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Abstract

Hybrid embedded systems are systems that are characterized by involving discrete
as well as continuous dynamics, such as digital software interacting with an analog
environment. In the design of such systems, di�erent time models and techniques
from di�erent disciplines|mainly computer science and control theory|are usually
employed. An isolated consideration of the discrete and continuous parts of a hybrid
system already at the beginning of the development process together with imprecisely
de�ned interaction between these parts can lead to inappropriate or incorrect designs.
Therefore, this thesis introduces formal, integrated notations and development tech-
niques for hybrid systems which support development processes that postpone this
partitioning of a hybrid system to the later development phases.

The introduced notations for data-
ow and control-
ow in hybrid systems precisely
de�ne the interaction of discrete and continuous dynamics in a hybrid system. They
are visual and modular, and can be used for environment modeling, requirements
analysis and speci�cation of hybrid systems. For these notations, the thesis de�nes
re�nement techniques as transformations of the hybrid models. The techniques intro-
duced aim at moving from an abstract model based on a dense time scale to a model
with more detailed timing constraints that operates in discrete time. They are de�ned
such that they can be used together with methods from numerical mathematics and
control theory.

Further motivation for the re�nement techniques stems from a formalization and clas-
si�cation of the properties required of hybrid systems. The classi�cation reveals that
trace inclusion is a suitable re�nement notion for most central properties of hybrid
systems. Furthermore, the detailed study of the properties and some of their proof
methods, as contained in the thesis, fosters a better understanding of hybrid systems
by computer scientists and formalizes parallels between computer science and control
theory.

For all introduced elements of a design methodology for hybrid systems the thesis
identi�es their position and potential within the development process of hybrid sys-
tems.





Kurzfassung

Hybride eingebettete Systeme sind durch die Mischung von diskreter und kontinuier-
licher Dynamik gekennzeichnet, wie sie etwa bei digitaler Software in Wechselwirkung
mit einer analogen Umgebung vorkommt. Bei dem Entwurf solcher Systeme wer-
den unterschiedliche Zeitmodelle und Techniken aus unterschiedlichen Disziplinen, vor
allem aus der Informatik und der Regelungstechnik, eingesetzt. Wenn die diskreten
und kontinuierlichen Anteile eines hybriden Systems bereits zu Beginn des Entwick-
lungsprozesses isoliert betrachtet werden, und wenn zudem die Wechselwirkung dieser
Teile nicht pr�azise de�niert ist, so k�onnen ungeeignete oder fehlerhafte Entw�urfe
entstehen. Diese Arbeit f�uhrt daher formale, integrierte Notationen und Entwick-
lungstechniken f�ur hybride Systeme ein, die Entwicklungsprozesse unterst�utzen in de-
nen eine solche Partitionierung hybrider Systeme erst in sp�ateren Entwicklungsphasen
statt�ndet.

Die eingef�uhrten Notationen f�ur den Daten- und Kontroll
u� in hybriden Systemen
de�nieren die Wechselwirkung zwischen diskreter und kontinuierlicher Dynamik in
solchen Systemen pr�azise. Sie sind gra�sch und modular und k�onnen zur Umge-
bungsmodellierung, zur Anforderungsanalyse und zur Spezi�kation hybrider Systeme
eingesetzt werden. F�ur diese Notationen werden in der Arbeit Verfeinerungstechniken
zur Transformation hybrider Modelle de�niert. Die eingef�uhrten Techniken zielen auf
die Migration von einem abstrakten Modell mit zugrundeliegender dichter Zeitachse zu
einem Modell mit detaillierten Zeitanforderungen, das zeitdiskret arbeitet. Die Tech-
niken erlauben es, sie zusammen mit Methoden der numerischen Mathematik und der
Regelungstechnik anzuwenden.

Eine weitere Motivation der Verfeinerungstechniken resultiert aus einer Formalisierung
und Klassi�kation der von hybriden Systemen geforderten Eigenschaften. Die Klassi-
�kation zeigt, da� Verhaltensinklusion ein geeigneter Verfeinerungsbegri� f�ur die meis-
ten zentralen Eigenschaften hybrider Systeme ist. Dar�uberhinaus f�ordert die in dieser
Arbeit enthaltene detailierte Analyse der Eigenschaften und einiger ihrer Beweisver-
fahren ein besserer Verst�andnis hybrider Systeme durch Informatiker. Sie formalisiert
zudem Parallelen zwischen Informatik und Regelungstechnik.

Alle in dieser Arbeit eingef�uhrten Elemente einer Entwicklungsmethodik hybrider Sys-
teme werden in den Entwicklungsproze� hybrider Systeme eingeordnet, und ihr Po-
tential wird aufgezeigt.





Acknowledgments

First of all I like to thank Manfred Broy for o�ering me the opportunity to join
his group and for providing the atmosphere and support which enabled this work.
Further thanks go to Georg F�arber for undertaking the e�ort of being my referee in
the dissertation committee and for our valueable discussions.

I like to thank Olaf M�uller for giving me the impulse to start into the �eld of hybrid
systems. I am particularly grateful to Radu Grosu for our intensive collaboration,
which not only laid foundations for this thesis, but also helped me to learn how
scienti�c work can be organized.

For stimulating discussions providing di�erent points of view on hybrid systems I like
to thank Christoph Grimm, Istv�an P�eter, Thomas Schlegl and the team members of
the MOBASIS project. Discussions with my colleagues and their comments on my
work helped me to shape this thesis. Here, I primarily like to thank Ingolf Kr�uger,
Jan Philipps, Wolfgang Prenninger and Bernhard Sch�atz. I am particularly indebted
to Alexander Pretschner for loads of discussions and to Robert Sandner for his precise
comments. Both gave me detailed feedback on large parts of this thesis at a point
where time was tight. Further thanks go to Michel Sintzo� for his helpful hints and
references on the study of properties of hybrid systems. Besides that I like to thank
Heather Gumenik for her help to improve the English in this thesis. Furthermore, I
thank the remaining colleagues in our group for the excellent atmosphere and infras-
tructure as well as all my friends for their patience.

I am deeply indebted to my parents for enabling me to go this way and helping me
at so many points in my life. Finally, I thank Alexandra G�urtler who believed in me
when I did not and who reminded me that there are more important things in life
when I was about to forget. You helped me to put my work aside when I had spent
more than enough time on it!





Contents

1 Introduction 1

1.1 What are \Hybrid Systems"? . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Subject of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 The Running Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methodology 9

2.1 Preliminaries: Development of Control System . . . . . . . . . . . . . . 9

2.1.1 Development Steps . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Important Notations . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Hybrid Systems' Development . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 A Conventional Development Process . . . . . . . . . . . . . . . 16

2.2.2 An Integrated Development Process . . . . . . . . . . . . . . . . 19

2.2.3 Supporting Techniques Developed in This Thesis . . . . . . . . 23

2.2.4 Other Techniques Supporting Integrated Development . . . . . . 25

2.3 Discussion and Further Work . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 HyCharts 31

3.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 The Hybrid Computation Model . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 The Discrete Part . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



ii CONTENTS

3.2.3 The Analog Part . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Semantics of the Hybrid Computation Model . . . . . . . . . . . 42

3.2.5 A Note on Semantics . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Hierarchic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 The Multiplicative Model . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 The Additive Model . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.4 The Time-Extended Additive Model . . . . . . . . . . . . . . . 58

3.3.5 Re�nement in the Multiplicative and Additive Models . . . . . . 61

3.4 Architecture Speci�cation { HyACharts . . . . . . . . . . . . . . . . . . 62

3.5 Component Speci�cation { HySCharts . . . . . . . . . . . . . . . . . . 64

3.5.1 The Discrete Part . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.2 The Analog Part . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5.3 Example: A Typical Hybrid Component . . . . . . . . . . . . . 81

3.6 Integration of Other Formalisms . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Discussion and Further Work . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Notes on Re�nement 87

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Architecture Re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Behavior Re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Discussion and Further Work . . . . . . . . . . . . . . . . . . . . . . . 93

5 Re�nement and Time 95

5.1 Methodological Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Relaxed HySCharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Constructing Relaxed Invariants . . . . . . . . . . . . . . . . . . 101

5.2.2 Relaxed Analog Dynamics . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Machine Model for Relaxed HySCharts . . . . . . . . . . . . . . 107

5.2.4 Remarks on the Relaxation . . . . . . . . . . . . . . . . . . . . 109



CONTENTS iii

5.2.5 Relaxed HySChart for the EHC's Controller . . . . . . . . . . . 109

5.3 DiSCharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1 Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.2 The Discrete Part in Discrete Time . . . . . . . . . . . . . . . . 114

5.3.3 The Analog Part in Discrete Time . . . . . . . . . . . . . . . . . 114

5.3.4 The Discrete-Time Component . . . . . . . . . . . . . . . . . . 118

5.3.5 Interface to Dense Streams . . . . . . . . . . . . . . . . . . . . . 119

5.3.6 DiSChart for the EHC's Controller . . . . . . . . . . . . . . . . 120

5.4 Time Re�nement of HySCharts . . . . . . . . . . . . . . . . . . . . . . 122

5.4.1 Re�nement Conditions . . . . . . . . . . . . . . . . . . . . . . . 122

5.4.2 Sampling for the Discrete Part . . . . . . . . . . . . . . . . . . . 126

5.4.3 Sampling for the Analog Part . . . . . . . . . . . . . . . . . . . 132

5.4.4 Time Re�nement of the EHC's Controller . . . . . . . . . . . . 140

5.4.5 Sampling Rate Validation . . . . . . . . . . . . . . . . . . . . . 143

5.5 Time Re�nement in Component Networks . . . . . . . . . . . . . . . . 144

5.6 Separate Implementation of the Discrete Part . . . . . . . . . . . . . . 147

5.7 Discussion and Further Work . . . . . . . . . . . . . . . . . . . . . . . 149

5.7.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.7.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Properties of Hybrid Systems 157

6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2 Systems under Consideration . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.3.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3.4 Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3.5 Further Properties . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3.6 Classi�cation of the Properties and its Consequences . . . . . . 174

6.4 Some Proof Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



iv CONTENTS

6.4.1 State-based Stability . . . . . . . . . . . . . . . . . . . . . . . . 178

6.4.2 Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.5.1 Stability and Attraction for the EHC . . . . . . . . . . . . . . . 186

6.5.2 Attraction for Self-Stabilizing Algorithms . . . . . . . . . . . . . 190

6.6 Discussion and Further Work . . . . . . . . . . . . . . . . . . . . . . . 193

6.6.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.6.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7 Summary and Conclusion 199

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A Proofs 205

A.1 Proofs about HyCharts and DiCharts . . . . . . . . . . . . . . . . . . . 205

A.1.1 Totality of HySCharts Revisited . . . . . . . . . . . . . . . . . . 205

A.1.2 Inductive Reasoning for HySCharts . . . . . . . . . . . . . . . . 209

A.1.3 Time Guardedness of HySCharts . . . . . . . . . . . . . . . . . 214

A.2 Discretization as Re�nement . . . . . . . . . . . . . . . . . . . . . . . . 215

A.2.1 Operational Semantics of DiSCharts . . . . . . . . . . . . . . . 215

A.2.2 Proofs about Discretization as Re�nement . . . . . . . . . . . . 218

A.3 Proofs about Stability and Attraction . . . . . . . . . . . . . . . . . . . 223

B Mathematical Foundations 227

B.1 Sets and Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

B.2 Some Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

B.3 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

B.4 Convergence in Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . 232

B.5 The Metric Space of Streams . . . . . . . . . . . . . . . . . . . . . . . . 232

B.5.1 Divergence Closure and Topological Closure . . . . . . . . . . . 234



CONTENTS v

Bibliography 237

List of Figures 255

Glossary of Symbols 259

Index 263





Chapter 1

Introduction

Today more and more computing elements are used in technical plants and in all
kinds of devices. Basic reasons for this tendency are the declining price and size
of computing elements accompanied by the possibility of realizing new functionality
and by the 
exibility software-based solutions o�er. Examples range from avionics
and automotive applications to automation, process control, telecommunications and
consumer electronics. In all such applications, software plays a central role in achieving
the functionality of a product. Hence, the development of the software plays a key
role in the overall development of the product. A well-founded methodology based on
formal methods can assist the systematic development of such embedded systems and
help to reduce the risk of errors. This is vital for embedded systems as they typically
target the mass market or perform safety-critical functions, which means that faults
in them are expensive if not unacceptable.

1.1 What are \Hybrid Systems"?

Hybrid (embedded) systems, the focus of this thesis, are a subclass of embedded sys-
tems which are characterized by the continuous evolution of the system's variables in-
terrupted by discontinuous changes due to the system logic at isolated time instants.
Typically they are heterogeneous and consist of digital and analog components as
well as of components that can not clearly be assigned to one of these two worlds at
the beginning of the development process. Their mixed digital/analog nature makes
hybrid systems an interdisciplinary topic mainly in
uenced by computer science and
control theory. Demanding examples are 
ight control systems, such as the Airbus
A320 
y-by-wire system, which comprises di�erent discrete modes: take o�, cruise,
approach and go around [Swe95]. Figure 1.1 depicts the general architecture of hybrid
systems. It is explained in detail later in this section.

1
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Controller

DA Conversion

Plant

AD Conversion

Hybrid System

Sensors Actuators

Figure 1.1: General architecture of hybrid systems.

Some terminology. Hybrid systems are often described in the literature as sys-
tems with a complex interaction of discrete and continuous dynamics. As the notions
discrete and continuous are ambiguous, we would like to clarify them here.

Control theory distinguishes between continuous-time, discrete-time, and discrete-
event systems [Zei76, GW98]. When using the real numbers as time model, continuous-
time systems are active over the entire time axis processing their input and producing
output. Discrete-time systems can only react to their input and produce new output
at distinct, equidistant time instances. Discrete-event systems produce output events
whenever input events or timeouts occur. Events can typically be regarded as singular
signals which only persist for a single time instant. Note that a condition which
becomes true because a continuous variable, such as time, reaches a certain value can
also be regarded as an event. This in particular implies that timeouts can be seen
as events. Unlike discrete-time systems, discrete-event systems are not bound to an
equidistant time grid. Instead, they react whenever activated by input or timeout
events.

Furthermore, control theory distinguishes between systems operating on quantized
(or discrete) values and systems operating on continuous values. Quantization re-
sults when the quantities of a physical system are measured and converted for further
processing by a digital machine. With this basis, the term digital system refers to
discrete-time systems with quantized values. If large enough bit vectors are used for
quantized values, quantization e�ects can be regarded as random noise. Therefore,
these e�ects are often neglected in practice and the term digital system is also used
for discrete-time systems with continuous values [Vac95]. (Nevertheless, quantization
e�ects are a concern in hardware design if the size of bit vectors is supposed to be
minimized.) The term analog system refers to continuous-time systems with contin-
uous values. We follow this common, slightly ambiguous terminology. Furthermore,
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when the context is clear we refer to discrete-event systems as discrete systems and to
continuous-time systems as continuous systems in this thesis. Systems with quantized
values of continuous variables are not considered further.

Hybrid systems in detail. With this terminology at hand we can make the notion
of hybrid systems more precise. In our view, there are two aspects which make up the
hybrid character of a hybrid system. First, there is the interaction of dynamics with
di�erent underlying time models. Here, most work focuses on systems with intermixed
discrete-event and continuous-time dynamics, with continuous values (cf. the hybrid
systems conference series [GNRR93, Ant95, AHS96, HS98, VvS99, LK00, DBSV01]).
This is reasonable since discrete-time systems can be seen as a subclass of discrete-
event systems which are triggered by timeout events in a speci�c way.

The second aspect of the character of hybrid systems is the mixing of logical decision
making from the computer science domain and of discrete-time or continuous-time
control laws as usually considered in the control theory domain. In this thesis, we
will refer to this logical decision making as state-transition logic because the decisions
usually cause qualitative changes in the state of a system. Usually hybrid systems
contain both of these aspects|mixing of time models and mixing of computer science
and control theory. We illustrate this on the basis of the general architecture of hybrid
systems depicted in Figure 1.1.

The controller in the �gure operates in discrete-time and is usually implemented in
software. Sensors, plant and actuators operate in continuous time. The term plant
refers to the system to be controlled in control theory. In computer science, the
term environment is used similarly in the context of embedded systems, but more
vaguely in that it refers to all components outside the actual embedded hardware and
software. Here we will use the term environment to denote all components of a hybrid
system except the controller. The AD conversion component performs an analog-to-
digital conversion of its inputs. Typically this involves �ltering of the inputs to obtain
bandlimited signals, sampling the signals at discrete time instants and holding the
sampled value constant in order to convert it to a quantized binary representation
that is available at every clock tick as output of the conversion. Analogously, the DA
conversion component performs digital-to-analog conversion. This typically consists
of converting the quantized binary representation of the present value to a continuous
representation and holding this output constant until the next binary signal arrives
with the next clock tick. Moreover, the produced piecewise constant output is often
passed through a �lter to eliminate too high frequencies otherwise present in the out-
put signal. There are also other alternatives to this simple sample-and-hold scheme,
which for example involve more complex interpolation in the DA conversion. While
these are important for digital signal processing to reduce the cost of required analog
�lters [Smi97], they usually do not yield better performance of control systems, as
Ogata mentions in [Oga87]. Besides this (digital) control loop there may also be a
(continuous) control loop around the plant in speci�c cases. With the interfaces of
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controller and plant to the outside world the hybrid system interacts with its sur-
roundings. For instance, if the plant was the engine of a car, the controller would
receive input from the driver via the pedal and the engine's output would lead to an
acceleration. This in turn would cause the driver to adjust the pedal according to his
or her preferences and to the traÆc situation.

Obviously, this architecture of hybrid systems involves di�erent time models. How-
ever, if there is no state-transition logic part in the dynamics of controller or plant,
standard methods from control theory can be used for discrete-time or continuous-
time controller design [F�ol90, Oga87]. For the hybrid systems community, the system
becomes interesting if the controller either decides between employing di�erent control
laws (or control modes) or the plant involves switching between qualitatively di�erent
kinds of continuous behavior. An example of control moding is a situation where a
controller switches between a slow, accurate control law for �ne adjustment and a
fast, less accurate one for approaching a given desired value. An example of switch-
ing in the plant is hysteresis or friction e�ects where, depending on the given forces,
stick friction or slip friction occurs. Switching e�ects in the plant usually result from
abstractions when modeling a physical system. There, a modeler may decide that a
certain e�ect takes a very small amount of time relative to the behavior he is interested
in and that it may therefore be assumed to happen instantaneously [Mos97]. Finally,
note that the AD and DA converters and the �ltering and processing they may involve
are inherently mixed analog/digital systems. This justi�es that the techniques for the
development and analysis of hybrid (control) systems are also interesting for the �eld
of analog/digital codesign [DSG+94, GW98], and vice versa.

Example Systems. Besides the avionics domain referenced in the beginning of
this section, interesting examples of hybrid systems can be found in automotive elec-
tronics. These include simple systems, such as the automatic transmission control
provided as example in [TMI99], as well as complex products, such as autonomous
cruise control systems (ACC). These ACC systems adjust a car's speed and distance
to the car in front depending on di�erent traÆc situations, e.g., highway or stop-and-
go traÆc [Dai01]. In particular, the ACC system demonstrates how new functionality
is obtained by using information technology to couple hitherto autonomous subsys-
tems such as automatic transmission control, distance sensors, braking systems and, in
the future, probably mobile communication as well. Further examples include walking
robots, where di�erent discrete phases follow one another and each one is characterized
by di�erent continuous dynamics [BGM93], or manufacturing plants. For instance, in
[PPS00] a wire production plant is regarded, where di�erent control paradigms are
employed in di�erent phases of the process of coiling up wire.

Methods for hybrid systems. In contrast to ordinary discrete or continuous sys-
tems, the development of hybrid systems requires integrated methods. These methods
must take all aspects of a system into account such that the overall system as given in
Figure 1.1 satis�es the desired properties a�ecting discrete and continuous dynamics.
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Needed methods include modeling, simulation, veri�cation and synthesis techniques.
Since discrete-time models can be regarded as a special case of discrete-event models,
inventing such techniques based on a model incorporating discrete-event and contin-
uous dynamics is reasonable.

1.2 Subject of the Thesis

The aim of this thesis is twofold. First, it proposes a systematic approach to the
development of hybrid systems together with some infrastructure. Second, it intends
to foster a deeper understanding of hybrid systems by computer scientists.

For the development of hybrid systems, the thesis suggests a development process
which aims at helping to reduce design risks and gaining 
exibility. This is achieved
by postponing the important step of partitioning a hybrid system in discrete-time and
continuous-time subsystems to the late development phases, when enough con�dence
in the design has been obtained. A prerequisite for such a process is the availability
of description techniques and validation techniques for hybrid systems. Furthermore,
transformations are needed which permit re�nement of a hybrid system and moving
from an abstract hybrid model towards an implementation which contains subsystems
operating in discrete time.

As a contribution to these prerequisites, the thesis de�nes precise, visual description
techniques for the data 
ow and the control 
ow in hybrid systems. These techniques
can be coupled with description techniques for discrete-time systems, and they are
close to techniques commonly used in software engineering, like UML [Gro00] and
Statecharts [Har87]. An integration of block diagrams, as used in control theory
[PH88], is straightforward.

For the introduced description techniques, property preserving transformations, also
called re�nement methods, are discussed. The focus of these transformations is on
enabling the migration from system components which operate in a continuous time
scale to components operating in discrete time. Such transformations close the gap
between existing techniques for hybrid systems and discrete-time systems. The thesis
examines e�ects arising from a discrete-time implementation and develops general con-
ditions which, when satis�ed, provide that moving to discrete-time preserves essential
properties of the original system. Above that, methods are presented which support
to design models that satisfy the identi�ed conditions. While the results are given for
the speci�c description techniques used in this thesis, they can also be carried over to
related notations which follow the style of hybrid automata [ACH+95].

The formal notion of re�nement, which is used in this thesis as basis for the transfor-
mations, is motivated by a general study of the properties of hybrid systems. These
properties are formalized, classi�ed and related to re�nement. The thesis also pro-
poses proof techniques for some of the properties and explains why some of them have
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not been of interest to computer science so far. Particular emphasis is put on formal-
izing parallels between computer science and control theory which become apparent
in the de�nition of the properties and proof methods. This helps to advance a better
understanding of hybrid systems.

In order to illustrate how the methods proposed in this thesis are applied, they are
used to elaborate various aspects of a non-trivial example system.

1.3 Structure of the Thesis

The thesis is structured as follows. After some notes on the development process of
control systems, Chapter 2 proposes an integrated development process which is char-
acterized by the late partitioning of a hybrid system into continuous-time and discrete-
time subsystems. The proposed process is contrasted to a development process with
an early partitioning, and related work supporting the integrated development process
is discussed.

In Chapter 3, the hybrid description techniques HyCharts are introduced, and hierar-
chic graphs, which are the semantic foundation for HyCharts, are de�ned. HyCharts
come in two 
avors, HyACharts for the speci�cation of the data-
ow (or the architec-
ture) in hybrid systems and HySCharts for the speci�cation of the control-
ow (or the
behavior) of a hybrid system's components.

General notes on re�nement rules which do not a�ect the time model of HyCharts are
given in Chapter 4. The transferability of known re�nement rules for the data-
ow
and the control-
ow in discrete systems is brie
y discussed there.

In a central theorem, Chapter 5 de�nes under which conditions a discrete-time com-
ponent is a re�nement of a HySChart. As preliminaries for this theorem, the e�ects
of a discrete-time implementation are discussed and a liberal variant of HySCharts is
introduced. For the speci�cation of discrete-time components, DiSCharts are de�ned
as a discrete-time variant of HySCharts. Furthermore, methods are developed which
help to systematically construct a discrete-time re�nement of a HySChart. These
methods also involve the usage of techniques from numerical mathematics and control
theory.

Chapter 6 studies and formalizes general properties of hybrid systems as the under-
pinning for the used re�nement notion. The properties are classi�ed and the e�ects
of re�nement on them are discussed. Due to their importance, the chapter introduces
proof methods for some of the properties. The properties and proof methods are
compared with computer science and parallels are formalized. This provides a deeper
insight into hybrid systems and, in particular, it identi�es the vital role of topology
in the properties of hybrid systems.

Each chapter ends with a discussion of the results, an overview of related work and
directions for future work. Chapter 7 presents some general conclusions.
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The Appendices provide the necessary foundations for results in this thesis. Ap-
pendix A formalizes some basics which are needed for proofs concerning HySCharts
and DiSCharts, including their operational semantics. Furthermore, proofs for those
theorems are given which do not occur in the main part of the thesis. Appendix B in-
troduces foundations of (partial) order theory, topology and (complete) metric spaces.

Figure 1.2 depicts the dependencies between the chapters of this thesis. The appen-
dices are omitted in the �gure.

?? ?

?

?

-

-

4 5 6

7

2

1

3

Solid lines indicate essential prerequisites.

Dashed lines indicate that some knowledge of previous chapters is assumed.

Figure 1.2: Chapter dependencies (numbers refer to the chapters).

1.4 The Running Example

We use an electronic height control system (EHC) as a running example in the thesis.
All fundamental concepts which we present will be outlined along this example. The
purpose of this system, which was originally proposed by BMW, is to control the
chassis level of an automobile with pneumatic suspension. The abstract model of this
system, which considers only one wheel, was �rst presented in [SMF97]. The versions
we consider here are derived from the presentation in [GSB98a]. The example is
introduced in detail in Section 3.1. Here, we explain in which succession the models
presented throughout the thesis would occur in a development process.

The most abstract version of the EHC if given in Chapter 6. Among the models
given in the thesis, this one would occur �rst in a development process. Some initial
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properties would be established for it, as in Chapter 6. In further development steps,
this model would be split into components until the system architecture presented
in Chapter 3 is obtained. Note that we do not consider these development steps
in the thesis. For one component of the system, which will be called Control , the
behavior could then be speci�ed by the HySChart in Chapter 5. The development step
explained in that chapter can then be used to re�ne this component by constructing
a discrete-time model for it. This is the �nal model of the component Control we
consider in the thesis.

In Chapter 3, a further model of the behavior of this component is presented. This
model is not supposed to occur in a development process which follows the paradigms
introduced in Chapter 2 because it mixes discrete-event and discrete-time aspects
within one component. This mixing is motivated by the purpose of the model in
Chapter 3. There, it is not intended to demonstrate good modeling practice, but it
instead serves to explain almost all characteristics of the HySChart formalism.



Chapter 2

Remarks on the Methodology for

Hybrid Systems Development

This chapter describes how the development of hybrid systems can bene�t from no-
tations, methods and tools that provide an integrated view on a system's discrete
and continuous, computer science and control theory aspects. As a prerequisite, Sec-
tion 2.1 explains the development of control systems and indicates the role synthesis
techniques play there and when they can be applied. Section 2.2 �rst outlines charac-
teristics of the development of hybrid systems in practice these days. Then, a process
is presented which aims at bringing more mathematical rigor and an integrated view
on the di�erent aspects of hybrid systems to their development. The process relies
on integrated formal notations, analysis and re�nement techniques. The remaining
chapters of this thesis are classi�ed w.r.t. their contribution to the proposed inte-
grated development process. Furthermore, we explain how related work supports the
integrated process. Note that the chapter focuses on analysis and design phase. A
preliminary version of the ideas presented here appeared in [PSS00].

2.1 Preliminaries: Development of Control System

In order to understand the development of hybrid systems from a computer science
point of view, it is reasonable to get acquainted with the basic development steps in
the design of control systems. We therefore describe this process in this section and
compare it to the software development process.

2.1.1 Development Steps

The usual control problem consists of designing a controlling device Controller which
controls a given physical process Plant such that speci�c quantities of the process have

9
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Controller Plant

Figure 2.1: General structure of a closed-loop control system.

certain desired values which are input to the controlling device (Figure 2.1). The user
interface is not considered explicitly in the �gure. It may either be part of the controller
or it may be external and provide input to the controller. According to [PH88], typical
requirements for the controlling device are compensation of disturbances, compliance
with acceptable deviations from ideal behavior during and after disturbances and a
reasonable degree of insensitivity w.r.t. the parameters of the physical process.

controller model

controller

plant model

model of plant,
sensors, actuators

simplified model

analysis

analysis

synthesis

sensors,
actuators

plant

real
world

Figure 2.2: Development of control systems.

Developing such controllers ideally consists of the following steps [PH88, Toe96] (see
Figure 2.2). First, a mathematical model of the physical process, the plant, is set up,
validated w.r.t. the real system (e.g., by experiments and simulation) and analyzed.
Sensors and actuators are chosen based on the knowledge about control problem and
plant. Then, they are also modeled mathematically and validated. The obtained
mathematical model of the plant including sensors and actuators is used to design
the controller. If the mathematical models are suÆciently simple, algorithms can be
used to automatically produce a mathematical model of a controller which is optimal
w.r.t. certain given criteria (e.g., by solving a Ricatti equation [Fri86]). Otherwise, the
models are simpli�ed until automatic techniques become applicable or a manual design
is employed. Thereafter, the model of the overall system is analyzed analytically or
by simulation. In succeeding steps, the simpli�ed model parts are replaced by more
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accurate models or by hardware-in-the-loop1 and the system is veri�ed with further
simulations. Finally, the controller model must be mapped to the real world and
tested in interaction with the remainder of the system. If any of the veri�cation steps
fail, the respective design steps must be iterated. In contrast to conventional control
engineering, mechatronics also considers how the physical system can be modi�ed to
improve performance of the overall system. Standard methods exist for the controller
design of linear time invariant systems. A system is linear if the superposition principle
applies, i.e. if y1 is the system response to input x1 and y2 is the response to x2 then the
system is linear i� input ax1+bx2 results in ay1+by2. It is time invariant if the system
is independent from absolute time, i.e. if time shifts of the input result in the same
time shifts of the output. Linear di�erential equations with constant coeÆcients are a
standard way for describing linear time invariant systems (see [F�ol90, Fri86]). Model
simpli�cations therefore often consist of replacing non-linear di�erential equations by
linear ones around some given parameters. The mathematical background here is
Taylor expansion [K�on90]. Note that simpli�cations in this context are also called
abstractions, although they do not always have the formal background which is often
associated with the term in computer science. Furthermore, note that the state-
transition logic in hybrid systems is a source of severe non-linearity.

The design of digital controllers of analog plants is based on techniques which are
essentially similar to those for analog controllers. Here, linear di�erence equations take
the place of linear di�erential equations. Shannon's sampling theorem, which implies
that a continuous signal with a given highest frequency f is completely determined
by sampling its value with (at least) frequency 2 � f [Uns00], enables one to build
meaningful models of analog plants by means of di�erence equations.2

The presence of powerful controller synthesis techniques stresses the importance and
the bene�t of formally modeling the plant. In computer science, process models such
as the V-model [Bal98] or Catalysis [DW98] also require that environment models be
set up. However, in practice such models often remain limited to class or architecture
diagrams and do not consider system behavior in greater detail. From the author's
point of view, the development of embedded systems in particular could greatly ben-
e�t from more formal environment models. Even if synthesis is not possible from
the models, they are needed for thorough requirements speci�cation and for formal
veri�cation, as well as for testing.

Actual controller design may di�er from the steps outlined above. As [PH88] indicates,
in practice standard controller components such as PID (proportional-plus-integral-
plus-derivative) controllers are often selected and simply parameterized appropriately

1Hardware-in-the-loop means that in the model of a system under development one or more model
components are replaced by the corresponding real components and connected (\in the loop") to the
rest of the model for evaluation in real time. For instance, in the case of the design of an engine
controller, the real engine may be connected to the rest of the model which still only exists on a
prototyping platform.

2In practice a frequency of 8 to 10 times f is often used for digital control of good quality [Oga87].
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by means of simulations.

Example 2.1 (State-space representation, controller synthesis.) As an exam-
ple, we want to describe the state-space representation of linear time invariant systems
and want to indicate the potential of mathematical methods for them. Formally, a
(continuous-time) system is in state-space representation if it is de�ned by two matrix
(di�erential) equations of the following form [F�ol90]:

_x(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

where x is the state vector, u the input vector and y the output vector of the system.
A;B;C and D are constant matrices, _x denotes the time derivative of x and t denotes
(continuous) time. Vector x models all those quantities of the physical system whose
values entirely determine the future behavior of the system. As the state vector is
often not directly measurable, output vector y models the externally visible behavior
of the system.

x=Ax+Bu
.

y=Cx+Du

state-space, x 0

control
matrix

R

constant

0
+
-
sum

Figure 2.3: Block diagram for the control of a linear time invariant plant in state-space
representation.

To demonstrate the use of mathematical methods, we assume a plant in state-space
representation to be given and propose a control law which drives x to 0. For simplicity
let C be the identity matrix and D the 0 matrix such that y(t) = x(t) holds in our
example. In order to drive x to 0 we use u(t) = �Ry(t) as control law, where R is a
further constant matrix. The system consisting of controller and plant is depicted in
Figure 2.3 as a block diagram. Block diagrams are explained in greater detail below.
The behavior of the overall system is given by _x(t) = (A � BR)x(t). Solving the
di�erential equation for initial value x0 yields x(t) = x0 e

(A�BR)t, where e(A�BR)t is a
notational shorthand for the exponential series with matrix A�BR. The Eigenvalues
of A � BR are crucial for the behavior of the system. They determine if and how
the system diverges, oscillates or converges to 0 for an initial value di�erent from 0.
In control theory, methods exist for determining matrix R from A and B such that
A�BR has given Eigenvalues, provided A and B satisfy certain restrictions. This is
called pole assignment [Won67]. �
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2.1.2 Important Notations

Block diagrams. Control theory predominantly uses block diagrams to structure
and graphically describe models. Figure 2.3 is an example. From a computer science
point of view, block diagrams can be regarded as data-
ow graphs that are built up
from prede�ned components. Every block of a block diagram represents a functional
relationship between its input variables i, symbolized by incoming arrows, and its
output variables o, depicted as outgoing arrows. Usually this functional relationship
is speci�ed by labelling the block with one of the following: the relationship itself, a
symbol, like

R
, which denotes the relationship, a characteristic curve, a di�erential

equation or a transfer function, which de�nes the relationship. Transfer functions
result from the Laplace transformation of di�erential equations and are widely used
in control theory, because they simplify manual analysis of control systems and speci-
�cation of �lters. Computer-based analysis favors state-space representations instead.
Laplace transformation is brie
y described in [PH88]. Given the functional relation-
ship f of a block, it semantics is given by o = f(�) for input signal � and output signal
o. The coupling of blocks is as in usual data-
ow graphs. We do not go into further
detail here, since Chapter 3 de�nes the semantics of a notation for data 
ow. The
techniques used there can easily be carried over to block diagrams.

In the case of block diagrams for discrete-time systems, di�erence equations are used
instead of di�erential equations and transfer functions result from z-transformation,
which is the discrete-time counterpart to Laplace-transformation [PH88]. Computer-
aided engineering (CAE) tools like MATLAB/Simulink [TMI00] o�er rich libraries for
block diagram descriptions. Such tools also allow the usage of AD and DA converters
for coupling blocks with di�erent underlying time models and they even allow the
coupling of discrete-time blocks with di�erent sampling rates. The semantics of the
resulting diagrams can be greatly obscured in the presence of such incompatible time
grids or in presence of library components which are not mathematically de�ned but
use, for example, C code instead. Thus, while block diagrams in their simple form can
be regarded as graphical descriptions of mathematical equations, this is not true for
the complex diagrams often drawn with CAE tools. These correspond to (graphical)
progamming languages rather than to precise equations.

Bond graphs. From a mathematical point of view, bond graphs are a helpful alterna-
tive notation for modeling physical systems [Pay61, Mos97]. In essence, bond graphs
try to put more of the underlying physics into the visual formalism than block dia-
grams do. The guiding principle behind them is energy preservation and the transfer
of energy within a system. They associate e�ort and 
ow variables with all arcs, called
bonds, in the graph. For components in electrical circuits, for instance, voltage is the
e�ort variable and current is the 
ow variable. For each node, its in
uence on e�ort and

ow variables is speci�ed. The formalism ensures that domain-independent general-
izations of Kirchho�'s laws hold at all junctions of bonds and that energy preservation
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holds for the overall system. Due to their support for basic physical principles, bond
graphs are well suited for modeling the physical world. The direction of arcs in bond
graphs merely visualizes the sign of energy transfer; it does not re
ect computational
causality, which is bene�cial in the description of physical components like gearboxes
that can transmit energy in both directions. In contrast, block diagrams do associate
causality with the direction of arcs, although this causality is not present in the un-
derlying mathematical equations. Instead, it results from the engineers cause/e�ect
interpretation which is adequate for controllers. As a result, bond graphs do not have
great relevance in control theory. However, in mechanical engineering they do have
at least some relevance, in particular for environment modeling. This is underlined,
for example, by the comprehensive libraries for mechanical engineering which exist in
the modeling language standard Modelica, which is in turn based on the bond graph
paradigm [MOE99].

Example 2.2 (Bond graph for an RLC circuit.) An example of a bond graph is
depicted in Figure 2.4. The example is taken from [Bro99a]. The positions labeled Se,

S  : u0e

u0

uR

uC

uI1 I: L

R: r

C: c

i i

i

i

Figure 2.4: Example bond graph.

R, I and C refer to prede�ned elements of the bond graph formalism. The constants
u0, r, L and c juxtaposed with them specify speci�c parameters in the equations
which are associated with those prede�ned elements. E�ort, denoted by label u in
the �gure, and 
ow, denoted by label i, are associated with each arc (or bond) in
the �gure. The junction labeled 1 de�nes a speci�c coupling of the e�orts and 
ows
which are associated with the bonds connected to the junction. For the junction in
the �gure, this coupling is Kircho�'s voltage law. It implies that the 
ows for all arcs
are equal. The equations corresponding to the depicted bond graph are:

uR = i � r (position R)

uI = L di
dt

(position I)

uC = 1
c

R
i dt (position C)

u0 = uR + uC + uL (Kircho�)
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These equations, for example, describe the dynamics in an electrical RLC circuit,
which consists of the sequential composition of a voltage source Se, a resistor R, an
inductivity I and a capacity C. �

2.2 Hybrid Systems' Development

With this background concerning the development of control systems at hand, this
section discusses the development process for hybrid systems and outlines how it can
bene�t from integrated techniques which consider discrete as well as continuous as-
pects. In our discussion we concentrate on the analysis and design phases. This is
justi�ed by the great importance of the documents produced in the analysis phase. In
[Bro97c], Broy explains that according to an investigation in industry, 50% of the prob-
lems which occur within delivered embedded systems and which are reported by the
customers are caused by misconceptions in capturing the requirements. Furthermore,
we think that the early phases of hybrid systems' development bear most potential
for improvement. Once a detailed design of the system under development is present,
coding could be performed essentially automatically by appropriate CASE tools, pro-
vided control algorithms are adequate for the underlying problem and performance
optimization of the produced code is not a major issue. For example, hardware and
software infrastructure supporting automatic implementation of prototypes is devel-
oped in [FKMF97, PMK+99, MF00].

Hybrid systems often perform safety critical tasks or target the mass market. To re-
duce the risk of highly expensive errors in them, we advocate the use of formal methods
and notations wherever possible in their development. Formal here means that the
methods and notations have a well-de�ned mathematical foundation and semantics.
Unambiguous speci�cations are typically required by standards for the development of
safety critical systems, such as DO-178B [RTC92] in the avionics domain. Notations
with formal semantics can help in obtaining this goal because of their mathemat-
ically precise meaning.3 Further motivation for the application of formal methods
stems from the rigorous validation and veri�cation techniques they enable, from the
possibility to precisely de�ne the interaction between di�erent formalisms and from
a mathematically guaranteed requirements traceability which can be obtained if for-
mal methods are applied consequently. We will consider these general aspects in the
context of hybrid systems' development below.

Nevertheless, not all requirements for an intended system can be documented with
clearly de�ned semantics. In this thesis we focus on functional, performance and time
requirements. We do not consider other classes of requirements, such as fault-tolerance
requirements and requirements resulting from the selection of speci�c hardware or

3Nevertheless, this meaning can di�er from what a designer thinks the (formal) document ex-
presses.
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operating system platforms (e.g., resource limitations and scheduling aspects), unless
they can be expressed in a functional manner. Non-functional requirements are not
directly a�ected by the methods proposed in the thesis and are therefore not considered
further. Note that we also regard detailed speci�cations as functional requirements
on a low implementation-oriented level.

In the following, we propose an integrated development process for hybrid systems
and contrast it to a conventional process. The integrated process results from carrying
over ideas such as graphical speci�cation with di�erent systems views and model-based
validation with formal methods to hybrid systems. A central characteristic of the pro-
posed approach is that it is based on notations which have clearly de�ned semantics.
The basic idea in the proposed process is to push the point at which development
based on formal methods can start towards the beginning of the analysis phase. The
resulting earlier availability of powerful formal methods-based validation and veri�-
cation techniques, such as model checking, helps to reduce design risk. Section 2.2.3
explains how the results of the succeeding chapters of this thesis contribute to the
feasibility of the proposed process. Although a seamless formal methods-based devel-
opment of hybrid systems is unrealistic today and will possibly never be feasible in
practice, the study of elements of such a process is nevertheless highly valuable in at
least two respects. First, it can result in increased automation or formal guidance of
some steps in the development of hybrid systems, like, e.g., the selection of sampling
rates for discrete-time components. Second, it helps to obtain a deeper understanding
of the immanent problems in the development of hybrid systems. This understanding
in turn can help to solve speci�c problems occurring in practice.

2.2.1 A Conventional Development Process

In a conventional development process, the notations which are available for require-
ments documentation usually are informal text, some kind of automata and discrete-
time and continuous-time block diagrams or architecture diagrams. In industry, tool
couplings, such as Statemate coupled with MatrixX or the MATLAB/Simulink/State-
Flow environment [FEM+98, CWM98], are popular. While such tools allow the doc-
umentation of the detailed design of a system with notations which at least have a
formal syntax, they do not o�er notations other than informal text to document more
abstract system requirements which a�ect both the discrete state-transition logic as
well as ongoing control tasks (Figure 2.5, top). Such requirements typically de�ne
the succession of di�erent operation phases, like take-o�, normal 
ight and landing
for aircraft, and constraints on the continuous variables and their evolution in these
phases. Such constraints may be desired ranges for variables or their derivatives and
stability or robustness requirements.4 In general, control laws are not �xed yet. For

4Chapter 6 introduces classes of properties which typically are of interest for hybrid systems and
also explains notions like stability and robustness in detail.
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Figure 2.5: A conventional development process, based on isolated description tech-
niques (indicated in parenthesis).

such constraints the real axis as time model is adequate, since in the physical world
the values of these quantities are always relevant, not only at single time instants.
For digital controllers of continuous plants this corresponds to the fact that the sys-
tem's behavior between sampling instants, i.e. its intersample response, must also be
acceptable w.r.t. the desired aim. For instance, a situation in which the system ex-
hibits oscillations that are not detected with sampling is undesirable. Models with
the real numbers as time model can be regarded as abstract, based on an arbitrarily
�ne time grid. For such models, moving towards implementation includes �xing a
speci�c time granularity. Furthermore, we remark that in order to be able to speak
about derivatives and changes in variables over time, a quantitative model of time is
mandatory.

A second problem in the conventional process results from the need to also elaborate a
model of the environment in the analysis phase. Such a model is necessary to document
assumptions about the environment and to serve as testbed for preliminary versions of
the controller. Moreover, it is a basis for synthesis techniques, if existent. Continuous-
time block diagrams or di�erential equations can well be used for environment mod-
eling, if the environment merely exhibits continuous-time behavior. However, if there
also are complex discrete changes in the otherwise continuous environmental dynam-
ics, using block diagrams with switches or systems of switched di�erential equations
soon becomes diÆcult to survey. In tools such as MATLAB/Simulink/StateFlow, this
dynamics can be expressed with an extended state machine whose behavior depends
on the continuous-time block diagram and which exports its state to the block di-
agram. There, a switch selects the sub-diagram for output which is required to be
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A

B

switchblock diagram for A

block diagram for B

state:=A

state:=B
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Figure 2.6: Coupling of a state machine and block diagrams in tools such as MAT-
LAB/Simulink/StateFlow.

active in the respective state of the machine. This way the correspondence between
the states and the sub-diagrams is obscured. Figure 2.6 depicts such a model schemat-
ically. In practice, there are sometimes legacy simulation models, e.g., in FORTRAN
code, simulating the mixed discrete and continuous behavior. In all these cases, the
underlying notations lead to an environment model which is unnecessarily diÆcult to
understand.5 This situation gets worse, as there is no clearly de�ned semantics for
the coupled notations, unless mathematical formulas are used. These, however, are
diÆcult to understand, particularly in the case of bigger systems.

Besides these modeling problems, a designer has to perform a number of develop-
ment steps informally in such a development process (i.e. without documenting them
with clearly de�ned notations) before a properly documented process can start (i.e. a
process relying on formal description techniques). The arrows at the top and in the
middle of Figure 2.5 indicate these steps. They include a partitioning step which
consists of two parts: First, requirements which only a�ect the state-transition logic
and requirements which only a�ect the control laws have to be derived from the given
(hybrid) requirements. Second, these requirements have to be re�ned to low-level
requirements which can be documented with the isolated description techniques for
the respective part. The re�nement steps may involve implicit changes in the time
model. For the state-transition logic in particular, an (implicit) time-discretization of
some (discrete-event) parts may occur, which can have unintended consequences. The
correctness and appropriateness of the partitioning and re�nement steps is diÆcult to
ensure because (1) validation and veri�cation is limited to informal methods such as
reviews for these steps and (2) no notations with precise semantics are used which in
turn makes reviews more diÆcult. Simulation as a powerful technique for validation
and veri�cation is not possible until the partitioning and re�nements steps have been

5We do not suggest redesigning such legacy models from scratch, but instead we advocate the use
of better suited notations for future models.
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performed since simulation tools require at least a formal syntax, which in turn is
only present for the partitioned, detailed models in such a development process. How-
ever, even when simulation is possible, its results are diÆcult to interpret since the
semantics of the coupling of simulation tools is not precisely de�ned at least as far as
commercial tools are concerned. As a result, such a conventional development process
enforces a partitioning of the hybrid requirements because of the lack of adequate
integrated formal notations and the lack of validation and veri�cation techniques for
them. As in any development process, the late availability of powerful validation and
veri�cation techniques in the development process is critical as decisions made in the
beginning may turn out to be inadequate later and necessitate a redesign of the whole
model. For those system components for which analog and digital implementation
alternatives exist, the enforced partitioning is particularly unsatisfactory since it im-
pedes an analog/digital codesign approach for these components and the partitioning
decisions may be diÆcult to alter later on.

Nevertheless, the conventional process also has advantages. When the system under
development has been partitioned into state-transition logic and control laws, such
that it can be described with the notations listed above, well-known techniques from
computer science and control theory can then be applied to the respective parts of
the model (see Figure 2.5, arrows at the bottom). For instance, model checking and
automatic test-case generation may be used for the state-transition part and analysis
of Eigenvalues and controller synthesis for the control part. In this case in particu-
lar, we can also use precise notations which have a clearly de�ned semantics, such as
the automata and architecture diagrams supported by a formal tool like AutoFo-
cus/QUEST [Slo98]. Note that we also regard block diagram descriptions as formal
here, provided all blocks in them are based on the same time model and, in the case
of discrete-time block diagrams, on the same sampling rate. Under this condition,
a mathematical model can be associated with individual blocks and their intercon-
nection in a straightforward manner.6 Yet, the interaction of components developed
with the isolated techniques remains imprecise. Usually implicit assumptions about
the state-transition logic's behavior are used in controller design. Similarly, informal
abstractions of the control part's behavior motivate design decisions for the state-
transition logic. The integrated development process outlined in the following section
attempts to avoid these drawbacks.

2.2.2 An Integrated Development Process

In a development process with formal hybrid description techniques, such as the one
depicted in Figure 2.7, the designer is able to formally specify models for mixed dis-
crete and continuous requirements at early stages of the development process, thereby

6Nevertheless, the user has to keep in mind that the selection of integration algorithms for simu-
lation can have a great impact on simulation results and can cause them to di�er strongly from the
mathematical model.
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Figure 2.7: Integrated development process, based on hybrid description techniques
(indicated in parenthesis). Note that pure discrete-event parts are subsumed in the
hybrid parts.

getting precise documentation. If techniques such as simulation, model checking and
consistency checking exist for validation and veri�cation of the requirements captured
in such an initial model, design risks can be greatly reduced as early as in the analysis
phase and the model can be systematically designed to re
ect the hybrid requirements
(Figure 2.7, top). Rudimentary versions of such techniques already exist and are
an area of current research (e.g., [HHWT95, DFG01]). In later steps, when enough
con�dence in the model has been obtained, it can be gradually re�ned towards the
detailed design. If mathematical techniques which ensure that the systems' function-
ality is augmented without violating previously established requirements are used for
this stepwise re�nement, the traceability of the previously established requirements is
automatically guaranteed. In the context of formal methods we also call this formal
re�nement, or simply re�nement when the context is clear. For some model com-
ponents, re�nement towards detailed design involves partitioning them into discrete-
time, continuous-time and mixed discrete-event/continuous-time subcomponents, or
partitioning state-transition logic and control algorithms into di�erent subcomponents
(Figure 2.7, bottom). Typically, the environment model, analog �lters and AD and
DA converters will be isolated into continuous-time or hybrid componentes. Addi-
tionaly, some fast control laws may also be implemented in continuous time. The
state-transition logic and most control laws will be implemented digitally, and are
therefore speci�ed with an underlying discrete-time execution model in the low-level
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requirements.7 Here, the state-transition logic and control laws may be split into
isolated components. However, as long as there are no speci�c needs enforcing this
separation, such as the application of specialized methods, they can remain in a single
component as well (see the branches to discrete-time code in Figure 2.7, left). Digital
implementation is motivated by the bene�ts software-based solution o�er. Provided
computing hardware is present, the same hardware can be used to run software ful-
�lling a variety of di�erent tasks in parallel. Replication costs for software virtually
do not exist. Furthermore, additional system requirements and permorfance opti-
mization can be realized with software updates without necessarily requiring modi�ed
hardware.

For the state-transition logic, the step from high-level requirements towards implemen-
tation-oriented, low-level requirements also includes a change in the time model, from
an initial discrete-event model disregarding implementation speci�c sampling e�ects
to a discrete-time model as present in digital computers. As in the conventional
development process, this transition may introduce undesireable e�ects caused, for
example, by missing some events due to inappropriate sampling. In this process, how-
ever, formal methods, like (formal) re�nement techniques, can be used to ensure that
the transformation maintains desirable properties. In order to obtain discrete-time
control laws, standard techniques can be used to synthesize discrete-time controllers
of continuous plants which yield the desired dynamics of the overall system. However,
if the coupling of state-transition logic and control laws leads to control moding, the
behavior of the coupled system has to be analyzed in an integrated manner considering
both aspects, since the switching can cause instability or poor performance, despite
locally optimal control laws in each mode. One technique supporting such an inte-
grated analysis is [Bra94] where a technique for stability proofs of hybrid systems is
given. In our view, splitting state-transition logic and control laws into isolated com-
ponents should be avoided in presence of control moding, because it entails the danger
of focusing on control laws while disregarding the e�ect of mode changes initiated by
the state-transition logic. If a partitioning is required, e.g., for implementation pur-
poses, the acceptability of the behavior of the coupled system should be ensured before
the partitioning, because after the partitioning it would be necessary to reassemble
the parts for e�ective analysis, which may be diÆcult. Nevertheless, it is important
to bear in mind that integrated analysis and synthesis methods are still a topic of
research. However, the integrated development process at least enables formaliza-
tion of the problem, while in the conventional process there is no integrated view on
state-transition logic and control laws. Thus, clearer documentation is obtained which
thereby helps designers to focus on the problem. Besides that, if partitioned submodels
are constructed, conventional techniques can still be applied to realize those aspects
which only a�ect the respective part, just as in a conventional development process

7Note that even if the state-transition logic builds upon the event mechanism of an underlying
operating system, it can nevertheless only react in dependence of the clock rate given by the digital
hardware.
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(Figure 2.7, bottom).

To summarize the previous paragraphs, the availability of formal hybrid description
techniques and supporting methods for them pushes the point at which systematic
development can begin to the beginning of the analysis phase. (Systematic devel-
opment here means development with mathematically precise documentation.) For
those system components which can be implemented in a digital or analog manner,
a partitioning into discrete-time and continuous-time submodels can be postponed to
subsequent development phases. A separation of state-transition logic and (discrete-
time) control laws can even be avoided completely. In any case, a development process
with hybrid description techniques allows us to obtain greater con�dence in the model
before a partitioning. Namely, testing and model-checking techniques can be used to
analyze requirements and formal re�nement techniques can be used to guarantee the
traceability of these requirements. By postponing implementation-related questions,
changing requirements can be taken into account more easily. Thus, errors made in
the initial development phases can be found earlier which in turn makes them cheaper
to correct.

Notations. The development process we propose in Figure 2.7 is based on description
techniques developed by the author in joint work with colleagues at the Technische
Universit�at M�unchen in the last years. For requirements speci�cation and environ-
ment modeling, it uses the sequence chart/MSC-like notation HySC [GKS00], and
the combination of architecture diagrams and a hybrid automata variant which is
subsumed in HyCharts (Chapter 3, [GSB98a]). Sequence charts and MSC are de�ned
in [Gro00] and [IT96], respectively. In our view, sequence chart-based description
techniques, like HySCs, are a valuable complement to architecture diagrams at the
beginning of the development process for hybrid systems. In contrast to automata,
they are (usually) not interpreted as describing the exact behavior of the system, but
rather only some required fragments of it. [Kr�u00] calls this an existential interpre-
tation of sequence charts. Furthermore, as they typically depict interaction between
various components, they help to identify states of the individual components as well
as common states of a set of interconnected components. This is helpful for a better
understanding of the system as well as for designing automata for the speci�cation
of the components' detailed behavior. A methodological transition from HySCs to
HyCharts is ongoing work. For similar work on discrete systems see [Kr�u00]. Suc-
ceeding steps in Figure 2.7 refer to HyCharts rather than to HySCs. As notations
for the discrete-time part, we propose discrete-time block diagrams and DiCharts, a
discrete-time variant of HyCharts in which state activities can be used for the spec-
i�cation of state speci�c discrete-time control laws. For the continuous-time part we
suggest (continuous-time) block diagrams. Block diagrams can be integrated easily
into HyCharts and DiCharts.

Tool support. While there is hardly any tool support for the integrated process
today, a close coupling of discrete and continuous notations in the HyChart style is im-
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plemented in the MaSiEd tool [AT98], which also o�ers simulation. [SPP01] explains
how the MaSiEd notations relate to HyCharts. As a result, the tool can be used as
an editor for a HyChart dialect. The HyTech tool8 [HHWT95], which o�ers model
checking of hybrid models, is another element needed as support for an integrated
development process. Presently, however, its application is limited due to scalability
problems and de�cits of the underlying hybrid automata model [MS00]. The new suc-
cesor tool HyperTech improves the way in which HyTech performes arithmetics and
which is one reason for the scalability problems [HHMW00]. However, currently there
is no performance data available which would cover realistic case studies. Promis-
ing tool approaches for the future should couple analysis algorithms such as those
implemented in HyTech/HyperTech with modular graphical description techniques,
e.g., HyCharts, in comprehensive tool frameworks, such as the AutoFocus/QUEST
framework for discrete systems.

Integration in evolutionary development processes. While Figure 2.7 at �rst
sight suggests a top-down development process, the integrated development approach
is not limited to such processes models. In evolutionary processes [Bal98], the mod-
eling, analysis and re�nement steps depicted in Figure 2.7 may be iterated in various
design cycles. In this case, the integrated process may be seen as a process pat-
tern within an evolutionary process. In fact, evolutionary development also bene�ts
from the availability of integrated notations and methods for hybrid systems, because
they enable an early speci�cation of models which can be evaluated and elaborated
in succeeding steps. In contrast, the usage of isolated description techniques simi-
lar to Figure 2.5 impedes the evolutionary reuse of models, since formal models can
only be speci�ed after a partitioning of a system into discrete-time, discrete-event
and continuous-time subsystems. Thus, one is forced to work with rather �ne-grained
models already in early iteration phases of an evolutionary process. Models given
as (informal) text are hardly an alternative here, because they cannot be executed.
However, executable prototypes are highly desirable in evolutionary development in
order to evaluate a model prior to the next iteration phase.

2.2.3 Supporting Techniques Developed in This Thesis

Description techniques. This thesis is supposed to contribute to the development
process outlined above in several ways. It proposes the formal hybrid description tech-
nique HyCharts, which supports modular speci�cation of hybrid systems (Chapter 3).
HyCharts resemble the notation introduced in the software engineering method for
real-time object-oriented systems (ROOM) [SGW94], but extend it to the description
of hybrid and continuous behavior. ROOM is one basis for the ongoing standardization
of the UML [Gro00] dialect for real-time systems, UML-RT [TG00]. As in ROOM and

8or other tools, e.g., Uppaal or Kronos [BLL+96, DOTY96]
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in agreeance with the UML's concept of di�erent system views, HyCharts consist of two
subnotations: HyACharts for the speci�cation of system architecture and HySCharts
for the speci�cation of component behavior. The main application area for HyCharts
ranges from requirements speci�cation to the design phase. Hybrid sequence charts
(HySCs), which were outlined above and which complement architecture diagrams
in capturing and documenting high-level requirements of hybrid systems, will not be
considered further in this thesis. Instead, the methods developed in this thesis focus
on the transition from the analysis phase to the design and implementation phases
based on HyCharts. For the discrete-time models which are derived from HyCharts
and which occur in these later development phases, DiCharts are introduced. They
exactly correspond to HyCharts but use an underlying discrete-time execution model.
In particular, they allow us to closely couple state-transition logic and discrete-time
control laws.

Re�nement. As far as potential unexpected e�ects are concerned, a highly critical
step in the transition from the analysis phase to design and implmentation is to move
from a mixed discrete-event/continuous-time model to a discrete-time model, which
enables eÆcient implementation. The thesis therefore elaborates methods which guide
this transition to discrete-time models while maintaining vital classes of properties of
the initial model (Chapter 5). An important characteristic of these methods is that
they help to make assumptions about the environment explicit. Since they result in
constraints on the sampling rate, they can also be used to verify the adequacy of
sampling rates present in legacy components or in components developed by third
parties w.r.t. a given environment model. Furthermore, we also outline how models
can be partitioned into discrete-time and remaining continuous-time and hybrid sub-
systems, which is useful if a separate development process is intended to be pursued
for subsystems that are supposed to be implemented in analog, digital or mixed-signal
hardware.

Re�nement techniques for architecture and automata diagrams in the style of those
in [PR99, Sch98] which do not a�ect the time model are also considered in the thesis
(Chapter 4). However, less emphasis is put on them since [Bro97b] shows that such
rules are essentially independent from the underlying time model.

Properties. Obviously, for meaningful re�nement techniques it is necessary to exam-
ine which classes of properties they maintain. Hence, the thesis studies and classi�es
typical properties that hybrid systems have to obey (Chapter 6). This provides a
deeper insight into the characteristics of hybrid systems and is also used to make
relationships to control theory and computer science explicit. As an addition to the
general de�nitions for properties of hybrid sytsems which will be given, the thesis out-
lines proof methods for some of them and explains why certain classes of properties
have not received much attention in computer science so far.

Finally, note that the thesis does not regard validation, re�nement and implementation
techniques for components only involving state-transition logic or control laws since
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techniques for such isolated components do not necessitate hybrid methods.

2.2.4 Other Techniques Supporting Integrated Development

Here, we give a brief overview of further techniques which support the proposed inte-
grated development process. The overview is by no means compresensive, but it lists
related work which is particularly relevant for the integrated development process.

Description techniques. In the past, a number of description techniques for hy-
brid systems have been proposed. As far as formalisms for the de�nition of hybrid
systems' architecture and component behavior are concerned, the reader is refered to
Section 3.7.2. Here, we want to concentrate on further formalisms which complement
such architecture and behavior descriptions. Concerning the logic-based formalisms,
we would like to mention [Lam93, CRH93] and [HMP93]. [Lam93] conservatively
extends the temporal logic of actions to hybrid systems by including additional de�ni-
tions and an axiom which formalizes integration. [CRH93] extends Duration Calculus
[CHR92] by admitting propositions over di�erentials and limit values. To determine
the validity of propositions over continuous functions, an appropriate mathematical
theory is assumed given. [HMP93] similarly de�nes an interval temporal logic which
contains primitives for derivatives and limits. The authors do not permit formulas
which involve function values at isolated time points, but only allow limits and deriva-
tives of functions which are de�ned over whole intervals. This choice is rational as
from an implementation-based point of view, singular values cannot be observed.

[FNW98] de�nes an extension of UML class diagrams, called UMLh, to hybrid systems.
These diagrams distinguish between discrete, continuous, hybrid and abstract classes,
which have to be broken down into the other three classes as development progresses.
UMLh descriptions can be translated into a hybrid extension of the Z speci�cation
language [Fri98b], and, in principle, can also be used in combination with other object-
oriented languages for hybrid systems modeling.

The HySC notation mentioned above can be regarded as adopting concepts occuring
in timing diagrams [ABHL97], which are widely used in hardware design, and concepts
of the constraint diagrams introduced in [Die96]. Both these description techniques
in turn are based on the idea of visualizing system behavior with trajectories of the
state variables.

From the point of view of modeling, the Ptolemy project and the associated tool are
interesting [Lee01]. There, an environment is being developed which allows the het-
erogeneous modeling of systems that mix technologies, such as analog and digital elec-
tronics, hardware and software, and electronic and mechanical devices. The emphasis
is not so much on the coupling of notations, but on the coupling of di�erent compu-
tation models. These computation models include clock synchronous continuous-time
and discrete-time data-
ow, asynchronous message passing and �nite state machines.
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Ptolemy stems from the electrical engineering domain. For hybrid systems, the cou-
pling of models proposed by Ptolemy is bene�cial, because implementation-oriented
models of hybrid systems typically exhibit a mixing of technologies.

Analysis and synthesis techniques. Analysis techniques supporting integrated
development include model checking tools for hybrid systems like HyTech/HyperTech
[HHWT95, HHMW00], Uppaal [BLL+96] and Kronos [DOTY96]. As model checking
of hybrid systems is highly sensitive to the complexity of the considered model and
in practice often is unfeasable even for small models [MS00], simulation is another
important approach to anaysis. An overview over simulation packages for hybrid
systems is given in [Mos99].

Lunze et al. try to use stochastic techniques to build a qualitative model of hybrid
systems which can be used to derive control recommendations for the operator of a
plant [LNR97]. The formal synthesis of discrete controllers for safety monitoring and
shutdown of hybrid plants is targeted at in the work of Hanisch et al. [CH99, Han00].
Raisch [Rai98] de�nes a method for automatically constructing Moore automata as
discrete abstractions for (simple) hybrid plants. The granularity of these abstractions,
which are guaranteed to contain the behavior of the real system, can be chosen freely.
Synthesis techniques for discrete systems can then be applied to construct controllers
which supervise the plant [RO98].

Prototyping. A framework for rapid prototyping of (discrete) hard real-time systems
is presented in [FKMF97, PMK+99]. It is based on SDL speci�cations [ITU94] and
associated timing constraints. A system can be analysed within the framework by
means of prototypes consisting of both hardware and software. When carried over
from discrete systems to hybrid systems, such techniques allow the exploration of
design alternatives early in the development process, without enforcing detailed design
decisions that may be diÆcult to alter later on.

A related approach, which may in principle be used for the prototyping of HyCharts,
is the generation of mixed analog/digital hardware from hybrid data-
ow graphs
(HDFG) [GW98, Gri99]. HDFG can be used for the (low-level) speci�cation of
analog, digital and mixed-signal systems and allow the optimization and generation
of hardware from such speci�cations. For the hardware generation, FPGAs (Field
Programmable Gate Arrays) and FPAAs (Field Programmable Analog Arrays) can be
selected as a target platform which facilitates the prototyping of mixed-signal systems.
A translation from HyCharts to HDFG is developed in [SG99] and [GS00a]. Based on
the translation a generation of hardware prototypes from HyCharts becomes feasible.

Design in discrete-time. When discrete-time submodels have been obtained in
the integrated development process (Figure 2.7, left branch), synchronous languages
such as Esterel [Ber96], Lustre [HCRP91] and Signal [BG90] can be used for further
development steps. With respect to this thesis, the main bene�t of these languages
is the explicit and controllable way in which the progress of time is handled. Basic
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paradigms in them are that computation is assumed to be instantaneous unless oth-
erwise speci�ed and that time advances uniformly for all components, i.e. there is an
underlying global time scale. These principles are also adopted in HyCharts.

The eÆcient implementation of discrete-time control laws is a main motivation and
focus of the data-
ow languages Lustre and Signal. Therefore, they are ideally suited
for this task. For the usage together with the methods and notations developed in
this thesis, Signal is preferable, because it is also based on a relational modeling
paradigm, instead of the functional paradigm of Lustre [Cas97]. Apart from that, the
clock calculus of Signal may be used to eÆciently implement discrete-time components
which operate at di�erent rates.

Extended state transition diagrams such as Statecharts [Har87], Argos [Mar91] and
�-Charts [Sch98] are alternative candidates for the speci�cation of discrete-time com-
ponents. However, in the context of HyCharts, DiCharts, which are introduced in
Chapter 5 of this thesis, are more appropriate, since their computation model is sim-
pler and matches directly with HyCharts. Furthermore, they allow the speci�cation
of discrete-time control laws which are speci�c to a control state. For the eÆcient
implementation of DiCharts, the imperative parallel programming language Esterel is
well suited. A translation from a DiCharts variant to an extension of Esterel has been
presented in [SSH99]. It also makes DiCharts amenable to the veri�cation methods
implemented in the system C@S [SK97].

Systems engineering. Parnas et al. suggest a systematic way to use functional doc-
uments in the systems engineering process [PM95]. The authors de�ne the information
which should be contained in documents like the system requirements document , de-
scribe various kinds of documents relating to di�erent system entities at di�erent levels
of granularity, and reveal the relationship between the information in these documents.
Thus, this work can serve as a general reference on how notations and development
techniques, like the ones developed in this thesis, can be used in practical systems
development. Note that the authors also emphasize the role of documenting not only
the interface but also the behavior of a system's environment, and mention that their
requirements model corresponds to control theory. The notations and methods in-
troduced in this thesis can be regarded as a class of the domain speci�c techniques
which are proposed in [PM95]. Similar ideas which are even closer to this thesis can
be found in [Bro97c]. The Four Variable Model and SCR, which form the background
of [PM95], are discussed in the speci�c context of hybrid systems in [EKM+93] and
[Hei96].

2.3 Discussion and Further Work

We have outlined elements of an integrated development process for hybrid systems
that is based on precise notations and formal methods. In contrast to a conventional
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process, it aims at reducing design risks by earlier validation of abstract, integrated
system models, before implementation-oriented decisions must be made. Moreover,
it enables more precise documentation. The use of integrated notations in this pro-
cess furthermore is a prerequisite for obtaining greater design automation for hybrid
systems, since automated techniques can only regard the discrete and the continuous
aspects of hybrid systems if their input contains both these aspects.

Based on the description of the analysis and design phases in the integrated process,
the chapter explained how this thesis contributes to the applicability of an integrated
process and how related work contributes to it.

Note that from the point of view of today's engineers, the conventional develoment
process remains reasonable as long as there are no tools which are suitable for industrial
practice and which support an integrated process. One has to bear in mind, though,
that with increasing system complexity, design risks in the conventional process also
increase.

2.3.1 Related Work

The aspect of postponing the partitioning of a system into discrete-time and con-
tinuous-time parts is related to the area of hardware/software codesign [BR95]. There,
the decision on which parts of a system are implemented in hardware and software
is postponed to later phases. However, unlike hardware/software codesign, the parti-
tioning into discrete-time and continuous-time components proposed in the integrated
development process does not imply whether the components are implemented in hard-
ware or software. The discrete-time part can be implemented in software or on digital
hardware. Even the continuous-time part could still be turned into a discrete-time
model and implemented in software (or digital hardware), or it can be implemented
in analog hardware. Thus, hardware/software codesign is largely complementary to
the proposed integrated development process. Hardware/sofware codesign predomi-
nantly aims at the design of digital systems and usually assumes a system speci�cation
to be given. Such a speci�cation of digital (or rather discrete-time) system compo-
nents is a result of the integrated process. Nevertheless, the integrated process can
be regarded as involving an analog/digital codesign process, because it �rst involves
notations which do not yet imply analog or digital implementation and then employs
(re�nement) techniques to obtain such implementations in later design phases.

The development process for hybrid systems proposed in [CWM98] can be regarded as
an intermediary between the two processes outlined here. The authors propose com-
plementing block diagrams and automata-based notations with formal speci�cations
using Z [Spi92].

Sinclair et al. [Sin97, HS97] propose a development process similar to the integrated
process presented here. The process basically carries over object-oriented modeling
to hybrid systems. It relies on UML-style notations in the analysis phase and uses



2.3. DISCUSSION AND FURTHER WORK 29

hybrid automata for detailed design. Unfortunately, the work remains rather super-
�cial. A partitioning of models according to di�erent time models and according to
state-transition and control aspects is not addressed. In our view, hybrid automata
are not as close to implementation as the authors suggest. Namely, their precise
implementation in software is impossible as long as the taking of transition is not
bound to a discrete time grid. We will adress this problem for HyCharts in this thesis.
Furthermore, [Sin97] and [HS97] do not explicitly discuss bene�ts of the integrated
process w.r.t. today's practice, and the possible integration of existing techniques for
the state-transition part and the control part remains open. For the practical feasibil-
ity of an integrated process, an interface to existing conventional techniques is vital
in our view.

Similar to our integrated development process, Hung et. al [HG96] also propose mov-
ing from abstract speci�cations in continuous-time to discrete-time implementations.
Based on Duration Calculus [CHR92], the authors introduce some rules supporting
this methodology. The rules allow the deduction of the validity of duration calculus
formulas in discrete-time from the validity of the formulas in continuous-time, if the
boolean variables in the formulas satisfy a certain restriction on the frequency with
which they may change. However, this paper does not consider continuous dynamics,
but instead focuses on the real time aspects.

2.3.2 Further Work

As far as the methodology for hybrid systems development is concerned, we think that
the closer integration of sequence chart notations is promising as a link to informal,
textual requirements. Thus, this integration should be explored further. Besides this,
there still is a lack of methods which can be used to guarantee properties of hybrid
systems that a�ect their state-transition logic as well as control laws.
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Chapter 3

HyCharts { Speci�cation of Hybrid

Behavior

In this chapter we introduce HyCharts as speci�cation techniques for hybrid systems,
and de�ne their semantic foundations. Over the past few years a number of speci�ca-
tion techniques have been developed for hybrid systems. While they are all well suited
when a software system and its environment are modeled as one unit, the search for hy-
brid description techniques which allow speci�cation based on individual components
is relatively new.

For such a component-based view modularity is essential. It is not only a means for
decomposing a speci�cation into manageable small parts, but also a prerequisite for
reasoning about the parts individually, without having to consider the interior of other
parts. Thus, it greatly facilitates the design process and can help to push the limits
of veri�cation tools, like model-checkers, further.

With a simple and powerful computation model for hybrid systems and with a collec-
tion of operators on hierarchic graphs as tool-set, we follow the ideas in [GSB98b] and
de�ne HyCharts. They consist of two di�erent relational interpretations of hierarchic
graphs, an additive one and a multiplicative one. Under the additive interpretation
the graphs are called HySCharts and under the multiplicative one they are called Hy-
ACharts. HySCharts are a visual representation of hybrid, hierarchic state transition
diagrams. They model the control-
ow within hybrid components. HyACharts are a
visual representation of hybrid data-
ow graphs (or architecture graphs). They model
the data-
ow between the components of a hybrid system and allow the designer to
compose components in a modular way. The behavior of these components can be
described by using HySCharts or by any technique from system theory that can be
given a compatible semantics, i.e. a semantics in terms of dense input/output relations
(introduced below). This includes di�erential equations. Simple syntactic transforma-
tions, corresponding to macro expansion, lead from the notation used by the designer
to a hierarchic graph whose semantics results from the respective interpretation of the
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Figure 3.1: Principle of the semantics de�nition for HyCharts.

graph. For HyACharts, the syntactic transformation is trivial and applying the mul-
tiplicative interpretation to the resulting graph yields the semantics of a component
Cmp (Figure 3.1, left). For HySCharts, transformation is more complex. Here, two
transformations are necessary, one to extract the discrete dynamics from the diagram
and one to extract the analog dynamics (Figure 3.1, right). For the analog dynamics,
a time-extended variant of the additive interpretation yields its semantics Ana. For
the discrete dynamics, the additive interpretation directly yields its semantics Com.
The coupling of Ana and Com is formalized in our hybrid computation model.

The algebra-based semantics which maps graphs to relations has three main advan-
tages. First, up to (rather simple) syntactic transformations, it corresponds almost
one-to-one with the visual notation used by software engineers. Second, as shown in
[GBSS98, GBSS99], it comes equipped with a set of graph equations (algebra) which
de�ne how to (visually) transform components in a semantics preserving way. As a
result, the algebra may be used by engineers both for optimizations and to check the
equivalence of di�erent components. Third, similarly to [AH97, Bro97b], it comes
equipped with a very simple notion of re�nement and its associated compositional re-
�nement rules. This is an essential prerequisite for proving that a successively modi�ed
implementation meets its original speci�cation. We will consider speci�c re�nement
techniques for components in Chapters 4 and 5 of the thesis. In this chapter, we
present the infrastructure of our visual notation and its textual representation. To-
gether with re�nement techniques, it allows the hierarchic speci�cation and analysis
of hybrid systems.

Publication history. The core of this work has been published in [GS00b]. The pre-
sentation we o�er here di�ers in some details, however. First, we integrate invariants
into HySCharts, which results in a more liberal semantics for transitions that is needed
in Chapter 5. This adaptation was published in [Sta00a]. Second, the multiplicative
interpretation of hierarchic graphs is de�ned for a continuous and for a discrete model
of time here, and the time-extended additive interpretation is introduced more conse-
quently and also for di�erent time models. The di�erent time models are necessary for
Chapter 5 and for some proofs in Appendix A. Third, in this presentation we explicitly
allow feedback without delay in architecture diagrams, as long as the feedback is well
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de�ned. This is reasonable, as control engineers are familiar with the problems arising
from instantaneous feedback (or algebraic loops). Fourth, continuous activities are for-
malized in greater detail. This is needed for a formalization of inductive reasoning for
HySCharts which is given in Appendix A.1.2. Implicitly, this inductive principle has
already been used in earlier papers, but without explicit formal foundation. Finally,
we introduce a �ner classi�cation of communication channels and variable classes here.
The classi�cation is a basis for the re�nement method developed in Chapter 5.

Overview. This chapter is organized as follows. Section 3.1 provides an initial im-
pression of HyCharts by means of an example. The hybrid computation model, which
provides some insight into the dynamics of hybrid systems and which is the basis for
the semantics of HySCharts, is explained in Section 3.2. In Section 3.3, we present two
abstract, basic interpretations of hierarchic graphs and a third, derived interpretation.
These interpretations provide the infrastructure for de�ning a surprisingly simple de-
notational semantics for the key concepts of Statecharts [Har87] o�ered in HyCharts,
e.g. hierarchy and preemption. The derived interpretation covers the switched contin-
uous dynamics expressible with HyCharts. Following the ideas developed in the hybrid
computation model, HyCharts are de�ned in Sections 3.4 and 3.5 as a multiplicative
(data-
ow) and an additive (control-
ow) interpretation of hierarchic graphs, respec-
tively. Both diagram types are introduced by way of using the example of Section 3.1.
In Section 3.6, we brie
y discuss how other techniques for component speci�cation
can be integrated into our approach. Finally, in Section 3.7, we summarize our results
and relate them to the literature.

Note that some parts of this presentation require a knowledge of mathematical topol-
ogy. In case of concepts not known to the reader, he or she is is referred to Ap-
pendix B.2 where all relevant concepts can be looked up. For most parts, an intuitive
understanding of the natural topology on the real numbers suÆces.

3.1 An Example

The following example illustrates the kinds of systems we target at. It will be used
throughout the thesis to demonstrate the use of the notations and methods developed
here. Note that we do not explain any details of the HyChart speci�cation for the
example system in this section. Instead the presentation here aims at providing a �rst
look and feel of HyCharts.

Example 3.1 (Electronic height control system, EHC.) The purpose of the
electronic height control system (EHC), which was originally proposed by BMW, is
to control the chassis level of an automobile by a pneumatic suspension. The abstract
model of this system, which considers only one wheel, was �rst presented in [SMF97].
It basically works as follows:
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Whenever the chassis level is below a certain lower bound, a compressor is used to
increase it. If the level is too high, air is blown o� by opening an escape valve. The
chassis level sHeight is measured by sensors and �ltered to eliminate noise. The �ltered
value fHeight is read periodically by the controller which operates the compressor and
the escape valve and resets the �lter when necessary. A further sensor, bend , tells the
controller whether the car is going through a curve.
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Figure 3.2: The EHC: Architecture and a typical evolution.

The diagram in Figure 3.2, left, depicts the architecture of the EHC and its intercon-
nection to the environment. The environment, shaded in grey in the �gure, will not
be regarded in much detail in the thesis. Realistic models for disturbances caused by
driving on a road can be found in [KL94]. In this chapter we concentrate on the open
system consisting of the �lter, the controller and a delay element that ensures that
the feedback is well de�ned. The escape valve and the compressor are not modeled
explicitly here, but are implicitly contained in the controller.

Data-
ow diagrams like the one in Figure 3.2, left, are called HyACharts. Each
component of such a chart can be de�ned again by a HyAChart or by a HySChart or
some other compatible formalism. The components only interact via clearly de�ned
interfaces, namely channels, which results in a modular speci�cation technique.

The behavior of a component is characterized, as intuitively shown in Figure 3.2, right,
by periods where the values on the channels change smoothly and by time instances
in which there are discontinuities. In our approach, the smooth periods result from
the analog parts of the components. The discontinuities are caused by their discrete
parts. Sometimes we also call these discrete parts combinational parts to emphasize
that they contain no memory, but can be regarded as combinational circuits.

We specify the behavior of both the discrete and the analog part of a component
within a single HySChart, i.e. by a hybrid, hierarchic state transition diagram, with
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states marked by activities and transitions marked by actions. The transitions de�ne
the discontinuities, i.e. the instantaneous actions performed by the discrete part. The
activities de�ne the smooth periods, i.e. the time consuming behavior of the analog
part while the discrete part is idle. The discrete part is idle between the time instances
at which it performs actions. As an example, Figure 3.3 shows the HySChart for the
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Figure 3.3: The EHC's Control component.

EHC's Control component. The nodes in the �gure represent (control) states and
the arcs represent transitions. In the following we will informally explain the control-

ow in the diagram. The details are elaborated in Section 3.5. The HySChart in
Figure 3.3 consists of three hierarchic levels.1 Figure 3.3, left, depicts the highest
hierarchic level, with the substates outBend and inBend . Control is in inBend when
the car is going through a curve, otherwise it is in outBend . This hierarchic state is
re�ned into the substates outTol and inTol , depicted in Figure 3.3, top right. Control
resides in inTol as long as the chassis level is within a given tolerance interval. If the
chassis level is outside the interval, one of the two substates of outTol , up or down,
is entered. Figure 3.3, bottom right, shows this re�nement of outBend . The labels
at the transitions are called actions and refer to predicates which de�ne when the
transition can be taken and how it a�ects the HySChart's data state. For example,
the action i2i expresses that the chassis level must be inside the tolerance interval
when the transition is taken and that the transition leaves the component's variables
unchanged. The activities, written in italics in the �gures, refer to predicates which
describe the continuous evolution of the component's variables while control is in the
respective state. Activity a const of states inBend and inTol , for instance, refers

1In the �gure we use large grey arrows, which are not part of the HyChart notation, to indicate
the connection between the hierarchic levels.
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to a predicate specifying that variable aHeight remains constant. In the model, this
expresses that compressor and escape valve are turned of. Hence, the EHC system
does not actively modify the chassis level in states with this activity. Besides the
activities, we furthermore associate a state invariant with every state in the diagram.
The predicate de�ning such an invariant identi�es all those variable evaluations for
which control may reside in the respective state. Basically the invariant can be derived
from the outgoing transitions of a state. The invariant of inTol , for instance, expresses
that the chassis level is in the given tolerance interval. We will explain the actions,
activities and invariants in more detail in Section 3.5. �

3.2 The Hybrid Computation Model

We start this section by explaining informally how our hybrid computation model
works. After that, the model's constituents are introduced formally.

3.2.1 General Idea

We model a hybrid system by a network of autonomous components that communicate
via one-directional channels in a time synchronous way (see Figure 3.4, left, where
boxes denote components). Time synchrony is achieved by letting time 
ow uniformly
for all components. It facilitates reasoning about time, since no local drifting clocks
have to be considered.2 Furthermore, time synchrony suits well to the block diagrams
from control theory (Section 2.1.2).

Component network. In a hybrid system the data-
ow between components may
be continuous (think of analog devices), so we assume that time increases continuously
and take the non-negative real numbers R+ as the abstract time axis. The data
exchanged along a channel with type A over time de�nes a mapping a 2 R+ ! A,
with certain continuity restrictions which we will elaborate in Section 3.2.3. We call
such a restricted mapping a dense communication history (or dense stream). On the
level of semantics the behavior of a component can be completely described by an
input/output relation, i.e. by a relation between the histories of its input channels and
the histories of its output channels. Relations are used instead of functions, because
this allows us to express nondeterminism. The relations must be total in the input
histories, i.e. for every input history an output history must exist which is related to the
input history by the relation. Due to this, we often use the functional notation c(a) to
denote the set of all elements that is related to a by c, formally c(a) = fb j (a; b) 2 cg.
Furthermore, we assume that the relations are de�ned such that the data occurring

2Nevertheless HyCharts allow us to explicitly model drifting clocks [Sta99].
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in the histories of the output channels up to time t only depends on the input history
received up to t.3 Formally, for component semantics c, all a1; a2 and t:

a1j[0;t) = a2j[0;t) ) c(a1)j[0;t) = c(a2)j[0;t)

where by ajÆ we denote the restriction of a to the time interval Æ � R+ . Restriction
is overloaded to sets of streams, like c(a), in a pointwise manner. We call these
relations time guarded. Informally, time guardedness expresses that a component does
not anticipate future input. Clearly, every realizable component, i.e. every component
which can be implemented, behaves in this way.

Machine model. Each component is modeled by a hybrid machine, as shown in
Figure 3.4, middle. This machine consists of �ve parts: a discrete (or combinational)
part (Com), an analog (or continuous) part (Ana), a feedback loop, an in�nitesimal
delay (Lims), and a projection (Out). The feedback and Lims model the state of the
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Figure 3.4: Component network and hybrid machine computation model.

machine. They allow the component to remember at each moment in time t the data
computed \just before" t.

The discrete part contains the state-transition logic. It is concerned with the control
of the analog part and has no memory . It instantaneously and nondeterministically
maps the current input and the fed back state to the next state. The next state is
used by the analog part to select an activity among a set of activities (or execution
modes) and it is the starting state for this activity. If the discrete part passes the fed
back state without modi�cation, we say that it is idle. The discrete part can only
select a new next state (di�erent from the fed back state) at distinct points in time.
During the intervals between these time instances it is idle and the selection of the
corresponding activity is stable for that interval.

3Note that in control theory the stronger requirement of demanding that the output at time t

already is determined by the input received up to (but excluding) t is often used, see e.g. [Son90].
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The analog part describes the input/output behavior of the component whenever the
discrete part is idle. Hence, it adds the temporal dimension to the component. It may
select a new activity whenever there is a discontinuity in the input it receives from
the discrete part. An activity can be seen as a set of trajectories which describe the
evolution of the components' variables in dependence on the external input.

Example 3.2 Figure 3.4, right, shows the exemplary behavior of a component. The
grey boxes labeled with �i indicate the time periods where the discrete part idles in
control state �i. At time t1 the discrete move of the environment triggers a discrete
move of the discrete part. According to the new next state received from the discrete
part, the analog part selects a new activity. The activity's start value at time t1
is as determined by the discrete part. At time t2 there is a discrete move of the
environment, but the discrete part remains idle. Therefore the current activity is
not changed, but the analog part chooses a new trajectory from it. The start value
of this trajectory is the analog part's output just before t2, because this is what it
receives from the discrete part at time t2 (due to idling of the discerte part). Thus,
the output has a higher order discontinuity here. At time t3 the environment does not
perform a discrete move, but the discrete part does, e.g., because some threshold is
exceeded. Again the analog part selects a new activity, which begins with the start
value determined by the discrete part. During the intervals (0; t1); (t1; t3) and (t3;1)
the discrete part is idle. �

Feedback and state. Since the input received and the output produced may change
abruptly at any time t, as shown in Figure 3.4, right, we consider that the state of the
component at moment t is the limit from the left limx%t  (x) of all the outputs  (x)
produced by the analog part when x approaches t.4 In other words, the feedback loop
reproduces the analog part's output with an in�nitesimal inertia. We say that the
output is latched . The in�nitesimal inertia is realized by the Lims part of the hybrid
machine (Fig. 3.4, middle). Its de�nition is:

Lims( )(t) =

�
s if t = 0
limx%t  (x) if t > 0

where s is the initial state of the hybrid machine.

The data state of the machine consists of a mapping of latched (or controlled) variable
names to values of corresponding type. Let S denote the set of controlled variable
names with associated domains f�v j v 2 Sg. Then the set of all possible data states,
the data-state space, is given by S =

Q
v2S �v.

The set of controlled variable names can be split in two disjoint sets: a set P of
private variable names and a set O of output (or interface) variable names. We write
L for

Q
v2P �v and O for

Q
v2O �v. Clearly, S = L � O. O is also called the output

4The continuity restrictions we enforce in the following section ensure that the limit from the left
is always well de�ned.
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space. Some external inputs, namely the time stamps which are associated with
certain kinds of input channels, are also copied into private variables in P . We also
call these variables the latched time stamps. As we will see this allows the detection
of events and discrete jumps. The controlled variables furthermore include a special
variable now which contains at each moment the current time. Figure 3.5 depicts this
classi�cation of the controlled variables.

output

latched time stamps others

private

controlled variables

Figure 3.5: Classi�cation of the controlled variables.

The input is a mapping of input variable names to values of corresponding type. Let
I denote the set of input variable names with associated domains f�v j v 2 Ig. Then
the set of all possible inputs, the input space, is de�ned by I =

Q
v2I �v.

3.2.2 The Discrete Part

The discrete part is a relation from the current inputs and the latched state to the
next state, formally:

Com 2 (I � n � S)! P(n � S)

where P(X) = fY � X j Y 6= fgg and n � S is the program-state space. The
program-state space is introduced in technical detail in Section 3.3.3.1. For the time
being, a program state may be regarded as consisting of a control state k 2 f1; : : : ; ng
and a data state s 2 S. As we will see n is the number of leaf nodes in the hierarchic
graph that de�nes Com (see Section 3.5.1). The discrete part corresponds to the
state-transition relation in ordinary automata models. Its computation takes no time.

An important property of the relation de�ning the discrete part is that it is de�ned for
all states and inputs, i.e. it is total . To emphasize totality, we wrote it in a functional
style. Nevertheless, note that for any input and latched state there may be more than
one possible next state. This allows us to express nondeterminism. When the output
of Com for given input i and state s contains the original state s, i.e. s 2 Com(i; s),
we say that it can idle for i and s. If for present state s and input i, next state
s 2 Com(i; s) is indeed selected in the execution thread under consideration, we say
that Com idles or is idle at that point in time. Finally, we require that the set
CI � I � n � S of inputs and states for which Com can idle be topologically open.5

5As topology we use the Tychono� topology on I�n �S which is induced by (1) using the discrete
topologies on the variable domains di�erent from R and on the domains of variables that denote
time stamps, and (2) by using the natural topology on the real line for domain R of the remaining
variables (see Appendix B.2).
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This guarantees that if Com idles it can remain idle for some time t > 0. Informally,
arguing on the real numbers, the reason for this is that any point in an open set has
a neighborhood which also is in the set. This property is needed in Section 3.2.4 to
ensure that the semantics of a hybrid machine is well de�ned.

Note again that there is no memory in the discrete part. The latched state is exclu-
sively stored in the Lim component of the machine model and given to Com after an
in�nitesimal delay. In the machine model, the discrete part is active at any point in
time (this is formalized in Section 3.2.4). It can produce a new next state without
being bound to any kind of time grid.

3.2.3 The Analog Part

Whenever the discrete part idles, the analog part performs an activity . We describe
an activity by a relation Act with type:

Act � (IRs+ � SRs+)� SRs+

For any set M , the set MRs+ stands for the set of functions from the non-negative real
numbers R+ to M that are Lipschitz continuous and smooth. We say that a function
f 2 R+!M is smooth i� f is in�nitely di�erentiable (i.e., f is in C1) forM = R or f
is constant for M 6= R. In�nite di�erentiability is required for convenience. It allows
us to assume that all di�erentials of f are well de�ned. Lipschitz continuity provides
that the limit from the left of these functions exists. For M = R Lipschitz continuity
is de�ned as usual in mathematics (Appendix B.3, De�nition B.15). For M 6= R a
function f 2 R+ ! M is Lipschitz continuous i� it is constant. This corresponds to
regarding M as a discrete metric space (see Appendix B.3, De�nition B.12). A tuple
of functions is Lipschitz continuous or smooth, respectively, i� all its components are.
We also call MRs+ the set of 
ows over M . For ((�; ');  ) 2 Act the components �
and ' are regarded as input, and  is the output of Act. Stream � is also called the
(external) input stream, ' the received data-state stream and  the output data-state
stream. We write the type of activities in a relational style to emphasize that they are
not total in their input. Instead a di�erent condition is required, as we will see below.
Nevertheless, we will also use the functional notation  2 Act(�; ') in the following
if Act is nonempty for � and '. Note that we will also use this convention for other
relations.

To model analog behavior in a \well behaved" way, activities must be time guarded.
As for components, this is required in order to prohibit that activities anticipate future
input. It also is a common assumption in control theory where is precludes control laws
which cannot be implemented. Furthermore, we demand that the activities do not
depend on absolute time (measured from system start) but may be started anytime.
This formally means that for all time intervals [u; v), u; v 2 R+ , and for all histories
';  2 SRs+ and � 2 IRs+:
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Figure 3.6: Composition of activities.

((�; ');  )j[u;v) 2 Actj[u;v) ) 8t � �u: ((�t; 't);  t)j[u+t;v+t) 2 Actj[u+t;v+t)

where 't is the right shift of stream ' by t, 't(x) = '(x� t) and the time restriction
RjÆ of a relation (or set) R is de�ned in a pointwise manner, i.e. RjÆ = frjÆ j r 2 Rg.
Independence from absolute time also is a common assumption in control theory. It
simpli�es the analysis of activities, because absolute time need not be considered. Any
point ((�; ');  )(t) visited by a tuple of histories ((�; ');  ) in Act can be taken as new
start value.

The complete behavior of the analog part is described by a relation Ana with type:

Ana � (IRp+ � (n � S)Rp+)� (n � S)Rp+

where n � S is the program-state space, as in the type of Com, and for any set M ,
MRp+ denotes the set of piecewise smooth, piecewise Lipschitz continuous functions in
R+!M . We call a function f 2 R+!M piecewise smooth and piecewise Lipschitz
continuous i� every �nite interval on the non-negative real line R+ can be partitioned
into �nitely many left closed and right open subintervals such that f is smooth and
Lipschitz continuous on each subinterval. Like activities, Ana is not total and for
((�; �); �) 2 Ana we again regard � and � as input and � as output. Due to its
type the input and output of the analog part is not necessarily continuous. Instead,
�nitely many discrete moves by the discrete part and the environment during any
�nite interval are allowed. In the following we will see that this demands that the
discrete part is realizable. We call MRp+ the set of dense communication histories or
dense streams.

The relation Ana is obtained by pasting together the 
ows of the activities associated
with the control states where the discrete part Com idles. Pasting is realized by
�rst adapting activities such that they permit discontinuities in their output date-
state stream whenever there are (higher-order) discontinuities in the input stream
or data-state stream they receive. The adapted activities are then composed with a
switching operator, called the time-extended disjoint sum, as indicated in Figure 3.6.6

For activity Act, its adaptation to discontinuities da(Act) is de�ned as follows:

da(Act) = f ((�; �); �) 2 (IRp+ � SRp+)� SRp+ j
8Æ 2 Int : (�; �)jÆ 2 (IRs+ � SRs+)jÆ ) ((�; �); �)jÆ 2 ActjÆg

6We use boxes with rounded corners for nodes in hierarchic graphs under the additive or time-
extended additive interpretation (see Sections 3.3.3 and 3.3.4).



42 CHAPTER 3. HYCHARTS

where Int denotes the set of all left closed and right open intervals over R+ . Informally,
the formula expresses that whenever � and � are smooth and Lipschitz continuous (left
side of the implication) then � also is. If � or � restricted to one particular interval is
discontinuous, no restriction of � results for this interval. In other words, the universal
quanti�cation over intervals leads to restrictions on � exactly on those intervals where
� and � are smooth and Lipschitz continuous. Therefore, � may be discontinuous
whereever � or � is. The type of da(Act) is (IRp+ �SRp+)�SRp+ . The time-extended
disjoint sum with which the adapted activities are composed to yield the analog part
will be de�ned in Section 3.3.4. Here we only explain its principle. For ((�; �); �) 2 Ana
the sum uses to control information contained in the stream of program states � to
demultiplex the data state information to the adapted activity which is associated with
the given control state. This activity determines the data state information in � . The
sum de�nes the control information in � by setting it equal to the control information
in �. This can be seen as multiplexing the output of the selected activity by adding
the control information. Like the discontinuity adaptation, the time-extended disjoint
sum operation is also de�ned by regarding its input and output over time intervals,
not just time points.

As we demand that every activity is time guarded and as discontinuity adaptation
and the disjoint sum operation also do not anticipate future input, the analog part is
time guarded. Furthermore, for the analog part we demand that it is resolvable, which
means that it must have a �xed point for every start state s0 2 n � S and every input
stream � 2 IRs+, i.e.:

9� 2 (n � S)Rs+ : �(0) = s0 ^ � 2 Ana(�; �)

Resolvability of the analog part is needed to prove that the semantics of a hybrid
machine is well de�ned (see below). Informally, it is needed, because when the discrete
part of the machine model idles, the machine model is equivalent to a direct feedback
over Ana. Resolvability is required instead of totality. In Section 3.5.2, we explain
conditions under which resolvability of individual activities results in a resolvable
analog part.7

3.2.4 Semantics of the Hybrid Computation Model

Given an initial state s0, the behavior of the hybrid machine is a relation Cmp between
its input and output communication histories. The denotational semantics of Cmp
directly results from writing the graph in Figure 3.4, middle, as a relational expression
with the operators which will be de�ned in Section 3.3.2. For the purpose of this
section we expand the de�nitions of these operators and introduce a further relation
St denoting the \white-box" (or state-based) semantics of a component, without the
output projection Out . The resulting de�nition for Cmp and St is:

7Resolvability of activities is similar to the above de�nition of resolvability for the analog part.
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St 2 n � S ! (IRp+ ! P((n � S)Rp+))
St(s)(�) = f� 2 (n � S)Rp+ j 9� 2 (n � S)Rp+:

� 2 Comy(�;Lims(�)) ^
� 2 Ana(�; �)g

Cmp 2 n � S ! (IRp+ ! P(ORp+))
Cmp(s)(�) = Out y(St(s)(�))

where Ry trivially extends the relation R 2 A! P(B) to streams, i.e. Ry(�) = f� j
8t 2 R+ :�(t) 2 R(�(t))g. Out is a projection which selects the output variables from
the state. It is extended to sets of states in a pointwise manner and extended in time
by y. Furthermore, note that Lims is deterministic. Hence, Lims(�) is a single stream.

In Appendix A.1.2 we also de�ne a semantics for components that is based on transi-
tion systems and prove its equivalence to the denotational semantics (Theorem A.5).
The transition system semantics formalizes our informal arguing over the behavior of
a component as caused by discrete moves of Com and periods of continuous evolution
due to Ana. It also is the basis for inductive reasoning over components (Theo-
rem A.6). Moreover, Appendix A.1.3 proves that Cmp is a time-guarded relation.

Due to its importance and in order to foster a deeper understanding of the machine
model we now show that Cmp is total. This amounts to proving the existence of a �xed
point in the above de�nition for arbitrary starting state and input. As the de�nition
involves feedback between Com and Ana which are coupled without a �nitely large
delay Æ > 0 and as Ana is not total, the existence of a �xed point is not guaranteed
a priori. Instead, it is a consequence of the properties of Com and Ana. Note that
for a better understanding of the machine model, the reader unfamiliar with topology
need not follow the topological details, but may instead focus on the structure of the
proof.

Proof. (Existence of a �xed point.) First, we prove that some time t > 0 passes
between two discrete moves by the discrete part or the environment, i.e. between two
points in times where Com is not idle or the input has a discontinuity. Suppose s0

is an output of Com for the current input i and the latched state s at time t0 (see
Figure 3.7). Then, Com can idle for the new state s0, i.e. s0 2 Com(i; s0). This

t10t 0t 0+δ

(i,s)

(ι,σ)
(i,s’)

I

CI

Figure 3.7: Computing the possible delay.

holds due to the construction of Com from the HySChart and will be justi�ed in
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Section 3.5.1.6. Com can remain idle as long as its input from the environment and
the feedback loop are still in CI . (As introduced in Section 3.2.2, CI is the set of
inputs and states for which Com can idle.) Hence, we must determine when CI is left
next. As the input stream � is piecewise smooth, there must be a time t1 > t0, such
that it evolves continuously from now up to t1. Due to its resolvability, the analog part
must have a �xed point � for this input and starting state s0. This �xed point also
is a continuous function. Above, we demanded that the set CI � I � n � S for which
Com can idle is topologically open. Therefore, CI , restricted to the range of � and
� for the interval [t0; t1), is also open with respect to the induced subspace topology
on (I � n � S) \ range((�; �)j[t0;t1)) (subspace topologies are de�ned in Appendix B.2,
Theorem B.4). Hence, constructing the inverse image of CI for the �xed point of Ana
and the input stream up to t1 yields a set I that is open w.r.t. the natural topology
on dom((�; �)) = [t0; t1), since the input and the analog part's output are continuous
functions up to t1. As t0 is in this set and the set is open w.r.t. [t0; t1), we can conclude
that there is a Æ0 > 0 such that [t0; t0 + Æ0) � I, i.e. Com can idle during the interval
[t0; t0 + Æ0). We select this execution thread where Com idles on [t0; t0 + Æ0) from the
set of nondeterministic alternatives.

Then on the interval [t0; t0+Æ0), the �xed point of Ana is a �xed point of Cmp, because
Com, due to idling, and Lims, due to continuity of �, are the identity there. Applying
this argument inductively, we �nd a �xed point for Cmp on the interval [0;�1

n=0Æn)
for every initial state s0. �

If �1
n=0Æn diverges, we have constructed a proper �xed point of Cmp, since Theo-

rem A.2 in Appendix A.1.1 allows us to transfer this result from �nite time to in�nite
time. The actual output of Cmp for this �xed point is obtained by applying projec-
tion Out y to it. Otherwise we have a zeno execution, i.e. the discrete part performs
in�nitely many discrete moves within a �nite interval. Hence, it is not realizable.
A suÆcient condition for realizability is that there is a lower bound Æ on the Æi for
all inputs and initial states. If the analog part is resolvable and the discrete part is
realizable with respect to the analog part then the component delivers a reasonable,
i.e. in�nite and piecewise smooth, output for all reasonable inputs. In other words, the
component is total. According to the principal idea given in [AH97] for receptiveness,
we call a total component receptive. Note that execution threads where Com performs
in�nitely many discrete moves in a �nite interval are eliminated by the type of the
component only allowing piecewise smooth output.

3.2.5 A Note on Semantics

A very important characteristic of our semantic model is its uniform use of relations.
Both, activities and the component itself, are time-guarded relations. Moreover, the
discrete part is also a relation, but a relation without time and memory. This unifor-
mity has two important consequences. First, it considerably simpli�es the semantic



3.3. HIERARCHIC GRAPHS 45

de�nition. Second, it allows us to apply the operators on hierarchic graphs introduced
in the following section to compose relations. As we shall see in the following, these op-
erators correspond to hierarchic system architecture speci�cations for the components
and to hierarchic state-based speci�cations for the discrete part. A time extended
variant of the operators for state-based speci�cations leads to hierarchic activity-based
speci�cations for the analog part.

Using dense communication histories as the basis for component speci�cation allows us
to integrate hybrid machines with components that are speci�ed in other formalisms.
In particular this includes well-established description techniques from control theory
where a component usually is a function from its inputs to its outputs, IR+ ! OR+

without continuity restrictions in this case [Son90].

3.3 Hierarchic Graphs

This section �rst introduces the operators for an algebra of hierarchic graphs (Sec-
tion 3.3.1). Then three relational models for this algebra, a multiplicative, an additive
and a time-extended additivemodel, are given. The multiplicative model interprets the
operators in a way that yields data-
ow graphs (Section 3.3.2), the additive model in-
terprets them in a way that results in control-
ow graphs (Section 3.3.3) and the time
extended additive model interprets them in a way that integrates data-
ow aspects
into contol-
ow graphs (Section 3.3.4). These three models provide the formal foun-
dation for HyACharts and HySCharts. Section 3.3.5 introduces a notion of re�nement
and relates it to the three models.

3.3.1 Syntax

A hierarchic graph consists of a set of nodes connected by a set of arcs. Each node has
a name and, if it is not a leaf node, it again has associated a graph. For each node,
the incoming and the outgoing arcs de�ne the node's interface, i.e. its type. We use
the textual notation n : A�B to denote the node n with input interface A and output
interface B. Its graphical representation is depicted in Figure 3.8. If we interpret A
and B as sets (or types), n may be regarded as a mapping of elements of A to elements
of B. However, note that there are other interpretations as well; we only de�ne syntax
here. The interpretations of the hierarchic graph syntax in Sections 3.3.2, 3.3.3 and
3.3.4 will de�ne more details of n.

A
n

B

Figure 3.8: Graphical representation of a node n : A�B.



46 CHAPTER 3. HYCHARTS

3.3.1.1 Operators on Nodes

In order to obtain graphs, we put nodes next to one another and connect them by
using the following operators on relations: sequential composition, visual attachment
and feedback. Their respective visual representation is given in Figure 3.9.

A B C
n2

B2

n2

FeedbackSequential composition

n1

A2A1

1B

n1

B

A

C

n

Visual attachment

Figure 3.9: The composition operators.

Sequential composition. One basic way to connect two nodes is by sequential com-
position, i.e. as shown in Figure 3.9, left, by connecting the output of one node
to the input of the other node, if they have the same type. Textually we denote
this operator by the semicolon ;. Given n1 : A�B and n2 : B�C we de�ne the
composed node n1;n2 to have interface A� C.

Regarding the nodes as computation units, Figure 3.9, left, says that the output
produced by n1 is directed to the input of n2. The connection between n1 and
n2 as well as the units n1 and n2 themselves are internal to n1;n2. In other
words, n1;n2 does not only de�ne a connection relation but also a containment
relation.

Visual attachment. By visual attachment we mean that nodes and corresponding
arcs are put one next to the other, as shown in Figure 3.9, middle. To obtain
a textual representation for visual attachment, we need an attachment operator
both on arcs and on nodes. We denote this operator by ?. Given two arcs A and
B their visual attachment is expressed by A ? B. Given two nodes n1 : A1 �B1

and n2 : A2�B2 their visual attachment is expressed as n1?n2 : A1?A2�B1?B2.
Visual attachment also de�nes a containment relation. We say that n1 and n2
are contained in n1 ? n2.

In order to express loss of information (hiding, see below) it is convenient to have
an arc E denoting the absence of any information. This arc should therefore be
neutral for attachment, i.e. A ? E = E ? A = A.

Feedback. Sequential composition only allows us to connect the output of one node to
the input of another. In particular, it cannot connect inputs and outputs of the
same node or connect nodes with bidirectional communication. We therefore
introduce a feedback operator, as shown in Figure 3.9, right. It allows us to
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connect the rightmost output of a node to the rightmost input of the same
node, if they have the same type. Given n : A ? C � B ? C we de�ne n "CA;B:
A� B. Similar to sequential composition and visual attachment, feedback also
introduces a containment relationship. We say that n and the feedback arc are
contained in n "CA;B.

Nodes and arcs that are not built up from other nodes or arcs using the above operators
are called primitive.

3.3.1.2 Connectors

Beside operators on nodes, we also need some operators on arcs (or prede�ned nodes),
which we call connectors. We consider the following connectors: identity, identi�-
cation, rami�cation and transposition. Their visual representation is given in Fig-
ure 3.10.

A

A A A

A

identity identification ramification transposition

A

A

A A B

B A

Figure 3.10: The connectors.

Identity. The identity connector IA simply copies its input to the output. It has
interface A� A.

Identi�cation. The identi�cation connector _kA joins k inputs together. Its interface
is Ak

� A, where Ak = A ? : : : ? A stands for the k-fold attachment of A. For
k = 0 we de�ne A0 = E, i.e. the neutral arc. _0A : E � A is the neutral element
for identi�cation. In Figure 3.10 binary identi�cation is depicted.

Rami�cation. The rami�cation connector ^Ak copies the input information on k
outputs. Hence ^Ak has interface A � Ak. Figure 3.10 shows the binary case.
The nullary case ^A0 : A � E expresses hiding; it is the neutral element for
rami�cation.

Transposition. Finally the transposition connector A
X
B exchanges the inputs. Its

interface is A ? B � B ? A.

To be a precise formalization of our intuitive understanding of graphs, the above
abstract operators and connectors have to satisfy a set of axioms, which intuitively
express our visual understanding of graphs. These axioms correspond to strict, sym-
metric, monoidal categories with feedback and bimonoid objects, see e.g., [GBSS98,
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GBSS99, S�te94, S�te00]. Some of the axioms are used and brie
y explained in Chap-
ter 4. [GSB98b] shows that the multiplicative and the additive interpretations of the
operators and connectors are particularly relevant for computer science.

Example 3.3 As an example for a hierarchic graph and its corresponding textual
representation, we consider the graph in Figure 3.11, left. Using the above basic

B A

B

n1 n2

B1

B1

A1

A1 2 A

A B2

2

A2

BA

A

B

B

A

A B

n1 n2

A1 A2

B2B1

B

Figure 3.11: The symmetric feedback.

operators and connectors, it de�nes a derived composition operator, the symmetric
feedback. If n1 : A1?A�B1?B and n2 : B?A2�A?B2 then n1�? n2 has interface A1?A2�

B1 ?B2. Its simpli�ed visual representation is given in Figure 3.11, right. The textual
representation corresponds one-to-one to the visual representation in Figure 3.11, left:

n1�?n2 = (((IA1
? A2X

A?B);(n1 ? n2);(IB1
? B?A

X
B2);

(IB1?B2
? B

X
A))"BA1?A2?A;B1?B2?A

)"AA1?A2;B1?B2

�

3.3.2 The Multiplicative Model

The multiplicative model is a model for hierarchic data-
ow graphs. It is needed to
de�ne the semantics of HyACharts. The intuition behind hierarchic data-
ow graphs
is as follows. At any moment in time, all nodes of the graph are active and computing
the output data based on their input data. A node receives the input data along a
tuple of input channels and sends the computed data along a tuple of output channels.
The arcs of the graph, i.e. the channels, forward the data to the other nodes in the
graph. The nodes in a data-
ow graph are also called components. The intended
parallelism of nodes, input/output channels and branches of the connectors is obtained
by interpreting the visual attachment ? multiplicatively by the (associative Cartesian)
product � and by de�ning the other operators and connectors consistently with this
interpretation.
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3.3.2.1 Arcs

We assume given a set of channel types D = fDi j i 2 Ng, each de�ning the set of
values which is allowed to 
ow along a channel. The input and the output interface
type of a node, respectively, is then a 
at product A = A1�: : :�An of channel types
Ai 2 D, de�ned as follows:

A = f()g if n = 0; A = A1 if n = 1;
A = f(x1; : : : ; xn) j x1 2 A1 ^ : : : ^ xn 2 Ang if n > 1

For arbitrary interface types A = A1� : : :�Am and B = B1� : : :�Bn we extend the
above product de�nition as follows:

A�f()g = f()g�A = A
A�B = f(x1; : : : ; xm+n) j x1 2 A1 ^ : : : ^ xm 2 Am^

xm+1 2 B1 ^ : : : ^ xm+n 2 Bng if m;n > 1

Hence, the empty interface f()g is the neutral arc E. The left and right projections p:
and q: are given below:

p: : A1�: : :�Am�B1: : :�Bn ! A1�: : :�Am;
p:(a1; : : :; am; b1; : : :; bn) = (a1; : : :; am)

q: : A1�: : :�Am�B1: : :�Bn ! B1�: : :�Bn;
q:(a1; : : :; am; b1; : : :; bn) = (b1; : : :; bn)

They uniquely de�ne a pairing function (:; :) such that for any C, f = (f1; : : :; fm) 2
C ! A and g = (g1; : : :; gn) 2 C ! B it holds that: (f; g) = (f1; : : :; fm; g1; : : :; gn).
By de�nition, the product is associative and has as neutral element E.8 The unique
existence of projections is characteristic of data-
ow graphs.

Time models. In data-
ow graphs the main concern is the data 
ow . To de�ne and
analyze this 
ow, we need to observe the information exchanged along each channel
over time. As di�erent time models will be used throughout the thesis, namely the
non-negative real numbers R+ , the natural numbers including zero N and certain
classes of subintervals thereof, we overload the de�nition of multiplicative hierarchic
graphs for any of these time models T .

As motivated in Section 3.2.1, for HyCharts we use time model T = R+ . In some
proofs, however, we will also use �nite time models T = [0; t), for t > 0. Later
in the thesis we will consider the implementation of (parts of) hybrid systems with
an underlying discrete time grid. In that context, the natural numbers including
zero and subsets containing a sequence of numbers f0; : : : ; kg, k 2 N n f0g, are a
second choice for the time axis. We also call such sets f0; : : : ; kg intervals (of natural

8In fact, associativity is the motivation for explicitly giving a de�nition for the Cartesian product
here. Other de�nitions in the literature, for instance the de�nition in [Eng89], are only associative
w.r.t. an isomorphism.
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numbers). In any case, the data exchanged along a channel with type A over time
de�nes a mapping a 2 T ! A. The set of mappings T ! A is also denoted by AT .
If the used time model is the real axis or a subinterval thereof, we usually require
that the mapping is piecewise smooth and piecewise Lipschitz continuous, as de�ned
in Section 3.2.3. This is assumed in all the following de�nitions of the operators
and arcs. Thus, AT denotes the set of piecewise smooth and piecewise Lipschitz
continuous mappings in case of such time models.9 Such a restricted mapping is
called a dense communication history (or dense stream) and its corresponding type a
dense communication history type. If the natural numbers (or a subinterval thereof)
are used as time model, no further restrictions are required. The resulting mapping
is called a discrete-time communication history (or discrete-time stream) and its type
a discrete-time communication history type. Dense or discrete-time communication
history types, respectively, are used to interpret the primitive arcs of a data-
ow
graph.

A reasonable assumption which leads to a model with very nice properties, is that
data-
ows are time synchronous, i.e. that time 
ows in the same way for each chan-
nel and each component. In this case, the history type of a component's interface
(A1�: : :�Am)

T is equal to the product AT
1 �: : :�A

T
m of the histories types of its chan-

nels (up to isomorphism).

3.3.2.2 Nodes and Operators

As indicated in Section 3.2.1 for time model R+ , we describe the behavior of a system
component by an input/output relation, i.e. by a relation between the histories of its
input channels and the histories of its output channels. The relation must be total
in the input histories and time guarded.10 To emphasize totality we also use the
functional notation n 2 AT ! P(BT ) for such relations n � AT � BT in this thesis.
These relations interpret the nodes of the data-
ow graphs. To simplify notation, we
use the same name (or symbol) for a node (or operator) and its associated relation (or
relational operator) in the following. Note, however, that the names and symbols are
syntactic entities whereas the relations and relational operators are semantic entities.

The Node Operators:

Multiplicative sequential composition. The multiplicative interpretation of se-
quential composition is the usual sequential composition of relations. It allows
passing of the data from one component to another component in a linear way.
Given two relations

n1 � AT � BT ; n2 � BT � CT

9Note that the de�nitions are the same for other kinds of continuity requirements.
10Time guardedness w.r.t. a discrete time model is similar to the de�nition in Section 3.2.1 for

continuous time, but only regards intervals of natural numbers.
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we de�ne their multiplicative sequential composition n1 ;� n2 as follows:

n1 ;� n2 � AT � CT

n1 ;� n2 = f(a; c) j 9b 2 BT : (a; b) 2 n1 ^ (b; c) 2 n2g

n1 ;� n2 is total in its input and time guarded if n1 and n2 are total and time
guarded as well.

Multiplicative visual attachment. The multiplicative visual attachment of two
components yields a new component such that both constituents are active si-
multaneously, i.e. each constituent has its own control-
ow. As this is similar to
parallel composition (or and -composition) in Statecharts, we also refer to multi-
plicative visual attachment as parallel composition. The interface of the product
has to re
ect this fact. Given two relations

n1 � A1
T � B1

T ; n2 � A2
T � B2

T

we de�ne their product n1 � n2 as follows:

n1 � n2 � (A1
T � A2

T ) � (B1
T � B2

T )

n1 � n2 = f((a1; a2); (b1; b2)) j (a1; b1) 2 n1 ^ (a2; b2) 2 n2g

The visual notation for n1 � n2 is given in Figure 3.12. n1 � n2 is total in its

1Y Y2

Multiplicative interpretation

n21

X1 2

n

X

Figure 3.12: The multiplicative interpretation.

input and time guarded if n1 and n2 are.

Multiplicative feedback. The multiplicative feedback allows the passing of the out-
put of a component back to its input. In our hybrid machine model depicted in
Figure 3.4, middle, this constuct is used to add the memory to our components.
Given a relation

n � (AT � CT ) � (BT � CT )

we de�ne the new relation n "C� as below:

n "C� � AT � BT

n "C� = f(a; b) j 9c: ((a; c); (b; c)) 2 ng

n "C� is time guarded and guaranteed to be total in the input channel histories
AT , if n is time guarded and its output channel with type C up to time t+Æ 2 T
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is completely determined by its input up to time t 2 T on the input channel
with channel type C and by the input on the other input channels up to time
t+ Æ. In other words, its output on the output channel with type C reacts with
a delay Æ > 0 to the input on the input channel with type C. We also say that
n is strongly time guarded on the feedback channel with channel type C. (See
[Bro97b, SRS99] for proofs with dense time models and [GR95] for a proof with
discrete time model.)

We also allow feedback of components without delay on their feedback channel,
as long as the feedback results in a time-guarded component that is total in
its input. In this case, the designer must explicitly prove totality and time
guardedness of the resulting component. For instance, such a proof is given for
the hybrid computation model in Section 3.2.4 and Appendix A.1.11

Note that an in�nitely small delay on a feedback channel, as caused by the Lim
component in the hybrid machine model, is not guaranteed to be suÆcient in
general to conclude that the resulting component is total and time guarded. The
proofs for totality and time guardedness given in [MS97, Bro97b] and [SRS99]
can not be used in this case, because they all require a �nitely large delay Æ > 0.

The Connectors:

Multiplicative identity. We interpret the identity connector IA : A � A by the
identity relation IA which simply copies the input to the output:

IA � AT � AT ; IA = f(a; a) j a 2 AT g

Multiplicative identi�cation. The identi�cation connectors _kA : Ak
�A are inter-

preted by the multiplicative identi�cation relations Æ_
k
A. They allow us to identify

k equal copies of elements a 2 AT :

Æ_
k
A � (Ak)T � AT ; Æ_

k
A = f(ak; a) j 0 < k ^ a 2 AT g

Note that (Ak)T = (AT )k, as we are using a time-synchronous setting. The
neutral element Æ_

0
A is de�ned by Æ_

0
A = f(()T ; a) j a 2 AT g.

Unlike the other connectors, multiplicative identi�cation is not total. If the
input histories di�er, Æ_

k
A provides no output. Thus, multiplicative identi�cation

introduces a kind of synchronization condition on its input which is similar to
synchronization in Petri nets. We will not need multiplicative identi�cation in
this thesis.

11Informally, for the hybrid computation model totality holds, because of two main reasons. First,
circular dependencies are broken up by the Lim component whenever Com performs a move. Second,
between these moves resolvability of Ana guarantees that an output exists (see also Section 3.2.4).
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Multiplicative rami�cation. The rami�cation connectors ^Ak : A � Ak are inter-
preted by the multiplicative rami�cation relations Æ̂Ak . They allow us to make k
equal copies of the input:

Æ̂A
k � AT � (Ak)T ; Æ̂A

k = f(a; ak) j 0 < k ^ a 2 AT g

The neutral element Æ̂A0 is de�ned by Æ̂A0 = f(a; ()T ) j a 2 AT g.

Multiplicative transposition. The transposition connectors A
X
B : A?B�B?A are

interpreted by the multiplicative transposition relations A
X
B which allow us to

commute the position of the elements in the input tuple.

A
X
B � (AT � BT )� (BT � AT );

A
X
B = f((a; b); (b; a)) j a 2 AT ^ b 2 BT g

Apart from multiplicative identi�cation all the connectors are total in their input
and time guarded. Multiplicative identi�cation will not be needed further in the
thesis. When we argue over multiplicative hierarchic graphs in the following, we do
not consider identi�cation, but only the other operators and arcs. Thus, as long
as all primitive nodes and every feedback result in total, time-guarded relations, a
multiplicative hierarchic graph also de�nes a total, time-guarded relation.

Unless otherwise mentioned, we always interpret the operators and connectors w.r.t.
time model T = R+ in the context of HyCharts.

Example 3.4 (Graph for the hybrid machine model.) The hierarchic graph for
the hybrid computation model depicted in Figure 3.4, middle, corresponds to the fol-
lowing de�nition for the semantics Cmp of a hybrid machine for initial state s:

Cmp(s) = (( Æ̂I2�In�S) ;� (II�Com
y) ;� Ana ;� Æ̂

n�S
2 ;� (Outy�Lims)) "n�S�

where Com, Ana, Out , Lim and the sets I and n � S are as described in Section 3.2.
Note that the types of the connectors can also be inferred from the types of the other
relations. Therefore, they are not always given explicitly in the textual representations
of hierarchic graphs in this thesis. Expanding the de�nitions of the graph operators
yields the formula given in Section 3.2.4 for Cmp. �

3.3.3 The Additive Model

The additive model is a model for hierarchic, sequential control-
ow graphs. It is
needed to de�ne the semantics of the discrete part in HySCharts. The intuition
behind hierarchic, sequential control-
ow graphs is as follows. Each node in the graph
corresponds to a unit which performs a computation. Only one node in the graph can
be active at any point in time. A node receives the control on one of its entry points,
performs its computation and gives the control back on one of its exit points. Entry
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and exit points are disjoint, i.e. control can only be received or given by one of them.
The arcs of the graph forward the control to the other nodes of the graph. The intended
disjointedness of nodes, entry/exit points and branches of the connectors is obtained by
interpreting visual attachment additively as disjoint sum (see below) and by de�ning
the other operators and connectors consistently with this interpretation. From an
external view, all computation is the graph happens instantaneously. Essentially a
control-
ow graph can be regarded as de�ning a state-transition relation.

3.3.3.1 Arcs

In the additive interpretation the control which is passed between the nodes in a
control-
ow graph is de�ned to be an element of the data-state space, s 2 S. Thus,
we consider a set S, the data-state space, as introduced in Section 3.2.1, to be given.
The node which has the data state is active and can modify it. Each arc in a control-

ow graph is interpreted as forwarding values from S. The visual attachment of n arcs
is interpreted as forwarding values from the n fold disjoint sum of S (see Figure 3.13).

+ ... +S S

+ ... +S S

...

Figure 3.13: Visual attachment of arcs in the additive interpretation.

The n fold disjoint sum S + : : :+ S, abbreviated by n � S, is de�ned as follows:

0�S = ;; 1�S = S; n�S = f(k; s) j 0 < k � n ^ s 2 Sg; if n > 1

We take the empty set as the interpretation of the neutral arc E. Set n � S is also
called the program-state space. Its elements (k; s) consist of the control state k and
the data state s. The control state indicates that s stems from the k-th summand in
the n fold sum n � S. The graphical analogy is that the data state is received on the
k-th of n visually attached arcs. This re
ects that control information is encoded in
the interface of nodes and arcs in a control-
ow graph: The entry and exit points of a
node correspond to control states and the arcs, which connect exit and entry points,
therefore lead from one control state to the next. Note that not all control states (or
entry/exit points) are visible at the interface of a control-
ow graph. As we will see in
Section 3.5.1 the externally visible entry/exit points de�ne the interface of the discrete
part of a HySChart, i.e. of its state-transition relation.

The disjoint sum of program-state spaces is de�ned by the following equation: m�S +
n�S = (m + n)�S. In a graph, it corresponds to the visual attachment of n visually
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attached arcs with m visually attached arcs. From the left and right summands m�S
and n�S there are two canonical functions into the sum (m + n)�S, called the left
injection l: and the right injection r:. They inject elements from the summands into
the sum such that one can recover their original source. Their de�nition is as follows:

l: : m�S ! (m+ n)�S; l:(k; s) = (k; s)
r: : n�S ! (m+ n)�S; r:(k; s) = (k +m; s)

It is easy to see that the sum is associative and the neutral element is 0�S. In the
following we will often refer to the program state as merely the state.

3.3.3.2 Nodes and Operators

A node n : A�B of a control-
ow graph is interpreted as a relation n � (I�k�S)�l�S
between the current external input, the current state and the next state. I denotes the
input space, as de�ned in Section 3.2.1. Upon receiving the current state, the nodes
performs its computation and determines the next state, depending on the received
state and the current input. In addition, we consider an external input here, because
the sequential machines de�ned by the relations are allowed to communicate with their
environment. They may receive input and produce output. The output space simply
is a projection of the data-state space. The de�nition of the operators below ensures
that all nodes receive the same input. Therefore, by convention no arc is drawn to
denote the external input to a node.

Note that in order to simplify notation, we use the same name for the node, which
is a syntactic entity, and its associated relation, which is a semantic entity. In the
following we denote arbitrary program-state spaces mAi

� S, mBi
� S and mC � S over

data-state space S by Ai, Bi and C.

The Node Operators:

Additive sequential composition. The additive sequential composition of two
nodes

n1 � (I � A) � B; n2 � (I � B) � C

yields a new node, n1 ;+ n2, which is de�ned as expected:

n1 ;+ n2 � (I � A) � C

n1 ;+ n2 = f((x; a); c) j 9b 2 B: ((x; a); b) 2 n1 ^ ((x; b); c) 2 n2g

Note that n2 gets the same external input as n1.

As example for additive sequential composition let us use an analogy: If we think
of the nodes as states in an automata diagram and of the arcs as transitions
between them, additive sequential composition of the nodes expresses that all
outgoing transitions of n1 lead to n2 and that n2 can only be entered via n1.
Note, however, that this is just an analogy. Unlike to the intuitive interpretation
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of automata diagrams, no time passes in a node of a control-
ow graph. Instead,
its computation happens instantaneously. It is a state-transition relation without
a notion of time.

Additive visual attachment. The additive visual attachment of two nodes

n1 � (I � A1) � B1; n2 � (I � A2) � B2

yields, as or -composition in Statecharts, a new node n1 + n2, such that compu-
tation is performed either by n1 or by n2. Note that the interface of the sum
re
ects this fact.

n1 + n2 � (I � (A1 + A2)) � (B1 +B2)

n1 + n2 = f((x; l:a); l:b) j ((x; a); b) 2 n1g [ f((x; r:a); r:b) j ((x; a); b) 2 n2g

We also call the additive visual attachment of nodes the (disjoint) sum of
them. The visual notation of n1 + n2 is given in Figure 3.14. The meaning
of (n1 + n2)(x; l:a) can be intuitively understood as follows. Receiving the tu-
ple (x; l:a), the sum uses the control information l: to select the corresponding
relation n1. This relation is then applied to (x; a) to obtain the next state b.
Finally, the control information is added to the output again and l:b is obtained.
The situation is symmetric when tuple (x; r:a) is received.

21n

l.a r.a

r.b

n

l.b

1 2

1 2

Figure 3.14: Visual attachment of nodes in the additive interpretation.

In the above analogy of automata diagrams, additive visual attachment expresses
that two distinct states not coupled with each other by transitions are grouped
to a hierarchic state. Entering the hierarchic state means that exactly one of its
substates is entered, namely the one speci�ed by the control information l or r.

Additive feedback. The additive feedback is more tricky and it allows the con-
struction of loops. As in programming, feedback has to be used with care in
order to ensure termination. Given a relation

n � (I � (A+ C)) � (B + C)

we de�ne the relation n "C+ as follows: The state is received on A, computation
is performed and the next state is either given directly on B or after an arbitrary
number of further computations in which the state loops along C. Formally:
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n "C+ � (I � A) � B

n "C+ = nl;l [ nl;r ; n
�
r;r ; nr;l

where m� denotes the arbitrary but �nite iteration of relation m � (I �C)�C,
i.e. m� =

S
i�0m

i, where mi+1 = mi ;+m and m0 = f((x; c); c) j c 2 C ^ x 2 Ig.
Relations ni;j are de�ned for i; j 2 fl; rg as below:

ni;j = f((x; s); s
0) j ((x; i:s); j:s0) 2 ng

In this de�nition l: and r: are the injections corresponding to A and C for the
input and to B and C for the output.

Using the analogy of automata diagrams again, additive feedback expresses that
the rightmost outgoing transition of a state is leading back to itself. Hence,
the state can be reentered via this transition several times before it is left via
another transition.

Note that these interpretations of the composition operators result in a purely sequen-
tial nature of control-
ow graphs and hence of the discrete part of HySCharts. No
computations can be performed in parallel in such a control-
ow graph.

The Connectors:

Additive identity. The additive identity iA is de�ned as expected:

iA � (I � A)� A; iA = f((x; a); a) j a 2 A ^ x 2 Ig

It simply passes control on without modi�cation.

If we extend our analogy of automata diagrams to hierarchic automata diagrams
such as Statecharts (or, even closer, to ROOMcharts [SGW94]), additive identity
may occur when a transition is split into segments at the boundary of a hierarchic
state. The second part of the transition can be associated with the identity
connector because it only forwards control.

Additive identi�cation. The additive identi�cation k>�A forgets the entry point on
which it gets the state:

k>�A � (I � k A)� A;

k>�A = f((x; i:a); a) j 0 < i � k ^ a 2 A ^ x 2 Ig

where k A = k (mA � S) = (k �mA) � S. The neutral element 0>�A is de�ned by

0>�A = ;.

In the automata diagram analogy, additive identi�cation corresponds to the so
called junction connectors in Statecharts. For instance, they can be used to join
transitions when several transitions have a common destination.
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Additive rami�cation. The additive rami�cation A�<k nondeterministically for-
wards the state on one of its exit points:

A�<k � (I � A)� k A;

A�<k = f((x; a); i:a) j 0 < i � k ^ a 2 A ^ x 2 Ig

The neutral element A�<0 is de�ned by A�<0 = ;.

In the automata diagram analogy, additive rami�cation is similar to the so-called
condition connectors in Statecharts. These are typically employed if several
transitions emerging from the same state are triggered by the same event. Note,
however, that rami�cation only models the branching of the control 
ow. It does
not contain conditions, but is nondeterministic.

Additive transposition. The additive transposition B
A=n commutes the entry point

information:
B
A=n � (I � (A+B))� (B + A);

B
A=n = f((x; l:a); r:a) j a 2 A ^ x 2 Ig [ f((x; r:b); l:b) j b 2 B ^ x 2 Ig

This means that the state is passed on along the right exit point if it was received
on the left entry point and vice versa.

In the automata diagram analogy, additive transposition occurs in cases where
transitions in the diagram intersect each other.

3.3.4 The Time-Extended Additive Model

The time-extended additive model is needed to compose (adapted) activities in our
formalism. The composed activities in turn de�ne the analog part of a HySChart.
Similar to the nodes in multiplicative hierarchic graphs, activities are time-guarded
relations over streams, but unlike nodes in multiplicative graphs they need not be
total.

The time-extended additive model is a model for time-extended control-
ow graphs.
It mixes data-
ow aspects into control-
ow graphs. The intuition here is similar
to control-
ow graphs and can be described as follows. Unlike the additive model
which only regards instantaneous computation without a notion of time, the time-
extended additive model regards ongoing computation over time intervals. During
each interval only one node in a visual attachment of nodes is active and permanently
computes output data from its input data. Sequentially composed nodes are active
simultaneously. An active node receives the input data at one of its entry points and
gives the output data at one of its exit points. Entry and exit points are disjoint,
i.e. data can only be received or given at one of them. The arcs of the graph forward
the data to the other nodes of the graph. The intended disjointedness of nodes and
data-
ow via entry/exit points is obtained by interpreting visual attachment additively
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as time-extended disjoint sum (see below). As far as the other operators and connectors
are concerned, we will only de�ne those which are actually needed for the composition
of activities in the HyChart framework.

Time-extended control-
ow graphs can be regarded as de�ning a state-transition rela-
tion that is extended in time. The time extension is performed in a way which provides
that it does not introduce discontinuities in the output data which are not originated
by an active node or by discontinuities in the input data.

3.3.4.1 Arcs

As with the additive model, the data passed at every point in time on primitive arcs
between the nodes is an element of the data-state space S. As data now 
ows over
time, the type of primitive arcs here is ST , i.e. the set of functions from T to S, where
T is one of the time models introduced in Section 3.3.2.1. The visual attachment of
n arcs is interpreted as transmitting elements from the n fold time-extended disjoint
sum of ST . This sum ST+ : : :+ST is de�ned by:

ST+ : : :+ST = (n � S)T

where n � S is the program-state space as in Section 3.3.3.1. Correspondingly, (n � S)T

is called the time-extended program-state space. Similar to the untimed case, the sum
of time-extended program-state spaces is de�ned as (n�S)T+(m�S)T = ((m+n)�S)T .
Left and right injections are de�ned by pointwise extension of the untimed injections:

l: : (m � S)T ! ((m + n) � S)T ; 8t 2 T : (l:s)(t) = l:(s(t))
r: : (n � S)T ! ((m+ n) � S)T ; 8t 2 T : (r:s)(t) = r:(s(t))

The time-extended sum is associative and the neutral element is (0 � S)T .

3.3.4.2 Nodes and Operators

Corresponding to the untimed case, a node n : A � B of a time-extended additive
hierarchic graph is interpreted as a time-guarded relation n � (IT � (k�S)T )� (` � S)T

between the external input stream in IT , the received state-stream in (k�S)T and the
produced state-stream in (` �S)T . Based on the evolution of the external input stream
and the received state-stream the node computes the evolution of the produced state-
stream. As in the untimed case, the de�nition of the operators below ensures that all
nodes receive the same input. Therefore, by convention no arc is drawn to denote the
external input IT to a node. The external input is needed to allow the analog part in
our hybrid communication model to communicate with an (external) environment.

In the following de�nitions we denote arbitrary program-state spaces (mAi
�S), (mBi

�S)
and (mC �S) over data-state space S by Ai, Bi and C. Again, we use the same name for
the node, which is a syntactic entity, and its associated relation, which is a semantic
entity.
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The Node Operators:

Time-extended additive sequential composition. The time-extended additive
sequential composition of two nodes

n1 � (IT � AT ) � BT ; n2 � (IT � BT ) � CT

yields, a new node n1 ;+ n2, which is de�ned as expected:

n1 ;+ n2 � (IT � AT ) � CT

n1 ;+ n2 = f((x; a); c) j 9b 2 BT : ((x; a); b) 2 n1 ^ ((x; b); c) 2 n2g

Apart form the input stream x, this coincides with multiplicative sequential
composition.

Time-extended additive visual attachment. The time-extended additive visual
attachment of two nodes

n1 � (IT � AT
1 ) � BT

1 ; n2 � (IT � AT
2 ) � BT

2

yields a new node n1+n2 for which the time axis T for each input in AT
1 +A

T
2

can be partitioned into intervals such that during each interval either n1 or n2
is active:

n1+n2 � (IT � (AT
1 +A

T
2 )) � (BT

1 +B
T
2 )

n1+n2 = f((x; a); b) j 8Æ 2 Int \ T :
( 9a0: ajÆ = l:a0jÆ )
9b0: ((x; a0); b0)jÆ 2 n1jÆ ^ bjÆ = l:b0jÆ )
^
( 9a0: ajÆ = r:a0jÆ )
9b0: ((x; a0); b0)jÆ 2 n2jÆ ^ bjÆ = r:b0jÆ ) g

where Int denotes the set of all left closed and right open intervals over R+ .
Int \ T therefore are all such intervals w.r.t. the used time model. The def-
inition expresses that for each interval Æ in which the received state-steam a
permanently is in Ai the output state-stream b is determined by ni, i 2 f1; 2g.12

In other words, the sum uses the control information in a to select the active
node and adds the control information to the node's output again. In contrast
to a pointwise time-extension of the untimed sum operator, this interval-based
de�nition ensures that the selection of an output stream b cannot be changed
nondeterministically at any point in time but only when the control information
in the received state-stream changes from A1 to A2 or vice versa. Thus, this def-
inition based on intervals does not introduce discontinuities in b as long as there

12For other intervals Æ selected by the universal quanti�cation, the formula does not restrict the
output b, because of the implications in the formula.
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is no discontinuity in a or the discontinuity is caused by the active subnode.
This is required for the switching between (primitive) activities in the analog
part of HySCharts.

In the relevant cases for HyCharts, we fully apply associativity of+. This results
in a specialization of the above de�nition which may be easier to understand and
is closer to our applications. Namely, we can directly de�ne the time-extended
disjoint sum of ` primitive nodes nj 2 IT � ST � ST for 1 � j � ` as follows:

+`
j=1nj = f ((x; (k; a)); (k; b)) 2 IT � (` � S)T � (` � S)T j

8Æ 2 Int \ T ; m 2 f1; : : : ; `g: kjÆ = myjÆ ) ((x; a); b)jÆ 2 nmjÆ g

where my is the extension of m to a constant function over T . The tuple (k; a)
consists of the control-state stream k which de�nes the control state at each
moment in time and the data-state stream a which gives the data state at each
moment in time (see also Figure 3.6). The tuple (k; b) consists of the same
control-state stream k and the data-state stream b computed by the sum. For
each interval Æ in which the control state is constant, the sum uses the control
information kjÆ to demultiplex the input (k; a)jÆ to the appropriate node (or
activity , in the HyChart context) and to multiplex the output bjÆ to (k; b)jÆ.
Section 3.5.2 will show how the analog part Ana is constructed from the activities
in a HySChart by using the + operator.

As we demand that every primitive node be time guarded, the hierarchic node de�ned
by a time-extended additive hierarchic graph consisting of the above operators also
is time guarded. A time-extended additive feedback operator is not needed in the
context of HyCharts. Therefore, no de�nition is given for it.

The Connectors: For HyCharts we only need the time-extended additive identity
iA. It is de�ned by

iA � (I � AT )� AT ; iA = f((x; a); a) j a 2 AT ^ x 2 Ig

Hence, the state is not a�ected by the identity.

3.3.5 Re�nement in the Multiplicative and Additive Models

In this section we introduce a notion of re�nement and relate it to the above models
for hierarchic graphs. The compositionality results described here are a mathematical
basis for the re�nement methods considered in Chapters 4 and 5.

We say that relation A is a re�nement of relation B, written as A � B, i� A � B.
Monotony of the additive and multiplicative graph operators w.r.t. set inclusion en-
sures that re�nement is compositional, i.e. in the additive as well as in the multiplica-
tive model A � B implies (A ;C) � (B ;C), (A ? C) � (B ? C) and (A ") � (B ")
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holds, where in each case the type of relation C is such that it can be composed with
A. Symmetrically, (C ;A) � (C ;B) and (C ? A) � (C ? B) holds, if A � B. Apart
from feedback, which is not de�ned in the time-extended additive model, the same
results hold for the time-extended additive model.

3.4 Architecture Speci�cation { HyACharts

The system architecture speci�cation determines the interconnection of a system's
components.

Graphical syntax. The architecture speci�cation is a hierarchic graph, a so-called
HyAChart (Hybrid Architecture Chart), whose nodes are labeled with component
names and whose arcs are labeled with channel names. Each node may have subnodes.
The node names and channel names only serve for reference. We use a graphical
representation that is analogous to the structure speci�cations in ROOM [SGW94].

Semantics. As a HyAChart is a hierarchic graph, it is constructed with the operators
of Section 3.3.1. Writing the graph as the equivalent relational expression and using the
multiplicative model to interpret the operators in it directly results in the HyAChart's
semantics.

As ? is interpreted as the product operation for sets in this model, visual attach-
ment here corresponds to parallel composition. Hence, each node in the graph is a
component acting in parallel with the other components and each arc in the graph
is a channel describing the data-
ow from the source component to the destination
component, as explained in Section 3.3.2.

Characteristics of components and channels. The component names in the
graph refer to input/output behaviors speci�ed in other HyACharts, in HySCharts
(Section 3.5) or with other formalisms (Section 3.6). The channel names are the input
and output variable names used in the speci�cation of the components. We therefore
do not distinguish between a channel and the variable carrying the channel's value at
each time instant. The channels' types must be speci�ed separately.

We distinguish three basic kinds of channels w.r.t. their time varying character and
require that every channel in a HyAChart belongs to one of these kinds. The con-
sidered kinds are discrete channels, continuous channels, and hybrid channels. The
value on a discrete channel only changes discretely at isolated, not necessarily equidis-
tant time instants. Between those instants it is constant. The value on a continuous
channel only changes continuously over time. For a hybrid channel, discrete changes
in the channel's value may occur at isolated time instants and between the instants
the value must evolve continuously. In�nitely many discrete changes during a �nite
time period are not allowed in all kinds of channels. By convention, all of these kinds
are encoded as tuples of dense streams, i.e. as tuples of piecewise smooth, piecewise
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Lipschitz continuous functions.13 Every discrete or hybrid channel c with values of
type D is encoded as a tuple of dense streams (c:val; c:t) 2 (D � R+)

Rp+, where c:val
always holds the current value on the channel and c:t holds a time stamp which at
any time instant denotes the most recent time when a discrete change was made on
the channel. The sender of the discrete or hybrid stream is responsible for specifying
correct time stamps.

A continuous channel is encoded as a single dense stream without further components
for modi�cation times. As we will see, the stream of time stamps allows a HySChart
to react with delay to a discrete change in its input. For discrete channels that only
transmit events, the stream of values is not needed since the presence of an event can be
encoded as a change in the stream of time stamps (see also Section 3.5). Although the
range of time stamps is R+ , we do not use the natural topology on R for it, but instead
use the discrete topology (see Appendix B.2 for de�nitions of these topologies). With
the streams of time stamps being piecewise constant, and hence piecewise continuous
w.r.t. the discrete topology, this will permit more 
exible predicates over the time
stamps in HySCharts in the next section. For instance, a predicate like x = y for time
stamps x and y is an open set w.r.t. the discrete topology. This is sometimes needed
in HySCharts.

From a methodological point of view, the type of channels should not only restrict the
type of the values transmitted on them, but it should also specify the characteristics
of its evolution over time. For discrete and hybrid channels, the type should therefore
specify the minimum event separation, i.e. the minimal time between two discrete
changes on the channel. For hybrid and continuous channels, it should specify the
Lipschitz constant or bandwith with which the channel's value varies during any period
of continuous evolution. For a stream � 2 (D�R+)

Rp+ 
owing on a discrete or hybrid
channel, the minimum event separation mes(�) is de�ned based on the time stamp
information:

mes(�) = inf fx0 � x j x; x0 2 R+ ^ x < x0 ^ �:t(x) 6= �:t(x0)g

For a stream � 
owing on a hybrid or continuous channel with values of type D, the
Lipschitz constant Li(�) constraining its continuous periods of evolution is de�ned as:

Li(�) = supfl j 8Æ 2 Int : cont(�:valjÆ)) 8x; y 2 Æ: d(�:val(x); �:val(y)) � l � jx� yjg

where Int denotes the set of all left closed and right open intervals over R+ , predicate
cont(x) is true i� x is a continuous function and d is the metric used on D. A
bandwidth for the continuous periods of evolution of � can be de�ned similarly. Note
that the minimum event separation can be 0 or the Lipschitz constant can be 1,
respectively, for a dense stream. Furthermore, note that the Lipschitz constant of a
signal and its bandwidth are related. For instance, a periodic signal c(t) = a�sin(2�f �t)

13Note that smoothness and Lipschitz continuity are also de�ned for domains di�erent from the
real numbers in Section 3.2.3.
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with frequency f is Lipschitz continuous with constant a�2�f . This follows from taking
the maximum of its derivative.

Specifying constraints like a minimum event separation or a Lipschitz constant for a
channel amounts to introducing assumptions and commitments for the components
using these channels. For the sender on a channel, the constants are commitments
which its output streams must satisfy, and for the receiver they are assumptions about
its input streams. The re�nement technique in Chapter 5 requires minimum event
separations that are greater than 0 and �nite Lipschitz constants. There, examples
for such evolution constraints are also given.

We can now return to the HyAChart of our example system given in the introduction
in Figure 3.2, left, and develop its semantics.

Example 3.5 (HyAChart of the EHC.) In Figure 3.2, left, the discrete channel
bend transmits events which signal to the controller whether the car is in a curve.
The continuous, real-valued channel sHeight transmits the chassis level measured by
the sensors. The hybrid, real-valued channel fHeight forwards the �ltered chassis
level. The continuous real-valued channel aHeight transmits the e�ect of the actuators
(compressor and the escape valve) on the chassis level. The discrete channels reset
and dReset (delayed reset) transfer the reset event to the �lter. Like channel bend ,
these channels forward streams of time stamps. The delay component D ensures that
the feedback is well de�ned (see Section 3.3.2). At this point we do not �x event
separations and Lipschitz constants for the channels.

The type of the �lter, the control component and the delay component follow from
the channels' types:

Filter 2 RRp+ � R+
Rp+ ! P((R � R+)

Rp+)
Control 2 R+

Rp+ � (R � R+)
Rp+ ! P(RRp+ � R+

Rp+)
D 2 R+

Rp+ ! P(R+
Rp+)

The semantics of the whole system EHC is de�ned as below. It is the relational algebra
term corresponding to the HyAChart of Figure 3.2, left.

EHC 2 R+
Rp+ � RRp+ ! P(RRp+ )

EHC = ((I�Filter) ;� Control ;� (I�D)) "R�

Note that in order to specify a system architecture, the user only has to draw the
HyAChart and to de�ne the types of the channels, including event separations and
Lipschitz constants, if desired. A suÆcient condition for the well de�nedness of the
system architecture is that there is a non-zero delay on every feedback channel. �

3.5 Component Speci�cation { HySCharts

A HySChart (Hybrid StateChart) de�nes the discrete and the analog part of a hybrid
machine. The input/output behavior of the resulting component follows from these
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parts as explained in Section 3.2.

Graphical syntax of HySCharts. A HySChart is a hierarchic graph, where each
node is of the form depicted in Figure 3.15, left. Each node may have subnodes. It
is labeled with a node name, an activity name and possibly the symbols !Æ and Æ!
to indicate the existence of an entry or exit action, which is executed when the node
is entered or left. The outgoing edges of a node are labeled with action names. The
action names stand for predicates concerning the input, the latched data state and
the next data state. They consist of a guard and a body. The node name refers to the
node's state invariant, which is a predicate of the same type as actions. The activity
names refer to systems of ordinary di�erential equations or di�erential constraints.
The speci�cation of actions and activities and their semantics is explained in detail
in the following sections. Transitions from composed nodes express preemption. If a
transition traverses hierarchic levels in a HySChart, it is split into segments at the
boundary of every hierarchic node, and an entry or exit point symbol is drawn there,
depending on whether the transition is incoming or outgoing for the respective node.
The entry point symbol is 
 and the exit point symbol is �. The symbol is juxtaposed
with a label referring to the transition at the upper hierarchic level. In Figure 3.3 an
example for a HySChart is depicted. There, the hierarchic levels in the chart have
been put besides each other (see also Section 3.1). Except for activities and invariants,
HySCharts look similar to ROOMcharts [SGW94].

Semantics of HySCharts. The semantics of a HySChart is divided into a discrete
and an analog part. The discrete part follows via syntactic transformations from the
diagram. The analog part is constructed from the chart with little e�ort.

In the following sections we will �rst explain how the discrete part is derived from a
HySChart, and then we cover the analog part.

3.5.1 The Discrete Part

A HySChart is a hierarchic graph and therefore constructed from the operators in
Section 3.3.1. As mentioned in Section 3.3.3, interpreting the graph in the additive
model leads to an analogy to automata diagrams. This is utilized in the semantics
de�nition for the discrete part. The basic idea is to regard the nodes in the HySChart
as macros for certain additive hierarchic graphs and to construct a state-transition
relation, i.e. the discrete part Com, from the HySChart by expanding these macros.
There are two important points to note. First, in the resulting additive hierarchic
graph no time passes in any node or subgraph. Computation is instantaneous. Sec-
ond, the macro expansion introduces so called wait entry and wait exit points in the
resulting additive hierarchic graph. These points are not drawn by the designer, but
they are implicit in the HySChart. On one of the wait exit points, the graph outputs
the next data state, which it computes from the current input and the latched state.
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This state is received by the analog part of the hybrid machine model and then, via
Lim, the graph gets a latched data state back on one of its wait entry points.

By construction of the additive hierarchic graph, every wait entry/exit point uniquely
identi�es a primitive node of the HySChart (and also all hierarchic nodes in which the
primitive node is contained). As usual in automata diagrams, we also call the nodes
in HySChart control states. Thus, when the additive hierarchic graph outputs a data
state on a certain wait exit point, this in other words means that the state-transition
relation has selected the corresponding node in the HySChart as the currently active
control state.

If the additive hierarchic graph outputs the received data state without modi�cation
along the wait exit point which corresponds to the same control state as the entry
point on which it received the data state, this means that the discrete part idles. On
the syntactic level, i.e. on the level of the HySChart, we also say that control resides
(or is) in the respective control state of the HySChart.

In this section we �rst de�ne the (sub)graphs by which the nodes in the HySChart are
replaced to obtain the additive hierarchic graph that de�nes the discrete part. These
(sub)graphs are also called computation units, because they can modify the data and
control state. After that, the actions and invariants of HySCharts are elaborated.

3.5.1.1 Computation Units

Each primitive node of the HySChart represents the graph given in Figure 3.15, top
right. The graph formally corresponds to the relational expression below:

CompUnit = (+m
i=1entry + iS) ;+ m+1>�S ;+ S�<n+1 ;+ ((+n

i=1actioni ;+ exit) + Inv)

where S is the data state space of the HySChart, as before. According to the additive
operators, the graph has the following intuitive meaning: A computation unit receives
the control at one of its entry points eni and gives the control back at one of its exit
points ex j.

After receiving control at a regular entry point, i.e. an entry point di�erent from the
wait entry wt , a computation unit executes its entry action entry , if one is speci�ed.
Then it evaluates a set of action guards.14 If one of the guards is true, then the
corresponding action is said to be enabled and its body is executed. After �nishing
its execution, the computation unit executes its exit action exit , if present. Finally,
control is given to another computation unit along the exit point corresponding to
the executed action. Invariant Inv is treated similarly to action guards. However, no
body and exit action exists for it.

If more than one guard and/or the invariant is true, then the computation unit non-
deterministically chooses one of them. If the invariant is chosen, then the discrete

14An action actionk consists of a guard and a body.
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Figure 3.15: Syntax (left) and semantics (right) of a node in a HySChart.

computation is completed, and the discrete part outputs the computed data state
along the designated wait exit point wt . Section 3.5.2 shows that the analog part
takes advantage of the information concerning the exit point to determine which ac-
tivity is to be executed and gives (via Lim) a data state back along the corresponding
wait entry point. This can also be regarded as busy waiting in the computation unit.

Note that the kind of composition of action guards and invariant (visual attachment
after rami�cation) depicted in Figure 3.15 provides that the invariant need not be true
at the moment when the node is left via an action. This di�ers from the semantics
of the popular hybrid automata formalism [ACH+95], where the invariant is required
to hold true when a state is left via one of its outgoing transitions. In our view the
choice made for HySCharts is rational, since when specifying with hybrid automata
designers often choose invariants as negations of action guards, such that at any point
in time only one of them can be true.

In order to avoid time deadlock , i.e. situations in which neither one of the action
guards nor the invariant is true, invariants must be chosen with care. On the level of
semantics, time deadlock leads to components which are not total in their input, but
yield an empty set of streams for some inputs. (Note that the type of components
does not permit �nite output streams.) Thus for primitive nodes we require that at
least one action guard or the invariant is true for any input and latched data state.
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3.5.1.2 Hierarchy

A composed or hierarchic node in the HySChart whose outgoing transitions all stem
from one of its subnodes represents the additive graph in Figure 3.15, bottom right.15

To avoid confusion with hierarchic nodes in the HySChart we call such a graph a
hierarchic computation unit. It contains the semantics, i.e. the computation units,
of all the hierarchic node's subnodes in the HySChart. A principal di�erence from
(primitive) computation units is that the entry points of the hierarchic computation
unit are not identi�ed; instead they are connected to the corresponding entry points
of the contained sub-computation units. Similarly, the exit points of the subunits are
connected to the corresponding exit points of their enclosing hierarchic computation
unit. In addition, the hierarchic unit has a wait entry and wait exit point for every
wait entry/exit point of the subunits. When it receives the data state on one of
them, the data state is directly passed on to the wait entry point of the corresponding
sub-computation unit. Thus, the wait entry point identi�es a subunit. Under the
assumption that the hierarchic node's invariant Inv holds, the hierarchic computation
unit is left along a wait exit point, if a subunit is left along its corresponding wait exit
point. Note that the invariant of the hierarchic node in the HySChart is duplicated
in the hierarchic computation unit for every wait exit point of a subunit. This is
needed, because the exit point information of the subunit must not be lost when the
invariant is checked. To ensure that the hierarchic invariant indeed is true when a
subunit is left along a wait exit point, we require that the invariant is implied by
the disjunction of the invariants of its enclosed computation units. In presence of
preemption this requirement is relaxed (see Section 3.5.1.5). Enforcement of this
condition is motivated by the desire to regard the hierarchic levels in a HySChart in
isolation.

3.5.1.3 Actions and Invariants

An action a is a relation between the current input, the latched data state and the
next data state:

a � (I � S)� S

For HySCharts, actions are speci�ed by their characteristic predicate. Such a predicate
is the conjunction of a precondition (the action guard) on the latched data state and
the current input and a postcondition (the action body) that determines the next data
state. The precondition implies that the postcondition is satis�able, hence the action
is enabled i� the precondition is true. Invariants are of the same type as actions
and are similar to action guards. In particular, they do not modify the data state.
In the characteristic predicates we use left-quoted variables v8 to denote the current
input, right-quoted variables v0 to denote the next data state and plain variables to

15Hierarchic nodes with outgoing transitions that do not originate from one of its subnodes are
covered in the following paragraph on preemption.
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denote the latched data state. Moreover, we mention only those variables which are
modi�ed in the action explicitly. For the others (also in invariants), we always assume
the necessary equalities which state that they do not change. To simplify notation
further, we associate a variable c with each channel c. For variables associated with
discrete or hybrid channels, we write c:val8 for the channel's current value and c:t8 for
the current time stamp. As indicated in Section 3.2.1, for each time stamp associated
with a discrete or hybrid input channel c there is a private copy in a component's
data-state space, the latched time stamp, denoted by c:t. It is used by the component
to remember the time stamp of the last input it processed. For example, the action
of resetting the �lter in the EHC example is de�ned as follows:

dReset :t8 6= dReset :t ^ dReset :t0 = dReset :t8 ^ fHeight :val0 = 0 ^ fHeight :t0 = now

The �rst conjunct in the predicate is the action guard, the rest is the action body.
The guard is true if dReset changes. When this is the case, the latched copy of dReset
is updated (2nd conjunct) and fHeight is reset to 0 (3rd conjunct). Variable now is
the current time in the EHC. Whenever variables that are associated with discrete or
hybrid output channels are modi�ed in an action body, the respective time stamp for
the channel must be set to now (4th conjunct). In a tool environment, this convention
can automatically be enforced by the tool. In Section 5.2.1, we elaborate further on
the syntax for action guards. Note that if the action guard is false, the rami�cation in
a computation unit will nondeterministically select another action (or the invariant).

In conjunction with hierarchy, which can lead to the sequential composition of actions,
the action guards must be chosen with care in order to guarantee that the discrete part
speci�ed by the HySChart is total. We require that the �rst action in a sequence be
chosen such that all succeeding actions are guaranteed to be enabled. If rami�cation is
involved in the sequential composition of actions, it is suÆcient when one of the actions
in each rami�cation is guaranteed to be enabled. Similarly, tools for Statechart-like
notations often enforce that no guard can be speci�ed for the succeeding transition
segments.

Events. Latched time stamps allow us to model many di�erent communication styles.
Particularly interesting for our example are events which we model by changing the
modi�cation time stamp associated with a discrete channel e. The occurrence of an
event is detected by testing if the current time stamp for that channel is di�erent
from the latched time stamp, i.e. e:t8 6= e:t. We write e? as abbreviation for e:t8 6=
e:t ^ e:t0 = e:t8. (The second part of the conjunction updates the latched time stamp
of e.) Similarly, the sending of an event is speci�ed by e:t0 = now which is abbreviated
by e!, where now is the component's private clock. With this notation, the �lter reset
action can be rewritten as dReset? ^ fHeight 0 = 0. Message passing over a discrete
channel c is modeled in the same way. This time, however, the discrete channel not only
transmits a time stamp c:t but also a value c:val, namely the message. Checking the
arrival of message a on channel c is denoted by the following expression: c?^c:val8 = a.
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We abbreviate this by c?a. Similarly, sending the message a on the channel c is given
by e! ^ c:val0 = a which is abbreviated by c!a.

As in the case of events and messages, the current and latched time stamps that are
associated with hybrid channels can be used to detect discrete jumps in their value.

3.5.1.4 Preemption

In Statecharts a preemptive (or group) transition is a transition that may be taken from
all substates of a hierarchic state. In HySCharts we use transitions originating directly
from a hierarchic node (and not from any of its subnodes) to express preemption. The
actions associated with such transitions are called preemptive actions. As discussed in
[GSB98b], one can de�ne such a preemptive action as having higher priority than any
action inside the hierarchic node (strong preemption) or as having lower priority than
any action inside the node (weak preemption). Here we use weak preemption because
it is simpler and it allows actions inside a hierarchic node to overwrite the preemptive
action.

The corresponding computation unit (or additive graph) for a hierarchic node with pre-
emption is obtained as follows. First, we replace the hierarchic node with preemptive
actions pa1; : : : ; pah (Figure 3.16, top left) by its corresponding graph of Figure 3.15,
bottom right, but without the hierarchic node's invariant. It is treated in a second
step. This �rst step yields a graph of the form given in Figure 3.16, top right.16 In a
second step, we obtain the hierarchic computation unit for the original node with the
preemptive transitions, by replacing the graph in Figure 3.16, top right, by the graph
in Figure 3.16, bottom. The subnode in the left part of the graph is exactly the graph
in the node in Figure 3.16, top right.

This hierarchic computation unit basically expresses that whenever a sub-computation
unit is left on a wait exit point wt and one of the preemptive actions is enabled, it
can be executed and is followed by the exit action exit , which is associated with the
hierarchic node in the HySChart. The hierarchic computation unit is then left along
an exit point pex corresponding to the executed preemptive action. A preemptive
action must be executed if no other preemptive action is enabled and the hierarchic
node's invariant Inv is false.17 If the invariant is true and selected nondeterministically
(by rami�cation), the hierarchic computation unit is left along the wait exit point that
corresponds to wt of the subunit, i.e. the subunit information is maintained.

In our example of Figure 3.3, left, the action o2b is a preemptive action of the composed
node outBend .

16The interior of the graph is only depicted schematically here. It exactly is the graph of Figure 3.15,
bottom right, but without the hierarchic node's invariant which would usually have to be evaluated
on the way to a wait exit point of a hierarchic computation unit.

17As before, the hierarchic node's invariant is duplicated in the hierarchic compution unit for every
wait exit point of a sub-computation unit.
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Figure 3.16: The semantics of preemption.

3.5.1.5 Sound Invariants

Hierarchy and invariants. Due to the syntactic transformation of HySCharts
to additive hierarchic graphs, the nodes representing the invariant in a hierarchic
computation unit can only be reached when coming from the wait exit points of
the computation unit's subunits. These wait exit points on their part can only be
reached via the respective subunit's invariant (see the arcs leading to boxes labeled
Inv in Figure 3.15, bottom right, and Figure 3.16, bottom). To ensure that the
hierarchic computation unit can be left in such cases, we demand that if the invariant
of one of its subunits is true, either the hierarchic units's invariant also is true, or
one of its preemptive actions, is enabled. Formally, we require that there exists a
(i; s0; s00) 2 Inv [

Sn

i=1Guard i for all (i; s; s
0) 2

Sk

j=1 Inv j, where the Guard i refer to
the action guards of the hierarchic computation unit's preemptive actions, Inv refers
to its invariant and the Inv j refer to the invariants of its subunits. For every hierarchic
computation unit we may only consider preemptive actions, because exit from the unit
on the other exit points is determined by the actions associated with the subunits.
Hence, we demand that if the invariant of a subunit is true, either the invariant of its
enclosing hierarchic computation unit also is true or one of its preemptive actions is
enabled. As explained above, for a hierarchic computation unit without preemptive
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transitions this means that the invariant must be implied by the disjunction of the
invariants of its subunits. In terms of the HySChart's nodes, this requirement similarly
means that if the invariant of a subnode is true, either the enclosing hierarchic node's
invariant also is true or a transition emerging directly from the hierarchic node is
enabled. This requirement enables us to regard the hierarchic levels in a HySChart in
some isolation. Namely, leaving a sub-computation unit on a wait exit point cannot
be prevented at higher hierarchic levels. In terms of the HySChart's nodes, this means
that if no preemtive action of a hierarchic node is enabled, the node cannot prevent
that control remains is a subnode whose invariant is true.

Furthermore, the above condition helps to avoid time deadlocks. Enforcing it, together
with requiring that (1) every primitive computation unit can always be left via an
action or the invariant and (2) all actions in a sequential composition are enabled if
the �rst one is, results in a suÆcient condition for totality of the discrete part that
the HySChart de�nes.

Idling and invariants. In Section 3.2 we furthermore demanded that the discrete
part may only idle on a topologically open subset of I � n � S, in order to ensure well
de�nedness of the hybrid machine model. This condition is satis�ed by a HySChart
de�ning the discrete part, if the invariant of every node in the chart identi�es a
topologically open set in I � S. This can be explained as follows: The hierarchy in a
HySCharts leads to sequentially composed invariants, which on the level of semantics
corresponds to their intersection (because invariants leave the data state unchanged).
As there is only a �nite number of hierarchic levels in a HySChart, the composed
invariant also identi�es an open set.

As far as the choice of invariants is concerned, using the negation of the disjunction of
the actions guards of the transitions directly emerging from a node (and from none of
its subnodes) is a sensible choice for the time being. It provides that transitions are
eager, i.e. they are taken as soon as their guard is true, and it is compatible with our
requirements for totality from above, which related invariants on di�erent hierarchic
levels, and invariants and action guards on the same level. We call such an invariant
an exact invariant. If the syntax of actions is suÆciently simple, such invariants can
be automatically computed by a CASE tool. If the guards are topologically closed
sets, this also guarantees that the invariant is open. Note that action guards of
the form e:t8 6= e:t, which are used to detect discrete changes and events, identify a
closed set on I � S since we use the discrete topology for time stamps. The same
holds for propositions over discrete variables with domains di�erent from the real
numbers. Furthermore, non-strict inequations of arithmetic expressions over real-
valued variables also result in closed sets. Hence, the negation of a (�nite) disjunction
of guards built from such atoms leads to legal invariants. The version of HyCharts
without invariants in [GSB98a, GS00b] uses such action guards and is equivalent to
the version presented here, if invariants are derived from action guards as proposed
above. Section 5.2.1 will explain how invariants which relax the eagerness of transitions
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can systematically be derived from action guards. The choice of invariants presented
there results in delayable transitions. They can, but need not, be taken as long as
their guard is true. However, note that the selection of invariants can also be based
on other principles.

3.5.1.6 Semantics of the Discrete Part

If each node in the HySChart is replaced by the corresponding computation unit of
Figure 3.15, right, and 3.16, bottom, we obtain an additive hierarchic graph whose
primitive nodes merely are relations, which correspond to the actions and invariants.
Writing the graph as the corresponding relational expression with the additive oper-
ators gives the denotational semantics of the HySChart's discrete part Com, i.e. the
discrete part of a hybrid machine.

At the highest level of hierarchy, the hierarchic graph resulting from the HySChart has
one wait entry/exit point pair for every primitive (or leaf) node in the chart. Thus, a
wait entry/exit point uniquely identi�es a primitive node of the HySChart (and also
all hierarchic nodes in which the primitive node is contained). On one of these entry
points Com receives the latched data state from Lim, and similarly on one of the
exit points it gives the next data state to the analog part. On the semantic level, the
type of this input (output) interface is the n-fold sum n � S, where there is exactly
one summand in the sum for every entry (exit) point. This also means that n is the
number of primitive nodes in the HySChart. Together with the external input, this
interface type de�ned by the entry/exit points provides that the discrete part's type is
(I�n �S)! P(n �S), as required in Section 3.2.2 (where totality of Com is assumed).
The analog part uses the entry/exit point information encoded in the disjoint sum to
select the right activity for every node in the HySChart (Section 3.5.2).

Note that when Com gives the next program state (k0; s0) 2 n � S for current input i
and latched program state (k; s), then in terms of the additive graph this means that
s0 is given on wait exit point k0. In the HySChart from which the additive graph for
the discrete part is derived, k0 identi�es a primitive node and also all hierarchic nodes
which contain this node. By construction of the additive graph for the HySChart
all invariants of these nodes must be true for i and s0, if s0 is given on wait exit
point k0. When we now use (k0; s0) as input for Com, the wait entry points provide
that k0 identi�es the same primitive and hierarchic nodes as before. If we again
use external input i, the invariants of these nodes are still true for i and s0. Thus,
(k0; s0) 2 Com(i; (k0; s0)) holds, i.e. Com can idle for i and (k0; s0). This was used in
the proof in Section 3.2.4.

Finally, note that it is reasonable to call the nodes in a HySChart control states,
because the construction of the discrete part ensures that every primitive node in a
HySChart indeed corresponds to a control state on the level of semantics. When the
context is clear, we therefore use the term control state (or simply state) to refer to
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a node of a HySChart. This terminology is carried over to the hierarchic nodes in
the HySChart. Thus, they are also called hierarchic states and its subnodes are also
called substates.

3.5.1.7 Example

To outline the utility of this approach for hybrid systems we now return to the
HySChart for the controller given in the introduction.

Example 3.6 (The EHC's Control component.) We describe the states and tran-
sitions of the HySChart in Figure 3.3 in a top-down manner. The activities, written
in italics in the �gure, are explained in the next section. For easier reference we repeat
the HySChart here (Figure 3.17) and collect the de�nitions of all actions, invariants
and activities occuring in it in Table 3.1. The invariants we use in this example result
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Figure 3.17: The EHC's Control component (repeated).

from the negation of the disjunction of the action guards of all transitions originating
directly from a state (and from none of its substates). The example is selected in a
way which allows us to present a large part of the various speci�cation facilities in
HySCharts. From a methodological point of view, a model like this should not occur
in the development process if the re�nement techniques of Chapter 5 are employed
because the model mixes abstract speci�cation fragments, like the continuous sensing
of some input channels and vaguely speci�ed activities, with implementation oriented
fragments, like sampled reaction to other input channels.

The state Control . The top-level hierarchic state Control has two substates,
outBend and inBend . When the controller senses that the car is in a curve, state
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Actions:
b2o � bend? o2b � b2o
t o � w � ts i2i � lb � fHeight :val8 � ub

i2u � fHeight :val8 � lb i2d � fHeight :val8 � ub

reset � reset ! u2u � fHeight :val8 � lb

u2i � lb � fHeight :val8 � ub u2d � fHeight :val8 � ub

d2d � fHeight :val8 � ub d2i � lb � fHeight :val8 � ub

d2u � fHeight :val8 � lb entry � w0 = 0

Invariants:
Control inv � true inBend inv � :(bend?)
outBend inv � inBend inv inTol inv � w < ts
outTol inv � true upinv � w < ts
down inv � w < ts

Activities:

w inc � _w = 1 a const � d
dt
aHeight = 0

a inc � d
dt
aHeight 2 [cp�; cp+] a dec � d

dt
aHeight 2 [ev�; ev+]

Table 3.1: De�nition of actions, invariants and activities of the Control component.

inBend is entered. It is left again when the controller senses that the car is no longer
in a curve. Sensing a curve is event-driven. We use the discrete channel bend with
its associated time stamp for this purpose. The actions o2b and b2o are identical and
very simple: o2b � b2o � bend? The invariant of Control is true. States inBend and
outBend have invariant inBend inv � outBend inv � :(bend?).

The state outBend . State outBend is re�ned to inTol and outTol as shown in
Figure 3.17, top right. Control is in inTol as long as the �ltered chassis level is within
a certain tolerance interval. The compressor and the escape valve are o�. If fHeight
is outside this interval at a sampling point, one of the substates of outTol is entered.
These substates are left again, when fHeight is inside the desired tolerance again and
the �lter is reset then. The actions originating from inTol are de�ned as follows:

t o � w � ts; i2i � lb � fHeight :val8 � ub
i2u � fHeight :val8 � lb; i2d � fHeight :val8 � ub

Note that fHeight :val8 refers to the current value received on the hybrid input channel
fHeight from the �lter component. An interesting aspect of inTol is the speci�cation
of the composed action started by the timeout t o, which semantically corresponds
to the rami�cation operator for hierarchic graphs. Alternatively, one could use three
separate transitions instead; however, in this case the visual representation would fail
to highlight the common enabling condition t o. The invariant of inTol is w < ts,
i.e. the negation of t o. It does not re
ect the informal meaning of inTol , being the
state in which fHeight is inside the tolerance interval, because the outgoing transition
of inTol is solely triggered by the timeout.
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Leaving the state outTol along transition reset causes the execution of the reset action.
This action is always enabled and de�ned by reset � reset !. Note that we use the
same name for the action and its associated event here. The invariant of outTol is
true, because there is no transition emerging directly from it. (The reset transition
does not originate directly from it, but from its substates.)

The transition o2b originates from the hierarchic state outBend (and from none of its
substates). This expresses weak preemption, i.e. this transition can be taken from any
substate of outBend , as long as it is not overwritten at lower hierarchic levels.

The state outTol . As shown in Figure 3.17, bottom right, the state outTol consists
of the substates up and down. When the �ltered chassis level is too low at a sampling
point, state up is entered, where the compressor of the EHC system is on. When the
level is too high, down is entered, where the escape valve of the system is open. Control
remains in these states until fHeight is inside the desired tolerance again (actions
u2i; d2i). These actions cause outTol to be left along transition reset , indicated by
label reset of the exit points. The actions originating from up and down are very
similar to those of inTol :

u2u � fHeight :val8 � lb; u2i � lb � fHeight :val8 � ub; u2d � fHeight :val8 � ub;
d2d � fHeight :val8 � ub; d2i � lb � fHeight :val8 � ub; d2u � fHeight :val8 � lb

Again, rami�cation is used in the chart to highlight the common enabling condition
t o for these actions. Similar to inTol , the invariant of up and down is w < ts because
the transitions originating from these states are triggered only by the timeout.

As indicated by the symbol !Æ, the states inTol , up and down have an entry action.
It is de�ned as entry � w0 = 0 and resets w. Together with action t o and the activity
w inc, it models sampling in these states, i.e. all transitions directly originating from
these states can only be taken at the end of a sampling interval.

Semantics. The discrete part follows directly from the HySChart by replacing the
nodes in the HySChart by their corresponding computation units of Figure 3.15, right,
and 3.16, right. As an example, Figure 3.18 depicts the resulting additive hierarchic
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Figure 3.18: Additive hierarchic graph for Control .
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graph for node (or state) Control . It is derived from the HySChart in Figure 3.17. The
(sub)computation unit for state outBend which also covers the preemptive transition
o2b is not depicted in the �gure. Its structure is similar to the graph in Figure 3.16,
bottom. The (sub)computation unit for state inBend is the subgraph highlighted in
gray in the �gure. The corresponding textual notation is:

Control = ((14=n ;+ outBend + i ;+ i + 1
3=n ;+ inBend + i + i + i ;+

4
1=n) "

1
+) ;+

3
1=n

inBend = 2>� ;+�<2 ;+ (b2o + inBend inv)

where b2o and inBend inv are de�ned as above and the de�nition of outBend is not
unfolded.

Every wait entry/exit point pair at the highest hierarchic level of the additive graph
which is derived from a HySChart corresponds to a summand in the n-fold sum in the
type of the HySChart's discrete part. For Control , this means that its discrete part
has type:

Com 2 (I � 4 � S)! P(4 � S)

This re
ects the four primitive nodes (or states) inBend , inTol , up and down in
the HySChart. Here, the input space and the data-state space are de�ned by I =
R+�(R�R+), which corresponds to discrete channel bend and hybrid channel fHeight ,
and S = R � R+ � R+ � R+ � R+ � R+ , which corresponds to continuous output
channel aHeight , discrete output channel reset , latched time stamps for channels bend
and fHeight and further private variables w and now . �

Note that the user only has to draw the HySChart and give the de�nitions of the
actions and invariants, or specify how to derive invariants from actions. The corre-
sponding discrete part can be constructed automatically.

3.5.2 The Analog Part

The second part of a HySChart's semantics is the analog part it de�nes. In this section
we explain how this analog part is derived from the chart.

Syntax of activities. Each activity name in the HySChart refers to a system
of ordinary di�erential equations and di�erential constraints on the variables of the
component and the input. To simplify notation of the equations, we implicitly assume
suÆx :val for the variables in an activity de�nition which are associated with hybrid
channels. Time stamps and variables associated with discrete channels are not changed
by activities. The concrete syntax of activities a is as follows:

a ::= _~x#f(~x;~i) j a ^ a

where # 2 f�;�;=; >;<; 6=g, ~x is a tuple of real-valued controlled variables, exclud-
ing time stamps, and ~i denotes the tuple of all real-valued current inputs, excluding
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time stamps. f is a function over ~x and ~i. Usually tuple ~x only contains some real-
valued controlled variables. This re
ects that the activity only constrains the evolution
of some, but not all, controlled variables. Interval constraints like _x 2 [c1; c2] can be
reduced to the above syntax and are regarded as macros. Note that, in principle,
continuous time block diagrams (Section 2.1.2) may also be used for activity spec-
i�cation, as standard methods exist for transforming them to di�erential equations
provided they only contain blocks for the arithmetic operations, integration and dif-
ferentiation.

Example 3.7 (The activities of Control .) In our example in Figure 3.17, the ac-
tivity names written in italics stand for the following di�erential constraints:

w inc � _w = 1 a inc � d
dt
aHeight 2 [cp�; cp+]

a const � d
dt
aHeight = 0 a dec � d

dt
aHeight 2 [ev�; ev+]

where cp�; cp+ > 0 and ev�; ev+ < 0 are constants. The notation _x and d
dt
x is used

interchangeably to denote the time derivative of x. For short variable names the \dot"-
notation is more convenient. Due to activity w inc, w evolves in pace with physical
time. Variable aHeight , which models the in
uence of the controller on the chassis
level (Figure 3.2), either increases at a rate that is in the interval [cp�; cp+] (activity
a inc), decreases (a dec) or remains constant (a const).

This is all the user has to provide to specify the analog part. �

Semantics of activities. The semantics [[a]] � (IRs+ � SRs+)� SRs+ of an activity
a is de�ned in the following way:

[[ _~x#f(~x;~i)]] = f((�; �); �) 2 (IRs+ � SRs+)� SRs+ j

8t � 0: _�:~x(t)#f(�:~x(t); �:~i(t))g

[[a1 ^ a2]] = [[a1]] \ [[a2]]

where # 2 f�;�;=; >;<; 6=g and for an input or state stream � we write �:~y to
denote those components of � which correspond to the variable names in tuple ~y.
Similarly _�:~y denotes the tuple of the derivatives of those components of � which
correspond to the variable names in ~y. As we only consider smooth functions in
activities and as the variables in tuple ~x are required to be real-valued, the derivative
is guaranteed to exist. All controlled variables which are not a component of ~x as well
as the components of ~x at time 0 are not constrained by the activity _~x#f(~x;~i). At the
start of a smooth segment, the start value of ~x is determined by Com and Lim of the
machine model. Note that the received state-stream and the output state-stream of the
activity coincide. The semantics de�nition for conjunction is as expected. Obviously,
conjunction preserves that the received state-stream and the output state-stream of
an activity coincide. Hence, for all activities a, ((�; �); �) 2 [[a]] implies � = � . If
no activity is speci�ed for a node in a HySChart, the time-extended additive identity
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relation i restricted to smooth streams is used as activity semantics for that node.
Thus, no further constraints on the received state-stream are added this way.

By de�nition, activities are not total in IRs+ � SRs+ , but only allow inputs �; � for
which the respective constraints are satis�ed. In this case, their output is the same
state-stream � they received. In interaction with the other parts of the machine model,
in particular the feedback loop and Com, this property of activities provides that Com
and the activities must agree on the same smooth evolution of the component's state
such that Com can idle for this evolution. As we will see below, usually resolvability
of the di�erential constraints used as activities is required. This implies that the
constaints must be satis�able for any smooth external input stream � 2 IRs+ .

Note that the above general syntax includes constraints of the form _x = 0 denoting
that real-valued variable x remains constant. For discrete variables and time stamps,
the restriction of activities to smooth streams guarantees that they are not modi�ed by
activities. The reason for this is that we use the discrete topology for these variables.
In this topology the evolution of a variable is continuous i� it is constant. This
concludes the syntax and semantics de�nition of activities. In the following we argue
on the level of activity semantics and use the term activity to refer to semantics, not
syntax.

Hierarchic composition of activities. To re
ect the hierarchy in the HySChart
the semantics of the activities speci�ed in the nodes are composed appropriately with
the time-extended additive operators introduced in Section 3.3.4. We use sequential
composition to compose activities at successive levels of hierarchy and the (time-
extended) disjoint sum to compose activities at the same hierarchic level.

A HySChart can be seen as a tree with the primitive nodes as its leaves. The HySChart
in Figure 3.17, for example, has node Control as its root and the nodes inBend , inTol ,
up and down as leaves. Starting from the tree's root, we derive the composed activity
de�ned by the HySChart as follows (we write ActN for the (primitive) activity of node
N and CActN for the composed activity of node N , here):

� if N is a primitive node, we de�ne CActN = da(ActN ), where da(:) denotes the
discontinuity adaption of activities (Section 3.2.3)

� if N has subnodes M1; : : : ;Mn which have the composed activities CActMi
=

+mi

j=1ActMi;j, where each ActMi;j stands for a sequential composition of adapted
primitive activities, then we de�ne:

CActN = +n
i=1 (+

mi

j=1 (da(ActN );+ActMi;j))

By convention we implicitly add activity d
dt
now = 1 to the primitive activity Actroot

of the root node. Provided now is initialized with zero, this ensures that it denotes
the time since system start. The analog part is the composed activity of the root node
of the HySChart, i.e. Ana = CActroot. Figure 3.19 and the following example explain
this de�nition.
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Figure 3.19: The Control component's analog part.

Example 3.8 (The analog part of Control.) The HySChart in Figure 3.17 has
analog part:

Ana � (da(w inc) ;+ da(a const))+(da(w inc) ;+ i ;+ da(a const))+
(da(w inc) ;+ i ;+ i ;+ da(a inc))+(da(w inc) ;+ i ;+ i ;+ da(a dec))

where we applied associativity of ;+ and+, and used that the discontinuity adaptation
of the identity again yields i. The activity names are used to refer to the semantics of
each activity, here. Note that the expression is equivalent to da((w inc ;+ a const))+
da((w inc ;+ a const))+ da((w inc ;+ a inc))+ da((w inc ;+ a dec)) because the iden-
tity connector is the neutral element for sequential composition and da(:) distributes
over sequential composition. Figure 3.19 depicts the analog part as a graph. �

The entry and exit point symbols in Figure 3.19 highlight that the analog part has
one path through the graph for every primitive node in the HySChart. When we
construct the discrete part from the HySChart, we also get one wait entry and wait
exit point at its highest level of hierarchy for each primitive node. This allows us to
sequentially compose the discrete part with the analog part as in the semantics of a
hybrid machine in Section 3.2. The distinct wait points allow both the discrete part
and the analog part to know which node in the HySChart currently has control and
to behave accordingly.

As we saw above the semantics de�nition of primitive activities ensures that the state-
stream received and the produced output state-stream are equal. Regarding the de�ni-
tions of sequential composition, disjoint sum of activities and discontinuity adaptation
it is easy to see that this property is preserved by these operations. Thus, also for the
analog part ((�; �); �) 2 Ana implies � = � .

Resolvability. In Section 3.2 we demanded that the analog part is resolvable. This
provides that it can react to any smooth external input and any start state received
from the discrete part. As we have seen, the analog can be written as the disjoint sum
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of sequentially composed, adapted activities. A suÆcient condition for resolvability of
the analog part is that all di�erential equations (and di�erential constraints) occur-
ring in such sequentially composed activities are resolvable and the set of controlled
variables occurring in each equation is disjoint from the controlled variables occurring
in all other equations of the sequential composition. Resolvability of a di�erential
equation (or constraint) means that the initial value problem the equation de�nes is
solvable for any initial value and any smooth external input. Activities composed with
disjoint sum may constrain the same variables, because only one of them determines
the sum's behavior anytime. Resolvability may be lost if two sequentially composed
solvable initial value problems have no solution valid for both.

3.5.3 Example: A Typical Hybrid Component

From the point of view of hybrid speci�cation, the component Filter of the EHC
system (Figure 3.2) is interesting. Its role is to eliminate noise in the input sHeight it
receives from the environment. Furthermore, it allows the component Control to reset
its internal state. The HySChart for the Filter component is depicted in Figure 3.20.
Action name set stands for action dReset? ^ fHeight :val0 = 0 ^ fHeight :t0 =
now which resets fHeight :val and updates the time stamp for the associated output
channel fHeight . Activity name f follow denotes the di�erential equation d

dt
fHeight =

1
T
(sHeight�fHeight), where T is the �lter's time constant, i.e. a measure for its inertia.

As invariant for state Filter we use the negation of the guard of set, i.e. :(dReset?).

f_follow
Filter

set

Figure 3.20: HySChart for the Filter component.

Both the discrete and the analog part of the �lter are very simple. However, as there
is a very close interaction of the discrete dynamics (the set action) and the continuous
dynamics (the di�erential equation), it is hardly possible to decompose the �lter into a
purely discrete and a purely continuous component that cannot exhibit discontinuities.
Therefore, the �lter underlines the need for hybrid speci�cation techniques.

3.6 Integration of Other Formalisms

The multiplicative interpretation of ? not only allows to compose components speci�ed
under the additive interpretation (HySCharts), but it enables us to compose arbitrary
components of type IRp+ ! P(ORp+), where I and O is a set of input and output
channels, respectively.
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This means that components can be speci�ed with any formalism which de�nes a
component as a total, time guarded relation on piecewise smooth, piecewise Lipschitz
continuous inputs and outputs. In particular this allows us to use description tech-
niques from engineering disciplines, like e.g. block diagrams, which are widely used in
control theory.

Example 3.9 (A delay element.) The delay element of the EHC transmits event
reset with delay Æ > 0. By our conventions the event is encoded as a stream of time
stamps, where the time stamp always gives the last point in time at which there was
a discontinuity on the channel (Section 3.4). The output of the delay element has to
satisfy the same convention since it also encodes events. Thus, if the input stream has
a discontinuity as time u, its time stamp at that time also is u and the output of the
delay element must have the same discontinuity at time u+Æ with time stamp u+Æ. In
other words, the time stamps in the (delayed) output stream must be incremented by Æ
to ensure that they correctly specify points of discontinuity. Further case distinctions
are needed to treat initialization correctly. As a result, the delay element can directly
be speci�ed as a relation as follows:

D 2 R+
Rp+ ! P(R+

Rp+)
D(�) = fo 2 R+

Rp+ j 8u 2 R+ : (u < Æ ) o(u) = 0) ^
(u � Æ ) ((�(u� Æ) = 0 ^ o(u) = �(u� Æ)) _

(�(u� Æ) 6= 0 ^ o(u) = �(u� Æ) + Æ)))g

In the general case of delay elements for arbitrary discrete or hybrid channels, the
streams of time stamps are treated as above and the delayed stream of values � is
given by �(u) = �(u� Æ) for u � Æ and stream of input values �. In the case of delay
elements for continuous channels we only need to consider the stream of values. �

3.7 Discussion and Further Work

3.7.1 Contribution

Based on a clear hybrid computation model, we were able to show that the ideas on in-
terpretations of hierarchic graphs presented in [GSB98b] can smoothly be carried over
to hybrid systems and yield modular, visual description techniques for such systems.
Namely, the resulting techniques are HyACharts and HySCharts for the speci�cation
of hybrid system architecture and hybrid component behavior, respectively. A further
motivation for using the extensive hierarchic graph framework as a semantic basis for
HyCharts is the compositionality of these graphs w.r.t. re�nement. Re�ning a node
of a graph is guaranteed to result in a re�nement of the whole graph. For HyACharts,
this can be used directly. For HySCharts, the syntactic transformations which map
them to hierarchic graphs must be observed. In more detail, this means that the re-
�nement of actions, invariants and activities in a HySChart is guaranteed to result in
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a re�ned HySChart, but some care is necessary to ensure that it de�nes a component
which still is total in its input (see Chapter 4).

We demonstrated the use of HyCharts and their features with an example. Apart
from many features which are common in Statecharts-like formalisms, HyCharts in
particular o�er the ability to compose HySCharts with components speci�ed with
other formalisms. In our opinion, such heterogeneous speci�cations are a key property
for designing hybrid systems, as it allows the integration of description techniques
from di�erent engineering disciplines.

From a methodological point of view, we conceive a HySChart as an abstract and
precisely de�ned mathematical model of a component in a hybrid system. Knowing
the behavior of the analog part as speci�ed by di�erential constraints allows us to
develop more concrete models that can be implemented on discrete computers. This
will be the topic of Chapter 5.

Although this thesis focuses on hybrid systems appearing in the context of disciplines
such as electrical and mechanical engineering, we think that the continuous activities
in HySCharts also make them well suited for specifying multi media systems, such as
video-on-demand systems. Basically HyCharts seem to be appropriate for any mixed
analog/digital system in which the use of continuous time is more natural than a
discrete time model. In particular, this often applies to early development phases.

3.7.2 Related Work

The basic motivation for introducing these new description techniques were expe-
riences obtained when modeling the EHC case study [SMF97] outlined above with
hybrid automata [ACH+95]. A basic result of the case study was that the lack of
modularity of hybrid automata complicates speci�cation and analysis. As there is
no concept of input and output variables in hybrid automata, the invariants of one
automaton in a parallel composition may prevent transitions in parallel automata.
Thus, the behavior of a hybrid automaton in a parallel composition cannot be studied
independently of the others.18 Furthermore, the lack of hierarchic states turned out
to be inconvenient for speci�cation. In this work, we developed a formal, modular
description technique for hybrid systems that is associated with a visual formalism
and incorporates advanced state machine features such as hierarchic states and pre-
emption. In contrast to hybrid automata, HyCharts are modular and suitable for open
systems.

The hybrid modules from Alur and Henzinger [AH97] are modular, but their utility
su�ers from the lack of a graphical representation and from the fact that it is not
obvious how to model feedback loops. Parallel composition of modules is only possible
if there are no cyclic dependencies between variables. At �rst sight this seems to

18For more details see [MS00].
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prohibit feedback loops. However, loops are possible if the cyclic dependency is broken
by a time step. For theoretical reasons, loops pose a problem in our approach too.
We solve it by explicitly allowing feedback loops, as long as their well de�nedness is
ensured. One way to do so is by including a delay in the feedback loop. By making
this requirement explicit, users of our notation are guided to modeling loops correctly.

Another modular model, hybrid I/O automata, is presented in [LSVW96]. It is promis-
ing from the theoretical point of view, but it does not address some issues relevant
for application in practice, such as graphical representation. In this respect, hybrid
I/O automata, and also the hybrid modules mentioned above, are complementary to
the work presented here. For HyCharts, aspects relating to the practical utility of the
formalism are strongly emphasized.

A �rst approach towards a hybrid version of Statecharts can be found in [KP92]. The
operational semantics given there, however, does not allow interlevel transitions and
hierarchic speci�cation of continuous activities. Therefore, this approach does not
fully support hierarchy, unlike HyCharts, which permit both.

Except for HyCharts, all the models mentioned above are based on some kind of
trace semantics in which continuous trajectories are pasted together at discrete time
instances. At these instances, the preceding trajectory, the succeeding trajectory and
possibly some intermediate discrete actions determine the values for the variables in
the model. As the end point of the preceding trajectory, the values determined by
intermediate discrete actions and the start point of the succeeding trajectory need not
be equal, we �nd situations in which one variable is assigned a sequence of values at
the same physical time instant. This means that such a trace is not isomorphic to a
function of time. In our opinion this complicates combining the above models with
models for continuous systems, which evolved in the engineering disciplines, because
in such models the inputs and outputs of system components are usually functions of
time. A decision must be made that determines which value of the variable is to be
visible at a components interface at a physical time instant, i.e. we must �nd a mapping
from the traces to functions. For hybrid automata, for instance, intermediate values in
a sequence of discrete actions can cause further actions in parallel components. Thus,
such a decision is hardly possible. For HyCharts, we use a simpler form of traces.
Here, any variable in a component's interface has exactly one value at each time
instant; the variable evaluation is a function of time. Note that the transition from
traces to functions impedes the use of computational induction [Pnu94]. However, in
Section 3.2.4 we saw how computational induction can be employed for components
speci�ed by HySCharts. Appendix A.1.2 formalizes this.

As already discussed in Chapter 2, commercial products for the design of embedded
systems, like MATLAB/Simulink/StateFlow [TMI00], take a di�erent approach to
specifying hybrid systems. In this approach, the system needs to be partitioned into
discrete-time or discrete-event state-transition-based components and components im-
plementing control laws or continuous dynamics before speci�cation can begin. While
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this method is appropriate for the detailed design of many systems, we think it is
inadequate for high-level design before particular control algorithms are �xed, and is
highly inconvenient for specifying components that are hybrid themselves, like some
environment models which contain, for example, phase transitions. A formal model
that uses a speci�cation approach similar to MATLAB/Simulink/StateFlow can be
found in [EH96]. Interestingly there are some parallels between our hybrid machine
model (Section 3.2) and the model presented there.

For logic and Petri net-based approaches to the formal speci�cation of hybrid sys-
tems we refer the reader to [Lam93, CRH93, Wie96]. Apart from formal techniques,
there is plenty of work on simulation packages for hybrid systems (see [Mos99] for
an overview). Often these packages o�er convenient graphical description techniques
such as [WFSE96, Bro97a], but usually no formal semantics is de�ned for them. There
also are simulation tools with a strong formal background [FvBR98, KFS95]. These,
however, put less emphasis on visual speci�cation. The ongoing work on the Charon
system is an exception here, as it targets formal, visual speci�cation as well as sim-
ulation [AGH+00, AGLS01]. The notation proposed there can be seen as a more
pragmatic variant of HyCharts that builds on results obtained in the development of
HyCharts. A further hybrid formalism which is related to Charon and was de�ned
recently is Masaccio [Hen00]. It builds upon reactive modules and uses ideas for the
formalization of control-
ow which are similar to Charon and HyCharts.

To end this journey through the literature note that the graphical notation of Hy-
Charts resembles the description techniques used in the software engineering method
for (discrete) real-time object-oriented systems ROOM [SGW94]. In particular, the
introduced HySCharts closely correspond to the hierarchic automata of ROOM, but
extend them with continuous activities.

3.7.3 Further Work

Tool support is a major prerequisite for the application of HyCharts in practical sys-
tems development. [SPP01] formalizes the connection between the notations in the
MaSiEd tool [AT98] to HyCharts. As a result,MaSiEd can be regarded as a simulation
and modeling tool for a dialect of HyCharts. Modeling support and simulation, how-
ever, could still be improved. In particular, in the tool a syntax for action guards and
bodies with a leaner, more precise semantics is desirable. Currently actions are de�ned
with C++ code in MaSiEd. Furthermore, automatic veri�cation of HyCharts is de-
sireable. We believe that the techniques known for linear hybrid automata [ACH+95]
can easily be adapted. Although one must be aware of the severe eÆciency limits of
these algorithms, they can nevertheless be used bene�cially in speci�c circumstances,
where the continuous dynamics is easy and the overall system is not very complex
[MS00].
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Chapter 4

Notes on Re�nement in

Continuous-Time

Besides re�nement a�ecting the time model which is discussed in Chapter 5, re�nement
rules for HyCharts which do not a�ect the time model are also an important element
of the infrastructure needed for the integrated development process of Chapter 2. Such
rules are applied in the early development phases, before the system is partitioned into
discrete-time and continuous-time subsystems. There, they help to formally establish
the traceability of requirements from �rst abstract models to more concrete ones, if
they are used for model transformations [Bro97c]. As this class of re�nement rules
is not substantially di�erent from stepwise re�nement rules for discrete systems, we
do not put great emphasis on them in this thesis. Instead the thesis focuses on
re�nement a�ecting the time model (Chapter 5). Thus, this chapter is mainly intended
to demonstrate the analogies to re�nement rules for discrete systems, without going
into formal detail, and to make the reader more familiar with re�nement in the context
of HyCharts. It may be skipped by readers not interested in re�nement of HyCharts
in a continuous time model.

4.1 Preliminaries

Re�nement. In Section 3.3.5 re�nement of relations was introduced on basis of set
inclusion. For two relations A and B, A is a re�nement of B, written as A � B,
was de�ned as meaning that A � B holds. If A and B are components as de�ned by
HyCharts, i.e. if they are input/output relations over dense streams, A;B � IRp+ !
P(ORp+), re�nement of B by A means that the behavior of A is contained in that of
B. Thus, A may only be more precise than B. Every behavior (�; o) of A, o 2 A(�),
also is a possible behavior of B.

87
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Properties which constrain all possible behaviors of a system clearly are maintained
by re�nement. Broy therefore also calls this re�nement notion property re�nement
[Bro97b, Bro01]. Note that a detailed study of properties of hybrid systems is given
in Chapter 6 where the e�ect of re�nement on these properties is also discussed.
In the development of systems not only the behavior, but also the interface of a
system is sometimes modi�ed. [Bro97b] therefore introduces the more general notion
of interaction re�nement. We will only consider two cases of interaction re�nement,
called U-simulation and U�1-simulation, in this thesis. In these special cases an
input/output relation A � Ia ! P(Oa) is an interaction re�nement of B � Ib !
P(Ob), if A adapted to the type of B is a property re�nement of B (U -simulation),
or|the other way round|if A is a property re�nement of B adapted to the type of
A (U�1-simulation). Formally, two pairs of a concretization relations and abstraction
relations are needed here:

c1 2 Ib ! P(Ia) a1 2 Ia ! P(Ib)
c2 2 Ob ! P(Oa) a2 2 Oa ! P(Ob)

where the sequential composition of concretization and abstraction relation is the iden-
tity relation, i.e. c1;� a1 = IIb and c2;� a2 = IOb

(;� and I are de�ned in Section 3.3.2).
Then, A is an interaction re�nement of B, if one of the following holds:

� c1;�A;� a2 � B (U-simulation)
� A � a1;�B;� c2 (U

�1-simulation)

Note that these are only two of four variants of interaction re�nement as de�ned in
[Bro97b]. However, we will not use the others in this thesis. We need interaction
re�nement in the remainder of this chapter when relations with di�erent types are
compared.

Graph algebra. The following section discusses if and how the re�nement rules
presented in [PR97, PR99] can be carried over to HyCharts. As it will be outlined,
many of these general rules directly follow from axioms which hold for the interpre-
tations of the graph algebraic framework that serves as foundation for HyCharts (see
Section 3.3). For an overview of these axioms the reader is referred to [S�te94] and in
particular to [GBSS98], where the axioms are explained in detail and depicted graphi-
cally. The axioms include associativity of sequential composition, commutativity and
associativity of visual attachment and further axioms which allow us to shift nodes
on feedback and which relate feedback with sequential composition and visual attach-
ment. As described in [GBSS98] the axioms can be used for design transformations,
like optimization.

4.2 Architecture Re�nement

Philipps et al. introduce various rules for the re�nement of the architecture of discrete
systems in [PR99] and [PR97]. In detail, the authors provide two central rules for
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the isolated re�nement of components of a system architecture. Furthermore, a set
of auxiliary rules is introduced which allow the designer to add and remove channels
and components, and to expand and fold de�nitions of hierarchic components, which
themselves are speci�ed with architecture descriptions. In this section we discuss these
rules in the context of HyACharts.

Re�nement of components. Let G[C] be the multiplicative hierarchic graph for
a HyAChart which contains a (primitive or hierarchic) component C. Then, compo-
sitionality of (multiplicative) hierarchic graphs w.r.t. re�nement, ensures that G[C 0]
is a re�nement of G[C] if C 0 � C. In [PR99], a similar compositionality property
is formulated as an inference rule. Additionally, the paper de�nes a further rule for
component re�nement in presence of a global condition. Basically this rule allows the
designer to infer that G[C 0] is a re�nement of G[C], if C 0 is a re�nement of C under
condition p and p holds for G[C]. As we do not want to formalize global conditions
here, we do not formally transfer this to our context.

Auxiliary rules. Due to the di�erent encoding of system architecture used in [PR99]
there is no direct correspondence of the rules given there to possible manipulations
of HyACharts. We therefore present the underlying ideas of the auxiliary rules and
discuss similar manipulations of HyACharts. The rules provided in [PR99] allow the
designer to add output channels to components such that the output on the channel
is completely chaotic and they allow to delete output channels that are not used. The
rules for the input channels allow the designer to add input channels to a component
such that the input is ignored and they allow removing input channels if the input is
not used. The rules for components provide that components which are not connected
to the other components of the system architecture and to the environment may be
added or removed. For HyACharts, similar rules can be de�ned by using the neutral
connectors Æ_

0 and Æ̂0 of multiplicative hierarchic graphs (see Section 3.3.2).

As an example, we regard the addition of an input channel to a component C such that
the input channel is ignored. On the graph level, the fact that the input is ignored in
the new component corresponds to the behavior of the connector Æ̂0, which is related
to projection (Section 3.3.2). Thus, the new component can be de�ned by C 0 � Æ̂0�C.
We now prove that C 0 is an interaction re�nement of C. As concretization relation
from the input space of C to the input space of C 0 we use Æ_

0 � I. Its corresponding
abstraction is Æ̂0� I. The abstraction relation from the output space of C 0 to that of C
is the identity. The corresponding concretization also is the identity. It then remains
that show that (Æ_

0 � I);
�
( Æ̂0 � C) � C holds. This is an immediate consequence of

the axioms for hierarchic graphs given in [GBSS98] which even provide equality. This
result is depicted graphically in Figure 4.1, where ` denotes Æ_

0 and a denotes Æ̂0.

Two further auxiliary rules in [PR99] allow expanding or folding the de�nitions of
hierarchic components. They strongly depend on the formalization of system archi-
tecture used there. In contrast to [PR99], the semantics of hierarchic graphs does not
refer to component and channel names, but rather to the relativ position of channels
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C
C=

Figure 4.1: Adding of (ignored) input channels.

(arcs) and components (nodes) and to the way they are connected. Names only are
\decoration" in HyACharts. In HyACharts expanding and folding therefore merely
corresponds to applying the associativity of the graph operators.

Note that the utility of the auxiliary rules for practical examples, like the one given in
[PR99], stems from their interaction with the rules for the re�nement of components.

4.3 Behavior Re�nement

In this section we �rst discuss the re�nement of actions, invariants and activities in
HySCharts. Then, the rules for adding and removing transitions given in [Sch01] are
studied in the context of HyCharts. Adding of states and the hierarchic re�nement of
states, which is also de�ned in [Sch01], is not considered in direct analogy to that work.
Instead, we outline how, and under which conditions, the extension of a HySChart
by further control states, variables, input and output channels can be regarded as
(interaction) re�nement. This is also contrasted to the hierarchic re�nement technique
presented in [AGLS01] for the related formalism Charon [AGH+00].

Re�nement of actions, invariants and activities. As starting point we consider
a HySChart with �xed actions, invariants and activities given. Let a; a0 � (I �S)�S
be two actions or invariants such that a0 results from strengthening a, i.e. a0 � a
holds. The graph transformations which lead from the graph for a HySChart to the
additive hierarchic graph which de�nes the HySChart's semantics does not negate or
otherwise modify the actions and invariants (Section 3.5.1). Thus, the discrete part
of a HySChart which contains action or invariant a is a additive hierarchic graph
containing relation a as a primitive node. Due to monotonicity of additive hierarchic
graphs w.r.t. set inclusion (Section 3.3.5), we are guaranteed that replacing a by a0

results in a discrete part which is a subset of the original one. If the new discrete part is
total, the resulting HySChart is a re�nement of the original one, because the machine
model of HySCharts is de�ned by a multiplicative hierarchic graph (see Figure 3.4,
middle) and therefore compositional w.r.t. re�nement. If it is not total, the subset
relation still holds, but the resulting HySChart is not a sound input/output relation,
since it is not total. Conditions on actions and invariants which ensure totality of the
discrete part were already discussed in detail in Section 3.5.1. A suÆcient condition
e.g. is that for every primitive and hierachic node in the chart and for any input and
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latched data state, at least one action guard of an outgoing transition or the node's
invariant is true. Furthermore, all actions in a sequential composition of actions must
be enabled if the �rst one is.

We stress that for this re�nement we consider actions and invariants in a HySChart
to be �xed. This means that after a re�nement step in which actions are modi�ed we
do not derive new invariants from the actions, but continue to use the old ones. This
is important, because invariants are often derived from action guards by negating
them (cf. Section 3.5.1.5). Informally, the outlined kind of re�nement reduces the
nondeterminsm w.r.t. when and under which conditions a state may be left.

For the re�nement of activities, the situation is similar. The transformation of the
graph for a HySChart to the time-extended hierarchic graph for the analog part also
does not negate or otherwise modify the activities. Due to monotonicity of time
extended additive hierarchic graphs w.r.t. set inclusion (Section 3.3.5), re�ning an ac-
tivity in a HySCharts results in the re�nement of its analog part. The new HySChart
is a legal component and a re�nement of the old one, if the re�ned analog part
still is resolvable (Section 3.5.2). For instance, in the HySChart for the EHC (Fig-
ure 3.17) this immediatly allows us to replace activity a inc � d

dt
aHeight 2 [cp�; cp+]

by a inc0 � d
dt
aHeight = cp� in order to obtain a re�nement of the original HySChart.

Adding and removing transitions. In [Sch01, Sch98] a number a re�nement
rules are de�ned which allow the designer to re�ne component speci�cations which
are given in a Statechart dialect called �-Charts [PS97]. Among others, these rules
de�ne conditions under which transitions in the diagram may be added and removed.

According to [Sch01] an outgoing transition of a node in a �-Chart may be removed
in a re�nement step, if the action guard is already subsumed in the action guards of
the other transitions emerging from the same node. For HySCharts, this is also valid
and can be reduced to the re�nement of actions as desribed above.

Furthermore, in the �-Chart formalism a transition may be added in a re�nement step
under certain conditions. This can be explained as follows. In contrast to HySCharts,
�-Charts use a chaos-semantics. This means that if at a time instant no transition
is enabled (�-Charts do not contain invariants), the behavior of the component from
then on is completely chaotic, i.e. its possible output from then on is the whole output
space. In the sense of HySCharts, the condition for adding transitions in �-Charts
means that the action guard of the added transition must be disjoint from the action
guards and the invariant of the node to which it is added. For �-Charts, this is a
valid re�nement, because one case in which chaotic behavior may occur in the original
chart is eliminated this way by specifying more detailed behavior. In the context
of HySCharts this would not be a valid re�nement. As HySCharts do not use a
chaos semantics, the behavior of the original chart would be empty in cases where
the action guard of the transition to be added is true. However, after the addition it
would be nonempty. Choosing the sharper semantics for HySCharts was motivated by
the observation that it corresponds closer to the semantics which is implemented in
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design tools for state transition diagrams, like e.g. in the AutoFocus tool [BHS99].
Thus, the price for this closeness is less 
exible re�nement.

Hierarchic re�nement. In this paragraph we examine under which conditions
an extension of a HySChart's input space, output space and state space results in
(interaction) re�nement. In particular, this includes the case where a new level of
hierarchy in introduced by splitting a node in the chart into further subnodes. Let
h1 and h2 be two HySCharts with input spaces Ii, output spaces Oi and state spaces
ni � Si, i 2 f1; 2g. We require that I1 is a factor space of I2, i.e. I1 = �I1(I2) must
hold, where �I1 denotes Cartesian projection on space I1. In other words, I2 = I1�I

0

holds (up to isomorphism) for some I 0. Note that this means that h2 has more input
variables than h1, because the spaces are de�ned as the product of the variable domains
(Section 3.2.1). Furthermore, O1 must be a factor space of O2, S1 must be a factor
space of S2, and n1 � n2 must hold. This last condition expresses that the control-state
space of h2 is larger than that of h1.

For interaction re�nement we �rst need some concretization and abstraction relations.
We de�ne two generic relations as follows. For factor space Y of space X, we de�ne
aX;Y (x) = f�Y (x)g, where �Y again denotes Cartesian projection on Y .1 Furthermore,
the concretization is de�ned by cY;X(y) = fx j y 2 aX;Y (x)g. The abstraction from n2 �
S2 to n1 �S1 is de�ned by a21((k; s)) = f(ren(k); �S1(s))g, where ren is a function from
f1; : : : ; n2g to f1; : : : ; n1g which is onto. Function ren corresponds to the renaming and
identi�cation of the control states of h2. It re
ects that control states in HySCharts are
identi�ed by a number, not by a name. The concretization relation corresponding to
a21 is de�ned by c12((k; s)) = f(k0; s0) j (k0; s0) 2 a21((k; s))g. As usual, the extension
of these relation to dense streams is denoted by marking them with y. It is easy to see
that for all of these relations, concretization sequentially composed with abstraction
is the identity relation.

As a consequence of this property, a suÆcient condition for the interaction re�nement
of h1 by h2 is that the discrete part, the analog part and the output projection of
h2, denoted by Com2, Ana2 and Out2, are interaction re�nements (actually U�1-
simulations) of those of h1, denoted by Com1, Ana1 and Out1. Formally this condition
is expressed as follows:

Com2 � (aI2;I1 � a21) ;� Com1 ;� c12
Ana2 � (aI2;I1

y � a21y) ;�Ana1 ;� c12y

Out2 � a21 ;�Out1 ;� cO1;O2

Basically this results from introducing the identity relation c12
y ;� a21

y at various po-
sition in the graph of the hybrid machine model (Figure 3.4, middle) and cutting the
graph into appropriate pieces.

1Projection is overloaded to arbitrary spaces of which Y is a factor space. Therefore, X does not
occur as index in �Y .
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A suÆcient condition to ensure that these re�nement relations are valid is that h2
results from hierarchically re�ning a node in h1 by a graph which only modi�es those
variables in the state space of h2 which are unknown in h1. Because of U

�1-simulation
as above, the behavior of h1 adapted to the interface of h2 is completely chaotic on
the new parts of the state space. Thus, h2 may specify arbitrary behavior for the new
part, as long as the behavior w.r.t. the old part of the state space coincides with that
of h1.

As an example, let us assume that HySChart h1 is given by Figure 3.17, left, without
its substates and without variable w and activity w inc. The entire HySChart of
Figure 3.17 with all its hierarchic levels, but with activity w inc as an activity of the
nodes inTol and outTol , is regarded as h2. Under these conditions h2 is an interface
re�nement of h1. This holds, because h2 stems from extending h1 by channels/variables
fHeight , w, reset and aHeight . The behavior w.r.t. inputs on channel bend does not
di�er between h2 and h1. Activity w inc had to be removed from Figure 3.17, left,
for the re�nement, because otherwise w would already be a variable of h1 and its
evolution therefore would already be constrained.

As we have seen, a consequence of the above general rule is that a node may be
re�ned to a hierarchic node, if the added subgraph only modi�es variables which are
not in the state space of the original HySChart. [Sch01] de�nes a related rule for
�-Charts which allows the designer to add hierarchy, if a similar condition holds and if
the triggering of hierarchic transitions corresponds to weak preemption, which is the
variant of preemption used in HySCharts (see Section 3.5.1.4).

As far as extension of the state space is concerned the above general rule corresponds to
a similar rule de�ned for Charon in [AGLS01]. Charon supports this kind of re�nement
in an easier manner, because there the program-state state in not a 
at disjoint sum
as for HySCharts, but a stack of disjoint sums of local data-state spaces. The stack
directly corresponds to the hierarchy in the visual representation and the push and pop
operations on the stack correspond to abstraction and concretization, respectively.

4.4 Discussion and Further Work

We have discussed which re�nement techniques for system architecture as introduced
in [PR99] can be carried over to HyACharts. Furthermore, we outlined possible re-
�nement rules for state machines and related them to the rules given in [Sch01]. In
particular for the system architecture, it turned out that the axioms described in
[GBSS98] can directly be employed to provide the semantic foundation for standard
transformations of system architecture as de�ned in [PR99]. This provides further
evidence for the utility of using the algebraic framework as semantic foundation of
HyCharts.
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Related work. The immediately relevant related work concerning the re�nement
of system architecture [PR99] and component behavior [Sch01, AGLS01] has already
been extensively discussed in this chapter. Stepwise re�nement of state machines is
also studied in [Rum96] in a way similar to [Sch01]. Further pointers to the literature
on re�nement in particular in the context of hybrid systems are given in Section 5.7.2.

Further work. For future work, a stricter formalization of the outlined results on
the hierarchic re�nement of HySCharts is desirable.



Chapter 5

Re�nement and Time: From

Continuous-Time to Discrete-Time

Moving from an abstract model based on a continuous time scale to implementation
amounts to changing to a discrete-time execution scheme for those components in the
model which are implemented on (or in) digital hardware. Due to the cost structure
and 
exibility of software-based solutions, such discrete-time execution usually is de-
sired for large parts of a hybrid system. In order to ensure that vital properties of
the abstract model are satis�ed in the implementation oriented discrete-time model,
the change of the execution scheme must be performed in a controlled way. This is
an essential prerequisite for the utility of an integrated development process as de-
scribed in Chapter 2. Therefore, this chapter identi�es conditions under which the
transition from continuous-time to discrete-time is a formal re�nement in the sense
of Section 3.3.5. Chapter 5 will show that the employed notion of re�nement indeed
maintains vital properties of hybrid systems.

Two basic elements are necessary for the transition from HyACharts with components
operating in continuous-time to HyACharts containing subcomponents that operate
in discrete-time. First, we have to clarify how primitive components speci�ed with
HySCharts can be re�ned to a discrete-time execution. Second, we have to de�ne
how the obtained discrete-time components are integrated into architecture diagrams
operating in continuous-time, and give further techniques which allow us to directly
combine discrete-time components, without transferring their output to continuous-
time and discretizing is again.

Overview. This chapter is organized as follows. First, we explain e�ects of an
execution based on sampling and their implications on HySCharts in Section 5.1.
This motivates the introduction of a more 
exible version of the machine model from
Section 3.2 and a strategy for the systematic usage of state invariants in HySCharts
(Section 5.2). As a notation for the discrete-time version of HySCharts we introduce
DiSCharts in Section 5.3. They are very similar to HySCharts, but di�er from them in

95
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their underlying discrete-time machine model. With this basis Section 5.4 presents a
re�nement technique for the transition from (continuous-time) HySCharts to (discrete-
time) DiSCharts and demonstrates it with an example. Section 5.5 introduces further
techniques to couple discrete-time components within a HyAChart. As a side remark
Section 5.6 explains how the discrete part of a HySChart can be implemented in
discrete-time while the time model for the analog part remains unchanged. Finally,
we discuss the results of this chapter and give a summary of related work in Section 5.7.

5.1 Methodological Aspects

Implementation e�ects on state transitions. In our view hybrid automata-like
notations, such as HySCharts, can bene�cially be used for requirements capture and
the early design steps of hybrid embedded systems. In these phases designers usually
want to express that some actions are taken when certain conditions are satis�ed. They
are not so much interested in the detailed timing, i.e. in possible small delays between
the (�rst) satisfaction of conditions and the execution of the corresponding actions.
They are, however, aware that such delays exists when the model is implemented
on (or in) digital hardware. One primary reason for such delays is that the digital
components can only sense the status of their environment within the discrete time
grid given by their clock. While we think it is not adequate to already consider
sampling rates and timing uncertainties in detail in early design phases, models must
nevertheless be designed in a way that tolerates small delays without violating vital
system properties. Otherwise, if the model's correctness relies on the absence of any
delays, it cannot be implemented later on.

Besides timing uncertainties, there is a further kind of deviations from the ideal model.
When a transition which depends on the detection of a boundary crossing of a con-
tinuous variable is taken by a digital component, the boundary will usually already
be exceeded. In other words, in case of transitions which depend on the value of vari-
ables that evolve continuously, the timing uncertainty corresponds to an uncertainty
in the actual value of the variable for which the transition is taken. For given analog
dynamics, one kind of uncertainty can be derived from the other.

Figure 5.1 visualizes the e�ect of sampling on the detection of a boundary crossing for
boundary value c. For trajectory x and sampling period T , the boundary crossing of
x is detected with delay. The crossing of trajectory y is not detected with sampling
period T , because it happens between two consecutive sampling instants. Trajectory
z only hits the boundary at a single point in time. This also is not detected with
the used sampling period. Trajectories y and z thus indicate that the boundary
crossing cannot be detected with arbitrary precision with sampling. For HySCharts
employing such boundary crossing events as action guards, this means that transitions
will usually not be taken immediately when enabled, but with some delay or, under
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Figure 5.1: Delayed or failing detection of boundary crossing events caused by sam-
pling.

awkward circumstances, not at all.1 Considering the value of the trajectory when such
a transition is taken, we see that in the depicted example x is already greater than c
at 3T . In the ideal case, the transition would be taken for x(t) = c. Obviously, the
delayed execution of transitions may violate invariants which are required to hold for
the system or may lead to instability, because of too late reaction.

Implementation e�ects on analog dynamics. Let us now regard the analog
dynamics of a hybrid component. In terms of HySCharts, this corresponds to regarding
the output of the analog part of the machine model (cf. Figure 3.4, middle). This
output on the one hand a�ects the discrete part and on the other hand it can a�ect
external components. We assume the dynamics are given by some di�erential equation
_x = f(x; i), possibly depending on external input i. In this case we distinguish two
kinds of e�ects resulting from an implementation of the analog dynamics in discrete
time. At sampling instants the discretized analog dynamics in general only yields an
approximation of the exact dynamics. As an analogy, think of a numerical algorithm
(the discretized analog dynamics) that computes the solution to _x = f(x; i) for given
input i and initial value x0 (the exact dynamics). At each interpolation point kT of the
algorithm, it will provide an approximation of the exact value of the solution x(kT ).
Like in numerics, we call the deviation between the exact value and the approximating
value at sampling instants the discretization error [Sch88]. It a�ects the discrete part
as well as external components. A further error results between sampling instants,
where the discretized analog dynamics does not produce new output. In this thesis,
we choose to extend the (discretized) analog dynamics' output at a sampling point
over the interval until the next sampling instant by holding it constant. In control
systems terminology, this correponds to a so-called zero-order hold. The e�ect of this
strategy is that there is a further deviation of the output w.r.t. the exact dynamics
between sampling instants. At the sampling points this deviation however vanishes.
We therefore call it the intersample error . Both kinds or errors are visualized in
Figure 5.2. We de�ne the intersample error as the maximum deviation between the

1In fact it is a major task in controller design to ensure that any important event, such as a
boundary crossing, is detected by the controller.
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exact value and the time-extended output of the discetized analog dynamics during a
sampling period. In HySCharts, this error a�ects the discrete part, because between
sampling points the exact dynamics could enforce a transition, while no transition
may be necessary for the discretized dynamics which simply remains constant during
a sampling interval. Furthermore, the environment of a component is a�ected by this
error.

[ )

[ )

[ )

[ )

discretization
error

intersample
error

discretized dynamics
(with zero-order hold)

output of
analog part

t(k+1)TkT(k-1)T

exact dynamics

Figure 5.2: Discretization error and intersample error.

Other extension strategies besides the zero-order hold would be feasible as well, but, as
Ogata mentions, more complicated construction schemes for continuous-time signals
from discrete-time signals are usually not used in control applications [Oga87]. The
reason is that more complicated schemes usually involve a delay in construction of
the signal. Such delays can result in inappropriately late reactions and can lead to
instability of the system (Section 6.3.3 introduces stability in detail). In the context
of digital signal processing, more complicated so-called reconstruction �lters are used
to obtain a smooth, analog output signal from a digital input [Smi97]. In any case,
considering the intersample error separately in principle allows us to also consider such
reconstruction schemes.

Impact on veri�cation. The e�ect of discrete time implementation also has to
be considered when planning veri�cation steps for the system. Namely, there is not
much sense in formal, exhaustive veri�cation of abstract models with tools like model
checkers, if the properties established for the abstract model can not be transfered
to the implementation, because the abstract model is unrealistically precise. In con-
trast, veri�cation is helpful if the abstract model is liberal enough to comprise e�ects
that result from its implementation, like time delays and deviations from the exact
continuous dynamics. Model checking techniques which weaken the exactness with
which analysis of hybrid models is performed have been proposed in [GHJ97, HR00]
and [Fr�a99] (see Section 5.7.2).

Methodology. As a result, the models of a system component speci�ed in the
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requirements capture phase and the early design phase should allow for timing un-
certainties and uncertainties in the analog dynamics, i.e. uncertainties in the exact
value of a component's real-valued variables at a given point in time. Similarly, un-
certainties in the exact value of input signals should also be allowed for, since the
input may come from external components which are also subject to errors. From a
methodological point of view we propose to �rst specify system components with eager
transitions2 and exact analog dynamics, keeping in mind that delays exist in practice,
and that values cannot be detected and computed with arbitrary precision. Then,
with some additional input from the designer, a modeling tool can automatically cre-
ate a relaxed model which allows that transitions are taken with some delay and that
there are deviations from the exact analog dynamics. This relaxed model requires a
notation that incorporates delayable transitions and therefore motivates invariants in
our HySCharts. For the speci�cation of analog dynamics with permitted discretiza-
tion and intersample errors we will explain below, how they can be integrated into
HySCharts.

In further design steps the timing uncertainty and the permitted deviations from
the analog dynamics can be used by the designers to select a sampling rate for the
embedded hard- and software that guarantees (1) that transitions are taken within the
delay permitted by the relaxed model and (2) that the discretized analog dynamics is
suÆciently precise. The selection process can be guided by the modeling tool and may
involve standard techniques from control theory, like Shannon's theorem (Section 2.1).
Notations with delayable transitions are useful in this context because they allow us
to regard the step to a model with a �xed sampling rate as a re�nement step. Note
that sampling rate selection is constrained by the dynamics of the underlying physical
environment and the functionality required from the overall system. It is not clear
from the beginning, except if the dynamics is already well known from legacy systems,
whose only part to be updated is the software.

Alternatives. An alternative to this methodology would be to establish ideal prop-
erties for an ideal model �rst and then move to a relaxed model comprising imple-
mentation e�ects such that a relaxed version of the ideal properties is guaranteed to
hold for the relaxed model. This is promising in principle, because working with ideal
models is often easier than working with relaxed models. However, in general this is
not possible. As an example, let us assume an (ideal) HySCharts whose transitions are
taken as soon as they are enabled. If we relax the model and permit that transitions
are taken with a small delay, the resulting output traces possibly not only deviate
a little from the HySChart's ideal output traces. Qualitatively di�erent behavior is
also possible, because there may be control states which are unreachable in the exact
model due to an in�nitely fast response or due to arbitrary precision in this model.
In other words, the problem is that arbitrarily small, non-zero deviations from the

2Remember that transitions are called eager if they are taken as soon as their guard is true
(Section 3.5.1.5).



100 CHAPTER 5. REFINEMENT AND TIME

exact values of variables as well as arbitrarily small delays in the taking of transitions
can trigger (further) transitions which can never be taken in the exact model. For
instance, in Figure 5.1 for trajectory x a further transition could be enabled at time
3T due to the value of x being so much above c.

The situation would be the same, if we allowed that enabled transitions are taken
immediately in the ideal as well as in the relaxed model. In this case, errors in the
analog dynamics could still trigger transitions which would never be enabled in the
ideal model.

5.2 Relaxed HySCharts

As indicated in Section 5.1, we cannot hope to detect the exact moment in time when
an action guard in a HySChart becomes true, if we only evaluate it in a discrete-time
manner. Similarly, a discrete-time version of the analog part de�ned in a HySChart
does not result in the same behavior as the original analog part, but only in an
approximation of it (see Figure 5.2). In order to carry over properties from one
system to another our re�nement notion requires that the set of possible behaviors
of the re�ned system be a subset of those of the original system. When using a very
precise semantics for action guards and activities in the speci�cation of the original
system there is not much hope in �nding useful re�ned systems. We therefore propose
a way to specify relaxed models with HySCharts which do allow 
exible re�nement.

The relaxation we propose is motivated by two observations, as indicated in Sec-
tion 5.1. First, for the discrete part sampling typically results in transitions being
taken some time after they have become enabled. Second, for the analog part a
discretization error and an intersample error arises from sampling. We de�ne the
HySChart relaxation such that it comprises bounds for these kinds of errors. A �rst
approach to do so is to include the permitted discretization error and the permitted
intersample error in a relaxed analog part such that the discrete part also is directly
a�ected by them. However, we prefer a less liberal relaxation which is closer to the
HySChart with the exact semantics, because it generates less relaxed behavior. When
a sampling implementation for a HySChart is constructed, this can be done by choos-
ing the same sampling instants for the discrete part as well as for the analog part. In
this case, the discrete part is directly a�ected only by the discretization error. The
intersample error, however, can only cause that the discrete part fails to take a tran-
sition on time. This e�ect can already be considered together with the delayed taking
of transitions. It cannot cause that the discrete part takes a (wrong) transition due
to the intersample error in some variable's value, because the discrete part is only
active at sampling instants where the intersample error by de�nition vanishes. Never-
theless, the intersample error is visible at the output interface of a relaxed HySChart.
Therefore, we only include the permitted discretization error in the analog part and
add the permitted intersample error at the output interface of a relaxed HySChart.
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The corresponding machine model is introduced in Section 5.2.3. Using this tighter
relaxation is motivated by the hope that proving properties for the tight relaxation is
easier than for the coarser one, because we have less nondeterministic behavior. On
the other, hand �nding implementations for the tighter relaxation is not expected to
be more diÆcult than for the more liberal one, since in both cases the same error
bounds can be used to �nd a discretization of a given analog part.

5.2.1 Constructing Relaxed Invariants

Choosing the invariant of a state in a HySChart as the negation of the disjunction of
the actions guards of the transitions directly emerging from a node (and from none of
its subnodes), as proposed in Section 3.5.1, results in eager transitions. We call such
an invariant an exact invariant . In presence of exact invariants transitions must be
taken as soon as their guard is true. As explained, this is too restrictive for re�nement
and not realistic. Starting from such an exact invariant, the method described in
the following therefore relaxes this invariant by allowing that the relaxed invariant
remains true for small deviations of the variables' values from those allowed in the
exact invariant and by allowing that is also remains true for some time after discrete
changes in the variables. Otherwise such discrete changes could immediately violate
the exact invariant and enforce a transition.3 If the designer speci�es the permitted
deviations according to his or her understanding of the problem, the relaxed invariant
can automatically be constructed from the exact invariant by a CASE tool.

Preliminaries: Action guards. Before we de�ne relaxed invariants some details of
the syntax of action guards have to be de�ned. The semantics of actions is discussed
in Section 3.5.1.3. Syntactically we de�ne an action guard as a conjunction of atoms of
the form p( ~d:val8; ~v), a( ~h:val8; ~c:val8; ~v) \ 0 and ts8 6= ts, where ~d:val8= ~h:val8= ~c:val8 are
tuples of variables denoting the value of current input on discrete/hybrid/continuous
input channels, ~v is a tuple of controlled variables excluding latched time stamps,
\ 2 f>;�; 6=g, and ts8 is the current time stamp of an input channel and ts the
corresponding latched time stamp. Symbol p stands for propositions over variables
with domains di�erent from the real numbers and a refers to arithmetic expressions.
Such propositions and operators for building arithmetic expressions are assumed given.
Expressions of the form x#c, where # 2 f�;�;=; >;<; 6=g, for a real-valued variable
x and constant c, which often occur in practice, can be reduced to the above normal
form. Atoms of the form ts8 6= ts are needed to detect discrete jumps (or events) on
input channels. Note that time stamps and other real valued variables must not be
mixed in action guards. Formally, guard syntax is de�ned by:

3The dual approach to relaxing the exact invariant would be to relax the exact action guard.
However, this would be greater technical e�ort for HySChart, because relaxing a guard which depends
on the presence of an event cannot simply be de�ned by allowing the guard to become true before

the event. In contrast, allowing the guard and the invariant to remain true after the event, which is
done here, is sound and straightforward.
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g ::= p( ~d:val8; ~v) j a( ~h:val8; ~c:val8; ~v) \ 0 j ts8 6= ts j g ^ g

To allow derivation of the sampling rate in Section 5.4.2 we furthermore require that
the evolution of arithmetic expressions be Lipschitz continuous provided the evolution
of the variables occurring in them is. For simple arithmetic expressions, like those
merely involving sums and products, this holds.

Relaxed invariants. As indicated in Section 3.5.1, for a state in a HySChart,
its exact invariant results from the negation of the disjunction of all the guards of
transitions emerging directly from the node (and from none of its subnodes). This
is equivalent to the conjunction of the negated guards. We therefore assume the
exact invariant to be given as a conjunction of negated guards. Furthermore, we only
allow non-strict inequalities as comparison operators between arithmetic expressions
which do not contain time stamps. Together with using the discrete topology for
time stamps and for variables with domains di�erent from R (cf. Section 3.5.1.5), this
ensures that the guards are topologically closed sets which in turn guarantees that
the exact invariants and the resulting relaxed invariants are open. This is needed for
well de�nedness of the hybrid computation model (Section 3.2.2). We do not de�ne
the formal syntax for invariants here. It largely follows from the syntax of action
guards, but is more powerful. The relaxed invariant R(inv) results from relaxing all
the conjuncts in the exact invariant inv. It is de�ned by the following rewrite rules in
which we write 7! for textual replacement:4

1 R(q1 ^ : : : ^ qg) 7! R(q1) ^ : : : ^ R(qg)
2 R(:(r1 ^ : : : ^ rh)) 7! R(:r1) _ : : : _ R(:rh)

3 R(:p( ~d:val8; ~v)) 7! :p( ~d:val8; ~v) _
W`

i=1 now � di:t
8 < "di

4 R(:(a( ~h:val8; ~c:val8; ~v) � 0)) 7! a( ~h:val8; ~c:val8; ~v) < "a _Wm

i=1 now � hi:t
8 < "hi

5 R(:(ts8 6= ts)) 7! ts8 = ts _ now � ts8 < "ts

where the qi are negated action guards, and the ri are the atoms in the action guards.
xi:t

8 refers to the current time stamp of discrete or hybrid channel xi, ~d is an ` tuple,
~h is a m tuple, ~d:val8, ~h:val8, ~c:val8, ~v, ts8 and ts are as above, now is the HySChart's
local clock, and all the "X are constants greater than 0. These constants have to be
speci�ed by the designer. The other identi�ers are as above.

Before we explain the relaxation rules note that the central idea behind them is that
a transition must be taken until the relaxed invariant becomes false. The relaxation
ensures that some time passes between an action guard becoming true and the cor-
responding conjunct of the relaxed invariant becoming false. Furthermore, remember
that action guards and invariants are checked in a HySChart at any point in time, be-
cause a HySChart's discrete part in the hybrid machine model permanently produces
a next state (if it idles, this next state is equal to the latched state).

4Equality would be misleading, as described below.
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The �rst two rules split the exact invariant into its negated atoms. The third rule
covers propositions p over variables with domains di�erent from the real numbers.
Since the discrete topology is used for these variables, they are constant during anyone
period of continuous evolution (cf. Section 3.5.2). Thus, they cannot violate the exact

invariant :p( ~d:val8; ~v) during a period of continuous evolution of the system, but only
if a discrete jump occurs in one of the variables associated with discrete input channels.
To allow the (relaxed) HySChart a delayed reaction to this jump, the disjunction in
the relaxed invariant provides that the invariant remains true for some more time,
until the jump is "di time units old w.r.t. the HySChart's local clock. In other words,
when the disjunction is formulated in terms of an implication, the relaxed invariant is
true as long as it holds that if the proposition p is true, then the last jump happened
less than "di time units ago. Relaxing arithmetic constraints with rule 4 expresses
that the relaxed invariant remains true for small ("a) overshooting over threshold 0.
If the overshooting is caused by a discrete jump in a variable hi:val associated with
a hybrid input channel, the invariant also remains true for some more time, until
the jump is "hi time units old. For time stamps (rule 5), the situation is similar to
propositions since the discrete topology is used for them as well. Thus, they are also
constant during anyone period of continuous evolution. Note that for the controlled
variables ~v, no time stamp information is used in the relaxation rules, since their
possible discrete updates are controlled by the HySChart's discrete part Com and
not by the environment, anyway. This means that if they are updated, a transition
is already being taken and the old invariant no longer needs to hold. Moreover, for
variables associated with continuous input channels no time stamp information in
needed either, because they do not change discretely by de�nition.

Discussion. As a result of this relaxation of invariants, in a HySChart with relaxed
invariants a discrete jump in the input need not immediately cause a transition to
be taken, but the HySChart may remain idle for some more time. Similarly, thresh-
old crossings by real valued, continuously changing input or controlled variables also
cannot cause a transition to be taken immediately, but only when their value is sig-
ni�cantly (by some "a) above the threshold. In both cases this ensures that when an
action guard becomes true, the corresponding relaxed invariant still remains true for
some time. Within this interval, the transition may be taken. One of the enabled
transitions must be taken until the (relaxed) invariant becomes false.

To avoid that a discrete change, message or event is lost, i.e. that no reaction to it
is enforced, each constant " constraining the time tolerance w.r.t. a discrete change
on a discrete or hybrid input channel must be chosen less than the minimum event
separation on the respective channel. Remember that the minimum event separation is
de�ned as the minimal time between two discrete changes on a channel (Section 3.4).
For a relaxed invariant derived with rule 4, an important characteristic is that it
remains true for values of the involved arithmetic expression which are within the
permitted deviation "a above the threshold 0. Thus, the corresponding transition
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need not be executed at all in this case (Figure 5.3). The "a re
ects that boundary
crossings cannot be detected with arbitrary precision.

εa

action is enabled

relaxed invariant is true

0

t

Figure 5.3: The relaxed invariant remains true for values up to the permitted deviation
"a.

Action guards of the form a = 0 for an arithmetic expression a can be reduced to �a �
0 ^ a � 0. Deriving the relaxed invariant for such a transition guard results in �a <
"1 _ a < "2 (plus additional disjuncts concerning hybrid channels). Obviously, this
expression always is true for any "1; "2 > 0. It re
ects that in presence of uncertainties
it is not guaranteed that a transition which possibly only is enabled for single time
instants is ever taken. In order to express that a transition is taken when an arithmetic
expression a is almost zero, we therefore suggest to use macro a =Æ 0 as action guard.
It is de�ned by a =Æ 0 � a � �Æ ^ a � Æ for Æ > 0.

A further property of the relaxation method is that the relaxations of two semantically
equivalent exact invariants need not be equivalent. In particular, the relaxation of an
exact invariant which is unsatis�able need not be unsatis�eable. As an example,
consider the exact invariant �a < 0 ^ a < 0 resulting from the action guards a � 0
and a � 0 for two transitions emerging from a given state. With the exact invariant,
no time may pass in such a state since the predicate is always false. However, the
relaxed invariant �a < "1 ^ a < "2, for constants "1; "2 > 0, can be satis�ed for values
of a close to 0. Hence, some time may pass in the state with which the invariant is
associated.

Finally, we point out that the relaxed discrete part which results from relaxing the
invariants in the exact discrete part is guaranteed to be total if the exact discrete
part is. This holds, because (1) whenever an input and a latched state satisfy an
exact invariant they also satisfy the corresponding relaxed invariant and (2) additive
hierarchic graphs are monotonous w.r.t. set inclusion (Section 3.3.5). Moreover, re-
laxed invariants derived in the described way de�ne topologically open sets, because
a relaxed invariant is given as a �nite conjunction of disjunctions over predicates that
de�ne open sets (see above). Both these properties are required from the discrete part
of a HySChart for well de�nedness of the hybrid computation model (Section 3.2.2).
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Example 5.1 (Deriving a relaxed invariant.) The relaxed invariant of the state
inBend of the EHC example (Figure 3.17, left) is derived as follows. The state has only
one outgoing transition with action guard bend?, which stands for bend :t8 6= bend :t.
Thus, the state's exact invariant is :(bend :t8 6= bend :t). Rule 5 of the relaxation yields
relaxed invariant bend :t8 = bend :t _ now�bend :t8 < "bend for a constant "bend > 0. We
will encounter this invariant again in the example of Section 5.2.5 which also contains
further relaxed invariants. �

5.2.2 Relaxed Analog Dynamics

Corresponding to the possible e�ects arising from sampling we de�ne two kinds of
relaxations for the analog dynamics. First, we relax the analog part by introducing a
permitted deviation from the speci�ed activities which is also visible to the discrete
part. A second, additional relaxation of the continuous dynamics is introduced at
the external interface of the HySChart to permit further relaxation, which does not
a�ect the discrete part. In a discrete-time implementation of the analog part the
�rst relaxation will comprise the discretization error while the second comprises the
intersample error.

Syntax. On syntax level we associate each activity de�nition with a set of constants
"dis:x � 0 for each controlled variable x occurring in the de�nition. Furthermore, the
top-level hiararchic state (or root node) of a relaxed HySChart is annotated with an
output relaxation label referring to a set of constants "int:x � 0 for each output variable
x of the HySChart. The constants "dis de�ne the deviation of allowed trajectories for
the regarded controlled variable from the ideal trajectories as speci�ed by the activity.
This kind of deviation is visible to Com and it limits the allowed discretization error.
The constants "int specify the output variables' further permitted deviation visible at
the interface of the HySChart. This kind of deviations limits the permitted intersample
error in a sampling implementation. By convention deviations "dis are only speci�ed
for real valued controlled variables excluding time stamps and similarly deviations
"int are only speci�ed for real valued output variables excluding time stamps. The
other variables are supposed to be una�ected by activities anyway. For variables x
for which no deviation is explicitly given, we implicitly use "dis:x = 0 and "int:x = 0.
In particular, this provides that "int:x is 0 for those variables not referenced in an
activity's de�nition. Furthermore, for variable now , "dis:now is required to be 0, since
wrong time values in HySCharts may corrupt the detection of messages and jumps in
the input.

Relaxed analog part. Semantically the relaxed analog part RAna results from the
relaxation of the primitive activities. The relaxation R(A) of a primitive activity A is
de�ned as consisting of all tuples of smooth trajectories ((�; �); �) such that � is not
more than the given deviation away from a trajectory � which satis�es activity A for
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input �. We say that a state-stream � satis�es an activity A for input stream � i�
((�; �); �) 2 A. Formally for A � (IRs+ � SRs+)� SRs+ , R(A) is de�ned by:

R(A) =
S

((�;�);�)2Af((�; �); �) 2 (I
Rs+ � SRs+)� SRs+ j

8x 2 CV: 8t 2 R+ : dx(�:x(t); �:x(t)) � "dis(A):xg

where CV is the set of controlled variables of the HySChart, dx is a metric on the
domain of controlled variable x, the "dis(A):x are the permitted deviations which are
associated with activity A as described above, and �:x and �:x denotes the evolution of
variable x in the respective stream. For real valued controlled variables excluding time
stamps we use the natural metric on the real line and for variables with other domains
and time stamps we use the discrete metric. Together with the above conventions
this provides that variables with domains di�erent from the real numbers and time
stamps are not modi�ed by the relaxation. Similarly, the variables not occurring in
an activity's de�nition also remain unchanged due to the conventions above. Like the
original activity, the relaxed activity also only contains smooth trajectories, because
of its type. Resolvability of activities, which helps to ensure well de�nedness of the
hybrid machine model, is maintained by the relaxation, because the exact activity
is a subset of the relaxed one. Furthermore, the relaxation is de�ned such that the
received state-stream and the produced state-stream coincide for a relaxed activity,
just as for exact activities. As explained in Section 3.5.2 this ensures that the discrete
and the analog part in a hybrid machine agree on the same smooth evolution for the
state. Thus, the interaction of the discrete part and the relaxed analog part is just as
in a HySChart without relaxation.

According to Section 3.5.2 the exact analog part Ana is given as a disjoint sum of
sequentially composed, adapted activities. With the above base case the relaxation of
Ana can therefore be de�ned inductively by the following rewrite rules, in which 7!
denotes textual replacement:

R(A+B) 7! R(A)+R(B)
R(A ;� B) 7! R(A) ;� R(B)
R(da(A)) 7! da(R(A))

The relaxed analog part RAna is de�ned by RAna = R(Ana). Like the exact analog
part, it is resolvable if all (relaxed) activities are (cf. Section 3.5.2). Note that we
above demanded that the allowed deviation for variable now is 0. Provided now is
zero initially, this yields that now always contains the correct time since system start.

Output Relaxation. Further relaxation of the analog dynamics results from includ-
ing a relaxation component Rint at a HySChart's output interface. This component
is de�ned as follows:

Rint 2 ORp+ ! P(ORp+)
Rint(�) = f� j 8x 2 OV: 8t 2 R+ : dx(�:x(t); �:x(t)) � "int:xg

where OV denotes the set of output variables of the HySChart, O is the associated
output space, "int:x is the permitted intersample deviation for output variable x, as
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Figure 5.4: Machine model for relaxed HySCharts.

speci�ed for the HySChart, and dx, �:x and �:x are as in the previous paragraph. In
contrast to the relaxation of activities, Rint can add discontinuities to the trajectories
it receives. They can jump arbitrarily in the neighborhood of the received stream �
as long as they lie within "int:x distance from �:x for every output variable x and
as long as they remain piecewise smooth and piecewise Lipschitz continuous. This is
enforced by the type of Rint. To simplify notation in the proofs in Appendix A.2.2 we
overload Rint to �nite streams � 2 (n � S)[0;t) for t > 0 and write Rint(�) instead of
(Rintj[0;t))(�).

5.2.3 Machine Model for Relaxed HySCharts

The machine model for relaxed HySCharts results from using the relaxed discrete part
which results from relaxing the invariants and which we denote by RCom, the relaxed
analog part RAna and from adding output relaxation Rint at the output interface of
the HySChart. Figure 5.4 depicts the machine model. The corresponding formula is:

(( Æ̂I2�In�S) ;� (II�RCom
y) ;� RAna ;� Æ̂

n�S
2 ;� (Out y�Lims)) "

n�S
� ;� Rint

where I and n � S denote the input space and the state space of the machine, respec-
tively. The state-based semantics results from replacing the time extended output
projection Out y and the output relaxation Rint in the formula by the identity In�S.

From a mathematical point of view the relaxed discrete part and the relaxed analog
part are special cases of the discrete and analog part as de�ned in Chapter 3. They
have the same interface and satisfy the same smoothness restrictions. Hence, besides
Rint, relaxed HySCharts are ordinary HySCharts with a few special characteristics.
As outlined in Section 5.2.1, RCom is total and its invariants are open sets if the
same holds for the exact discrete part. Moreover, RAna is resolvable if the activities
in the exact analog part are (Section 5.2.2). Therefore, well de�nedness of (exact)
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HySCharts carries over to relaxed HySCharts and the inductive proof principle in-
troduced in Appendix A.1.2 can be used similarly for the state-based semantics of
relaxed HySCharts. Due to this correspondence, we also write St to denote the state-
based semantics of relaxed HySCharts, just as for exact HySCharts. The state-based
semantics will be used in proofs involving relaxed HySCharts, because it allows us to
reason about the machine's internal state.

If we regard the output values of RAna as approximations to exact values, as motivated
before, it is important to consider the propagation of the error resulting from the
approximation. By de�nition of the relaxation of the activities the error remains
bounded during periods of continuous evolution. It can, however, accumulate over
transitions by the discrete part, if the corresponding action bodies do not reinitialize
the start values of those controlled variables which are a�ected by the error. The
reason is that the variables' values after a transition are interpreted as exact start
values for the next period of smooth evolution although they possibly contain errors.
Apart from that, the error introduced by RAna relaxes the constraints given in the
relaxed discrete part RCom further. For instance, a relaxed invariant of the form
x < c + " means that the invariant becomes false when the x resulting from the
relaxed analog part does not satisfy the inequation. With respect to the exact value
of x, denoted by x, this in the worst case means that the relaxed invariant may remain
true until x = c + " + "dis:x. Thus, the relaxation by RCom is increased further by
"dis. Similarly, the analog part and the discrete part are also a�ected by errors in their
external input.

Besides that, the Lipschitz constants for the evolutions of the controlled variables
are a�ected by the relaxation, in particular by Rint.

5 Assuming that the evolution of
variable x as speci�ed by an activity A is Lipschitz continuous with Lipschitz constant
l, the evolution of the trajectories in the relaxed activity is constrained as follows. Let
� be the exact evolution of x and let � be the evolution according to the relaxed
activity. We get that the maximal distance between the relaxed values of x at two
time points t1 and t2 is limited by dx(�(t1); �(t2)) � dx(�(t1); �(t2))+dx(�(t1); �(t1))+
dx(�(t2); �(t2)) � l � jt1� t2j+2"dis:x. While this estimate does not yield the Lipschitz
constant of � it nevertheless permits to estimate possible values of �(t2) at given t2
when a value �(t1) is given. The e�ect of the relaxation at the HySChart's output
interface during an interval Æ where the output of RAna is smooth and Lipschitz
continuous can be estimated similarly. Let � be the evolution at the output interface
of the relaxed HySChart and let t1; t2 2 Æ. Then we get dx(�(t1); �(t2)) � l � jt1 �
t2j + 2("dis:x + "int:x). Note that the relaxed trajectory � need not be continuous on
Æ. Nevertheless, its value at time t2 is constrained by l, "dis, "int and �(t1). As we
will see in Section 5.4.2, such constraints can be used to select sampling rates for the
discrete-time implementation of a HySChart.

5The type of relaxed activities and of the output relaxation Rint ensures that they indeed evolve
Lipschitz continuously.
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5.2.4 Remarks on the Relaxation

The relaxation of the discrete and the analog part may cause behavior that is qualita-
tively di�erent from the behavior of the exact HySChart. For instance, the relaxation
may result in variable values that make the guard of a transition true which would
never be enabled in the exact HySChart. The new control state, which becomes
reachable this way, may lead to entirely di�erent further evolution. In contrast, the
relaxation by "int at the HySChart's output interface only introduces further behavior
that is quantitatively di�erent, but qualitatively similar to the behavior without this
relaxation. By de�nition of Rint it only introduces deviations in the values of output
variables. As these deviations are not visible to the discrete part, but only added at
the HySChart's interface, they cannot trigger transitions in the HySChart and cre-
ate qualitatively new behavior. Nevertheless, the deviations can a�ect other external
components. In Section 6.5.1 we verify two properties of a relaxed HySChart for our
example system, the EHC. The feasibility of this veri�cation demonstrates that if a
model is designed properly and reasonable constants are used in the relaxation, vital
properties hold for the relaxed system and can be proven.

In cases where activities are not given as (detailed) di�erential equations, but as liberal
di�erential constraints, relaxation of the analog part is not needed to permit 
exible
re�nement in later development steps. Typically it is needed for re�nement if an
activity is given as an initial value problem with a unique solution, in particular if
this solution is diÆcult to compute numerically. Output relaxation is nevertheless
required to allow for implementation e�ects which result at sampling instants when
the discrete-time output is simply held constant between sampling instants.

The deviations we introduced re
ect pessimistic assumptions about e�ects possibly
occurring in implementations. A design that is robust against such kinds of deviations
must be able to tolerate them. Designs which are only correct in presence of irrealistic
assumptions, like in�nitely fast response, will not work in the real world. Therefore,
we think that demanding that a relaxed HySChart satis�es some desired property is
not a too strong proof obligation, but reasonable, since it enables an implementation
of the design which also satis�es the desired property.

Finally, note that the relaxed HySChart is an abstraction of the exact one, or dually,
the exact one is a re�nement of the relaxed HySChart. This is straightforward by
setting all the constants " used in the relaxation to 0.

5.2.5 Relaxed HySChart for the EHC's Controller

Here we explain the relaxed HySChart for the EHC's controller, and outline how it
is obtained from action guards, activities and a set of constants with the methods
from above. At the stage of the development process we consider, the overall system
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εint

Actions:
b2o � bend?
o2b � b2o
i2u � fHeight :val8 � lb

i2d � fHeight :val8 � ub

u2i � fHeight :val8 � lb + c ^ reset !
d2i � fHeight :val8 � ub � c ^ reset !

Relaxed invariants (derived):
Ctrl inv � True

inBend inv � bend :t = bend :t8 _ now � bend :t8 < "bend
outBend inv � inBend inv
inTol inv � fHeight :val8 2 (lb � "i1; ub + "i2) _ now � fHeight :t8 < "fHeight

upinv � fHeight :val8 < lb + c+ "u _ now � fHeight :t8 < "fHeight

down inv � fHeight :val8 > ub � c� "d _ now � fHeight :t8 < "fHeight

(Relaxed) activities:

a const � d
dt
aHeight = 0 with "dis:aHeight = 0

a inc � d
dt
aHeight 2 [cp�; cp+] with "dis:aHeight = 0

a dec � d
dt
aHeight 2 [ev�; ev+] with "dis:aHeight = 0

Output relaxation constants: "int:aHeight

Figure 5.5: (Relaxed) HySChart for the abstract controller.

has already been split into the components Environment, Filter, Controller and Delay
element as depicted in Figure 3.2, left.

Example 5.2 The controller is given by the HySChart in Figure 5.5 which also lists
the actions, (relaxed) invariants and (relaxed) activities. Its input interface consists
of channels bend and fHeight , and its output interface contains the channels aHeight
and reset . The informal meaning of the states is as in the preceding chapter. The
actions b2o and o2b model the controller's reaction to events on channel bend , i.e. to
entry and exit of bends. The other actions only depend on the �ltered chassis level
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as provided by the Filter component and determine whether the chassis level needs
to be increased, decreased or left unmodi�ed by the controller (activities a inc, a dec
and a const). The action bodies of u2i and d2i send the reset signal to the �lter.
Constant c > 0 in the action guards of u2i and d2i ensures that once an actuator
(escape valve or compressor in the physical system) is activated, it is used to drive the
�ltered chassis level into the tolerance interval [lb; ub], not just to its boundary. The
constant is chosen such that lb + c < ub � c.

The relaxed invariants listed in Figure 5.5 are derived from the action guards in
the way described in Section 5.2.1. Note that we simplied the resulting predicates
to increase clarity of the presentation. For instance, the relaxed invariant of inTol
without simpli�cation is:

(�fHeight :val8 + lb < "i1 _ now � fHeight :t8 < "fHeight) ^
(fHeight :val8 � ub < "i2 _ now � fHeight :t8 < "fHeight)

Apart from the simpli�cation, the relaxed invariants can be constructed automatically
by a CASE tool. The designer only has to specify transition guards and the non-
negative constants "bend; "fHeight ; "i1; "i2; "u and "d used in the relaxation. The �rst two
of these constants determine how long reaction to a bend event or a discrete jump in
fHeight may be delayed. The others constrain the permitted overshoot of fHeight over
the thresholds given in the transition guards. Here, we set "i1 = "i2 = "u = "d and
select the constant such that lb < ub� c� "d and lb+ c+ "u < ub. This provides that
it is never possible to go from state up to down, or vice versa, without remaining in
state inTol for some time. Such a behavior would be unreasonable for the EHC.

For the activities a inc, a dec and a const the constants "dis:aHeight of each activity
are set to zero, because a inc and a dec already constrain the evolution of aHeight
in a very liberal way. Although a const is much stricter it is not relaxed either,
because the requirement it represents is not diÆcult to satisfy in implementations.
There, it suÆces to switch compressor and escape valve o� in order to achieve the
behavior required by activity a const. The relaxed analog part therefore is identical
to the analog part without relaxation. The output relaxation Rint of aHeight at the
component's output interface if given by the positive constant "int:aHeight . As for the
other constants, we do not give a concrete value here.

By convention the activity d
dt
now = 1 of the root node Ctrl need not be written explic-

itly and its relaxation "dis:now by convention is 0 (Sections 3.5.2 and 5.2.2). Variable
now is not visible outside. Thus, no output relaxation is given for it. Furthermore,
as variable reset is a time stamp, it is not relaxed either, i.e. the relaxation constant
"reset is implicitly set to zero.

While we do not prove any properties of this relaxed HySChart we want to point out
that this model can be regarded as a re�nement of the more abstract relaxed model
in Section 6.5.1. There, two vital properties for the abstract model are established. �
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5.3 DiSCharts

To specify a discrete-time implementation of a model which is given as a HySChart
we need a description technique and an execution model for such an implementation.
Therefore, we de�ne DiSCharts in this section. Like HySCharts, DiSCharts are hi-
erarchic, sequential control-
ow graphs used for the speci�cation of the behavior of
system components, but in contrast to HySCharts their underlying time model is dis-
crete. We use the natural numbers. Besides that, they are de�ned very similar to
HySCharts, based on the hierarchic graph framework introduced in Section 3.3. This
enables us to de�ne a simple methodology that supports the transition from a relaxed
HySChart to a DiSChart in Section 5.4. The guiding principle in the de�nition of
DiSCharts is to keep them close to HySCharts. The syntax of DiSCharts is the same
as for HySCharts (cf. Section 3.5), only the (discrete-time) activities in DiSCharts
refer to another kind of predicates. In the spirit of the integrated development process
of Section 2.2.2, a model speci�ed as a DiSChart need not already de�ne the �nal
implementation. Instead it may be the basis for further development steps in discrete
time. This motivates that we de�ne DiSCharts in a way which explicitly allows us
nondeterministic speci�cations.

5.3.1 Machine Model

Semantically DiSCharts are time-guarded relations between discrete-time input and
output communication histories, parameterized with a start state s0. A discrete-time
communication history (or discrete-time stream) is a mapping from the nonnegative
natural numbers N to some domain A. The set of discrete-time streams with domain
A is denoted by AN. Thus, the type of a DiSChart is n � S ! (IN ! P(ON)), where
n � S is the state-space of the DiSChart, I its input space and O its output space, just
as for HySCharts. Like before, the state space consists of the control-state space and
the data-state space, which de�nes the values of all controlled variables.

The semantics of DiSCharts is de�ned based on the machine model depicted in Fig-
ure 5.6.6 It basically is a Moore machine. DAna and DCom are discrete-time versions
of the analog part and the discrete part as known from HySCharts. DAna is an al-
gorithm which at every time instant computes the value of the controlled variables
according to some mathematical evolution law, for instance a di�erence equation or
a numerical integration algorithm. DCom is a state transition relation which uses
the state provided by DAna and the external input to determine the next state.
�s is a discrete delay by one time unit. At any time point k its output is the in-
put it received at the previous time point or the initial state, if k = 0. Formally

6Formally, the �gure depicts a multiplicative hierarchic graph which is interpreted w.r.t. time
model N.
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Figure 5.6: Machine model for DiSCharts.

�s(�)(k) = �(k � 1) if k > 0 and s otherwise. Like in HySCharts, the state provided
as output of �s is called the latched state.

At each time instant DAna receives the latched state and the current external input.
Under the assumption that time T passes between two time instants (or activations),
it updates the latched state according to the evolution laws encoded in it. The updated
state and the current input is used by DCom to decide whether it idles or produces a
new next state di�erent from the updated state. Whether new or not, the next state
is given to the output interface of the DiSChart and to �s where it is stored until
the next activation of the chart. The projection Out makes the values of the output
variables visible outside.

In comparison to the HySChart machine model (see Figure 3.4, middle) the succession
of DAna and DCom is reversed in the DiSChart. This is motivated by the desire to
keep the e�ects of the delay �s small. At a time point k, �s gives the latched
state to DAna and DAna can compute an approximation of the controlled variables
corresponding to the present external input and assumed physical time k � T , where
T again is the sampling rate with which the DiSChart is supposed to operate. This
approximation can immediately be used by DCom to decide whether it produces a
new next state or idles. If the succession was like in the HySChart machine model,
i.e. DCom would preceede DAna, DCom would have to base this decision on the
latched state which was computed by DAna for a di�erent physical time and old
external input. As DAna is responsible for correct values of the components local clock
now , this would e.g. mean that DCom has to work with old clock values. Wrong clock
values are critical, since the detection and sending of events relies on time stamps, like
in HySCharts. Furthermore, old values of DAna can cause completely inappropriate
reaction of DCom to its current input.7 On the other hand, no time is wasted if DAna

7In control theory, delays of this kind are known to be able to cause instability of a system
(Section 6.3.3).
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cannot react to a discrete move by DCom at the same time instant, since, like in a
HySChart, we require that the DiSChart's output right after a transition is the state
produced by DCom, not a modi�ed version of it. Thus, if DAna followed after DCom
in the machine model, it would not be allowed to update the state it receives in such
a situation, anyway.

5.3.2 The Discrete Part in Discrete Time

The discrete part of a DiSChart DCom is essentially equivalent to the discrete part in
HySCharts. It is a relation without time. At each activation it maps the current input
and the updated state to the next state, formally: DCom 2 (I � n � S) ! P(n � S),
where n�S is the program-state space of the DiSChart. DCom(i; s) must be nonempty
for any (i; s) 2 I � n � S, i.e. the relation is total in I � n � S. It is derived from a
hierarchic graph in the same way as described in Section 3.5.1 for the discrete part
of HySCharts. The syntax of guards, actions and invariants as well as the encoding
of events and messages is as de�ned there. For DiSCharts, however, invariants need
not de�ne topologically open sets. We can relax this condition, because the �nitely
large delay �s in the machine model guarantees its well de�nedness (see below). Like
HySCharts, DiSCharts also contain a controlled variable now which contains the cur-
rent physical time at each time point when DCom is activated. Variable now is
updated by DAna under the assumption that the physical time between two succes-
sive activations of the DiSChart is T . It is needed to set the time stamps for event
and message based communication. Additionally, DiSCharts contain a further special
variable rs 2 finit ; true; falseg, denoting a kind of reset. It is used by the discrete
part to signal DAna when it has taken a transition and also for initialization of the
DiSChart. In the discrete-time implementationDAna can no longer detect discontinu-
ities caused by transitions in DCom. Therefore, DCom explicitly has to signal when a
transition is taken such that DAna can react by changing the present activity. From
an implementation point of view such a change can be regarded as a reinitialization of
the used integration algorithms. We implicitly associate action body rs 0 = true with
every transition in the DiSChart. If no transition is taken, DCom leaves rs unchanged.

5.3.3 The Analog Part in Discrete Time

As in HySCharts, a DiSChart's behavior is determined by activities during the time
periods where the discrete part idles. An activitiy in discrete-time is a relation DAct
with type DAct � (IN �SN)�SN . Activities must be time-guarded. We also require
that activities are independent from absolute timing, like in the continuous time case.

Activity de�nition. In discrete-time a tuple of streams ((�; �); �) in an activity
is regarded as resulting from one of a set of computation laws (or algorithms) which
de�ne the activity. A computation law is a relation of the same type as actions in the
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discrete part, i.e. a relation between the current input, the latched state and the next
state. It must be total in the input and the latched state. The computation law is
applied at each time instant to yield state stream � from input stream � and latched
state stream �. Thus, for a set of computation laws CL with cl � I � S � S for any
cl 2 CL, the discrete-time activity DAct is de�ned by:

DAct =
[

cl2CL

cly

where cly is the time extension of cl w.r.t. time model N . Note that the selection of cl
cannot be changed as time evolves.

In comparison to continuous-time, computation laws can be regarded as resulting from
di�erence equations, similar to di�erential equations which specify continuous-time
activities. The intuition is that computation laws compute an approximation for some
continuous evolution based on the assumption that physical time T passes between
two successive activations of a DiSChart. Numerical integration algorithms are typical
candidates for computation laws. As described in more detail in Section 5.4.3.2,
such algorithms sometimes treat initialization in an exceptional manner and some
algorithms also need to store past values. For the purpose of initialization we included
variable rs into our data-state space. Its usage is explained below. Past values can
also be stored as part of the data state. As such values are irrelevant for the discrete
part and only needed by DAna for its computations, we refer to the part of the data-
state space which is only needed for auxiliary variables of DAna as Saux and write
Sre for the rest of the data-state space. We use a set of computation laws instead
of a single computation law as speci�cation for an activity, because this allows us to
specify di�erent kinds of evolutions for the state. These evolutions can be regarded
as corresponding to di�erent approximated solutions of an initial value problem, or to
di�erent approximation methods. In later development steps a particular computation
law can be selected. For instance, this can be useful to select a particular discretized
linear evolution for a variable from a set of such evolutions. This is considered in the
example in Section 5.3.6.

Like actions, we describe computation laws by their characteristic predicate and use
the same conventions as for actions to refer to current inputs, current and latched
time stamps, and next values of controlled variables. For instance, the computation
law updating variable now with the current time provided rs 6= init is written as:

(rs 6= init ) now 0 = now + T ^ rs 0 = rs) ^ (rs = init ) now 0 = now ^ rs 0 = rs)

If rs = init the value of now remains unchanged. The value of rs remains unchanged
in both cases. For activities which are associated with leaf nodes of a DiSChart,
this is de�ned di�erently below.8 Note that this updating of now corresponds to the

8Like for HySCharts, leaf nodes are those nodes in the hierarchic graph for a DiSChart which
have no subnodes.
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di�erence equation now 0�now
T

= 1 where the physical time passing between two time
instants in the discrete-time model is assumed to be T . By convention we usually
only explicitly write the part of the computation law which de�nes the behavior in
case of rs 6= init and do not explicitly specify how rs is modi�ed by the computation
law, since this is determined by the conventions given below. Furthermore, we omit
equalities v0 = v stating that the value of a variable v does not change in a computation
law. Thus, variables v whose next value v0 does not appear in the predicate remain
unchanged. For the computation law from above we can therefore use the shorthand
now 0 = now + T , where the treatment of rs is implicit. In a tool environment, the
implicit part of the predicates can be added by the tool.

Composition of activities. Similar to HySCharts, the discrete-time analog part is
obtained by pasting traces of the activities associated with the control states where
DCom idles. Pasting is realized by �rst adapting activities such that they may be reset
in reaction to moves by DCom and then by switching between the adapted activities
with the time-extended disjoint sum (Section 3.3.4), similar to the continuous-time
case. The adaptation to resets is de�ned by overloading the discontinuity adaptation
da(:) to discrete-time activities in the following way.

da(DAct) = f ((�; �); �) 2 (IN � SN)� SN j
8Æ 2 Int \ N: �:rs jÆ = �Æ ) ((�; �); �)jÆ 2 DAct jÆg

where Int is the set of all intervals over R+ and �Æ is a function on Æ de�ned by
�(min(Æ)) 2 finit ; trueg and �(k) = false for all k 6= min(Æ). The de�nition expresses
that the computation law selected from an activity may be changed whether rs is
true or init . Then, the selection remains constant until the next reset, caused by a
transition in DCom. Adaption da(:) would not be needed, if DAct was given by a
single computation law. Like in the continuous-time case, da(:) distributes over the
sequential composition of activities.

As in HySCharts, the nodes in the hierarchic graph for a DiSChart are labeled with
activity names, which refer to activities. The discrete-time analog part is derived from
the hierarchic graph as described in Section 3.5.2 for the analog part of HySCharts.
Thus, it also is a disjoint sum of sequentially composed, adapted activities. This
means that it can be written in the form DAna = +n

i=1 (;+
mi

j=1da(DAct i;j)), where the
underlying time model for the operators here is N . As activities result from the time
extension of computation laws, which are required to be total, the analog part is time
guarded and total in the received input and state stream.

Conventions. If no activity is speci�ed for a node in a DiSChart, the time exten-
dended additive identity relation iS = f((�; �); �) j � 2 IN ^ � 2 SNg is used as
activity semantics for that node. Thus, the state is not changed here.

As far as initialization is concerned, we require that if rs = init , which signals that this
is the �rst activation, all activities associated with hierarchic nodes in the DiSChart
at most modify the part of the data state which is only needed for auxiliary variables
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of DAna, denoted by Saux. For rs = init , activities associated with primitive nodes
must set rs to true and also leave the rest of Sre unchanged. This is required, because
at system start (\time 0") the DiSChart and its discrete part are supposed to start
working with the speci�ed initial state s and not with an approximation for the state
at the next time instant (\time 1") which would be computed by the �rst activation
of an activity's computation law. Nevertheless, activities can use this startup phase
for initializing those parts of the data-state space Saux which are exclusively needed
by activities, e.g. to remember old inputs. Setting rs to true when the initialization
is completed allows the analog part to start a new activity at the time instant after
initialization.9

Furthermore, we require that each activity which is associated with a primitive node
in the DiSChart sets rs to false, if its latched value is di�erent from init . This
ensures that the (re)start of activities caused by rs = true ends when DAna passes
the program state to DCom. Activities associated with hierarchic nodes do not modify
rs, because the original value is still needed by the (sequentially composed) activities
of its subnodes. Together with DCom setting rs to true i� it takes a transition, this
ensures that the control state does not change during the intervals in which rs is init
or true initially and false thereafter. This in particular motivates the de�nition of
da(:) above. In examples, the modi�cation of rs usually is not speci�ed explicitly
since it follows from these conventions.

By convention we implicitly add a predicate that updates now to each computation
law of the primitive activity which is associated with the top-level hierarchic node
(root node) of the DiSChart. The predicate was already given above, omitting the
implicit treatment of rs it is now 0 = now + T . Provided now is initialized with zero,
rs = init initially, and the activation rate T is correct, the resulting activity within
the machine model of Figure 5.6 ensures that now denotes the time since system start.

Remarks. The principal di�erence between the discrete part and the analog part
in a HySChart, which consists in the analog part being responsible for the continuous
dynamics while the discrete part is responsible for discontinuities, vanishes here. As
the discrete-time output of DAna is only given at isolated time instants k 2 N , the
notion of continuous evolution is no longer meaningful. From a methodical point of
view, however, the algorithms in DAna are expected to specify some kind of regular
evolution of the controlled variables over time. To denote such a regular evolution, the
computation laws de�ning activities could e.g. be speci�ed by (simple) discrete-time
block diagrams which represent di�erence equations. The methodical intention behind
DCom is that it is responsible for logical decision making while DAna does not make
decisions, besides the treatment of the rs signal.

When a DiSChart reacts to the sampled values on a hybrid input channel with its

9Remember that the last activity in a sequential composition of activities in the analog part stems
from a primitive node. In other words, by construction of the analog part the sequential compositions
of activities in it re
ect the hierarchy in the DiSChart (cf. Section 3.5.2).
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underlying discrete time grid, jumps in the values on the channel cannot be detected
by the analog part and DAna therefore cannot react to them by choosing a new
computation law from the current activity. If such a change as reaction to jumps in
the input is desired, DCom must observe the time stamp information associated with
the input channel and initiate a change by taking a transition, thereby setting rs to
true.

5.3.4 The Discrete-Time Component

The denotational semantics DCmp of a component speci�ed by a DiSChart is given
by writing the graph in Figure 5.6 as a relational expression with the multiplicative
operators for underlying time model N :

DCmp(s) = (( Æ̂I2�In�S) ;� (II�DAna) ;� DComy ;� Æ̂
n�S
2 ;� (Out y��s)) "n�S�

where I is the input space and n � S is the program-state space, as usual. Provided
DCom is total and DAna is total and time guarded, DCmp also is total and time
guarded. Unlike for HySCharts, this result immediately follows from the �nitely large
delay �s which is contained in the feedback loop [GR95]. If totality holds, the type
of DCmp(s) is IN ! P(ON), where O is the output space. For the \white-box" (or
state-based) semantics of a component we write DSt . It is de�ned by replacing Out y

by the identity In�S in the above formula for DCmp. We need it to reason about the
DiSChart's internal behavior.

Similar to HySCharts, the de�nition of the analog part as resulting from pasting the
output of the activities whenever DCom idles results in an operational semantics for
DiSCharts. A step in this semantics consists of a discrete move by DCom followed
by a period of evolution where the behavior is determined by DAna and DCom idles.
This semantics is given in Appendix A.2.1 and used to proof the correctness of the
re�nement principle given in the next section.

Note that during time periods where DCom idles, the state stream produced by
DAna is fed back to it with a delay of one time unit. We say that stream � 2
(n � S)fk1 ;:::;k2+1g satis�es RAna for input � 2 Ifk1+1;:::;k2+1g i� it complies with this
feedback composition. Formally, this is expressed as (�; � 1jÆ; � jÆ) 2 DAnajÆ, where
Æ = fk1 + 1; : : : ; k2 + 1g, k1 � k2 in N , and � 1 is the right shift of � by one time
unit. The right shift expresses the e�ect of the delay. In the continuous-time case,
the interaction of Com and Ana is similar. There, the produced state-stream of Ana
is directly fed back to it when Com idles, because during such an idle period the
stream is continuous, Lim therefore is the identity, and there is no further delay in
the feedback loop (Section 3.2.4).
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5.3.5 Interface to Dense Streams

As our aim is to use DiSCharts to specify those components of a hybrid system which
are supposed to be implemented in software or digital hardware, we have to de�ne
how DiSCharts interact with the other components whose behavior is given in terms
of dense streams. For the mapping from dense streams to discrete-time streams we
use a sampling component sampleI;T and for the reverse mapping we use a zero-order
hold holdO;T . Component sampleI;T provides the value of its dense input stream at
time instant k � T , k 2 N , as discrete-time output at discrete time instant k. The
type of these values is I. Component holdO;T takes a discrete-time stream of type
ON and extends its value at every discrete time instant k over the dense time interval
[k � T; (k + 1) � T ) by holding it constant. Figure 5.7 exemplarily depicts the e�ect of

sample

hold

[ )

[ )

tk+1kk-1

(k+1)TkT(k-1)T t k+1kk-1 t

(k+1)TkT(k-1)T t

[

Figure 5.7: Exemplary behavior of sample and hold .

the sample and hold components. The components are de�ned as follows:

sampleI;T 2 IRp+ ! P(IN)
sampleI;T (�)(k) = f�(k � T )g

holdO;T 2 ON ! P(ORp+)
holdO;T (o)(t) = fo(b t

T
cg

where T > 0 and b t
T
c denotes the integer part of the division t

T
. These components

de�ne how the logical time axis N of a DiSChart is mapped to the physical time axis
R+ . The mapping depends on constant T which can be regarded as sampling rate. As
sampleI;T and holdO;T are deterministic, their output upon an input is a singleton set,
we therefore also write � = sampleI;T (�) instead of � 2 sampleI;T (�) and similarly
for holdO;T .
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outBend

i2u

u2i d2i

i2d

b2o o2b

inBend

up inTol down

a_idle

a_idle a_falla_rise

dCtrl

Actions:
b2o � bend?
o2b � b2o
i2u � fHeight :val8 � lb

i2d � fHeight :val8 � ub

u2i � fHeight :val8 � lb + c ^ reset !
d2i � fHeight :val8 � ub � c ^ reset !

Invariants:
dCtrl inv � True

inBend inv � bend :t = bend :t8 _ now mod T 6= 0
outBend inv � inBend inv
inTol inv � fHeight :val8 2 (lb; ub) _ now mod T 6= 0
upinv � fHeight :val8 < lb + c _ now mod T 6= 0
down inv � fHeight :val8 > ub � c _ now mod T 6= 0

(Discrete-time) activities:
a idle � f aHeight 0 = aHeight g
a rise � f aHeight 0 2 [aHeight + cp� � T; aHeight + cp+ � T ] g
a fall � f aHeight 0 2 [aHeight + ev�T; aHeight + ev+T ] g

Figure 5.8: DiSChart for the controller.

5.3.6 DiSChart for the EHC's Controller

This section describes the DiSChart for a discrete-time version of the EHC's controller
from Section 5.2.5. As we will see in the following section, it is a formal re�nement of
the relaxed HySChart given there for an appropriate sampling rate T .

Example 5.3 The discrete-time controller is given by the DiSChart in Figure 5.8.
The actions are the sames as those in the relaxed HySChart of Section 5.2.5. However,
with each action body, rs 0 = true is implictly associated (see Section 5.3.2). The
invariants are also similar to those in the relaxed HySChart. They can be regarded as
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resulting from the HySChart's exact invariants by adding disjunction now mod T 6=
0, where T is the constant denoting the sampling rate with which the DiSChart is
supposed to be operated. Hence, at sampling times a transition must be taken, if
an action guard is true.10 For the invariant of hierarchic state dCtrl observe that
True _ now mod T 6= 0 is equivalent to True.

For the de�nition of activities, we followed the conventions described above and only
explicitly speci�ed the case for rs 6= init and omitted how rs is changed. Each activity
is speci�ed by a single computation law here. Provided rs 6= init activity a idle
denotes that aHeight remains constant. The computation laws for activities a rise
and a fall contain a nondeterministic assignment. For a rise the value of aHeight is
incremented by a value in [cp� � T; cp+ � T ], where cp� < cp+ are positive constants
and T is as above. Note that this simple kind of activity corresponds to the simple
di�erential constraints speci�ed in the HySCharts of Section 5.2.5. Activity a fall is
similar. Here, aHeight is decremented. Making the treatment of rs explicit, a rise is
given by the following computation law:

(rs 6= init ) aHeight 0 2 [aHeight + cp� � T; aHeight + cp+ � T ] ^ rs 0 = false) ^
(rs = init ) aHeight 0 = aHeight ^ rs 0 = true)

Thus, aHeight remains unchanged if rs = init and, as the activity is associated with a
primitive node, rs is set to true in the initialization case. Otherwise it is set to false.
Unfolding our conventions for the other activities yields a similar result, since they
are also associated with primitive nodes.

A stricter version of activity a rise (an similarly of a fall) can be obtained by specify-
ing it with the set of computation laws faHeight 0 = aHeight + cp �T j cp 2 [cp�; cp+]g.
For the resulting activity, the selected rate with which aHeight rises must remain
constant as long as no transition is taken. After a transition, the selection of a com-
putation law with a new rate is allowed because of the use of rs and the de�nition
of da(:) for activities (see Section 5.3.3). Depending on the application, this stricter
form may be desirable and motivates that a set of computation laws may be used to
de�ne an activity in DiSCharts.

In comparison to the state space of the relaxed HySChart of Figure 5.5 the DiSChart's
state space is bigger, because it uses the further variable rs. Its state space is 4 � (R �
R+ � R+ � R+ � R+ � finit ; true; falseg) corresponding to the four primitive nodes,
and to the output variables aHeight and reset , the latched time stamps for bend and
fHeight , and now and rs. Note that the latched time stamp of fHeight is not used
in the DiSChart, because there is no action guard which senses discrete jumps on the
hybrid input channel fHeight .

To use the discrete-time component de�ned by a DiSChart within a (continuous-
time) HyAChart, its input interface is preceded by a sample component and a hold
component is added after its output interface. With this extension to dense streams

10Remember that the exact invariant results from the negated action guards.
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the component de�ned by the above DiSChart can be used to replace the continuous-
time component Control of the HyAChart for the EHC given in Figure 3.2, left. �

5.4 Time Re�nement of HySCharts

This section �rst identi�es suÆcient conditions under which a DiSChart is a re�ne-
ment of a relaxed HySChart (Section 5.4.1). Then, we explain how these conditions
can be satis�ed. This amounts to introducing methods which lead from the relaxed
discrete part RCom and the relaxed analog part RAna of a relaxed HySChart to
discrete-time versions of them such that the resulting DiSChart is a re�nement of the
relaxed HySChart. For the analog part, the application of methods from numerical
mathematics and control theory is discussed. Finally, the proposed methods are ap-
plied to an example and a further �eld of application is indicated. Note that the
resulting DiSChart may, but need not, be deterministic. If it is nondeterministic, it
can serve as basis for further development steps with underlying discrete time model.
Otherwise, it can directly be executed.

5.4.1 Re�nement Conditions

Preliminaries. Usually some knowledge about a component's input is necessary
in order to �nd a DiSChart that re�nes a given HySChart, which speci�es the com-
ponent. For instance, Lipschitz constants constraining the evolution on continuous
input channels are needed to �nd a sampling rate for a DiSChart such that the DiS-
Chart detects boundary crossings on these channels with the precision prescribed in
the HySChart. Furthermore, when constructing a discrete-time implementation of
a relaxed HySChart we want to regard the discrete and the analog part largely in
isolation, because this enables us to employ standard techniques for the analog part.
This motivates to restrict the set of considered inputs and the set of considered evo-
lutions of the state. In the following theorem we will use I � IRp+ for the set of
considered inputs and S � (n � SC)

Rp+ for the set of considered evolutions of the
state, where n � SC is the state space of the relaxed HySChart. Typically, I and S
may be described by evolution constraints like Lipschitz constants or minimum event
separations (Section 3.4). The method which is introduced in Section 5.4.2 to derive
a sampling implementation for a HySChart's discrete part is based on the following
evolution constraints: For each discrete and hybrid input channel the minimum event
separation must be given, and for each hybrid and continuous input channel and for
each controlled variable a Lipschitz constant l and an associated error e, if any, must
be given. The Lipschitz constant l is interpreted as constraining every period of ideal
continuous evolution. The actual evolutions, which are assumed, result from allowing
the error e at every point in time, i.e. the ideal continuous evolutions are superimposed
by the error. The following example illustrates these constraints.
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Example 5.4 (Evolution constraints.) As an example consider the real-valued
hybrid input channel x. By convention such a channel is encoded as a stream of
values and time stamps such that at any time instant the time stamp denotes the last
time when there was a discontinuity on the channel (Section 3.4). The convention
for discrete channels and channels only transmitting events is similar. To simplify
notation, we denote the set of streams which satisfy these conventions for a channel
of type D by cs(D). Formally, cs(D) is de�ned as follows:

cs(D) = f� 2 (D � R+)
Rp+ j 8u; v 2 R+ : �:t(v) = u)

u � v ^ �j[u;v] 2 (D � R+)
Rs+j[u;v]g

where (D � R+)
Rs+ are the smooth functions from R+ to D � R+ , �:t denotes the

projection of � on the stream of time stamps and �:val denotes the projection on the
stream of values. Event channels do not transmit values, but only time stamps. For
the set of streams of time stamps satisfying the convention for event channels we write
cs(E).11

For channel x, we assume that the minimum event separation is m, the Lipschitz
constant constraining continuous periods of evolution is l and error e is associated
with the channel. Then the set I � (R � R+)

Rp+ of considered evolutions for x is
de�ned by:

I = f� 2 cs(R) j 9� 2 cs(R): �:t = �:t ^ mes(�) � m ^
Li(�) � l ^ 8u 2 R+ : j�:val(u)� �:val(u)j � eg

Functions mes(:) and Li(:) are de�ned in Section 3.4. �

For controlled variables the minimum event separation is not needed, because discrete
changes in them are initiated by the regarded component's discrete part, not by its
environment. Thus, the minimum event separation is a commitment rather than an
assumption in this case. We remark that the way errors and Lipschitz constants are
interpreted suits well to the e�ects introduced by the output relaxation Rint in relaxed
HySCharts. Therefore, input complying with such constraints can, e.g., be provided
by relaxed HySCharts.

Re�nement theorem. Informally, a DiSChart is a re�nement of a HySChart, if
the following holds: First, the next states produced by the DiSChart's discrete part
must also be valid next states of the relaxed HySChart's discrete part. Second, over
the time periods where the DiSChart's discrete part idles the HySChart's discrete
part must also be able to idle. Third, during these idle periods the output of the
DiSChart's analog part must be a possible output of the relaxed HySChart's analog
part at sampling instants, and between sampling instants, the hold extension of the
DiSChart's output must be in the output relaxation of the HySChart's output.

In the following theorem we formalize this idea. Let DCmp 2 n �SD ! (IN ! P(ON))
be the semantics of a discrete-time component speci�ed with a DiSChart. We write

11Note that E is introduced as the neutral element for the Cartesian product in Section 3.3.2.
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DCom and DAna to refer to its discrete and analog part, respectively, and DOut y for
its time extended output projection. Let Cmp 2 n � SC ! IRp+ ! P(ORp+) be the
semantics of a continuous-time component speci�ed with a relaxed HySChart. We
write RCom and RAna for its discrete and analog part, ROuty for its time extended
output projection and Rint for its output relaxation. Re�nement w.r.t. all inputs in I
is denoted by �I , i.e. A �I B i� 8� 2 I: A(�) � B(�) for continuous-time components
A and B. For state (or state stream) s we write s:x in the following to denote the value
(or the evolution) of variable x in that state (or stream). The Cartesian projection
of a space X on space Y is denoted by �Y , where X = Y � Z (up to isomorphism)
for some space Z. Space Y is also called a factor space of space X. Projection is
overloaded to arbitrary spaces of which Y is a factor space. Therefore, X does not
occur as index in �Y . For program-state spaces n � Sa and n � Sb, projection is de�ned
by �n�Sb((k; s)) = (k; �Sb(s)), where (k; s) 2 n � Sa and Sb is a factor space of Sa. Its
type is (n � Sa)! (n � Sb). Projection is extended to streams and sets of streams in a
pointwise manner. The data-state space SC of Cmp is required to be a factor space of
that part of the data-state space SD of DCmp which is not needed by the DiSChart
for variable rs and for further auxiliary variables used in its numerical computations
(see Section 5.3.3). This ensures that the part of the data-state space which both
components have in common is not a�ected by initialization of DAna.

Theorem 5.1 (Discrete-time re�nement of HySCharts.) For set I of consid-
ered inputs, I � IRp+, start states s; s0 with s:rs = init , s:now = 0 and sampling
period T the time extended DCmp(s) re�nes Cmp(s0), formally

sampleI;T ;�DCmp(s);� holdO;T �I Cmp(s
0)

holds, if there is a set S � (n � SC)Rp+ of evolution constraints for the state stream
such that the following holds:12

1. SC must be a factor space of the part of SD which is not needed for auxiliary
variables of DAna and for variable rs, furthermore s0 = �n�SC (s)

2. at sampling instants DCom re�nes RCom:

8i; u; v: u:now mod T = 0 ^ v 2 DCom(i; u)) �n�SC(v) 2 RCom(i; �n�SC(u))

3. provided the input and the state evolve according to the assumed restrictions
I � IRp+ and S � (n � SC)Rp+, and the value of the local clock, now, is correct,
RCom can remain idle during a sampling interval if DCom was idle at the
beginning of the interval:

8k 2 N : 8� 2 Ij[kT;(k+1)T ): 8� 2 Sj[kT;(k+1)T ): 8s 2 n � SD:
�n�SC (s) = �(kT ) ^
8t 2 R+ : �:now(t) = t ^ (now is correct)
s 2 DCom(�(kT ); s)) (DCom idles)
8t 2 [k � T; (k + 1) � T ): �(t) 2 RCom(�(t); �(t)) (RCom idles)

12Note that this re�nement relation is a U-simulation in the sense of [Bro97b].
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4. On any interval where DAna is only reset at the beginning, DAna re�nes the
trajectories in RAna at sampling instants and the extension of its output trajec-
tories by hold re�nes the output trajectories in RAna relaxed by Rint.
Formally, for every interval Æ = fk1+1; : : : ; k2+1g, k1 � k2 in N , the following
must hold:

8� 2 I: 8�0 2 IN: 8� 0 2 (n � SD)fk1;:::;k2+1g:
�0 2 sampleI;T (�) ^
� 0:rs(k1) = true ^ (reset at beginning)
8k 2 Æ: � 0:rs(k) = false ^
(�0jÆ; �

01jÆ; �
0jÆ) 2 DAnajÆ (� 0 satis�es DAna)

)
9� 2 (n � SC)[k1T;(k2+1)T ) \ C:
(�j[k1T;(k2+1)T ); �; �) 2 RAnaj[k1T;(k2+1)T ) ^ (� satis�es RAna)
8k 2 fk1; : : : ; k2g: �n�SC(�

0(k)) = �(kT ) ^ (sampling instants OK)
�n�SC(�

0(k2 + 1)) = limx%(k2+1)T �(x) ^ (last value OK)
holdO;T (DOut

y(� 0)) � Rint(ROut
y(�)) (hold extension OK)

where � 01 is the right shift of � 0 by one time unit and C is the set of continuous
functions in (n � SC)[k1�T;(k2+1)�T ).

5. set S of constraints on the state evolution indeed constrains the trajectories pro-
duced by RAna for inputs in I: (�; �; �) 2 RAnajÆ ) � 2 SjÆ for all � 2 IjÆ and
all intervals Æ

If an analog part RAna and its discrete-time implementation DAna satisfy the con-
ditions of assumption 4 of the theorem, we also say that DAna is a sample-and-hold-
re�nement of RAna, and likewise for activities.

The proof of the theorem proceeds inductively and is based on the operational hybrid
step relations de�ned for HySCharts and DiSCharts in Appendix A.1.2 and A.2.1,
respectively. Further main properties needed in the proof are

� that the relaxed analog part always determines the correct value of now , if it
was initialized correctly (Section 5.2.2),

� that on intervals where rs in DiSCharts is true initially and false thereafter, the
control state does not change (Section 5.3.3),

� that the initialization step of DAna does not a�ect the state space of the
HySChart and sets rs to true (assumption 1 together with Section 5.3.3).

The proof is given in Appendix A.2.2.

Correct values of the local clock (in assumption 3) are needed, because the triggering
of transitions depends on them. Assumption 4 only needs to regard intervals where
the discrete part idles, because the case when it is not idle is covered by assumption
2. Idling during a time period in the discrete time case means that rs is (at most)
true initially and false thereafter. Furthermore, the control state is constant during
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an idle period. If it was not, this would mean that DCom takes a transition which
implies that it sets rs to true.

Remarks. Assumption 4 in the theorem relating DAna and RAna may be diÆcult
to establish in cases where jumps in the external input � directly a�ect the analog
part, because in this case DAna makes its next step without knowing about the jump
whereas RAna was able to change its activity at the time instant the jump occurred.
In general this re
ects that systems should be designed such that jumps in the external
input do not directly a�ect the analog part. However, we can weaken assumption 4 of
the theorem under certain circumstances: If the discrete part is guaranteed to react in
a way that resets those variables a�ected by the jump in the input such that their new
value determined by the discrete part is the same in the DiSChart and the HySChart,
we can permit that the next state produced by DAna is not a valid output of RAna.
We do not formalize this further.

Apart from this diÆculty, �nding a � which satis�es RAna and which corresponds to
� 0 as required in assumption 4 is not a major problem, if RAna is liberal enough and
DAna is chosen sensibly. Methods to �nd DAna are discussed in Section 5.4.3.

The theorem could also be stated for other initial states s with s:now = kT (for
a k 2 N) and consistent values of those private variables which are only needed by
DAna. We refrain from doing so, because this would complicate the proof of the
theorem while not providing further insight.

Theorem 5.1 provides a joint re�nement of RCom and RAna. While fully isolated
re�nement of RCom and RAna would also be possible, we focused on this variant,
because it does not require modi�cations in the machine model which would otherwise
be necessary in order to decouple RCom and RAna. In Section 5.6 we outline how
isolated time re�nement of the discrete part can be realized.

5.4.2 Sampling for the Discrete Part

Here we explain how the discrete part of a DiSChart which satis�es assumptions 2 and
3 of the re�nement theorem from above can be constructed from a relaxed HySChart.
For the construction, the relaxed invariants as well as the exact invariants from which
they were derived are needed.13 The HySChart with the exact invariants must be
total, i.e. it cannot refuse an input. Furthermore, evolution constraints for all those
input channels and controlled variables must be given whose values occur in the exact
invariants. The construction can be performed automatically, if all this data is given
and if the arithmetic expressions in the exact invariants are suÆciently simple.

13Remember that the exact invariant of a node is de�ned as the negation of the disjunction of the
actions guards of the transitions directly emerging from the node (and from none of its subnodes)
(Section 3.5.1).
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Figure 5.9 depicts the underlying intention for this construction and also for the con-
struction of the (discrete-time) analog part in the next section. For a given exact
HySChart and its relaxation, a DiSChart is sought which re�nes the relaxed HySChart
(solid line from the relaxed HySChart to the DiSChart in the �gure). In the construc-
tion, elements from the exact HySChart are used in order to ensure that the behavior
of the DiSChart closely resembles it (indicated by the dashed line in the �gure). These
used elements are the exact invariants and the exact activities. The structure of the hi-
erarchic graphs de�ning the exact HySChart, the relaxed HySChart and the DiSChart
is the same. Syntactically, the three diagrams only di�er in their actions, invariants
and activities.

U

= U

=
exact
HySChart

relaxed
HySChart

DiSChart

Figure 5.9: Intended relation between the exact HySChart, the relaxed HySChart and
the DiSChart.

Idea. Methods for the construction of the analog part are considered in the next
section. The principal idea in the construction of the discrete part is as follows. If
we want that the discrete part running with a certain clock rate re�nes the relaxed
discrete part which is not bound to a �xed time grid, we must ensure that the clock
rate is chosen such that a sampling step falls in every interval during which the relaxed
discrete part has the choice to idle or to take a transition and after which a transition
must be taken. A suÆcient condition is to ensure that a sampling step lies in every
interval in which a (subformula of a) relaxed invariant and the corresponding action
guard, from which it was derived, are simultaneously true. In other words, we must
choose a sampling rate T such that the smallest tolerance permitted by the relaxation
of the HySChart can be satis�ed. When a transition guard is true at a sampling
instant, it must be executed, because idling and waiting until the next sampling instant
may cause that guards and invariants in the relaxed discrete part are both violated
for the state at that time.

In the following we write DCom for the DiSChart's discrete part and RCom for the
relaxed HySChart's discrete part. For the construction of DCom we start with the
same hierarchic graph which de�nes the HySChart. Only the invariants and the action
bodies in the graph will be modi�ed. Thus, the DiSChart and the HySChart have
the same set of control states. The data-state space of the DiSChart contains the
further controlled variable rs and possibly some further private variables which are
only needed by the computation laws de�ning the DiSChart's analog part. As before,
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we write n � SD (or n � SC) for the DiSChart's (or HySChart's) program state space.
SC is a factor space of SD.

Evolution Constraints. In order to derive a sampling implementation for the
discrete part we need some assumptions on the dynamics of those input channels and
controlled variables which occur in the exact invariants:

� For every discrete or hybrid input channel, discrete jumps in them must be
correctly encoded in their associated time stamps, and the minimum event sep-
aration for each such channels must be given.

� For every hybrid input channel, a Lipschitz constant l and an associated error
e must be given. In any time interval during which the time stamp information
on a hybrid channel does not change, the evolution of values on the channel may
be not more than e away from an evolution which is Lipschitz continuous with
Lipschitz constant l.

� For every continuous input channel and every controlled variable a Lipschitz
constant l and an associated error e must be given. The streams on a contin-
uous channel must always evolve according to these constants. The controlled
variables must evolve according to these constants during any time interval in
which they are continuous.

Example 5.4 shows how these constants formally result in sets I � IRp+ and S �
(n � SC)Rp+ of evolution constraints for the input and state. We will need these sets
when we show that the constructed discrete part indeed satis�es assumptions 2 and 3
of Theorem 5.1.

The method developed in the following paragraph results in a set of inequations de-
pending on the sampling rate, the evolution constraints and the constants used in the
relaxation of the HySChart. Thus, if two of these classes of quantities are given, we
can compute constraints on the remaining one from the inequations. An application
of this kind is discussed in Section 5.4.5.

Deriving the sampling rate. We derive a set of constraints on the sampling rate T ,
with which DCom must be operated, from the relaxed invariants of every (primitive
or hierarchic) node of the HySChart. The relaxed invariants are assumed to result
from the relaxation of exact invariants de�ned in Section 5.2.1. Hence, each invariant
is a �nite conjunction of �nite disjunctions of atoms, where each atom is a comparison
of arithmetic expressions, a comparison of time stamps, a comparison of a time stamp
and variable now , or another proposition over variables with domains di�erent from
the real numbers (see the bottom three lines in the de�nition of the relaxation in
Section 5.2.1). The atoms, which are of interest here, are comparisons of variable now
with time stamps and inequalities involving arithmetic expressions over controlled
variables and the input on hybrid and continuous channels. For every atom of the
form now �x:t8 < "x for a variable x associated with discrete or hybrid input channel,
we add constraint T � "x. This ensures that there is a sampling point between a
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discrete change in x and the permitted delay "x after the change.14 For every atom
a( ~h:val8; ~c:val8; ~v) < "a, we add constraint T � "a�2�"err;a

la
, where a is an arithmetic

expression over tuples of current input variables ~h:val8; ~c:val8 associated with hybrid
and continuous input channels, respectively, and over a tuple of controlled variables
~v. Constant la is the Lipschitz constant constraining the ideal evolution of expression
a, "a limits the permitted overshooting of a over threshold 0 and "err;a is an error
that is associated with the computation of a and which a�ects its ideal evolution.
For suÆciently simple arithmetic expressions, like addition, la can be derived from
the Lipschitz constants constraining the ideal evolution of the variables occurring in
the expression, see e.g. [K�on90]. These constants are required to be given. Constant
"err;a results from the errors that are associated with the ideal values of all variables
occurring in the expression. E.g. for controlled variables, their discretization error
has to be considered here. Error estimation techniques from numerical mathematics
allow us to derive the possible error in a from the errors associated with the variables
occurring in it [HH91]. Bounds for these errors are assumed given. For a sampling
implementation "a � 2 � "err;a must be greater than zero, because T must be positive.
The condition T � "a�2�"err;a

la
provides that whenever the value of expression a evolves

continuously, there is a sampling point in every time interval during which a can cross
the interval [0; "a). In this interval, the relaxed invariant still is true although the
exact invariant a < 0 already is false. To show this we derive a lower bound on the
time it takes for the computed value of a to rise from 0 to "a. Assume the computed
value of a is 0 at time t1 and "a at time t2, t2 > t1. Furthermore, assume the worst
case for the error. In this case, the exact value of a, denoted by a, lies "err;a above
the computed one at time t1 and "err;a below the computed one at time t2. Then,
"a = a(t2)� a(t1) = a(t2) + "err;a� (a(t1)� "err;a) � lajt2 � t1j+ 2 � "err;a holds, where
we used Lipschitz continuity. Thus, the value of a needs at least time "a�2�"err;a

la
to rise

continuously from 0 to "a. Choosing T less or equal to this constant ensures that we
can detect whenever a crosses the interval [0; "a).

In the rest of this section we assume that T > 0 is chosen such that it satis�es all the
constraints on it. If "a � 2"err;a > 0 for every arithmetic expression a, this is possible
since each constraint limits T from above with some value greater 0 and there are only
�nitely many constraints. (The number of constraints is �nite, because there are only
�nitely many atoms in �nitely many action guards in a HySChart, leading to �nitely
many atoms in �nitely many (relaxed) invariants.)

Actions and invariants in DCom. To obtain a re�nement of the relaxed discrete
part, we start with replacing every relaxed invariant in the HySChart with the exact
invariant from which it was derived. Then, we weaken the invariant of every (primitive
or hierarchic) node in the resulting HySChart by adding disjunct now mod T 6= 0
to it. This causes that the new invariant can only remain true at sampling points

14Remember that "x > 0 should be chosen smaller than the minimal separation between two
discrete changes for x to avoid that discrete changes are not detected.
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kT , k 2 N , if the exact invariant is true. This, in turn, requires that no outgoing
transition of the considered node is enabled, because exact invariants result from
negating action guards. Thus, the exact invariants with the additional disjunct express
that a transition must be taken at the �rst sampling point where it is enabled.

Finally, we add conjunct rs = true to the action body of every transition in the chart.
The graph with the modi�ed invariants and transitions de�nes our DiSChart. DCom
is directly derived from it in the way explained in Section 3.5.1 for HySCharts.

DCom is total if the discrete part of the HySChart with exact invariants, denoted by
Com, was, which we required at the beginning of this section. This follows by case
distinction. For any current input i and latched program state s, if s:now mod T = 0
DCom and Com coincide, DCom(i; s) = Com(i; s). If we are not at a sampling point,
i.e. s:now mod T 6= 0, all invariants are true for s and DCom therefore can idle,
s 2 DCom(i; s). Note that it is sensible to require that the HySChart with exact
invariants it total, because we regard it as describing the \ideal" behavior, while the
HySChart with relaxed invariants de�nes the allowed approximating behavior. As the
relaxed HySChart is an abstraction of the one with exact invariants, it is also total if
the exact one is.

Proof of correctness. We now prove that DCom as constructed above satis�es as-
sumptions 2 and 3 of the Theorem 5.1. Assumption 2 is simple: The extended action
bodies do not a�ect the state space n � SC of the HySChart. Furthermore, at sampling
instants the additional disjunct added to the exact invariants is false. Hence, at sam-
pling instants DCom projected on state space n �SC behaves like Com, and Com itself
re�nes RCom, since RCom is derived from Com by weakening invariants. Weakening
an exact invariant means that the set denoting the exact invariant's semantics is a
subset (and hence a re�nement) of the semantics of the relaxed invariant. As additive
hierarchic graphs are compositional w.r.t. re�nement (Section 3.3.5), this yields that
the graph with the exact invariants re�nes the graph with the relaxed invariants.

For assumption 3 we have to prove that RCom can idle during a sampling interval,
if DCom was idle at the beginning of the interval and the input and the state evolve
according to the constraints I � IRp+ and S � (n � SC)

Rp+ assumed for them. In other
words, no transition in RCom is enforced between two sampling instants of DCom.
Let k 2 N; � 2 Ij[k�T;(k+1)�T ) and � 2 Sj[k�T;(k+1)�T ) with correct time in �, formally
8t 2 R+ : �:now(t) = t. Furthermore, let s 2 n � SD with �n�SC(s) = �(kT ) such
that DCom can idle for �(kT ) and s. By construction of the discrete part from the
hierarchic graph for a DiSChart or HySChart, respectively, (Figures 3.15 and 3.16)
idling means that for the current input �(kT ) and latched state s the invariant of
the primitive node which is encoded in the control-state information in s and the
invariants of all its supernodes are true.15

15The hierarchic nodes which directly or via further subnodes contain a primitive node are called
its supernodes.
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Apart from the condition now mod T 6= 0 which is false for s, the invariants in DCom
coincide with those in the exact discrete part. Hence, omitting this condition on
now , they are a �nite conjunction of �nite disjunctions over (negated) comparisons of
arithmetic expressions, (negated) comparisons of time stamps and further (negated)
propositions. Schematically each invariant can be written as follows:

Vg

i=1(
Whi

j=1 ati;j)
where each ati;j either is a (negated) comparison of arithmetic expressions, a (negated)
comparison of time stamps, or another (negated) proposition over variables with do-
mains di�erent from the real numbers. The structure of the corresponding relaxed
invariant is:

Vg

i=1(
Whi

j=1 ri;j) where depending on ati;j, ri;j is one of the following:

� a( ~h:val8; ~c:val8; ~v) < "a _
Wm

`=1 now � h`:t
8 < "h` if ati;j is a comparison of

arithmetic expressions not involving time stamps and now ,

� ts8 = ts _ now � ts8 < "ts if ati;j is a comparison of (latched and current) time
stamps for an input channel,

� :p( ~d:val8; ~v) _
Wm

`=1 now � d`:t
8 < "d` if ati;j is a proposition p over variables

that are not real-valued.

Let z denote the primitive node which corresponds to the control-state information
in s. As DCom can idle for �(kT ) and s, the invariant of node z and the invariants
of all its supernodes must be true. Since the invariants are given as a conjunction of
disjunctions, this means that one of the atoms in each disjunction must be true. We
proceed by case distinction over such atoms at which are true for s and �(kT ), and
show that their relaxation r remains true until the next sampling instant for � and �.

First, assume at is a (negated) comparison of time stamps or a (negated) proposition p
over variables that are not real-valued. If there is no jump on any of the input channels
whose value is used in at, then all the variables associated with these input channels
and also all the controlled variables occurring in at evolve continuously. As the discrete
topology is used for all these variables, this means that they remain constant. Hence,
at is guaranteed to remain true and its relaxation r therefore also remains true. Now
we assume that at time u > kT there is a jump on input channel c whose value is
used in at. In this case, the jump is signaled by time stamp u as the current time
stamp for that channel.16 As �:now(u) also is u and variable now evolves in pace
with physical time, the di�erence of now and u will be less than T at the end of the
sampling interval. Due to the relaxation, there is an atom now � c:t < "c in r. By
the choice of T it is less or equal to "c. Hence, this atom will remain true until the
end of the sampling interval and make r true, as r is a disjunction. Second, assume at
is a (negated) comparison of arithmetic expressions, at � :(a( ~h:val8; ~c:val8; ~v) � 0).
Moreover, assume that there is no jump on any of the input channels whose value
is used in at, i.e. they all evolve according to the Lipschitz constants and associated
errors which de�ne I and S. Then, by de�nition of the relaxation, the relaxation r
of at remains true as long as the value of arithmetic expression a is less than a given
permitted deviation "a. Selecting T in the way described above ensures that if the

16Note that we require correct time stamps in inputs in I .
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value of a is less than 0 for s and �(kT ) it can not reach the bound "a before time
(k + 1)T (see above). Hence, RCom can remain idle. If there is a jump on one of the
relevant input channels, the situation is like in the �rst case for jumps on channels
which are relevant in propositions.

This �nishes the proof. For all invariants associated with the current control state,
we have established that for every atom which is true in such an invariant of DCom
for �(kT ) and s, there is a corresponding predicate in the respective relaxed invariant
which remains true for input stream � and state stream �. This provides that the
respective relaxed invariant remains true until the end of the sampling interval. Hence,
RCom can idle throughout the interval.

Finally, we point out that the minimum event separation for discrete and hybrid input
channels is not needed to establish that assumptions 2 and 3 of Theorem 5.1 hold for
DCom and RCom, but rather to ensure the utility of these discrete parts. Namely,
discrete jumps on discrete and hybrid input channels may fail to be detected if the
minimum event separations for them are not greater than the permitted delay after
which a (relaxed) HySChart or a DiSChart has to react to them.

5.4.3 Sampling for the Analog Part

As is the preceding section, we assume an exact HySChart and a relaxed HySChart
given in this section. The aim is to develop methods for the construction of the ana-
log part DAna of a DiSChart which re�nes the relaxed HySChart. The DiSChart
is supposed to result from the relaxed HySChart by changing the time model, ac-
tivities, actions and invariants, but leaving the chart's structure unchanged (see also
Figure 5.9). The construction of DAna will usually also involve information about the
exact analog part. This is similar to the construction of DCom in which the exact
invariants are used (Section 5.4.2).

For the construction ofDAna methods from numerical mathematics and control theory
can be applied. Numerical integration algorithms can be used to compute an approxi-
mation of the solution of an initial value problem at a given point in time (or a sequence
of points in time) [Sch88]. Control theory o�ers techniques to obtain discrete-time al-
gorithms which result in behavior that is similar to given continuous-time behavior
w.r.t. speci�c characteristics (see below). Furthermore, direct techniques exist for the
design of discrete-time controllers of analog plants [Oga87]. In terms of HySCharts,
all these techniques work on the level of individual activities, not on the analog part as
a whole. Usually, they build upon a problem speci�cation in terms of an initial value
problem or a Laplace transform. In contrast, the analog part in a HySChart consists
of the disjoint sum of sequentially composed, adapted activities. Depending on their
description the individual activities may be accessible to numerical and control the-
ory techniques. In this section we therefore �rst clarify under which circumstances
the discrete-time re�nement of individual activities yields a discrete-time re�nement
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DAna of the analog part. Then, numerical and control theory techniques are outlined
which can be used to construct discrete-time re�nements of activities.

Note that the re�nement of the analog part leads to further constraints on the sampling
rate. In contrast to the construction of DCom, automation in the construction of
DAna is only possible in very speci�c cases, like in the example of the EHC where
the analog dynamis are linear (Section 5.4.4) or in case of speci�c kinds of activities
(Section 5.4.3.3). Usually a desinger will at least have to determine the re�nements for
the individual activities manually. Nevertheless, this section explains how numerical
methods and methods from control theory can support this task.

5.4.3.1 Compositional Discretization

The central result of this section is that a discrete-time re�nement of a HySChart's
analog part can be obtained by �nding discrete-time re�nements of all primitive activi-
ties in the analog part, provided activities at di�erent levels of hierarchy are completely
independent.17 This is formalized in the following.

Let RAna be the relaxed analog part of a HySChart. By its construction from the
chart as described in Section 3.5.2 its form is RAna = +n

i=1 (;+
mi

j=1da(RAct i;j)), where
each RAct i;j is a relaxed activity associated with a primitive or hierarchic node in the
chart. Constants n and mi for i 2 f1; : : : ; ng re
ect the hierarchical structure of the
HySChart. Constant n is the number of primitive nodes in the chart and mi is the
hierarchic level of primitive node i, i.e. it is the number of supernodes in which the
primitive node is contained. For the re�nement, we only consider DiSCharts which are
structurally equivalent to the HySChart and only di�er from it in their time model,
activities, actions and invariants. Let DAna be the (discrete-time) analog part of such
a DiSChart with the same structure as RAna, i.e. DAna = +n

i=1 (;+
mi

j=1da(DAct i;j))
where the DAct i;j are discrete-time activities. Furthermore, let n � SD be the state
space of the DiSChart and n � SC that of the HySChart. SC is required to be a factor
space of SD and the input and output spaces of the DiSChart and the HySChart must
coincide.

Besides this structural compatibility we need that hierarchic activities are completely
independent from each other. In detail, we require that in every sequential composition
of the activities in RAna and DAna the set of controlled variables occurring in each of
the activity speci�cations (except for variable rs) is disjoint from the set of controlled
variables in the other activities of the sequential composition. In DAna, variable rs
may be referenced by every activity. Here, the conventions for the modi�cation of rs
prevent undesirable interference (cf. Section 5.3.3). For DAna, we furthermore require

17This is not an immediate consequence of the compositionality of time-extended additive hierarchic
graphs w.r.t. re�nement. Due to the feedback in the machine model we have to regard the analog
part and the activities under feedback. The property we need besides compositionality is a kind of
distributivity of feedback over disjoint sum and sequential composition.
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that every discrete-time activity DAct i;j references all controlled variables occurring
in RAct i;j. It may reference additional controlled variables of the DiSChart which are
not in the state space of the HySChart, but no further variables of the HySChart.
Due to the de�nition of activities, due to their relaxation and due to the associated
conventions (Sections 3.5.2, 5.2.2 and 5.3.3), this ensures that DAct i;j and RAct i;j
are the identity on variables not occurring in their de�nition. Practical modeling
examples, like the EHC or [PPS00], show that the independence condition is not
always, but often satis�ed. If it is not satis�ed, it may be possible to modify a model
by grouping hierarchical activities together.

Before we proceed, some further notation needs to be introduced. We write Ai;j

and Di;j for the factor space of SC and SD, respectively, built from the product of
the domains of those controlled variables occurring in the de�nition of RAct i;j and
DAct i;j, respectively. Like before, projection � is extended to sets and functions in
a pointwise manner. Thus, the projection �(I�Ai;j)�Ai;j

(RAct i;j) of activity RAct i;j
is in ((I � Ai;j) � Ai;j)

Rp+. As a shorthand, we write pRAct i;j for the projected
activity. For DAct i;j, we write pDAct i;j to denote the activity resulting from adding
assignment rs 0 = false to each of its computation laws and projecting that activity on
(I � Di;j) � Di;j. The modi�cation of rs is needed, because we want to consider the
activities in isolation. It provides that the reinitialization of an activity caused by a
transition in the discrete part DCom ends after an activation of the activity. Within
DAna the modi�cation is performed by the last activity of a sequential composition.
However, when we regard an activity in isolation, it must be performed by the activity
itself.

The space built by the controlled variables not occurring in the de�nition of RAct i;j
or DAct i;j, respectively, is denoted by Ai;j and Di;j, respectively. Ai;j is called the
controlled space of RAct i;j and Ai;j is called its unconstrained space, and analogously
for the discrete-time case. Note that Ai;j �Ai;j is isomorphic to SC and Di;j �Di;j is
isomorphic to SD. The above statement that activities are the identity on variables
not occurring in their de�nition can now be formalized by: �I�Ai;j�Ai;j

(RAct i;j) = iAi;j

(time-extended additive identity) and similar in the discrete-time case. This is needed
in the proof of the following theorem. Finally, we write Oi;j for the factor space
corresponding to the output variables occurring in RAct i;j. The discrete-time activities
have the same output spaces Oi;j, because of the demands on the variables occurring in
them, as described above. The output relaxation of the relaxed HySChart is denoted
by Rint.

Under these assumptions the following theorem states that assumption 4 of Theo-
rem 5.1, which basically demands that DAna re�nes RAna, is satis�ed if it is satis�ed
for each activity. (As introduced in Section 5.4.1, we also say that DAna is a sample-
and-hold-re�nement of RAna if that assumption 4 is satis�ed.)

Theorem 5.2 (Compositional activity discretization.) Provided hierarchic ac-
tivities are completely independent from each other (see above), the following holds:
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On any interval where DAna is only reset at the beginning, DAna is a sample-and-
hold-re�nement of RAna for sampling rate T and considered input set I � IRp+ (as-
sumption 4 of Theorem 5.1), if the respective property holds for the individual activi-
ties. More precisely, this means that on any interval where there is only one reset at
the beginning, each activity complemented by the treatment of rs and projected on its
controlled space, i.e. pDAct i;j, i 2 f1; : : : ; ng; j 2 f1; : : : ; mig, must be a sample-and-

hold-re�nement of da(pRAct i;j), where the output relaxation pRi;j
int used for pRAct i;j

results from restricting relaxation Rint to the output space Oi;j. Formally, for every
activity pDAct i;j and every interval Æ = fk1+1; : : : ; k2+1g, k1 � k2 in N, the following
must hold:

8� 2 I: 8�0 2 IN : 8� 0 2 Dfk1;:::;k2+1g
i;j :

�0 2 sampleI;T (�) ^
� 0:rs(k1) = true ^ (reset at beginning)
8k 2 Æ: � 0:rs(k) = false ^
(�0jÆ; � 01jÆ; � 0jÆ) 2 pDAct i;jjÆ (� 0 satis�es pDAct i;j)
)

9� 2 A[k1�T;(k2+1)�T )
i;j \ C:

(�j[k1�T;(k2+1)�T ); �; �) 2 da(pRAct i;j)j[k1�T;(k2+1)�T ) ^ (� satis�es pRAct i;j)
8k 2 fk1; : : : ; k2g: �Ai;j

(� 0(k)) = �(kT ) ^ (sampling instants OK)
�Ai;j

(� 0(k2 + 1)) = limx%(k2+1)�T �(x) ^ (last value OK)

holdOi;j ;T (�Oi;j
(� 0)) � pRi;j

int(�Oi;j
(�)) (hold extension OK)

where � 01 is the right shift of � 0 by one time unit and C is the set of continuous
functions in A[k1�T;(k2+1)�T )

i;j .

The inductive proof is rather technical and given in Appendix A.2.2. The theorem
allows us to consider the dynamics caused by individual activities in isolation, provided
the activities are completely independent, as described above.

5.4.3.2 Using Numerical Techniques for Discretization

One way of obtaining discrete-time activities from continuous-time activities is by
using techniques from numerical mathematics. In the following we outline such basic
numerical techniques and discuss how they can be employed in our settling.

Numerical techniques. Numerical techniques for ordinary di�erential equations
assume initial value problems of the form _y = g(y(t); t), y(t0) = y0 given. They com-
pute approximations yk to the exact solution y(kT ) at point k � T , k 2 N , for a step
size T .18 In our context g is independent from time, but depending on external input.
For input x it can be written as g(y(t); t) = f(y(t); x(t)) for a function f . We use this

18Techniques with variable step size are not of interest for DiSCharts, which are based on periodical
sampling.
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notation in the following presentation. Numerical mathematics distinguishes between
singlestep and multistep techniques. In singlestep techniques only the last approxi-
mation yk of y is used to compute the next approximation yk+1. Multistep techniques
also use older approximating values of y for the computation of the next value. We
focus on singlestep techniques here, as they can be understood more intuitively.19

Two simple singlestep techniques, which are also used in the context of discrete-
time controller design (see below), are the Euler backward method and the trape-
zoidal method [CG92, Jai79, Oga87]. In the Euler backward method the integralR (k+1)T
kT

f(y(�); x(�))d� is approximated by T � f(y((k + 1)T ); x((k + 1)T )). This can
be regarded as extending the value of f at time (k + 1)T backward in time. The
resulting equation for yk+1 is yk+1 = yk + T � f(yk+1; x((k + 1)T )), where x((k + 1)T )
is the value of x at time (k + 1)T . The values of yk and yk+1 are the computed ap-
proximations for y. The computation law for yk+1 is obtained by solving the equation
for yk+1.

The trapezoidal method approximates the integral
R (k+1)T
kT

f(y(�); x(�))d� by making
a linear interpolation between the values at kT and (k + 1)T and by computing the
(trapezoidal) area under the interpolating curve. This yields the following equation
for yk+1: yk+1 = yk +

T
2
(f(yk; x(kT )) + f(yk+1; x((k + 1)T ))). Solving this equation

for yk+1 results in the computation law for yk+1. A symbolic solution of the equation
exists, if f is a linear function in y. If there is no symbolic solution, the equation
must be solved numerically. As Schwarz mentions, the trapezoidal method is usually
superior to the Euler method as far as the error is concerned [Sch88].

Further popular single step methods are the Runge-Kutta algorithms. Besides yk
and x(kT ), they also use the value of f(y(t); x(t)) at further points in the interval
[kT; (k + 1)T ] to compute approximation yk+1. As DiSCharts sample their input,
the current external input is not available at such intermediate points. Thus, these
methods can only be applied in our context if an activity is independent from external
input.

Errors. As far as error estimation is concerned numerical mathematics distinguishes
the local discretization error made in one computation step and the global error which
accumulated since the start of the algorithm [BSMM97]. For our purpose the global
discretization error is primarily interesting. It is de�ned as vk = y(kT ) � yk, where
yk is computed in k iterations of the algorithm and y(kT ) is the value of the exact
solution. Local and global error depend on the used algorithm and the underlying
problem. For error estimation, the computation law (or function) which de�nes how
yk+1 is computed from old approximations and the values of x, is usually required
to be Lipschitz continuous. In this case, the global error on an interval [0; kT ] is in
general bounded by a function which is exponential in k. Hence, in the worst case

19Nevertheless multistep techniques can also be applied in DiSCharts. Auxiliary controlled vari-
ables can be introduced to store old values of y.
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the global error diverges for k ! 1 (cf. [Sch88]). Numerical mathematics therefore
introduces the notion of numerical stability for methods for the solution of di�erential
equations. A numerical method is called stable i� the the global error remains bounded
for k ! 1 [Jai79].20 It turns out the stable methods, e.g., exist for di�erential
equations which describe damped exponential behavior. Such behavior often occurs
when modeling physical systems and justi�es that numerical techniques are well suited
for such problems. As an example, we consider the function y(t) = e�ct, c > 0, which
is the solution for initial value problem _y = c � y, y(0) = 1. Using the trapezoidal

method yields that yk+1 is calculated by yk+1 =
1� 1

2
cT

1+ 1

2
cT
� yk. As the step size T is

greater that 0, this implies that the approximated values decrease. The global error

is given by vk = e�c�kT � (
1� 1

2
cT

1+ 1

2
cT
)k, where we start with y0 = 1. It converges to 0 for

k !1.

Numerical techniques in DiSCharts. In the context of the discretization of
continuous-time activities with numerical techniques, the step size T corresponds
to the sampling rate. If numerical techniques are used to �nd a sample-and-hold-
re�nement of a relaxed activity, the technique and the sampling rate must be chosen
such that the global error for the considered variable y is less or equal to the dis-
cretization error permitted by the relaxed activity (Section 5.2.2).

If the value of y is an output of the HySChart, which is to be re�ned, we also have to
regard the distance dk between the exact value of y on the interval [kT; (k+1)T ) and
the last approximation yk. It must be bounded from above by the output relaxation
used for y in the relaxed HySChart. Under the assumption that y is Lipschitz con-
tinuous with constant l on the regarded interval, dk is constrained by dk � vk + l � T ,
where vk is the global error at time kT .

Thus, using numerical methods for the discretization of the activities in a relaxed
HySChart leads to further constraints on the sampling rate T . It must be chosen such
that (1) the global error for the numerical methods used as discrete-time activities
lies within the relaxation of the exact activities and (2) such that the error between
sampling instants for every output variable lies within the output relaxation of the
relaxed HySChart. Together with the constraints on T which stem from re�ning the
discrete part (Section 5.4.2), these further constraints yield an upper bound below
which T > 0 may be selected to obtain a correct re�nement of a (relaxed) HySChart.

Syntactically numerical computation laws of the form yk+1 = F (yk; x((k+1)T ); T ) for
a function F are described by their characteristic predicate in DiSCharts, as described
in Section 5.3.3. In these predicates we write y0 for yk+1 (the next value of controlled
variable y), y refers to its latched value yk and x

8 stands for the current input value
x((k + 1)T ). If older values of the input or of y are also needed to compute the
next value, the activity can use the extended state space which is not relevant for

20This notion of stability should not be mixed up with the general notion of stability de�ned in
Section 6.3.3.
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the discrete part of the DiSChart, denoted by Saux in Section 5.3.3, to store such old
values and can update them in each activation. For instance, this is necessary for the
trapezoidal method, where the old input is needed, and for multistep methods.

If an activity speci�es linear evolution of a variable, like the activity for variable now ,
a simple method, like Euler backward, already suÆces to compute the exact value of
it. In fact the discrete-time activity for now in Section 5.3.3 corresponds to Euler
backward.

5.4.3.3 Using Control Theory Methods for Discretization

Various methods for obtaining an approximating discrete-time control law from a given
continuous control law exist. In the following we brie
y list such methods. A detailed
presentation can, e.g., be found in [Oga87].

Discretization methods. Starting from a di�erential equation _y(t) = f(y(t); x(t))
describing the continuous-time control law one class of methods from control the-
ory transforms the law to the following form which relates the control law's output

y at successive sampling instants: y((k + 1)T ) � y(kT ) =
R (k+1)T
kT

f(y(�); x(�))d� .
The integral in the equation is then approximated by simple numerical techniques
(Euler backward or trapezoidal method) and the resulting equation de�nes the ap-
proximating discrete-time control law. Some other methods are based on constructing
a discrete-time controller which exactly matches a continuous-time controller's output
at sampling instants when fed with speci�c input. Considered inputs here usually
are impulses or discrete steps. Similarly, there also are methods which do not try to
match the exact output, but only some characteristic parameters of the output for
certain input. Such parameters, e.g., are the settling time until a steady state21 is
reached after a step-shaped input, or the frequency and amplitude characteristics of
the output in response to sinusoidal inputs. Note that the response to step-shaped
input and sinusoidal input is also called step response and frequency response, respec-
tively. Such tests inputs and the reaction they cause play an important role in control
theory since they often allow the designer to draw conclusions on the general behavior
of the regarded system. A further method is based on matching poles and zeros of the
Laplace transform of the continuous-time control law. As these parameters greatly
in
uence the controller's frequency response characteristics, this method ensures that
the resulting discrete-time control law has a frequency response similar to the original
one.

All these methods have in common that the behavior of the resulting discrete-time
controller is close to that of the original one w.r.t. some characteristics, but less faith-
ful w.r.t. others. For instance, some methods result in faithful step response, but

21A steady state is a state in which a system will remain forever, unless it is perturbed by its
environment.
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largely di�erent frequency response. Furthermore, the �delity of all those methods
is increased by increasing the sampling frequency. The resulting controllers usually
are not acceptable for sampling frequencies below or close to twice the maximum fre-
quency in the input signal, which corresponds to Shannon's theorem (Section 2.1). As
Ogata [Oga87] mentions, usually eight to ten times of this frequency is required for
sampling to obtain good quality.

For the aim of �nding a sample-and-hold-re�nement of a relaxed activity RAct , the
more or less heuristic character of the outlined methods hampers their use for re-
�nement. In contrast to the numerical techniques from above, the accuracy of these
methods is not clear. However, we can employ such methods if activity RAct expresses
exactly such requirements which are satis�ed by one of the methods: If RAct is speci-
�ed such that it only re
ects an abstract requirement, like a constraint on the settling
time in the step response, a control theory method which constructs a discrete-time
controller that matches this paremeter may be used. Below we give an example of
such an activity. On the level of semantics such activities allow all those trajectories
which comply with the required parameters.22

Direct methods. The situation is similar if direct methods for the construction
of discrete-time controllers are supposed to be applied for controller design. Under
speci�c circumstances such methods, like quadratic optimal control [Oga87], are able
to directly construct discrete-time control laws for analog plants which satisfy certain
requirements. In the case of quadratic optimal control, these requirements are sta-
bility of the resulting control system and optimality w.r.t. a cost function which is
quadratic in the state of the regarded system. Stability will be introduced in detail
in Section 6.3.3. In the context of this section it informally means that small dis-
turbances of a system's state only have a small e�ect on the system's behavior. As
stability practically is required from any control system, we now explain how activities
modeling this requirement can be expressed.

We extend activity syntax to also allow us stability constraints of the following form
as activities: a � ~u such that ~x = 0 is stable for _~x = f(~x; ~u). This activity a is meant
to express all evolutions of the controlled variables in tuple ~u such that point ~x = 0
is stable under the assumption that the relationship between ~x and ~u is given by
_~x = f(~x; ~u). ~x is assumed to be in the input space of the considered component and
~u is assumed to be output to the component from which the considered component
receives ~x. The semantics of this kind of activities is de�ned by:

[[a]] = f(�; �; �) 2 IRs+ � SRs+ � SRs+ j 8Æ: 8t 2 Æ:
( d
dt
�:~x)(t) = f(�:~x(t); �:~u(t))) stable(0; �:~x; Æ)g

where Æ � R+ is an interval, !:~y denotes those components of input or data-state
stream ! which correspond to the variable names in tuple ~y and d

dt
!:~y is the tuple

22An output relaxation Rint is also needed for such activities on order to allow the jumps in the
discrete-time implementation.
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of derivatives of those components of ! which correspond to the variable names in ~y.
Predicate stable(0; �; Æ) is de�ned as state-based stability of point 0 for trajectory �
w.r.t. a given topology and interval Æ, according to Section 6.3.3.2. For the time being,
this may be regarded as equivalent to stable(0; �; Æ) � 8" > 0: 9� > 0: d(0; �(0)) <
� ) 8t 2 Æ: d(0; �(t)) < ", where a metric space with metric d is assumed. State-
stream � in the above de�nition is arbitrary on intervals where the dynamics of the
input is not as expected. On all other intervals, � is required to evolve in a way which
guarantees that trajectory � evolves in a stable manner. Universal quanti�cation over
intervals is needed to ensure that (�; �; �)j[u;v) 2 [[a]]j[u;v) does not hold for arbitrary
streams in which the input dynamics only di�ers from the expected dynamics on an
interval that is not considered in [u; v) anyway. Controlled variables which are not a
component of ~u are not constrained by the activity. Note that because of our machine
model, the discrete part of a HySChart must also agree on the stream � selected by
the analog part. In particular, it determines the start value of �.

Control theory techniques in DiSCharts. Obviously, the above activity de�ni-
tion allows re�nement with techniques that generate stable discrete-time controllers.
We only have to ensure that the resulting discrete-time activity also satis�es the output
relaxation speci�ed for the relaxed HySChart, like in the case of numerical methods as
discrete-time activities. However, this \stability activity" is just an example. Further
requirements, besides stability of the overall system, may involve prescribed accuracy
of the controller, fast response to changes and certain behavior w.r.t. periodic inputs.23

Similar to stability they can as well be given a semantics compatible to activities and
thereby also allow the use of existing control theory techniques for controller design.

Thus, control theory techniques can be applied in case of a very loose speci�cation of
the analog part, e.g. only re
ecting stability requirements and certain loose intervals in
which the continuous evolution is required to be. Typically this can occur in the early
development steps for the controlling component of a hybrid systems, like e.g. in the
controller component of the EHC. There, the restriction of the continuous evolution to
certain intervals can be regarded as expressing the limited range the available actuators
have for in
uencing the plant. The need for a loose speci�cation of the analog part
suits well to the relaxation of HySCharts which also stresses the need for uncertainty
in the analog part.

5.4.4 Time Re�nement of the EHC's Controller

In this section we employ the above results to show that the DiSChart given in Sec-
tion 5.3.6 is a discrete-time re�nement of the relaxed HySChart of Section 5.2.5.

23Nevertheless activities may only de�ne sets with a certain closure (or admissibility) property.
This property is introduced in De�nition A.2 of Appendix A.1.1 and called divergence closure.
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Example 5.5 The re�nement proof is based on Theorem 5.1. For the input on dis-
crete channel bend and hybrid channel fHeight we use the set of evolution constraints
I � IRp+ which is de�ned as follows: For bend , we assume that its minimum event
separation is given by bs. For fHeight , we assume that its minimum event separation
is given by fs, the Lipschitz constant constraining the exact evolution during time
periods where the channel's time stamp is constant is 
 and the error fe is associated
with the channel. Formally I is given by:

I = f (�; ') 2 (R+ � (R � R+))
Rp+ j � 2 cs(E) ^ mes(�) � bs ^

' 2 cs(R) ^
9'0 2 cs(R): '0 :t = ':t ^ mes('0) � fs ^

Li('0) � 
 ^ 8u: j':val0(u)� ':val(u)j � fe g

where � is the stream on channel bend and ' is the stream on channel fHeight . Func-
tions mes(:) and Li(:) are de�ned in Section 3.4, and cs(:) is de�ned in Example 5.4.
For the evolution of the relaxed HySChart's state no speci�c constraints are needed
for re�nement, because the variables in the state space, in particular aHeight , do not
trigger transitions of the HySChart. (In fact, all transitions in the chart are triggered
by input bend and fHeight .) Thus, we de�ne set S of evolution constraints in the most
liberal way by setting S = (n � SC)Rp+, where n � SC is the HySChart's state space.

As start states we consider arbitrary states s 2 n � SD, s0 2 n � SC with s:now = 0,
s:rs = init and s0 = �n�SC (s), where n � SD is the state space of the DiSChart. The
data-state space of the relaxed HySChart SC is a factor space of SD, because the
DiSChart uses the same variables as the HySChart plus the further variable rs. Thus,
assumption 1 of Theorem 5.1 is satis�ed.

It is easy to see that the invariants of the DiSChart (Figure 5.8) result from �rst
deriving the exact invariants of the HySChart in Figure 5.5 and then adding disjunct
now mod T 6= 0 to each of them. The actions in the DiSChart coincide with those
in the HySChart except for the action body rs 0 = true which is implicitly added to
every action. Thus, due to Section 5.4.2, the discrete part of the DiSChart satis�es
assumptions 2 and 3 of Theorem 5.1 if the sampling rate T satis�es the following set
of constraints:

f T � "bend ; T �
"i1�2�fe



; T � "fHeight g

These constraints are derived from the relaxed invariants and the evolution constraints
on the input in the way described in Section 5.4.2. Note that the invariants of inTol ,
up and down all result in the same constraint since we selected "i1 = "i2 = "u = "d
(Section 5.2.5).

In order to satisfy assumption 4 of Theorem 5.1, we regard the individual activities.
All activities which reference variable aHeight are independent from each other, since
they are associated with di�erent nodes. This corresponds to the disjoint sum of
the activities on the level of semantics. The implicit activity incrementing now is
sequentially composed with the other activities (which re
ects the hierarchy of nodes),
but it does not reference aHeight . Thus, the independence of activities as required in
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Section 5.4.3.1 is satis�ed and Theorem 5.2 can be used. According to that theorem
we have to show that on any interval where there is only one reset at the beginning,
a idle is a sample-and-hold-re�nement of da(a const), where only the state space
corresponding to the variables rs and aHeight is considered for a idle, and for a const,
only the state space for aHeight is considered. Similarly, we have to show that a rise
is a sample-and-hold-re�nement of a inc, that a fall is a sample-and-hold-re�nement
of a dec and that the implicit discrete-time activity incrementing now also is a sample-
and-hold-re�nement of the implicit continuous-time activity for now . Here, we only
consider the case of a rise and a inc. The others are similar. Informally, we establish
that for any evolution of aHeight according to discrete-time activity a rise, there
is a corresponding evolution of it according to the continuous-time activity a inc.
Due to the simple character of a rise and a inc, such a corresponding continuous-
time evolution in a inc can be constructed by linear interpolation of the discrete-time
evolution in a rise. Formally, we proceed as follows. Let � 2 I be an input and de�ne
�0 2 sampleI;T (�). Let � 0 2 Dfk1;:::;k2+1g, where D is the controlled space of a rise,
corresponding to variables rs and aHeight . Furthermore, let � 0 be such that it only
contains a reset at time k1 and satis�es a rise on the interval Æ = fk1+1; : : : ; k2+1g,
k1 � k2 in N (see Theorem 5.2 for the formal de�nition of these notions). By de�nition
of a rise this implies that for all k 2 Æ, � 0:aHeight(k) = � 0:aHeight(k � 1) + ckT
holds for a ck 2 [cp�; cp+]. We use linear interpolation to de�ne the continuous
� 2 A[k1�T;(k2+1)�T ), where A is the controlled space of a inc corresponding to variable
aHeight : For all k 2 Æ and t 2 [(k� 1)T; kT ) we de�ne �:aHeight(t) = � 0:aHeight(k�
1)+ck �(t�(k�1)T ). By de�nition � satis�es da(a inc) projected onA (note that da(:)
allows that � is not smooth). Furthermore, �:aHeight and � 0:aHeight obviously agree at
sampling instants and in their \last value". It remains to show, that the hold extension
of � 0 is within the output relaxation of � , i.e. they may be no further than "int:aHeight
apart ("int:aHeight was introduced in Section 5.2.5 for the relaxed HySChart). By
de�nition of � the distance between �:aHeight(t) and the hold extension of � 0:aHeight
is less than ckT for t 2 [(k� 1)T; kT ), k 2 Æ. Assuming the worst case, this results in
the further constraint T � "int:aHeight

cp+
on the sampling rate.

Considering re�nement of the other activities we obtain similar constraints. For a fall
and a dec we get constraint T � "int:aHeight

jev�j
. In the case of a idle and a const the devia-

tion between the hold extension of the discrete-time evolution and the continuous-time
evolution between sampling instants is equal to the deviation at sampling instants,
since aHeight is constant for these activities. Thus, it is zero (see Section 5.3.6). For
the implicit activities de�ning the evolution of variable now , now 0 = now + T and
d
dt
now = 1, respectively, no output relaxation has to be considered, because now is not

an output of the HySChart and the DiSChart. Hence, we get no further constraints
on T .

Provided T satis�es the above two constraints derived from the activities, Theorem 5.2
discharges assumption 4 of Theorem 5.1. Moreover, assumption 5 of Theorem 5.1 is
trivially satis�ed, because S does not constraint the evolution of the HySChart's state.
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As a result, Theorem 5.1 yields that the DiSChart given in Section 5.3.6 is a discrete-
time re�nement of the relaxed HySChart of Section 5.2.5, if T is chosen such that the
following constraint is satis�ed:

T � minf"bend;
"i1�2�fe



; "fHeight ;
"int:aHeight

cp+
; "int:aHeight

jev�j
g

As a quantitative example, for "bend = 120 ms, "i1 = 2 mm, fe = 0:5 mm, 
 = 1
100

mm
ms

,
"fHeight = 200 ms, "int:aHeight = 0:1 mm and cp+ = jev�j =

1
1000

mm
ms

a sampling rate
T = 100 ms suÆces.24 �

5.4.5 Sampling Rate Validation

As Example 5.5 shows, the theorems from above can be used to derive a sampling
implementation from a relaxed HySChart. However, methodologically they can also be
used in the other direction, in order to validate that a given sampling rate for a system
is adequate, i.e. that it results in an acceptable relaxation of an exact HySChart. In a
development process, this is useful in cases where the sampling rate is already �xed,
because, e.g., some legacy hardware is supposed to be used. In this section we brie
y
outline how sampling rate validation can be performed with the above methods.

We assume a DiSChart and an (exact) HySChart with exact invariants given. Both
must have the same structure and the same actions. For the analog parts we assume
that the discretization error between the discrete-time analog part and the continuous-
time analog part at sampling instants is zero. Furthermore, we require that the in-
variants in the DiSChart correspond to those in the HySChart, but with additional
conjunct now mod T 6= 0. Using the techniques from Sections 5.2.1 and 5.2.2 we
construct a relaxed HySChart from the exact HySChart. For the bounds " occurring
in the relaxation of invariants we use free variables. The relaxed analog part is de-
�ned to be equal to the exact analog part (motivated by the lack of a discretization
error). Finally, for the constants used in the output relaxation further free variables
are introduced.

The aim now is to determine bounds for the variables used in the relaxations such
that Theorem 5.1 yields that the DiSCharts re�nes the relaxed HySChart. In order
to satisfy the conditions on the discrete parts which are required in Theorem 5.1, we
can use the method described in Section 5.4.2 to compute constrains involving the
sampling rate, the variables used in the relaxation of the invariants and Lipschitz
constants and error bounds limiting the continuous behavior of the input and the
analog part. These Lipschitz constants and error bounds are required to be given
correctly. Moreover, to satisfy the condition on the analog parts which is required
in Theorem 5.1, it suÆces to consider the output relaxation, since the discretization
error is assumed to be zero. For the satisfaction of this condition, constraints w.r.t. the

24mm denotes millimeters and ms denotes milliseconds.
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variables used in the output relaxation can be derived from the Lipschitz constants and
the sampling rate, as indicated at the end of Section 5.4.3.2 in the context of numerical
techniques. When solving all the constructed constraints for the free variables used
in the relaxations, they provide lower bounds on these variables. The bounds denote
that for lower values of the relaxation variables, the DiSChart is not guaranteed to be
a re�nement of the relaxed HySChart. In other words, the designer must expect delays
in the reaction to events, errors in the detection of threshold crossings and intersample
errors between the DiSChart and the exact HySChart which are between zero and the
computed bounds. Based on these bounds, a designer can decide whether the given
sampling rate is appropriate for the developed model of the system w.r.t. reaction to
events, threshold crossings and intersample behavior, or whether it has to be modi�ed
to achieve higher accuracy. Remember, however, that this decision is based in the
optimistic assumption that the discretization error is zero.

5.5 Time Re�nement in Component Networks

As we have seen in Section 5.4.2 �nding a DiSChart whose extension by sample and
hold is a re�nement of a given relaxed HySChart usually requires various knowledge
about the HySChart's environment. For instance, for continuous and hybrid input
channels Lipschitz constants and error bounds constraining their continuous evolution
periods are typically required. If the actual input does not satisfy the input constraints
which are used in an application of Theorem 5.1 to proof that a DiSChart re�nes a
HySChart, the re�nement relation need not hold. Thus, if a network of components
(described by a HyAChart) is supposed to be re�ned by discretizing a component in
it on basis of Theorem 5.1, we must ensure that the network behaves in a way which
guarantees that the assumptions on the component's input are satis�ed.

Assumption/commitment reasoning. In principle this requires an assump-
tion/commitment methodology [SDW95]. The situation is uncritical, if the component
network is such that the assumptions on the input used for the re�nement of a com-
ponent are satis�ed independently from the component's output. However, if the
assumptions on the component's input in the network only hold if the component's
output satis�es some commitments , i.e. feedback is involved, care is necessary to avoid
circular reasoning. [SDW95] identi�es conditions under which such circular reasoning
may be used in an untimed formalism. When we informally adapt these conditions
to our continuous-time framework they include that (1) there must be a �nitely large
delay with which the input is a�ected by the regarded component's output and (2)
the assumptions must de�ne a divergence closed set. Divergence closure is similar to
admissibility in discrete time. For instance, assumptions which only regard the input
on �nite time intervals de�ne divergence closed sets. A formal de�nition is given in
De�nition A.2 of Appendix A.1.1. The kinds of constraints we used in Section 5.4 all
result in divergence closed sets. We do not regard assumption/commitment reasoning
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further in this thesis, but we congest that the results from [SDW95] can be carried
over to the continuous-time case.

Note that provided the assumptions on the input hold, compositionality of multi-
plicative hierarchic graphs w.r.t. re�nement guarantees that the re�nement of one
component in a HyAChart results in a re�ned HyAChart.

Justi�cation of input constraints. One source of characteristics like the minimum
event separation or Lipschitz constants of the input a controller receives from its
environment are physical limitations in the environment. For instance, for the cruise
control system of a car, the possible accelerations and deaccelerations are (among
others factors) limited by the motor's power and by friction. As such limitations are
independent from the output the controller sends to the physical environment, they
can conveniently be used as input constraints for the discretization of HySCharts with
Theorem 5.1.

Combining discrete-time components. Once we have ensured that the input
of a component Cmp in a HyAChart satis�es the assumptions under which Cmp is
re�ned by a discrete-time component DCmp with sampling rate T , we can directly
replace Cmp by the discrete-time component, embedded between sample and hold
components. More formally, Cmp may be replaced by sampleI;T ;�DCmp;� holdO;T
in the HyAChart. Due to compositionality of the multiplicative graph operators, the
modi�ed HyAChart re�nes the original one (Section 3.3.5).

If this is done for a larger number of components in a HyAChart, the re�ned HyAChart
may involve parts in which discrete-time components embedded within sample and
hold components directly communicate with each over continuous-time channels. Pro-
vided these discrete-time components are active at the same points in time25, it would
obviously suÆce if they communicated over discrete-time channels without sample
and hold components between them. This would enable more eÆcient simulation and
it would allow us to use existing techniques for the re�nement of discrete-time compo-
nent networks in further development steps. We therefore elaborate this idea. First,
discrete-time components and communication over discrete-time channels require a
di�erent kind of architecture diagrams which we call DiACharts. Just as HyACharts,
DiACharts are hierarchic graphs that are interpreted multiplicatively. The only dif-
ference is that we do not use time model R+ and dense streams for them, but time
model N and discrete-time streams. The necessary semantic foundation was already
introduced in Section 3.3.2, which de�ned the multiplicative interpretation of hierar-
chic graphs for di�erent kinds of time models. Note that discrete-time block diagrams
can be integrated easily into DiACharts, just as continuous-time block diagrams suit
well to HyACharts.

25This can often be achieved by modifying some components such that they operate at a higher
sampling frequency than actually needed.
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Second, we introduce three equalities which can be used for simpli�cations. They allow
us to compose discrete-time components embedded in HyACharts with DiACharts, as
desired.

Sequential composition. The continuous-time sequential composition of two sam-
ple-and-hold extensions of discrete-time components A and B is equal to the
sample-and-hold extension of the (discrete-time) sequential composition of A
and B, provided both components use the same sampling rate T :

(sampleI1;T ;�A ;� holdO1;T ) ;� (sampleO1;T
;�B ;� holdO2;T ) =

(sampleI1;T ;�A ;�B ;� holdO2;T )

where I1 and O1 is the input and output interface type, respectively, of A and
similarly I2 and O2 de�ne the interface for B, with O1 = I2. The equality is
graphically depicted in Figure 5.10, top. In the �gure, sample is abbreviated
by s and hold by h. This equality holds, because holdO1;T ;� sampleO1;T

is the
identity on O1 in the discrete time model.
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Figure 5.10: Composition of discrete-time components within HyACharts.

Multiplicative visual attachment. The continuous-time multiplicative visual at-
tachment (or parallel composition) of two sample-and-hold extensions of discrete-
time components A and B is equal to the sample-and-hold extension of the
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(discrete-time) multiplicative visual attachment of A and B, provided both com-
ponents use the same sampling rate T :

(sampleI1;T ;�A ;� holdO1;T )� (sampleO1;T
;�B ;� holdO2;T ) =

(sampleI1�I2;T ;� (A� B) ;� holdO1�O2;T )

where Ii and Oi are the input and output interface types of A and B. The
equality is graphically depicted in Figure 5.10, middle.

Feedback. The continuous-time feedback of a sample-and-hold extension of a dis-
crete-time component A is equal to the sample-and-hold extension of the (dis-
crete-time) feedback of A:

(sampleI�I0;T ;�A ;� holdO�I0;T ) "
I0

�= (sampleI;T ;� (A "
I0

� ) ;� holdO;T )

where the interface types of A are I � I 0 (input) and O � I 0 (output). The
equality is graphically depicted in Figure 5.10, bottom. It can be proven directly
or by applying the transformation rules for the underlying algebra for hierarchic
graphs given in [S�te94].

Together with associativity of the operators in multiplicative hierarchic graphs, these
equalities can be used to group discrete-time, continuous-time and remaining hybrid
components together. This is useful if a separate development process is intended to
be pursued for subsystems that are supposed to be implemented in analog, digital or
mixed-signal hardware.

5.6 Separate Implementation of the Discrete Part

As a side remark we consider the separate discretization of a relaxed HySChart's
discrete part here. In cases where there are high accuracy or timing demands on
the analog part, or the analog part is a part of the physical environment, an imple-
mentation of a HySChart in a mixed continuous-time/discrete-time manner may be
desirable. In this section we therefore explain how a discrete-time implementation of
the discrete part of a relaxed HySChart can be obtained and how it is coupled with
the analog part which is still based on continuous-time. The output relaxation of
the relaxed HySChart is not needed; it may be the identity relation. We only argue
informally in the following and will not prove the re�nement relation.

In order to derive a discrete-time re�nement, denoted by DCom, from the discrete part
of a relaxed HySChart, the method given in Section 5.4.2 can be applied. It yields
DCom and a set of constraints on the sampling rate T . Provided the constraints are
satis�ed, DCom is guaranteed to re�ne the relaxed discrete part, denoted by RCom,
at sampling instants and RCom can remain idle throughout a sampling interval if
DCom was idle at the beginning (assumptions 2 and 3 of Theorem 5.1). Furthermore,
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for the relaxed analog part assumption 5 of Theorem 5.1 must be valid. This means
that the assumptions on its behavior, which are needed to ensure that RCom can idle
during sampling intervals (assumption 3 of Theorem 5.1), must be satis�ed.

We then embed DCom in the hybrid machine model of the relaxed HySChart (see
Figure 5.4). This embedding is done by adding an interface around DCom which
samples the discrete part's input and holds its output constant between sampling
points. To avoid that the sampled discrete part stops the continuous evolution in the
analog part, component mergeT provides that the discrete part's output only interferes
with the analog part at sampling points. The mergeT component is de�ned as follows:

mergeT 2 (n � S)Rp+ � (n � S)Rp+ ! P((n � S)Rp+)

mergeT (�; �)(t) =

�
�(t) if t mod T = 0
�(t) otherwise

At sampling instants its output is the input received on the left input channel, and
between sampling instants its output is the input received on the right input chan-
nel. Figure 5.11 depicts the resulting multiplicative hierarchic graph which replaces
RCom in the machine model of Figure 5.4. The channels between sampleI�n�S;T ,
DCom and holdn�S;T transmit discrete-time streams. To prove that the component

Tmerge

DCom+

sampleI x nS, T

holdnS, T

Figure 5.11: Discrete-time implementation of RCom.

obtained by this replacement constitutes a re�nement of the original component,
it suÆces to regard the adaptation of DCom (Figure 5.11) and RCom, since mul-
tiplicative hierarchic graphs are compositional w.r.t. re�nement. Formally, (II �
Æ̂n�S
2 ) ;� ((sampleI�n�S;T ;�DCom

y;� holdn�S;T ) � In�S) ;�mergeT � RCom must hold.
Note that the expression between sample and hold is interpreted w.r.t. the discrete
time model N , whereas the underlying time model for the other operators in the for-
mula is R+ . Obviously, assumptions 2 and 3 of Theorem 5.1 help to establish this
claim. The theorem itself cannot be applied, because it relies on the discrete-time
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machine model for DiSCharts and not on the mixed machine model introduced in this
section. We do not go into further details here.

5.7 Discussion and Further Work

5.7.1 Contribution

First, this chapter discussed e�ects arising in a discrete-time implementation of hy-
brid systems' components which are speci�ed with an underlying continuous time
model. Based on these e�ects methods were developed which allow us to systemat-
ically derive a discrete-time implementation for a component which is speci�ed by
a relaxed HySChart. The resulting implementation is a re�nement of the relaxed
HySChart, which guarantees that vital properties of the HySCharts are maintained
(see also Section 6.3.6.3). As prerequisite, relaxed HySCharts were introduced as a
variant of HySCharts which contains a controllable degree of nondeterminism w.r.t. the
time when transitions are taken and w.r.t. to the accuracy of the continuous dynam-
ics (activities) and the HySChart's output. Furthermore, a discrete-time dialect of
HySCharts, DiSCharts, was de�ned for the speci�cation of the behavior of discrete-
time components. DiSCharts may interact with continuous-time components by sam-
pling their input and holding theit output constant between sampling instants. As an
analogon to continuous-time activities, activities in DiSCharts specify the evolution
of controlled variables at those sampling points where no transition is taken. De-
scription techniques for discrete-time control laws, like discrete-time block diagrams
or z-transforms [Vac95], can in principle be used to de�ne these activities.

The discretization methods we introduced require various knowledge about the dy-
namics of the input a component receives. The minimum time between events, Lips-
chitz constants and possible errors assiated with continuous periods of evolution are
typically needed. For the discretization of a HySChart's analog part we explained
how methods from numerical mathematics and control theory can be employed. The
method to derive constraints on the sampling rate from the discrete part of a HySChart
can also be applied the other way round. For instance, it can be used to compute
bounds on possible errors for a given sampling rate, or to compute constraints on
Lipschitz constants for which a given error bound is not exceeded.

Although the presentation given here focuses on HySChart, we think that the results
can be carried over to other hybrid description techniques as well. In particular, the
underlying ideas used to �nd a discrete-time implementation for a HySChart's discrete
part can also be used in the context of other hierarchic state transition diagrams for
hybrid systems.

Finally, the chapter explained how the DiSCharts which result from the application of
the discretization methods can be integrated into components networks, as described
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by HyACharts.

Automation. Automation of the introduced discretization methods is possible by
part. Provided a designer speci�es which degree of accuracy is desired for the com-
ponent under development, the invariants and the relaxations of the activities and
of the output of a relaxed HySChart can be constructed by a tool from the (incom-
plete) HySChart containing actions and activities. This proceeds via constructing a
HySChart with exact invariants �rst and then relaxing them. Furthermore, if the de-
signer de�nes all necessary assumptions on the dynamics of a component's input and
on the continuous evolution of its state, the discrete part of a DiSChart, which re�nes
the given relaxed HySChart, and constraints on its sampling rate can automatically
be derived. For the analog part the situation is more diÆcult. However, if the analog
part only de�nes linear functions, a discretization is straightforward (Section 5.4.4).
Furthermore, if activities formalize abstract requirements, like stabilization of an as-
sumed environment, automatic techniques from control theory may be applicable, as
discussed in Section 5.4.3.3. Numerical techniques are helpful in the discretization
of activities, if given continuous evolution is supposed to be approximated with pre-
scribed precision, e.g. with the aim of performing simulations of a plant model.

Guidelines. It is important to note that our method for the discrete-time re�ne-
ment of a HySChart can only be applied to relaxed HySCharts. In other words, a
HySChart can hardly be re�ned, if it requires the immediate taking of transitions or
exact continuous dynamics. As such requirements cannot be satis�ed in an imple-
mentation anyway, they should be avoided in HySCharts in order to enable 
exible
re�nement. With respect to the development methodology we recommend to specify
activities predominantly by liberal constraints in early development steps, such as this
is done in the EHC example to model the e�ects of the actuators (Section 5.2.5). Nev-
ertheless, in some cases sharp activities may also be necessary in early development
phases, for instance to express that some system variables follow speci�c trajectories.
However, also in such cases the designer usually is not interested in ensuring the exact
correspondence to the given trajectory, but the intention rather is to specify that the
evolution is like the given trajectory. Thus, an acceptable deviation from the ideal
case can be speci�ed.

The relaxations used in HySCharts may complicate to establish properties of the
overall system, because in the worst case errors may propagate disadvantageously
between system components. To avoid such propagation it therefore is advisable to
employ discretization of (parts of) a model before the model is split into very �ne
grained subcomponents. In practice a trade-o� is necessary here, because on the
other hand too early discretization is contrary to the aim of extensively validating an
abstract model before decisions are made which may be diÆcult to alter later on, like
the discretization.

The methods presented here support to analytically derive a sampling rate such that
the resulting discrete-time component re�nes a given hybrid component, which is
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speci�ed based on a continuous model of time. An alternative to this analytical way is
to use simulation and try to �nd a suitable sampling rate by trial and error. While this
is straightforward, it has not the character of a mathematical proof, like our methods.
In practice one has to decide which level of mathematical rigor is needed and reasonable
for the system under development. In case of complex discrete dynamics, trial and
error methods have severe limitations, since it will usually be impossible to explore
all execution modes of a complex system. Nevertheless simulation if highly valuable
in order to become familiar with the intended system.

Further applications. A further application of relaxed HySCharts and the re�ne-
ment technique of Theorem 5.1 is for numerical simulation of hybrid systems. The
idea here is that if a designer spe�cies a relaxed HySChart, simulation techniques
(in particular the step sizes of integration algorithms) can be chosen such that the
simulation output is a possible output of the speci�ed (relaxed) system. Modular
simulation would bene�t from the simple sample-and-hold scheme that can be used in
the communication of re�ned components. However, in practice this requires an auto-
mated way to estimate the error of a numerical method. [AGH+00] identify modular
simulation of hybrid sytstems as an aim of future work. Due to the lack of modular
simulation with clearly de�ned accuracy, the simulation semantics for the mixed-signal
speci�cation language VHDL-AMS [CB99] is based on the global coupling of a numer-
ical solver with discete-event simulation, instead of the componentwise coupling of
numerical simulation with discrete-event simulation [HSTV00].

Note that the relaxation of a HySChart can also be used to comprise quantization
e�ects. These e�ects result when a measured continuous quantitiy is transformed to
the machine numbers used within a digital machine. They are a further source of
inaccuracy in a digital implementation.

5.7.2 Related Work

Re�nement. Re�nement is a common topic in computer science [Hoa86, Mai87,
AL91, Bro93]. An overview of notions of behavior re�nement can be found in [vdB00].
The notion of re�nement we employ is taken from [Bro97b, Bro99b, BS01].

Re�nement of hybrid systems has been considered in [RS98] where the continuous
dynamics expressed with so called (hybrid) action systems is re�ned. The re�nement
of a di�erential equation by a discrete assignment is also regarded there, but the
given rule only compares the start states and end states of the dynamics given by
the di�erential equation and the assigment. The intermediate continuous behavior is
ignored.

Re�nement of hybrid systems without changing the time model is also regarded in
[HMP93]. The basic re�nement step there is to replace an interval temporal logic
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formula in a so called abstract phase transition system by phase transitions. Unfor-
tunately, in [HMP93] the controlling system and its environment are regarded as a
single unit, speci�ed by an abstract phase transition system. The lack of an isolated
view on system and environment complicates to distinguish these entities. This is
disadvantageous, since in a re�nement of the system no environment constraints may
be added which in turn necessitates a distinction.

Re�nement of hybrid systems in the context of the notations Charon and Masaccio,
which are close to HyCharts, is considered in [AGLS01] and [HMP01], respectively.
Alur et al. express the compositionality w.r.t. re�nement of their formalisms for com-
ponent composition and for state machines in the form of re�nement rules [AGLS01].
For component composition this corresponds to the compositionality of multiplicative
hierarchic graphs and HyACharts (Section 3.3.5). For state machines this is similar
to the hierarchic re�nement principle outlined in Section 4.3 for HySCharts, but more
elegant as discussed in that section. A further theorem in [AGLS01], called context
compositionality, corresponds largely to compositionality of additive hierarchic graphs
w.r.t. re�nement, because it can be used for the re�nement of actions and activities.
Time-discretization is not considered in [AGLS01].

[HMP01] states a compositionality result for Masaccio and introduces an assump-
tion/commitment proof principle for this formalism. The compositionality result cor-
responds to the compositionality of multiplicative and additive hierarchic graphs (Sec-
tion 3.3.5). The assumption/commitment principle only regards safety properties and
excludes circular dependencies not involving a delay. In this respect it is related
to the assumption/commitment reasoning in [SDW95] which was discussed in Sec-
tion 5.5. Interestingly, [HMP01] demonstrated the proof principle along an example
where a hybrid model with liberal constraints is re�ned to an implementation based on
sampling. However, the time model itself is not changed and the step to the sampling
implementation is not systemized as in this chapter.

Methodology. The methodology of explicitly associating uncertainty and accuracy
requirements with certain quantities in a model corresponds well to the Four Variable
Model and SCR [Hei96]. There a system speci�cation is given in an ideal manner, cor-
responding to the (ideal) action guards in HySCharts, and accuracy requirements are
given in an additional second step, similar to relaxed invariants in HySCharts. Check-
ing whether a given implementation satis�es the speci�cation amounts to checking
whether the behavior of the implementation conforms to the ideal behavior w.r.t. the
required accuracy [Hei96]. Moreover, note that the constraints associated with mea-
sured quantities in SCR correspond well to the evolution constraints we considered
here (see the example in [EKM+93]).

Relaxed models. Henzinger et al. also noticed the too sharp semantics of hybrid
automata and de�ned robust hybrid automata [GHJ97]. For a robust hybrid automa-
ton its set of accepted trajectories (or its behavior, in our sense) does not consist of
isolated trajectories but of tubes of trajectories. A tube is a set of trajectories which
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is topologically open w.r.t. a given metric on the trajectories. Such a tube is accepted
by a robust hybrid automaton i� the exact hybrid automaton accepts a set of trajec-
tories which is topologically dense in the tube. This means that the tube is accepted,
if in the neighborhood of any trajectory in the tube there is a trajectory which is
accepted by the exact hybrid automaton. The hope that decidability of the reach-
ability problem, which asks whether certain states of an automaton can be reached,
would be improved for the robust version has been disproved in [HR00]. In compar-
ison to relaxed HySCharts, the relaxation leading to robust hybrid automata can be
regarded as introducing in�nitely small deviations from the exact model. In contrast,
the relaxation we use relies on �nitely small deviations.

A further relaxation of hybrid automata is introduced by Fr�anzle [Fr�a99]. Similar
to our relaxation of activities and invariants, these disturbed hybrid automata result
from allowing deviations by a given �nitely small constant " from the exact activities
and invariants. Based on this idea of deviations the author proves that the reacha-
bility problem for disturbed hybrid automata is decidable under certain conditions.
These conditions basically mean that the set whose reachability is regarded and the
automaton have a certain boundedness property. The problem of �nding a discrete
time implementation for disturbed hybrid automata is not considered in [Fr�a99]. A
combination of the results of this chapter with the ideas in [Fr�a99] seems to be a good
starting point for further work on veri�cation techniques for relaxed HySCharts.

Delayable transitions. The main motivation for invariants in HySCharts is the
ability to express that an enabled transition is not taken immediately. A di�erent
approach is taken in the so called phase transition systems introduced in [dAM95].
These phase transition systems allow the designer to model delayable transitions by
providing a minimum and maximum delay for each transition. A transition can be
taken if it has been continuously enabled for its minimum delay and it must be taken
if it has been continuously enabled for its maximum delay. While this concept is
adequate for real-time systems without analog dynamics and with discrete, message
based communication, we think that for hybrid systems, the permitted minimum and
maximum delay of transitions is a derived concept, resulting from the desired prop-
erties of the system under development and the dynamics of the underlying physical
system. For instance, one desired property often is that some continuous variable
always remains within given bounds. The bounds together with the variable's possi-
ble rate of change imply the permitted maximum delay with which a system has to
react when the variable's value comes close to the given bounds. In our opinion it is
therefore more natural to think about permitted deviations in some variables' values
�rst (\how close to the bound may the variable get"), before �xing permitted time
delays. A way of expressing these deviations is via invariants which overlap with the
transition guards, which is done for HySCharts.

From continuous-time to discrete-time. [HG96] analyzes the relationship be-
tween a sampling semantics of Duration Calculus and its usual semantics based on
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dense time [CHR92]. In particular, the authors also give proof rules which allow them
to deduce the validity of duration calculus formulas in discrete-time from the validity
of the formulas in continuous-time. This reasoning requires that the sampling period
is chosen such that the minimal duration for which a proposition is true is at least
as long as the sampling period. This constraint corresponds to the constraints on
the sampling period which we derive from the minimum event separation for discrete
and hybrid input channels (Section 5.4.2). Analog dynamics are not considered in the
paper; it focuses on the real-time aspects.

Discretization. Discretization with the purpose of formal veri�cation is examined
in a variety of papers on hybrid systems. Usually, the aim in this �eld is to �nd
a discrete representation of a hybrid veri�cation problem which can be eÆciently
represented in a computer and manipulated by it. For example, [Hen91] examines
which sets of dense time traces, i.e. which continuous properties, can be described
with sets of discrete time traces. A common foundation for model checking of hybrid
systems is the representation of the reached state set of a (linear) hybrid automaton
by polyhedra in Qn , where Q denotes the rational numbers [ACH+95]. The rational
numers can be represented by fractions of integers for computer based manipulation.
Similarly, [GPV94, Bey01] introduce techniques for timed automata which allow them
to only deal with clocks with integer values. In our context of seeking a discrete-
time re�nement of a given hybrid system, this work can rather be seen as seeking
an abstraction of a hybrid system which can be analyzed in a discrete-event manner.
In particular, this means that in the cited work transitions, triggered by events, can
always be taken immediately when the event occurs.

As we have already outlined in Section 5.4.3.3 a huge amount of work on designing
discrete-time controllers for analog systems exists in the �eld of control theory (see
e.g. [Vac95, Oga87]). Furthermore, digital signal processing (DSP) is also concerned
with the discretization of analog signals, their digital processing and the reconstruc-
tion of analog signals from digital signals [Smi97]. However, to the authors knowledge
there is no work in these domains which explicitly discusses how discrete-time imple-
mentations of hybrid systems are obtained.

Besides the simple numerical methods we regarded in Section 5.4.3.2 there also exists
speci�c work on the numerical simulation of hybrid systems, see e.g. [SBS97] and
the overview given in [Mos99]. A key problem in the numerical simulation of hybrid
systems is to detect threshold crossings, which cause discrete changes in the hybrid
system, with high accuracy and still keep the computational e�ort low. Usually, this
requires the sophisticated adaptation of the step size a numerical solver uses. Due to
this variable step size, such techniques can rather be regarded as constructing a related
discrete-event system for a given hybrid system than as constructing a related discrete-
time system. For the discrete-time implementation of a hybrid system such techniques
can not immediately be applied, since step sizes cannot be reduced dynamically here.
However, their application for �nding a discrete-time re�nement of a hybrid system
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may be possible in cases where bounds on their worst case error can be given and
the algorithms are suÆciently simple to be executed in real-time. The major problem
probably is to control the error bounds of the numerical method in a way such that
the re�nement relation w.r.t. a relaxed hybrid system is satis�ed.

5.7.3 Further Work

A primary starting point for further work is to examine when properties of an exact
model can be transformed to relaxed properties which hold for a relaxed model. As
indicated in Section 5.1 this is not possible in general. Thus, future research should try
to identify classes of properties and relaxations for which a transfer is possible. How-
ever, due to the discrete switching e�ects in hybrid systems this probably is extremly
diÆcult to achieve (see also Section 5.1).

Furthermore, the embedding of the re�nement techniques for HySCharts, which were
introduced in this chapter, into an assumption/commitment methodology as sketched
in Section 5.5 should be formalized. In this context, further methods to group discrete-
time components within a HyAChart together should also be regarded. This can
increase the accuracy of the re�nement w.r.t. an exact model, just as in the machine
model for DiSCharts which was designed such that intersample errors need not be
considered within the component.
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Chapter 6

Properties of Hybrid Systems

Regarding the work on hybrid systems one notices that properties of such systems
which are examined in case studies often re
ect the background of the research groups
working on them. Computer scientists often focus on safety properties, such as, for
instance, that a certain set of states and certain variable domains are never left.
People from control theory often put their emphasis on stability properties. While
these distinct focuses are sometimes due to the speci�c characteristics of the regarded
systems, they often also result from a lack of knowledge of the respective other domain.
To alleviate this shortcoming we de�ne and classify a set of important properties of
control systems within a general framework which should be familiar for computer
scientists. With the continuing integration of software and its physical environment
in many systems we conjecture that properties which have only been of interest for
continuous systems so far will also become important for the software part of embedded
systems, which stresses the need for proof methods. For the properties of stability and
attraction we identify topologies where stability is a safety property and attraction is
a persistence property in computer science terminology [CMP91].

The properties this chapter considers result from the evaluation of nine hybrid systems
case studies and a number of textbooks on control theory. The classi�cation of the
properties and the case study evaluation serve as reference for judging the utility of
a re�nement notion based on trace inclusion as used in the preceding chapters. The
result here is that the essential classes of properties are preserved by this re�nement
notion.

Finally, the chapter proposes two general proof methods for stability and attraction
together with some specializations. The methods result from adapting Liapunov-
like proof methods from general systems theory to our framework [MT75]. When
developing specializations of the methods, parallels to abstraction in computer science
and to Galois connections in particular are outlined. The proof methods are applied to
two examples, the electronic height control system we already introduced in Chapter 3
and a purely discrete self-stabilizing algorithm [Dij82], which is interesting in this
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context, because it shows the relevance of attraction also for computer science. Note
that this chapter requires some familiarity with orders and topology. The necessary
concepts are introduced in Appendices B.1 and B.2.

A preliminary version of this work appeared in [Sta00b] and [Sta01].

Overview. The chapter starts with a brief explanation of an abstract model of
the electronic height control system (EHC) which is used as an example in the sequel
(Section 6.1). Section 6.2 de�nes the underlying system model which is the basis for the
rest of this chapter. Section 6.3 lists and de�nes the properties which resulted from our
evaluation of case studies and textbooks. Furthermore, it contains the classi�cation
of the properties, sorts them according to their relevance as derived from the case
studies and examines the utility of trace inclusion as re�nement notion for hybrid
systems. In Section 6.4, some proof concepts for stability and attraction are introduced
and parallels to computer science are drawn. The proof methods are applied to two
examples in Section 6.5. Section 6.6 discusses this chapter's contribution, compares it
with related work and outlines future work.

6.1 Example

Throughout this chapter we will use the following model of the EHC system (Sec-
tion 1.4) as a motivational example. As the properties we will outline can (and
should) already be considered early in the development, we consider a model with
only one component here, which contains a very abstract model of the control logic
and the physics of the suspension system. Figure 6.1 depicts the component's interface.
Channel height outputs the chassis level, input dist denotes external disturbances and
channel bend reports whether a curve is entered or left. Channels height and dist are
continuous channels, and bend is a discrete channel which only transmits events. Fig-
ure 6.2 de�nes the component's behavior as a HySChart. The de�nitions of actions,
invariants and activities is given in Section 6.5.1, where two properties of the system
are regarded in detail.

heightCtrlSys
dist

bend

Figure 6.1: HyAChart of the EHC system.

Informally, the behavior of the system is as follows. Whenever an event bend , which
signals entry/exit of a bend, is received control changes from outBend to inBend and
vice versa. In inBend the system's actuators, a compressor and an escape valve, are o�
and the chassis level is not in
uenced. (This also holds in the degenerate case where a
bend is never left.) Hierarchic state outBend has three substates. If the chassis level
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CtrlSys

outBend

i2u

u2i d2i

i2d

b2o o2b

inBend

up inTol down

const

constinc dec

Figure 6.2: HySChart for the control system CtrlSys.

height is in the desired tolerance interval , control is in inTol and the actuators are o�.
If it is too high, control is in down and the escape valve is open thereby in
uencing
height . Otherwise, if height is too low, control is in up and the compressor is on.

6.2 Systems under Consideration

The properties presented in this chapter all assume a system structure like the one
depicted in Figure 6.3. Its basic elements are a controlling device (Controller), the

Controller Plant

Figure 6.3: General structure of a closed-loop control system.

physical environment (Plant) and a feedback loop. Such systems are called feedback
control systems. If there is no feedback from the plant's output to the controlling
device, the system is called a supervisory or open loop control system [PH88].

On a very abstract level we can regard a system as a nondeterministic function map-
ping a cause to a (nonempty) set of possible e�ects:1

Sys 2 C ! P(E)

1Although control theory usually focuses on deterministic systems, we employ a more general
nondeterministic approach which is closer to models in the �eld of computer science.
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where C denotes the set of causes and E denotes the set of e�ects. Usually, causes
are some sort of input to the system and e�ects are the produced output (see below).
Pairs (c; e) with e 2 Sys(c) are called behaviors of the system.

Black box behavior. In the following we will use two specializations of this system
model. The �rst one describes the black box behavior (or I/O behavior) of a system
as a function:

SysIO 2 I
R+ ! P(OR+)

where the notational convention is as in the preceding chapters: I is the input domain
and O is the output domain, i.e. C has been instantiated to IR+ and E to OR+, where
�R+ denotes the set of functions from the non-negative real numbers R+ to �.2 Like
before, elements of �R+ are called streams, traces or trajectories and functions on
streams, like SysIO, are also called stream processing functions [Bro97b]. We require
SysIO to be total in its input, i.e. SysIO(�) 6= ; for all � 2 I

R+ . Furthermore, to model
realistic systems SysIO must be (weakly) time guarded, i.e. its output up to any time
t may not depend on future input:

�1j[0;t) = �2j[0;t) ) SysIO(�1)j[0;t) = SysIO(�2)j[0;t)

where �jM denotes the restriction of function � to arguments in the set M and is
extended to sets of functions in a pointwise manner. Throughout the chapter variable
t is used to denote a point in time, t 2 R+ .

In the example of Section 6.1 the input domain I is R+ � R for the inputs bend and
dist , and the output domain O is R for the output height .

White box behavior. Some of the properties we will examine require a state-based
(or white box) system description, or come in two variants, one depending only on
the interface behavior and the other depending on the system state. We formalize
state-based systems as follows:

SysS 2 S ! (IR+ ! P(SR+))
Out 2 S ! O

Again I is the input domain, S is the state space. Depending on the initial state
in S, SysS maps an input trajectory to a set of possible state trajectories. Thus, C
is instantiated to S � IR+ and E to SR+ , here. All state trajectories are required to
start with the prescribed initial state, 8� 2 SysS(s; �): �(0) = s. Function Out maps
the current state to the current output in O. Thus, it performs some state-to-output
conversion. It is extended in time by pointwise extension, Outy(�)(t) = Out(�(t)) for
all t 2 R+ . In the case of HyCharts, Out simply is a projection which hides the private
variables (Section 3.2.1). The black box behavior of a state-based system with initial
state s is de�ned by the sequential composition of SysS(s) and the time extension of
Out:

2The continuity restrictions enforced in preceding chapters are not required here.
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SysIO = SysS(s);Out
y

where sequential composition of a nondeterministic system A and a deterministic
system B is de�ned as (A ;B)(�) = f
 j 9�: � 2 A(�) ^ 
 = B(�)g. For a set of
initial states S � S we de�ne SysS(S) by pointwise extension. As with black box
descriptions, we require that state-based system descriptions SysS(s) be total in the
input and time guarded for any start state s.

Furthermore, we demand that SysS is time invariant, meaning that the system does
not depend on absolute timing. Instead, a system's state trajectories are completely
determined by the initial state and the input trajectory. Formally, we demand that
a left shift of the input results in the same left shift of the state trajectory for the
shifted start state:

� 2 SysS(s; �)) ��ujR+ 2 SysS(�(u); �
�ujR+)

for any u � 0, where '�u is the left shift of ' by u, '�u(t) = '(u + t). Because
of time invariance, it is sensible to regard a disturbance of a system, i.e. an unfore-
seen change in its state, as reinitialization of the system. Hence, the behavior of
system SysS resulting from disturbing it by setting its state to s0 at time t is de-
�ned by Sysdisturbed(s0; �; s

0; t) = f� j 9�1 2 SysS(s0; �): 9�2 2 SysS(s
0; ��t): �j[0;t) =

�1j[0;t) ^ ��tjR+ = �2g. When we consider a system's reaction to disturbances, it
therefore suÆces to consider disturbances of the initial state. System behavior after
later disturbances can be inferred from its reaction to initial disturbances.

Note that systems with a semantics of one of the above two types, black box or white
box, can be speci�ed with HyCharts. In the HyChart context we denoted the black
box behavior of a component by Cmp and its white box behavior by St (Section 3.2.4).

6.3 Properties

Based on the system model introduced above, a number of important properties of
control systems are de�ned and classi�ed in this section. Relative to this classi�cation
we then discuss the utility of trace inclusion as re�nement notion. The properties
have been extracted from the evaluation of nine hybrid system case studies, which were
taken from papers and from student projects performed within various departments of
the Technische Universit�at M�unchen [BHKT98, Eng97, Ger97, Sta97, Rap98, Ant96,
Abr96, SB98, BGM93], and from textbooks on control theory, in particular [F�ol90,
F�ol87, PH88, Vac95, Lei87]. Case studies were used as one source in order to be able
to estimate the practical relevance of the properties.

The case studies. The topics and domains of the case studies are as follows.
[BHKT98] introduces a hybrid benchmark problem from the �eld of chemical engi-
neering and lists required properties of the proposed system. The introductory paper
[Eng97] explains hybrid systems along an example from process automation and lists
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D
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Figure 6.4: Robustness.

system properties whose analysis is required to be feasible with present and future
methods for hybrid systems. In [Ger97], elements of the design of an autonomous
cruise control system, which adjusts a car's speed and distance to the car in front, are
discussed and vital properties are analyzed analytically and with prototypes, respec-
tively. [Sta97] employs the HyTech model checker [HHWT95] to verify some proper-
ties of the EHC system which is also used as running example throughout this thesis.
The version we regard is an abstraction of that in [Sta97]. In [Rap98], a further
system stemming from automotive electronics is modeled with MatrixX/Betterstate
[Int00, Int98]. [Ant96] models a system of conveyor belts from the process automa-
tion domain. [Abr96] introduces a steam boiler example as a benchmark for formal
methods for embedded systems. In [SB98], a problem from robotics is discussed and
an architecture for its solution is developed and validated with simulations. [BGM93]
analyzes the behavior of a control system for a hopping robot by systematic simulation.

Formalization. Unless otherwise mentioned, all the following de�nitions assume
that systems are given as nondeterministic functions from a cause to a set of e�ects.
Thus, they apply to I/O-based as well as to state-based system descriptions.

6.3.1 Robustness

An important property of control systems is that they satisfy some required properties
in spite of deviations between the model of the system and the real system [Fri86].
Deviations may range from inaccurate parameters, caused, for instance, by aging
e�ects, to structural mistakes, such as an incorrect model of the plant.

Hence, robustness of a system depends on the system itself, the regarded property,
and the regarded deviations. Let D be the set of systems deviating from system Sys
in the way that is supposed to be considered. For instance, D may be de�ned relying
upon some metric on systems. We demand that Sys 2 D, i.e. no deviation from the
perfect system is also allowed. Furthermore, let valid	(S) be an evaluation function
which is true i� system S satis�es property 	. We de�ne robustness as below.

De�nition 6.1 (Robustness.) A system Sys with deviations D, Sys 2 D, robustly
satis�es property 	 i� 8Sys0 2 D: valid	(Sys0) holds.

Thus, robustness is parameterized with the notion of validity valid	(S) of the consid-
ered object property 	. Robustness is visualized in Figure 6.4.
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[MT75] introduces the related notion of structural stability. There, a topology is de-
�ned on the set of deviating systems. Based on this topology, the authors demand that
small deviations in the system result in small output deviations (see also Section 6.3.3).
A further parallel can be seen to numerical mathematics. When we interpret 	 as the
speci�cation of a problem, the system as an algorithm which computes an exact solu-
tion to the problem and the set of deviating systems as the same algorithm a�icted
with roundo� errors, robustness is related to the notion of stability of algorithms used
in numerical mathematics [BSMM97]. This notion expresses that the result of the
algorithm with roundo� errors is a solution to the problem for slightly modi�ed input.

Note that robustness is related to nondeterminism. For universal properties, i.e. prop-
erties which have to hold for any execution of a system, we may subsume the behavior
of all the deviating systems in one nondeterministic system, Sys0(c) =

S
Sys2D Sys(c)

for causes c 2 C. To prove robustness of the universal property w.r.t. D, it then
suÆces to show that Sys0 satis�es the property.

As a typical, simple example for robustness, think of a system Sys given by a dif-
ferential equation. Allowed tolerances associated with the constants in the equation
lead to set D of deviating systems. The property 	 to be satis�ed robustly could
express that some quantity always evolves within given bounds. In the context of our
EHC system, an example for robustness is to demand that stability of the system (see
Section 6.3.3) is also satis�ed for a range of system variants containing actuators with
di�ering performance characteristics.

6.3.2 Optimality

Apart from �nding a solution to a given problem, control theory is interested in
identifying the optimal solution for the problem w.r.t. some cost function. Among
others, possible aims are minimizing energy consumption or maximizing throughput
of a plant.

For a given system Sys, a set of alternative systems A and a cost function cf from the
set of systems to a linearly ordered set with order <, we de�ne optimality as follows.

De�nition 6.2 (Optimality.) System Sys is optimal w.r.t. alternatives A and cost
function cf i� 8Sys0 2 A: cf (Sys) � cf (Sys0).

Here, � denotes the re
exive closure of <. For instance, the set of alternative systems
A may be de�ned as the set of all those systems which satisfy a given abstract spec-
i�cation. In practice, cost functions are often based on the system's output or state.
For the EHC system, an optimality property would be to require that the compres-
sor is operated such that its energy consumption is minimal. Note that this would
necessitate to include the system's energy consumption into our model of the EHC.
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6.3.3 Stability

The general idea of stability is based on the desire that small disturbances in the causes
should only result in small disturbances in the e�ects. To formalize closeness of one
cause (or e�ect) to another, we use the notion of neighborhood which is induced by
the topologies considered for causes and e�ects (see Appendix B.2 for basic concepts
of topology). We write N(�) for the set of all neighborhoods of � and OX for the
topology on X.

De�nition 6.3 ((General) Stability.) For a system Sys 2 C ! P(E) between
topological spaces (C;OC) and (E ;OE), the tuple of sets of causes and e�ects (C;E)
with C � C and E � E is stable w.r.t. these spaces i� 8� 2 N(E): 9� 2 N(C): 8b 2
�: Sys(b) � �.

Sys

C E

b

E
αβ C

Sys(b)

Figure 6.5: General stability.

Figure 6.5 visualizes the situation. The de�nition requires that for any neighborhood
of the e�ects E there is a neighborhood of the causes C such that the e�ects resulting
from any of these causes are in the considered neighborhood of E. Note that distur-
bances and their \size" are a vague concept. The stability de�nition tries to grasp the
notion of \small disturbances of causes" resulting in \small disturbances of e�ects"
by universally quantifying over the neighborhoods N(E). For a \small" neighborhood
� 2 N(E), i.e. one that does not contain much more elements than E, stability pro-
vides that there is a � 2 N(C), which may also be small, such that disturbed causes
in � result in disturbances of the e�ects which are in �. Hence, stability allows the
conclusion that there is a neighborhood of C in which disturbances of causes must
be contained in order to ensure that the resulting disturbances of the e�ects remain
within a desired neighborhood of E.

Mesarovic et al. [MT75] furthermore demand that Sys(C) � E which, as we will see
in Section 6.3.3.2, corresponds to the stability of invariant sets in the state-based case.
If enforced, this demand excludes that (C;E) is stable although Sys maps C to a set
which is disjoint from E but contained in every neighborhood of E.

In topologies where C and E are open, (C;E) is stable i� 8c 2 C: Sys(c) � E
(for the proof see Theorem A.13 in Appendix A.3). In particular, this includes the
discrete topology (cf. Appendix B.2). This result is a consequence of the de�nition
of neighborhood which for open sets X permits X 2 N(X) (see De�nition B.6).
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C � : E � :

TrIO IR+ OR+ SysIO(c)� �

TrS S SR+ 8� 2 I: SysS(c; �)� �

PtIO IR+ O
8� 2 N(E):9� 2 N(C): 8c 2 �:

SysIO(c)� �R+

PtS C = E � S 8� 2 I: SysS(c; �)� �R+

Table 6.1: Notions of stability.

However, note that [MT75] do not permit X 2 N(X) in their de�nition of stability.
In the standard case of control theory where stability of points is studied w.r.t. the
usual topology on the Euclidean space, such singletons are closed sets and hence the
de�nition of neighborhoods for open sets is immaterial there.

We remark that in this general form the concept of stability is related to the continuity
of functions on the reals. In standard textbooks on Analysis, continuity of a function
on the reals f 2 R ! R at x0 is usually de�ned as 8" > 0: 9Æ > 0: 8x: jx � x0j <
Æ ) jf(x)� f(x0)j < " [K�on90]. In terms of neighborhoods on the reals, this can be
expressed as 8� 2 N(f(x0)): 9� 2 N(x0): 8x: x 2 � ) f(x) 2 � which corresponds to
the general notion of stability from above.

In the following sections we will outline a number of specializations of this general
stability de�nition.

6.3.3.1 Stability of Trajectories

Depending on the instantiation of causes and e�ects in the general de�nition of sta-
bility from above and depending on employing an I/O-based or a state-based system
model, we obtain a number of di�erent notions of stability.

Stability of (sets of) trajectories basically expresses that the traces of the system are in
the neighborhood of some desired traces for small disturbances in the system's causes.
An I/O-based and a state-based formalization for stability of trajectories of a tuple
(C;E) of sets of causes and e�ects is given in the �rst two lines of Table 6.1, labeled
TrIO and TrS, respectively. Note that the considered e�ects are traces here. Further-
more, note that for state-based system descriptions, our de�nition is parameterized
with the set of inputs I � IR+ for which stability must hold. This di�ers from usual
de�nitions like those in [MT75, MW95], which completely disregard external input,
for state-based system descriptions. In practice, I may be used to restrict the input to
continuous trajectories or to require that inputs are constantly zero (see Section 6.5.1).

Stability of trajectories is of particular interest in connection with so called limit cycles.
We will consider this in see Section 6.3.5.2.

Poisson stability. A rather di�erent notion of stability is referred to as Poisson
stability [Lei87]. Informally, a system is stable in the sense of Poisson i� there is a point
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in the system's trajectory whose neighborhoods are visited by the trajectory in�nitely
often. Poisson stability is related to reactivity in computer science (see below).

For I/O-based systems Poisson stability can be de�ned as follows. (A de�nition for
state-based systems is similar.)

De�nition 6.4 (Poisson stability.) For a system SysIO 2 I
R+ ! P(OR+) on the

topological space (O;OO) a set of trajectories SysIO(�) is positively Poisson stable i�
9t0: 8� 2 N(SysIO(�)(t0)): 8t: 9t

0 � t: SysIO(�)(t
0) � �.

According to Leipholz, an application area for Poisson stability is the stability of
planet orbits in astronomy [Lei87]. There it is usually required that every point of the
orbit is visited in�nitely often.

In topologies where the SysIO(�)(t) are open sets for all t 2 R+ , Poisson stability has
some similarity to reactivity properties in computer science, as de�ned in [CMP91].
Informally, reactivity properties express that a certain predicate always holds eventu-
ally, i.e. it must hold in�nitely often. In topologies where the SysIO(�)(t) are open,
Poisson stability similarly expresses that some set SysIO(�)(t) is visited in�nitely of-
ten. Hence, Poisson stability may be regarded as expressing a reactivity property.
However, reactivity properties in general are not restricted to expressing that some
already visited set of states is visited in�nitely often. Instead the set of states which is
required to be visited in�nitely often can be de�ned independently from the system's
trajectories.

A second parallel to computer science is to B�uchi automata [Tho90]. A B�uchi automa-
ton can be used to de�ne in�nite sequences of symbols which contain certain �nite
subsequences in�nitely often.

6.3.3.2 Stability of Points

Like stability of trajectories, stability of (sets of) points can also be derived from
De�nition 6.3. For stability of points, however, a notion of neighborhood of points
instead of neighborhood of trajectories is used.

Informally, stability of (sets of) points expresses that the e�ects of a system always
are in the neighborhood of some desired points for small disturbances in the system's
causes. In contrast to stability of trajectories which regards traces as a whole, stability
of points views the e�ects of a system in a pointwise manner, namely for each point in
time. In the sense of Leipholz [Lei87] stability of points is a purely geometric notion
of stability, while stability of trajectories is a kinematic notion of stability, because is
also consideres the time at which the individual points are reached. Depending on the
topology for trajectories stability of (sets of) points and stability of trajectories are
equivalent, namely in topologies which only consider the points visited and not the
time when they are visited. The formalization of stability of points of a tuple (C;E)
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Figure 6.6: State-based stability of points.

of sets of causes and e�ects is given in the bottom two lines of Table 6.1 for I/O-
based (label PtIO) and state-based systems (label PtS), respectively.

3 Note that the
considered e�ects are points here, and the system's output is regarded in a pointwise
manner.

State-based stability of points. In the following we will focus on state-based
stability of (sets of) points, which is the stability notion encountered most frequently
in applications. It is concerned with the e�ect of disturbances in the system state.
According to the Table 6.1, for a state-based system SysS 2 S ! (IR+ ! P(SR+)) a
set A � S is stable w.r.t. the topology OS on S and the inputs I � IR+ i� the formula
in the fourth line of the table holds (for A = C = E). Again note that the de�nition
is parameterized with the set of inputs I for which stability must hold. Figure 6.6
visualizes this notion of stability along an example trajectory: For neighborhood � of
A there is neighborhood � such that the trajectory starting in � never leaves �.

While the de�nition only consideres disturbances in a system's initial state explic-
itly, we can infer that disturbances in the state at any point in time cause the same
(shifted) behavior as a likewise disturbed initial state. This is due to our de�nition
of disturbed systems which in turn is motivated by time invariance of the considered
systems (Section 6.2).

Liapunov stability as de�ned e.g. in [Lei87] is a specialization of our de�nition to
deterministic systems and the natural metric on the real line. Typically Liapunov
stability of a point x 2 R is de�ned as follows: 8" > 0: 9Æ > 0: 8x0: jx � x0j < Æ )
8t > 0: jx� SysS(x0)(t)j < ", where SysS is deterministic and gets no external input.
If we take fxg as the considered set of causes and e�ects and if we employ the notion
of neighborhood that is induced by taking, as usually, the sets BÆ(y) = fy0 j jy� y0j <
Æg as base for the topology on R, the equivalence to our de�nition of stability is
straightforward.

The stability de�nitions in [MT75, MW95] additionally require that the regarded set
is invariant, i.e. that it is never left again once it has been entered.

3As � is a set of points in the bottom two lines of the table, �R+ as usual denotes the set of
functions from R+ to �.
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De�nition 6.5 (Invariance.) A set A � S is invariant for system SysS and the
inputs I � IR+ i� 8s 2 A: 8� 2 I: SysS(s; �) � AR+.

In topologies where A is open, invariance of A is equivalent to the stability of A (see
Theorem A.14 in Appendix A.3). When associating disturbances with neighborhoods
this can informally be explained as follows. In topologies of this kind there is a
neighborhood of A (i.e. a disturbance of A) which does not contain elements outside
A. Hence, the smallest possible disturbance is having no disturbance at all. Or, more
informally, there are no \small" disturbances which leave A. This suits well to discrete
systems where all disturbances can be regarded as equally big, i.e. for discrete systems
the only small disturbance also is having no disturbance at all. From a computer
science perspective invariance of A is a safety property [CMP91]. Hence, in topologies
where A is open stability of A is a safety property.

A notion contrary to stability is chaos [Wig90]. One precondition for chaotic behavior
is sensitive dependence on initial conditions for an invariant set A. Informally, this
expresses that for any two arbitrarily close points in A system traces starting in them
separate after some time.

As an example we will prove state-based stability of a set A for the EHC system in
Section 6.5.1. The considered set contains the tolerance interval, in which the chassis
level is desired to be, and stability is regarded w.r.t. a set of speci�c inputs I. The
topology used there is similar to the natural topology on R, but coarser. It is motivated
by the application.

6.3.4 Attraction

Often we do not only want that disturbances only have a limited e�ect (stability),
but also that a system returns to some desired trajectory or state after a disturbance.
Informally, attraction of a set means that despite of some initial disturbance the set is
always reached after a �nite or in�nite amount of time. Like for stability, a number of
variants of attraction result depending on whether we regard attraction of trajectories
or attraction of points for I/O-based or for state-based systems. Table 6.3 contains the
formulas de�ning these variants of attraction and Table 6.2 lists the instantiation of
causes and e�ects for each line of Table 6.3, and the resulting notion of attraction. In
the following we give an overview over these notions and will then consider attraction
of points in the state-based case, which occurs frequently, in more detail. As we
will see in Section 6.5.2, attraction is related to a property called self-stabilization in
computer science.

6.3.4.1 Attraction of Trajectories

In practice, attraction of trajectories is often of particular interest for periodic trajec-
tories, expressing e.g. the repeated execution of some required task. For I/O-based



6.3. PROPERTIES 169

C � : E � : stability/attraction of (sets of) : : :
1 IR+ OR+ trajectories, I/O-based
2 S SR+ trajectories, state-based
3 IR+ O points, I/O-based
4 C = E � S points, state-based

Table 6.2: Instantiations of causes and e�ects and resulting notion of stability and
attraction.

1 8e 2 SysIO(c):
2 8� 2 I: 8e 2 SysS(c; �):

ej[t;1) 2 �j[t;1)

3
9� 2 N(C): 8c 2 �:8� 2 N(E):

8e 2 SysIO(c):
9t:

4 8� 2 I: 8e 2 SysS(c; �):
ej[t;1) 2 �R+ j[t;1)

Table 6.3: Notions of attraction.

systems attraction of trajectories is de�ned as follows.

De�nition 6.6 (Attractive trajectories (I/O-based).) For an I/O-based system
SysIO the set of output trajectories E � OR+ is attractive w.r.t. the set of input
trajectories C � IR+ and the topologies on OR+ and IR+ i� 9� 2 N(C): 8c 2 �: 8� 2
N(E): 8e 2 SysIO(c): 9t: ej[t;1) 2 �j[t;1) (�rst line of Table 6.3).

This requires that there is a neighborhood � of the input trajectories C such that
for every input in � and for every neighborhood � of the output trajectories E the
system's reaction to this inputs is such that for each of the system's output trajectories
there is a point in time t such that the output trajectory is in � for the remaining
time [t;1). From a more abstract point of view the formula expresses that for some
neighborhood of the input trajectories the system's output converges to the dynamics
described by E as time progresses.

The state-based version of attraction of sets of trajectories is similar. Here, however,
the set of causes consists of initial states, the set of e�ects consists of traces in the state
space and the de�nition is parameterized with the set of inputs I for with attraction
is supposed to hold (see line 2 of Table 6.3 for the formula).

6.3.4.2 Attraction of Points

Attraction of trajectories requires that the evolution of the e�ects converges to the
attractive trajectories. If the attractive trajectory e.g. is a sine function, this means
that the system's output must become similar to this sine as time progresses.4 In
contrast attraction of (a set of) points denotes that the e�ects must reach every
neighborhood of the considered points as time progresses. It does not constrain the
evolution of the output within this set. In the bottom two lines of the formalizations

4The notion of similarity results from the underlying topology on the set of causes.



170 CHAPTER 6. PROPERTIES OF HYBRID SYSTEMS

S

α
A

Figure 6.7: Global attraction of A.

in Table 6.3 this becomes apparent in the last column. Here, it is only required that
the rest of the output is some trajectory that completely lies within neighborhood � of
the set of e�ects E, which is denoted by considering all trajectories over �, �R+, in the
formula. Hence, like for stability, attraction of points can be regarded as geometric
notion of attraction whereas attraction of trajectories may be seen as a kinematic
notion.

We do not go into detail on the I/O-based version of attraction of (sets of) points
which is formalized in the third line of Table 6.3, but focus on the state-based version
now, because it is encountered most frequently in control theory.

State-based attraction of points. For state-based systems attraction of points is
de�ned as follows.

De�nition 6.7 (Attractive set.) The set A � S is attractive w.r.t. the topology
OS on S and the inputs I � IR+ i� 9� 2 N(A): 8� 2 I: 8s 2 �: 8� 2 N(A): 8� 2
SysS(s; �): 9t: 8t

0 � t: �(t0) 2 �.

A is globally attractive i� 8� 2 I: 8s 2 S: 8� 2 N(A): 8� 2 SysS(s; �): 9t: 8t
0 �

t: �(t0) 2 �.

Global attraction means that each system behavior remains inside any neighborhood of
A eventually for any starting state. Hence, it expresses a kind of convergence to set A.
(Normal) attraction only requires that there is a neighborhood of A such that system
behaviors starting in it exhibit this convergence to A. Again we have parameterized
our de�nition of attraction with a set I of allowed external inputs. Figure 6.7 visualizes
global attraction. Note that the depicted trajectory leaves � before reentering it and
not leaving it again thereafter. This does not violate attraction.

In topologies where A is open global attraction is equivalent to the property that A is
already reached in �nite time (t 2 R+) and not left again, i.e. to 8� 2 I: 8s 2 S: 8� 2
SysS(s; �): 9t: 8t

0 � t: �(t0) 2 A. Hence, the notion of asymptotically approaching A
expressed via the neighborhoods in the de�nition of attraction is replaced by truly
reaching A eventually in this property (Theorem A.15 in Appendix A.3). Again, this
suits well to discrete systems. The idea of attraction is that we are ensured to get
arbitrarily close to the attractive set A. For discrete systems all states di�erent from A
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can be regarded as being far away from it. The only states close to A are those inside
it. Thus, for topologies where A is open attraction is a persistence property [CMP91]
when regarded from a computer science point of view, i.e. it expresses that \eventually
the system always remains in A". Persistence properties contain a safety as well as
a liveness part. In the example of Section 6.5.2 we will encounter a discrete system
with a persistence property (self-stabilization) which can be expressed as attraction
of a set A on a topology where A is open.

De�nition 6.8 (Asymptotic stability.) A is called asymptotically stable i� it is
stable and attractive. A is called asymptotically stable in the large i� it is stable and
globally attractive.

Note that in our general setting attraction does not imply stability. The reason is that
attraction is interested in system behavior as time goes to in�nity, whereas stability
considers the whole time axis. An example can be constructed along Figure 6.7. If
the topology on S in the �gure is such that � is the only neighborhood of A and
we consider the depicted trajectory without the initial segment outside �, then this
trajectory still satis�es attraction. Nevertheless, stability is violated, because there
is no neighborhood of A (� is the only one) such that all trajectories starting in it
never leave �. However, for most control systems studied in practice attraction implies
stability. Therefore, many control theory textbooks do not introduce the notion of
attraction for its own, but only introduce asymptotic stability.

Asymptotic stability in the sense of Liapunov is a specialization of our de�nition to
deterministic systems and the natural metric on the real line. For a stable point x
asymptotic stability usually requires that the following holds [Lue79]: 9Æ > 0: 8x0: jx�
x0j < Æ ) limt!1 SysS(x0)(t) = x, where SysS is deterministic and gets no external
input. To see that this is a special case of the de�nition in line four of Table 6.3, we
need to take fxg as the considered set of causes and e�ects, and employ the natural
topology on the real line as outlined in Section 6.3.3.2. As limt!1 SysS(x0)(t) = x
is equivalent to 8" > 0: 9t0: 8t � t0:jSysS(x0)(t) � xj < ", the correspondence to our
de�nition is straightforward.

In Section 6.5.1 we prove state-based attraction of a set A containing the EHC system's
tolerance interval. The claim is limited to a speci�c set of inputs I, and A is a closed
set w.r.t. the topology regarded in the example.

6.3.5 Further Properties

Whereas the properties above are rather general and meaningful for most systems,
there are a lot of further, more detailed requirements on individual systems. Classes
of such properties will be discussed in the following.
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6.3.5.1 Universal Properties

A characteristic of many properties is that they constrain all possible behaviors of a
system. Formally, such properties can be written as 8c 2 C: 8e 2 Sys(c):(c; e) 2 �,
where � � C � E . In computer science properties of this kind are often formalized
with linear time temporal logics (LTL) [MP92].

A very important example for such properties are invariants which demand that a cer-
tain time-independent constraint be always satis�ed [CMP91]. Invariance properties
correspond to the invariance of sets as de�ned in De�nition 6.5. Typically invari-
ants constrain the range of state variables, e.g. an invariant could demand that the
temperature in a nuclear reactor never exceeds a certain threshold. An invariant of
the EHC system would be that the actuators, compressor and escape valve, are not
used simultaneously. Further examples for properties expressable in LTL are bounded
response requirements, and safety and liveness formulas in general [CMP91]. For the
EHC system a liveness property e.g. is that state inBend is entered some time after a
bend event.

6.3.5.2 Existential Properties

Existential properties can be divided into two relevant groups. First, we have proper-
ties which demand the existence of certain behavior. Such properties involve existen-
tial quanti�cation over causes and e�ects (see (1) below). Second, there are properties
which require that causes exist which are guaranteed to lead to some desired e�ect. For
these properties existential quanti�cation over the causes and universal quanti�cation
over the e�ects is involved (see (2) below).

(1) Existence of behavior. The only property of this kind which was regarded in
some of the evaluated case studies is the existence of periodic behavior when there
are no external disturbances. For instance, this property is relevant for the hopping
robot [BGM93], which is required to hop constantly as long as it is not perturbed from
outside.

For state-based system descriptions the existence of periodic behavior can formally be
written as follows

9s0:9� 2 SysS(s0; 0): 9t: 9� 2 O
[0;t): � = �1

where 0 2 IR+ denotes a neutral input, i.e. no external disturbances, O[0;t) = [0; t)!
O, and �1 denotes the trajectory resulting from the in�nite repetition of � . An
I/O-based version of this property can be given in a similar manner. Such periodic
trajectories in reaction to neutral input are called limit cycles [Lei87]. In practice,
the non-existence of stable limit cycles is sometimes used as an indirect evidence for
the stability of the invariant sets of non-linear control systems. [F�ol87] states that,
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as a rule of thumb, the invariant sets of non-linear control systems are asymptotically
stable in the large if no stable limit cycles exists.

In an analogy to computer science the existential path quanti�er of CTL [Eme90] can
be used to express similar existential properties.

(2) Existence of Causes. In the regarded case studies no property of this type
was examined. However, the properties of controllability and observability , which are
important for state based controller design [Oga87, F�ol90, Son90, PH88], are of this
kind. In contrast to all the properties regarded before, they only refer to the plant, not
to the whole control system, and they presuppose a state based model of the plant.
Thus, the term system refers to the plant in the remainder of this paragraph.

Controllability means that there is an input trajectory such that a certain state can
be reached from the initial state within �nite time. In an adaption from [Son90] to
nondeterministic systems, we can de�ne controllability from state set S1 to state set
S2 as follows:

9t: 9� 2 IR+ : 8s 2 S1:SysS(s; �)(t) � S2

The input trajectory after time t is irrelevant for controllability, since we are dealing
with time guarded systems. If S2 is a one element set, this is similar to the de�nition
of controllability for deterministic systems [Son90], because we required that Sys be
total in its inputs. A system is called fully controllable i� any system state can be
controlled to any other system state.

Observability denotes that for any two distinct states there is an input such that a
�nite observation of the system output suÆces to detect the distinctness of the states.
Like in our treatment of controllability we de�ne observability (or distinguishability)
of sets of system states �rst. Two disjoint sets of states S1 and S2 are distinguishable
i�

8s1 2 S1: 8s2 2 S2: 9�: 9t: (SysS(s1);Out
y)(�)(t) \ (SysS(s2);Out

y)(�)(t) = ;

This means that for any two di�ering start states s1 and s2 from S1 and S2 there exists
an input such that the observable output of the system starting in s1 is disjoint from
that of the system starting in s2 after some �nite time t. Note that disjointness is
required to ensure that all nondeterministic choices which SysS can make for the two
start states are di�erent. Due to time invariance, observability provides that states
from S1 and S2 can also be distinguished at any later time instant, not only when
they are initial states. Finally, a system is called fully observable if every two distinct
states can be distinguished, formally:

8s1; s2 2 S: 9�: 9t 2 R+ : s1 6= s2 )
(SysS(s1);Out

y)(�)(t) \ (SysS(s2);Out
y)(�)(t) = ;

If a plant is not controllable or not observable we cannot design controllers which are
able to drive it into every desired state, because either the desired state is unreachable
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Figure 6.8: Classi�cation of properties.

from the current state of the plant, or we cannot determine the current state due to
lacking observability, or both. In this sense unobservability can be seen as a lack of
(appropriate) sensor information, and uncontrollability can be interpreted as a lack
of (appropriate) actuators. Such a lack may be caused by the underlying physics, for
instance some quantities may be diÆcult to measure, but also by economic constraints,
like too expensive actuators. Controllability and observability are central prerequisites
for state-based design techniques of controllers [Oga87]. If applicable, such methods
e.g. allow the synthesis of stable optimal controllers for certain purposes. However,
controllability and observability have not been considered in any of our case studies.

In computer science properties of this kind can be expressed with alternating-time
temporal logic (ATL) as de�ned in [AHK97]. In contrast to CTL [Eme90], ATL allows
us to distinguish between the system and its environment in path quanti�cation. Thus,
we can express that for all possible moves of the system the environment can select
moves (or inputs in our context) which ensure that a certain property holds.

6.3.6 Classi�cation of the Properties and its Consequences

6.3.6.1 Classi�cation

The classi�cation of properties we propose is based on the semantic models relative
to which the validity of the properties is de�ned.

By de�nition, the validity of robustness and optimality of a system must be determined
relative to a set of reference systems (Fig. 6.8, left branch). For robustness, an evalu-
ation function for the regarded object property is necessary additionally. Optimality
instead requires a cost function. For the other properties in Section 6.3, no reference
systems are needed to determine their validity (Fig. 6.8, right branch). Determining
stability or attraction requires that topologies for the input and output space (or the
state space, respectively) of the regarded system are given (Fig. 6.8, left branch at
the second level). For the properties of Section 6.3.5, no topologies are necessary to
determine their validity (Fig. 6.8, right branch at the second level). The properties of
Section 6.3.5 are all evaluated in the same domain, namely w.r.t. a given system. As
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Robustness 3
Optimality 2
Stability 6
Attraction 1
Universal properties 8
Existential properties 2

Table 6.4: Number of times a property was referenced at last once in a case study.

already indicated in the previous section, we partition this subclass further into the set
of properties which constrain all behaviors of a system (universal properties) and the
set of properties which demand existence of some speci�c behavior (existential prop-
erties). The existential properties can furthermore be divided into those demanding
the existence of some behavior and those demanding the existence of causes enforcing
certain e�ects (see Section 6.3.5.2).

6.3.6.2 Rating

In order to get a vague estimate of the relevance of the listed properties in practice,
we count the number of case studies in which at least one property of a given kind is
considered for each kind of property. For instance, if case study A considered three
universal properties and two stability properties, the counter for the number of case
studies considering universal properties and the counter for those considering stability
properties are increased by one. Hence, the maximum possible count for a property
class is nine, the number of all evaluated case studies. We do not use the total number
of times a certain property class was considered for our rating, because this would
assign inadequately high numbers to invariance properties, since a greater number
of properties of this kind were listed in two of the case studies (in [BHKT98] and
[Eng97]).

Table 6.4 lists the resulting rating. Although attraction is considered in only one case
study, it probably is also relevant in the case studies which only considered stability,
because in cases where stability is desired, attraction of the stable set usually is also
desirable. The eight case studies regarding universal properties all regard invariance
properties (Section 6.3.5.1). Two of them also regard an invariance property for a
reduced set of causes C. Namely, they require that for certain kinds of causes the
system's state or output variables never exceed given values. In the two case studies
which mention or examine an existential property, this regarded existential property
is the existence of limit cycles.

Although the signi�cance level of the given rating is low (only nine case studies were
examined), there is a clear tendency indicating that universal properties, in particular
invariance properties, and stability are most important. This clearly does not imply
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that the other properties are irrelevant, but it indicates that it is sensible to put
priority on work on methods for establishing these properties and maintaining them
in transformations. Another possible conclusion is that these properties were regarded
so frequently because the best analysis methods exist for them. In the author's opinion
this can only be true in part. First, some of the regarded case studies merely explain a
system and desirable properties without validating them; or validate some properties
and describe others as also important, but do not analyze them. These mentionings
of properties also appear in our rating. In this respect, the case studies only partially
depend on existing methods. Second, the analysis method used most frequently in
the case studies was simulation-based testing which can in principle be applied to all
the properties. Nevertheless, note that from a theoretical point of view tests are not
helpful w.r.t. unbounded liveness properties or for (in�nite time) attraction, since in
theory judging the correctness of an output would require in�nite observation.

6.3.6.3 Consequences for Re�nement

In this section, we want to consider which properties are maintained under re�nement.
The notion of re�nement we employ was already introduced in the context of hierarchic
graphs in Section 3.3.5 and is based on set inclusion. We say that relation A is a
re�nement of relation B, written as A � B, i� A � B. Consequently, for I/O-
based system descriptions this means that Sys 0IO � SysIO i� 8� 2 IR+: Sys 0IO(�) �
SysIO(�). For state-based system descriptions, we have Sys 0S � SysS i� 8s 2 S; � 2
IR+ : Sys 0S(s; �) � SysS(s; �). This expresses that the traces of the original system
include those of the re�ned system, while both systems are required to be total in
their input (and start states) because of our de�nition of systems (Section 6.2). Note
that this notion of re�nement is common in computer science. For instance, it is
studied in [Bro99b, Bro97b].

From the de�nition of universal properties it is obvious that they are preserved under
this notion of re�nement. For stability and attraction, it is also easy to see that
re�nement maintains them. Simply note that for a re�ned system, we can choose the
same neighborhoods of causes in a proof of stability or attraction as for the original
system and end up with a subset of the traces of the original system for the same
causes (and inputs, in the case of state-based system descriptions). Hence, traces in
this subset are also contained in all the sets and neighborhoods of sets in which the
original trace set is.

Similarly, controllability and observability are preserved under re�nement. Informally,
the reason is that they involve existential quanti�cation over the input and (implicit)
universal quanti�cation over the output. As systems, whether re�ned or not, are re-
quired to be total in their input, inputs which provided controllability or observability
for the original system also do so for the re�ned system with its smaller, but nonempty,
set of traces for the same inputs.
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Existential properties requiring the existence of e�ects, such as the existence of periodic
behavior or limit cycles (Section 6.3.5.2), are not maintained by re�nement. Again
this is straightforward, because in the re�ned system exactly the \good verdict" may
have been removed from the possible e�ects of the original system for given causes
(and input).

The situation is more diÆcult for the properties robustness and optimality, because we
also have to consider sets of reference systems, and object property and cost function
respectively here. Let us �rst de�ne what re�nement means for reference systems. A
set of reference systems R0 is called a re�nement of a set R of reference systems i�
8Sys0 2 R0: 9Sys 2 R: Sys0 � Sys. Thus, we require that for each system Sys0 in the
re�ned set there is a system in the original set which is re�ned by Sys0. Based on this
de�nition, the following conclusion is an immediate consequence of the de�nition of
robustness, because the de�nition involves universal quanti�cation over the reference
systems. Provided system Sys with deviations D, Sys 2 D, robustly satis�es 	 and
provided that 	 is preserved by re�nement, then the re�ned system Sys0 with re�ned
deviations D0, Sys0 2 D0, also robustly satis�es 	. As we have seen above 	 is
preserved under re�nement if, for instance, it is a universal property.

Optimality in general is not preserved by re�nement. Here, the character of the cost
function is crucial. For instance, a reasonable class of cost functions are functions
which determine a system's quality as the supremum of the cost of all possible e�ects
for given causes (and input). If we only re�ne the optimal system, but not the set
of alternative systems, optimality is maintained, since the cost for the re�ned system
could only have decreased while costs for the alternative systems remained equal.
However, if the alternative systems are re�ned, optimality of a given system need not
be preserved w.r.t. the new alternatives. Namely, there could be a re�ned alternative
system from which expensive e�ects have been removed such that this system is now
preferable to the old optimal system (or even to a re�ned version of it).

Contrasting these results with our rating of properties yields that the chosen re�ne-
ment notion preserves most central properties. Merely existential properties with
existential quanti�cation over e�ects are not maintained. Moreover, for robustness
and optimality the situation depends on the object property and the cost function,
respectively.

6.4 Some Proof Concepts

In practice we have to distinguish between two kinds of applications of hybrid systems.
First, there may be a control task that is realized by the hybrid system, e.g. guaran-
teeing that a certain physical quantity has a prescribed value. We call such a system
a control-centered hybrid system. Second, the system's task may be to implement a
certain process, e.g. to control the appropriate consecution of di�erent process phases
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such as heating material, shaping it and cooling it again. We call such a system a
process-centered hybrid system. Note that this is not a sharp distinction. Control-
centered hybrid systems may appear within larger process-centered systems and sim-
ilarly, process-centered systems may be a part of control-centered systems. Robotic
hand regrasping is an example for such a hierarchy [SHB+99]. There, the overall task
is to guarantee that an object is held in a stable position by a robotic hand (control-
centered aspect). A subtask consists of moving some �ngers in order to obtain a better
grasp (process-centered aspect).

For both kinds of systems, di�erent classes of properties are important. For control-
centered hybrid systems, stability and attraction are vital properties. In process-
centered control systems, safety properties, like \bu�er capacities are never exceeded",
and liveness properties, like \the next phase is started eventually", play a major role.
In this section, safety and liveness properties are not considered in greater detail
because their underlying proof principles are largely familiar to computer scientists.
Besides that, there already is signi�cant work on this topic, e.g. [Lam93], where TLA
(Temporal Logic of Actions) with its existing proof methods is extended to hybrid
systems, or [Pnu94], where computational induction is introduced to prove invariance
properties of hybrid systems. Note that in Appendix A.1.2 an inductive proof principle
for HySCharts is de�ned which is similar to computational induction.

In the following, proof methods for state-based stability and state-based attraction of
(sets of) points are presented. This kind of stability and attraction is most extensively
studied in standard textbooks on control theory. Furthermore, we will develop special-
izations of the general methods which are helpful in applications and outline parallels
to similar proof methods for discrete and continuous systems. In Section 6.5.1, the
resulting methods are applied in a small example to prove stability and attraction of
the EHC system. To emphasize parallels to computer science and demonstrate the
applicability of the methods to discrete systems, a classic self-stabilizing system from
computer science is considered as a further example in Section 6.5.2.

6.4.1 State-based Stability

Proofs of stability in control theory usually consist of �nding a continuous5 monoton-
ously decreasing function from the system states to some assessment space, usually
to the real numbers. This function is required to have a unique minimum for the
state whose stability must be shown. According to the work of Liapunov existence of
such a Liapunov function implies the stability of the unique minimum. In a physical
interpretation Liapunov functions can often be regarded as energy functions. They
associate the amount of energy in the system with each of its states. If energy is

5Unless otherwise mentioned, we use to the topological de�nition of continuity, not the one based
on domain theory [SG90, Win93].
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never added in the evolution of the control system, it is stable.6 From a more abstract
point of view, the Liapunov function can be seen as an abstraction that maps the real
system to a qualitatively equivalent system [MW95].

The following theorem may be seen as a generalization of the classical Liapunov theory.
It is adapted from [MT75]. In the theorem we write hvi for fv0 j v0 v vg for partial
order v and f�1(y) for the inverse image of y under function f , i.e. f�1(y) = fx j y =
f(x)g. f�1 is extended to sets by pointwise extension. As the theorem is rather
technical in part, it is explained in the following paragraph. Sections 6.4.1.1 and 6.4.1.2
introduce specializations which also help to understand the last two requirements of
the theorem.

Theorem 6.1 The set A � S is stable w.r.t. system SysS 2 S ! (IR+ ! P(SR+)),
topology OS, and inputs in I � IR+ if there exists a function L 2 S ! V with:

1. V is a partially ordered set with partial order v, and V + � V is the subset of
elements v 2 V for which there is a neighborhood of A such that the inverse
image under L of all elements v0 v v is not a proper subset of the neighborhood,
formally V + = fv 2 V j 9� 2 N(A)::(L�1(hvi) $ �)g.

2. L is monotonously decreasing along the traces of SysS, formally
8s 2 S; � 2 I: 8� 2 SysS(s; �): 8t; t

0 2 R+ : t
0 � t) L(�(t0)) v L(�(t)).

3. 8v 2 V +: 9� 2 N(A): 8x 2 �: L(x) v v

4. 8� 2 N(A): 9v 2 V +: 8x: L(x) v v ) x 2 �

Proof. Let � 2 N(A) be an arbitrary neighborhood of A. Application of 4 and 3
yields that there is a � 2 N(A) and a v 2 V + with x 2 � ) L(x) v v, and therefore
x 2 �. For x 2 � and � 2 SysS(x; �) monotonicity yields 8t: L(�(t)) v v. Hence,
� 2 �R+. �

If existing, such a function L is called a Liapunov function. Informally the combination
of the last two requirements expresses that for any neighborhood of A there exists a
smaller neighborhood whose L-image is bounded from above by some v 2 V +. In terms
of the inverse images under L the last two requirements can equivalently be written
as 8v 2 V +: 9� 2 N(A): � � L�1(hvi) and 8� 2 N(A): 9v 2 V +: L�1(hvi) � �,
respectively. The set V + eliminates all those elements from V which are not helpful
in the proof of stability, because they constrain the considered sets of points too
strongly, namely to the inside of all neighborhoods of A. It is needed to simplify
the application of the theorem, because specializations of the theorem usually use
sets V with bottom element ? and mappings L with L�1(?) = A. If the universal

6Adding energy does not violate the physical law of energy preservation, because the control
system may use external sources for increasing the energy.
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quanti�cation in requirement three ranged over all v 2 V , it would not be satis�able
for these specializations in topologies on S in which A is a closed set.

Note that the above theorem has some parallel to the proof method given in [Sin92] to
prove a property called atomicity of an invariant for a given dynamical system. This
property expresses that a set which is invariant for the given system (De�nition 6.5)
is a singleton. The parallel to Theorem 6.1 is due to both proof methods using a
comparison function L to show that the considered system has a non-expansive (in
the case of stability) or contractive character (in the case of atomicity).

In the following we consider two specializations which are helpful for applications and
which make parallels to the notion of abstraction in computer science explicit.

6.4.1.1 Liapunov Functions and Galois Connections

The last two requirements in Theorem 6.1 suggest that there are two total mappings
from V + to the neighborhoods of A (Requirement 3) and back again (Requirement
4). Such mappings are similar to abstraction via Galois connections [CC92], which
is a common technique in computer science. Informally, a Galois connection is a
pair of monotonous mappings, an abstraction function and a concretization function,
from a \concrete" partially ordered set to an \abstract" partially ordered set and
back again. The compositions of these mappings are required to loose information
in a way consistent with the regarded partial orders. We will make the similarity
between Liapunov functions and Galois connections explicit now. This idea leads to
a specialization of Theorem 6.1 which is developed in the following.

Assumptions. Let (V;v) be a complete partial order which furthermore is densely
ordered by the strict version < of v and has a least element ? (see Appendix B.1
for the de�nition of densely ordered sets). Let L be a mapping from S to V such
that the given topology on S is the coarsest topology which makes L continuous
w.r.t. the interval topology induced by v on V (see Appendix B.2 for the de�nition
of interval topology). L is required to be onto and the L image of all elements in
A must be ?. Furthermore, V and L must be chosen such that V + = V n f?g,
where V + is de�ned as in Theorem 6.1.7 We de�ne function abs 2 N(A) ! V + by
abs(�) = supfv 2 V + j � � L�1(hvio)g, where hvio is the set of all those v0 which are
strictly \less than" v, hvio = fv0 j v0 < vg. Function conc 2 V + ! N(A) is given
by conc(v) = L�1(hvio). Lemma A.16 in Appendix A.3 proves that abs and conc are
well-de�ned.

Theorem 6.2 Functions abs and conc are a Galois connection between the spaces
(N(A);�) and (V +;w), where w is given by v w v0 :, v0 v v.8

7This can be achieved by choosing L such that L�1(?) = A.
8Actually abs and concmake up a dual Galois connection [CC92], because in the usual terminology

of [NNH98] and [CC92] our abs is the concretization and conc the abstraction.
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By the de�nition of Galois connections [CC92] this means that monotonicity of abs
and conc, and � � conc(abs(�)) (extensivity) and abs(conc(v)) w v (reductivity) must
be proven. This in done in Theorem A.17 of Appendix A.3. In fact, a stronger variant
of reductivity, abs(conc(v)) = v, is proven there, which implies that abs and conc even
are a Galois surjection on the considered spaces.

Specialization for Stability. The given de�nition of abs and conc allows us to
derive stability of A from the monotonicity of L w.r.t. the system traces of SysS.
The proof is given in Appendix A.3, Theorem A.18. This amounts to a specialization
of Theorem 6.1, as a L function with the properties described in the assumptions
above also satis�es the requirements of that theorem. Namely, abs and conc, which
are de�ned depending on L, immediately help to satisfy Requirements 3 and 4 of
Theorem 6.1.

Note that monotonicity of L can also be interpreted as stability of ? w.r.t. the L-image
of SysS in V . We will consider this in more detail in Section 6.4.1.2. Furthermore,
note that the stability proof also works if V is not complete and densely ordered, but
just a partially ordered set with bottom element. In this case the supremum operator,
sup, in the de�nition of abs must be replaced by Hilbert's non-deterministic choice
operator and abs no longer needs to be monotonic w.r.t. �. Hence, abs and conc no
longer build a Galois connection. Besides that, to proof stability L need not be onto.
This is only necessary to show that abs and conc are a Galois connection.

Using the interval topology on V together with the other requirements we stated for
V and L implies that L�1(?) is a closed set in S, because f?g is closed in V . If
we choose L such that L�1(?) = A, this suits well to standard control theory books.
There, Liapunov functions usually use V = R+ , the considered set A is a singleton,
and therefore closed w.r.t. the natural topology on the Euclidean space, and L(x) has
its unique minimum for fxg = A.

Thinking in terms of abstraction and concretization functions can help us to �nd
Liapunov functions. Namely, they lead our intuition to looking for equivalence classes
in S. The elements of an equivalence classe are then de�ned to produce the same
L-value. In our view it is more constructive to search for a continuous L function
such that the above abs is well-de�ned than to �nd a function satisfying the last two
requirements of Theorem 6.1, since these requirements are very abstract.

6.4.1.2 Liapunov Functions and Homeomorphisms

A further specialization of Theorem 6.1 results if we demand that L be a homeomor-
phism, i.e. a function which is one-to-one and onto and has a continuous inverse L�1.
In detail the assumptions are as follows.

Assumptions. Let V be partially ordered by v and have a least element ?. Let
L 2 S ! V be a homeomorphism, where continuity of L�1 is required w.r.t. the
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Figure 6.9: Commuting diagram for L.

topology on S and the left topology on V (see Appendix B.2 for the de�nition of left
topology). This implies that L also is continuous w.r.t. the same topologies [Eng89].
Furthermore, L must be monotonous w.r.t. the traces of SysS (see requirement two
in Theorem 6.1), and it must map all elements in A to ?. Note that together with L
being one-to-one and onto this implies that A may only contain one element. For V +

de�ned as in Theorem 6.1 the above requirements for V and L imply that V + = V
holds, since h?i is an open set w.r.t. the left topology and L�1(h?i) 2 N(A) therefore
is the smallest neighborhood of A.

Remark that in contrast to the previous paragraph we here employ the left topology
on set V instead of the interval topology. We do so in order to give an example of a
class of L functions for which L�1(?) is an open set, which suits well in cases where
A is open and L�1(?) = A. Nevertheless, the arguments presented here can easily be
adapted to totally ordered sets V with the interval topology.

Specialization for Stability. Theorem A.19 in Appendix A.3 shows that the above
assumptions imply the requirements of Theorem 6.1. As a consequence, they are
suÆcient to conclude the stability of A w.r.t. SysS and the topology on S. This gives
us a specialization of Theorem 6.1.

Abstraction. From a computer science perspective, L can be seen as an abstraction
mapping the concrete system SysS to an abstract system AbsSys 2 V ! (IR+ !
P(V R+)) such that (1) L commutes between SysS and AbsSys (see Figure 6.9), and
(2) L preserves topological properties on S and V . In [Aki93] such a mapping is called a
(topological) conjugacy. Here, the abstract system AbsSys is de�ned as AbsSys(v; �) =
L(SysS(L

�1(v); �)), where L is extended to trajectories and sets of trajectories in
a pointwise manner. L commutes between SysS and AbsSys, i.e. L(SysS(s; �)) =
AbsSys(L(s); �), because of the de�nition of AbsSys and because L is one-to-one and
onto. In our context, stability of L(A) for the abstract system AbsSys implies stability
of A for the concrete system SysS. Due to using the left topology on V , stability of
L(A) is a consequence of monotonicity of L w.r.t. the traces of SysS. To see this,
note that stability of L(A) = f?g can be written as 8v: 9v0: 8� 2 I: 8v00 v v0: 8� 2
Abs(v00; �): 8t: �(t) v v, where we implicitly associate the neighborhood hvi of f?g
with every v 2 V . By the de�nition of AbsSys this formula for stability of f?g is a
direct consequence of the monotonicity of L along the traces of SysS (requirement 2
of Theorem 6.1).
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We remark that, as stability depends on topology, it is not surprising that studying
stability properties by abstraction requires to also relate the topologies on the abstract
and the concrete space. This is done by a homeomorphism and also by the particular
Galois connection given above. In case of the homeomorphism, continuity of L and
L�1 establishes the needed relationship between open sets in both spaces. In the case
considered in Section 6.4.1.1, continuity of L establishes the connection from open sets
in the abstract space to open sets in the concrete space. Requiring that the topology
on the concrete space is the coarsest which makes L continuous establishes the other
direction.

Note that �nding a Liapunov function which de�nes a Galois connection as explained
in Section 6.4.1.1 can be regarded as a greater abstraction than �nding a homeomor-
phism. This holds true, because in the case of a homeomorphism the concrete space
S and the abstract space V are isomorphic. In contrast, a L function that (only)
leads to a Galois connection allows us to identify elements of the concrete space in the
abstract space. Hence, information may be lost in the latter case, while no loss occurs
in the former case.

6.4.2 Attraction

Control theory usually considers attraction together with stability, i.e. asymptotic
stability. Like in Section 6.4.1 Liapunov functions are also used in order to proof
asymptotic stability. However, for asymptotic stability the functions must obey addi-
tional restrictions which ensure that the Liapunov function indeed reaches a certain
unique minimum. For continuous time systems, a suÆcient criterion is that L is con-
tinuously di�erentiable along the system trajectories with the derivative being strictly
less than zero everywhere except of at the minimum [Lue79].

In our general framework, where attraction does not necessarily imply stability, the
following theorem allows us to proof attraction of points for state-based systems. It
corresponds to Theorem 6.1 with a di�erent third requirement, which is explained
informally below.

Theorem 6.3 The set A � S is globally attractive w.r.t. system SysS 2 S ! (IR+ !
P(SR+)), the topology OS and the inputs in I � IR+ if there exists a function L 2
S ! V with:

1. V is a partially ordered set with partial order v, and V + � V is the subset of
elements v 2 V for which there is a neighborhood of A such that the inverse
image under L of all elements v0 v v is not a proper subset of the neighborhood,
formally V + = fv 2 V j 9� 2 N(A)::(L�1(hvi) $ �)g.

2. L is monotonously decreasing along the traces of SysS, formally
8s 2 S; � 2 I:8� 2 SysS(s; �): 8t; t

0 2 R+ : t
0 � t) L(�(t0)) v L(�(t)).
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3. 8v 2 V +; s 2 S; � 2 I: 8� 2 SysS(s; �): 9t: L(�(t)) v v.

4. 8� 2 N(A): 9v 2 V +: 8x: L(x) v v ) x 2 �.

Proof. Let � 2 N(A) be an arbitrary neighborhood of A and s 2 S, � 2 I arbitrary.
Using 4 to select a v for � such that states with L-values less or equal v are in �,
and applying 3 yields that for all � 2 SysS(s; �) there is a t such that L(�(t)) v v.
Monotonicity yields L(�(t0)) v v for all t0 � t and hence, due to the choice of v,
�(t0) 2 � for all t0 � t. �

Similar to Theorem 6.1, V + is needed here, because otherwise the theorem would
exclude the frequently occurring case where V contains a bottom element ?, L is
such that L�1(?) = A, and A is a closed set. Requirement three expresses that any
v 2 V + is eventually reached by all trajectories of SysS. Obviously, the existence
of a Liapunov function L 2 S ! V , as de�ned by Theorem 6.1, which also satis�es
requirement three of Theorem 6.3, proves asymptotic stability of the considered set
A. Hence, we can also use Galois connections of the kind de�ned in Section 6.4.1.1 or
homeomorphisms as de�ned in Section 6.4.1.2 to prove attraction, provided they also
satisfy requirement three from above.

Theorem 6.3, in general, does not imply Theorem 6.1. Informally the reason is that
for attraction a function L suÆces which, for every trace, is constant in the beginning
and converging to a speci�c minimum as time goes to in�nity. If the chosen function
L does not �t to the topology on S in the way demanded by the third requirement
of Theorem 6.1, this constant value on the beginning of a trace need not yield any
information on the neighborhood of A in which the trace is at the respective time
instants.

Requirements two and three of the theorem together yield that 8v 2 V +; � 2 I; s 2
S: 8� 2 SysS(s; �): 9t: 8t

0 � t: L(�(t0)) v v holds, which exactly is what is needed in
the proof. If V has a least element ? and V + = V this property is equivalent to global
attraction of f?g w.r.t. the left topology on V induced by v (see Appendix B.2 for
the de�nition of the left topology).9 This underlines that, just as for stability, L is an
abstraction mapping which allows us to carry over attraction in V to attraction in S.

6.4.2.1 Specializations and Parallels to Discrete and Continuous Systems

A problem for the practical utility of Theorem 6.3 is that requirement three is not
very handy. In fact, convergence, which is expressed in this requirement, usually is
diÆcult to prove. This, however, can be alleviated by selecting a set V for which there
is a rich theory for convergence. We therefore want to consider a few specializations
here.

9A similar result holds for the interval topology.
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Discrete systems. If a discrete-time or discrete-event system is regarded, and if A is
open w.r.t. the topology on S, Theorem 6.3 can be specialized as follows. We choose
V and v such that v is a well-founded order on V and V has a bottom element,
e.g. V = N with bottom element ? = 0 and v the less-or-equal relation �. The
inverse image of ? under L must be A which implies V + = V , since A is open. We
then require that for every trace there is an in�nite, strictly monotonously increasing
sequence of time instants ti 2 R+ at which the system performs its moves. L must be
monotonously decreasing along the traces of SysS and strictly decreasing at every ti
unless the L-images of the states reach ? (from then on monotonicity suÆces). Our
traces � are in�nite and V only contains �nite (strictly) decreasing sequences, because
v is well-founded. Therefore, it follows that L(�) becomes constantly ? starting
from some time t, i.e. convergence of the L-image of SysS to ? is ensured. Hence,
these requirements imply requirements two and three of Theorem 6.3. Requirement
four is a consequence of L�1(?) = A, because for any neighborhood of A we can
choose v = ? to satisfy the requirement. Consequently, this is a specialization of
Theorem 6.3. It is applied in the example of Section 6.5.2. Note that this kind of
L functions correspond to Floyd functions used in computer science to prove liveness
properties [Cou90, Flo67], as [Sin92] mentions in a discrete time context. However,
in comparison to Floyd functions we also require that L remains non-increasing when
set A has been reached. This is needed to also proof the safety part contained in a
persistence property.10 In the example of Section 6.5.2 this becomes apparent.

Continuous-time systems. Classical strictly monotonous Liapunov functions are
a second special case of the above theorem [Lue79]. Here, the considered set A is a
singleton and therefore closed w.r.t. the natural topology on the Euclidean space used
for space S. R+ is chosen for V , with ? = 0. For v the less or equal relation� is used,
and V + = V n?. L is required to be continuously di�erentiable along the traces of SysS
with continuous derivative d

dt
(L(�(t))) < 0 for all �(t) 62 A and d

dt
(L(�(t))) = 0 for

�(t) 2 A.11 Furthermore, L(s) must be 0 i� s 2 A, i.e. L�1(0) = A. Convergence of L
to 0 is a consequence of the strict monotonicity of L and the continuity of d

dt
(L(�(t))).

Strict monotonicity alone only implies convergence to some value. Requirement four
is satis�ed for L, because of continuity of L by topological arguments roughly similar
to those given in Section 6.4.1.1.

Specialization with uniform monotonicity. For topologies in which A is not
open, a similar more general specialization of the above theorem is obtained as follows.
We again use V = R+ with bottom element and order as above, and require a kind of
uniform monotonicity of L along the traces of SysS. This specialization is an adaption
of the criterion given in [SG95] for attraction for discrete-time systems. In detail, L

10Remember that attraction is a persistence property from a computer science point of view (Sec-
tion 6.3.4.2).

11Note that the derivative d

dt
(L(�(t))) can also be written as dL(s)

ds
�
d�(t)
dt

under appropriate restric-
tions.
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must be chosen such that L�1(0) = A and V + = V n f0g hold. Then, requirements
two and three of Theorem 6.3 are replaced by demanding that for all s 2 S, � 2 I
and � 2 SysS(s; �) there is a k 2 [0; 1) such that 8t; t0 2 R+ : t

0 � t ) L(�(t0)) �
kt

0�t � L(�(t)). Informally this means that L(�(t)) is required to decline at least as
fast as kt. Obviously, this implies monotonicity of L along the traces of SysS (second
requirement of Theorem 6.3). To see that any v 2 V + is reached or underpassed by any
trace (third requirement of Theorem 6.3), let v 2 V + be arbitrary and let � 2 SysS(s; �)
be a trace for start state s and input � 2 I. Due to the above claim, there is a k 2 [0; 1)
such that 8t: L(�(t)) � ktL(�(0)). For t!1, ktL(�(0)) converges to 0 which implies
that L(�(t)) reaches v or falls below v eventually. Thus, with requirement four of
Theorem 6.3 remaining unchanged, this yields a sound specialization of Theorem 6.3.

6.5 Applications

6.5.1 Stability and Attraction for the EHC

As example we consider the stability and attraction of the tolerance interval of the
EHC system for disturbances of the system's initial state and in presence of bends.
We use the abstract model of the EHC system as described informally in Section 6.1.
Table 6.5 de�nes the actions, invariants and activities occurring in the HySChart
given in that section (Figure 6.2). Once stability and attraction is shown for this
abstract system, the HySChart can be re�ned further using techniques presented in
preceding chapters. In particular this includes re�ning the system into the controller
and suspension's dynamics, and discretizing the controller.

The primary aim of the EHC is to compensate di�erent load situations of a car. At
the considered stage it is not supposed to actively in
uence driving dynamics by,
e.g., adjusting the suspension to di�erent speeds or lateral accelerations. In fact it
is explicitly required that the actuators be turned o� when the car is going through
bends. Because of control being suspended in state inBend no region A around the
tolerance interval can be stable or attractive for all kinds of disturbances. If A (or
a given neighborhood of it) has been reached, a curve may be entered. Then, the
disturbances occurring in the curve may cause that the chassis level is outside A (or the
regarded neighborhood) when the bend ends. This contradicts attraction. Stability
is violated in a similar way. Nevertheless, this behavior of the EHC is acceptable if
after a disturbance and despite of bends with �nite duration the chassis level does
not diverge further, but approaches the tolerance interval again. We summarize this
by requiring that set A, whose formal de�nition we give in the following paragraph,
is stable and globally attractive w.r.t. the system of Figure 6.2 and w.r.t. the set
of inputs I. Set I is de�ned such that it expresses that bends are entered and left
in�nitely often with entries (exists) and exits (entries) of bends separated from each
other by at least time bs. Moreover, for inputs in I the chassis level is never in
uenced
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De�nition of actions, invariants, and activities:

b2o � bend?
o2b � b2o
i2u � height � lb

i2d � height � ub

u2i � height � lb + c

d2i � height � ub � c

CtrlSys inv � True

inBend inv � bend :t = bend :t8 _ now � bend :t8 < "bend
outBend inv � inBend inv
inTol inv � height 2 (lb � "height ; ub + "height )
upinv � height < lb + c+ "height
down inv � height > ub � c� "height

const � _a = 0 ^ d
dt
height = _a+ dist

inc � _a 2 [cp�; cp+] ^
d
dt
height = _a+ dist

dec � _a 2 [ev�; ev+] ^
d
dt
height = _a+ dist

Table 6.5: De�nition of actions, invariants, and activities of CtrlSys in Figure 6.2. (lb,
ub, cp�, cp+, ev�, ev+ , c, "height and "bend are constants.)

from outside. Hence, we only consider initial disturbances of the chassis level. As the
system is time invariant, this ensures that whenever the chassis level is outside the
tolerance interval it approaches the tolerance interval again, provided bends satisfy
the claimed assumptions. Note that we furthermore require that bs > "bend holds,
i.e. the time between entry and exit, and exit and entry respectively, of a bend must
be greater than the maximum delay "bend with which the system reacts to them.

De�nitions. Formally, I is de�ned as follows:

I = f(be; di) 2 (R+ � R)Rp+ j
8t 2 R+ : di(t) = 0 ^

(t = 0 _ limx%t be(x) 6= be(t)))
9t0 � t+ bs: bej[t;t0) = tyj[t;t0) ^ be(t0) = t0 g

where ty denotes the constant function mapping all arguments to t. For (be; di) 2 I
the �rst component of the tuple denotes the evolution of the input on channel bend
and the second that on channel dist. The de�nition provides that the input on channel
dist, denoting external disturbances of the chassis level, is constantly 0, i.e. there is no
disturbance. Moreover, the de�nition expresses that the time stamps on channel bend ,
whose values denote the last time of entry or exit of a bend, change in�nitely often with
two consecutive changes separated at least by time bs.12 Note that set I could also have

12The de�nition also implies the time stamps are correct (see Example 5.4 in Section 5.4.1).
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been de�ned with some hybrid temporal logic, HySCs [GKS00], or HySCharts. The
proposed attractive and stable set A is A = fs 2 S j sheight 2 [lb�"height ; ub+"height ]g,
where we write sheight for the value of variable height in state s (see Figure 6.10 for a
visualization of the interval and the relevant constants). As the detection of events is
required in the example, the state space S we allow to be disturbed is not the whole
state space of CtrlSys, but only consists of the control-state space and the ranges of
the variables height and a. Variable now and the latched time stamp for the input
channel bend are initialized such that they are consistent with the time stamps in
the set of inputs I. This means that they are 0 in all considered initial states. The
regarded topology on S is constructed as follows. For variable height we use the
topology generated by the base Bh = ffx j d(x;A) 2 bg j b 2 BR+g, where BR+ is a
base for the natural topology on R+ and d(x;A) = inf fjx � aj j a 2 Ag (Euclidean
distance). The resulting topology is similar to the natural topology on R, but coarser.
It does not distinguish between elements of A and between deviations from A to higher
or to lower values. This is consistent with our view of the EHC system, because all
values of height inside set A are regarded as desirable, while too high and too low
values of height are likewise undesirable. The variable a as well as the control-state
space are immaterial here and we therefore use the coarsest topology for them, i.e. for
variable a, for instance, we use the topology O = f;;R+g. The topology OS we use
on S is the Tychono� (or product) topology of these topologies (see Appendix B.2,
De�nition B.10).

Stability. To prove stability of set A we use a Liapunov function of the kind described
in Section 6.4.1.1. L 2 S ! V is de�ned by L(s) = d(sheight ; A), i.e. it is the distance
of height to A. We use V = R+ with order � on the reals. V is complete and densely
ordered, has least element 0, and V + = V n f0g (see Theorem 6.1 for the de�nition
of V +). L is onto, and L(s) = 0 if sheight 2 A. The interval topology on V is equal
to the natural topology on R+ . Applying Theorem B.3 of Appendix B.2 proves that
topology OS is the coarsest topology on S which makes L continuous. In fact, this by
part motivated our choice of the topology for the chassis level.

Using the result of Section 6.4.1.1 stability of A can now be established by proving that
L is monotonously decreasing along the traces of CtrlSys for all inputs in I. The proof
proceeds by trace induction over the traces of CtrlSys, as de�ned in Appendix A.1.2,
Theorem A.6. Here, we argue informally. For a state s 2 S at time t, CtrlSys either
performs a discrete transition, or time passes until time t0 > t. As no transition
modi�es the value of sheight , L remains constant, and hence monotonous, whenever a
transition is taken. If control is in state inTol or in inBend and time passes, sheight
also remains constant. If control is in up and time passes, its invariant, height <
lb + c + "height , must hold and height is increased (0 < cp� < cp+). Thus, provided
the constants are chosen such that lb + c + "height < ub + "height , L decreases until
height reaches lb � "height and then remains constant, since height then already is in
A. If control is in up and the invariant does not hold, i.e. height already is too high,
no time can pass in the state and a transition is taken. The situation is similar for



6.5. APPLICATIONS 189

ε

ε

ε

εheightlb−

height

height

heightub+

A

ub−c−

lb+c+

+

−

0

lb+c

ub−c

lb

ub

Figure 6.10: Relevant intervals and constants for the chassis level.

control being in down. Hence, L is monotonous.

Attraction. For attraction we use the same sets I, V , V + and function L as de�ned
above. We have to prove that every v 2 V + is reached (requirement 3 in Theorem 6.3).
The other requirements of the theorem are already satis�ed for L, because L was
chosen according to the specialization of Theorem 6.1 given in Section 6.4.1.1. Again,
we argue informally. Let s 2 S be some state. If s is in A nothing remains to be shown
as L(s) � v already holds. If in the regarded state the height is below lb � "height ,
there are two possibilities depending on whether the control state is in inBend or in
one of the substates of outBend . In the �rst case, some time will pass with height
remaining constant. Then, at most time "bend after the next toggling of bend in the
input, control changes to inTol and we have the second case. In the second case,
the control state immediately changes to up, because the transitions leading to up are
enabled and the invariants of inTol and down are false. Control will remain in up until
either the height is in A or a bend occurs. In case of a bend, the minimal separation
bs between bend signals in the input ensures that time bs � "bend passes in up (or A
is reached) before state inBend is entered.13 Note that we required that bs > "bend
above. As long as control is in up the height decreases at least with rate cp�. Thus,
between two bends the height is always decreased by at least cp� � (bs � "bend) in up
unless the height is in A. As bends are left in�nitely often, the regarded v is reached
after �nitely many curves, and therefore after a �nite amount of time. Note that the
height, of course, also is decreased in up if no bends occur. Finally, if in the regarded
state the height is above up + "height , the argument is analogous to the above case.
This ends the proof, by Theorem 6.3 we obtain that A is attractive.

Remarks. We could also have incorporated the model of disturbances into the
system model and could have examined the resulting (input-free) model. For complex
disturbances for hybrid systems this may often be necessary for proofs, as certain
control states can only occur under certain environment behavior. For the EHC, e.g.,

13Only time bs � "bend not time bs is guaranteed to pass in up, because the reaction to the bend
signal may be delayed by at most "bend.
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leaving a bend is only possible if a bend has been entered. Here, not incorporating the
inputs into the state forced us to consider in�nitely many bend events only because
we cannot decide which event models leaving a bend and which denotes entry.

Furthermore, we could also use a control-state depended Liapunov function. This has
not been needed here, but it would be necessary if we allowed (small) disturbances
inside and outside bends (where disturbances inside bends are required to vanish).

Proofs of stability and attraction are also possible for more general models of external
disturbances. However, such proofs require a lot of technical detail. We rather decided
to give a simple example here to demonstrate proofs of stability and attraction for
hybrid systems.

6.5.2 Attraction for Self-Stabilizing Algorithms

The example in this section shows how a correctness proof for a so called self-stabilizing
algorithm can be modi�ed to result in a proof of attraction. Due to the used topologies
attraction will turn out to be equivalent to the original safety- and liveness properties
subsumed in self-stabilization. Thus, this example shows the relevance of attraction
also for computer science.

In [Dij82], Dijkstra de�nes self-stabilizing systems as systems which are guaranteed
to arrive at a legitimate state after a �nite number of steps regardless of their initial
state. Furthermore, once a legitimate state has been reached, the system is required
to remain in such legitimate states forever. Note that this term may not be confused
with the de�nitions of stability we have given here. In our terms self-stabilization
rather is related to attraction than to stability. In terms of [CMP91], self-stabilization
is a persistence property. Similar to attraction, self-stabilization can be useful as a
substitute for an initialization procedure or for error recovery. References on self-
stabilizing systems can e.g. be found in [Ali99].

The system. The system we consider here is taken from [Dij82]. It consists of a
ring of N + 1 processes, N > 0, numbered from 0 to N in clockwise direction. Each
process has a variable with a value in f0; : : : ;Mg, where M � N . A process with
number (i+1) mod (N +1) may read and write its own variable and read the variable
of its left-hand neighbor i. (Note that neighbors in counter clockwise direction are
also called left-hand neighbors.) The legitimate states of the system are those where
there is exactly one token (see below) in the ring.

The system evolves as follows. Process 0 is said to hold a token i� its variable is equal
to that of its left-hand neighbor. When holding the token it can make a step and
increment its variable by 1 moduloM +1. Every other process is said to hold a token
i� its variable is di�erent from that of its left-hand neighbor. In this case it may make
a step and set its variable to the value of his left-hand neighbor's variable. The process
which actually executes its step is selected by a fair nondeterministic scheduler. In the
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Figure 6.11: An example con�guration for N=7 and M=7.

example of Figure 6.11 process numbers are written besides the circles which denote
processes. The values of their variables are written in bold font inside the circles. In
the depicted con�guration processes 3; 5; 6 and 7 are enabled, i.e. they hold a token.

Dijkstra proves that for any initial state, the system eventually reaches a legitimate
state, i.e. a state with only one token in the ring, and then remains within the set
of legitimate states forever [Dij82]. We will follow the more formal proof in [Mer98]
which uses the standard technique for proving liveness properties. This technique
consists of de�ning a valuation function from the state space to a set with a well-
founded order such that the valuation function decreases with every step of the system.
Furthermore, an in�nite number of steps is assumed to exist. As we will see, after a
slight modi�cation this valuation function can be used as a Liapunov function that
proves the attraction of the set of legitimate states. In order to remain within the
continuous-time system model used throughout this chapter we embed the algorithm
in continuous-time by using a modi�ed scheduler which schedules the next process to
proceed at a nondeterministically selected �nite time after the current step. During
the intervals between the selected time instances all processes are idle; the system
state remains constant.

Solution principle. Informally the algorithm works as follows. The new values
created by process 0 spread out from this process in clockwise direction, i.e. there is a
\pre�x" of processes in the ring having the same value as process 0. The values held by
the variables of processes outside the pre�x are potentially \bad", because they might
provide tokens to too many processes. The legitimate states are those, where there
either is only one value outside the pre�x (then the process immediately following the
pre�x in clockwise direction is enabled), or the pre�x is the whole ring. In this case
process 0 is enabled. Values di�erent from the one in the pre�x are eliminated as
time elapses. They vanish at process N , because process 0 creates no new value for
them. If the value in the pre�x also occurs in one of the processes outside the pre�x,
process 0 will create a new value (and hence a new token) when it reads the value from
process N . However, none of the processes ever creates a new value not in the pre�x.
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(In the case of process 0 the pre�x changes so that the statement remains correct.)
As M � N , the value of process 0's variable (by incrementing) eventually reaches a
value that is di�erent from all other values in the ring. This value will spread out and
all other values will vanish until the pre�x is the whole ring. Then we have reached
a legitimate state. As no further tokens are ever introduced, the system remains in
legitimate states forever.

Conventional proof (outline). [Mer98] formalizes this argument with the fol-
lowing de�nitions: The system's state space is the N + 1 fold Cartesian product of
f0; 1; : : : ;Mg, denoted by S = f0; 1; : : : ;MgN+1. Component i + 1 of a tuple in
S denotes the value of the variable of process i. For a system state s 2 S, the
set pre�x (s) � f0; 1; : : : ; Ng contains the numbers of all those processes which, to-
gether with all their neighbors in counter clockwise direction up to process 0, hold
the same value as process 0. In the example con�guration pre�x (s) = f0; 1; 2g and
s = (3; 3; 3; 4; 4; 7; 3; 6). Set others(s) � f0; 1; : : : ;Mg is the set of values held by
processes not in the pre�x. In our example others(s) = f3; 4; 6; 7g.14 At any system
state, minfree(s) 2 f0; 1; : : : ;Mg is the smallest value by which the value of process
0's variable must be incremented (moduloM +1) to get a value that is di�erent from
all values in others. Hence, minfree is the number of times process 0 has to increase
its variable until a value is reached which is not present elsewhere in the ring. In the
example minfree(s) = 2, because 5 is not in others. The bit vector enabs(s) 2 BN

is de�ned such that component i of the vector is true i� process i is enabled. The
status of process 0 is not part of enabs. In the example enabs(s) = (f; f; t; f; t; t; t),
where we write t for true and f for false. Based on these de�nitions [Mer98] uses
valuation function meas(s) = (minfree(s); enabs(s)) from system states to the set
f0; 1; : : : ;Mg � BN with well-founded order vl, where vl denotes the lexicographic
order derived from the usual less-or-equal order on f0; 1; : : : ;Mg and the order vB on
the booleans given by f vB t and x vB x for x 2 B .15

The proof in [Mer98] consists of two basic parts. First, it is shown that once a
legitimate state is reached, the system remains in legitimate states forever. Second,
[Mer98] shows that the system eventually reaches a state where only one process is
enabled. The second part proceeds by proving that steps of processes di�erent from
process 0 decrease enabs without increasing minfree, while steps of process 0 decrease
minfree as long as a further process exists which is enabled. Hence, it is proven that
meas strictly decreases with every step of the system which starts in a non-legitimate
state. As meas is strictly decreasing for steps from these states and as vl is well-
founded, a �nite number of steps must lead to a state where meas no longer strictly
decreases, i.e. to a legitimate state. Note that when a legitimate state is reached,
succeeding steps of the system may increase meas.

14Value 3 is held by process 6 which is not in the pre�x.
15For partially ordered sets (A;vA) and (B;vB), the lexicographic order vlex on A�B is de�ned

by (a; b) vlex (a
0; b0) i� a vA a0 ^ a 6= a0 or a = a0 ^ b vB b0. The lexicographic order is well-founded

if the orders vA and vB are well-founded [Win93].
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Proof based on attraction. In order to prove the same property of self-stabilization
we can employ the specialization of Theorem 6.3 for discrete systems introduced in
Section 6.4.2.1 with a slight variant of valuation function meas as Liapunov function.
The set A, whose attraction we show, consists of all those system states in which
exactly one process is enabled. The topology we use on S is de�ned by OS = f;; A;Sg.
As A is an open set in OS , proving attraction of A shows that A is entered in �nite
time and never left again (see Section 6.3.4.2). This exactly is the goal behind self-
stabilization. The Liapunov function L we use results from a modi�cation ofmeas. We
extend the assessment space by a new bottom element, V = f0; 1; : : : ;Mg�BN [f?g.
The lexicographic order vl is carried over to V by de�ning x vV y i� either x = ?
or x vl y. Therefore, ? is the least element in V and vV is a well-founded order
on V . Now L 2 S ! V is de�ned by L(s) = meas(s) i� more than one process is
enabled in s and L(s) = ? otherwise. By de�nition of L and by the topology on S,
V + = V holds. Furthermore, L is monotonously decreasing along the traces of the
system, because of the respective property of meas as explained above and because of
the new element ?. Adding a bottom element is necessary, because as soon as the �rst
legitimate state is reached meas no longer is non-increasing. By adding the bottom
element we simply identify all legitimate states in the assessment space V of the
system. Third, as long as ? is not reached L is strictly decreasing at the time instants
where a step of the system is scheduled, because meas also is. Finally, L�1(?) = A
holds by de�nition of L. Hence, function L satis�es the properties required in the
specialization of Theorem 6.3 for discrete systems de�ned in Section 6.4.2.1 and A
therefore is an attractive set. Openness of A in the considered topology yields that
attraction implies that A is eventually entered and never left again, regardless of the
initial state. Consequently the system is self-stabilizing.

Note that L also satis�es requirement 3 in Theorem 6.1, because for any v we can
choose A 2 N(A). The other requirements of Theorem 6.1 are satis�ed as well,
because they correspond to those of Theorem 6.3 and L satis�es a specialization of
this theorem. Hence, A is also stable which, together with the openness of A, implies
that it is an invariant set, i.e. it is never left by the system. Furthermore, note that we
could also have used a �ner topology such as the topology fS0; S1; : : : ; SN+1g, where
Si is the set of states with at most i tokens. Hence, S0 = ;, S1 = A and SN+1 = S.
With this topology the proof would be the same, because A is open in it as well.

6.6 Discussion and Further Work

6.6.1 Contribution

Based on an abstract system model which is suitable for hybrid systems and close
to models in computer science, we have formalized important properties of control
systems. The properties have been extracted from the evaluation of nine case studies
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and a number of textbooks on control theory. The properties have been classi�ed
w.r.t. the semantic models relative to which they are de�ned. Rating the properties
according to the number of case studies in which they were considered identi�ed
invariance properties as the most important ones. Furthermore, the rating revealed
that a re�nement notion based on trace inclusion preserves (at least) those properties
which were regarded most frequently in the case studies.

For the properties of stability and attraction the vital role topology plays in their
de�nition was made obvious. Topologies were identi�ed under which stability and
attraction are equivalent to invariance and persistence, respectively. The latter two
are important classes of properties in computer science. Due to their importance in
control theory, proof methods for stability and attraction were examined in greater
detail. This study resulted in an adaptation of the general Liapunov-like proof meth-
ods from [MT75] to our model of hybrid systems. Furthermore, we were able to
formalize parallels between the Liapunov theory and abstraction in computer science.
Namely, circumstances were identi�ed under which Liapunov functions de�ne Galois
connections.

We applied the developed proof methods to two example systems. First, we consid-
ered a small hybrid example system and proved stability and attraction for speci�c
assumptions about the environment and w.r.t. a certain meaningful topology for the
system. Elaborating the example revealed that the proof is made more diÆcult by the
imprecision which is present in the model w.r.t. the values (and times, respectively)
for which discrete transitions are taken. In fact, considerable time had to be spent
to identify circumstances in which stability can be proven and is not violated by the
imprecision in the model. Although this is undesirable, it merely re
ects that stability
properties of an ideal, exact model can not necessarily be transfered to a real model.
Apparently, additional assumptions about the environment and/or a more liberal in-
terpretation of the considered properties are necessary to carry over results from a
precise to an imprecise model.

As a second example, we demonstrated how the developed methods can be applied
to a purely discrete self-stabilizing algorithm, and we compared the resulting proof
with the conventional proof. While the proof is not simpli�ed by our methods, it is
nevertheless interesting to see how the intuition of bad and good system con�gurations
is re
ected in the topology underlying the new proof. This indicates that topology,
which in this respect can be seen as identifying equivalence classes, also has relevance
for practical computer science systems, not only for theoretical results.

Note that the outlined proof methods for stability and attraction are not meant to
replace the variety of existing techniques. Instead, existing techniques can and should
be used to construct optimal stable controllers in single control modes. The techniques
of the kind presented here are only necessary if stability has to be ensured in the
presence of switching between control modes. For instance, in process automation
there are many interesting example systems where stability in only one mode is desired,
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e.g. the wire stretching plant in [PPS00]. However, the proof methods for stability and
attraction developed here could be particularly useful in applications where there are
also disturbances in the discrete state space. An example is the work on robotic hand
regrasping [SHB+99] where controllers are designed which are supposed to compensate
discrete errors resulting from incorrect environment models.

With the continuing integration of software and its physical environment in many
systems we conjecture that properties which have only been of interest for continuous
systems so far, like stability and attraction, will also become important for the software
part of embedded systems. Furthermore, progress in mobile, self-con�guring systems
and in component-based software engineering may also make stability and attraction
important for computer science.

6.6.2 Related Work

Dynamical systems theory. [MT75] studies similar properties from a very general
system theory point of view. In particular, [MT75] also introduces an extension of
the classical Liapunov theory (see e.g. [Lue79]) for their systems. We build on this
result by extending it to nondeterministic systems, which play an important role in
the early development phases of discrete (computer science) systems. [MW95] also
puts the Liapunov theory into a more general framework and regards it as one way of
de�ning abstractions, i.e. qualitatively equivalent comparison systems to the system
under study. This work, however, remains limited to systems operating on metric
spaces, because it assumes metric spaces as the basis for the abstraction mappings it
de�nes.

[Sin96] mentions that there is a correspondence between invariance in control theory
and safety in computer science and between attraction in control theory and live-
ness in computer science without going into further detail. Furthermore, Sintzo�
notes the similarity between Liapunov functions in control theory and Floyd functions
used in computer science to prove termination of programs [Sin92]. With our formal
de�nitions of control systems' properties, we make these correspondences precise by
identifying classes of topologies where the correspondences become apparent.

[SG95] and [Geu96] regard dynamical systems from an abstract, systems theory point
of view, based on predicate transformers ([SG95]) or iterated relations ([Geu96]). The
authors de�ne the concepts of invariance, fullness of invariants (i.e. invariants are
not empty) and atomicity of invariants (invariants are singletons) and (�nite time)
attraction. Furthermore, invariants and attractors are identi�ed as necessary or po-
tential, corresponding to universal or existential path quanti�cation over a system's
computations. [Geu96] mentions the correspondence between necessary invariants and
invariants in linear-time temporal logic in computer science, and between necessary
attractors and termination in computer science. Moreover, the authors elaborate the
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relationship between the notion of chaos from dynamical systems theory and fullness
and atomicity of invariants.

The classi�cation into necessary and potential properties is similar to our partitioning
of properties into universal and existential properties. However, for existential prop-
erties we furthermore distinguish between the system input and the system output (or
state), which is in the spirit of alternating-time temporal logic (ATL) [AHK97]. This is
necessary to classify the control theory properties of controllability and observability.

The proof methods for atomicity of invariants and attraction given in [SG95, Geu96]
are also Liapunov-like criteria. In Section 6.4.2.1, a criterion from [SG95] was used to
derive a specialization of our general proof method for attraction.

In [Geu96], the exposition of the properties is motivated by investigating which kind
of dynamics are created by (discrete) dynamical systems. This classi�cation of dy-
namics serves as the basis for analyzing the e�ect of composition operators on the
dynamics. In contrast, this work focuses towards hybrid systems development. We
are mainly interested in properties actually considered for hybrid systems during their
design. This explains why we based our exposition of properties to a large part on the
evaluation of case studies. Continuous dynamics, which play an important role here,
are not considered in [Geu96] and correspondingly topologies on the input, output or
state space are not essential for the meaning of properties there.

[Aki93] develops the topological foundations of general dynamical systems starting
from iterated relations. Although invariance and attraction (also in the context of
Liapunov theory) are considered there, the theory does not seem to be immediately
useful for the application to hybrid systems. It rather supports a deeper understanding
of dynamical systems in general.

Computer science. The role of topology in computer science, namely for the
classi�cation into safety and liveness properties, is explained in [AS85]. Note that
the speci�c topology used in this context is de�ned on the space of traces, not on the
state space, as in our state-based versions of stability and attraction. [Mis96] discusses
advantages and disadvantages of using domain theory instead of topology as a basis
for computer science.

A number of temporal logics have been de�ned for hybrid systems, most notably the
hybrid temporal logic of [HMP93], the extension of the duration calculus in [CRH93],
hybrid TLA+ [Lam93] and [Fri98a]. The logics in [HMP93] and [CRH93] are interval
temporal logics, and [Fri98a] de�nes a �rst order logic suitable for hybrid systems.
However, these papers do not study speci�c properties of hybrid systems such as
stability and attraction.

Control theory. [Bra94] de�nes a method for proving stability of hybrid systems. It
basically consists of requiring the existence of a Liapunov function for each individual
control mode (or control state, in the sense of HyCharts). Furthermore, whenever the
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control state is changed, the value of the Liapunov function of the entered control
state is required to be less or equal to the value of the Liapunov function of the left
control state. This method is strongly focused on proving the stability of continuous
variables in the presence of mode switching. It does not allow incorporation of a
topology on the control state space. All control states are regarded as equivalent.
Hence, it mainly concentrates on the continuous fragment of the dynamics of hybrid
systems, discrete jumps in the (otherwise continuous) variables are not considered
in the underlying system model and the proposed proof method.16 Thus, it can be
regarded as specialization of this work, which de�nitely is highly relevant for practice.

6.6.3 Further Work

A �rst topic of further work is that specializations of the general proof methods de-
veloped in this chapter are necessary in order to make them more useful in practice.
Such specializations should be driven by de�cits encountered and experience gained
in the practical development of hybrid systems. Apart from that, it is also necessary
to validate within case studies whether existing proof principles from computer sci-
ence which have been adapted to hybrid systems (e.g. [Pnu94, Lam93]) are suitable
in applications.

A second highly relevant topic of further work is the search for methods that allow
proving properties of complex hybrid systems by analyzing the behavior of their com-
ponents. [Geu96] analyzes whether invariance properties and attraction of (sub)sys-
tems are preserved under composition and iteration of the relations, which are used
to de�ne discrete systems. A result is that hardly any interesting properties are main-
tained in general under composition operators yielding complex dynamics, such as
union of relations and connected products, i.e. products of relations with a kind of
interaction. Our de�nition of systems imposes stronger constraints on them and our
disjoint sum/additive visual attachment used for the semantics de�nition of HySCharts
(Sections 3.3.3 and 3.3.4) is a special case of union of relations in [Geu96]. Therefore,
there is hope that there is a greater potential for compositional reasoning at least
under disjoint sum. In fact, the proof method for stability of switched and hybrid
systems presented in [Bra94] can be interpreted as a case in which circumstances are
identi�ed where the stability of individual systems is preserved under the disjoint sum.

As far as compositional reasoning for stability proofs under parallel composition/multi-
plicative visual attachment and feedback (Section 3.3.2) of system components is con-
cerned, the situation is less hopeful. This judgment is motivated by the observation
that stability inherently is a global property which assumes that a (sub)system is
considered in parallel with its environment, not in isolation.

16However, it seems they can be integrated easily.
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Chapter 7

Summary and Conclusion

This chapter gives a summary of the thesis and draws some general conclusions. Di-
rections for further work are indicated.

7.1 Summary

There are two basic contributions in the thesis. First, it proposes elements of an
infrastructure for the systematic development of hybrid systems. Second, it provides
deeper insight into important properties of hybrid systems by formalizing them and
relating them to computer science.

The thesis has pointed out that integrated notations and methods for hybrid sys-
tems, which consider both the discrete as well as the continuous dynamics of such
systems, are highly desirable in order to reduce design risks and gain 
exibility. A
development process for hybrid systems has been suggested which tries to achieve
this aim by postponing the implementation-related partitioning of a hybrid system
into discrete-time and continuous-time subsystems to the later development phases.
The idea is to validate important system properties already in early phases and to
transfer these properties to the �ne-grained models occurring in later phases. For
the feasibility of this approach, suitable notations and validation methods are needed.
Furthermore, model transformations are required which guarantee that previously es-
tablished properties remain valid. The thesis contributes to these prerequisites by
de�ning appropriate notations and by introducing model transformations for them.

The introduced notations are formal and visual. They allow the unambiguous speci�-
cation of the data 
ow in a hybrid system and the control 
ow in its components. The
notations are close to standard techniques used in software engineering, such as UML
and Statecharts, and they allow the integration of (simple) block diagrams from con-
trol theory. This stresses their adequacy for use in practice. Their semantic foundation
is based on an abstract machine model for hybrid computation and on an algebraic
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theory of hierarchic graphs. The computation model helps to clearly separate the
discrete and continuous dynamics in hybrid systems on the level of semantics. As a
side e�ect of the algebraic theory, the axioms of the algebra can be used to manipulate
the visual notations.

For the transformation of systems, known re�nement techniques for discrete systems,
which preserve vital classes of properties, have been examined w.r.t. their validity
for the introduced hybrid notations. The result is that some techniques can rather
directly be reduced to axioms of the algebra which is the semantic foundation for the
notations.

A central result of the thesis is the identi�cation of conditions under which a spec-
i�cation in discrete time is a (formal) re�nement of a speci�cation in an underlying
continuous time model. Although this is stated for the notations used in this thesis,
the general principle can also be carried over to other hybrid automata-like descrip-
tion techniques for hybrid systems. Methods have been presented which enable the
systematic construction of a discrete-time speci�cation from a continuous-time speci-
�cation such that the identi�ed conditions for re�nement hold. These methods involve
the integration of techniques from numerical mathematics and control theory in order
to obtain a discrete-time version of the analog dynamics. An important point for
the re�nement is that it is (usually) only possible if the continuous-time speci�cation
allows some uncertainty; it may not be arbitrarily precise.

The chosen notion of re�nement is motivated by a detailed study of important prop-
erties of hybrid systems. The thesis has formally de�ned such properties and has
classi�ed them. Furthermore, for the important concepts of stability and attraction,
proof methods have been examined. Here, the thesis puts emphasis on identifying par-
allels between properties and techniques from control theory and those from computer
science. In particular, parallels between stability and invariance, and attraction and
persistence have been formalized. Additionally the thesis has been able to substanti-
ate that Liapunov functions, which are a means for proving stability in control theory,
in speci�c cases correspond to Galois connections, which are used for abstraction in
computer science. With this detailed examination of properties of hybrid systems, the
thesis fosters a better understanding of these systems by computer scientists.

Summary for the running example. All fundamental concepts of the thesis have
been demonstrated along the example system electronic height control (EHC). In ret-
rospect, the proof methods for the properties stability and attraction were applied
to a highly abstract model of the system. This model also shows that the kind of
uncertainties which are needed to enable its later discrete-time implementation do not
lead to too much nondeterministic behavior, but instead result in rational behavior,
which has the desired properties. A more concrete version of the EHC has been used
as example for the discretization. This version results from splitting the abstract sys-
tem into several subcomponents. The split into subcomponents was not considered
explicitly in the thesis, but it can have e�ects on stability and attraction, because it
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introduces a delay in the communication between controlling device and controlled
device. The discretization of a part of the more concrete model, however, is known
to maintain stability and attraction. Thus, the model resulting from the discretiza-
tion is guaranteed to be stable and attractive, if the split of the abstract model into
subcomponents also maintained these properties.

7.2 Conclusion

The simple transferability of some known re�nement techniques to HyCharts, i.e. to
the two kinds of notations introduced in this thesis, demonstrates the utility of an
algebraic framework for systems development. Simple equivalence transformations
directly result from the axioms of the algebra. Furthermore, the algebraic framework
allows us to de�ne a denotational semantics for key concepts of Statecharts, which
are included in HyCharts, in a simple manner. Nevertheless, the graph algebra-based
denotational semantics of one of the two notations has also been complemented by an
equivalent operational semantics in the thesis (cf. Appendix A.1.2). This operational
semantics, to a large extent, also builds upon the graph algebra. It was motivated by
some proofs which were easier to conduct with the operational semantics as a basis.
Possibly the reason is that thinking in terms of operational steps of a system is often
more natural than thinking in terms of �xed points.

As far as the time-discretization methods for component speci�cations with an un-
derlying continuous time model are concerned, it is important to note that various
knowledge of the dynamics of a component's input is required to ensure that the dis-
cretization is a (rational) re�nement of the original speci�cation. The minimum time
between events, Lipschitz constants and possible errors associated with continuous
periods of evolution are typically needed. Provided such data is given by the designer,
automation of some steps in the construction of the discrete-time component is pos-
sible. Although the needed knowledge hampers the immediate application of these
methods in practice, the methods make conditions explicit which guarantee that the
discretized system behaves \like" the original one. Thus, even if a designer only in-
formally considers the conditions which are required to hold for re�nement and only
discharges them by means of his or her engineering experience, the situation is greatly
improved. Without the explicit conditions, it would remain uncertain which factors
have to be observed when a discrete-time implementation for a hybrid component is
designed.

A further characteristic of the introduced discretization methods is that a speci�cation
with uncertainties in regard to the exact value of variables and in regard to the exact
timing is required as a starting point. For a speci�cation which assumes ideal compu-
tation, i.e. error-free values and absence of any delays, re�nement to a discrete-time
implementation is in general impossible. The larger a speci�cation gets, the higher the
danger of a propagation of such uncertainties or errors is. From the point of view of
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high accuracy, it therefore is desirable to employ discretization before a speci�cation
is split into very �ne-grained subcomponents. In practice, a trade-o� is necessary here
because too early discretization, on the other hand, is contrary to the aim of exten-
sively validating an abstract model before decisions are made which may be diÆcult
to alter later on, such as the discretization.

The study of properties of hybrid systems contained in this thesis formally relates
properties of control systems and some of their proof methods to known classes of
properties in computer science. With the continuing integration of software and its
physical environment in many systems, we conjecture that such properties as stability
and attraction will also become important to the software part of embedded systems.
This stresses the importance of a coherent view on these properties not only for hybrid
systems.

As a concluding remark, a study of engineering disciplines such as control theory is in
general highly desirable for the aim of making software design more like other kinds of
engineering, where the systematic usage of mathematical models at appropriate points
in the development process is a matter of course.

7.3 Further Work

With respect to the methodology for hybrid systems development, a closer integration
of sequence chart notations should be explored further. These notations can help to
narrow the gap to informal, textual requirements. Systems development could greatly
bene�t from this.

A primary starting point for further work is to examine when properties of an ideal
model can be transformed to relaxed properties which hold for a realistic model with
uncertainties. However, as pointed out in Section 5.1, this appears to be very diÆcult
even for simple properties.

Tool support is mandatory for the application of the developed discretization tech-
niques in practice. As outlined in Section 5.7, automation of some steps in these
techniques is possible. Primary candidate tools for implementing this are MaSiEd
[SPP01] and also Charon [AGH+00], because the notations used there closely corre-
spond to HyCharts.

Besides that, it is advisable to explore specializations of the techniques developed in
this thesis for speci�c subclasses of hybrid systems. For instance, �nding discrete-time
re�nements of hybrid components is simpli�ed if components only communicate via
events. Similarly, the general proof methods provided in Section 6.4 can also be tuned
for speci�c classes of systems.

Apart from these topics immediately related to the thesis, further work on validation
and veri�cation techniques for hybrid systems is also necessary. Particularly relevant
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themes in this �eld are (hybrid) model checkers with increased scalability and test-
ing techniques which try to exploit properties of the continuous dynamics in hybrid
systems.
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Appendix A

Proofs

A.1 Proofs about HyCharts and DiCharts

A.1.1 Totality of HySCharts Revisited

In Section 3.2.4 totality of relation Cmp, which de�nes the semantics of the hybrid
computation model and therefore of HySCharts, was considered. Totality of Cmp
means that for any start state s 2 n � S and input � 2 IRp+, Cmp(s)(�) is nonempty.
The proof given in Section 3.2.4 proceeds inductively. It constructs an in�nite stream
� as the limit of a sequence of streams which satisfy the properties required by Cmp
on a sequence of increasing �nite intervals. The upper bound of these intervals is
required to diverge such that they cover whole R+ . For this proof principle to be
valid, we must show that Cmp has a certain closure property which ensures that the
limit � of the constructed sequence of streams indeed is in Cmp.

Before we can do so, it is important to note that the proof of totality implicitly uses a
version of Cmp de�ned for �nite intervals when it argues about �nite streams satisfying
the properties required by Cmp. We write Cmpt to denote this �nite time semantics
of a hybrid machine on time interval [0; t), t 2 R+ . Similarly, we write St t to denote
its �nite time state-based semantics. The type of Cmpt is n � S ! (I [0;t) ! P(O[0;t)))
and for St t it is n � S ! (I [0;t) ! P((n � S)[0;t))), where we write M [0;t) to denote
the piecewise smooth, piecewise Lipschitz continuous functions from [0; t) toM .1 The
de�nitions of Cmpt and St t are derived from the relational expressions for Cmp and
St . For Cmp this relational expression is given in Example 3.4 of Section 3.3.2. For
St the expression is similar, but with Out y replaced by the identity:2

St(s) = (( Æ̂I2�In�S) ;� (II�Com
y) ;� Ana ;� Æ̂

n�S
2 ;� (In�S�Lims)) "n�S�

1Lipschitz continuity and smoothness are de�ned as in Section 3.2.3.
2St therefore allows us to refer to a component's internal state.
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We de�ne St t (and similarly Cmpt) by interpreting the multiplicative graph operators
in this expression w.r.t. time model [0; t). This requires to replace the analog part Ana
in the expression by a �nite time version Anat of it. Anat is de�ned by restricting
each activity Act occurring in Ana to [0; t), i.e. Actj[0;t), adapting the de�nition of
discontinuity adaption da(:) (Section 3.2.3) to these �nite activities by regarding �nite
streams and interpreting the time-extended additive graph operators w.r.t. time model
[0; t). Moreover, when interpreting the above expression w.r.t. time model [0; t) the
time extension of the discrete part Com and the output projection Out , in the case
of Cmpt, also is only performed w.r.t. that time model. Note that the multiplicative
and time-extended additive graph operators have already been de�ned for various
kinds of time models in Sections 3.3.2 and 3.3.4. A formula for St t which results from
expanding the de�nitions of the graph operators occurs in the proof of Theorem A.2.

We now need some preliminary de�nitions before we can proceed to proving the closure
property required from Cmp and St , respectively:

De�nition A.1 (Time-divergent pre�x monotonous sequence.) Let (ti), ti 2
R+ , be an in�nite increasing sequence of time points with limit 1 and let (�i) be an
in�nite sequence of piecewise smooth, piecewise Lipschitz continuous streams such that
�i 2 X [0;ti) and each �i is a pre�x of �i+1, formally �i = �i+1j[0;ti) for ti < 1. Then
(�i) is called a time-divergent pre�x monotonous sequence.

Time-divergent pre�x monotonous sequences are similar to pre�x monotonous se-
quences as de�ned for discrete streams, e.g., in [Kah74, Win93], but their de�nition
only includes sequences of streams for which time diverges. With the natural numbers
as time model, the limit of an in�nite sequence of strictly pre�x monotonous streams
automatically is in�nite, because every stream in the sequence is at least \one element
longer" than its predecessor, i.e. it is de�ned for at least one more time unit. With
the real numbers as time model, however, we can have an in�nite sequence of strictly
pre�x monotonous streams for which time does not diverge. An example is the se-

quence (�i), where each �i is constantly 0 and de�ned on [0; ti), with ti = �i
k=0

1
2

k
. For

i ! 1, ti converges to 2. In the context of semantics Cmp, we are only interested
in in�nite streams. This motivates to explicitly restrict our attention to sequences for
which time diverges.

The set of �nite and in�nite dense streams
S

t>0X
[0;t) [ XRp+ is a complete metric

space w.r.t. the metric ds in De�nition B.20 (Appendix B.5). Thus, we can use metric
space theory to argue about limits of sequences.

De�nition A.2 (Divergence closure.) Let Mt � X [0;t) for all t > 0 and M �
XRp+ be a family of sets of dense streams.

S
t>0Mt [M is called divergence closed i�

the limit � of any time-divergent pre�x monotonous sequence (�i) with �i 2 Mti for
all i and divergent time sequence (ti) is in M .
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Note that the limit � is guaranteed to exist inXRp+, because (�i) is a Cauchy sequence
w.r.t. the complete metric space of �nite and in�nite dense streams (

S
t>0X

[0;t) [
XRp+; ds), and (ti) diverges (see Appendix B.5). Furthermore, � is uniquely deter-
mined by sequence (�i), because we are in a metric space (Appendix B.4). Due to
the metric used (De�nition B.20), every element �i of the sequence is a pre�x of �,
i.e. �i = �j[0;ti). This will be used in the following proofs in this section. Divergence
closure of

S
t>0Mt [M is similar to topological closure of

S
t>0Mt [ M w.r.t. the

metric space of �nite and in�nite dense streams, but weaker (see Theorem B.10). In
contrast to topological closure of

S
t>0Mt [M divergence closure only consideres spe-

ci�c converging sequences. It focuses on transferring results from the �nite time Mt

to the in�nite time M , which is what we are interest in here. Hence, sequences and
limits of sequences within M are not considered.

Divergence closure is introduced, because it allows us to conclude that the limit of a
(time-divergent pre�x monotonous) sequence, as constructed in the proof of totality
of Cmp (Section 3.2.4), indeed is in Cmp. Before we come to the divergence closure
of HySChart semantics we need a lemma concerning activities.

Lemma A.1 Let Act be the semantics of a primitive activity or a �nite sequential
composition of activities. The set

S
t>0Actj[0;t) [ Act is divergence closed.

Proof. Let (�i) be a time-divergent pre�x monotonous sequence with �ij[0;ti) 2
Actj[0;ti) and limit �. The proof proceeds by induction over the structure of Act. Act
may result from the semantics of a di�erential constraint, a stability constraint or the
conjunction of such constraints (Sections 3.5.2 and 5.4.3.3). Furthermore, as assumed
in this lemma, it may consist of the sequential composition of such semantics.3

In the �rst case Act is the semantics of a di�erential equation or di�erential constraint
_~x#f(~x;~i), # 2 f�;�;=; >;<; 6=g, as de�ned in Section 3.5.2. By the semantics
de�nition for such constraints, if � in not in Act, there must be a point in time t 2 R+

for which the constraint is false. As the elements of (�i) are pre�xes of � (because
of the underlying metric space), there is a pre�x �i of � with t 2 [0; ti). Thus, the
constraint is already false for �i which contradicts the assumption. In the case of Act
being the semantics of a stability constraint as de�ned in Section 5.4.3 the argument
is similar, as such stability constaints also are de�ned via universal quanti�cation over
time.

For Act given as the semantics of a (�nite) conjunction of constraints [[a1 ^ a2]] note
that the semantics of conjunction is de�ned as the intersection of the semantics of
the individual activities. By the induction hypothesis these semantics [[a1]][0;t); [[a1]]
and [[a2]][0;t); [[a2]] are divergence closed. Hence, for a sequence (�i) with �ij[0;ti) 2
[[a1 ^ a2]]j[0;ti) we have � 2 [[aj]], j = 1; 2, which implies � 2 [[a1]] \ [[a2]]. This is

3Note that di�erential and stability constraints, and conjunction are syntactic entities, while
sequential composition is de�ned on the semantics of activities. With the term activity we usually
refer to its semantics.
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similar to the preservation of closure in Topology by the �nite intersection of closed
sets.

Now consider the �nite sequential composition of activities. As explained in Sec-
tion 3.5.2, for any activity (�; ';  ) 2 Act implies ' =  . With some set arithmetic,
this provides that the sequential composition of activities is equal to their intersection.
Thus, this case is similar to conjunction above. �

Theorem A.2 The set
S

t>0 St t(s)(�j[0;t)) [ St(s)(�) is divergence closed for any ini-
tial state s and any input stream �. As a shorthand, we will also say that St t; St is
divergence closed to denote this property in the sequel.

Proof. Let (�i) be a time-divergent pre�x monotonous sequence with limit � and
�i 2 St ti(s)(�j[0;ti)) for a divergent time sequence (ti) and an initial state s.

First, a closer look at St t is necessary. Unfolding the de�nitions of the graph operators
results in:

St t(s) = f(�j[0;t)); �) 2 I
[0;t) � (n � S)[0;t) j 9� 2 (n � S)[0;t):

� 2 Comy(�j[0;t));Lims(�)) ^ (1)
� 2 Anat(�j[0;t)); �)g (2)

where for convenience we use a relational notation for St t. The formula for the in�nite
time version St is similar, but without the time restrictions (see Section 3.2.4). Thus,
for each �i with �i 2 St ti(s)(�j[0;ti)) there is a �i for which (1) and (2) hold. As explained
in Section 3.5.2,  2 Ana(�; ') implies  = '. By expanding the de�nition of the
analog part's �nite time semantics Anat it is easy to prove that the same holds for
Anat. Thus, the �i uniquely determine �nite streams �i by �i = �i for which (1) and
(2) hold. Obviously, (�i) converges to � = � .

Now we prove � 2 St(s)(�) by establishing that (the in�nite time versions of) conjunct
(1) and (2) in the formula for St hold for �; � and � . First, we regard conjunct (1).
Unfolding the time extension y and Lims in (1) results in a formula which universally
quanti�es over time t and relates �; � and � at (and just before) any point in time t.
Hence, if this subformula is falsi�ed, it is already falsi�ed for �nite t which in turn
implies �i 62 Comy(�j[0;ti);Lims(�i)) for some i. Thus, �i 62 St ti(s)(�j[0;ti)) which cannot
be true because of the assumptions.

In the following we establish that the second conjunct (2) in the formula of St is true for
�; � and � . According to Section 3.5.2 Ana can be written as a time-extended disjoint
sum of adapted, sequentially composed activities, i.e. Ana = +n

j=1 da(Actj) where
each Actj refers to the sequentially composed activities associated with control state
j.4 Unfolding the de�nitions of + and da(:) yields that (�; 
) 2 Ana(�; (�; �)) holds
for input stream �, data-state streams � and 
, and control-state stream � i� on each
interval where � and (�; �) are smooth, ((�; �); 
) restricted to that interval conforms

4Remember that discontinuity adaption distributes over sequential composition (Section 3.5.2).
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to the currently active sequential composition of activities. More formally the following
must hold: 8Æ;m: �jÆ = myjÆ ^ (�; �)jÆ 2 (IRs+ � SRs+)jÆ ) ((�; �); 
)jÆ 2 ActmjÆ
where Æ is a subinterval of R+ . Anat is similar, but Æ is a subinterval of [0; t) in that
case.

Let us write c� , d� and c�, d� for the control-state stream and the data-state stream of
� and �, respectively, i.e. � = (c�; d�) and � = (c�; d�). Furthermore, we use a similar
notation for the control-state streams and the data-state streams of the elements of
the sequences (�i) and (�i) in the following. If (2) was false for � and �, there must
be an interval Æ on which � and � are smooth, but d� and d� do not conform to
the activity associated with c� on Æ. If Æ is a �nite interval, it is contained in [0; ti)
for some i and (2) is already violated for �i and St ti which violates the assumptions.
Thus, Æ must be in�nite and not covered by [0; ti) for any i. By de�nition of sequences
(�i) and (�i), �i 2 Anati(�j[0;ti); �i) holds for all i. As � and � are smooth on Æ, they
are also smooth on Æ \ [0; ti) = [t0; ti) for some t

0 and ((�; d�i); d�i)j[t0;ti) 2 Actkj[t0;ti)
holds for all i with ti > t0 and k = c�i(t

0). Using that activities are independent from
absolute timing we can shift �; � and � to the left by t0. Then divergence closure of
activities (Lemma A.1) provides that the limit of the shifted streams is in the shifted
activity. Applying time independence again to shift this back to the right yields the
desired result, ((�; d�); d�)j[t0;1) 2 Actkj[t0;1).

Hence, � 2 Comy(�;Lims(�)) and � 2 Ana(�; �) holds, i.e. � 2 St(s)(�) as required for
divergence closure of St t; St . �

The corresponding property of Cmp, i.e. divergence closure of
S

t>0 Cmpt(s)(�j[0;t)) [
Cmp(s)(�) for any initial state s and any input stream �, is a consequence of divergence
closure of St t; St , because Cmp results from St by applying Out y which is de�ned in
a pointwise manner (Section 3.2.4).

Regarding the proof of totality of Cmp in Section 3.2.4 again, we see that the proof
amounts to constructing a time-divergent pre�x monotonous sequence (�i) with di-
vergent time sequence (ti) and �i 2 St ti . The above theorem ensures that limit � is
indeed in St and Out y(�) therefore is in Cmp.

Divergence closure of DiSCharts (Section 5.3) could be proved in a similar way. As
we do not need divergence closure of DiSCharts in the thesis, we do not elaborate on
this.

A.1.2 Inductive Reasoning for HySCharts

As already indicated in Section 3.2.4 the de�nition of the analog part, which cuts
streams into segments on which Com is idle, the input is smooth and the state stream
conforms to an activity, can be regarded as implicitly de�ning an operational semantics
for HySCharts. Namely, we can think of � 2 St(s)(�) as consisting of a �nite of in�nite
sequence of smooth segments, which conform to an activity, such that Com idles on
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each segment and the starting point of each segment is an output of Com for the
present input and the last point of the previous segment.5 If � is a �nite sequence
of segments the last segment is required to be in�nitely long. This corresponds to
cases in which the discrete part is only needed for a �nite time period after which the
behavior remains smooth. In this section we use the idea of inductively pasting such
smooth segments to develop an operational way to construct the output streams in
the state-based semantics St . This gives us an inductive proof principle for properties
of HySCharts.

Below, we �rst show that every pre�x of a stream which is an output of St also is
an output of the �nite time version St t, which was introduced in Appendix A.1.1
(Corollary A.4 below). Then, we establish that every output of St t can be constructed
operationally by pasting smooth segments in the way sketched above (Theorem A.5
below). The pre�xes of an output stream � of St can be used to de�ne a time-
divergent pre�x monotonous sequence of streams �i which are outputs of St t and
which converge to �. As every one of these streams can be constructed operationally
due to the previous statement, this yields that every output of St is the limit of an
operationally constructed sequence of streams. In essence, this means that there is
no output of St which is not covered by the operational construction of sequences
of segments. This yields an inductive proof principle for properties of HySCharts
(Theorem A.6 below).6 These results can be transfered to the black box semantics
Cmp of HySCharts by output projection.

Pre�x closure. We start with a theorem relating the semantics of hierarchic graphs
in di�erent time models.

Theorem A.3 Let T1 and T2 be two time models of the kind used for multiplicative
hierarchic graphs (see Section 3.3.2.1) such that T1 ends before T2 and both consist
either of natural or of real numbers. Let R be the relational expression (i.e. the textual
representation) for a multiplicative hierarchic graph with primitive nodes n1; : : : ; nk
(Section 3.3.2), or let it be the expression for a time extended additive hierarchic
graph, which only consists of the operators and connectors de�ned in Section 3.3.4,
discontinuity adaption da(:) and the primitive nodes n1; : : : ; nk. Furthermore, let
ri � AT2

i � BT2
i , i 2 f1; : : : ; kg be relations interpreting the nodes ni. Interpreting

the operators and connectors in R w.r.t. time model T2 and restricting the resulting
relation to the shorter time model T1 yields a subset of the relation resulting from
restricting the ri to T1 �rst and then interpreting R w.r.t. time model T1. Formally:
(RT2(r1; : : : ; rk))jT1 � RT1(r1jT1; : : : ; rkjT1), where we write RTi for the semantics of
expression R interpreted w.r.t. time model Ti. RTi depends on the interpretations
r1; : : : ; rk of the primitive nodes n1; : : : ; nk.

5As before, we write St to denote the state-based denotational semantics of the hybrid computation
model and therefore of HySCharts. Cmp refers to the black box semantics.

6Note that Theorem A.2 ensures that we do not regard super
uous streams.
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Proof. The proof is by structural induction and follows immediately from the de�ni-
tions of the operators and connectors. As example, we regard the case of multiplicative
feedback R "C� for relational expression R and relations ri � AT2

i �B
T2
i , i 2 f1; : : : ; kg,

which interpret the primitive nodes in the graph corresponding to R. Here, R has
type (AT � CT ) � (BT � CT ) for some sets A, B and C and time model T . By
the induction hypothesis (RT2(r1; : : : ; rk))jT1 � RT1(r1jT1; : : : ; rkjT1) holds. For any
a 2 AT2, b 2 BT2 , and c 2 CT2 , the hypothesis and (a; c) 2 (RT2(r1; : : : ; rk))(b; c) ob-
viously implies that cjT1 also is a �xed point w.r.t. the shorter time model: (a; c)jT1 2
(RT1(r1jT1; : : : ; rkjT1))(b; c)jT1 . Due to the de�nition of multiplicative feedback this
yields (R0

T2
(r1; : : : ; rk))jT1 � R0

T1
(r1jT1 ; : : : ; rkjT1), where we write R

0
Ti
for the interpre-

tation of relational expression R "C� w.r.t. time model Ti. �

As a direct result of the theorem we get the following corollary by using the relational
expression for St given in Appendix A.1.1.

Corollary A.4 Let s 2 n � S and � 2 IRp+ . If � 2 St(s)(�) then for all t 2 R+

�j[0;t) 2 St t(s)(�j[0;t)) holds.

Note that this corollary is similar to pre�x closure of set
S

t>0 St t(s)(�j[0;t)) [ St(s)(�)
as de�ned e.g. in [Wec92].

Operational construction. Now transition relations are de�ned which allow us to
construct the (�nite) streams produced by St t. We de�ne the discrete step relation
Æ!i by s Æ!is

0 i� s0 2 Com(i; s).

The analog step relation Æ;�
� is de�ned by s Æ;�

� s
0 i�

� � 2 [t1; t2)! I for some t1 < t2 in R+ ,

� � 2 [t1; t2)! n � S,

� � and � are smooth and Lipschitz continuous,

� � initially is s, �(t1) = s,

� the \last" value of � is s0, limx%t2 �(x) = s0,

� and � satis�es Ana such that Com is idle, formally (�; �; �) 2 Anaj[t1;t2) and for
all t 2 [t1; t2), �(t) 2 Com(�(t); �(t)).7

Thus, during a time interval covered by an analog step the input is smooth and
Lipschitz continuous and Com is idle.

The discrete step and analog step relations are very similar to the time- and transition
step relations which de�ne the operational semantics of hybrid automata [ACH+95].
The sequential composition of the discrete step relation with the analog step relation
is called the hybrid step relation. We can regard St t as inductively built by the �nite
iteration of hybrid steps:

7Note that �(t) = limx%t �(x) for t 2 (t1; t2) since � is continuous.
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Theorem A.5 The set of streams in St t(s)(�j[0;t)) for any t > 0 and the set of streams
generated by the �nite iteration of hybrid steps starting from s 2 n�S for input � 2 IRp+

are identical.

Proof. Let s 2 n � S and � 2 IRp+ . First, note that for �j[0;t) and any stream � 2
St t(s)(�j[0;t)) the interval [0; t) can be partitioned into �nitely many subintervals such
that the segments of � and � which result from restricting them to such a subinterval
both are smooth and Lipschitz continuous on the respective subinterval. This holds,
because IRp+ and St t only contains piecewise smooth, piecewise Lipschitz continuous
trajectories and interval [0; t) is �nite. A stream generated by the �nite iteration of
hybrid steps naturally consists of �nitely many such smooth, Lipschitz continuous
segments. With induction we prove that a stream consisting of �nitely many smooth,
Lipschitz continuous segments is in St t i� it is generated by the �nite iteration of
hybrid steps. Let [0; t1) be the �rst interval where � and � are smooth and Lipschitz
continuous. The �rst segment � 2 (n �S)[0;t1) of � is in St t1(s)(�j[0;t1)) i� it results from
a hybrid step from s, i.e. s Æ!�(0); Æ;

�
�0 limx%t1 �(x) where ; is the sequential composition

of relations and �0 = �j[0;t1). This is easy to show if we regard the de�ning formula for
St t where the graph operators are unfolded, as in the proof of Theorem A.2. Assume
that for the �rst i intervals where � and � are both smooth and Lipschitz continuous,
�j[0;ti) is in St ti(s)(�j[0;ti)) and it is also generated by the i-fold iteration of hybrid steps
(induction hypothesis). Then, for the (i+1)st interval where � and � are smooth and
Lipschitz continuous, �j[0;ti+1) is in St ti+1(s)(�j[0;ti+1)) i� �j[ti;ti+1) results from a hybrid
step from limx%ti �(x), i.e. limx%ti �(x) Æ!�(ti); Æ;

�
�0 limx%ti+1 �(x) for � = �j[ti;ti+1) and

�0 = �j[ti;ti+1). Again this immediately follows from unfolding the de�nitions of the
graph operators in St t. �

Trace induction. Based on these results we can de�ne induction over the streams
(or traces) of a HySChart as a proof principle for properties of a HySChart. We
assume no speci�c notation for properties, but assume that a property P is given as a
set of hybrid input and state streams, P � IRp+ � (n � S)Rp+ . For instance, some kind
of temporal logic or HySCs [GKS00] can be used to de�ne such a set.

Theorem A.6 (Trace induction.) Let St(s) be the semantics of a HySChart with
initial state s and let P be a property such that

S
t>0 P j[0;t) [ P is divergence closed.

To establish that P holds for St(s), i.e. St(s) � P (where St(s) is regarded as a set),
it suÆces to prove the following for all input streams � 2 IRp+:

1. For all � 2 S [0;Æ) resulting from a single hybrid step from s for input �j[0;Æ) show
that (�j[0;Æ); �) 2 P j[0;Æ) holds.

2. Assuming St t(s) � P j[0;t) prove that for all extensions �
0 2 S [0;t

0), t0 > t, of any
� 2 St t(s)(�j[0;t)) by a hybrid step for input �j[t;t0), (�j[0;t0); �0) 2 P j[0;t0) holds. As
a stronger obligation, the claim may alternatively be proven for all hybrid step
extensions �0 of any (�j[0;t); �) 2 P j[0;t) for input �j[t;t0).
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Proof. Due to Theorem A.5 the hybrid step relation may be used to generate all
elements in St t(s)(�j[0;t)) for any input �. Thus, St t(s) � P j[0;t) for all t > 0 follows if
claims 1 and 2 are established. (Note that to result in a legal component St(s) must
produce in�nite output upon any input.)

Now we prove St(s) � P . Any � 2 St(s)(�) can be used to de�ne a time-divergent
pre�x monotonous sequence (�i) for divergent time sequence (ti) such that �ij[0;ti) 2
St ti(s)(�j[0;ti)) (Corollary A.4). Similarly, a further time-divergent pre�x monotonous
sequence (�i) results from setting �i = �j[0;ti). By the argument above (�j[0;ti); �ij[0;ti)) is
also in P j[0;ti). Together with divergence closure of

S
t>0 P j[0;t) [ P this yields (�; �) 2

P . �

Divergence closure of
S

t>0 P j[0;t) [ P corresponds to admissibility of property P in
the context of usual �xed point induction. Informally, admissibility requires that if a
property holds for each element of a monotonous sequence, it also holds for the limit
of the sequence [Pau87, Win93]. Liveness properties, for instance, are not admissible
(and also not divergence closed) w.r.t. pre�x monotonous sequences. As St t; St is
divergence closed (Theorem A.2), St(s) and, hence HySCharts, do not formalize live-
ness properties. This is usual for conventional automata models without any fairness
assumptions. (Nevertheless a HySChart can satisfy a liveness property. For instance,
the liveness property of eventually producing a certain output y after receiving input
x is satis�ed by a HySChart which always produces y within two time units after
receiving x.)

If P is de�ned by time extension, i.e. P = py for p � I � S and y denotes time
extension (see Section 3.2.4), trace induction corresponds to computational induction
as de�ned in [Pnu94]. In such a case p corresponds to the so called state formulas in
temporal logic [MP92] and divergence closure automatically holds (see below).

Lemma A.7 For p � I � S divergence closure of
S

t>0 (p
y)j[0;t) [ p

y holds.

Proof. Let � be the limit of a time divergent pre�x monotonous sequence (�i)
with �i 2 pyj[0;ti) for divergent time sequence (ti). Assume � is not in py. Then, by
de�nition, there must be a time instant t with �(t) 62 p. Due to the underlying metric
space, every �i is a pre�x of � (cf. Appendix A.1.1). Therefore, this implies that one
of the �i must already have failed to satisfy p which contradicts the assumption. �

We use trace induction in the example of Section 6.5.1, where the proof principle can
even be simpli�ed further as all considered discrete steps do not a�ect the quantities
considered there.

In the sense of Section 6.3.5 we only regarded universal properties in Theorem A.6,
i.e. every possible behavior in St must satisfy the property. For divergence closed
properties demanding the existence of certain streams in St , induction based on the
hybrid step relation may also be used, because St t; St is divergence closed.
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A.1.3 Time Guardedness of HySCharts

In this section we establish that a component whose behavior is de�ned by a HySChart
is time guarded. To do so we �rst prove that the �nite time semantics of HySCharts
coincides with the time restriction of the in�nite time semantics. Again we use the
state based semantics St and its �nite time version St t, t > 0 (Section A.1.1).

Theorem A.8 For any start state s and input � 2 IRp+, the �nite time semantics of a
HySChart coincides with the time restriction of its in�nite time semantics. Formally,
St t(s)(�j[0;t)) = (St(s)(�))j[0;t) for all t > 0.

Proof. Direction \�" is a consequence of Corollary A.4.

The other direction relies on totality of HySCharts and uses that the future behavior
of a HySChart at any point in time is entirely determined by its state at that time
and the (future) input. In other words, a HySChart has no further knowledge about
its past besides the information encoded in its state. This is utilized by employing the
hybrid step semantics of HySCharts. The proof principle is as follows: We consider
the �nal state of a state stream ' in the �nite time semantics St t. Then, a sequence
of extensions of ' is constructed by using this state as an initial state for an input
stream which is shifted in time. The way the construction is performed (via the hybrid
step relation) ensures that the in�nite stream which is the limit of the constructed
sequence is in the in�nite time semantics St . As ' is a pre�x of that in�nite stream
in St , time restriction of St completes the proof. The technical details are presented
below.

Let ' be in the �nite time semantics St t(s)(�j[0;t)) for a t > 0, and let s0 be the \�nal
state" of ', i.e. s0 = limx%t '(x). Furthermore, we de�ne �0 2 IRp+ as the left shift
of � by t, �0 = ��tjR+ where ��t(x) is de�ned as �(x + t) for any stream � . As we
require that HySCharts de�ne total components, St(s0)(�0) is nonempty and we can
select a �0 2 (n �S)Rp+ from this set. We use the pre�xes of �0 and �0 to de�ne two time
divergent pre�x monotonous sequences8 (�0i) and (�

0
i) for a divergent time sequence (ti)

with �0i 2 St ti(s
0)(�0i) for all i. The limits of these sequences are �

0 and �0, respectively.
By Theorem A.5 each �0i is generated by the �nite iteration of hybrid steps starting
from s0 for input �0i. Similarly, ' also results from the �nite iteration of hybrid steps
starting from s for input �j[0;t). The hybrid step relation is independent from absolute
time, because all activities occurring in Ana are (Section 3.2.3), and Com is de�ned in
a pointwise manner. Hence, we can shift each �0i and �

0
i to the right by t and paste the

two �nite sequences of hybrid steps generating ' and �0i at state s
0. For each �0i, this

yields a stream �i which is generated by the �nite iteration of hybrid steps starting
from state s for input �i, where �ij[0;t) = ', �ij[t;t+ti) = �0i

t (right shift of �0i by t, see
above), and similarly �i = �j[0;t+ti).

8see De�nition A.1
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Theorem A.5 yields that �i 2 St t+ti(s)(�j[0;t+ti)) for all i. Moreover, sequence (�i) is
a time divergent pre�x monotonous sequence, because (�0i) is. Divergence closure of
Stx; St (Theorem A.2) provides that the limit � of this sequence is in � 2 St(s)(�).
Thus, ' 2 St(s)(�)j[0;t). �

Theorem A.9 HySCharts de�ne time guarded components.

Proof. Let St be the state based semantics of a HySChart. Let s be a start state
and let �1 and �2 be input streams with coincident pre�x up to time t, �1j[0;t) = �2j[0;t).
We prove St(s)(�1)j[0;t) = St(s)(�2)j[0;t).

Let � 2 St(s)(�1)j[0;t). The application of Theorem A.8 and the assumption yields
� 2 St t(s)(�2j[0;t)). Using Theorem A.8 again, we get � 2 St(s)(�2)j[0;t). The other
direction follows from symmetry.

For the \black box" semantics Cmp which results from adding output projection Out
to St , its time guardedness is an immediate consequence. �

A.2 Discretization as Re�nement

A.2.1 Operational Semantics of DiSCharts

Similar to Appendix A.1.2 we de�ne transition relations for DiSCharts (cf. Section 5.3)
here. The relations are needed for the proof of the re�nement principle given in
Section 5.4.

As the transition relations only regard �nite streams, we �rst show that all �nite
pre�xes of an in�nite stream produced by a DiSChart also satisfy the �nite time
version of DiSChart semantics. As for HySCharts, we argue about DiSChart semantics
without output projection Out y in order to be able to consider all state information.
We write DSt for the semantics of DiSChart without the projection. The �nite time
version of DSt , denoted by DStk for �nite time models Tk = f0; : : : ; kg, k 2 N , is
obtained by interpreting the multiplicative graph operators in the de�ning equation
of DSt w.r.t. this time model (see Section 3.3.2):

DStk 2 n � S ! (ITk ! P((n � S)Tk))
DStk(s) = (( Æ̂I2�In�S) ;� (II�DAnak) ;� DComy ;� Æ̂

n�S
2 ;� (In�S��s)) "n�S�

where DAnak is de�ned by restricting each activity DAct occurring in the expression
for the in�nite time DAna to Tk, i.e. DAct jTk , adapting the de�nition of discontinuity
adaption da(:) (Section 5.3.3) to these �nite activities by regarding �nite streams
and interpreting the time-extended additive graph operators w.r.t. time model Tk
(Section 3.3.4).
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Theorem A.10 Let s 2 n � S and � 2 IN. If � 2 DSt(s)(�), then for all k 2 N ,
�jTk 2 Stk(s)(�jTk) holds, where Tk = f0; : : : ; kg.

Proof. The theorem is an immediate consequence of Theorem A.3 which regards
discrete as well as continuous time models. �

Discrete-time versions of the discrete, continuous and hybrid step relations (cf. Ap-
pendix A.1.2) are de�ned as follows. In order to avoid ambiguous terminology we call
these relations logic step, control step and discrete-time hybrid step relation, respec-
tively. The logic step (or discrete-time discrete step) relation �!i is given by s �!is

0 i�
s0 2 DCom(i; s) and s0:rs = true. The additional restriction concerning rs is needed
for compatibility with the control step relation de�ned in the following. The logic
step relation expresses the e�ect of discrete moves by DCom in the machine model for
DiSCharts (cf. Figure 5.6).

The control step (or discrete-time analog step) relation �;
�
� is de�ned by s �;

�
� s

0 i�

� � 2 fk1 + 1; : : : ; k2 + 1g ! I for some k1 � k2 in N ,

� � 0 2 fk1; : : : ; k2 + 1g ! n � S and � = � 0jfk1;:::;k2g,

� � 0(k1) = s,

� s:rs = true and � 0:rs(k) = false for k 2 fk1 + 1; : : : ; k2 + 1g,

� � 0(k2 + 1) = s0,

� � 0 satis�es DAna such that DCom is idle, formally (�; � 01jÆ; �
0jÆ) 2 DAct jÆ, where

Æ = fk1 + 1; : : : ; k2 + 1g and � 01 denotes the right shift � 01(x) = � 0(x � 1), and
� 0(k) 2 Com(�(k); � 0(k)) holds for all k 2 fk1 + 1; : : : ; k2g.

In terms of the machine model of DiSCharts in Figure 5.6, � 0 shifted to the right is
the input of DAna and � 0 is its output. The right shift by one time unit is caused by
the delay � in the machine model. DCom need not be idle for s0. In fact, it must not
be idle if we want to continue with a logic step. The control step relation expresses
the e�ect of DAna whenever DCom is idle in the machine model for DiSCharts.

In contrast to their continuous-time counterparts in Section A.1.2 the smoothness
restrictions in the analog step relation are replaced by restrictions on the evolution of
rs here, since smooth evolution is not a meaningful notion for discrete-time streams.
This results in a di�erence between control steps and analog steps. A control step spans
between two non idle steps of DCom and does not consider input discontinuities. In
contrast, an analog step can also be ended by a (higher-order) discontinuity in the
input. The sequential composition of the logic step relation with the control step
relation is called the discrete-time hybrid step relation.

We can regard the �nite time semantics DStk as inductively built by the �nite iteration
of hybrid steps, starting with a state s0 proposed by the initial activation of DAna for
start state s with s:rs = init . Remember that by de�nition of DAna this ensures that
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s0:rs = true (Section 5.3.3).9 This is formalized in the following theorem.

Theorem A.11 Let � 2 IN and s 2 S an initial state, s:rs = init. The set of
streams in DStk(s)(�jf0;:::;kg) for any k 2 N and the set of streams generated by the
�nite iteration of hybrid steps starting from an s0 with (�(0); s; s0) 2 DAnajf0g for input
� are identical.

Proof. First, we point out that any state stream � 2 DStk(s)(�j[0;t)) can be parti-
tioned into �nitely many segments �j, j 2 f1; : : : ; `g, ` 2 N , such that DCom is idle
on each segment and performs a move at the end of each segment. More formally,
variable rs, which signals when DCom is not idle and is used for initialization, is true
in the �rst state of every segment �j and false for the rest of the segment. This holds,
because the discontinuity adaption da(:), which occurs in DAna (cf. Section 5.3.3),
cuts � into such pieces �j. A stream generated by the �nite iteration of discrete-time
hybrid steps by de�nition consists of �nitely many such idle segments.

With induction we now prove that a stream consisting of �nitely many idle segments
is in DStk i� it is generated by the �nite iteration of discrete-time hybrid steps. For
a stream � its �rst idle segment �1 = �jf0;:::;k1g, k1 � k, is in DStk1(s)(�jf0;:::;k1g) i� it
results from a discrete-time hybrid step from an s0 with (�(0); s; s0) 2 DAnajf0g, i.e.
s0 �!�(0); �;

�1
�0 u, where ; is the sequential composition of relations and �

0 = �jf1;:::;k1+1g.
10

To show this we regard the de�ning formula for DStk where the graph operators are
unfolded, as in the proof of Theorem A.2 for the continuous-time case:

DStk(s) = f(�; �) 2 ITk � (n � S)Tk j 9� 2 (n � S)Tk :
� 2 DAnak(�;�s(�)) ^
� 2 DComy(�; �)g

where Tk = f0; : : : ; kg. Like in the continuous-time case, DAnak is de�ned by the
disjoint sum of activities, adapted to moves of DCom by da(:). The de�nition of
da(:) (Section 5.3.3) provides that DCom at time 0 receives a s0 with (�(0); s; s0) 2
DAnakjf0g. By de�nition of DAna and discrete-time activities (Section 5.3.3), s:rs =
init guarantees s0:rs = true. Now the equivalence follows from the de�nitions of the
step relations.

Assume that the �rst m idle segments of � are in DStkm(s)(�jf0;:::;kmg), km < k, and
are also generated by the m-fold iteration of discrete-time hybrid steps. Let u be
the �nal state of the m-th hybrid step. Then the �rst m + 1 idle segments of �
are in DStkm+1

(s)(�jf0;:::;km+1g), km+1 � k, i� �jfkm;:::;km+1g results from a hybrid step
originating from u, i.e. u �!�(km); �;

�
�0u

0 for � = �jfkm;:::;km+1g and �
0 = �jfkm+1;:::;km+1+1g.

Again this immediately follows from unfolding the de�nitions of the graph operators
in DStk and the de�nitions of the step relations. �

9As explained in Section 5.3.3, a separate treatment of the �rst activation of DAna is needed to
maintain correct start values for the variables modi�ed by DAna.

10(Intermediate) state u is not visible outside, but the start value for DCom in the next iteration.
Input �(k1 + 1) is only needed to compute u, not to compute �1.
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A.2.2 Proofs about Discretization as Re�nement

Based on the logic and control step relations de�ned for DiSCharts in Section A.2.1
we can give the proof of the discrete-time re�nement theorem of HySCharts (The-
orem 5.1). Like in the theorem we use the following notation. We write DCmp
for the semantics of a given discrete-time component speci�ed with a DiSChart,
DCmp 2 n �SD ! (IN ! P(ON)). We write DCom and DAna to refer to its (discrete-
time) discrete and analog part, and DOuty for its time extended output projection.
Similarly, we write Cmp for the semantics of a given continuous-time component spec-
i�ed with a relaxed HySChart, Cmp 2 n � SC ! (IRp+ ! P(ORp+)). Its discrete part,
its analog part and its time extended output projection are denoted by RCom, RAna
and ROut y, respectively, and Rint denotes its output relaxation. Furthermore, we
write I and S for the sets of considered inputs and evolutions of the state stream. The
projection of a u 2 n � SD on n � SC is denoted by �n�SC(u) and similar for (sets of)
streams.

We start with a lemma essentially stating that the discrete-time hybrid step relation
re�nes the continuous-time hybrid step relation. These relations provide the oper-
ational semantics for DiSCharts and HySCharts, respectively. They are de�ned in
Sections A.2.1 and A.1.2.

Lemma A.12 Let assumptions 1, 2, 3, 4 and 5 of Theorem 5.1 hold. For all � 2
Ij[k1T;(k2+1)T ], k1 � k2 in N, �0 = sampleT (�), and s 2 n � SD with s:now = k1T , the
discrete-time hybrid step s �!�0(k1); �;

� 0

�0jfk1+1;:::k2+1g
s0 for � 0 2 (n � SD)

fk1;:::k2g implies

that there is a � 2 (n �SC)
[k1T;(k2+1)T ) which results from �nitely many continuous-time

hybrid steps for input �j[k1T;(k2+1)T ) and start state �n�SC (s) where RCom idles at the
discrete steps between the analog steps. At sampling times � and � 0 agree, the \�nal
states" agree, and the hold extension of � 0 projected on the output space is in the
relaxation Rint of the output projection of � on interval [k1 �T; (k2+1) �T ), formally:

8k 2 fk1; : : : ; k2g: �n�SC(�
0(k)) = �(kT ) ^ (sampling times)

�n�SC (s
0) = limx%(k2+1)T �(x) ^ (\last states")

holdO;T (DOut
y(� 0)) � Rint(ROut

y(�)) (hold extension)

Furthermore, in s0 the value of the private clock now is correct, i.e. s0:now = (k2+1)T .

Proof. Let � 2 Ij[k1T;(k2+1)T ], k1 � k2 in N , �0 = sampleT (�). For the logic step
s �!�0(k1)s

00, s; s00 2 n � SD with s:now = k1T , the claim �n�SC(s) Æ!�(k1T )�n�SC(s
00) is a

direct consequence of assumption 2 in Theorem 5.1.

By de�nition of logic steps s00:rs = true and DCom must be able to idle for s00, as
s00 is an output of DCom. (This holds because of the way a discrete part is con-
structed from a hierarchic graph, cf. Section 3.5.1.6.) Next we consider the control
step s00 �;� 0

�0jfk1+1;:::k2+1g
s0 for � 0 2 (n � SD)fk1;:::k2g. The de�nition of control steps yields
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that � 0 evolves according to DAna and that DCom idles for � 0 and input �0. Hence,
� 0:rs is only true initially and false thereafter. By assumption 4 of Theorem 5.1 this
implies the existence of a continuous � 2 (n � SC)[k1�T;(k2+1)�T ) which satis�es RAna,
i.e. (�j[k1�T;(k2+1)�T ); �; �) 2 RAnaj[k1�T;(k2+1)�T ), which is equal to � 0 at sampling times,
whose \last value" is �n�SC(s

0) and for which the hold extension of � 0 projected on O is
in Rint(ROut

y(�)) on [k1 � T; (k2 + 1) � T ). Furthermore, as the value of now is correct
initially, i.e. �:now(k1T ) = k1T , and RAna ensures that it evolves correctly, �:now
at each moment contains the current time and the \last value" of now is (k2 + 1)T .
This consistency property of now is needed in the rest of the proof to be able to apply
assumption 3 of Theorem 5.1.

Now we construct continuous-time hybrid steps that generate � . The problem here
is to establish that Com can idle. As � and � are dense streams, they are piecewise
smooth and piecewise Lipschitz continuous on left-closed and right-open intervals.
Furthermore, they are restricted to a �nite interval. Hence (by de�nition of piecewise
smoothness and piecewise Lipschitz continuity), this interval can be partitioned into
�nitely many subintervals such that � and � are smooth and Lipschitz continuous on
each of them. We re�ne this partitioning by furthermore splitting every subinterval
at sampling times kT . The resulting partitioning is used for � and we write �j and �j,
j 2 f1; : : : ; `g, ` 2 N , to denote the ` smooth, Lipschitz continuous segments of � and
�, respectively. By induction we prove that an analog step spans each such interval
and that a discrete step, where RCom idles, connects adjacent intervals:11

Streams �1 and �1 are smooth and Lipschitz continuous on the �rst interval and the
selection of � (based on assumption 4 of Theorem 5.1) guarantees that they satisfy
RAna. As DCom idles for the start state s00 of �1 and as all dynamics allowed by
the activities, and therefore also �1, are in S (assumption 5 of Theorem 5.1), as-
sumption 3 yields that RCom can idle throughout the interval. Hence an analog step
�n�SC (s

00) Æ;�1
�1
u to some state u is possible. Let us now consider u. If the right end

point of the considered interval is a sampling instant, we know that � and � 0 agree
here (assumption 4), and that DCom idles provided that this is not the end point of
the last interval `. Thus, RCom can also idle (assumption 2), a discrete step u Æ!iu
is possible for the current input i at that point, and we can continue the proof with
regarding the next interval. If the right end point of the considered interval already
is the end of the last interval `, nothing remains to be done. If the right end point
of the considered interval is not a sampling instant, we nevertheless know that at
the last sampling instant in [k1T; (k2 + 1)T ] immediately preceding the regarded end
point DCom was idle. In the case of the �rst interval, this sampling instant is k1T .
Using assumption 3 this yields that RCom must be able to idle for u and the current
input i at that end point, i.e. the step u Æ!iu is possible. (Assumption 3 furthermore
guarantees that RCom can idle throughout the next interval, which is needed in the
induction step.) This ends the base case for the �rst subinterval of the partitioning.

11Idle steps of RCom suÆce, since � is continuous on [k1 �T; (k2+1) �T ) (assumption 4, see above).
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The induction step is similar.

As a result, the control step is split into �nitely many analog steps which are pasted
together with discrete steps. Due to the selection of the resulting hybrid stream
� (based on assumption 4, see above), � satis�es the further claims of the lemma,
correspondence of � and � 0 at sampling points, correspondence of their projections
on O up to Rint between sampling points and correspondence of the \last states".
Moreover, the value of now is also correct for the last state s0 (see above). �

Now we come to the proof for Theorem 5.1 of Section 5.4.1. We use the same termi-
nology and symbols as in that theorem.

Proof. (Theorem 5.1.) Under the assumptions of Theorem 5.1 we have to show
that for given DiSChart semantics DCmp, relaxed HySChart semantics Cmp, inputs
in I, evolution constraints S, start state s 2 n � SD with s:rs = init , s:now = 0 and
sampling period T , it holds that for all � 2 I, every stream in the hold extension of
DCmp also is in Cmp, formally � 2 (sampleI;T ;�DCmp(s);� holdO;T )(�)) �n�SC (�) 2
Cmp(�n�SC(s))(�). In the following we argue about the state-based semantics of DCmp
and Cmp. As usual, they are denoted by DSt and St , respectively.

For a � 2 I, let � be in (sampleI;T ;�DSt(s);�DOut
y;� holdO;T )(�).

12 Furthermore, let

�0 be the corresponding discrete-time stream, without the output projection DOuty

and the time extension by holdO;T , and let �0 be the sampled version of �. Hence,
�0 2 DSt(s)(�0). We argue about the �nite pre�xes of �0 which are generated by
the �nite iteration of discrete time hybrid steps. (Theorem A.11 guarantees that all
pre�xes of �0 are indeed generated by the �nite iteration of such steps.) We show
that for every �nite pre�x �0jf0;:::;kjg, kj 2 N , of �0 which is generated by j discrete

time hybrid steps, there is a dense stream �j 2 (n � SC)[0;(kj+1)T ) which is in the �nite
time version of St , �j 2 St (kj+1)T (�n�SC(s))(�j[0;(kj+1)T )), and �j projected on the output
space and relaxed by Rint contains �j[0;(kj+1)T ). Furthermore, �j and �

0jf0;:::;kjg are equal
at sampling instants. By de�nition of the �j as given below, they are a time-divergent
pre�x monotonous sequence for divergent time sequence (tj) with tj = (kj + 1)T .
Hence, sequence (�j) has a limit, denoted by � (Appendix A.1.1). Due to divergence
closure of St t; St (Theorem A.2) limit � is in St(�n�SC(s))(�). This �nally yields that
� is in Rint(ROut

y(�)), because divergence closure of ROuty and Rint holds by an
argument similar to Lemma A.7. By the de�nition of relaxed HySCharts the claim of
the theorem is an immediate consequence of this result.

At this point it remains to de�ne the sequence (�j). Constructing �j from �0jf0;:::;kjg
proceeds by induction over the hybrid step relations by which the elements of St t and
DStk are built (Theorems A.5 and A.11).

Let !0 2 f0; : : : ; k1g ! n � S be the �rst segment of �0 resulting from the discrete-
time hybrid step u �!�(0)s

0
�;
!0

�jf1;:::;k1+1g
s00 for a u as given by the initialization of

12By de�nition of DSt, DCmp(s) = DSt(s);� DOut
y holds. The corresponding equality is valid in

the continuous time case for Cmp and St .
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DAna, i.e. (�(0); s; u) 2 DAnajf0g. Lemma A.12 then yields that there exists a cor-
responding continuous-time hybrid step �n�SC (u) Æ!�(0)�n�SC(s

0) Æ;!

�j[0;(k1+1)T )
�n�SC(s

00),

with s00:now = (k1 + 1)T , such that ! and !0 agree at sampling times and the hold
extension of the output projection of !0 is within relaxation Rint of the output pro-
jection of !. By de�nition of the initialization (Section 5.3.3) �n�SC(u) = �n�SC(s)
which together with Theorem A.5 provides ! 2 St (k1+1)T (�n�SC (s))(�j[0;(k1+1)T )). We
therefore de�ne �1 = !.

For the induction step, let !0 2 DStkj (s)(�
0jf0;:::;kjg) result from the �rst j discrete-time

hybrid steps and let u with u:now = (kj + 1)T be the �nal state of the last hybrid
step. Furthermore, let �j 2 St (kj+1)T (s)(�j[0;:::;(kj+1)T )) be the corresponding hybrid
stream with limx%(kj+1)T �j(x) = �n�SC(u). Similar to the base case, we can again
apply Lemma A.12 to show that for the next discrete-time hybrid step starting from u
there is a corresponding continuous-time hybrid step starting from �n�SC (u) such that
the resulting streams agree at sampling instants and at the last value, and the hold
extension of the output projection of the discrete-time stream is in the relaxation by
Rint of the output projected hybrid stream. Extending �j with the constructed hybrid
stream yields �j+1 which is in St (kj+1+1)T (�n�SC(s))(�j[0;(kj+1+1)T )) by Theorem A.5. �

Next we prove Theorem 5.2 of Section 5.4.3.1 which states that (under certain con-
ditions on the independence of the variables which activities modify) a sample-and-
hold-re�nement of a relaxed analog part can be constructed from the sample-and-hold-
re�nements of its individual activities. The proof uses the terminology and symbols
introduced in Section 5.4.3.1. In particular, the reader is refered to that section for the
de�nitions of the controlled and unconstrained spaces D, A, D, and A of discrete-time
and continuous-time activities.

Proof. (Theorem 5.2.) The proof proceeds by induction over the structure of the
analog part and is rather technical. It uses that activities are the identity on those
controlled variables not occurring in them.

We start with the base case where there only is a single activity, i.e. DAna = da(DAct)
and RAna = da(RAct). Let � 0 satisfy da(DAct) for input �0 on an interval where
there is only one reset at the beginning. More formally, let � 2 I, �0 2 sampleT (�) and
� 0 2 (1 � SD)fk1;:::;k2+1g, k1 � k2 in N , with � 0:rs(k1) = true and � 0:rs(k) = false for
k 2 fk1+1; : : : ; k2+1g, and let (�0jÆ; � 01jÆ; � 0jÆ) 2 DAnajÆ, where Æ = fk1+1; : : : ; k2+1g.
The control state in � 0 is constant, since there is only one primitive control state (DAna
does not consist of a disjoint sum, the state space is 1 � SD = SD). By the de�nition
of da(:) as cutting the discrete-time state stream into intervals which start with a
reset (cf. Section 5.3.3), this ensures that (�0jÆ; �

01jÆ; �
0jÆ) also is in DAct jÆ. With

distinguishing between the variables occurring in the de�nition of DAct and those not
occurring in it, we get that the projection of � 0 on the controlled space D of DAct is in
pDAct jÆ for input �0 and that its projection on D satis�es the time-extended additive
identity relation iD, i.e. (�

0jÆ; �D(�
01)jÆ; �D(�

0)jÆ) 2 iDjÆ. This implies that the projection
of � 0 on D is a constant function. Using the theorem's assumption provides that there
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is a continuous � 2 S
[k1�T;(k2+1)�T )
C whose projection on the controlled space A of RAct

satis�es da(pRAct) for input � and which furthermore has the properties required in
the theorem w.r.t. � 0 projected on A. This means that the two projections agree at
sampling times and in their \last value", and the hold extension of � 0, projected on
the output space of RAct , is in the relaxation of � projected on the same space. We
choose � such that its projection on the unconstrained space A of RAct is a constant
function with value �A(�

0(k1)). As RAct is the identity relation on A, � satis�es
da(RAct) for input �, i.e. (�j[k1�T;(k2+1)�T ); �; �) 2 da(RAct)j[k1�T;(k2+1)�T ). Furthermore,
it also satis�es that � and �SC (�

0) are equal at sampling instants and the hold extension
of � 0 projected on output space O is in the relaxation of � . Thus, assumption 4 of
Theorem 5.1 holds for DAna and RAna.

Assuming that the claim holds for the sequential composition of m activities we
next show that it also holds for m + 1 sequentially composed activities: DAna =
da(DActm+1) ;+(;+

m
j=1da(DAct j)) and RAna = da(RActm+1) ;+(;+

m
j=1da(RAct j)). Let

� 0 satisfy DAna for input �0 on an interval where there is only one reset at the begin-
ning, as formally de�ned above. By the de�nitions of da(DActm+1) and ;+ this implies
that there is a discrete-time stream !0 2 SD

Æ, for Æ = fk1 + 1; : : : ; k2 + 1g as above,
connecting the two sequentially composed parts, i.e. (�0jÆ; � 01jÆ; !0) 2 DActm+1jÆ and
(�0jÆ; !

0; � 0jÆ) 2 ;+
m
j=1da(DAct j)jÆ.

Now we use that DAct and ;+
m
j=1da(DAct j) are completely independent in order to

be able to apply the assumptions and the induction hypothesis. As DActm+1 and
;+

m
j=1da(DAct j) reference disjoint sets of controlled variables, DActm+1 is the identity

on the controlled variables occurring in the DAct j, j 2 f1; : : : ; mg, and vice versa.
DActm+1 and the DAct j all are the identity on the controlled variables occurring in
none of them. Hence, the projections of !0 and � 0jÆ on the controlled space Dm+1 of
DActm+1 coincide (except for the value of variable rs) and similarly on the space D1:::m

of controlled variables occurring in one of the DAct j, �D1:::m
(� 01jÆ) = �D1:::m

(!0) holds.
Variable rs is set to false by the last activity in the sequential composition of the
DAct j. This exactly corresponds to the de�nition of pDActm+1 where the assignment
rs 0 = false is added to the activity in order to consider the activity in isolation
(cf. Section 5.4.3.1). This allows us to apply the assumptions and the induction
hypothesis.

Applying the assumption to pDActm+1 for �Dm+1
(� 0) yields that there is a contin-

uous ! 2 A[k1�T;(k2+1)�T )
m+1 which satis�es da(pRActm+1) and the properties required

in the theorem w.r.t. � 0 projected on the controlled space Am+1 of RActm+1. Us-
ing the induction hypothesis for ;+

m
j=1da(RAct j) we get that there is a continuous

� 2 A[k1�T;(k2+1)�T )
1:::m which satis�es ;+

m
j=1da(RAct j) and the properties required in

the theorem w.r.t. � 0 projected on the space A1:::m of controlled variables occur-
ring in one of the RAct j, j 2 f1; : : : ; mg. We de�ne the continuous function � 2
SC

[k1�T;(k2+1)�T ) by �Am+1
(�) = !, �A1:::m

(�) = � and �A(�) is constant and equal
to �A(�

0(k1)), where A denotes the space of those variables not occurring in any



A.3. PROOFS ABOUT STABILITY AND ATTRACTION 223

activity of the sequential composition. Like in the base case above, � 0 and �0 are
constant on this space. As activities do not constrain the evolution of variables
not occurring in them, we get that � satis�es da(pRAct) and ;+

m
j=1da(RAct j) for in-

put �, i.e. (�j[k1�T;(k2+1)�T ); �; �) 2 da(RActm+1)j[k1�T;(k2+1)�T ) and (�j[k1�T;(k2+1)�T ); �; �) 2
;+

m
j=1da(RAct j)j[k1�T;(k2+1)�T ). Furthermore, it also satis�es that � and �SC(�

0) are equal
at sampling instants and in their \last values", and that the hold extension of � 0 pro-
jected on the output space is in the relaxation of � projected on the output space.
Thus, assumption 4 of Theorem 5.1 holds for DAna and RAna in the case of �nite
sequential composition.

Finally, we regard analog parts consisting of the n-fold disjoint sum of activities.
The base case for n = 1 is covered by the sequential composition considered above.
It therefore remains to consider the induction step for the n + 1 fold sum. Let
DAna = ;+

mn+1

j=1 da(DActn+1;j) + ( +n
i=1 (;+

mi

j=1da(DAct i;j)) ) and similarly RAna =
;+

mn+1

j=1 da(RActn+1;j)+(+n
i=1 (;+

mi

j=1da(RAct i;j))). Let � 0 satisfy DAna for input �0 on
an interval where there is only one reset at the beginning, as formally de�ned above.
The way the reset variable rs is used in DiSCharts ensures that the control state is con-
stant during such an interval (Section 5.3.3). Thus, the control state in � 0 is constant to
some ` 2 f1; : : : ; n+1g. By the de�nition of the disjoint sum this implies that � 0 satis-
�es summand ` for input �0 throughout the considered interval Æ = fk1+1; : : : ; k2+1g,
i.e. (�0jÆ; � 01jÆ; �0jÆ) 2 ;+

m`

j=1da(DAct `;j)jÆ. On each such interval, this reduces the proof
obligation for the sum of activities to the respective proof obligation for the sequential
composition of activities. We already covered this above. �

A.3 Proofs about Stability and Attraction

Theorem A.13 In topologies where C and E are open, (C;E) is stable i� Sys(C) �
E.

Proof. \)": With choosing � = E stability yields 8b 2 �: Sys(b) � � for a
� 2 N(C). By the de�nition of neighborhood C � � holds. Hence, we also get that
all causes in C produce e�ects in �, 8b 2 C: Sys(b) � �.

\(": For every neighborhood of E we can choose � = C. �

Theorem A.14 In topologies where set A is open, the (state-based) stability of A is
equivalent to invariance of A.

Proof. The proof essentially is a specialization of that for Theorem A.13. �

Theorem A.15 In topologies where A is open global attraction is equivalent to the
property that A is reached in �nite time and not left again.
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Proof. \)": As A is open, we can select A 2 N(A) as neighborhood in the de�nition
of global attraction. This immediately proves the claim.

\(": Due to the de�nition of neighborhood, A � � holds for any neighborhood of A.
As there is a t such that A is reached and not left again after t, this also holds for any
of A's neighborhoods. �

Lemma A.16 The functions abs and conc as de�ned in Section 6.4.1.1 are well-
de�ned.

Proof. We start with function abs. To see that the supremum in the de�nition of
abs(�) exists in V for � 2 N(A) �rst note that V is complete. Second, the regarded
set fv 2 V + j � � L�1(hvio)g, whose supremum is sought, is nonempty. To prove this
we can construct an element of this set: As the topology on S is the coarsest which
makes L continuous, Theorem B.3 implies that every open set � can be written as
� =

S
j2J L

�1(Ij) for an index set J and open intervals Ij. As � � A, there exists a
Ij with ? 2 Ij. Hence, Ij can be written as hvio for some v 6= ?. This implies that
� � L�1(hvio) holds for v, i.e. the set whose supremum is needed is nonempty, and it
furthermore guarantees that the supremum is not equal to ?. Thus, abs(�) 2 V +.

For function conc we have that set conc(v) is open for v 2 V +, because L is continuous.
Furthermore, A � conc(v) because 8s 2 A:L(s) = ?. Hence, conc(v) 2 N(A) for
v 2 V +. �

Theorem A.17 The functions abs and conc as de�ned in Section 6.4.1.1 are a Galois
connection between (N(A);�) and (V +;w), i.e. (N(A);�) and (V +;w) are partially
ordered sets, abs and conc are monotonous, and � � conc(abs(�)) (extensivity) and
abs(conc(v)) w v (reductivity) holds. In fact even abs(conc(v)) = v is valid.

Proof. (N(A);�) and (V +;w) obviously are partially ordered sets (V + even is
densely ordered by assumption). The abstraction function is monotonous: � � � )
abs(�) w abs(�), because for v = abs(�), � � � � L�1(hvio) holds, which implies that
the supremum in the de�nition of abs(�) is at least v.

The concretization function is monotonous: v1 w v2 ) conc(v1) � conc(v2) holds,
because of the monotonicity of L�1 and hv1io � hv2io.

Extensitivity, i.e. � � conc(abs(�)), holds: For v = abs(�) the de�nition of supremum
together with w being total and abs being monotonous implies that 8v0 2 hvio: � �
L�1(hv0io) is valid. Hence, � also is a superset of the union of these inverse images,
� �

S
v02hvio

L�1(hv0io). The union can be rewritten as L�1(fv00 j 9v0: v = v0 =

v00g). As V is densely ordered by =, there is a v0 between any two elements of V
(Theorem B.1). Therefore, fv00 j 9v0: v = v0 = v00g = fv00 j v = v00g = hvio holds,
which �nally yields that � � L�1(hvio) = conc(v).

abs(conc(v)) = v, which implies reductivity, holds because L is onto: For � = conc(v)
and v0 = v surely � = L�1(hvio) � L�1(hv0io) holds. Hence, abs(�) w v0 must hold.
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Due to L being onto, there can be no v00 with v00 = v0 and � � L�1(hv00io). In more
detail this is valid, because for v00 = v0 there is a �v, v00 = �v = v0, such that, due to L
being a function and onto, L�1(�v) \ L�1(hv0io) = ; holds. This in turn implies that
L�1(hv00io) % L�1(hv0io). Thus, v

0 = v is the supremum required in the de�nition of
abs. �

Theorem A.18 Given the abstraction and concretization functions abs and conc as
de�ned in Section 6.4.1.1 monotonicity of L along the system traces of SysS implies
the stability of A w.r.t. the topology considered on S.

Proof. Let � 2 N(A). For v = abs(�) monotonicity of L along the traces of
SysS implies that 8s 2 S: L(s) < v ) 8� 2 SysS(s; �): 8t: L(�(t)) v L(s) for all
� 2 I since �(0) = s for � 2 SysS(s; �). Hence, selecting � = conc(v) yields that
8s 2 �: 8� 2 SysS(s; �): 8t: L(�(t)) v L(s) < v. By the de�nition of conc, L(�(t)) < v
implies �(t) 2 conc(v). Together with � � conc(abs(�)) (extensivity) this implies
�(t) 2 � for all t, � 2 SysS(s; �), s 2 � and � 2 I. �

Theorem A.19 Function L, as de�ned in Section 6.4.1.2, satis�es the requirements
of Theorem 6.1.

Proof. Requirements one and two trivially hold. To verify the third requirement,
let v 2 V +. We can then choose � = L�1(hvi) which is open because of the continuity
of L and which contains A because L(A) = ? 2 hvi. As L-values of elements of � are
less or equal v w.r.t. v, the third requirement holds. For the fourth requirement we
choose L(�) for � 2 N(A) where L is extended to sets by pointwise extension. As L�1

is continuous, L(�) is open in V and can therefore be written as the union of a family
of sets in the base of the left topology of V , i.e. L(�) =

S
v2J hvi where J � V + = V .

We select a v 2 J and get L�1(hvi) � � as demanded by the fourth requirement. �
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Appendix B

Mathematical Foundations

B.1 Sets and Orders

De�nition B.1 (Order.) Let X be a set and v a relation on X, i.e. v must be a
subset of X �X. v is an order i� it is transitive, re
exive and antisymmetric. If for
all x; y 2 X either (x; y) 2v or (y; x) 2v holds, the order is total. Otherwise it is
partial. Usually in�x notation is used for orders, i.e. we write x v y for (x; y) 2v.
(X;v) is called a partially ordered set, i� v is a partial order on X. It is called a
totally ordered set, i� v is a total order on X. If X has a least element w.r.t. v this
element is called bottom element and denoted by ?.

De�nition B.2 (Complete partial order (Cpo).) A partially ordered set (X;v)
is called a complete partial order i� if there is a least upper bound for any increasing
chain x1 v x2 v : : : in X.

De�nition B.3 (Well-founded order.) Let (X;v) be a partially ordered set. v is
called a well-founded order on X i� there is no in�nite (strictly) descending sequence
x1 = x2 = x3 = : : : in X, where x = x0 denotes x0 v x ^ x0 6= x.

For an order v on X we write < to denote the irre
exive relation v n idX , where idX
is the identity relation on X.

De�nition B.4 (Densely ordered set [Eng89].) Let (X;v) be a totally ordered
set. Let A;B � X be a partitioning of X, i.e. A [ B = X, such that A;B 6= ; and
x 2 A and y 2 B implies x < y. X is called densely ordered by < if for any such
partitioning either A has no largest element or B has no smallest element.

Theorem B.1 Let X be a set densely ordered by <. Then for all x; z 2 X with x < z
there is a y 2 X with x < y < z.

227
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Proof. The proof proceeds by contraposition. Assume there is no y between x and
z. Let A = fa 2 X j a v xg and B = fb 2 X j x < bg. Clearly, A [ B = X and
a 2 A ^ b 2 B ) a < b holds. Furthermore, A contains a largest element, x. Due to
the assumption, B contains z as its smallest element. This contradicts the assumption
that X is a densely ordered set. �

B.2 Some Topology

This section introduces some basic notions from topology. Most of the de�nitions are
taken or adapted from [Eng89].

De�nition B.5 (Topological space [Eng89].) For a set X and a set of subsets of
X, denoted by O, (X;O) is a topological space i�

� ; 2 O and X 2 O,
� for U1 2 O and U2 2 O, U1 \ U2 2 O,
� for A � O,

S
A 2 O.

X is also called a space, O is called a topology on X, and the elements of O are called
open sets w.r.t. the topology. A set U � X is called closed if its complement X n U
is an open set.

For two topologies O1 and O2 on a set X topology O1 is coarser than topology O2 i�
O1 � O2.

De�nition B.6 (Neighborhood of a point.) For x 2 X, a set U 2 O is a neigh-
borhood of x i� x 2 U [Eng89]. We de�ne N(x) to denote the set of all neighborhoods
of x, formally N(x) = fO 2 O j x 2 Og.

The notion of neighborhood is extended so sets in a pointwise manner.

De�nition B.7 (Neighborhood of a set.) U 2 O is a neighborhood of Y � X
i� U is a neighborhood for every element of Y , formally Y � U . The set of all
neighborhoods of Y is de�ned as N(Y ) = fO 2 O j Y � Og.

Note that this notion of neighborhood implies that every open set is a neighborhood
of itself: Y 2 O) Y 2 N(Y )

Example B.1 (Discrete topology.) (X;}(X)) is a topological space, where }(X)
is the set of all subsets of X. O = }(X) is called the discrete topology on X [Eng89].
In the discrete topology every set U � X is open and closed.
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De�nition B.8 (Base for a topological space.) A set B � O of open sets is a
base for the topological space (X;O) i� every non-empty open set can be represented
by a union of sets in B.

[Eng89] states that any base has the properties:

(B1) for any B1; B2 2 B and for all x 2 B1 \ B2 there is a B 2 B such that
x 2 B � B1 \ B2

(B2) for any x 2 X there is a B 2 B such that x 2 B

Theorem B.2 (Topology generated by a base.) Let B be a set of subsets of X
with the properties (B1) and (B2). Then the set O � }(X) consisting of all subsets
of X which are unions of sets in B is a topology on X. Moreover, B is a base for this
topology. O is called the topology generated by base B.

Proof. A proof is given in [Eng89]. �

Example B.2 (Left topology.) Let X be a set partially ordered by v. The sets
hxi = fx0 2 X j x0 v xg for every x 2 X generate a topology on X. This topology is
called the left topology on X induced by v [Eng89].

To show that the proposed sets indeed generate a topology we apply Theorem B.2,
which amounts to showing that the sets satisfy the assumptions of the theorem. For
the �rst assumption holds as x 2 hx1i \ hx2i implies that hxi � hx1i \ hx2i because of
transitivity of v. The second assumption is valid because x 2 hxi for all x 2 X.

Example B.3 (Interval topology.) Let X be a set containing at least two elements
and totally ordered by v (i.e. for all x; y 2 X, x v y or y v x holds). v is also called
a linear order. We write x < y for x v y ^ x 6= y. For x; y 2 X with x < y the sets
(x; y) = fz 2 X j x < z < yg, ( ; y) = fz 2 X j z < yg and (!; x) = fz 2 X j x < zg
are called intervals. The set of all intervals on X generates a topology which is called
the interval topology on X induced by v [Eng89].

To prove that the intervals generate a topology we apply Theorem B.2, i.e. we have
to show that the set of all intervals satis�es properties (B1) and (B2) from above.
(B1) holds as x 2 (a; b) \ (c; d) for a; c 2 X [ f g and b; c 2 X [ f!g implies
x 2 (maxfa; cg; minfb; dg) where maxf ; yg = y for y 2 X[f g and min is de�ned
analogously. (B2) is valid since for x 2 X we can select an arbitrary y 2 X n fxg (X
has at least two elements) such that either x 2 ( ; y) or x 2 (y;!) holds.

De�nition B.9 (Continuous function.) A function f 2 X ! Y between two topo-
logical spaces X and Y is called continuous if the inverse image of every open set of
Y is open in X.
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Note that this de�nition generalizes the one usually used in computer science: There
continuity amounts to the preservation of least upper bounds of increasing chains by
monotonous functions on Cpo's. If the Scott topologies induced by the order on the
domain and range of the function are used, our topological de�nition and the de�nition
based on Cpo's are equivalent (see [Win93]).

Theorem B.3 (Topology generated by a function.) Let f be a function from X
to topological space Y and let BY be a base for the topology on Y . Then the topology
OX generated by the base BX = ff�1(B) j B 2 BY g is the coarsest topology on X
which makes f continuous.

Note that f�1(B) is the inverse image of B under f .

Proof. First, we show that BX generates a topology. Let x 2 f�1(B1) \ f�1(B2),
B1; B2 2 BY . Hence, f(x) 2 B1 \B2. As BY is a base, there is a B 2 BY with f(x) 2
B � B1 \ B2. Thus, x 2 f�1(B), f�1(B) 2 BX and f�1(B) � f�1(B1) \ f�1(B2)
by some set arithmetic. Furthermore, for every x 2 X there is a f�1(B) 2 BX with
x 2 f�1(B), because of the respective property of BY on Y . Therefore, Theorem B.2
can be applied and yields that BX generates a topology on X.

By the de�nition of base and continuity it is easy to see that f is continuous w.r.t. the
topologies generated by BX and BY .

Third, we show that BX is the coarsest topology that makes f continuous. Let O be a
topology on X such that f is continuous and let � be an open set w.r.t. the topology
generated by BX , i.e. � =

S
UJ for some UJ � BX . By de�nition each U 2 UJ is given

as U = f�1(B) for some B 2 BY . By the assumption on O, f is continuous w.r.t. O
which implies that these U 2 UJ are also open w.r.t. O. Hence, their union � is also
open w.r.t. O and correspondingly the topology generated by BX is coarser than O.

�

De�nition B.10 (Tychono� topology.) Let fXigi2I be a set of topological spaces.
The topology on the product space X = �i2IXi which is generated by the base
BX = f

T`

k=1 �
�1
ik
(oik) j oik 2 OXik

^ i1; : : : ; i` 2 Ig, where OXi
is the topology on

Xi and �i is the projection from X to Xi, is called the Tychono� topology on X.

Due to the de�nition given in [Eng89] for topologies generated by sets of mappings, the
Tychono� topology is generated by the set of projections f�igi2I (see also Theorem B.3
for topologies generated by single functions).

Theorem B.4 (Subspace topology.) Let (X;O) be a topological space and M a
subset of X. Taking fM \ U j U 2 Og as the open sets in M yields a topological
space. M with this topology is called a subspace of X and the topology is called the
subspace topology on M .

Proving that this indeed is a topology on M is easy [Eng89].
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B.3 Metric Spaces

De�nition B.11 (Metric Space.) A metric space is a pair (X; d) consisting of a
nonempty set X and a mapping d : X�X ! R+ , called a metric or a distance, which
has the following properties:

(1) 8x; y 2 X : d(x; y) = 0 , x = y
(2) 8x; y 2 X : d(x; y) = d(y; x)
(3) 8x; y; z 2 X : d(x; y) � d(x; z) + d(z; y) (triangle inequality)

A very simple example of a metric space is the discrete metric space. We use it on
sets M di�erent from the real numbers.

De�nition B.12 (Discrete metric space.) The discrete metric space (M; %) over
a set M is de�ned as follows:

8m1; m2 2M : %(m1; m2) =

�
0 if m1 = m2

1 if m1 6= m2:

Obviously, % is a metric.

De�nition B.13 (Natural metric on the real line.) The natural metric d on the
real line is de�ned by d(x; y) = jx� yj for all x; y 2 R.

Unless otherwise mentioned, we use this metric on the real numbers and on R+ .

Theorem B.5 (Topology induced by a metric.) For a metric space (X; d), the
set B =

S
x2X;r>0fy 2 X j d(x; y) < rg of subsets of X is a base for a topology on

X.

The topology on X generated by this base is called the topology induced by the metric
d.

Proof. A proof is given in [Eng89]. �

De�nition B.14 (Natural topology on the real line.) The topology on R which
is induced by the natural metric on the real line is called the natural topology on R.

De�nition B.15 (Lipschitz continuity.) Let (X1; d1) and (X2; d2) be metric spaces
and let f 2 X1 ! X2 be a function. We call f Lipschitz continuous with Lipschitz
constant L � 0 if the following condition is satis�ed: 8x; y 2 X1: d2(f(x); f(y)) �
L � d1(x; y).
Function f is called Lipschitz continuous if there exists an L � 0 such that f is
Lipschitz continuous with Lipschitz constant L.
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Note that Lipschitz continuity for dense streams � 2MRp+ whose rangeM is a discrete
metric space means that they must be constant. The proof proceeds by contradiction.
Assume L � 0 is a Lipschitz constant. If � is not constant, there must be a point x
whose environment fx0 j d(x; x0) < 1

L
g contains a point y with �(x) 6= �(y). Thus,

L � d(x; y) < 1 = %(�(x); �(y)) holds, where % is the discrete metric. This contradicts
Lipschitz continuity.

B.4 Convergence in Metric Spaces

De�nition B.16 (Convergence.) A sequence of elements (ai) in a metric space
(D; d) is converging to limit a 2 D, if for every " > 0 there exists a number k 2 N
such that d(ai; a) � " for all i � k [Eng89].

Due to the properties of metrics, any sequence in a metric space has at most one limit.

The following yields a helpful technique for proving convergence of a sequence.

De�nition B.17 (Cauchy Sequence.) For a metric space (D; d) a sequence of el-
ements (ai) in D is called a Cauchy sequence, if for every " > 0 there exists a number
k 2 N such that d(ai; ak) � " for all i � k [Eng89].

Obviously, any convergent sequence in a metric space is a Cauchy sequence.

De�nition B.18 (Complete Metric Space.) A metric space (D; d) is called com-
plete, if every Cauchy sequence in D converges to an element in D [Eng89].

Theorem B.6 (Convergence and closed sets) A set M is closed i� it contains
the limit of every converging sequence (mi) in M .

Proof. A proof of a more general theorem is given in [Eng89]. �

B.5 The Metric Space of Streams

For in�nite dense and discrete-time streams, i.e. for time model T 2 fR+ ;Ng, we use
the following metric:

De�nition B.19 (The Metric Space of Streams.) The metric space of streams
(XT ; ds) is for all x; y 2 XT , X 6= ;, de�ned as follows:

ds(x; y) = inf f2�t j t 2 T ^ xj[0;t)\T = yj[0;t)\T g

where the in�mum of the empty set is de�ned as inf fg = 1.
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This de�nition is adapted from [GR95] and [MS97]. Using set [0; t)\T in the restric-
tions allows us to homogeneously de�ne the metric for time models R+ and N . The
in�mum of the empty set has to be de�ned to ensure well de�nedness of the metric in
cases where the considered streams x and y already di�er at time 0. It is easy to prove
that ds is indeed a metric. It closely resembles the Baire metric de�ned in [Eng89],
but is not equivalent to it.

The distance of two streams in the metric ds encodes the last point in time up to
which they coincide. Here, a sequence (ai) is a Cauchy sequence i� for growing k the
length t of the coincident pre�xes of streams ak and ai, with i � k, grows without
bound.

Theorem B.7 The metric spaces (XRp+; ds) and (XN; ds) are complete.

Proof. Let T 2 fR+ ;Ng and let (ai) be a Cauchy sequence in XRp+ or XN,
respectively. We de�ne the �xed point a of (ai) as follows: For each t 2 T we choose
a k such that 8i � k: aij[0;t)\T = akj[0;t)\T and de�ne aj[0;t)\T = akj[0;t)\T . Such a k
exists, because of the de�nition of the metric of streams and of Cauchy sequences.
Clearly, the sequence (ai) converges to a.

If T = N we are done, because a is a function from T to X. For T = R+ it remains
to prove that a is piecewise smooth and piecewise Lipschitz continuous to obtain
a 2 XRp+, i.e. that a is a dense stream. Piecewise smoothness as well as piecewise
Lipschitz continuity are de�ned over �nite intervals. Therefore, if a is not piecewise
smooth and piecewise Lipschitz there must be a time t such that in [0; t) there is a
subinterval in which a can not be partitioned into �nitely many smooth and Lipschitz
continuous segments. Due to construction this implies that some of the (ai) must
already have failed being in XRp+. Thus, XRp+ also is complete. �

We can extend the metric on streams ds from in�nite to �nite and in�nite streams. For
in�nite time model T 2 fR+ ;Ng and �nite or in�nite stream x 2

S
t>0X

[0;t)\T [XT ,
we write x to denote its extension to in�nite time. We de�ne x such that x 2 (X [
f?g)T , where ? is a designated element not in X. For �nite time streams x 2 X [0;t0)

the extension is de�ned by x(t) = x(t) if t < t0 and x(t) = ? otherwise. For in�nite
time streams x 2 XT we de�ne x = x. Note that x = y i� x = y.

De�nition B.20 The metric space of �nite and in�nite streams (
S

t>0X
[0;t)\T [

XT ; ds) for X 6= ; and T 2 fR+ ;Ng results from de�ning ds(x; y) = ds(x; y) for
all x; y 2

S
t>0X

[0;t)\T [XT .

The de�nition of x allows to deduce that ds is a metric from the respective properties
of ds.

All in�nite, converging sequences in the metric space of �nite and in�nite streams are
either constant eventually or their limit is an in�nite stream. This holds, because
our metric guarantees that two distinct, �nite streams of length t1 and t2 have as
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least distance 2�minft1;t2g. As an example we regard the sequence (ai), where each ai
is constantly 0 and ai 2 f0g

[0;ti), with ti = �i
k=0

1
2

k
. For i ! 1, ti converges to 2,

i.e. no in�nite stream results from this sequence. As (ai) furthermore is not constant
eventually, it does not converge w.r.t. the metric space of dense streams. In particular,
ds(a; ai) >

1
4
for the constant function a 2 f0g[0;2] and i 2 N.

Theorem B.8 The metric spaces of �nite and in�nite dense streams and the metric
space of �nite and in�nite discrete time streams are complete.

Proof. Let (ai) be a Cauchy sequence in the metric spaces of �nite and in�nite dense
streams or the metric space of �nite and in�nite discrete time streams. If the sequence
is constant eventually, the claim is trivial. Otherwise we proceed similar to the proof of
Theorem B.7: Let T = R+ in case of dense streams and T = N in case of discrete-time
streams. For each t 2 T we choose a k such that 8i � k: ai 2 X [0;t)\T ^ aij[0;t)\T =
akj[0;t)\T and de�ne aj[0;t)\T = akj[0;t)\T . Such a k exists, because of the de�nition of
the metric of streams, which also guarantees that two distinct, �nite streams of length
t and t0 have as least distance 2�minft;t0g, and because of the de�nition of Cauchy
sequences. Clearly, the sequence (ai) converges to a.

For dense streams we furthermore have to show that a is piecewise smooth and piece-
wise Lipschitz continuous. Here, the argument is the same as in the proof of Theo-
rem B.7. �

The following theorem relates time-divergent pre�x monotonous sequences (De�ni-
tion A.1) to Cauchy sequences.

Theorem B.9 Every time-divergent pre�x monotonous sequence also is a Cauchy
sequence.

Proof. The proof is straightforward by applying the de�nitions. The idea is that
the coincident pre�x of streams ak and ai, with i � k, in a time-divergent pre�x
monotonous sequence (ai) grows without bound for growing k. �

If follows that time-divergent pre�x monotonous sequences converge in the metric
space of �nite and in�nite dense streams.

B.5.1 Divergence Closure and Topological Closure

In Section A.1.1 divergence closure is de�ned based on time-divergent pre�x mono-
tonous sequences (De�nition A.1), which are a special case of converging sequences in
the metric space of �nite and in�nite streams.

Theorem B.10 (Topological closure implies divergence closure.) Let Mt �
X [0;t) for all t > 0 and M � XRp+ be sets of dense streams. If

S
t>0Mt [ M is
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closed w.r.t. the metric space of �nite and in�nite dense streams then
S

t>0Mt [M is
divergence closed.

Proof. Let (mi) be a time-divergent pre�x monotonous sequence with mi 2 Mti

for all i and diverging time sequence (ti). Let m be the limit of (mi). Closure ofS
t>0Mt [M guarantees that m is in

S
t>0Mt [M (Theorem B.6). As the limit of ti

is 1, limit m is an in�nite stream and hence m 2M . �

In general, divergence closure does not imply topological closure, because divergence
closure does not make any statements about the limits of sequences of streams in
M (and not in Mt), whereas topological closure demands that the limit of such a
sequence is in M . Equivalence would hold, if Mt is de�ned as Mt = M j[0;t), because
in this case for a sequence in M which converges, we can construct a time-divergent
pre�x monotonous sequence in Mt.
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