(7.3) pd < % : (%) for 1 > max{In(W/d), 1}.

Proof: Using Equation (7.1) and applying Lemma 7.3 proves Equa-
tion (7.2):

= Prw(v) > d]
!

=Pr (W-[[X >4d

L i=1

! d]
=Pr YV,, <—In| —
2= (ip)
d < (In(W/d))
-y e,

Next we show that Inequality (7.3) holds:

— (In(W/d))! (In(W/d))’
; - 4WWWZ(Hy
_ 1 & (In(W/d))y - 1t
= (In(W/d))" - i ZZO: Ta+
1 0 lz’+l
< (In(W/d))’ - 5 - ZO: G
SMWW%. 0

Now we are in a position to state the first main result of this chapter,
namely the expected value for the number of d-heavy nodes in an IBT.

136 Average-Case Analysis of Load Balancing using Bisectors

Theorem 7.5 Let P be a class of problems with weight function w : P — R*
that has uniform bisectors. Given a problem p € P and a number d € R* such
that w(p) > d, it holds that the expected number of d-heavy nodes

E[H?] = 3 -w(p) — 1.

Proof: Let C; denote the set of nodes on level [in C. For node v € C; we
obtain

E[H{]=p] - Prlv € T:°] = p},
because Pr[v € T3] = 1.

To see this, suppose that v ¢ T7°. Clearly, this implies that the level /
of v is at least 2, and that there is a leaf & of T;° on level [, 1 < [< I. Since
7 is never bisected by Algorithm HEF, it follows that in each bisection step
there exists a node distinct from ¢ that is at least as heavy as # and that is
bisected during this step. Consequently, infinitely many nodes in 7° have
weight at least w(?).

Let us first assume that w(?) = 0. This means that the generalized bi-
section parameter of the bisection which yielded ¥ was 0 or 1. Clearly, the
set of sequences in {2 that contain one or more elements in {0, 1} is a null
set with respect to the uniform distribution on 2.

Suppose now that w() > 0. At the beginning of each bisection step
we denote by L the set of leaves of the bisection tree generated so far that
have weight at least w(?) and that are distinct from ¢. From w(?) > 0 we
conclude that L contains at most £ := |W/w(?)| elements at any given
moment. Fix an arbitrary ¢ > 0 and assume that a sequence in {2 con-
tains infinitely many “good” bisections from the interval [¢,1 — ¢]. After
at most k such good bisections the maximum weight in L is reduced by
at least 1 — ¢, since all intermediate “bad” bisections cannot increase the
maximum weight in L. But since there are infinitely many good bisections
this implies that L will be empty after a finite number of bisection steps.
A contradiction. Thus, any sequence in {2 such that Algorithm HF never
bisects ¥ contains only finitely many elements from the interval [¢,1 — €].
Again, the set of all such sequences in {2 is a null set.

The result now follows by linearity of expectation using the expression
for p{ given by Equation (7.2):

E[H’] = fj > E[H]]

1=0 veT(l)

Concentration 137

zzl v/

Z
i L (n(W/d))

2.
i=0 1=0

35 ey 3

1=0 =0

S 1n<W/d>>l(2M B
=0
(Zmn(W/d))Z Z(ln(W/d»f)

1=0

7!

7.3 Concentration

Theorem 7.5 gives us an idea how well Algorithm HF performs. If we set
d =2W/N,we get E[H%] = N — 1. This is exactly the number of bisections
that are necessary to get NV subproblems. It follows that on average, after
N — 1 iterations of Algorithm HF, every heavy subproblem has been bi-
sected, and all N subproblems generated have weight smaller than 2IW/N.
This exceeds the optimal value W/N only by a factor of 2. In the follow-
ing, we will show that Algorithm HF really behaves the way this intuitive
argument suggests. This is due to the fact that H? is sharply concentrated
around its expectation.

The following lemma shows that with high probability all heavy nodes
reside rather close to the root of the IBT.

Lemma 7.6 Fix c € R* and p € P. Then, with probability 1 — o(1/N), all nodes
of 15° on level | > 2e - In((W N)/c) are (c/N)-light.

138 Average-Case Analysis of Load Balancing using Bisectors

Proof: Setting | := k - In((WN)/c) for k > 1 such that ! € N, and applying
Lemma 7.4 with d = ¢/N we obtain

Pr [3 (¢/N)-heavy node on level] < 2'- plc/ N

< QkIn(WN)/e) | _C (e)kln((WN /o
= WN \k

_(WN kin2 WA\ Foknk
B c WN c

¢ \l+kInk—k—kIn2
B (WN)

A simple analysis of the exponent shows that for £ > 2e

Pr [3 (¢/N)-heavy node on level /] = o(1/N). O

Note that the error term o(1/N) in the above lemma is chosen rather
arbitrarily and could be changed to o(1/poly(/V)) without major changes
in the proof. This remark also applies to our subsequent results.

Lemma 7.6 immediately yields a rather weak upper bound on the total
number of heavy nodes, which we will improve later.

Corollary 7.7 With probability 1 — o(1/N) it holds that H/N = O(N log N).

Proof: Lemma 7.6 shows that with high probability only the first, say,
6 In(WN/c) levels contain heavy nodes. In every level there are at most
W N/c heavy nodes since the weights of all nodes on the same level must
have sum W. O

Since we want to show that with high probability H*"/N ~ N, Corol-
lary 7.7 is still far off from our desired result, but we already know
now that the number of bisections needed by Algorithm HF to ensure
that all subproblems are (2W/N)-light is O(N log N) with probability
1 — 0o(1/N). In order to improve this result, we define a martingale and
apply the method of bounded differences to show the sharp concentration
of H* around its expectation.

For the definition of the martingale we denote by F; := 0(A4;, Ay, ..., 4;)
the o-field generated by the random variables A; ~ U[0,1],7 > 1 (i.e., & is
arealization of A;). Furthermore, we set F; := {0}, £2}. Clearly, the sequence
(Fi)io forms a filter (or filtration) in (2, F). Since E[H*] is finite

Z{ =E[H" | F;]=E[H" | A, 4, ..., Al

Concentration 139

defines a martingale, which is sometimes called a Doob-martingale (see
[FG97, Wil91, Fel71]). It holds that Z¢ = E[H¢]. As usual it is understood
that all equations involving conditional expectations hold almost surely.

The intuitive interpretation of Z{ is as follows: Given a sequence s :=
(G, G2, ..., 04, ...) € 2, Z4(s) tells us how many heavy nodes we expect
in the corresponding IBT, if the generalized actual bisection parameters of
the first 7 bisections are equal to s; := (&1, G, ..., &)

Let T; denote the part of the IBT visited by Algorithm HF up to and
including the i-th iteration (for example, Tj contains only the root of the
tree). When we know s; , we can simulate Algorithm HF and compute 7; .
Therefore, evaluating Z¢ corresponds to calculating the expected value of
H?, given the tree T; which is generated by the first i bisections of Al-
gorithm HF. In order to capture this intuition, we will use the notation
E[H? | T;] := Z¢ = E[H? | ;] in the sequel.

Since we want to apply the method of bounded differences for this
martingale we need an upper bound on |Z¢, — Z¢|. The following lemma
shows that these differences are bounded by small constants.

Lemma 7.8 Forall i > 0 it holds that | Z8, — Z¢| < 2.

Proof: Let v denote the node that is bisected during iteration ¢ + 1. If v is
light, the claim follows easily: All nodes not yet visited by Algorithm HF
must also be light, because v is a heaviest leaf in the expanded part of the
tree. Thus we have already seen all heavy nodes and obtain Z¢, = Z¢ in
this case.

Now we assume that w := w(v) > d. Denote by v; and v, the two
nodes generated by the bisection of v, and let w(v;) = &;;1w and w(v,) =
(1 — &j1)w. We may assume w.l.o.g. that w(vy) > w(v,).

Let I denote the set of interior nodes of T}, and let L denote the set of
leaves of T; except v. Then we have:

T,=1ULU{v}
Tivn=TULU{v}U{vn} U {v}.

We have shown in the proof of Theorem 7.5 that T3* is a (weighted)
complete binary tree of infinite height with probability 1. Therefore, we
may assume in the following that for all u € C the node u is part of 7;°.
Let u € C, and denote by T'(u) the subtree of 7;° rooted at u. Furthermore,

140 Average-Case Analysis of Load Balancing using Bisectors

let H' (u | T}) = > yerw ELHS | T;] for some prefix T} of T,°. Suppose now
that u is a leaf of T . If u is light, ﬁd(u | T;) = 0. If u is heavy, we conclude
from Theorem 7.5 that Fd(u | T;) = (2/d)w(u) — 1.

By linearity of conditional expectation, and by applying the notation
introduced above, we have:

78 =BIH |71 = S BIHL | 7] = 1]+ Y How | 1)+ HY w0 | 1)),

ueC u€L
Z% =E[H* | Tiq] =) E[HY | Tpa]
ueC
=1+ Y H'@|T) + 1+ H @ | To) + H' (02 | To),

u€L

since E[H? | T;;1] = 1, because v is heavy. Subtracting these two equations
shows that we may restrict our attention to that part of the tree which is
changed by the (i + 1)-st bisection:

—d —d —d
2¢ =78 =H'w |) - (1+ H'0 | Ti) + H' (02 | Ti)).

K3

We bound the absolute value of this difference by considering three
cases regarding the weights of v; and v, .

Case 1: (1 — &;.1)w > d. This means that v; and v, are heavy. It follows
that
2 2 2
74— 78, = ws = 1-— (1 +(34,~+1wa —1+(1 - @M)wa — 1) =0.

Case 2: (1 — &)w < d and &;qw > d. Thus, only v is heavy. This
yields

2 2 . 2
Zf—Z{il:wE—l— (1+ai+1w8—1> :(1-a,-+1)wa—1<1.

As é&;,1 < 1 we have also

Case 3: ;1w < d. In this case v; and v, are both light. This implies that
w < 2d and therefore

Zd—zd+1=w§—1—1<2.

2 2

Concentration 141

Furthermore, we obtain due to w > d
sz - sz+1 > O’

and the proof is complete. O

The next lemma is basic probability theory, but we prefer to state it
separately, in order to make the proof of Theorem 7.11 more readable.

Lemma 7.9 Let A and B be two events over a probability space (2. If Pr[B] =
1—o(1/N),

Pr[A] < Pr[AN B] + o(1/N).

Proof:
Pr[A] = Pr[A|B] - Pr[B] + Pr[A|B] - Pr[B]
< Pr[A|B] - Pr[B] + o(1/N)
= Pr[AN B] +o(1/N),
since Pr[A|B] < 1. O

Before proving the sharp concentration result, let us first state the the-
orem from the method of bounded differences, which we are going to use
(see also [McD89, McD98, MR95]):

Theorem 7.10 (Azuma’s inequality, [Azu67]) Let Xy, X1, ... be a martingale
sequence such that for each k

Xy — Xi—1] < ks
where ¢, may depend on k. Then, for allt > 0 and any A > 0

)\2
Pr [‘Xt — XO‘ 2 A] S ZeXp (—22375702> .
k=1"k

Using this inequality we prove the following theorem:

Theorem 7.11 Let P be a class of problems with weight function w : P — R*
that has uniform bisectors. Given a problem p € P, and a fixed ¢ € R*, it holds
for k > 0 with probability 1 — 2e~*"/° — o(1/N) that

|H* —E[H]| < k ZWT(‘D)\/N

where d = ¢/N.

142 Average-Case Analysis of Load Balancing using Bisectors

Proof: First we show that, if H < ¢, Z¢ = H?. After ¢ steps Algorithm HF
has bisected all H¢ heavy nodes. Hence only light nodes remain and we
know the exact value of H?. Consequently, H¢ = E[H? | T;] = Z{ in this
case.

We have shown in Lemma 7.8 that [Z¢ — Z¢,| < 2. Now we apply
Azuma’s inequality for A = N7 with v =0.5+¢,¢ > 0. For t' = ©(/Nlog N)
we obtain from Corollary 7.7 and Lemma 7.9:

Pr[|[H*—E[H"]| > N'] <Pr[|H*—E[H"]| > N" A H* <] +o(1/N)
=Pr|[|Zf — Z§| > N* A H* <t'] +0(1/N)
<Pr||Z} - Z§| > N'] + o(1/N)
2y

N
<2-exp (—m> +0(1/N)

i=1

=. exp <—];];7> +0(1/N)

Now we know that with high probability H¢ < t" :=2W/d — 1+ N7 =
(2W/c)N — 1 + N7. If we apply Azuma’s inequality one more time using
this estimate for H?, we get (for N sufficiently large)

Pr[|H? — E[H®]| > k+/(2W/c)N]
< Pr[|HY —E[H?]| > k+/@W/c)N A H? < t"]+0o(1/N)
< Pr[|Z}, — Z§| > k\/(2QW/c)N]+ o(1/N)

k2. QW/e)N
S2-exp <_8((2W/0)N "1+ N“Y)) +o(1/N)
< 2e ¥/° 4 o(1/N). -

The results for the random variable H*" immediately yield the desired
results for the performance of Algorithm HF.

Theorem 7.12 Let P be a class of problems with weight function w : P — R*
that has uniform bisectors. Given a problem p € P, Algorithm HF partitions p

into N subproblems ps, ... , pn such that for e = 94/In(N)/N

Pr|(2—¢) (p)<maxw(pz)<(2+ €) (p)

1<i<N

=1-0o(1/N).

Concentration 143

Proof: Let m := max;<;<y w(p;). We show first that

p=Pr [m > 2+¢) %] =o(1/N).

For 7 := (2 +¢)% it holds that
p"=Pr[m >+]=Pr[H" > NJ,

because Algorithm HF expands heavy subproblems before light subprob-
lems. By Theorem 7.5 we have

2 2
E[H'|=-W —-1= N —1.
y 2+¢
Thus, we can rewrite p* as follows:
[€
" = Pr|H"> N-1 N+1
P r_ T 2+4¢ +2+s +]
< Pr|H-E[H]> N
L 2+¢
r €
< Pr||H"—E[H] > N].
< Pr| (H]] 2 5~

For N sufficiently large we have

zigN > 28—9N >3.1y/In(N)- N > 3.1\/1n(N),/22T8\/N

Therefore, using Theorem 7.11 with £ = 3.1,/In(/N) we obtain:

pt < Pr [|H7 “E[H]| > 3.1y/In(N)/2W/(2 + s)W\/N] = o(1/N).

The second case is very similar. With § = (2 — 5)% we have for N
sufficiently large

p~ ==Pr[m < 8] =Pr[H’ < N —1].

Furthermore,

2 2

144 Average-Case Analysis of Load Balancing using Bisectors

Hence,

[2 €
- = Pr|H’< N-1- N
P r_ T 2—¢ 2—¢]

- Pr|H —EH]<--° N]
| 2—¢

< Pr||H’—E[H] > -° N}
2—¢

= o(1/N). 0

7.4 From Heaviest to Heavy

All the proofs did not depend much on the exact order in which Algo-
rithm HF processes the nodes of the bisection tree. We only used the
observation that heavy nodes are processed before light ones. This
property can easily be achieved by maintaining a list or a queue of all
d-heavy leaves of the bisection tree for a suitably chosen d. Using a queue
is favorable since then the nodes of the bisection tree are processed level by
level. This insures that after N—1, N > 2, bisections all heavy subproblems
on levels 0,1, ..., |log N| — 1 have already been bisected. This approach
requires only constant time per iteration in contrast to logarithmic time, if
priority queues are used to retrieve a heaviest node in each bisection step.

Therefore, the results for our stochastic model suggest a faster variant
of Algorithm HF: First, the threshold for the “heaviness” of a subproblem
is computed as d = (2 + ¢€) - w(p)/N, ¢ = 9y/In N/N, for which we expect
(2/(2 + €))N — 1 d-heavy nodes in the bisection tree. Then, p is inserted
into the queue of heavy subproblems (if N > 2) and the head of the queue
is repeatedly bisected (inserting the resulting subproblems appropriately
into the list of light or the queue of heavy subproblems) until the queue of
heavy subproblems is empty or there are N subproblems (or both).

In the first case, we know that the ratio between the maximum weight
subproblem generated by Algorithm HF and the ideal weight w(p)/N is
less than 2 + ¢. The number of subproblems generated in this case is
close to N with high probability by Theorem 7.11. Therefore, we cannot
hope for much improvement if the bisection process were continued to
generate exactly N subproblems. We have shown in the proof of Theo-
rem 7.12 that the remaining case (there are /N subproblems in the end and
the queue of heavy subproblems is not empty) occurs with probability

From Heaviest to Heavy 145

o(1/N). If the maximum load generated in this case is “too bad”, we can
afford to restart the bisection process using the original Algorithm HF (or
simply repeat the faster variant in case of a randomized bisection sub-
routine) without affecting the overall running time in order to achieve a
possibly better maximum load.

These observations can also be applied to simplify Algorithm PHF (see
Section 6.1.1). Assuming classes of problems that have uniform bisectors,
the first phase of Algorithm PHF using the above threshold instead of
ro (which is used for classes of problems that have a bisectors) would
produce with high probability a well balanced load on the N processors
leaving only few processors idle.

Chapter 8

Conclusion

In this chapter we first summarize and discuss in Section 8.1 the results
presented in this thesis. Then, in Section 8.2, we expose some open
problems arising from our research, and give possible directions for fu-
ture work.

8.1 Summary of Results

In this thesis we studied on-line scheduling and load distribution, two
fundamental and widely used techniques for efficient resource manage-
ment in parallel systems. To reveal the major differences of these two
approaches, we gave a comparison of on-line scheduling and load dis-
tribution from our point of view in Chapter 2. A classification scheme for
load distribution strategies was proposed in Chapter 3 that is aimed at
making the comparison and evaluation of different strategies easier. Fur-
thermore, it may serve as a guideline for future work in this area since
many important aspects that a load distribution strategy should take into
account are exposed in a clear and understandable way. We also surveyed
several load distribution strategies that were selected in order to demon-
strate exemplary algorithmic approaches and techniques for the solution
of load distribution problems.

We presented and analyzed several on-line scheduling algorithms for
parallel job systems in Chapter 4. Three different models regarding the
degree of a priori knowledge about the execution times of the jobs that is
available to the on-line scheduler were studied. The first model requires

148 Conclusion

that the jobs have unit execution time. A general lower bound of 2 on the
competitive ratio was given that is valid for any network topology and
deterministic as well as randomized on-line schedulers.

Then we proposed the LEVEL Algorithm for this scheduling problem
that repeatedly schedules a set of available jobs (using a packing algorithm
that is suitable for the interconnection structure of a given parallel system)
and collects all jobs that arrive during a phase for execution in the next
phase. For the complete model (parallel systems that support arbitrary
allocation of processors to parallel jobs) and the linear array we showed
that using the Next-Fit BIN PACKING approximation algorithm yields a
3-competitive algorithm. This result can be improved at the expense of a
slightly increased scheduling overhead if First-Fit is employed instead. We
showed that LEVEL(First-Fit) is 2.7-competitive. This is almost optimal for
deterministic on-line scheduling algorithms due to a lower bound of 2.691.

Using a simple packing algorithm it was shown that the LEVEL Al-
gorithm achieves optimal competitive ratio 2 for hypercubes, and for
the 2-dimensional array the competitive ratio of the LEVEL(PACK_2D)
was shown to be in the interval [13/4,46/7]. Finally, we gave a general
theorem for arbitrary networks that provides an upper bound on the
competitive ratio of the LEVEL(PACK) Algorithm if PACK meets certain
requirements.

To investigate the entire bandwidth between unit and arbitrary run-
ning times of the jobs, we subsequently assumed that the runtime ratio
(i.e., the ratio between the longest and shortest running time of any job)
of a job system is bounded by a parameter Ty that is unknown to the
on-line scheduler. Again, for an arbitrary network topology, a general
lower bound of (T + 1)/2 on the competitive ratio of any deterministic
or randomized on-line scheduler was derived that still holds if the actual
runtime ratio of a particular job system is known to the on-line algorithm
in advance.

The RRR Algorithm is designed for the complete model and requires
that the minimum execution time of any job in a job system is known in the
beginning. We showed that this on-line scheduler is (Tr /2 +4)-competitive
and is thus optimal up to an additive constant. Then we removed all a pri-
ori knowledge about job running times and showed that it is still possible
to devise a nearly optimal on-line algorithm. More precisely, we proved
that the RRR_ADAPTIVE Algorithm is (Tr/2+5.5)-competitive in this third
model. Furthermore, we showed that waiting if a big parallel job cannot be
scheduled although the efficiency is low and collecting small jobs during a

Summary of Results 149

delay phase are essential characteristics of our on-line schedulers in this
model. Finally, additional results for other interconnection topologies are
given.

It became evident that runtime restrictions improve the competitive per-
formance achievable by on-line schedulers. Therefore, if enough a priori
knowledge about job running times is available to bound the runtime ratio
of a job system by a reasonably small constant, our schedulers can guaran-
tee a satisfactory utilization of the parallel system. But even without any
such knowledge the RRR_ADAPTIVE algorithm produces schedules that
are almost best possible from a worst-case point of view. All proposed
on-line algorithms are computationally simple, and thus the scheduling
overhead involved can safely be neglected, provided that the parallel sys-
tem is able to deliver the necessary information quickly.

In Chapter 5 the existence of a-bisectors for a class of problems was
shown to allow good load balancing for a surprisingly large range of
values of . The maximum load produced by Algorithm HF is at most
a factor of [1/a) - (1 — a)V/*=2 larger than the theoretical optimum
(uniform distribution). This bound was shown to be tight. It gives a
performance guarantee between 5 and 2 when the bisection parameter
ranges from 0.084 to 0.5. Furthermore, it was shown that Algorithm HF
is optimal from a worst-case point of view.

Load balancing for distributed hierarchical finite element simulations
was discussed, and two strategies for applying Algorithm HF were pre-
sented. The first strategy tries to make the best use of the available
parallelism, but requires that the nodes of the FE tree representing the
load of the computation have good separators. The second strategy
tries to partition the entire FE tree into subtrees with approximately
equal load. For this purpose, it was shown that a certain class of
weighted trees, which include FE trees, has 1/4-bisectors. Here, the
trees are bisected by removing a single edge. Partitioning the trees by
removing a minimum number of edges ensures that only a minimum
number of communication channels of the application must be realized
by network connections. Our results provide performance guarantees for
balancing the load of applications with good bisectors in general and of
distributed hierarchical finite element simulations in particular. For the
latter application, we showed that the maximum resulting load is at most
a factor of 9/4 larger than in a perfectly uniform distribution.

We implemented the proposed load balancing methods and inte-
grated them into the existing finite element simulation software ARESO.

150 Conclusion

We obtained considerable improvements already for small problems, as
compared to the static (compile-time) processor allocation currently in
use. Since ARESO is primarily a solver of hierarchical systems of equa-
tions, it is not limited to static simulations. Other physical problems
described by elliptic partial differential equations are tractable as well.
Currently, a component for CFD (computational fluid dynamics) simu-
lations taken from [Fun97] is added.

It seems possible that a variety of other hierarchical numerical dis-
tributed algorithms could be accelerated with Algorithm HF. Domain
decomposition in the process of chip layout with the placement tool
GORDIAN [RR93, Reg97] may result in an unbalanced binary tree. The
subsequent layout process could be improved by load distribution using
Algorithm HF. Another application is the multi-dimensional adaptive nu-
merical quadrature agho [Bon93, Bon95]. It is based on an adaptively
growing binary tree. Algorithm HF may be applied in much the same
way as in the ARESO application, because each traversal visits all tree
nodes and adds a new (and potentially incomplete) layer of leaves.

Based on the results on the sequential Algorithm HF, we derived three
promising parallel algorithms for load balancing of problems with good
bisectors in Chapter 6. While the sequential Algorithm HF has running
time O(N) for distributing a problem onto N processors, all three paral-
lel algorithms require only running time O(log N) on N processors under
reasonably general assumptions about the parallel machine architecture.

Algorithm PHF is a parallelization of Algorithm HF that produces the
same load balancing as the sequential algorithm. Its advantage is that it
inherits the good performance of Algorithm HF in the worst case and in
the average case. Its drawback is that the management of free processors
is costly and that global communication is required during its execution. If
global communication is too expensive on a particular machine, the prac-
tical use of Algorithm PHF may be limited.

Algorithm BA is inherently parallel and partitions a problem into N
subproblems without requiring any global communication. In fact, the
only communication carried out during the run of Algorithm BA is the
transmission of subproblems to free processors after bisections. Further-
more, the management of free processors is trivial for Algorithm BA.
Regarding the worst-case performance guarantee of Algorithm BA, we

have proven the upper bound e - [éJ (1-a) 25] ~! which is not as good
as the upper bound for Algorithm PHEF, but still constant for fixed «.

Summary of Results 151

Algorithm BA-HF is a combination of Algorithm BA and Algorithm HF
or PHF. It uses Algorithm BA in the beginning and switches to Algo-
rithm HF or PHF once the number of processors for a subproblem is
below a certain threshold. By adjusting this threshold using a parame-
ter o, the worst-case performance guarantee of Algorithm BA-HF, which
is bounded by e~/ . (1 + a/0) - r,, can be brought arbitrarily close to
that of Algorithm PHF at the expense of increasing the influence of the
drawbacks of Algorithm PHFE.

Furthermore, we conducted extensive simulation experiments to de-
termine the relative quality of the load distribution achieved by the
individual algorithms in the average case. The actual bisection parameters
were drawn uniformly and independently at random from the interval
[0,8], 0 < a < f < 1/2. The experiments showed that the perfor-
mance in the average case was substantially better than the worst-case
upper bounds for all three algorithms. It was confirmed that the balanc-
ing quality was best for Algorithm HF and worst for Algorithm BA in
all experiments. In order to choose one of the proposed load balancing
algorithms in practice, one must take into account the characteristics of
the parallel machine architecture as well as the relative importance of fast
running time of the load balancing algorithm and of the quality of the
achieved load balance. Our worst-case bounds and extensive simulation
results provide helpful guidance for this decision.

Motivated by the quite surprising simulation results, we analyzed
the average-case balancing quality of Algorithm HF under the assump-
tion that the actual bisection parameter of each bisection step is drawn
uniformly and independently at random from the interval [0,1/2]. In
Chapter 7 we showed that under these assumptions the maximum load
generated by Algorithm HF is in the interval [(2 — s)WT("’), 2+ e)WT(p)] with
high probability. Moreover, ¢ is close to zero already for moderate values
of N. Thus, assuming a natural and rather pessimistic distribution for the
average case, the partitioning computed by Algorithm HF exceeds the op-
timum solution only roughly by a factor of 2 already for realistic numbers
of processors. From our analysis we also derived faster and simpler vari-
ants of Algorithm HF and Algorithm PHF for this stochastic model. These
results demonstrate that a satisfactory balancing quality can be achieved
by efficient algorithms even if no lower bound for the bisection parameter
of a given class of problems is known, provided that “good” and “bad”
bisections are equally likely.

152 Conclusion

8.2 Open Problems and Future Work

Not surprisingly, many open problems arise from our research. In partic-
ular, it remains to determine the exact competitive ratio of several on-line
scheduling algorithms that were proposed in Chapter 4. As an example,
the competitive ratio of the LEVEL(First-Fit) Algorithm is in the interval
[1 + hw,2.7], ie., a there is a gap of less than 0.009 between the lower
and the upper bound. We conjecture that the exact competitive ratio of
this algorithm is either 1 + hy, or 2.7. In case that LEVEL(First-Fit) turns
out to be sub-optimal, it would be a challenging task to devise an optimal
on-line scheduler for this model. Although open questions of this kind
may appear to be solely of academic interest, their solution often leads
to new algorithmic techniques, improved tools of analysis, and a better
understanding of the structure of the problem.

For on-line scheduling parallel job systems with restricted runtime ra-
tio it seems also worthwhile to find suitable modifications of the RRR
algorithms for other interconnection topologies since it appears that the
LEVEL Algorithm does not yield a close to optimal competitive ratio.

Another possible scheduling model is to assume that the running time
of a job is known to the online scheduler (or can be estimated with suf-
ficient precision) when a job becomes available, but the precedence
constraints are unknown. This appears to be a good starting point for
the development of less restrictive scheduling models that admit on-
line schedulers with good competitive performance in the presence of
dependencies. The addition of communication delays (cf. [VLL90, BEP*96,
Ver98]) to our scheduling models would be an important extension since
the time for transmission of data from a job to those successors that are
scheduled on different processors is non-negligible for many parallel ap-
plications.

All our bisection-based load balancing algorithms did not specify
which bisection should be performed if there were several possibilities
with different actual bisection parameter. But this opportunity will often
be given in practical applications, and it is near at hand to choose the best
possible bisection in each step'. Furthermore, it would be an advantage in
this model to explore a greater part of the bisection tree performing more
than N —1 bisection in order to obtain N subproblems. The analysis of such

'However, this local greedy strategy is not optimal. This is seen easily, for example, in
the case N = 3.

Open Problems and Future Work 153

extensions might yield load balancing algorithms with better performance
than Algorithm HF.

Our simulation results indicate that the performance of Algorithm BA
is inferior to the performance of Algorithm HF both in the worst case and
in the average case. Hence, it seems promising to confirm these results
by mathematical analysis. Firstly, a worst-case lower bound on the maxi-
mum load generated by Algorithm BA might be derived that is larger than
T« , and secondly an average-case analysis similar to Algorithm HF might
be done. Such an analysis could also influence the design and tuning of
parallel load balancing algorithms such as Algorithm BA-HFE

A natural and important generalization of our average-case analysis
of load balancing using bisectors would be an analysis for an arbitrary
uniform distribution Ule, 3] for the actual bisection parameter. So far, we
have not been able to transfer our approach for the distribution UJ[0, 1/2]
to the general case. Furthermore, it would be interesting to allow for a
certain degree of dependency between bisection steps that take place on a
root-to-leaf path in the bisection tree.

Prerequisites

There is an abundance of sources for the prerequisites from mathematics
and computer science underlying the topics discussed in this thesis. In the
following, we give only a few examples.

The necessary mathematical background for the analysis of algorithms
may be found in the book of GRAHAM, KNUTH, and PATASHNIK [GKP94].
Design of algorithms and their analysis is covered by the classical exposi-
tion of AHO, HOPCROFT, and ULLMAN [AHU76]. CORMEN, LEISERSON,
and RIVEST [CLR90] also provide a readable and thorough introduction
into this field. Randomized Algorithms and means to analyze them is
the subject of the textbook by MOTWANI and RAGHAVAN [MR95]. Par-
allel algorithms and machine models are treated by JAJA [J4]92] within
the PRAM framework, whereas LEIGHTON [Lei92] covers network-based
architectures such as arrays and hypercubes. A thorough introduction
to graph theory is provided by the books of BOLLOBAS [Bol98] and
WEST [Wes96], and fundamental graph algorithms are described by G1B-
BONS [Gib85]. The book of GAREY and JOHNSON provides an introduction
to the theory of N'P-completeness, and a collection of surveys regard-
ing approximation algorithms for NP-hard problems is presented by
HOCHBAUM [Hoc96]. Finally, probability theory is covered by the classical
books of FELLER [Fel68, Fel71] that also contain numerous examples. A
modern, measure theoretic approach can be found in [FG97].

[AAG*95]

[ABKU94]

[ABS98]

[ACMRO95]

[AGY94]

[AHU76]

[AL91]

Bibliography

Baruch Awerbuch, Yossi Azar, Edward F. Grove, Ming-Yang
Kao, P. Krishnan, and Jeffrey Scott Vitter. Load Balancing in
the L, Norm. In Proceedings of the 36th Annual Symposium on
Foundations of Computer Science FOCS’95, pages 383-391, Los
Alamitos, 1995. IEEE Computer Society Press.

Y. Azar, A.Z. Broder, A.R. Karlin, and E. Upfal. Balanced Al-
locations. In Proceedings of the 26th Annual ACM Symposium on
Theory of Computing STOC'94, pages 593-602, New York, 1994.
ACM Press.

Micah Adler, Petra Berenbrink, and Klaus Schroder. Analyz-
ing an Infinite Parallel Job Allocation Process. In G. Bilardi,
G.F. Italiano, A. Piertracaprina, and G. Pucci, editors, Pro-
ceedings of the 6th Annual European Symposium on Algorithms
ESA’98, volume 1461 of LNCS, pages 417-428, Berlin, 1998.
Springer-Verlag.

Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher,
and Lars Rasmussen. Parallel Randomized Load Balancing.
In Proceedings of the 27th Annual ACM Symposium on Theory
of Computing STOC'95, pages 238-248, New York, 1995. ACM
Press.

George S. Almasi and Allan Gottlieb. Highly Parallel Com-
puting. The Benjamin/Cummings Publishing Company, Red-
wood City, CA, second revised edition, 1994.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Addison-Wesley
Publishing Company, Reading, MA, 1976.

Bill Aiello and Tom Leighton. Coding Theory, Hypercube Em-
beddings, and Fault Tolerance. In Proceedings of the 3rd An-

158

Bibliography

[Asp98]

[ATM95]

[Aza98]

[Azu67]

[BDG*94]

[BDMR96]

[BDW86]

[BE97]

nual ACM Symposium on Parallel Algorithms and Architectures
SPAA’91, pages 125-136, New York, 1991. ACM Press.

James Aspnes. Competitive Analysis of Distributed Algo-
rithms. In Amos Fiat and Gerhard J. Woeginger, editors, Online
Algorithms : The State of the Art, volume 1442 of LNCS, pages
118-146. Springer Verlag, Berlin, 1998.

The ATM Forum, Upper Saddle River, NJ. ATM User-Network
Interface (UNI) Specification Version 3.1., 1995.

Yossi Azar. On-line Load Balancing. In Amos Fiat and Ger-
hard J. Woeginger, editors, Online Algorithms : The State of the
Art, volume 1442 of LNCS, pages 178-195. Springer Verlag,
Berlin, 1998.

Kazuoki Azuma. Weighted Sums of Certain Dependent Ran-
dom Variables. Toéhoku Mathematical Journal, 19(3):357-367,
1967.

A. Beguelin, J. Dongarra, A. Geist, W. Jiang, R. Manchek, and
V. Sunderam. PVM : Parallel Virtual Machine : A Users” Guide
and Tutorial for Networked Parallel Computing. The MIT Press,
Cambridge, MA, 1994.

A. Baumker, W. Dittrich, F. Meyer auf der Heide, and I. Rie-
ping. Realistic Parallel Algorithms: Priority Queue Operations
and Selection for the BSP* Model. In Luc Bougé, Pierre Frai-
gniaud, Anne Mignotte, and Yves Robert, editors, Proceedings
of the Second International EURO-PAR Conference on Parallel Pro-
cessing EURO-PAR’96, Volume II, volume 1124 of LNCS, pages
369-376, Berlin, 1996. Springer-Verlag.

J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling Mul-
tiprocessor Tasks to Minimize Schedule Length. IEEE Transac-
tions on Computers, C-35(5):389-393, 1986.

Stefan Bischof and Thomas Erlebach. Classification and Sur-
vey of Strategies. In Thomas Schnekenburger and Georg Stell-
ner, editors, Dynamic Load Distribution for Parallel Applications,
Teubner-Texte zur Informatik. Teubner Verlag, Stuttgart, 1997.

Bibliography 159

[BE9S]

[BEE98a]

[BEE9SD]

[BEE9S(]

[BEE99]

[BEP*96]

[BFM98]

Allan Borodin and Ran El-Yaniv. Online Computation and Com-
petitive Analysis. Cambridge University Press, Cambridge,
1998.

Stefan Bischof, Ralf Ebner, and Thomas Erlebach. Load Bal-
ancing for Problems with Good Bisectors, and Applications
in Finite Element Simulations. In A. Bode, A. Ganz, C. Gold,
S. Petri, N. Reimer, B. Schiemann, and T. Schnekenburger,
editors, “Anwendungsbezogene Lastverteilung” ALV’98, Insti-
tut fur Informatik, Technische Universitat Miinchen, 1998.
Sonderforschungsbereich 342 “Werkzeuge und Methoden zur
Nutzung paralleler Rechnerarchitekturen”, Graduiertenkolleg

“Kooperation und Ressourcenmanagement in verteilten Sys-
temen”. Technical Report (SFB-Bericht 342/01/98 A).

Stefan Bischof, Ralf Ebner, and Thomas Erlebach. Load Bal-
ancing for Problems with Good Bisectors, and Applications in
Finite Element Simulations. In David Pritchard and Jeff Reeve,
editors, Proceedings of the Fourth International EURO-PAR Con-
ference on Parallel Processing EURO-PAR’98, volume 1470 of
LNCS, pages 383-389, Berlin, 1998. Springer-Verlag.

Stefan Bischof, Ralf Ebner, and Thomas Erlebach. Load Bal-
ancing for Problems with Good Bisectors, and Applications in
Finite Element Simulations: Worst-case Analysis and Practical
Results. SFB-Bericht 342/05/98 A, SFB 342, Institut fiir Infor-
matik, Technische Universitit Mtinchen, 1998.

Stefan Bischof, Ralf Ebner, and Thomas Erlebach. Parallel
Load Balancing for Problems with Good Bisectors. In Pro-
ceedings of the 2nd Merged International Parallel Processing Sym-
posium and Symposium on Parallel and Distributed Processing
IPPS/SPDP’99, pages 531-538, Los Alamitos, 1999. IEEE Com-
puter Society Press.

J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Scheduling Computer and Manufacturing Processes. Springer-
Verlag, Berlin, 1996.

Petra Berenbrink, Tom Friedetzky, and Ernst W. Mayr. Parallel
Continuous Randomized Load Balancing. In Proceedings of the
10th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures SPAA’98, pages 192-201, New York, 1998. ACM Press.

160

Bibliography

[BL94]

[BM98a]

[BM98b]

[BMS97]

[Boh96]

[Bol98]

[Bon93]

[Bon95]

[BP95]

Robert D. Blumofe and Charles E. Leiserson. Scheduling Mul-
tithreaded Computations by Work Stealing. In Proceedings of
the 35th Annual Symposium on Foundations of Computer Science
FOCS’94, pages 356-368, Los Alamitos, 1994. IEEE Computer
Society Press.

Stefan Bischof and Ernst W. Mayr. On-Line Scheduling of Par-
allel Jobs with Runtime Restrictions. In Kyung-Yong Chwa
and Oscar H. Ibarra, editors, Proceedings of the 9th International
Symposium on Algorithms and Computation ISAAC '98, volume
1533 of LNCS, pages 119-128, Berlin, 1998. Springer-Verlag.

Stefan Bischof and Ernst W. Mayr. On-Line Scheduling of Par-
allel Jobs with Runtime Restrictions. SFB-Bericht 342/04/98
A, SFB 342, Institut fiir Informatik, Technische Universitat
Miinchen, April 1998.

Petra Berenbrink, Friedhelm Meyer auf der Heide, and Klaus
Schroder. Allocating Weighted Jobs in Parallel. In Proceedings
of the 9th Annual ACM Symposium on Parallel Algorithms and
Architectures SPAA’97, pages 302-310, New York, 1997. ACM
Press.

Max Bohm. Verteilte Losung harter Probleme: Schneller Last-
ausgleich. PhD thesis, Mathematisch-Naturwissenschaftliche
Fakultat, Universitat zu Koln, 1996.

Béla Bollobéds. Modern Graph Theory, volume 184 of Graduate
Text in Mathematics. Springer-Verlag, Berlin, 1998.

T. Bonk. A New Algorithm for Multi-Dimensional Adaptive
Numerical Quadrature. In W. Hackbusch, editor, Adaptive
Methods — Algorithms, Theory and Applications: Proceedings of
the 9th GAMM Seminar, pages 54-68. Vieweg Verlag, Braun-
schweig, 1993.

T. Bonk. Ein rekursiver Algorithmus zur adaptiven numerischen
Quadratur mehrdimensionaler Funktionen. PhD thesis, Institut
fir Informatik, Technische Universitit Miinchen, 1995.

Ronald I. Becker and Yehoshua Perl. The shifting algorithm
technique for the partitioning of trees. Discrete Appl. Math.,
62:15-34, 1995.

Bibliography 161

[BP97]

[Bra97]

[BS96]

[BSS99]

[BTZ98]

[Bur87]

[CGJ82]

[CGJ96]

[CK88]

Martin Backschat and Alexander Pfaffinger. Dynasty: Econom-
ic-Based Dynamic Load Distribution in Large Workstation
Networks. In Thomas Schnekenburger and Georg Stellner, ed-
itors, Dynamic Load Distribution for Parallel Applications, Teub-
ner-Texte zur Informatik. Teubner Verlag, Stuttgart, 1997.

Dietrich Braess. Finite Elemente. Springer, Berlin, 1997. 2. tiber-
arbeitete Auflage.

M. Béhm and E. Speckenmeyer. Precomputation based load
balancing. In Proceedings of the 4th Workshop on Parallel Sys-
tems and Algorithms PASA’96, pages 173-190, Singapore, 1996.
World Scientific Publishing Co.

Stefan Bischof, Thomas Schickinger, and Angelika Steger. Load
Balancing Using Bisectors — A Tight Average-Case Analysis. In
Jaroslav Nesetfil, editor, Proceedings of the 7th Annual European
Symposium on Algorithms ESA’99, volume 1643 of LNCS, pages
172-183, Berlin, 1999. Springer-Verlag.

Gerth Stelting Brodal, Jesper Larsson Traff, and Christos D.
Zaroliagis. A Parallel Priority Queue with Constant Time Op-
erations. Journal of Parallel and Distributed Computing, 49(1):4—
21, 1998. Special Issue on Parallel and Distributed Data Struc-
tures.

D.S. Burnett. Finite Element Analysis. Addison-Wesley Publish-
ing Company, 1987.

ER.K. Chung, M.R. Garey, and D.S. Johnson. On packing two-
dimensional bins. SIAM]. Alg. Disc. Meth., 3(1):66-76, March
1982.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson. Approxi-
mation Algorithms for Bin Packing: A Survey. In Dorit S.
Hochbaum, editor, Approximation Algorithms for NP-Hard Prob-
lems, chapter 2, pages 46-93. PWS Publishing Company, Bos-
ton, 1996.

Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Schedul-
ing in General-Purpose Distributed Computing Systems. IEEE
Transactions on Software Engineering, 14(2):141-154, 1988.

162

Bibliography

[CLR90]

[CM96]

[CS97]

[Cyb89]

[DDLM95]

[DFM98]

[DL89]

[DMP97]

[DMS98]

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. The MIT Press, Cambridge,
MA, 1990. The MIT Electrical Engineering and Computer Sci-
ence Series.

Soumen Chakrabarti and S. Muthukrishnan. Resource sched-
uling for parallel database and scientific applications. In Pro-
ceedings of the 8th Annual ACM Symposium on Parallel Algorithms
and Architectures SPAA’96, pages 329-335, New York, 1996.
ACM Press.

A.Czumaj and V. Stemann. Randomized Allocation Processes.
In Proceedings of the 38th Annual Symposium on Foundations of
Computer Science FOCS’97, pages 194-203, Los Alamitos, 1997.
IEEE Computer Society Press.

George Cybenko. Dynamic Load Balancing for Distributed
Memory Multiprocessors. Journal of Parallel and Distributed
Computing, 7:279-301, 1989.

Thomas Decker, Ralf Diekmann, Reinhard Liiling, and Burk-
hard Monien. Towards Developing Universal Dynamic Map-
ping Algorithms. In Proceedings of the 7th IEEE Symposium on
Parallel and Distributed Processing SPDP’95, pages 456459, Los
Alamitos, 1995. IEEE Computer Society Press.

Ralf Diekmann, Andreas Frommer, and Burkhard Monien.
Nearest Neighbor Load Balancing on Graphs. In G. Bilardi,
G.F. Italiano, A. Piertracaprina, and G. Pucci, editors, Pro-
ceedings of the 6th Annual European Symposium on Algorithms
ESA’98, volume 1461 of LNCS, pages 429-440, Berlin, 1998.
Springer-Verlag.

Jianzhong Du and Joseph Y.-T. Leung. Complexity of Schedul-
ing Parallel Task Systems. SIAM |. Disc. Math., 2:473-487, 1989.

Ralf Diekmann, Burkhard Monien, and Robert Preis. Load
Balancing Strategies for Distributed Memory Machines. Tech-
nical Report tr-rsfb-97-050, Fachbereich Mathematik und In-
formatik, Universitit-Gesamthochschule Paderborn, 1997.

Jack J. Dongarra, Hans W. Meuer, and Erich Strohmaier. The
TOP500 Supercomputer Sites. http://www.top500.org, 1998.

Bibliography 163

[EP9S]

[Eps98]

[Fel68]

[Fel71]

[FG97]

[FKST93]

[FKST98]

[FR95]

R. Ebner and A. Pfaffinger. Higher Level Programming and
Efficient Automatic Parallelization: A Functional Data Flow
Approach with FASAN. In E.H. D’'Hollander, G.R. Joubert, EJ.
Peters, and U. Trottenberg, editors, Parallel Computing: Fun-
damentals, Applications and New Directions (Proceedings of the
ParCo97 Parallel Computing Conference), volume 12 of Advances
in Parallel Computing. Elsevier Science Publishers, Amsterdam,
1998.

Leah Epstein. Lower Bounds for On-line Scheduling with
Precedence Constraints on Identical Machines. In Klaus Jansen
and José Rolim, editors, Proceedings of the First International
Workshop on Approximation Algorithms for Combinatorial Op-
timization APPROX’98, volume 1444 of LNCS, pages 89-98,
Berlin, 1998. Springer Verlag.

William Feller. An Introduction to Probability Theory and its Ap-
plications. Volume I. Wiley Series in Probability and Mathe-
matical Statistics. John Wiley & Sons, Chichester, third revised
edition, 1968.

William Feller. An Introduction to Probability Theory and its Ap-
plications. Volume II. Wiley Series in Probability and Mathemat-
ical Statistics. John Wiley & Sons, Chichester, second edition,
1971.

Bert Fristedt and Lawrence Gray. A Modern Approach to Proba-
bility Theory. Birkhduser, Boston, 1997.

Anja Feldmann, Ming-Yang Kao, Jifi Sgall, and Shang-Hua
Teng. Optimal Online Scheduling of Parallel Jobs with Depen-
dencies. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing STOC'93, pages 642—-651, New York, 1993.
ACM Press.

Anja Feldmann, Ming-Yang Kao, Jifi Sgall, and Shang-Hua
Teng. Optimal On-Line Scheduling of Parallel Jobs with De-
pendencies. Journal of Combinatorial Optimization, 1(4):393-411,
1998.

Dror G. Feitelson and Larry Rudolph. Parallel Job Schedul-
ing: Issues and Approaches. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing

164

Bibliography

[FR96]

[Fre91]

[Frig4]

[FRS*97]

[FST94]

[Fun97]

[FW98]

[FWMO94]

(IPPS’95 Workshop), volume 949 of LNCS, pages 1-18, Berlin,
1995. Springer-Verlag.

Dror G. Feitelson and Larry Rudolph. Toward Convergence in
Job Schedulers for Parallel Supercomputers. In Dror G. Feit-
elson and Larry Rudolph, editors, Job Scheduling Strategies for
Parallel Processing (IPPS’96 Workshop), volume 1162 of LNCS,
pages 1-26, Berlin, 1996. Springer-Verlag.

Greg N. Frederickson. Optimal Algorithms for Tree Partition-
ing. In Proceedings of the Second Annual ACM-SIAM Symposium
on Discrete Algorithms SODA’91, pages 168-177, New York,
1991. ACM Press.

Donald K. Friesen. Tighter bounds for the multifit processor
scheduling algorithm. SIAM |. Comput., 13(1):170-181, Febru-
ary 1984.

Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Ken-
neth C. Sevcik, and Parkson Wong. Theory and Practice in Par-
allel Job Scheduling. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing (IPPS'97
Workshop), volume 1291 of LNCS, pages 1-34, Berlin, 1997.
Springer-Verlag.

Anja Feldmann, Jifi Sgall, and Shang-Hua Teng. Dynamic
scheduling on parallel machines. Theoretical Computer Science,
Special Issue on Dynamic and On-line Algorithms, 130(1):49-72,
1994.

Kilian Funk. Anwendung der algebraischen Mehrgittermetho-
de auf konvektionsdominierte Stromungen. Master’s thesis,
Technische Universitit Miinchen, 1997.

Amos Fiat and Gerhard]. Woeginger, editors. Online Algo-
rithms : The State of the Art, volume 1442 of LNCS. Springer
Verlag, Berlin, 1998.

Geoffrey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel
Computing Works! Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1994.

Bibliography 165

[GGTY76]

[G197]

[Gib85]

[GJ79]

[GJTY83]

[GKP94]

[GLM*95]

[GM94]

[GM96]

M.R. Garey, R.L. Graham, D.S. Johnson, and A.C.-C. Yao. Re-
source Constrained Scheduling as Generalized Bin Packing. .
Comb. Theory Series A, 21:257-298, 1976.

Minos N. Garofalakis and Yannis E. Ioannidis. Parallel Query
Scheduling and Optimization with Time- and Space-Shared
Resources. In Matthias Jarke, Michael J. Carey, Klaus R. Ditt-
rich, Frederick H. Lochovsky, Pericles Loucopoulos, and Man-
fred A. Jeusfeld, editors, Proceedings of the 23rd International
Conference on Very Large Data Bases VLDB'97, pages 296-305,
San Francisco, CA, 1997. Morgan Kaufmann Publishers.

Alan Gibbons. Algorithmic Graph Theory. Cambridge Univer-
sity Press, Cambridge, 1985.

Michael R. Garey and David S. Johnson. Computers and In-
tractability. A Guide to the Theory of N'P-Completeness. W. H.
Freeman and Company, New York, 1979.

M.R. Garey, D.S. Johnson, R.E. Tarjan, and M. Yannakakis.
Scheduling Opposing Forests. SIAM |. Alg. Disc. Meth., 4(1):72—
93, March 1983.

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.
Concrete Mathematics: A Foundation for Computer Science. Ad-

dison-Wesley Publishing Company, Reading, MA, second edi-
tion, 1994.

B. Ghosh, ET. Leighton, B.M. Maggs, S. Muthukrishnan, C.G.
Plaxton, R. Rajaraman, A.W. Richa, R.E. Tarjan, and D. Zucker-
man. Tight Analyses of Two Local Load Balancing Algorithms.
In Proceedings of the 27th Annual ACM Symposium on Theory
of Computing STOC’95, pages 548-558, New York, 1995. ACM
Press.

Bhaskar Ghosh and S. Muthukrishnan. Dynamic Load Balanc-
ing in Parallel and Distributed Networks by Random Match-
ings. In Proceedings of the 6th Annual ACM Symposium on Par-
allel Algorithms and Architectures SPAA’94, pages 226-235, New
York, 1994. ACM Press.

Bhaskar Ghosh and S. Muthukrishnan. Dynamic Load Bal-
ancing by Random Matchings. Journal of Computer and System
Sciences, 53(3):357-370, 1996.

166

Bibliography

[GMS96]

[Gra66]

[Gra69]

[GWO5]

[Heu96]

[Hoc96]

[HS86]

[HS87]

[HS94]

[Hiit96]

[JaJoz]

[Joh74]

Bhaskar Ghosh, S. Muthukrishnan, and Martin H. Schultz.
First and second order diffusive methods for rapid, coarse, dis-
tributed load balancing. In Proceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures SPAA’96,
pages 72-81, New York, 1996. ACM Press.

R.L. Graham. Bounds for Certain Multiprocessing Anomalies.
The Bell System Technical Journal, pages 1563-1581, 1966.

R.L. Graham. Bounds on Multiprocessing Timing Anomalies.
SIAM |. Appl. Math., 17(2):416—429, March 1969.

Géabor Galambos and Gerhard G. Woeginger. On-Line Bin
Packing — A Restricted Survey. ZOR — Mathematical Methods of
Operations Research, 42:25-45, 1995.

Volker Heun. Efficient Embeddings of Treelike Graphs into Hy-
percubes. Berichte aus der Informatik. Shaker Verlag, Aachen,
1996.

Dorit S. Hochbaum. Approximation Algorithms for NP-Hard
Problems. PWS Publishing Company, Boston, 1996.

D.S. Hochbaum and D.B. Shmoys. A unified approach to
approximation algorithms for bottleneck problems. . ACM,
33(3):533-550, 1986.

D.S. Hochbaum and D.B. Shmoys. Using dual approximation
algorithms for scheduling problems: Theoretical and practical
results. |. ACM, 34(1):144-162, 1987.

Reiner Hiittl and Michael Schneider. Parallel Adaptive Nu-
merical Simulation. SFB-Bericht 342/01/94 A, SFB 342, Institut
fiir Informatik, Technische Universitiat Miinchen, 1994.

Reiner Hiittl. Ein iteratives Losungsverfahren bei der Finite-Ele-
ment-Methode unter Verwendung von rekursiver Substrukturierung
und hierarchischen Basen. PhD thesis, Institut fiir Informatik,
Technische Universitat Miinchen, 1996.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison-
Wesley Publishing Company, Reading, MA, 1992.

David S. Johnson. Fast Algorithms for Bin Packing. J. Comput.
Syst. Sci., 8:272-314, 1974.

Bibliography 167

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George

[KGV94]

[KV87]

[KZ93]

[L.C90]

[Lei92]

[Leo96]

[LKS7]

[LMR91]

[LMS95]

Karypis. Introduction to Parallel Computing: Design and Analysis
of Algorithms. The Benjamin/Cummings Pubishing Company,
Redwood City, CA, 1994.

Vipin Kumar, Ananth Y. Grama, and Nageshwara Rao Vem-
paty. Scalable Load Balancing Techniques for Parallel Comput-
ers. Journal of Parallel and Distributed Computing, 22(1):60-79,
1994.

Vipin Kumar and Nageshwara Rao Vempaty. Parallel depth-
first search, Part II: Analysis. International Journal of Parallel
Programming, 16(6):501-519, 1987.

Richard M. Karp and Yanjun Zhang. Randomized Parallel
Algorithms for Backtrack Search and Branch-and-Bound Com-
putation. J. ACM, 40(3):765-789, 1993.

Keqin Li and Kam-Hoi Cheng. On three-dimensional packing.
SIAM |. Comput., 19:847-867, 1990.

E. Thomson Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays e Trees Hypercubes. Morgan Kaufmann
Publishers, San Mateo, CA, 1992.

Stefano Leonardi. On-line Resource Management with Applica-
tion to Routing and Scheduling. PhD thesis, Universita di Roma
“La Sapienza”, 1996.

Frank C.H. Lin and Robert M. Keller. The Gradient Model
Load Balancing Model. IEEE Transactions on Software Engineer-
ing, SE-13(1):32-38, January 1987.

R. Liiling, B. Monien, and F. Ramme. Load Balancing in Large
Networks: A Comparative Study. In Proceedings of the 3rd
IEEE Symposium on Parallel and Distributed Processing SPDP’91,
pages 686—689, Los Alamitos, 1991. IEEE Computer Society
Press.

S. Leonardi and A. Marchetti-Spaccamela. On-line Resource
Management with Applications to Routing and Scheduling.
In Zoltan Fiilop and Ferenc Gécseg, editors, Proceedings of
the 22nd International Colloquium on Automata, Languages and

168

Bibliography

[LNRS92]

[Lud93]

[McD89]

[McD98]

[MCP*98]

[Mit96a]

[Mit96b]

[MMB68]

[MRO95]

Programming ICALP’95, volume 944 of LNCS, pages 303-314,
Berlin, 1995. Springer-Verlag.

ET. Leighton, Mark]J. Newman, Abhiram G. Ranade, and
Eric J. Schwabe. Dynamic tree embeddings in butterflies and
hypercubes. SIAM]. Comput., 21(4):639-654, August 1992.

Thomas Ludwig. Automatische Lastverwaltung fiir Parallelrech-
ner, volume 94 of Reihe Informatik. BI-Wissenschaftsverlag,
Mannheim, 1993.

C. McDiarmid. On the method of bounded differences. In
J. Siemons, editor, Surveys in Combinatorics, volume 141 of
London Mathematical Society Lecture Note Series, pages 148-188.
Cambridge University Press, Cambridge, 1989.

Collin McDiarmid. Concentration. In M. Habib, C. McDiar-
mid, J. Ramirez-Alfonin, and B. Reed, editors, Probabilistic
Methods for Algorithmic Discrete Mathematics, volume 16 of Al-
gorithms and Combinatorics, pages 195-248. Springer-Verlag,
Berlin, 1998.

Paul Messina, David Culler, Wayne Pfeiffer, William Martin,
J. Tinsley Oden, and Gary Smith. The High-Performance Com-
puting Continuum: Architecture. Communications of the ACM,
41(11):37-44, 1998,

Michael Mitzenmacher. Load Balancing and Density Depen-
dent Jump Markov Processes. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science FOCS’96, pages
213-222, Los Alamitos, 1996. IEEE Computer Society Press.

Michael David Mitzenmacher. The Power of Two Choices in Ran-
domized Load Balancing. PhD thesis, Department of Computer
Science, University of California at Berkeley, 1996.

A. Meir and L. Moser. On packing of squares and cubes.].
Comb. Theory, 5:126-134, 1968.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-
rithms. Press Syndicate of the University of Cambridge, Cam-
bridge, 1995.

Bibliography 169

[MSS95]

[NXG85]

[Rad96]

[Rah96]

[Reg97]

[R6d97]

[RR93]

[RR96]

Friedhelm Meyer auf der Heide, Christian Scheideler, and
Volker Stemann. Exploiting storage redundancy to speed up
randomized shared memory simulations. In Ernst W. Mayr
and Claude Puech, editors, Proceedings of the 12th Annual Sym-
posium on Theoretical Aspects of Computer Science STACS’95,
volume 900 of LNCS, pages 267-278, Berlin, 1995. Springer-
Verlag.

Lionel M. Ni, Chong-Wei Xu, and Thomas B. Gendreau. A Dis-
tributed Drafting Algorithm for Load Balancing. IEEE Trans-
actions on Software Engineering, SE-11(10):1153-1161, 1985.

Ralph Radermacher. Eine Ausfithrungsumgebung mit integrierter
Lastverteilung fiir verteilte und parallele Systeme. PhD thesis,
Fakultat fiir Informatik der Technischen Universitit Miinchen,
1996.

Erhard Rahm. Dynamic Load Balancing in Parallel Database
Systems. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte,
and Yves Robert, editors, Proceedings of the Second International
EURO-PAR Conference on Parallel Processing ELLRO-PAR’96, Vol-
ume I, volume 1123 of LNCS, pages 37-52, Berlin, 1996. Sprin-
ger-Verlag.

H. Regler. Anwenden von Algebraischen Mehrgittermethoden auf
das Plazierproblem im Chipentwurf und auf die numerische Si-
mulation von Stromungen. PhD thesis, Technische Universitat
Miinchen, 1997.

Christian Roder. Classifiaction of Load Models. In Thomas
Schnekenburger and Georg Stellner, editors, Dynamic Load Dis-
tribution for Parallel Applications, Teubner-Texte zur Informatik.
Teubner Verlag, Stuttgart, 1997.

H. Regler and U. Riide. Layout optimization with Algebraic
Multigrid Methods (AMG). In Proceedings of the Sixth Cop-
per Mountain Conference on Multigrid Methods, pages 497-512.
NASA, 1993.

Reinhard Riedl and Lutz Richter. Classification of Load Distri-
bution Algorithms. In Proceedings of the Fourth Euromicro Work-
shop on Parallel and Distributed Processing PDP’96, pages 404—
413, Los Alamitos, CA, 1996. IEEE Computer Society Press.

170

Bibliography

[RS98]

[Sal47]

[San98]

[Sch84]

[Sch97a]

[Sch97b]

[Sga94]

[Sga98]

[SHK95]

Martin Raab and Angelika Steger. Balls into Bins - A Simple
and Tight Analysis. In Proceedings of the 2nd International Work-
shop on Randomization and Approximation Techniques in Computer
Science RANDOM'98, volume 1518 of LNCS, pages 159-170,
Berlin, 1998. Springer-Verlag.

H.E. Salzer. The Approximation of Numbers as Sums of Re-
ciprocals. American Mathematical Monthly, 54:135-142, 1947.

Peter Sanders. Randomized Priority Queues for Fast Parallel
Access. Journal of Parallel and Distributed Computing, 49(1):86—
97, 1998. Special Issue on Parallel and Distributed Data Struc-
tures.

H.R. Schwarz. Methode der finiten Elemente, volume 47 of
Leitfiden der angewandten Mathematik (Teubner Studienbiicher :
Mathematik). Teubner Verlag, Stuttgart, second edition, 1984.

Thomas Schnekenburger. Exemplary Load Distribution Con-
cepts: A Classification. In Thomas Schnekenburger and Georg
Stellner, editors, Dynamic Load Distribution for Parallel Applica-
tions, Teubner-Texte zur Informatik. Teubner Verlag, Stuttgart,
1997.

Thomas Schnekenburger. General Classification of Load Dis-
tribution. In Thomas Schnekenburger and Georg Stellner, ed-
itors, Dynamic Load Distribution for Parallel Applications, Teub-
ner-Texte zur Informatik. Teubner Verlag, Stuttgart, 1997.

Jifi Sgall. On-Line Scheduling on Parallel Machines. PhD the-
sis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1994.

Jifi Sgall. On-line Scheduling. In Amos Fiat and Gerhard J.
Woeginger, editors, Online Algorithms : The State of the Art,
volume 1442 of LNCS, pages 196-231. Springer Verlag, Berlin,
1998.

Behrooz A. Shirazi, Ali R. Hurson, and Krishna M. Kavi, ed-
itors. Scheduling and Load Balancing in Parallel and Distributed
Systems. IEEE Computer Society Press, Los Alamitos, CA,
1995.

Bibliography 171

[SKS92]

[Son94]

[SS84]

[SS97]

[SSA*94]

[ST85]

[Ste96]

[Ste97]

[SWW95]

Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal.
Load Distributing for Locally Distributed Systems. Computer,
25(12):33—44, 1992.

J. Song. A partially asynchronous and iterative algorithm
for distributed load balancing. Parallel Computing, 20:853-868,
1994.

John A. Stankovic and Inderjit S. Sidhu. An Adaptive Bidding
Algorithm For Processes, Clusters and Distributed Groups. In
Proceedings of the Fourth International Conference on Distributed
Computing Systems, pages 49-59. IEEE Computer Society Press,
1984.

Thomas Schnekenburger and Georg Stellner, editors. Dynamic
Load Distribution for Parallel Applications. Teubner-Texte zur In-
formatik. Teubner Verlag, Stuttgart, 1997.

Craig B. Stunkel, Dennis G. Shea, Biilent Abali, Mark Atkins,
Carl A. Bender, Don G. Grice, Peter H. Hochschild, Douglas J.
Joseph, Ben J. Nathanson, Richard A. Swetz, Robert F. Stucke,
Michael Tsao, and Philip R. Varker. The SP2 Communication
Subsystem. Research Report RC 19914, IBM Research Divi-
sion, T.J. Watson Research, 1994.

Daniel D. Sleator and Robert E. Tarjan. Amortized Efficiency
of List Update and Paging Rules. Communications of the ACM,
28(2):202-208, 1985.

Volker Stemann. Parallel Balanced Allocations. In Proceedings
of the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures SPAA’96, pages 261-269, New York, 1996. ACM
Press.

Georg Stellner. Migration Mechanisms. In Thomas Schneken-
burger and Georg Stellner, editors, Dynamic Load Distribution
for Parallel Applications, Teubner-Texte zur Informatik. Teubner
Verlag, Stuttgart, 1997.

David B. Shmoys, Joel Wein, and David P. Williamson. Sched-
uling Parallel Machines On-Line. SIAM]. Comput., 24(6):1313—
1331, 1995.

172

Bibliography

[Ver98]

[VLL90]

[WC92]

[Wes96]

[Wil91]

[WLR93]

[XL94a]

[XL94b]

[XL97]

Jacques Verriet. Scheduling with communication for multiproces-
sor computation. PhD thesis, Faculteit Wiskunde & Informatica,
Universiteit Utrecht, 1998.

B. Veltman, B.]. Lageweg, and].K. Lenstra. Multiprocessor
scheduling with communication delays. Parallel Computing,
16:173-182, 1990.

Qingzhou Wang and Kam Hoi Cheng. A Heuristic of Schedul-
ing Parallel Tasks and its Analysis. SIAM . Comput., 21(2):281-
294, April 1992.

Douglas B. West. Introduction to Graph Theory. Prentice-Hall,
Upper Saddle River, NJ, 1996.

David Williams. Probability with Martingales. Cambridge Uni-
versity Press, Cambridge, 1991.

Marc H. Willebeek-LeMair and Anthony P. Reeves. Strategies
for Dynamic Load Balancing on Highly Parallel Computers.
IEEE Transactions on Parallel and Distributed Systems, 4(9):979—
993, 1993.

Cheng-Zhong Xu and Francis C.M. Lau. Iterative Dynamic
Load Balancing in Multicomputers. J. Opl. Res. Soc., 45(7):786—
796, 1994.

Cheng-Zhong Xu and Francis C.M. Lau. Optimal Parameters
for Load Balancing with the Diffusion Method in Mesh Net-
works. Parallel Processing Letters, 4(1-2):139-148, 1994.

Chengzhong Xu and Francis C.M. Lau. Load Balancing in Paral-
lel Computers: Theory and Practice. The Kluwer International Se-
ries in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, 1997.

Index

a-bisector, 76
c-competitive, 2
d-heavy, 133
d-light, 133

A

adaptivity, 16, 24, 26, 39, 94, 95
adjustable, 24
fixed, 24
learning, 24
adversary, 3
adaptive, 3
oblivious, 3, 43, 46, 63
algorithm
approximation, 89
BA, 124
BA-HF, 117-124
bidding, 21, 26, 28
BIN PACKING, 48
diffusion, 17, 26, 27
divide-and-conquer, 20
Geometric Packing, 57
gradient model, 17
greedy, 44, 71
HE, 77,90, 92-97, 99-100, 104,
105, 121-124, 132-145
classification, 100
HFL, 89
LEVEL, 48-61, 74

PHE 105-110, 145
RRR, 38, 39, 64-68, 71,72
RRR_ADAPTIVE, 39, 68-71,73
RRR_SIMPLE, 72,73

array, 41

average case, 103, 121, 122, 124,
131-145

Azuma’s inequality, 141

B

balanced allocations, 28
bidding, 26
bisection, 76
bisection parameter, 76, 107, 111,
117
actual, 76,121, 123,124, 131
generalized, 132
bisection tree, 78, 93
complete, 85
infinite, 132
bisector, uniform, 133

C

classification, 15, 100

collision protocol, 30

competitive, 42

competitive analysis, 2, 43

competitive ratio, 2, 42, 43
expected, 43

174

complete model, 40
concentration, sharp, 137
coordination, 18, 22

cost sensitivity, 24

Cray T3E, 19

cut-nodes, 86

D

decision mode, 22
autonomous, 22
competitive, 23
cooperative, 23

decision process, 23
dynamic, 23
static, 23

decision structure, 22
centralized, 22
distributed, 22
hierarchical, 22

delay phase, 65

dependency graph, 41

distribution
Erlang, 134
exponential, 134
gamma, 134
uniform, 132

divide and conquer, 76

E

entities, 10

entity topology, 19
grid-like, 20
non-interacting entities, 20
tree-like, 20

F

FE, see finite element
filter, 138
filtration, 138
finite element, 90
method, 90
adaptive, 90
simulation, 90, 98
distributed, 90

H

heavy, see d-heavy
hypercube, 41, 56
normal, 56

I

IBM RS/6000 SP, 19, 40
IBT, see bisection tree, infinite
information exchange, 18, 21
information scope, 21
complete, 22
partial, 21
information space, 21
central, 21
long range, 21
neighborhood, 21
restricted, 21
short range, 21
systemwide, 21
initiation, 24, 26
central, 24
receiver, 24
sender, 24
threshold-based, 24
timer-based, 24
interconnection networks, 19

175

job, 39
available, 41
delayed, 66
depth of, 41
size, 39
work of, 42

job system, 39

job types, 40

jobs
dependent, 41
independent, 41

L

layer, 57

leaf-branch, 78, 79
composed, 80
internal branch, 78

level, 41

list scheduling, 89

load balancing, 11, 75-145

load distribution, 9-35
algorithm, 18, 23
scheme, 33
strategy, 15

load index, 16

load model, 16

load sharing, 11

load transfer, 20

lower bound, 38, 39, 46,47, 51, 55,
56, 59, 60, 62,63,70,71,78, 80,
83,95, 131

M

makespan, 42

martingale, 138
Doob-, 139

matching, 31

migration mechanism, 16

model flavor, 17
combinatorial, 17
fairness, 18
microeconomic, 18
physical, 17
probabilistic, 18
random, 18

multiprocessor scheduling, 89

N

network of workstations, 19
network topologies, 19
numerical simulation, 90, 94

O

on-line
algorithm, 2
optimal, 43
computation, 43
scheduling, 9-74
optimal, 84

P

partial differential equation, 91
participation, 23

global, 23

partial, 23
path

critical, 41

length of, 41
precomputation, 32, 33

176

R

random matchings, 31
real time, 3
recursive substructuring, 90
runtime ratio, 61
restricted, 61-74

S

schedule, 9, 39, 41-43, 45, 48, 56
efficiency of, 42

shelf, 57

stability control, 25, 26

system model, 17, 18

system of linear equations, 92

T

target topology, 19
targets, 10
task, 39
task system, 39
timestep, 41
earliest possible, 41
transfer model, 18, 20
transfer policy, 20
non-preemptive, 21
preemptive, 21
transfer space, 20
long range, 20
neighborhood, 20
restricted, 20
short range, 20
systemwide, 20

U

UET, see unit execution time

unit execution time, 41

unit of time, 64

upper bound, 12, 50, 57, 61, 70, 74,
82, 83, 85, 87, 88, 90, 100, 112,
114

V

virtualization, 44

1%

weight, ideal, 77

workstation cluster, 19

worst case, 2, 10,12, 25,75,77, 81,
83, 84, 90, 100, 103, 104, 108,
110,117,118, 131

